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Abstract 

Pulmonary diseases represent a significant burden to patients and the 

healthcare system and are one of the leading causes of mortality worldwide. 

Particularly, the acute respiratory distress syndrome (ARDS) is an acute, diffuse, 

pulmonary inflammatory condition caused by the weakening of epithelial and 

endothelial barriers, which leads to the filling of the alveolar sacs with fluid, impairing 

the proper gas exchange. In turn, pneumonia is an infection of the alveoli and lung 

tissue and can be caused by different agents, such as Staphylococcus aureus and 

severe acute respiratory syndrome coronavirus (SARS-CoV)-2. The massive 

recruitment of leukocytes to lung tissue and alveoli is a hallmark factor in ARDS and 

necessary to properly deal with the lung insult, while it is associated with lung 

inflammation and disease. Here, we investigated the contribution of the chemokine 

system during leukocyte migration and activation in different murine models of lung 

inflammation. Using an acute and self-resolving model of LPS-induced lung 

inflammation, we observed a crescent accumulation of lymphocytes from the middle 

to the final phase of inflammation and many of the lymphocytes present in the 

alveolar space expressed CXCR3 and CXCR6. Although the absence of mature T 

and B cells does not seem to impair the proper resolution of inflammation, the lungs 

of RAG2-deficient mice are enriched with innate lymphocytes in the later phase of 

inflammation, which may also contribute to the control of inflammation. In the same 

model, we observed that CCR2 is essential for the recruitment of some populations 

of monocytes/macrophages and its deficiency changes the profile of cells 

accumulating in the lungs without significantly affecting the resolution of 

inflammation. In CCR2-deficient mice, there is higher proliferation of alveolar 

macrophages with pronounced M2 profile, suggesting a compensatory mechanism 

for the resolution of ARDS inflammation due to the lack of migrated 

monocytes/macrophages. Lastly, we used the glycosaminoglycan-binding 

chemokine fragment CXCL9(74-103) to treat pneumonia caused by S. aureus or 

murine betacoronavirus murine hepatitis coronavirus 3 (MHV-3). In both models, 

CXCL9(74-103) treatment decreased the accumulation of neutrophils to the alveolar 

space and improved some parameters of lung dysfunction, mainly lung elasticity 



  

loss. In the MHV-3 model, CXCL9(74-103) led to a very positive outcome given that 

it also prevented lung injury. In conclusion, the present study provides valuable 

insights into how the chemokine system regulates lung inflammation and suggests 

possible therapeutic options in these circumstances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Samenvatting 

Longziekten vormen een aanzienlijke belasting voor patiënten en de 

gezondheidszorg en zijn wereldwijd één van de belangrijkste doodsoorzaken. Met 

name het acute ademnoodsyndroom (ARDS is een acute, diffuse ontsteking van de 

longen die wordt veroorzaakt door de verzwakking van de epitheliale en 

endotheelbarrières, waardoor de alveolaire zakjes zich met vocht vullen en een 

goede gasuitwisseling wordt belemmerd. ARDS kan het gevolg zijn van een infectie, 

maar evengoed van een andere systemische aandoening. Infectueuze 

longontstekingen kunnen worden veroorzaakt door verschillende pathogenen, zoals 

Staphylococcus aureus en het severe acute respiratory syndrome coronavirus 

(SARS-CoV)-2. De massale rekrutering van leukocyten naar longweefsel en alveoli 

is een kenmerkende factor bij ARDS en is een noodzakelijk antwoord op het 

longinsult, maar is terwijl ook de oorzaak van mogelijks onherstelbare schade aan 

het longweefsel. Hier onderzochten wij de bijdrage van het chemokinesysteem aan 

de migratie en activatie van leukocyten in verschillende muismodellen van 

longontsteking. In een acuut en zelfherstellend model van LPS-geïnduceerde 

longontsteking observeerden we een gestaag toenemende accumulatie van 

lymfocyten vanaf de middelste tot de laatste fase van de ontsteking, waarbij de 

meerderheid van de lymfocytenpopulatie in de alveolaire ruimte CXCR3 en CXCR6 

exprimeerden . Hoewel de afwezigheid van rijpe T- en B-cellen de goede resolutie 

van de ontsteking niet lijkt te belemmeren, bevatten de longen van RAG2-deficiënte 

muizen meer aangeboren lymfocyten in de latere fase van de ontsteking. Deze 

cellen kunnen ook bijdragen aan de beheersing van de ontsteking. In hetzelfde 

model hebben wij geconstateerd dat CCR2 essentieel is voor de rekrutering van 

bepaalde populaties van monocyt/macrofagen en dat deficiëntie ervan het profiel 

van de in de longen geaccumuleerde cellen verandert zonder significante gevolgen 

voor de resolutie van inflammatie. In CCR2-deficiënte muizen is er een sterkere 

proliferatie van alveolaire macrofagen met een uitgesproken M2 profiel, wat wijst op 

een compensatiemechanisme voor het herstel van ARDS ontsteking bij een gebrek 

aan monocyten/macrofagen die kunnen worden gerecruteerd. Tenslotte gebruikten 

wij het glycosaminoglycaan-bindende chemokinefragment CXCL9(74-103) om 



  

longontsteking veroorzaakt door S. aureus of murien betacoronavirus murine 

hepatitis coronavirus 3 (MHV-3) te behandelen. In beide modellen verminderde de 

behandeling met CXCL9(74-103) de accumulatie van neutrofielen in de alveolaire 

ruimte en verbeterden sommige parameters van longdysfunctie, voornamelijk het 

verlies van longelasticiteit. In het MHV-3 model leidde behandeling met CXCL9(74-

103) tot een zeer positief resultaat, aangezien deze ook longschade verhinderde. 

De conclusie is dat deze studie waardevolle inzichten verschaft in de wijze waarop 

het chemokinesysteem longontstekingen regelt en mogelijke therapeutische opties 

aanrijkt voor zulke omstandigheden . 
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Literature review and research objetives 
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Respiratory diseases are among the leading causes of death worldwide. In 

2016, chronic obstructive pulmonary disease (COPD) was the third leading cause of 

death, while lower respiratory tract infections were the fourth (1). According to the 

2017 Global Burden Disease study, respiratory infections, such as tuberculosis, 

pneumonia, cancer of the trachea, bronchi, and lung, and chronic respiratory 

diseases are responsible for more than 9.5 million deaths each year, which means 

more than 15% of total deaths (2). Additionally, these diseases have high rates of 

morbidity and disable millions of people every year (3,4). The group of respiratory 

diseases is broad and diverse, encompassing diseases caused by sterile agents 

such as COPD, infectious agents such as pneumonia and tuberculosis, and 

multifactorial conditions, such as ARDS (5–7). 

 

1.1. Pulmonary physiology 

Before understanding the physiology of lung diseases, it is necessary to 

understand the anatomy of a healthy lung. It is well established that the function of 

the lung is gas exchange. The right and left sides of the lung are similar but 

asymmetrical, with the first divided into three lobes and the second divided into two. 

The lobes are subdivided into segments that are associated with the bronchi, a 

subdivision of the trachea. The main bronchi divide into lobar or secondary bronchi 

within each lung. In turn, the lobar bronchi give rise to the segmental or tertiary 

bronchi that precede the bronchioles, forming a bronchial tree in which the trunks 

become thinner and more numerous as they go deeper into the lung until they end 

up into the alveoli, the structural and functional unit of the respiratory system (Figure 

1) (8–10). 
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Alveoli are air pockets specialized in the exchange of oxygen and carbon 

dioxide. There are approximately 300 million alveoli in the lungs. The average 

diameter of the alveoli is around 200 μm, thus providing more than 100 m² of surface 

for hematosis (11). Two types of cells form a continuous lining around each alveolus. 

They are type I pneumocytes, which form most of the alveolar epithelium, forming a 

thin air-blood diffusion barrier, and type II pneumocytes, which are responsible for 

the production of surfactant, a substance capable of reducing the surface tension of 

the alveoli, preventing alveolar collapse, and decreasing respiratory effort (11,12) 

(Figure 2). Hematosis is performed at the contact between the alveolus wall and the 

capillary wall, a connection known as the alveolus-capillary membrane. Through this 

membrane, oxygen is transferred from the lungs to the bloodstream, while carbon 

dioxide passes from the blood to the lungs. Subsequently, the oxygenated blood 

proceeds through the capillary towards the venules and pulmonary veins to the heart 

where it is pumped throughout the body (8,11,13). 

 

Trachea 

Main 

bronchi 

Lobar 

bronchus 

Alveoli 

Figure 1 – Schematic of the lung and airways. The following are highlighted: trachea, 

main bronchi, lobar bronchi, segmental bronchi, bronchioles, and alveoli (8-10). 
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The cells that form the respiratory epithelium vary in terms of morphology and 

function according to the part of the respiratory tract in which they are found. Before 

reaching the alveolus, the central point of gas exchange, some lining cells are very 

important in protecting the upper, conducting, and respiratory airways due to the 

production of mucus and the rhythmic waving motion that entrap and clear inhaled 

particles and pathogens. The mucociliary clearance is composed of (1) ciliated cells, 

which have hairlike motile cilia, and (2) goblet cells and submucosal glands, which 

secrete mucus (14). This mechanism of clearance is the initial barrier to preventing 

lung infection and inflammation (15–17). Additionally, several cells participate more 

actively in host defense and deal with particles and microorganisms that have 

managed to pass the initial barrier and can cause serious damage to lung tissue. 

These cells include alveolar macrophages (AM), neutrophils, dendritic cells, and 

lymphocytes (12,14).  

 

 

 

Figure 2 – Representation 

of an alveolus. Lined by 

type I and II pneumocytes, 

the alveoli are tiny air sacs 

at the end of the 

bronchioles. They are 

where the lungs and the 

blood exchange oxygen and 

carbon dioxide during the 

process of breathing in and 

breathing out (11, 12). 
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1.2. Pulmonary diseases 

1.2.1. Pneumonia 

Pneumonia is an infection of the lung parenchyma that leads to inflammation 

of the alveolar sacs, filling them with fluid, hindering gas exchange, and, 

consequently, blood oxygenation. Symptoms of the disease include cough, fever, 

back and chest pain, chills, fatigue, and difficulty breathing (4,18–20). The severity 

of the symptoms varies according to the health and age of the individual, and the 

microorganism causing the infection. Risk factors for the incidence and severity of 

the disease include age, as children and elderly are more susceptible and have a 

higher risk of death; comorbidities such as chronic respiratory, cardiovascular, and 

renal diseases; and lifestyle-related, such as smoking, alcoholism, malnutrition, and 

poor dental hygiene (20–22). Bacteria, viruses, and fungi can cause pneumonia, but 

the most common are Streptococcus pneumoniae and Haemophilus influenzae type 

b; respiratory syncytial virus, influenza virus, and coronaviruses; and Pneumocystis 

jirovecii, mainly in immunocompromised patients (19,23). It is also important to 

consider the high incidence of co-infections, where the patient with a recent history 

of viral pneumonia, usually caused by the influenza virus, acquires bacterial 

pneumonia, commonly caused by Streptococcus pneumoniae or Staphylococcus 

aureus (24,25). This condition is severe and can lead to death if not treated properly 

and quickly with specific medicines (26,27). 

It is possible to classify pneumonia according to the way the patient is 

infected, being categorized as (1) community-acquired (CAP), (2) hospital-acquired 

(HAP), or (3) associated with mechanical ventilation (VAP). HAP and VAP are 

hospital-acquired diseases, the first occurring when the patient is infected after a 

minimum of 48 h of hospitalization and the second when the patient is infected after 

a minimum of 48 h under mechanical ventilation (28,29). Hospital-acquired cases of 

pneumonia receive special attention due to the high risk of being caused by 

microorganisms related with the hospital environment, such as Staphylococcus 

aureus, Pseudomonas aeruginosae, Acinetobacter spp., and Enterobacteriaceae, 

which are able to cause a more serious infection and might be harder to treat due to 

antimicrobial resistance (30–32). In addition, hospitalized patients are generally 
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more vulnerable, immunocompromised, and have comorbidities, which results in 

more severe cases of pneumonia, with mortality rates above 30% (29,33). 

1.2.1.1. Pneumonia induced by Staphylococcus aureus 

A relevant bacterium in the context of pneumonia is S. aureus. From the group 

of Gram-positive cocci, this bacterium is responsible for less than 5% of CAP cases 

but can cause almost 50% of HAP and VAP cases (34–36). In addition to affecting 

mainly hospitalized patients, S. aureus has numerous virulence factors and a high 

degree of antimicrobial resistance, which makes it difficult to eliminate the 

microorganism and treat the disease (37–39). The rise of resistant strains of S. 

aureus associated with the shortage of new and more efficient antimicrobials has 

become a major public health problem and a challenge in the treatment of infections, 

with about 50% of staphylococcal pneumonia being caused by methicillin-resistant 

strains of S. aureus (MRSA) (39,40). 

After crossing the lung initial barriers, S. aureus induces a response from the 

innate and adaptive immune system. It is important to emphasize that this answer 

must be complex and redundant, since S. aureus has evasion mechanisms and 

virulence factors, such as toxins, which evade the immune system and make it 

difficult to eliminate the bacteria (41–44). Once the microorganism enters the lung, 

pathogen-associated molecular patterns (PAMPs), such as peptidoglycan and 

lipoteichoic acid, are recognized by pattern recognition receptors (PRRs), such as 

toll-type receptors (TLR) and NOD-type receptors (NLR). These receptors are 

expressed on the alveolar endothelium and by resident cells, such as AM. In the 

case of the response against S. aureus, TLR2 is crucial (45–47). After the 

recognition of molecular patterns, the production of molecules such as chemokines, 

prostanoids, and cytokines begins, which are able to attract, prime, and activate 

polymorphonuclear cells (PMN), mainly neutrophils (48), and other cells such as 

macrophages, dendritic cells and T lymphocytes (17), triggering the inflammatory 

response.  

Pneumonia and other diseases caused by S. aureus are intensively studied 

due to their severity and the need for more adequate treatments to control the 
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bacteria and the immune response (37,49,50). Currently, the treatment of S. aureus 

pneumonia varies according to the bacteria's resistance to antimicrobials, the type 

of infection (acquired in the community or the hospital), and the patient's risk factors. 

The identification of S. aureus from blood cultures and the analysis of the most 

adequate antimicrobial might take a long time, thus it is recommended to start the 

treatment empirically, following pre-defined protocols, with subsequent adjustments 

(28,51). Since it is a condition of intense inflammation, treatment can also include 

steroidal anti-inflammatory drugs, such as prednisone (52,53). The use of 

antimicrobials must be effectively monitored regarding their efficacy, safety, and 

duration to avoid the aggravation of the disease and the selection of multidrug-

resistant strains. Multidrug-resistant strains are increasingly common and are of 

great concern, highlighting the need to develop new antimicrobials (54–56). 

1.2.1.2. Pneumonia induced by SARS-CoV-2 

SARS-CoV-2 is a novel virus that causes a severe and highly contagious 

disease called COVID-19. This virus belongs to the order Nidovirales, the family 

Coronaviridae and the genus Betacoronavirus, which can be divided into 4 

subgenera. The subgenus Embecovirus contains the mouse hepatitis virus (MHV) 

and the subgenus Sarbecovirus includes SARS-CoV and SARS-CoV-2. These 

viruses are pleomorphic or spherical, 80-220 nm in diameter, enveloped, and have 

large club-shaped spikes. The genome consists of a single molecule of linear 

positive-sense, single-stranded RNA, which is around 30 kb in size. Usually, they 

contain four structural proteins, which are a major spike glycoprotein (S), an 

envelope protein (E), a membrane protein (M), and a nucleoprotein (N) (57). 

Coronaviruses have a vast genetic diversity due to point mutations by polymerase 

errors. Furthermore, genetic recombination occurs frequently between the genomes 

of different but related coronaviruses. These mechanisms allow the constant 

generation of new viruses with novel phenotypes and can be a threat in the virus 

spread control (58).   

The first reports of COVID-19 were in December 2019, and, in March 2020, it 

was considered by the World Health Organization as a pandemic due to the 
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intercontinental spread (59,60). Up to this date, more than 600 million cases of 

COVID-19 were confirmed, with almost 7 million deaths worldwide (61), therefore 

SARS-CoV-2 is a major concern and a public health emergency. Compared to 

SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-

CoV-2 is considerably more transmissible, although not so lethal (62). The virus is 

mainly transmitted through respiratory droplets, but aerosol, direct contact with 

contaminated surfaces, and fecal-oral transmissions were also reported (60,63–65). 

COVID-19 symptoms might range from minor to extreme according to many factors 

such as age and underlying conditions. The most common symptoms are fever, 

cough, and myalgia or fatigue, while the less common symptoms are sputum 

production, headache, hemoptysis, and diarrhea (66). In some cases, the disease 

can progress to pneumonia, ARDS, systemic inflammation, multiorgan failure, and 

death (62). 

Similar to SARS-CoV, SARS-CoV-2 enters the cells via angiotensin-

converting enzyme 2 (ACE2) on the cell surface, inducing endocytosis (67). The 

infection of epithelial cells induces the release of several pro-inflammatory cytokines 

and chemokines, leading to the recruitment of innate immune cells, such as 

neutrophils and macrophages (68). In addition to detection by virus specific PRRs of 

epithelial cells, sentinel immune cells (macrophages, mast cells, dendritic cells) in 

the underlying lung tissue sense the presence of viral intruders and respond 

similarly. The uptake of viral antigen by dendritic cells that subsequently migrate to 

the draining lymph node to present the pathogenic peptides to CD4+ and CD8+ T 

cells leads to the formation of effector T cells and antibody-producing B cells. 

Importantly, the prolonged release of pro-inflammatory mediators, if the virus is not 

fast and adequately cleared, may lead to very characteristic features of COVID-19: 

cytokine storm and, consequently, hyperinflammation. Briefly, cytokine storm is a 

sudden increase in systemic levels of pro-inflammatory cytokines such as interleukin 

(IL)-1, IL-6, IL-8, tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), and 

CCL2 (69,70), which leads to the recruitment of more cells and a dramatic 

amplification of the inflammation. Eventually, the cytokine storm might cause 
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endothelial dysfunction, vascular damage, and metabolic dysregulation, damaging 

multiple organ systems (71). 

There are multiple potential options for COVID-19 treatment, such as 

lopinavir, remdesivir, immunomodulatory drugs, corticosteroids, antimicrobials, 

plasma and hyperimmune immunoglobulins, and inflammation inhibitors. However, 

to date, there is not a completely effective drug to treat COVID-19 (72–74). Despite 

the vaccines’ success and the great reduction of SARS-CoV-2 spread, studies are 

needed to find better treatment options and to understand the disease pathogenesis 

(75). To do that, mouse models are essential. Different animal models have been 

tested to study the pathogenesis of SARS-CoV-2, but wild-type mice are resistant to 

SARS-CoV-2 infection due to differences between human ACE2 (the enzyme that 

allows virus entry) and its mouse orthologue (76). Therefore, the research is 

impaired by interspecies differences and other models using murine viruses should 

be applied (77).   

1.2.1.3. Murine Hepatitis Virus 

MHV belongs to the family Coronaviridae, sub-family Orthocoronavirinae, 

genus Betacoronavirus, and subgenus Embecovirus. Like the other Coronaviridae 

viruses, it is characterized by an enveloped positive-sense single-stranded 

ribonucleic acid of 25 to 31 kb (78). First isolated in 1949 (79) and with Mus musculus 

as its main host, MHV includes a set of well-described more virulent (MHV-2, MHV-

3, MHV-A59, and MHV-JHM) and less virulent (MHV-1, MHV-S, MHV-Y, and MHV-

Nu) strains. Besides the virulence, the MHV strains differ in organotropism and 

pathogenicity (58). Over time, MHV has been used as a model to study hepatitis (80) 

and demyelinating diseases (81) in humans. Since it shares the same genus 

(Betacoronavirus) as SARS-CoV-2, MHV together with murine models could offer, 

through a translational approach, mechanistic insight into SARS-CoV-2 biology, 

pathogenesis, and the development of new therapies (57). 

Differently from SARS-CoV-2, the S protein of the murine virus uses the hosts' 

carcinoembryonic antigen-related cell adhesion molecule 1a (CEACAM1a) receptor 

to enter the host cells instead of ACE2 (82). After intranasal inoculation, MHV starts 
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its replication in the respiratory epithelium of the nose and lungs, followed by 

dissemination via the lymphatic system and blood vessels, together with a prolonged 

and uncontrolled inflammatory response. Subsequently, it is possible to observe a 

secondary infection of the vascular endothelium in the liver, brain, and other sites. 

Additionally, syncytia are found as a sign of infection in multiple tissues such as lungs 

and lymph nodes (77,83). 

1.2.2. ARDS 

ARDS is another clinically important lung condition, which consists of an 

acute, uncontrolled pulmonary inflammation that leads to the rupture of the 

endothelial and epithelial barriers of the lung, culminating in hypoxemia and reduced 

lung compliance (7,84). ARDS develops after pulmonary or systemic diseases and 

has almost 40% mortality in the most severe conditions. Morbidity rates are also 

significant, and patients are often burdened with severe physical disabilities, 

requiring long-term therapeutic care (85). Various stimuli, pulmonary or not, can 

predispose and/or trigger ARDS, such as pneumonia and COVID-19, as well as 

sepsis, trauma, gastric aspiration, pancreatitis, blood transfusion, inhalation of toxic 

gases, or smoking (86,87).  

From a molecular point of view, ARDS starts with the loss of integrity of the 

alveolar-capillary membrane that allows the passage of proteins and cells. The 

increase in permeability leads to protein-rich alveolar edema and a vast 

accumulation of PMNs, such as neutrophils (88). These cells, together with resident 

cells, produce several pro-inflammatory and chemoattractant molecules, such as 

cytokines and chemokines, which induce an increased expression of adhesion 

molecules in PMNs and vascular endothelium. Other mediators produced are 

proteases, prostanoids, leukotrienes, and oxygen radicals. This set of molecules is 

capable of degrading alveolar structures and attracting more PMN, cells responsible 

for containing the initial injury, but with the potential to cause extensive tissue 

damage (88). The accumulation of cells and the inflammatory process in the lung 

interstitium and alveolar sacs impair their functionality and impair gas exchange (85). 

This acute pulmonary dysfunction manifests as tachypnea with respiratory distress, 
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drop in blood pressure and oxygen saturation, and chest radiographs or CT scans 

showing bilateral infiltrates (86,87). 

Despite being a known disease, the pathophysiology of ARDS is complex and 

involves many different cells and mediators, so many gaps still need to be filled. A 

better understanding of the molecular and cellular aspects of this disease would 

open the door to new, more specific, and effective treatments. Currently, treatment 

is limited to supportive care and lung protection ventilation, in addition to the use of 

pharmacological measures such as steroid anti-inflammatory drugs and β2 agonists, 

although the use of the latter one is still controversial (86,89,90). 

Experimentally, translational research of human ARDS is performed in murine 

“acute lung injury (ALI)” models, as those models quite accurately mimic human 

clinical manifestations. Despite ARDS being a disease of diffuse cause, it is possible 

to partially reproduce it with the use of lipopolysaccharide (LPS) from the bacterium 

E. coli (91). It is observed that intratracheal administration of LPS causes an increase 

in the permeability of the alveolar wall, edema, and inflammatory infiltrates in the 

interstitium and alveolus and the production of mediators similar to those seen in 

patients with ARDS (92,93). In the LPS-induced ALI/ARDS model, it is possible to 

observe an intense accumulation of neutrophils recruited by synergizing chemokines 

(94). In addition to chemokines, cytokines are also important mediators of the 

disease, especially TNF-α (95), IL-17, IL-6, and IL-1β (84,96–99). Anti-inflammatory 

cytokines, such as IL-10, are also important in ALI/ARDS as they control 

inflammation, preventing the exacerbation of tissue damage (100,101). 

 

1.3. The chemokine system 

Chemokines, or chemotactic cytokines, are a family of relatively small 

signaling proteins with a molecular mass of approximately 10 kDa, structurally 

characterized by the presence of four conserved cysteine residues (102). The 

hallmark function of chemokines is to induce and guide the movement of cells, 

especially leukocytes. Additionally, chemokines trigger effector functions in the 

target cells, e.g., the release of granules by PMN. Therefore, chemokines are 
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important in inflammation, but they also act in homeostasis, angiogenesis, and 

embryogenesis (103–105). Based on the position of the cysteine residues in the N 

terminal portion, chemokines are classified into 4 subfamilies: (1) CC chemokines 

have two adjacent N-terminal cysteines, (2) CXC chemokines present one amino 

acid between the two first cysteines, (3) the CX3C chemokine has 3 amino acids 

between the cysteines, and (4) C chemokines have only one N-terminal cysteine 

and one cysteine downstream (106). The CXC chemokine subfamily can be further 

subclassified into Glu-Leu-Arg (ELR)+ and ELR- CXC chemokines. The ELR+ CXC 

chemokines are associated with neutrophil recruitment and include CXCL1, 2, 3, 5, 

6, 7, and 8 (107,108). 

1.3.1. Chemokine receptors 

Chemokines can bind to G-protein-coupled receptors (GPCR) and atypical 

chemokine receptors (ACKR). Chemokine-binding GPCRs are classified as CCR, 

CXCR, CX3CR, and XCR according to the cysteine motif in their ligands (109). 

Interestingly, one chemokine can bind to different receptors and one receptor may 

transduce signals for distinct ligands. These interactions elucidate the bias of the 

chemokine system, which allows us to understand how one chemokine might 

promote different responses in different contexts (110,111). A GPCR is a single 

polypeptide that is folded into a globular shape and anchored in the cell’s membrane. 

This receptor has seven transmembrane helices and six loops, three extra and three 

intra-cellularly. The extracellular loops form part of the pockets wherein chemokines 

bind, inducing intracellular signaling by second messengers such as calcium, cyclic 

adenosine monophosphate, and GTPases (112,113).  

Currently, there are 20 conventional chemokine receptors, and they are 

widely expressed in leukocytes (Figure 3) (114,115). During inflammation, the 

fundamental role of chemokines is cellular recruitment to the inflammation site. As 

previously mentioned, chemokines and their receptors might have different functions 

or bind differently according to the context, thus it is important to notice that they can 

recruit other cells and can be involved in different processes (116). 
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Figure 3 - Chemokine receptors and their ligands. The outer ring of the wheel is 

composed of representations of the known chemokine receptors from each of the 

chemokine families (C, CC, CXC, and CX3C), with the chemokine ligands along the wheel 

spokes (114,115). In the center, there are some cells that express chemokine receptors. 

Chemokines have roles in different contexts. As pointed out in the picture, some of them are 

mainly connected with homeostasis, therefore being important for the homing of the cells 

and contributing for the proper composition of resident cells in the different tissues. In 

contrast, during inflammation the chemokines respond to inflammatory stimuli and aim to 

eliminate the invaders. 

 

1.3.2. Glycosaminoglycans 

Glycosaminoglycans (GAGs) are negatively charged, linear carbohydrate 

structures composed of a repeating disaccharide unit consisting of a hexuronic acid 

linked to an N-acetyl-hexosamine that can be sulfated at various positions. They are 

classified into 6 categories: heparan sulfate, heparin, chondroitin sulfate, dermatan 

sulfate, keratan sulfate, and hyaluronic acid. These sugar units can bind to the 

protein cores of proteoglycans and can also be found in the extracellular matrix 

(117). Due to their conjugation with various proteins, such as proteases, growth 
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factors, cytokines, chemokines, extracellular matrix proteins, and membrane 

receptors, GAGs play important roles in a variety of bioactivities such as cell 

recruitment and proliferation, angiogenesis, tumor progression, embryogenesis, and 

wound healing, as well as in the maintenance of homeostasis (118). GAGs ensure 

that their protein ligands mediating specific functions are presented at the correct 

site and time, besides directly inducing signaling or biologic activities (119). 

For instance, the interaction between chemokines and GAGs is crucial for in 

vivo cell migration, because it creates a concentration gradient of chemokines, 

leading to the recruitment of cells (120). Due to the presence of several Arg, Lys, or 

His residues in chemokines, chemokines are very often basic, have a pI of 10 or 

higher, and have positive charges, allowing them to bind to GAGs, which are 

negatively charged. The GAG-binding motifs in chemokines are called BBXB and 

BBBXXB, where B represents a basic amino acid (118). GAGs are a diverse group 

with variable affinities for specific chemokines, allowing the control of chemokine 

activity during inflammation in time, space, and intensity (120). It is known that 

chemokines might act as monomers or as oligomers, (dimers, tetramers, or 

polymers) (117). Oligomerization increases the number of epitopes that bind to 

GAGs and, subsequently, the affinity of chemokines for GAGs through an avidity 

effect. Therefore, chemokine oligomerization may have a remarkable effect on GAG 

affinity and specificity (121). 

1.3.3. Chemokines as therapeutic targets  

The importance of chemokines and their receptors in the inflammation 

process is undeniable. Hence, they have been extensively studied as therapeutic 

targets by different approaches. One of these is the inhibition of chemokine and 

chemokine receptor expression by immunosuppressors, like ML3000, a molecule 

that downregulates CCR3 ligand levels in rheumatoid arthritis synovial fibroblasts 

(122). The use of knockout mice lacking chemokine receptors is also an important 

tool to clarify their relevance in certain diseases and to better elucidate the role of 

some cells in different types of inflammation (123,124). Another example is the 

blockade of CCR2, CCR5, and CXCR3 by a non-peptide antagonist protecting mice 
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from colitis (125). Similarly, modified chemokines are also used as a therapeutic 

strategy. It has been demonstrated that the truncation of chemokines, such as CCL2, 

potentially produces antagonists for the respective chemokine receptor (126–128). 

This last approach might be promising to reduce the function of chemokines during 

excessive inflammatory responses. As published by our group, different isoforms of 

chemokines and chemokine-derived peptides compete with intact chemokines for 

GAG binding, thereby reducing the chemokine activity (120,129–131). For instance, 

CXCL9 consists of 103 amino acids and attracts activated T lymphocytes and NK 

cells after binding to CXCR3 (132). Nevertheless, a COOH-terminal fragment of 

CXCL9 [CXCL9(74-103)] competes for GAG binding and reduces neutrophil 

recruitment leading to a reduction in inflammation in different animal models (129–

131). 

 

1.4. Recruited cells and their immunologic response 

Recruitment of immune cells is essential for survival. Leukocytes must leave 

the bloodstream to reach areas of infection or injury in peripheral tissues in order to 

perform their roles in surveillance and immunological responses (133). Leukocyte 

diapedesis can be divided into the following steps: tethering, rolling, adhesion, 

crawling on the endothelial cell surface, and, finally, transmigration (134). This 

process is highly dependent on interactions between endothelial cells and 

leukocytes  (135). Endothelial cells can be activated via PAMPs binding to PRR, 

leading to the exposure of adhesion molecules on their surface and allowing the 

generation of chemotactic gradients (136). Selectins are expressed on the 

endothelial cells and bind to their counter-receptors on the leukocytes, leading to the 

capture of the leukocyte (tethering) from the bloodstream (137). After the capture, 

rapid adhesive bonds between leukocytes and endothelial cells are observed. The 

rolling of neutrophils facilitates their contact with GAG-bound chemokines on the 

endothelium to result in tight adhesion and activation. Leukocyte activation is usually 

a two-step process induced by pro-inflammatory cytokines, PAMPs, 

chemoattractants, or growth factors (138,139). After its activation, the leukocyte is 
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ready for transmigration. Due to strong bonds between integrins and their counter-

receptors leukocytes start their extravasation from the vessels to the tissue, which 

can be paracellularly or transcellularly. Next, leukocytes migrate towards the 

infectious/inflammatory focus in the tissue (140,141). Many cell types undergo this 

multistep cascade of extravasation, but the present work is focused on the most 

abundant cells taking part in pulmonary inflammation: neutrophils, lymphocytes, and 

monocytes/macrophages. 

1.4.1. Neutrophils 

Neutrophils are the most abundant circulating leukocyte in humans and a very 

relevant cell population in mice models. They are continuously generated in the bone 

marrow, and, when mature, are characterized by their segmented nucleus and 

granules and secretory vesicles in the cytoplasm (134). Neutrophils have always 

been considered short-lived immune cells with a circulating half-life of approximately 

1.5 in mice and 8 h in humans (142,143). Interestingly, a new study shows a notable 

neutrophil lifespan of 18 h for mice and 5.4 days for humans (144). There are some 

criticisms regarding this study, but it shows the importance of new research and the 

remarkable plasticity of neutrophils (145,146). 

Usually, neutrophils are the first recruited cells at the beginning of 

inflammation and infections. As previously mentioned, chemokines are important 

chemotactic agents, but they are not the only ones. Additional G protein-coupled 

receptor agonists, including bacterial peptides, such as formylated methionyl-leucyl-

phenylalanine (fMLP) (147), products of complement activation, such as C5a (148), 

extracellular-matrix degradation products, such as laminin-derived peptides (149), 

and lipid mediators, such as leukotriene B4 (150). During the migration process, 

neutrophils can unzip the endothelial tight junctions and squeeze themselves 

between the endothelial cells, leading to paracellular transmigration. For 

transcellular migration, neutrophils pass through an endothelial cell without mixing 

their cytoplasmic contents (140,141). After arriving at the site of inflammation, 

neutrophils have several mechanisms to eliminate the intruder, especially bacteria. 

They can phagocytose, secrete the content of their granules, such as enzymes and 
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antimicrobial peptides, produce reactive oxygen species (ROS), and release 

neutrophil extracellular traps (NETs) (151,152). Once activated, neutrophils have a 

prolonged lifespan and phagocytose the microorganism. Opsonins and 

evolutionarily conserved structures from bacteria, such as LPS, lipoproteins, and 

peptidoglycan (PGN), are recognized by PRRs and opsonic receptors, respectively, 

expressed on the neutrophils (153,154). After the recognition, neutrophils project 

pseudopod extensions around the attached particle and engulf it, leading to the 

formation of a phagosome, which is an outside-in compartment inside the cell. 

Subsequently, the phagosome is mobilized and fused with different granules, 

resulting in the killing of the microorganism (155,156). There are different types of 

granules: primary or azurophilic, secondary or specific, tertiary, or gelatinase-

containing granules, ficolin-1-rich granules, and secretory vesicles (157). Primary 

granules contain myeloperoxidase (MPO), defensins, lysozyme, 

bactericidal/permeability-increasing protein (BPI), and several serine proteases, 

such as neutrophil elastase, proteinase 3 and cathepsin G (105). Secondary 

granules contain the glycoprotein lactoferrin and antimicrobial compounds including 

neutrophil gelatinase-associated lipocalin and lysozyme (106). Tertiary granules 

contain few antimicrobials but serve as storage for several metalloproteases, such 

as gelatinase. The ficolin-1-rich granules are more recently described and contain 

human serum albumin, CR1, actin, and several cytoskeleton-binding proteins.  

Lastly, secretory vesicles are not always considered proper granules, but they 

constitute a reservoir of membrane-associated receptors, actin, actin-binding 

proteins, and alkaline phosphatase that are required at the earliest phases of 

neutrophil-mediated inflammatory responses (158,159). Additionally, phagocytosis 

induces the production and release of ROS. The whole phagocytosis process 

triggers a series of molecular signals that modulate the cell functions, and the 

regulation of inflammation via cytokine production, which eventually leads to the 

recruitment of more leukocytes, including more neutrophils (160) 

Differently from bacterial and fungal infections, clearance of viral particles is 

not normally associated with neutrophils (161). Nevertheless, neutrophils are usually 

the first responders and are very abundant at sites of viral infections, such as 
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infections caused by varicella zoster, West Nile virus, herpes simplex virus, COVID-

19, H5N1, and more (162–165). The antiviral activity of neutrophils is much less 

studied, but it is known that these cells can (1) phagocytose viruses (166), (2) amplify 

inflammation via the production of pro-inflammatory mediators and antimicrobial 

molecules (161), (3) initiate, enlarge, and/or repress adaptive immune response 

(167), and (4) release NETs (168,169). Therefore, due to their predominance and 

the different effector mechanisms, neutrophils are also relevant for viral infection and 

might be an important link between the innate and adaptive immune response (170). 

Although very important for infection control, the mechanisms for pathogen 

elimination can cause tissue injury (171,172). Hence, neutrophil recruitment must be 

tightly controlled, and neutrophils must be removed before they cause serious harm 

to host tissues. After the microorganism clearance, neutrophils normally undergo 

apoptosis. Moreover, this programmed cell death not only reduces the number of 

neutrophils but also produces signals that prevent further neutrophil recruitment 

(173,174). 

1.4.2. Lymphocytes 

Lymphocytes are bone marrow-derived cells arising from a common lymphoid 

progenitor. In general, lymphocytes can be classified by cell surface receptors and 

by the specific immune functions attributed to each cell type. Lymphocytes can be 

divided into innate and adaptive cells. Innate lymphocytes consist of innate lymphoid 

cells (ILCs), including NK cells, while adaptive lymphocytes comprise NKT cells, T, 

and B lymphocytes (175,176). The main effector cells of the adaptive immune 

response are T and B lymphocytes, these lymphocytes generate remarkably specific 

responses and immunological memory.  

Lymphocytes are extremely mobile. After developing in the primary lymphoid 

organs (thymus and bone marrow), they migrate to secondary lymphoid 

organs, such as lymph nodes and the spleen, where they search for their 

corresponding antigen, which might be derived from lymph or blood, respectively. 

Lastly, effector lymphocytes can also migrate to inflammation sites, where they can 

produce more cytokines or interact directly with other cells (177,178). Several 
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chemotactic molecules and chemokine receptors regulate this trafficking and should 

be thoroughly studied to characterize the different subpopulations of lymphocytes 

and their role in lung inflammation, such as ARDS. 

In bacterial infections, CD4+ T lymphocytes and plasma cells are crucial as 

producers of cytokines, important for propagation of the inflammation, and 

immunoglobulins, which neutralize particles and have a role in opsonization and cell 

activation, respectively (179). Studies show that Th1 and Th17 responses, together 

with immunoglobulins, induce protective immunity against infections, and are 

important for clearance of the microorganisms (180–182). However, the role of 

lymphocytes in this group of diseases is ambiguous, since they can be unessential 

(183) and even harmful, increasing tissue damage. In contrast, the role of 

lymphocytes in viral infections is commonly addressed, mostly because of the 

cytotoxicity of CD8+ T cells and NK cells, and the release of neutralizing 

immunoglobulins by plasma cells (184). Cytolytic lymphocytes kill target host cells 

through a contact-dependent mechanism. This process occurs when host cells 

present foreign cytosolic peptides to the CD8+ lymphocyte, leading to the formation 

of an immunologic synapse. Subsequently, lymphocyte granules are rapidly 

mobilized to the synapse, followed by granule membrane fusion with the target cell 

plasma membrane and exocytosis of granule contents such as granzymes and 

perforin. Lymphocyte activation also causes the surface expression of Fas ligand, 

which binds to Fas on the target cell membrane, also triggering apoptosis (176). The 

role of lymphocytes in the pathogenesis of ARDS is dependent on the syndrome's 

cause. As mentioned, after the recognition of bacterial molecules, such as LPS, 

innate immune cells are activated, and this eventually leads to the activation and 

recruitment of different types and subtypes of lymphocytes. Nevertheless, the only 

lymphocyte characterized and often studied in ARDS is the regulatory T cell, which 

is very important for the resolution of inflammation and can help to restore lung 

homeostasis in these diseases (185,186). 
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1.4.3. Macrophages (the following topic is adapted from a review published by the 

author – ANNEX I) 

Pulmonary homeostasis is maintained by tissue-resident cells that protect the 

lung from a broad range of antigens during respiration (187). Macrophages are the 

primary immune sentinels and protect the lung by phagocytosing inhaled 

particulates, pathogens, surfactants, apoptotic cells, and cell debris (187). In addition 

to the phagocytic activity, macrophages have an important role in keeping the 

balance between immune cell defense against invaders and tolerance to non-

inflammatory stimuli and are crucial for the maintenance of lung homeostasis and 

tissue repair. As a first line of defense, macrophages have an important role in the 

recognition of pathogens and molecules associated with damage. Upon encounter 

with such a trigger, macrophages initiate the inflammation, for instance by producing 

pro-inflammatory cytokines and chemokines that attract additional leukocytes, but, 

on the other hand, macrophages are also central in the resolution of inflammation 

by producing anti-inflammatory cytokines and engulfing apoptotic cells (188,189). 

1.4.3.1. Macrophage response during non-infectious inflammation 

Several diseases can result from non-infectious stimuli, such as COPD 

(188,189), asthma, silicosis, and asbestosis (190). AM are the first line of defense 

against xenobiotics, and particles, they can recognize and phagocytose them, and 

secrete a myriad of mediators to recruit and activate other cells such as neutrophils 

and monocytes.  

In silicosis, for instance, the silica particles are engulfed by the AM through a 

class A scavenger receptor (191). However, the phagocytosed particles are 

indigestible hence causing lysosomal membrane damage and allowing the leaking 

of enzymes in the cytoplasm, which leads to the apoptosis of AM and further 

propagation of the inflammation. In summary, the phagocytosis of silica particles 

results in the release of several mediators that induces a strong inflammatory 

response (192,193). Excessive inflammation and cell death lead to tissue damage 

and repair, eventually inducing pulmonary fibrosis (194–196). It is important to 

highlight that macrophages contribute to fibrosis through all phases of tissue injury 
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and repair and support either fibrogenesis or fibrolysis depending on the local tissue 

environment (197). Furthermore, the emphysema observed in cigarette smoke-

induced COPD is also related with AM activity (198,199). They secrete 

metalloproteases such as matrix metallopeptidase (MMP)-9 and MMP-12, leading 

to the destruction of the lung parenchyma (200). MMP-12 is also important in the 

activation of elastin peptides that perpetuates inflammatory responses, particularly 

IL-17A-driven processes (201–203). 

Interstitial macrophages (IM) are also important in lung inflammation. Despite 

producing IL-6 and TNF-α in human and mice, IM have remarkable regulatory 

properties due to the secretion of IL-10 in response to LPS and DNA containing non-

methylated CpG motifs (CpG-DNA), for instance (204). In addition, the production of 

IL-10 by IM inhibits the maturation and migration of dendritic cells (DC) to the lung 

thereby reducing excessive endotoxin and antigen-induced airway allergic response 

in mice (205,206). Despite the current findings, the functions of IM are not yet 

completely covered and remain to be investigated (207). 

Regarding the macrophage polarization, M1 macrophages release several 

pro-inflammatory mediators and activate the nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase system releasing high levels of ROS (208–212). M2 

macrophages appear to be more important in fibrotic diseases, such as COPD. In 

fact, it is known that patients with severe forms of COPD have an increase of M2 in 

the lungs, suggesting that these cells are involved in COPD pathogenesis (213–

215). In allergic diseases, such as asthma, eosinophils can induce the polarization 

of M2 that have an important role in the disease development (216,217). Although 

anti-inflammatory macrophages are extensively studied and correlated with allergic 

diseases, it is known that a specific population of pro-inflammatory macrophages 

(IRF5+) is also relevant in the context of asthma (218). 

1.4.3.2. Macrophage response during infections  

In the context of infectious lung diseases, AM sense the presence of fungi, 

viruses, parasites, and bacteria. They recognize pathogen components through 

PRRs (219) such as TLRs 2, 3, 4, 5, 7/8, and 9 and retinoic acid-inducible gene-I-
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like receptors (RLRs), among others (220,221). Such activation of AM results in 

increased concentrations of pro-inflammatory cytokines and chemokines, such as 

TNF-α, IL-1β, IL-6, IFN-γ, CXCL1/KC, and CCL2/MCP-1 associated with an M1 

phenotype and antimicrobial response (222,223). During infection, AM can also 

polarize to an M2 phenotype with low antimicrobial activity and repress the 

inflammatory response through the secretion of large amounts of IL-10, CCL17, 

CCL22, CCL24, and low levels of IL-12 (224).  

AM can play a dual role during bacterial pneumonia. AM are required to 

eliminate for example Streptococcus pneumoniae, Staphylococcus aureus and 

Klebsiella pneumoniae since the depletion of these cells in vivo increases lung 

bacterial load and enhances mortality (225,226). However, in infections with 

intracellular bacteria such as Mycobacterium tuberculosis and Bordetella pertussis, 

macrophages play a detrimental role. In these infections, AM polarize to an M2 

phenotype and can provide a niche for bacterial growth (227,228). When it comes to 

viral infections, macrophages can recognize viral proteins and genomes triggering 

antiviral responses which can limit viral replication and spread. Influenza A infection 

induces an early interferon response and increased production of pro-inflammatory 

cytokines and chemokines by AM, despite their failure to release infectious viruses 

(229). Although AM do not recognize SARS-CoV-2 (230), macrophages recruited to 

the airways during SARS-CoV-2 infection exacerbate inflammation, which is 

associated with a cytokine storm and ARDS (231).  

During fungal infections, e.g., caused by Aspergillus fumigatus, 

Paracoccidioides brasiliensis and Cryptococcus neoformans, AM and infiltrated 

macrophages are responsible to recognize, phagocytose and destroy those 

pathogens via enzymatic digestion and production of ROS and RNS (232–235). 

Despite the ability of the macrophages to eliminate infections, some fungi can adapt 

and resist immune responses through mechanisms that reduce chemotaxis, inhibit 

phagocytosis, resist the microbicide effect and escape from phagolysosomes (236).  

Macrophages contribute to resistance and susceptibility to infections. Some 

pathogens have developed complex strategies to evade the host's immune 
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response. Some general mechanisms shared between them include evasion of cell 

recognition by modification of surface components; modulation or suppression of 

macrophage function by evasion of phagocytosis; induction of changes in cell 

metabolism; induction or inhibition of apoptosis or direct killing of the macrophage 

(237–239). 

 

1.5. Resolution of inflammation 

The recruitment of different leukocytes is also a crucial event in the resolution 

phase of inflammation. This phase is an active and complex process that occurs 

when the inflammatory stimulus is controlled. In this case, the production of pro-

inflammatory mediators and the recruitment of PMN leukocytes are discontinued, 

and the PMN leukocytes accumulated in the tissue undergo a process of apoptosis 

and are engulfed by macrophages (efferocytosis), leading to the clearance of cells 

and cell debris, allowing tissue repair and return to homeostasis (240–243). In 

addition, events related to the resolution of inflammation in lung disease include 

reduction of edema, repopulation of the airway epithelium, and restoration of lung 

surfactants (243,244). 

Among the cells involved in the resolution of inflammation, macrophages must 

be highlighted. The role of these cells in the resolution of inflammation is crucial 

because they produce pro-resolving molecules and are directly affected by them 

(245). It is known that macrophages can be polarized to an anti-inflammatory and 

resolving profile (M2), assuming functions classically related to the resolution of 

inflammation, being able to phagocytize apoptotic cells and promote inflammation 

control and tissue repair (246,247). Macrophage polarization is a central event in the 

resolution of inflammation and can be induced by cytokines, hormones, microbial 

components, and others. M2 are polarized in the presence and phagocytosis of 

apoptotic cells, and molecules such as IL-10, TGF-β, M-CSF, IL-4, IL-13 and other 

(248). After polarization, these cells express scavenger receptors, mannose and 

galactose receptors, and chemokine receptors different from those expressed by M1 

macrophages (249). 
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In addition to macrophages, lymphocytes might also have a role in the 

resolution of inflammation because they are able to induce neutrophil and 

macrophage apoptosis through the expression of Fas ligand, which reduces the 

production of pro-inflammatory cytokines and mechanisms associated with tissue 

damage (250,251). Another important role of lymphocytes during resolution is played 

by Tregs lymphocytes, which secrete molecules capable of suppressing inflammation, 

inducing efferocytosis and promoting tissue repair (252–254). Nevertheless, 

lymphocytes are divided into several populations and many of them do not have well 

characterized functions in the resolution phase of inflammation, especially in 

infectious conditions. 

 

1.6. Research objectives 

Lung diseases, such as pneumonia and ARDS, cause high rates of morbidity 

and mortality worldwide. Despite being very relevant and intensively investigated, a 

lot remains to be studied regarding molecular pathogenesis, and the development 

of new and more effective treatments for these diseases is still needed. On this basis, 

we had three major aims in the present work: 

a) Many cells are involved in resolution, such as macrophages that are extensively 

studied and characterized. In contrast, there are not much published few papers 

describing the role of lymphocytes in the resolution of the inflammatory process 

(255,256). Unpublished data from our group show that lymphocytes are also present 

at the inflammatory site during the resolving phase of lung inflammation. Thus, we 

aimed to investigate whether populations of lymphocytes actively participate in the 

resolution of lung inflammation, and it is therefore necessary to characterize the 

lymphocytes subpopulations and their chemokine receptors to understand their 

recruitment and how they would participate in the control of lung inflammation in a 

model of ALI/ARDS induced by LPS. 

b) Monocytes and macrophages are crucial cells to the development and resolution 

of inflammation. The recruitment of these cells is mainly linked with the expression 
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of CCR2. Therefore, we aimed to evaluate the role of CCR2 in a model of 

ALI/ARDS induced by LPS using CCR2 KO mice. 

c) As mentioned, leukocytes are key factors in the inflammation process. 

Therefore, the study of leukocyte recruitment is essential. In this context, the use of 

GAG-binding proteins that can interfere with the cell diapedesis is an important tool.  

In this study, we aimed to assess the effect of CXCL9(74-103) treatment in the 

recruitment of cells, especially neutrophils, in murine models of pneumonia 

induced by S. aureus and MHV-3.     
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Role of lymphocytes in a murine model of ARDS 
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2.1. Introduction 

Lymphoid cells participate in a broad spectrum of immune and inflammatory 

responses, including innate and adaptive cells. Among them, T and B cells are 

classically responsible for the adaptive immune response, coordinating an antigen-

specific production of antibodies or cytotoxicity (257). Lymphocytes have a well-

defined role in the stimulation of inflammation and tissue damage, but there are 

subsets of regulatory T and B lymphocytes (Tregs and Bregs). These cells secrete 

molecules capable of suppressing inflammation (IL-10 and TGF-β), inducing 

efferocytosis, and promoting tissue repair (253,258). Tregs also produce IL-13, a Th2 

cytokine, that leads to additional production of IL-10 by macrophages and, 

consequently, promote macrophage efferocytosis and further propagation of 

resolution of inflammation (259). Furthermore, T cells can also be relevant for the 

resolution of inflammation due to their ability to induce apoptosis of neutrophils and 

macrophages through the expression of the Fas ligand, which reduces the 

production of pro-inflammatory cytokines and mechanisms associated with tissue 

damage (250,251).  

Preliminary studies showed that the resolving phase of neutrophilic and self-

resolving models of inflammation is marked by an increase in the progressive 

accumulation of lymphocytes (data no shown). Interestingly, this is concomitant with 

the increase of M2 macrophages (data not shown), indicating a possible role of 

lymphocytes in the process of resolution. Notably, lymphocytes are divided into 

different populations and many of them do not have a well-characterized function in 

the resolution phase of inflammation. 

Different subsets of CD4+ T lymphocytes have been described based on their 

secretion of cytokines and specific functions. In addition, these subpopulations can 

also be characterized by the surface expression of chemokine receptors (260). Th1 

cells expressed CXCR3 and CCR5, Th2 cells express CCR4 and CCR8, and Th17 

express CCR4, CCR6, and CXCR3 (261). Based on that, we can explore the role of 

chemokine receptors and how they impact the recruitment of different types of 

lymphocytes. In addition, these receptors are also markers of cell activation and are 
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important in the balance between naïve, effector and memory of CD4+ T and CD8+ 

T lymphocytes (262,263). Therefore, the characterization of chemokine receptors’ 

expression in T lymphocytes might suggest the role and the activation status of these 

cells in our ARDS model. 

 

2.2. Materials and methods 

2.2.1. Mice and reagents 

Eight to ten weeks old, male C57BL/6 were acquired from the Janvier Labs 

(Le Genest-Saint-Isle, France) and kept in the animal facility at the Rega Institute for 

Medical Research, KU Leuven. For the RAG2 experiments, eight to ten weeks old 

RAG2-/- and RAG2+/+ were bred in the animal facility at the Rega Institute for Medical 

Research, KU Leuven. Previously, RAG2-/- mice (C57BL/6N-Rag2Tm1/CipheR) and 

RAG2+/+ C57BL/6NRj mice were bought from the Janvier Labs. Knockout (KO) and 

wild-type (WT) mice were mated to generate F1 heterozygotes that were inter-

crossed to create littermates. A SNP analysis was performed on tail or ear genomic 

DNA from original RAG2-/- mice and original C57BL/6 mice, and from RAG2-/- and 

RAG2+/+ mice after the backcrossing (Mouse Genome Scanning panel of 2050 

SNPs, Taconic, Rensselaer, NY, USA). This genotyping analysis showed that the 

genetic background of the RAG2-/- mice is >99.9% C57BL/6. All animals were 

maintained in a controlled environment, with ad libitum filtered water and food, and 

in a 12-h dark-light cycle. Experiments were performed within the norms of the 

European Union (directive 2010/63/EU) and the Belgian Royal Decree of 29/05/13 

and the Brazilian Guideline for the Care and Use of Animals in Teaching or Scientific 

Research Activities. They were approved by the Animal Ethics Committees of KU 

Leuven (P101/2020). E. coli LPS (Sigma-Aldrich, Saint-Louis, MO, USA, 12.5 

μg/mouse) was diluted in endotoxin-free phosphate-buffered saline (PBS - Lonza, 

Walkersville, MD, USA) 

2.2.2. In vivo experimental model 

Mice were anesthetized with a solution of ketamine (80 mg/kg) and xylazine 

(15 mg/kg), subcutaneously. For the induction of ARDS (91,264), bacterial LPS 
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(Sigma-Aldrich, 12.5 µg/30 µL) was intranasally instilled. All the animals in the control 

group received the same volume of the vehicle (PBS) by the same route. For 

euthanasia, an overdose of anesthetic (ketamine and xylazine) was used. The doses 

and time points were based on the literature or preliminary experiments. 

Body weight was measured daily, and the mice were euthanized at different 

time points after the instillation. For the dissection, mice received 100 μL of dolethal 

(Vetoquinol, Niel, Belgium; 200mg/mL). Bronchoalveolar lavage fluid (BALF) was 

obtained by the instillation of 500 μL of PBS through a catheter in the trachea. The 

fluid was withdrawn and instilled again two more times, PBS instillation was repeated 

three times, and the lavages were pooled. After perfusion, lungs were collected for 

analysis by flow cytometry and ELISA. The BALF was centrifuged (5 min, 300 × g, 

4°C) and the supernatant was collected for the analysis of the cytokine levels by 

ELISA, and protein levels by BCA, whereas the cell pellet was combined or not with 

the cells isolated from the lungs for flow cytometry analysis. Furthermore, part of the 

resuspended cell pellet was used for cell counting. 

2.2.3. Isolation of single cells from the lungs 

During dissection, lungs were removed, cut into small pieces, and collected 

in RPMI medium [RPMI GlutaMAX (ThermoFisher, Waltham, MA, USA) + 5% fetal 

calf serum (FCS – Biowest, Nuaillé, France) + 1% penicillin/streptomycin 

(ThermoFisher)] at room temperature (RT). Lungs were then incubated for 30 min at 

37 °C in RPMI medium with digestive enzymes [2 mg/mL collagenase D (Sigma-

Aldrich) and 0.1 mg/mL DNase I (Sigma-Aldrich)]. The tissue was homogenized 

using a needle and syringe and fresh digestion medium was added for a second 

incubation at 37 °C for 15 min. After the second process of homogenization, the 

samples were centrifuged (5 min, 400 × g, RT), and the pellet was resuspended in 

1 mL of 10 mM EDTA (Sigma-Aldrich) dissolved in PBS to stop the digestion. Cells 

were suspended in PBS + 2% FCS, centrifuged again, and treated with ACK lysing 

buffer (ThermoFisher) to lyse red blood cells. Subsequently, they were passed 

through a 70 µm cell strainer and resuspended in PBS + 2% FCS. To determine the 

number of live cells per mL, they were diluted in trypan blue solution and counted 



 

30 

 

using a Bürker chamber. Cells from the lungs were combined or not with cells from 

the BALF for flow cytometry analysis. 

2.2.4. ELISA 

The measurement of cytokines and chemokines in lung tissue and 

bronchoalveolar lavage was performed using the enzyme immunosorbent assay 

(ELISA). A lung fragment was weighed and suspended in a solution containing 

antiproteases and subjected to homogenization. The supernatant of the lung 

processing and the BALF were used for the assay. The ELISA kits were used 

according to the manufacturer's suggested procedures (R&D Systems, Abingdon, 

UK). 

2.2.5. BALF protein concentration 

To assess the edema formation and the extend of the tissue damage, the 

concentration of protein in the BALF was measured using the Pierce BCA protein 

assay (ThermoFisher). Briefly, the BCA assay comprises mixing the BCA working 

reagent with BSA standards (Sigma-Aldrich) and samples followed by incubation for 

30 minutes at 37ºC. The microplate is cooled to room temperature and the 

absorbance is read at 562 nm [PowerWave™ XS Microplate reader, with the Gen5 

software – both from Biotek (Shoreline, WA, USA)].  

2.2.6. Staining and Flow Cytometry 

One million cells per sample were transferred to 96 well plates and washed 

with PBS. They were incubated for 15 min at RT in the dark with a viability dye, 

Zombie UV or Zombie Aqua (1/1,000; BioLegend, San Diego, CA, USA), and mouse 

Fc blocking reagent (MACS Miltenyi Biotec, Bergisch Gladbach, Germany). After the 

incubation time, the cells were washed with FACS buffer (PBS + 2% FCS + 2 mM 

EDTA) and stained with different panels of monoclonal antibodies (Supplementary 

Table S1) diluted in brilliant stain buffer (BD Biosciences; Erembodegem, Belgium) 

for 20 min at 4°C in the dark. The samples were washed with FACS buffer, fixed in 

0.4% formaldehyde in PBS, and transferred to FACS tubes. The samples were read 

with an LSR Fortessa Flow cytometer (BD Biosciences), and 100,000 live single cells 

were acquired. For the analysis of the data, FlowJo V10 software (FlowJo, LLC – BD 
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Biosciences) was used, and the gating strategies are described in Supplementary 

Figure S1. 

2.2.7. Statistical analysis 

The data were analyzed using the GraphPad PRISM software (GraphPad, La 

Jolla, CA, USA, version 9.0.0). The one-way ANOVA test was performed followed 

by the Bonferroni correction. Significance was determined by comparing the different 

time points with the control, unchallenged group; between each condition for the WT 

and the KO mice and between the WT and KO mice within each condition; and 

between control, treated, and non-treated (vehicle) groups. P-values were indicated 

as follows: * = p< 0.05 when compared to the corresponding control group and # = 

p<0.05 when comparing wild-type and knockout groups or when compared to the 

vehicle group. 

 

2.3. Results 

2.3.1. Profile of cells, pulmonary edema, and cytokines in a murine model of 

ARDS/ALI 

The accumulation of leukocytes in the lungs is an essential part of the 

inflammation induced by LPS. Neutrophils and macrophages are the main cells 

recruited and have a well-studied role in the beginning and the resolution of the 

inflammation (265,266). In addition, other cell types can be part of this process, such 

as lymphocytes. To better understand our ARDS/ALI model and infer whether 

lymphocytes may be important in it, we evaluated the profile of cells recruited to the 

alveolar space by collecting BALF (Figure 4). In the first two days after the LPS 

challenge, we observed a massive influx of cells (Figure 4A), especially neutrophils 

(Figure 4B). After reaching its peak on day 2, the number of cells, as well as the 

number of neutrophils, decreased over time. In contrast, the accumulation of 

macrophages (Figure 4C) and lymphocytes (Figure 4D) in the alveolar space was 

significantly increased on day 3 and their numbers peak around day 5. The protein 

concentration was also measured in BALF to determine the extent of the tissue 

damage leading to protein leakage. We observed that, similar to the number of total 
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cells and neutrophils, the peak of tissue damage was on day 2 and only basal levels 

of proteins were measured on day 5 and 7. 
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Figure 4 – Cell accumulation and protein concentration in the BALF in ARDS. C57BL/6 

mice were challenged with LPS (12.5 µg/mouse) or PBS (Ctrl group) intranasally and 

dissected at the indicated days.  Numbers of total leukocytes (A), neutrophils (B), 

macrophages (C), and lymphocytes (D) in BALF were counted in Bürker chambers. 

Pulmonary edema was quantified based on the protein concentration in the BALF (E). 

Graphs representative of two experiments. Data are shown as mean ± SEM. Each symbol 

represents data of an individual mouse. *p< 0.05 when compared with the healthy, 

unchallenged control group. ANOVA test followed by Bonferroni correction was used in the 

graphs with normal distribution. Otherwise, Kruskal-Wallis test was used. n=4-6 
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Cytokines are key molecules in the propagation and regulation of 

inflammation. Thus, we next measured some cytokines in BALF. TNF-α (Figure 5A) 

and IL-17 (Figure 5B) have well-established roles in promoting neutrophilic 

inflammation (267,268) and we observed increased levels of these cytokines at the 

beginning of inflammation, in agreement with the accumulation of neutrophils. The 

cytokines IL-10 and transforming growth factor beta (TGF-β) are classically related 

with anti-inflammatory events and, consequently, the proper resolution of 

inflammation (100,269,270). However, in our LPS-induced ARDS model, we were 

not able to detect significant alterations in the levels of these cytokines (Figure 5C, 

D), but there was a clear tendency of reduction on the first days of inflammation with 

increasing levels over the evaluated time. 
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Figure 5 – BALF levels of cytokines in ARDS. C57BL/6 mice were challenged with LPS 
(12.5 µg/mouse) or PBS (Ctrl group) intranasally and dissected at the indicated days. Levels 
of TNF-α (A), IL-17 (B), IL-10 (C), and TGF-β (D) were measured in the BALF by ELISA. 
Graphs representative of two experiments. Data are shown as mean ± SEM. Each symbol 
represents data of an individual mouse. *p< 0.05 when compared with the healthy, 
unchallenged control group. ANOVA test followed by Bonferroni correction was used in the 
graphs with normal distribution. Otherwise, Kruskal-Wallis test was used. n=5 

To better elucidate the accumulation of cells in this model, we next evaluated 

the levels of chemokines related with mononuclear cells recruitment in the lung 

tissue. CCL2 and CCL3 target mainly monocytes and macrophages (271), 

respectively, and as observed in Figures 6A and B, their levels were increased from 

day 1 to 3 after the LPS challenge. In contrast, CCL5 has a broader target cell 

spectrum and can recruit T cells, dendritic cells, eosinophils, NK cells, mast cells, 

and basophils (272). This chemokine is increased during the whole period (Figure 
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6C) and might be relevant for lymphocyte recruitment at later time points. Lastly, we 

measured the levels of CXCL9 and CXCL10 (Figure 6D, E), chemokines important 

in the recruitment of lymphocytes, but also monocytes (132). Differently from 

expected, these chemokines were increased only at the beginning of inflammation, 

on day 1 for CXCL10 (Figure 6D) and days 1 and 2 for CXCL9 (Figure 6E). 
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Figure 6 – Levels of chemokines in the lung tissue in the ARDS model. C57BL/6 mice 

were challenged with LPS (12.5 µg/mouse) or PBS (Ctrl group) intranasally and dissected 

at the indicated days. Levels of CCL2 (A), CCL3 (B), CCL5 (C), CXCL10 (D), and CXCL9 

(E) were measured in the BALF by ELISA. Graphs representative of two experiments. Data 

are shown as mean ± SEM. Each symbol represents data of an individual mouse. *p< 0.05 

when compared with the healthy, unchallenged control group. ANOVA test followed by 

Bonferroni correction was used in the graphs with normal distribution. Otherwise, Kruskal-

Wallis test was used. n=5 

2.3.2. The inflammation induced by LPS increases the numbers of lymphocytes 

mainly in the alveolar space (BALF) but also in the lung tissue 

Once we observed the increase of microscopically identified lymphocytes, we 

decided to evaluate the recruitment of different populations of lymphocytes (CD4+ 

and CD8+ T cells, B cells, and NK cells) in two lung compartments: the alveolar space 



 

36 

 

hereby represented by the BALF and the pulmonary parenchyma, i.e., the lung 

tissue itself. As observed in Figure 7A-D, the percentages of adaptive lymphocytes 

increased 5 and 7 days after the challenge, opposite to the results obtained for DX5+ 

NK cells. However, when we evaluated the absolute numbers of cells, T lymphocytes 

increased at all time points (Figure 7E, F). Since there was a massive influx of cells 

to the lungs and the alveolar space on day 2 (Figure 4A), it is reasonable that the 

numbers of cells increased in general, but the percentages of adaptive lymphocytes 

on days 5 and 7 are remarkably enhanced (for T cells from about 2% on day 2 to 10-

30% on day 5) and may suggest an important role for these cells at later time points 

in ARDS. Despite the higher percentages of B cells at later time points, their total 

numbers are reduced on days 5 and 7. Hence, B cells are recruited to the alveolar 

space on day 2 but do not remain for a long period (Figure 7C, G). Interestingly, NK 

cell accumulation was increased at the peak of inflammation (day 2) and returned to 

basal levels on day 5 (absolute numbers) or day 7 (percentages) (Figure 7D, H).  
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Figure 7 – Percentages and numbers of lymphocytes in BALF in the ARDS model. 
C57BL/6 mice were challenged with LPS (12.5 µg/mouse) or PBS (Ctrl group) intranasally 
and dissected at the indicated days. Percentages (A) and absolute numbers (E) of CD4+ T 
lymphocytes (CD45+CD3+CD4+ cells); (B and F) CD8+ T lymphocytes (CD45+CD3+CD8+ 
cells); (C and G) B lymphocytes (CD45+CD3-CD19+ cells); and (D and H) NK cells 
(CD45+CD3-NKp46+ cells) were quantified in BALF by flow cytometry. Graphs representative 
of two experiments. Data are shown as mean ± SEM. Each symbol represents data of an 
individual mouse. *p< 0.05 when compared with the healthy, unchallenged control group. 
#p<0.05 when comparing different time points with day 2. ANOVA test followed by 
Bonferroni correction was used in the graphs with normal distribution. Otherwise, Kruskal-
Wallis test was used. n=4 

Regarding the recruitment of cells to the tissue, we observed a decrease in 

all lymphocyte percentages on day 2 (Figure 8A-D), most likely because of the 

dominant recruitment of neutrophils and monocytes at the peak of inflammation. In 

contrast, the absolute numbers (Figure 8E-H) increased for CD8+ T cells on days 2 

and 7; B cells on day 7; and NK cells on day 2. Interestingly, the differences in 

absolute numbers of cells are not as dramatic as in the BALF (Figure 7), indicating 

that most of the cells are recruited to the alveolar space. 
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Figure 8 – Percentages and numbers of lymphocytes in the lungs in the ARDS model. 
C57BL/6 mice were challenged with LPS (12.5 µg/mouse) or PBS (Ctrl group) intranasally 
and dissected at the indicated days. Percentages (A) and absolute numbers (E) of CD4+ T 
lymphocytes (CD45+CD3+CD4+ cells); (B and F) CD8+ T lymphocytes (CD45+CD3+CD8+ 
cells); (C and G) B lymphocytes (CD45+CD3-CD19+ cells); and (D and H) NK cells 
(CD45+CD3-NKp46+ cells) were quantified in the lung tissue by flow cytometry. Graphs 
representative of two experiments. Data are shown as mean ± SEM. Each symbol 
represents data of an individual mouse. *p< 0.05 when compared with the healthy, 
unchallenged control group. #p<0.05 when comparing different time points with day 2. 
ANOVA test followed by Bonferroni correction was used in the graphs with normal 
distribution. Otherwise, Kruskal-Wallis test was used. n=4 

 

2.3.3. Lack of adaptive lymphocytes does not affect the inflammation nor the 

resolution of ARDS 

Since there was an increase of adaptive lymphocytes in the lungs, especially 

in the alveolar space in later time points after LPS challenge, we decided to further 

investigate their role in our model of LPS-induced ARDS using RAG2 knockout mice, 

that lack T and B lymphocytes. First, we evaluated some populations of lymphocytes 
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to make sure that the RAG2 knockout mice did not have adaptive lymphocytes and 

to elucidate the impact of their absence on the numbers of NK cells. As expected, 

CD4+ T, CD8+, T, and B lymphocytes numbers were scarcely found at every 

timepoint in the RAG2-/- groups (Figure 9A-C). In contrast, under control conditions 

more NK cells were detected in RAG2-/- animals and their numbers were also 

significantly higher on day 4 in comparison to healthy mice and LPS-challenged WT 

mice. (Figure 9D). 
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Figure 9 – RAG2 absence results in decreased accumulation of CD4 T lymphocytes, 
CD8 T lymphocytes, and B lymphocytes. In contrast, it increases the accumulation of 
NK cells. RAG2 WT and RAG2 KO C57BL/6 mice were challenged with LPS (12.5 
µg/mouse) or PBS (Ctrl group; -) and dissected at the indicated days. Absolute numbers of 
CD4+ T lymphocytes (CD45+CD3+CD4+ cells) (A), CD8+ T lymphocytes (CD45+CD3+CD8+ 
cells) (B), B lymphocytes (CD45+CD3-CD19+ cells) (C), and NK cells (CD45+CD3-NKp46+ 
cells) present in the lung tissue combined with the BAL fluid were quantified by flow 
cytometry. Compilation of three experiments. Data are shown as mean ± SEM. Each symbol 
represents data of an individual mouse. *p< 0.05 when compared with the healthy, 
unchallenged control group. #p<0.05 when comparing wild type and knockout groups at the 
same time point. ANOVA test followed by Bonferroni correction was used in the graphs with 
normal distribution. Otherwise, Kruskal-Wallis test was used. n=4-11. 
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After observing the absence of adaptive lymphocytes and the increase of 

NK cell numbers, we evaluated the numbers of ILCs type 1, 2, and 3. Interestingly, 

all the subpopulations of ILC were enhanced in the absence of RAG2 on day 4 

after the challenge (Figure 10). 
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Figure 10 – The absence of RAG2 increases the number of ILC1, 2, and 3 on day 4 
after the challenge. Rag2 WT and Rag2 KO C57BL/6 mice were challenged with LPS (12.5 
µg/mouse) or PBS (Ctrl group; -) and dissected at the indicated days. Absolute numbers of 
ILC1 (Lin-CD3-CD90.2+T-bet+ cells) (A), ILC2 (Lin-CD3-CD90.2+GATA-3+ cells) (B), and ILC3 
(Lin-CD3-CD90.2+ROR-γt+ cells) (C) present in the lung tissue combined with the BAL fluid 
were quantified by flow cytometry. Compilation of two experiments. Data are shown as mean 
± SEM. Each symbol represents data of an individual mouse. *p< 0.05 when compared with 
the healthy, unchallenged control group. #p<0.05 when comparing wild type and knockout 
groups at the same time point. ANOVA test followed by Bonferroni correction was used in 
the graphs with normal distribution. Otherwise, Kruskal-Wallis test was used. n=8-11. 

Next, we evaluated some inflammation parameters. As observed in Figures 

11A and B, the numbers of total cells and neutrophils in the RAG2+/+ mice reached 

the peak on day 2 and were significantly reduced on days 4 (neutrophils) and 5 

(neutrophils and total cells) after the challenge. Interestingly, the absence of RAG2 

did not change the profile of cell accumulation in the lungs. Similarly, the pulmonary 

edema increased only on day 2 and there were no significant differences between 

RAG2+/+ and RAG2-/- (Figure 11C). Therefore, the recruitment of cells and tissue 

damage is not dependent on adaptive lymphocytes. To measure the systemic effects 
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of ARDS, the animal body weight was monitored (Figure 11D), and we observed a 

dramatic weight loss already 1 day after the LPS challenge in both RAG2+/+ and 

RAG2-/-. On day 4, the RAG+/+ animals recovered, but the RAG2-/- group had less 

bodyweight at that time point when compared to the RAG2+/+ mice. On day 5, there 

was no differences between both LPS-stimulated groups. 
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Figure 11 – RAG2 absence does not impact the accumulation of leukocytes, 
pulmonary edema, or weight loss. RAG2 WT and RAG2 KO C57BL/6 mice were 
challenged with LPS (12.5 µg/mouse) or PBS (Ctrl group; -) and dissected at the indicated 
days. Numbers of total leukocytes (A) were counted in Bürker chambers and neutrophils (B) 
were measured by flow cytometry. Both cells were analyzed in the lung tissue combined 
with the BAL fluid. Pulmonary edema was quantified based on the protein concentration in 
the BALF (C). Changes in body weight (D) were calculated compared to day 0 (before 
infection). Compilation of three experiments. Data are shown as mean ± SEM. Each symbol 
represents data of an individual mouse, except for the weight loss. *p< 0.05 when compared 
with the healthy, unchallenged control group. #p<0.05 when comparing wild type and 
knockout groups at the same time point. ANOVA test followed by Bonferroni correction was 
used in the graphs with normal distribution. Otherwise, Kruskal-Wallis test was used. n=4-
11. 
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In addition to the innate lymphocytes, we hypothesized that other cells could 

compensate for the lack of adaptive lymphocytes, such as monocytes and 

macrophages. Thus, we evaluated populations of monocyte-derived macrophages, 

AM, interstitial macrophages, Ly-6C+ monocytes, and Ly-6C- monocytes. Curiously, 

compared to WT, the absence of RAG2 did not significantly alter the numbers of 

these populations (Figure 12). 
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Figure 12 – RAG2 deficiency does not impact the number of monocytes or 
macrophages.  Rag2 WT and Rag2 KO C57BL/6 mice were challenged with LPS (12.5 
µg/mouse) or PBS (Ctrl group; -) and dissected at the indicated days. Absolute numbers of 
monocyte-derived macrophages (CD45+CD11b+Ly6G-CD3-CD103-SiglecF-CD11c- cells) 
(A), AM (CD45+SiglecF+CD11c+ cells) (B), IM (CD45+CD11b+SiglecF-Ly6G-Dump-CD103-

CD64+MHCII+ cells) (C), Ly-6C+ monocytes (CD45+CD11b+SiglecF-Ly6G-Dump-CD103-

MHCII-Ly6C+ cells) (D), and Ly-6C- monocytes (CD45+CD11b+SiglecF-Ly6G-Dump-CD103-

MHCII-Ly6C- cells) (E)  were quantified by flow cytometry. Compilation of three experiments. 
Data are shown as mean ± SEM. Each symbol represents data of an individual mouse. *p< 
0.05 when compared with the healthy, unchallenged control group. ANOVA test followed by 
Bonferroni correction was used in the graphs with normal distribution. Otherwise, Kruskal-
Wallis test was used. n=4-11. 
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After evaluating the numbers of different leukocyte populations recruited to 

the lungs, we analyzed the levels of cytokines in the BALF. Levels of the 

inflammatory cytokines IL-6, TNF-α, and IFN-γ were significantly increased on day 

2 in both RAG2+/+ and RAG2-/- (Figure 13A-C). Remarkably, the increase in IFN-γ in 

the RAG2-/- was larger than in the RAG2+/+ (Figure 13B), possibly because more NK 

cells were present. IL-13 and IL-10 were also measured, and a decrease was 

observed in mice lacking RAG2 at the peak of inflammation (day 2) (Figure 13D, E). 

In addition, there are no differences in the IL-10 and IL-13 levels between RAG2+/+ 

and RAG2-/- mice. Lastly, TGF-β was increased on days 2 and 4, in the RAG2+/+ 

group, while it was increased only on day 4 in the RAG2-/- group (Figure 13F). On 

day 4, the TGF-β level was lower in the absence of RAG2, suggesting that adaptive 

lymphocytes might have a role in the resolution of inflammation. In the absence of 

RAG2, the resolution is probably achieved through compensation by other cell 

populations. 
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Figure 13 – RAG2 deficiency affects IFN-γ and TGF-β levels. Rag2 WT and Rag2 KO 
C57BL/6 mice were challenged with LPS (12.5 µg/mouse) or PBS (Ctrl group; -) and 
dissected at the indicated days. Levels of TNF-α (A), IFN-γ (B), IL-6 (C), IL-13 (D), IL-10 (E), 
and TGF-β (F) were measured in the BALF by ELISA. Compilation of two experiments in 
panels A-E and only one experiment in panel F. Data are shown as mean ± SEM. Each 
symbol represents data of an individual mouse. *p< 0.05 when compared with the healthy, 
unchallenged control group. #p<0.05 when comparing wild type and knockout groups at the 
same time point. ANOVA test followed by Bonferroni correction was used in the graphs with 
normal distribution. Otherwise, Kruskal-Wallis test was used. n=4-9. 
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2.3.4. Lymphocytes from BALF and lungs express CXC receptors in the late time 

points of ARDS 

Although the absence of total T and B lymphocytes did not affect the outcome 

of ARDS as expected, we decided to investigate the subpopulations of accumulated 

T cells according to their chemokine receptor expression profile. Thus, we tried to 

elucidate the role of specific cells, identified through the expression of particular 

chemokine receptors: CXCR3, CXCR6, CCR3, CCR4, and CCR5. In addition, we 

decided to explore the differences in the recruitment of T lymphocytes to different 

pulmonary compartments, the alveolar space (BALF), and the lung tissue (lungs), 

clarifying the importance of certain chemokine receptors to reach the alveolar space. 

CXCR3, together with its IFN-γ induced ligands CXCL9, CXCL10, and 

CXCL11, has an important role in the activation and recruitment of T lymphocytes, 

especially T helper (Th) 1 (132). In our ARDS model, we observed that around 80% 

of the CD4+ and CD8+ T lymphocytes that reached the alveolar space on days 5 and 

7 expressed CXCR3. Besides that, the median fluorescence intensity of CXCR3 also 

increased 5 and 7 days after the challenge, demonstrating the importance of this 

receptor for inflammation of the alveolar lumen (Figure 14A-D). In contrast, in the 

lung tissue, approximately 20% of the CD4+ T lymphocytes and 25% of CD8+ T 

lymphocytes expressed CXCR3 on days 5 and 7 (Figure 14E-H). It is important to 

notice that on day 2, the peak of inflammation, very few CXCR3+ lymphocytes were 

detected. The influx of CXCR3 nicely follows the upregulation of IFN-γ, and IFN-

inducible chemokine ligands for CXCR3 that was detected on days 1 and/or 2 

(Figures 14, 7).  
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Figure 14 – Percentages and MFI of CXCR3 expression in lymphocytes in BALF and 
lungs in ARDS. C57BL/6 mice were challenged with LPS (12.5 µg/mouse) or PBS (Ctrl 
group) intranasally and dissected at the indicated days. Percentage (A) and MFI (B) of 
CXCR3+ CD4+ T lymphocytes (CD45+CD3+CD4+CXCR3+ cells); and (C and D) CXCR3+ 
CD8+ T lymphocytes (CD45+CD3+CD8+CXCR3+ cells) were quantified in BALF by flow 
cytometry. Additionally, the flow cytometric analysis was performed on lung tissue: 
percentage (E) and MFI (F) of CXCR3+ CD4+ T lymphocytes (CD45+CD3+CD4+CXCR3+ 
cells); and (G and H) CXCR3+ CD8+ T lymphocytes (CD45+CD3+CD8+CXCR3+ cells). 
Graphs representative of two experiments. Data are shown as mean ± SEM. Each symbol 
represents data of an individual mouse. *p< 0.05 when compared with the healthy, 
unchallenged control group. #p<0.05 when comparing different time points with day 2. 
ANOVA test followed by Bonferroni correction was used in the graphs with normal 
distribution. Otherwise, Kruskal-Wallis test was used. n=4 

Next, we evaluated another receptor widely expressed by activated T 

lymphocytes: CXCR6. Its ligand, CXCL16, is constitutively produced by the alveolar 

epithelia, indicating a role of this receptor in T lymphocyte recruitment and retention 

in the alveolar space (273,274). As observed for CXCR3, the percentage of CXCR6-

expressing CD4+ T lymphocytes in BALF was increased on days 5 and 7 after the 

LPS challenge (Figure 15A, B). However, for the other populations either no 
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consistent results were obtained, or no differences were observed compared to the 

unchallenged control group (Figure 15C-H). 
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Figure 15 – Percentages and MFI of CXCR6 expression in lymphocytes in BALF and 
lungs in ARDS. C57BL/6 mice were challenged with LPS (12.5 µg/mouse) or PBS (Ctrl 
group) intranasally and dissected at the indicated days. Percentage (A) and MFI (B) of 
CXCR6+ CD4+ T lymphocytes (CD45+CD3+CD4+CXCR6+ cells); and (C and D) CXCR6+ 
CD8+ T lymphocytes (CD45+CD3+CD8+CXCR6+ cells) were quantified on BALF by flow 
cytometry. Additionally, the flow cytometric analysis was performed on lung tissue: 
percentage (E) and MFI (F) of CXCR6+ CD4+ T lymphocytes (CD45+CD3+CD4+CXCR6+ 
cells); and (G and H) CXCR6+ CD8+ T lymphocytes (CD45+CD3+CD8+CXCR6+ cells). 
Graphs representative of two experiments. Data are shown as mean ± SEM. Each symbol 
represents data of an individual mouse. *p< 0.05 when compared with the healthy, 
unchallenged control group. #p<0.05 when comparing different time points with day 2. 
ANOVA test followed by Bonferroni correction was used in the graphs with normal 
distribution. Otherwise, Kruskal-Wallis test was used. n=4 
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2.3.5. The expression of CC receptors in lymphocytes from BALF and lungs is not 

so abundant as CXC receptors 

Receptors for inflammatory CC chemokines are expressed mainly by 

monocytes, macrophages, and lymphocytes, and are hence important factors for the 

recruitment of these cells. CCR3, CCR4, and CCR5 are expressed in different 

populations of lymphocytes. CCR3 is expressed by a subpopulation of Th2 

lymphocytes reactive to eotaxin and predominantly related with allergic diseases 

(275,276). We observed that the expression of CCR3 is not so abundant in T and B 

lymphocytes in either BALF or lung tissue in our model (Figure 16). In fact, the 

population of CD8+ T cells expressing CCR3 in the BALF was reduced when 

compared to the control group (Figure 16C, D). In contrast, CD8+ and CD4+ T cells 

expressing CCR3 in the lungs were increased on day 2, returning to basal levels at 

the later time points. Despite this increase, the percentage of CCR3+ T lymphocytes 

did not reach 5% of the total T lymphocytes in the lungs. 
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Figure 16 – Percentages and MFI of CCR3 expression in lymphocytes in BALF and 
lungs in ARDS. C57BL/6 mice were challenged with LPS (12.5 µg/mouse) or PBS (Ctrl 
group) intranasally and dissected at the indicated days. Percentage (A) and MFI (B) of 
CCR3+ CD4+ T lymphocytes (CD45+CD3+CD4+CCR3+ cells); and (C and D) CCR3+ CD8+ T 
lymphocytes (CD45+CD3+CD8+CCR3+ cells) were quantified on BALF by flow cytometry. 
Additionally, the flow cytometric analysis was performed on lung tissue: percentage (E) and 
MFI (F) of CCR3+ CD4+ T lymphocytes (CD45+CD3+CD4+CCR3+ cells); and (G and H) 
CCR3+ CD8+ T lymphocytes (CD45+CD3+CD8+CCR3+ cells). Graphs representative of two 
experiments. Data are shown as mean ± SEM. Each symbol represents data of an individual 
mouse. *p< 0.05 when compared with the healthy, unchallenged control group. #p<0.05 
when comparing different time points with day 2. ANOVA test followed by Bonferroni 
correction was used in the graphs with normal distribution. Otherwise, Kruskal-Wallis test 
was used. n=4 

 

Next, we assessed the expression of CCR4. This receptor is also related with 

Th2 cells, but its expression spectrum is broader than that of CCR3 (261,277). In 

addition, CCR4 expression is linked with the reduction of IFN-γ production by CD8+ 

T cells (278). Despite the lack of differences between the control and the challenged 

groups, we observed relatively high percentages of CD8+ and CD4+ T cells 
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expressing CCR4 in BALF and lungs (Figure 17). In the lungs, there was an increase 

in CD8+ CCR4+ T cell percentage and MFI on day 2, returning to basal levels 

afterwards (Figure 17G, H). 
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Figure 17 – Percentages and MFI of CCR4 expression in lymphocytes in BALF in 
ARDS. C57BL/6 mice were challenged with LPS (12.5 µg/mouse) or PBS (Ctrl group) 
intranasally and dissected at the indicated days. Percentage (A) and MFI (B) of CCR4+ CD4+ 
T lymphocytes (CD45+CD3+CD4+CCR4+ cells); and (C and D) CCR4+ CD8+ T lymphocytes 
(CD45+CD3+CD8+CCR4+ cells) were quantified on BALF by flow cytometry. Additionally, the 
flow cytometric analysis was performed on lung tissue: percentage (E) and MFI (F) of CCR4+ 
CD4+ T lymphocytes (CD45+CD3+CD4+CCR4+ cells); and (G and H) CCR4+ CD8+ T 
lymphocytes (CD45+CD3+CD8+CCR4+ cells) were quantified on lungs by flow cytometry. 
Graphs representative of two experiments. Data are shown as mean ± SEM. Each symbol 
represents data of an individual mouse. *p< 0.05 when compared with the healthy, 
unchallenged control group. #p<0.05 when comparing different time points with day 2. 
ANOVA test followed by Bonferroni correction was used in the graphs with normal 
distribution. Otherwise, Kruskal-Wallis test was used. n=4 

 

The last receptor that we evaluated, CCR5, is commonly linked with Th1 or 

activated T lymphocytes, as CXCR3 (261,276,279). As observed in Figure 18, there 

was some fluctuation in the percentages and MFI of CD4+ CCR5+ T cells, but no 
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important differences were observed between the control and the challenged groups 

(Figure 18A, B, E, F). Regarding the CD8+ T cells, CCR5 is important for the 

activation, response to cytokines, and migration of these cells (280). In our model, 

CCR5+ CD8+ T cells were almost absent in BALF and the CCR5 expression level 

was reduced in all the challenged groups (Figure 18C, D). In contrast, the number 

of CCR5+ CD8+ T cells almost doubled in lung tissue on day 2 but returned to basal 

levels at the later time points (Figure 18G, H). 
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Figure 18 – Percentages and MFI of CCR5 expression in lymphocytes in BALF and 
lungs in ARDS. C57BL/6 mice were challenged with LPS (12.5 µg/mouse) or PBS (Ctrl 
group) intranasally and dissected at the indicated days. Percentage (A) and MFI (B) of 
CCR5+ CD4+ T lymphocytes (CD45+CD3+CD4+CCR5+ cells); and (C and D) CCR5+ CD8+ T 
lymphocytes (CD45+CD3+CD8+CCR5+ cells) were quantified on BALF by flow cytometry. 
Additionally, the flow cytometric analysis was performed on lung tissue: percentage (E) and 
MFI (F) of CCR5+ CD4+ T lymphocytes (CD45+CD3+CD4+CCR5+ cells); and (G and H) 
CCR5+ CD8+ T lymphocytes (CD45+CD3+CD8+CCR5+ cells). Graphs representative of two 
experiments. Data are shown as mean ± SEM. Each symbol represents data of an individual 
mouse. *p< 0.05 when compared with the healthy, unchallenged control group. #p<0.05 
when comparing different time points with day 2. ANOVA test followed by Bonferroni 
correction was used in the graphs with normal distribution. Otherwise, Kruskal-Wallis test 
was used. n=4 
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2.4. Discussion 

Resolution of inflammation is an active and complex process that occurs when 

the inflammatory stimulus is controlled, includes repair of damaged tissue, and 

ensures reestablishment of homeostasis (240). During the resolution, the production 

of pro-inflammatory mediators and the recruitment of PMN leukocytes are 

diminished, and the PMN leukocytes accumulated in the tissue undergo a process 

of apoptosis and are engulfed by macrophages, leading to the clearance of dead 

cells and cellular debris. In addition, events related with the resolution of pulmonary 

inflammation include reduction of edema, repopulation of airway epithelium, and 

restoration of pulmonary surfactants (281). It is difficult to precisely establish the start 

of resolution due to its complexity and the lack of specialized tools. In our ARDS 

model, we suggest that the resolution process begins after the third day of 

inflammation, forasmuch as we observed a significant decrease of neutrophils and 

an increase of macrophages, the cell type that is currently considered to be the prime 

executor of resolution (282,283), from this time point onwards. Together with 

macrophages, we observed an increase in lymphocytes and we sought to investigate 

their role throughout this process. 

The role of T cells in the resolution of inflammation has become increasingly 

relevant. Classically, Tregs are extremely important in this context because of their 

ability to secrete IL-10 and amphiregulin (284,285), besides the induction of 

efferocytosis and, consequently, the promotion of tissue repair (259). However, little 

is known about the other populations of lymphocytes in resolution, and this is 

emerging as a critically important topic. For a long time, adaptive immune responses 

were studied apart from innate immune responses and the relation between them 

remained vague. Lymphocytes have well-defined roles in the adaptive response 

which generally takes some time and may coincide with a reduction in the 

accumulation of neutrophils at the inflammatory site. That time coincidence could be 

associated with a connection between the different phases of the inflammatory 

process. For instance, lipoxins and Th2-derived protectin D1 suppress pro-

inflammatory cytokines and infiltration of leukocytes into inflammatory sites (286). In 

addition, T lymphocytes expose phosphatidylserine in their membranes even in non-
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apoptotic contexts (287), leading to their efferocytosis and the release of anti-

inflammatory and pro-resolving molecules. 

Despite not being strictly related with the resolution of inflammation, the ratio 

of neutrophils and lymphocytes (NLR) is largely used as a prognostic biomarker in 

different diseases. High NLR in patients with cancer (288), stroke (289), sepsis 

(290), rheumatoid arthritis (291), COVID-19, and more (292), is associated with 

worse prognosis and increased rates of complications and mortality. Deficiency in 

the clearance of neutrophils and the decrease of lymphocytes may represent an 

impairment of the resolution of inflammation (292). Therefore, high NLR or 

inadequate resolution is associated with disease severity and lymphocytes may be 

part of it. 

Although lymphocytes have a great potential to participate in resolution, the 

absence of mature B and T cells in our model did not significantly affect the 

inflammation or its resolution. Similarly, Verjans et al. (293) induced ARDS by LPS 

instillation in RAG2-/- mice, and the deterioration and recovery of lung mechanics 

were not altered by the lack of adaptive lymphocytes. In contrast, D'Alessio et al. 

(186) and Kearns et al. (250) observed that RAG1-/- mice with acute lung injury 

induced by LPS have impaired recovery when compared to wild-type mice and 

concluded that lymphocytes are important for events related with the resolution of 

inflammation. Therefore, the role of B and T cells in ARDS/ALI is not yet fully 

explored and may be more complex than just beneficial or harmful. These cells might 

play a minor role in the initiation, propagation, and resolution of LPS-induced lung 

inflammation and, maybe their role can be taken over by other immune cells, such 

as ILCs and alveolar macrophages (293). In addition, it is difficult to evaluate the 

significance of lymphocytes in general, considering that they represent different 

subpopulations with distinct effector mechanisms. Hence, we decided to focus on 

the subsets of CD4+ T cells based on the expression of chemokine receptors. 

Besides the correlation of these receptors with Th1, Th2, and Th17 classification, 

the evaluation of their presence will allow us to inhibit the recruitment of specific 

subsets in follow-up experiments as good neutralizing antibodies or performant 

antagonists are available for most chemokine receptors. Also, the expression of 
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specific chemokine receptors on CD8+ T cells is an important indicator of their 

activation status and homing behavior/capacity (294). 

Regarding CD4+ T cells classification, it has been proposed that Th1 cells 

express CXCR3 and CCR5, Th2 cells express CCR4 and CCR8, and Th17 express 

CCR4, CCR6, and CXCR3 (261). However, this strict relation between Th subtype 

and chemokine expression pattern is sometimes contested (261) and our results do 

not show significant co-expression of the receptors as expected. In addition, due to 

methodological limitations, we were not able to evaluate the expression of all the 

chemokine receptors used in the CD4+ T cell subdivision. Thus, we decided to focus 

on the chemokine receptor itself and study two lung compartments to correlate the 

lymphocyte localization with the chemokine receptors' expression.  

Surprisingly, CCR3, CCR4, and CCR5 were not so abundant and their 

expression in lymphocytes from BALF and lung tissue was comparable. In between 

them, CCR4 is detected most often and, together with CCR5, may be linked to the 

early recruitment of CD8+ T cells to the lung tissue, but not to the alveolar space. In 

contrast, the high expression of CXCR3 and CXCR6 in both CD4+ and CD8+ T cells 

in the BALF, but not in the lung tissue, indicates a key role for these receptors at 

later time points of airway inflammation. As observed in other studies, CXCR3 and 

CXCR6 mediate the recruitment of activated CD4+ and CD8+ T cells and their long-

term survival and tissue distribution (295–298). We also observed an increase in 

CXCR3 ligand levels: CXCL9, and CXCL10. These chemokines are predominantly 

induced by interferons, including IFN-γ, which is also enhanced at the beginning of 

the inflammation.  

Since CXCR3 and its ligands apparently are important for the recruitment of 

T cells to the alveolar space at later time points, this receptor seems like a good 

therapeutic target to inhibit the attraction of specific lymphocytes, allowing evaluation 

of their involvement in the inflammation and/or resolution phase in the ARDS model. 

The treatment with CXCR3 antagonists significantly decreased the recruitment, 

activation, and differentiation of T lymphocytes (299), reducing the inflammation in 

models of pneumonia (300) and arthritis (301,302), inhibiting lung tumor metastasis 

(303), and showing therapeutic effects in neurological diseases (304). In contrast, 
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CXCR3 blockade did not prevent allergen-induced airway inflammation in a mouse 

allergy model (305). Notably, CXCR3 antagonists were not yet used in investigations 

of inflammation resolution and their role in pro-resolving events remains unclear. 

Based upon our results, we anticipate that such treatment would potentially change 

the resolution timeline in the ARDS model. Therefore, we plan to use the CXCR3 

antagonist AMG487 to further explore the role of these cells. 

In conclusion, total T and B lymphocytes do not seem to have a major role on 

the resolution of neutrophilic inflammation in this self-resolving model of LPS-

induced acute lung inflammation. On the other hand, the increased presence of 

innate lymphocytes in later phases after LPS stimulation could counterbalance the 

lack of T and B lymphocytes in RAG2-/- mice to control lung inflammation. However, 

targeting chemokine receptors, mainly CXCR3, could give additional information 

about any role of T cells for the resolution of inflammation.  
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Absence of CCR2 Promotes Proliferation of Alveolar 
Macrophages That Control Lung Inflammation in Acute 
Respiratory Distress Syndrome in Mice 
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Abstract: ARDS consists of uncontrolled inflammation that causes hypoxemia and 

reduced lung compliance. Since it is a complex process, not all details have been 

elucidated yet. In a well-controlled experimental murine model of LPS-induced 

ARDS, the activity and viability of macrophages and neutrophils dictate the 

beginning and end phases of lung inflammation. C-C chemokine receptor type 2 

(CCR2) is a critical chemokine receptor that mediates monocyte/macrophage 

activation and recruitment to the tissues. Here, we used CCR2-deficient mice to 

explore mechanisms that control lung inflammation in LPS-induced ARDS. CCR2-/- 

mice presented higher total numbers of pulmonary leukocytes at the peak of 

inflammation as compared to CCR2+/+ mice, mainly by the enhanced influx of 

neutrophils, whereas we observed two to six-fold lower monocyte or interstitial 

macrophage numbers in the CCR2-/-. Nevertheless, the time needed to control the 

inflammation was comparable between CCR2+/+ and CCR2-/-. Interestingly, CCR2-/- 

mice presented higher numbers and increased proliferative rates of AM from day 3, 

with a more pronounced M2 profile, associated with TGF-β and CCL22 production, 

decreased Nos2, IL-1b and IL-12b mRNA expression, and increased mannose 

receptor type 1 (Mrc1) mRNA and CD206 protein expression. Depletion of AM 

significantly delayed recovery from the inflammatory insult. Thus, our work shows 

that the lower number of infiltrating monocytes in CCR2-/- is partially compensated 

by increased proliferation of resident AM during the inflammation control of 

experimental ARDS. 

 

3.1. Introduction 

ARDS was first described in 1967 (306) and is defined as noncardiogenic 

pulmonary edema leading to a respiratory failure with diffuse bilateral pulmonary 

infiltrates and tissue injury, besides severe hypoxemia (87). The pathogenesis of 

ARDS includes the dysfunction of the alveolar-capillary membrane, leading to 

excessive transendothelial and transepithelial leukocyte migration and the influx of 

protein rich edema fluid into the alveolar space. The inflammation is worsened by 

the release of several pro-inflammatory mediators that can also be cytotoxic, 

increasing the destruction of the membrane and diffuse tissue damage (307–309). 
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ARDS is caused by pulmonary or systemic inflammation following gastric aspiration, 

pneumonia, COVID-19, sepsis, and trauma (7). Due to the diverse causes and 

complex pathogenesis, ARDS treatment is also unspecific, poorly described, and 

considered an important unmet medical need (310,311). In addition to the high rates 

of morbidity and mortality, ARDS has a great impact on the quality of life of patients 

requiring a better understanding of the disease and new treatment options (312,313). 

The acute inflammatory response consists of an intricate but well-coordinated 

chain of actions that involves molecular, cellular, and physiological changes (242). 

The recognition of the initial insults by lung resident cells causes the production and 

release of a plethora of mediators that trigger several inflammatory events. Among 

the cells involved in the different phases of inflammation, the AM are crucial. Being 

the most abundant innate immune cell in the alveolar spaces of the lungs (314), AM 

are the first line of defense against infections and invaders, recognizing pathogen-

associated molecular patterns, such as LPS from Gram-negative bacteria. They are 

able to phagocytose and eliminate these pathogens and release pro-inflammatory 

cytokines to induce immune cell recruitment and the development of inflammation 

(315). Additionally, AM are very important in the late stages of ARDS since the 

depletion of these cells has been linked with decreased efferocytosis and lowered 

control of inflammation (266,316). 

The release of several chemotactic factors leads to broad recruitment of 

leukocytes to the lung parenchyma and alveolar space, including polymorphonuclear 

(PMNs) and mononuclear cells. CCR2 is an important chemokine receptor that plays 

a fundamental role in monocyte recruitment and activation by the recognition of its 

high-affinity ligand CCL2 (317,318). Initially, the early accumulation of monocytes, 

monocyte-derived macrophages, and PMNs in the lungs determine local 

inflammation. Moreover, the activation state and viability of these cells modulate the 

different phases of inflammation, from the beginning to its resolution. The resolution 

of inflammation is essential to restore the tissue to its physiological functioning after 

the damage caused by the foreign insult and the inflammatory response. Impairment 

of this process may lead to an unresolved inflammation, which lies beneath the 

pathogenesis of several chronic inflammatory disease processes (281). While 
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recruited CCR2+ monocytes have a crucial role in the onset of inflammation, their 

presence in the tissue together with the recruitment of non-phlogistic monocytes in 

later phases helps to control the inflammation. An important event that causes the 

shift to the resolution of inflammation is the apoptosis of PMNs and their subsequent 

engulfment by local macrophages. This phenomenon is called efferocytosis and 

drives the differentiation of macrophages and their polarization into a pro-resolving 

profile, stimulating the production and release of pro-resolving mediators that 

suppress the progression of inflammation and promote tissue repair (244,319,320). 

Various experimental models have been used to investigate the molecular 

mechanisms of ARDS, with LPS-induced ARDS as one of the most common models 

(321). An advantage of this model is the possibility to investigate the mechanisms 

inherent to the different phases of lung inflammation, from the early events to its 

resolution and tissue repair (84). Here, we explored in this model the impact on lung 

inflammation of the CCL2–CCR2 axis through the use of CCR2 knock-out mice, both 

at the early pro-inflammatory phase and during the resolution of inflammation. 

 

3.2. Materials and methods 

3.2.1. Mice 

Eight to ten weeks old CCR2-/- and CCR2+/+ were bred in the animal facility of 

the Rega Institute for Medical Research, KU Leuven. Previously, CCR2-/- mice were 

bought from The Jackson Laboratory (B6.129S4-Ccr2tm1Ifc/J; #004999; Bar 

Harbor, ME, USA) and CCR2+/+ C57BL/6J mice from Charles River (JAX™ 

C57BL/6J SOPF Mice; #680; Ecully, France). Knockout and wild-type mice were 

mated to generate F1 heterozygotes that were inter-crossed to create littermates. A 

SNP analysis was performed on tail or ear genomic DNA from original CCR2-/- mice 

and original C57BL/6J mice, and from CCR2-/- and CCR2+/+ mice after the 

backcrossing (Mouse Genome Scanning panel of 2050 SNPs, Taconic, Rensselaer, 

NY, USA). This genotyping analysis showed that the genetic background of the 

CCR2-/- mice is >99.9% C57BL/6J. All animals were maintained with ad libitum water 

and food (Ssniff Spezialdiäte, Soest, Germany), in a 12 h dark-light cycle and kept 
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in a controlled environment. All the experiments were performed within the norms of 

the European Union (directive 2010/63/EU) and the Belgian Royal Decree of 

29/05/13. They were approved by the Animal Ethics Committees of KU Leuven 

(P101/2020) and UFMG (420/2018). 

3.2.2. ARDS Model 

To induce ARDS, 30 μL of Escherichia coli LPS (12.5 μg/mouse) was 

administered intranasally to CCR2-/- and CCR2+/+ mice. Control animals received the 

same amount of endotoxin-free PBS. Body weight was measured daily, and the mice 

were euthanized at different time points after the instillation (1, 2, 3, 4, or 5 days). 

Before the dissection, mice were euthanized with an intraperitoneal (i.p.) injection of 

100 μL of dolethal (200 mg/mL). BALF was obtained by the instillation of 500 μL of 

PBS through a catheter in the trachea. The fluid was withdrawn and instilled again 

two more times, PBS instillation was repeated three times, and the lavages were 

pooled. After perfusion with PBS, lungs were collected for analysis by flow cytometry 

or histopathological analysis. The small lungs were collected and immediately frozen 

for qPCR. The BALF was centrifuged (5 min, 300 × g, 4ºC) and the supernatant was 

collected for the analysis of the cytokine levels by ELISA and protein levels by BCA, 

whereas the cell pellet was combined with the cells isolated from the lungs for flow 

cytometry analysis. 

3.2.3. BALF Protein Concentration 

To assess the edema formation and the extent of the tissue damage, the 

concentration of protein in the BALF was measured using the Pierce BCA protein 

assay. Briefly, this assay comprises mixing the BCA working reagent with protein 

standards and samples followed by incubation at 37ºC for 30 min. The microplate is 

cooled to room temperature and the absorbance is read at 562 nm. 

3.2.4. Isolation of Single Cells from the Lungs 

During dissection, lungs were removed, the right lung is cut into small pieces, 

and collected in RPMI medium (RPMI GlutaMAX + 5% FCS + 1% 

penicillin/streptomycin) at room temperature (RT). Lungs were then incubated for 30 

min at 37ºC in RPMI medium with digestive enzymes (2 mg/mL collagenase D and 
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0.1 mg/mL DNase I). The tissue was homogenized using a needle and syringe and 

fresh digestion medium was added for a second incubation at 37ºC C for 15 min. 

After a second process of homogenization, the samples were centrifuged (5 min, 

400 × g, RT), and the pellet was resuspended in 1 mL of 10 mM EDTA dissolved in 

PBS to stop the digestion. After the addition of 4 mL of PBS + 2% FCS, suspensions 

were centrifuged again and treated with ACK lysing buffer to lyse red blood cells. 

Subsequently, they were passed through a 70 μm cell strainer and resuspended in 

PBS + 2% FCS. The number of live cells per mL was determined with trypan blue 

solution and a Bürker chamber. Cells from the lungs were combined or not with cells 

from the BALF for flow cytometry analysis.  

3.2.5. Staining and Flow Cytometry 

One million cells, 3 million in the case of intracellular staining, per sample 

were transferred to 96 well plates and washed with PBS. They were incubated for 

15 min at RT in the dark with a viability dye, Zombie UV (1/1,000), and mouse Fc 

blocking reagent. After the incubation time, the cells were washed with FACS buffer 

(PBS + 2% FCS + 2mM EDTA) and stained with different panels of monoclonal 

antibodies (Supplementary Table S1) diluted in brilliant stain buffer for 20 min at 4ºC 

in the dark. The samples were washed with FACS buffer, fixed in 0.4% formaldehyde 

in PBS, and transferred to FACS tubes. For the intracellular staining, surface staining 

was performed and, instead of using formaldehyde, they were submitted to fixation 

and permeabilization using the fix/perm reagent for 45 min at RT in the dark, washed 

with the permeabilization buffer, incubated with the antibodies binding intracellular 

antigens (Supplementary Table S1) for 30 min at RT in the dark, and washed again 

with permeabilization buffer. The samples were analyzed with an LSR Fortessa Flow 

cytometer and 100,000 live single cells were acquired. For the analysis of the data, 

FlowJo V10 software was used, and the gating strategies are described in the 

Supplementary Materials (Supplementary Figure S1). 
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3.2.6. Proliferation Assays 

3.2.6.1. Ki-67 Staining 

Ki-67 is a nuclear protein expressed by proliferating cells and is very often 

used as a proliferation marker. After the isolation of single cells from the lungs, 3 

million cells per sample were transferred to 96 well plates and the intracellular 

staining was performed as described above with the antibodies described in 

Supplementary Table S1. 

3.2.6.2. BrdU Staining 

Another method to evaluate cell proliferation is the use of 5-Bromo-2’-

deoxyuridine (BrdU – Sigma-Aldrich). One day before the euthanasia, wild type and 

knockout mice received an i.p. injection of BrdU (1.5 mg/mouse). After the 

euthanasia and tissue processing, flow cytometry staining was performed as 

aforementioned. For the intracellular staining, the cells were permeabilized two extra 

times and treated with DNAse to expose incorporated BrdU before the staining with 

the anti-BrdU antibody (Supplementary Table S1). 

3.2.7. Quantitation of neutrophil products, growth factors, and cytokines in BALF by 

ELISA 

Aliquots of cell-free BALF were used for the analysis of TNF-α, IFN-β, GM-

CSF, M-CSF, NGAL, CCL2, CCL22, and CXCL1 by ELISA according to the 

manufacturer’s instructions (R&D Systems). Absorbance was measured at 450 nm 

using a Biotek photometer and the Gen5 software (version 2.09, Biotek). 

3.2.8. Histology 

Lungs for histopathological analysis were collected and inflated via the 

trachea with 4% formaldehyde (Sigma-Aldrich) in PBS. The samples were fixed 

overnight using the same solution, processed with different concentrations of ethanol 

(Sigma-Aldrich) and xylol (Sigma-Aldrich), embedded in paraffin (Synth, Diadema, 

São Paulo, Brazil), and sectioned (5 μm). Sections were stained with hematoxylin 

(Laborclin, Pinhais, Paraná, Brazil) and eosin (Laborclin) for the evaluation of the 

intensity and extension of polymorphonuclear infiltrates in different lung 
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compartments, characterizing airway inflammation, vascular inflammation, and 

parenchymal inflammation, as described by Horvat et al (322). According to the 

histopathological score, the tissue damage was classified as absent, mild, moderate, 

intense, and severe. The analysis was performed by an independent pathologist that 

was blinded to the experimental conditions. 

3.2.9. qPCR analysis 

Following dissection, small lungs were removed from the mice and stored on 

dry ice until further use. Using the Qiagen RNeasy mini kit (cat #74106; Qiagen, 

Germantown, MD, USA), the lungs were subjected to homogenization and RNA 

extraction according to the manufacturer’s instructions. Subsequently, the RNA was 

converted to cDNA using the high-capacity cDNA Reverse Transcriptase kit (cat 

#4368814; Applied Biosystems, San Francisco, CA, USA). IDT primers were used 

to analyze the gene expression of Siglec5 (Mm.PT.58.6685529), Mrc1 

(Mm.PT.58.42560062), Nos2 (Mm.PT.58.43705194), Arg1 (Mm.PT.58.8651372), 

IL-1b (MM.PT.58.42940223) and IL-12b (Mm.PT.58.12409997). Ppia 

(Mm.PT.39a.2.gs) was used as the housekeeping gene. Per reaction, 10 ng cDNA 

was used. qPCR was performed using the TaqMan Gene Expression Mastermix (cat 

#4369016, Applied Biosystems) and the 7500 Real-Time PCR system (Applied 

Biosystems). Relative gene expression was determined using the 2-ΔDDCt method. 

3.2.10. Depletion of AM using clodronate-loaded liposomes 

For depletion of AM, 0.5 mg of clodronate in 100 μL (Liposoma, Amsterdam, 

The Netherlands) was intranasally instilled in mice under anesthesia 48 and 24 h 

before the LPS challenge. The same volume of PBS-loaded liposomes was instilled 

in the control groups (323). Four days after the LPS challenge, mice were 

euthanized, and the dissection was conducted as described in topic 3.2.2. 

3.2.11. Statistics 

The data were analyzed using the GraphPad PRISM software (version 9.0.0, 

Graph-Pad). The data were checked for normality by Shapiro–Wilk test and 

Kolmogorov–Smirnov test. The data with normal distribution were submitted to the 

one-way ANOVA test followed by the Bonferroni correction. In case normality was 
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not observed, Kruskal–Wallis with Dunn’s multiple comparisons test was performed. 

If only two groups were to be compared, Mann–Whitney U test was performed. 

Significance was determined between each condition for the CCR2+/+ and the CCR2-

/- mice and between the CCR2+/+ and CCR2-/- mice within each condition. Statistical 

differences are indicated with an asterisk above the individual data sets when 

compared to the corresponding control group and with horizontal lines with a hashtag 

on top in case of comparison between the indicated wild-type and knockout groups. 

p-values were indicated as follows: * = p < 0.05 when compared to the control group 

and # = p < 0.05 when comparing wild-type and knockout groups. 

 

3.3. Results 

3.3.1. Lack of CCR2 modifies the recruitment profile of monocytes and neutrophils 

in early time points after LPS instillation 

Before studying the role of CCR2 in the model of LPS-induced ARDS, we 

evaluated the levels of its ligand, CCL2, in the BALF of CCR2+/+ and CCR2-/- mice 

and observed increased levels of this chemokine mainly on days 2 and 3 after the 

insult, but at remarkedly higher levels in CCR2-/- mice when compared to CCR2+/+ 

mice (Figure 19A). Next, we analyzed the differences in inflammatory profile in lungs 

in both mice upon intranasal LPS challenge. Regarding cell accumulation, leukocyte 

numbers increased on days 1 to 3 after the LPS challenge, with higher total cell 

numbers in CCR2-/- mice, mostly neutrophils (Figure 19B, C). In contrast, CCR2+/+ 

presented with a higher accumulation of macrophages derived from monocytes in 

the first two time points as compared to CCR2-deficient mice (Figure 20D). 

Interestingly, despite differences in the profile of cells accumulated in the lung at 

days 1 to 3, both strains had comparable numbers of cells at later time points, when 

the cell counts returned to the basal levels (from day four onwards). In order to 

evaluate the impact of those differences in cell influx on lung pathology, we analyzed 

the total protein concentration in the bronchoalveolar fluid to quantify pulmonary 

edema and the changes in body weight. However, there were no differences in those 

parameters between CCR2+/+ and CCR2-/- mice during the whole period evaluated 
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(Figure 19E, F), despite being clear that on the first 3 days after the challenge, both 

CCR2+/+ and CCR2-/- mice had protein leakage into the alveolar space. Thus, we 

investigated other parameters to understand the impact of the differing leukocyte 

profile in the lungs on tissue inflammation. 

 

Figure 19 – CCR2 absence results in increased accumulation of neutrophils and 
decreased macrophage numbers in the lungs without affecting changes in 
inflammation, pulmonary edema, or weight loss. CCR2+/+ (black symbols) and CCR2-/- 
(red symbols) C57BL/6 mice were challenged with LPS (12.5 µg/mouse) or PBS (ctrl group; 
-) and dissected at the indicated days. Levels of CCL2 (A) were measured in the BALF by 
ELISA. Absolute numbers of leukocytes in BALF (B) were counted in Bürker chamber. 
Absolute numbers of neutrophils (CD45+Ly6G+CD11b+) (C) or macrophages 
(CD45+CD11b+Ly6G-CD3-CD19- NKp46-CD103-SiglecF-MHCII+CD11c- cells) (D) isolated 
from the lungs and BALF were quantified by flow cytometry. Pulmonary edema was 
quantified based on the protein concentration in the BALF (E). Changes in body weight (F) 
were calculated with the weight before challenge (day 0) as a reference. Compilation of 
three experiments. Data are shown as mean ± SEM. Each symbol in panels A to E 
represents data of an individual mouse. *p< 0.05 when compared with the healthy, 
unchallenged control group. #p<0.05 when comparing wild type and knockout groups at the 
same time point. ANOVA test followed by Bonferroni correction was used in the graphs with 
normal distribution. Otherwise, Kruskal-Wallis test was used. n=6-12. 
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3.3.2. Cytokine production in the initial phases of inflammation is altered in the 

absence of CCR2 but does not impact the tissue damage 

Cytokines and chemokines were measured in BALF to better determine the 

inflammatory profile of this ARDS model in CCR2+/+ and CCR2-/- mice. IFN-γ and 

TNF-α are important cytokines associated with tissue inflammation and damage 

caused by LPS. Both cytokines are increased in CCR2+/+ mice, on day 2 after LPS 

insult for both and on day 3 only for IFN-γ (Figure 20A, B).  

  

Figure 20 – CCR2 deficiency affects cytokine levels in the pro-inflammatory phase of 
the inflammation. CCR2+/+ (black symbols) and CCR2-/- (red symbols) C57BL/6 mice were 
challenged with LPS (12.5 µg/mouse) or PBS (ctrl group; -) intranasally and dissected at the 
indicated days. Levels of IFN-γ (A), TNF-α (B), CXCL1 (C), and NGAL (D) were measured 
in the BALF by ELISA. Compilation of three experiments. Data are shown as mean ± SEM. 
Each symbol represents data of an individual mouse. *p<0.05 when compared with the 
healthy, unchallenged control group. #p<0.05 when comparing wild type and knockout 
groups at the same time point. ANOVA test followed by Bonferroni correction was used in 
the graphs with normal distribution. Otherwise, Kruskal-Wallis test was used. n=4-12. 
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Of note, no increase in those cytokines was measured in CCR2-deficient mice 

at any of the time points evaluated. However, the level of CXCL1, an important 

chemokine related with neutrophil recruitment was increased in CCR2-/- mice already 

at day 1 (Figure 20C), which can explain the more pronounced accumulation of 

neutrophils in CCR2-/- mice (Figure 19C) when compared to CCR2+/+ mice. 

Consequently, more neutrophil gelatinase-associated lipocalin (NGAL), a protein 

released specifically by activated neutrophils, was observed already very early in the 

absence of CCR2 (Figure 20D). 

Despite the outspoken difference in cell accumulation and cytokine 

production, no significant alterations were detected in histology. Compared to 

healthy mice, both CCR2+/+ and CCR2-/- mice presented higher histopathological 

scores on day 2 after LPS instillation, as observed in Figure 21. On day 5 after the 

challenge, the histopathological score is reduced for both mice, being comparable 

with the healthy control groups. Interestingly, CCR2+/+ and CCR2-/- have similar 

results at every time point evaluated, suggesting that, despite the differences 

previously demonstrated at the peak of inflammation, the inflammatory response is 

resolved within the same time frame in both strains. 
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Figure 21 – CCR2-deficiency does not influence the histopathological score in CCR2-

/- compared to CCR2+/+ mice. CCR2+/+ (black symbols) and CCR2-/- (red symbols) C57BL/6 
mice were challenged with LPS (12.5 µg/mouse) or PBS (ctrl group; -) and dissected after 
2 or 5 days. (A) Representative hematoxylin and eosin-stained preparations of lung tissue 
from mice. Scale bar: 50 μm, as reported in the figure. (B) Histopathological score with 
ranges of tissue damage (severe, intense, moderate, mild, or absent). Data are shown as 
mean ± SEM from one representative out of two independent experiments. Each symbol 
represents data of an individual mouse. *p<0.05 when compared with the healthy, 
unchallenged control group (Kruskal-Wallis with Dunn's multiple comparisons test). n=5. 

 

3.3.3. The profile of monocytes/macrophages varies between CCR2+/+ and CCR2-/- 

mice  

CCR2 is an important receptor for monocyte recruitment in the early stages 

of tissue inflammation. The accumulation of these cells in lung tissue directly 

contributes to increased inflammation, but the recruited cells also contribute to the 
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end stages of inflammation, with crucial participation in the resolution of inflammation 

and tissue repair (246). Thus, we evaluated the profile of monocytes and 

macrophages at different time points after LPS-induced ARDS.  

As expected, the absence of CCR2 prevented the vast accumulation of 

macrophages (CD45+CD11b+Ly6G-CD3-CD19-NKp46-CD103-SiglecF-MHCII+ 

CD11c-), inflammatory monocytes (CD45+CD11b+SiglecF-Ly6G-CD3-NKp46-CD19-

CD103-CD64+Ly6C+), and IM (CD45+CD11b+SiglecF-Ly6G-CD3-NKp46-CD19-

CD103-CD64+MHCII+) in CCR2-/- mice when compared to CCR2+/+ mice at days 1 to 

3 after the challenge (Figure 19D and Figure 22A, B). In contrast, the number of AM 

(CD45+SiglecF+CD11c+) was significantly higher on days 3 and 4 in the CCR2-

deficient mice compared to the CCR2+/+ mice, which largely maintained the same 

AM counts along the whole duration of the experiment (Figure 22C). 
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Figure 22 – Largely reduced numbers of Ly6C+ monocytes and interstitial 
macrophages but increased alveolar macrophage counts are observed in CCR2-/- 

compared to CCR2+/+ mice. CCR2+/+ (black symbols) and CCR2-/- (red symbols) C57BL/6 
mice were challenged with LPS (12.5 µg/mouse) or PBS (ctrl group; -) and dissected at the 
indicated days. Absolute numbers of Ly6C+ monocytes (CD45+CD11b+SiglecF-Ly6G-Dump-

CD103-MHCII-Ly6C+ cells) (A) IM (CD45+CD11b+SiglecF-Ly6G-Dump-CD103-MHCII+ cells) 
(B) and AM (CD45+SiglecF+CD11c+ cells) (C) were quantified by flow cytometry. Compilation 
of four experiments for graph A and three experiments for graphs B-C. Data are shown as 
mean ± SEM. Each symbol represents data of an individual mouse. *p<0.05 when compared 
with the healthy, unchallenged control group. #p<0.05 when comparing wild type and 
knockout groups at the same time point. ANOVA test followed by Bonferroni correction was 
used in the graphs with normal distribution. Otherwise, Kruskal-Wallis test was used. n=4-
12. 

Since there was a significant increase in the number of AM in the CCR2-

deficient mice, the proliferation of these cells was evaluated. Two different assays 

were performed: the analysis of Ki-67 expression (Fig 23A, B) and the assessment 

of BrdU incorporation in the DNA (Fig 23C, D). Interestingly, the expression of Ki-67 
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in the AM was enhanced, and more AM expressed Ki-67 3 days after the LPS 

challenge. This effect was even more pronounced in the CCR2-deficient mice. In the 

CCR2-/- group, more BrdU had been incorporated at 3 and 4 days after the LPS 

challenge in the AM. These results indicate that the lack of CCR2 is linked to the 

increase in AM proliferation on days 3 and 4, time points associated with the 

reduction of neutrophils, and most likely the beginning of the resolution of 

inflammation. 

To better elucidate the increase in cell proliferation, the most important growth 

factors for macrophages, granulocyte-macrophage colony-stimulating factor (GM-

CSF) and macrophage colony-stimulating factor (M-CSF) (324), were measured in 

BALF (Figure 25). Interestingly, we only observed an increase of M-CSF level in 

BALF in CCR2-/- on day 3 (Figure 24B). 
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Figure 23 – CCR2-/- mice show increased proliferation of AM. CCR2+/+ (black symbols) 
and CCR2-/- (red symbols) C57BL/6 mice were challenged with LPS (12.5 µg/mouse) or PBS 
(ctrl group; -) and dissected at the indicated days. (A) Absolute number of AM expressing 
Ki-67 was quantified by flow cytometry using the following markers: 
CD45+CD11c+SiglecF+Ki-67+. (B) Mean fluorescence intensity (MFI) of Ki-67 in AM. (C) 
Absolute number of BrdU+ AM was quantified by flow cytometry using the following markers: 
CD45+CD11c+SiglecF+BrdU+. (D) Percentage of BrdU+ AM. Data are shown as mean ± SEM 
from one representative out of two independent experiments. Each symbol represents data 
of an individual mouse. *p<0.05 when compared with the healthy, unchallenged control 
group (ANOVA test followed by Bonferroni correction). #p<0.05 when comparing wild type 
and knockout group at the same time point (ANOVA test followed by Bonferroni correction). 
n= 3-5.  
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Figure 24 – Levels of GM-CSF and M-CSF in CCR2+/+ and CCR2-/- mice. CCR2+/+ and 
CCR2-/- C57BL/6 mice were challenged with LPS (12.5 µg/mouse) or PBS (ctrl group; -) 
intranasally and dissected at the indicated days. Levels of GM-CSF (A), and M-CSF (B) 
were measured in the BALF by ELISA. Data are shown as mean ± SEM. #p<0.05 when 
comparing wild type and knockout groups at the same time point. ANOVA test followed by 
Bonferroni correction was used in the graphs with normal distribution. Otherwise, Kruskal-
Wallis test was used. n=4-12. 

 

3.3.4. AM can be associated with the final events of tissue inflammation and its 

resolution in the absence of CCR2 

Different parameters are associated with the resolving phase of acute 

inflammation, such as the polarization of macrophages to an M2 profile and the 

production of pro-resolving mediators. Analysis of the expression of CD206, a 

marker indicative of M2-polarization in macrophages, showed that the numbers of 

AM were enhanced after 3 days in CCR2+/+ and CCR2-/- mice. Mice deficient for 

CCR2 had even more AM expressing CD206 at day 4 after the LPS stimulation 

compared to CCR2+/+ mice (Figure 25A). In contrast, AM expressing NOS2, a marker 

for M1 polarization of macrophages, were decreased in the absence of CCR2 

(Figure 25B). Confirming these results, the ratio of NOS2 over Arg1 mRNA 

expression was significantly reduced in the lungs of mice deficient for CCR2 (Figure 

25C). At day 3, the deficiency of CCR2 also led to increased protein levels of TGF-
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β and CCL22 compared to the wild-type mice (Figure 25D, E). TGF-β is an important 

cytokine related with the resolution of inflammation that is able to induce apoptosis 

of leukocytes (325). Both TGF-β and CCL22 are differentially produced by M2 

macrophages (326,327).  

 

Figure 25 – CCR2 deficiency is associated with the increase of molecules related with 
M2 macrophages. CCR2+/+ (black symbols) and CCR2-/- (red symbols) C57BL/6 mice were 
challenged with LPS (12.5 µg/mouse) or PBS (ctrl group; -) and dissected at the indicated 
days. Absolute numbers of CD206+ AM (CD45+CD11c+SiglecF+CD206+ cells) (A) and iNOS+ 
AM (CD45+CD11c+SiglecF+iNOS+ cells) (B) quantified by flow cytometry. (C) Ratio of NOS2 
and Arginase mRNA expression relative to the endogenous control. Levels of TGF-β (D) 
and CCL22 (E) in BALF quantified by ELISA. Compilation of three experiments in panels A, 
D, and E; and two experiments in panels B and C. Data are shown as mean ± SEM. Each 
symbol represents data of an individual mouse. *p<0.05 when compared with the healthy, 
unchallenged control group. #p<0.05 when comparing wild type and knockout groups at the 
same time point. ANOVA test followed by Bonferroni correction was used in the graphs with 
normal distribution. Otherwise, Kruskal-Wallis test was used. Mann-Whitney U test was used 
in panels B and C. n=4-12. 
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Three days after the LPS challenge, CCR2-/- mice expressed more Siglec5 

and Mrc1, i.e., mRNAs associated with AM and M2 macrophages, respectively 

(Figure 26A, B). In contrast, these mice had fewer IL-1b and IL-12b mRNA 

transcripts on the third day, suggesting that they contained reduced M1 macrophage 

numbers (Figure 26C, D). Therefore, the absence of CCR2 is associated with the 

increase of AM expressing CD206, the increase of other M2 markers in the 

lungs/BALF (Mrc1, CCL22, and TGF- β), and a reduction of M1 markers (NOS2, IL-

1b, IL-12b). 

 

Figure 26 – Expression of macrophage-associated genes in the lungs of CCR2+/+ and 
CCR2-/- mice. CCR2+/+ and CCR2-/- C57BL/6 mice were challenged with LPS (12.5 
µg/mouse). 3 days post-instillation, the lungs were removed, and the expression of (A) 
Siglec5, (B) Mrc1, (C) IL-1b, and (D) IL-12b was determined using qPCR. Results are 
represented as gene expression relative to lungs that were not instilled with LPS. Statistical 
differences were determined using Mann-Whitney U tests (A-C) or unpaired t-test (D) (*p 
<0.05). 

 

3.3.5.  Depletion of AM before the LPS challenge leads to uncontrolled inflammation 

which is worsened in the absence of CCR2 

 To further demonstrate the role of AM in the absence of CCR2, CCR2+/+ and 

CCR2-/- mice were treated with clodronate-loaded liposomes. As observed in Figures 

27A and B, the depletion of AM was successful since the percentage and absolute 

numbers of this specific cell population were reduced. Depletion triggered an 
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increase in the number of total leukocytes and neutrophils in the alveolar space in 

both CCR2+/+ and CCR2-/- mice at 4 days after the LPS challenge (Figure 27C and 

D). Interestingly, more leukocytes were detected in CCR2-/- compared to CCR2+/+ 

mice. To evaluate the impact of alveolar macrophage depletion on lung pathology, 

we analyzed the total protein concentration in the bronchoalveolar fluid to quantify 

pulmonary edema. Figure 27E shows that both CCR2+/+ and CCR2-/- mice had more 

pulmonary edema after the depletion, but that the inflammatory insult had still more 

impact in CCR2-/- mice on day 4, probably because the resolution of inflammation is 

delayed in those mice. Lastly, we evaluated the changes in body weight and, while 

its reduction was observed in all the groups during the course of the inflammation, 

only the mice treated with clodronate-loaded liposomes were not able to recover and 

still weighed significantly less on day 4 (Figure 27F). 
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Figure 27 – Depletion of AM leads to worsened inflammation especially in CCR2-/- 
mice. CCR2+/+ (black symbols) and CCR2-/- (red symbols) C57BL/6 mice were treated 
intranasally with liposomes loaded with clodronate or PBS. One day later, they were 
challenged with LPS (12.5 µg/mouse) and dissected after 4 days. Percentage (A) and 
absolute numbers (B) of AM (CD45+CD11c+SiglecF+ cells) isolated from the lungs and BALF 
were quantified by flow cytometry. Absolute numbers of leukocytes (C) and neutrophils (D) 
in BALF were measured by microscope count. Pulmonary edema was quantified based on 
the protein concentration in the BALF (E). Changes in body weight (C) were calculated with 
the weight before challenge (day 0) as reference. Data are shown as mean ± SEM. Each 
symbol represents data of an individual mouse. *p<0.05 when compared with the respective 
group treated with PBS-loaded liposomes. #p<0.05 when comparing wild type and knockout 
group treated with Clodronate-loaded liposomes. Mann-Whitney U test was used. n=5-6. 

 

3.4. Discussion 

The resolution of lung inflammation requires an orchestrated immune 

response and several control mechanisms to avoid excessive inflammation and 
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chronic disease (185,328). CCR2 is a crucial receptor that regulates tissue 

inflammation through its fundamental role in monocyte recruitment. The CCL2-

CCR2 axis plays an important role in monocyte biology, guiding the 

compartmentalization of these cells in different tissues during homeostasis and 

inflammation. CCR2-deficient mice are known to have lower numbers of circulating 

Ly6CHi cells since CCR2 is required for the mobilization of monocytes from the bone 

marrow to the circulation during a systemic inflammatory response (329). It has been 

demonstrated that CCR2 is important in the development of inflammation in the 

lungs (asthma (330), tuberculosis (331) and pulmonary fibrosis (332)), liver (333), 

myocardium (334,335) and others (336) due to its importance in monocyte 

recruitment. 

In this study, we used CCR2-deficient mice to understand the kinetics of lung 

inflammation using an experimental model of ARDS induced by LPS, which can elicit 

a powerful pro-inflammatory, though self-resolving immune response (337). The lack 

of CCR2 generally leads to a decrease in monocytes/macrophages at the site of the 

inflammation, which may lead to a milder disease (334,338). In contrast with our 

findings, Maus et al. (339,340) and Francis et al. (341) showed that the absence or 

blocking of CCR2 dramatically reduced the recruitment of myeloid cells in general, 

and not only the monocyte/macrophage population, impacting the disease 

parameters greatly in models of ARDS induced by LPS and ozone, respectively. 

Similarly, the depletion of circulating monocytes by intravenous injection of 

clodronate liposomes 2 days before intratracheal LPS treatment significantly 

suppressed acute lung injury in mice (342). Adversely, our data show that the 

reduced monocyte influx does not prevent the development of inflammation in the 

model of ARDS induced by intranasal low-dose LPS instillation. We found that in the 

initial phases of the inflammation, the absence of CCR2 led to a dramatic decrease 

in the accumulation of macrophages in the lungs and an increase in the recruitment 

of neutrophils, congruous with the higher levels of CXCL1 in the BALF. Contrastingly, 

at later time points we did not observe major differences in the body weight kinetics, 

inflammatory parameters, or immunopathological score between the two mouse 

strains indicating that although lack of CCR2 does not prevent lung inflammation, it 
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does not hamper adequate resolution. We discovered that the absence of CCR2 

was compensated by increased proliferation of AM that were more skewed towards 

an M2 phenotype as we detected an increased expression of the M2 marker CD206 

on AM, and higher levels of CCL22 and TGF-β in the BALF. In addition, pulmonary 

Nos2, IL-1β, and IL-12b expression was reduced, while Mrc1 was increased in 

CCR2−/− mice (Figures 25 and 26). Interestingly, the lower expression of IL-12b 

might be connected with the reduced levels of IFN-γ observed in CCR2-deficient 

mice (Figure 21) (343) and, consequently, the reduction of NOS2 (344). Together, 

those elements are indicative of efficient resolution of inflammation in the CCR2-

deficient mice as the general paradigm states that the resolution of acute 

inflammation is characterized by the accumulation of pro-resolving macrophages 

that phagocytose apoptotic cells and produce pro-resolving molecules (345). 

The effect of CCR2 absence at later time points of inflammation is indeed 

ambivalent. Previous reports showed that the lack of CCR2 signaling (a) reduces 

pro-fibrotic responses in the lungs (333,338); (b) refrains extracellular matrix 

remodeling (333), (c) delays the resolution of inflammation and the recovery of 

gastrointestinal functions (342); (d) improves cardiac remodeling (335), and (e) limits 

recovery following spinal cord injury (346). In our study, the deficiency of CCR2 did 

not change the resolution timeline, suggesting that this receptor is not crucial in this 

acute and self-resolving model of lung inflammation. This is in agreement with the 

study by Pollenus et al. (347), who observed that CCR2 is dispensable for the 

resolution of malaria-induced lung pathology. Together, these studies indicate that 

CCR2 divergently affects the development of different diseases probably depending 

on the organ involved, and the profile and timing of each aspect of the inflammatory 

response. According to the mice, the model, and the type of inflammation, 

monocytes/macrophages may be beneficial for the proper development and 

resolution of inflammation, and they may impact other leukocytes differentially.  

Even though CCR2 is essential for the recruitment of monocytes, in the 

absence of this receptor, a minor increase in monocyte-derived macrophages, 

monocytes, and IM at 2 and 3 days after the LPS challenge was observed in the 

CCR2 knockout mice when compared with the unchallenged group (Figure 22). 
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Other chemokine receptors, such as CCR1, CCR4, and CCR5 and their 

corresponding ligands, may participate in the accumulation of macrophages in the 

absence of CCR2 (348,349). Besides recruitment, these ligands have a role in the 

activation, differentiation, and polarization of macrophages in numerous diseases 

and contexts (350). In addition to CC chemokines and their receptors, the CX3CL1-

CX3CR1 axis is also an important pathway mediating monocyte migration, playing 

a major, but environment-specific, role in either pro-inflammatory or pro-resolving 

responses (351) and contributing to the development of inflammatory diseases, such 

as kidney ischemia-reperfusion injury (352) and pulmonary fibrosis (349).  

CCR2 is mainly expressed in circulating peripheral blood monocytes, but not 

in AM. It is known that AM originate from fetal liver monocytes and are independent 

of circulating monocytes (353,354); therefore, the deficiency of CCR2 or the 

inhibition of CCL2 has little or no effect on this cell population (355). Contrastingly, 

the IM originate from yolk sac progenitors and in adulthood they are replaced by 

circulating monocytes (204,207), thus being susceptible to CCR2 deficiency. AM are 

crucial for the recognition and clearance of pathogens from the airways, promoting 

the initiation of host defense as well as tissue repair (283). This cell population is 

very important for the resolution of lung injury since they can clear apoptotic 

neutrophils and tissue debris through efferocytosis (283), avoiding dying cells from 

releasing pro-inflammatory and toxic mediators into the surroundings while 

activating pro-resolving and repair factors (319). Indeed, depletion of AMs by 

intranasal delivery of clodronate liposomes prolonged the inflammation with a higher 

number of leukocytes in the BALF, lack of bodyweight recovery, and worse 

pulmonary edema (Figure 27). Likewise, other studies already showed that depletion 

of alveolar macrophage in LPS-induced ALI/ARDS leads to an increased influx of 

polymorphonuclear leukocytes (356) and more severe disease and lung 

inflammation (342). Interestingly, our results show that these phenomena are more 

pronounced in the absence of CCR2, supporting our hypothesis that AM are the key 

cell in the control of inflammation in CCR2-deficient mice.  

According to Mahida et al. (357), ARDS in humans may be associated with 

impaired efferocytosis by AM, demonstrating how important this type of macrophage 
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is. Our findings indeed suggest that increased proliferation of AM can compensate 

for the lack of macrophages derived from monocytes, promoting proper resolution of 

ARDS in the absence of CCR2. It is not totally clear what causes the proliferation of 

AM in our study. GM-CSF and M-CSF are important growth factors for the expansion 

of AM (324). Although there was no difference in GM-CSF levels between CCR2+/+ 

and CCR2−/− mice at any time point evaluated, we observed a mild increase in M-

CSF 3 days after the LPS instillation in the CCR2−/− mice (Figure 24). M-CSF is 

linked with the homeostasis of macrophage and monocyte populations and is able 

to prone monocytes towards an M2 profile, as shown by Hamilton et al. (358,359). It 

must also be noted that in the CCR2−/− mice, relatively more growth factor is 

available per target cell, as fewer monocytes/macrophages are present in the lungs 

of those animals.  

In conclusion, in our murine model, CCR2 is not essential for the 

development, nor the resolution of ARDS induced by LPS. We observed different 

patterns and intensities of cell recruitment, especially in the initial phases of the 

inflammation, although disease development was not affected. Despite the 

importance of CCR2 in monocyte recruitment and the crucial role of macrophages 

in the resolution of inflammation, our data did also not show major effects on 

resolution when this receptor was absent. We hypothesize that the lack of monocyte 

recruitment is counterbalanced by the recruitment of neutrophils, in the first days, 

and later by the proliferation of AM. More studies are necessary to further elucidate 

the mechanisms involved in this process and to clarify the mediators responsible for 

the enhanced proliferation of AM. 
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Effect of treatment with the GAG-Binding Chemokine 

Fragment CXCL9(74–103) in murine models of 
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4.1. Introduction 

The treatment of pneumonia is strictly dependable on the causative pathogen. 

In this context, S. aureus-induced pneumonia is a challenge due to the bacteria 

ability to acquire antibiotic resistance and the lack of efficient treatments that prevent 

excessive tissue damage caused by the infection and the inflammatory response 

(360). Therefore, the hunt for new antibiotics to tackle the increase in bacterial 

resistance continues. Previous studies have shown that neutrophils are responsible 

for S. aureus clearance during infection (361). To get rid of bacteria, neutrophils have 

a rather broad weaponry: phagocytosis, production of antimicrobial peptides and 

proteins, and release of ROS and NETs (362). Understandably, overactivation of 

these cells is also harmful for the host tissue. This implicates that a balanced 

response of neutrophils should be obtained, sufficient neutrophils should be 

recruited to clear the bacteria, but numbers and cellular activation need to be 

controlled to prevent excessive damage to the lung tissue (171,362). On the other 

hand, the immune response induced by Sars-CoV-2 is composed by different cells, 

such as lymphocytes, macrophages, and neutrophils, and the systemic inflammation 

is remarkable, leading to cytokine storms and multiple organs failure. COVID-19 is 

not fully uncovered, and more studies should be developed to explore its intricate 

pathophysiology and search for more therapeutic targets. Nevertheless, murine 

models cannot be done using Sars-CoV-2, since murine cells do not express the 

receptor used by this virus for the intracellular infection. Thus, multiple models were 

developed using alternative mice or alternative viruses, such as MHV-3. Here, we 

used the model developed and fully described by Andrade et al. (77). In this model, 

mice are intranasally inoculated with MHV-3 and, after 3 days, develop transient 

inflammation-associated lung injury, which includes severe respiratory distress. 

Afterwards, the virus systemically spread, and the disease affects different organs, 

evolving to death around the 6th day after the infection. 

As mentioned, the recruitment of cells and their chemoattraction molecules 

are crucial for the inflammation and might be an important therapeutic target for the 

prevention of lung injury associated with infections. A good strategy to explore the 

role of chemokines and chemokine receptors is the utilization of modified 
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chemokines that can impair the function of the natural chemokine(s) during the 

inflammatory response, such as the COOH-terminal fragment of CXCL9 [CXCL9(74-

103)]. It has been shown that this peptide competes with chemokines for GAG 

binding and reduces neutrophil recruitment, leading to a reduction in inflammation in 

several animal models of disease (130–132): antigen-induced arthritis (129), gout 

induced by monosodium urate crystals (323), dinitrofluorobenzene-induced contact 

hypersensitivity (130), renal fibrosis (363), and Klebsiella pneumoniae-induced 

pneumonia (364). 

The therapeutic application of CXCL9(74-103) in diseases wherein excessive 

neutrophil accumulation causes tissue damage is quite promising. Nevertheless, 

more information on the potential of this peptide in infectious models is still needed. 

It is known that neutrophils are essential for the clearance of bacteria and have a 

key role in infection control (365). However, this process can lead to extensive tissue 

damage caused by the release of ROS and several enzymes, for instance, neutrophil 

elastase and Cathepsin G (171,366). Thus, it is crucial to understand how to 

manipulate the recruitment of leukocytes and ensure bacterial clearance, controlling 

both inflammation and infection. 

 

4.2. Materials and methods 

4.2.1. Mice and reagents 

Six to eight weeks old, male C57BL/6 were acquired from the Central Animal 

House of UFMG and kept in the animal facility that belongs to the Laboratory of 

Immunopharmacology, ICB-UFMG, registered in the CTNBio. Animals were 

maintained in a controlled environment, with ad libitum filtered water and food, and 

in a 12-h dark-light cycle. Experiments were made within the norms of the European 

Union (directive 2010/63/EU) and the Belgian Royal Decree of 29/05/13 and the 

Brazilian Guideline for the Care and Use of Animals in Teaching or Scientific 

Research Activities. They were approved by the Animal Ethics Committees of UFMG 

(420/2018).  
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S. aureus from American Type Culture Collection (ATCC) 6538 was provided 

by Professor Waldiceu Verri Jr from Universidade Estadual de Londrina (UEL, Brazil) 

and propagated in brain heart infusion (BHI) broth. The MHV-3 strain was provided 

and sequenced by Clarice Weis Arns and Ricardo Durães-Carvalho from the 

Universidade Estadual de Campinas (UNICAMP, Brazil), and propagated in L929 

cells. The CXCL9(74-103) COOH-terminal peptide was chemically synthesized 

using fluorenyl methoxycarbonyl (Fmoc) chemistry using an Activo-P11 automated 

synthesizer (Activotec, Cambridge, UK), as previously described by Loos et al., 2009 

(367). After synthesis, the peptides were dissolved in 0.1% trifluoroacetic acid (TFA 

– Sigma-Aldrich) and purified by RP-HPLC. Peptides were loaded on a 150×10 mm 

Proto 300 C18 column (Higgins Analytical Inc., Mountain View, CA, USA) in 0.1% 

TFA in water at a flow rate of 4 mL/min and eluted in an acetonitrile gradient in water 

containing 0.1% TFA. Eluted proteins were detected by splitting 0.7% of the volume 

of the column effluent to an ion trap mass spectrometer (Amazon SL, Bruker, 

Bremen, Germany). 

4.2.2. In vivo experimental models 

Mice were anesthetized with a solution of ketamine (80 mg/kg) and xylazine 

(15 mg/kg), subcutaneously. For the induction of pneumonia, S. aureus was grown 

in BHI agar (TM media, Rajhastan, India) supplemented with 5% of sheep blood 

(Newprov, Pinhais, Paraná, Brazil) for 24 h at 37°C (368). The bacterial solution was 

prepared in 0.9% sterile saline (Equiplex, Aparecida de Goiania, Goiás, Brazil) and 

intranasally instilled at a concentration of 108 CFU/30 uL and the animals were 

euthanized 12 to 48 h after the infection for the kinetics or 24 h after the infection for 

the CXCL9(74-103) experiments. Parallelly, for viral pneumonia, the suspension of 

MHV-3 was prepared in 0.9% sterile saline and intranasally instilled at a 

concentration of 10³ PFU/mL (77) and the animals were euthanized 3 days after the 

infection. All the animals in the control group received the same volume of the vehicle 

(0.9% sterile saline solution) by the same route. For euthanasia, an overdose of 

anesthetic (ketamine and xylazine) was used. The doses and time points were based 

on the literature or preliminary experiments. 
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Body weight was measured daily, and the mice were euthanized at different 

time points after the instillation. In the experiments with S. aureus, clinical score was 

performed according to the parameters described by Blättner et al, 2016 (369 – 

Table S2). For the dissection, mice received an overdose of anesthetic (ketamine 

and xylazine). BALF was obtained by the instillation of 500 μL of PBS through a 

catheter in the trachea. The fluid was withdrawn and instilled again two more times, 

PBS instillation was repeated three times, and the lavages were pooled. After 

perfusion, lungs were collected for analysis by flow cytometry, ELISA, bacterial/viral 

load, or histopathological analysis. The BALF was centrifuged (5 min, 300 × g, 4°C) 

and the supernatant was collected for the analysis of the cytokine levels by ELISA, 

protein levels by BCA, and bacterial load, for pneumonia. Furthermore, part of the 

resuspended cell pellet was used for cell counting. 

 For the CXCL9(74-103) experiments, the peptide was diluted in 0,9% sterile 

saline, and mice were intravenously treated with 100μL of CXCL9(74–103) 1 mg/mL 

or vehicle according to the timeline in Figure 28. 
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Figure 28 – Timeline of CXCL9(74-103) treatments in both models of pneumonia. 
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4.2.3. Bacterial/viral load 

In the bacterial pneumonia experiments, the left lung was macerated and 

bronchoalveolar lavage was collected, both under sterile conditions, diluted, plated 

on BHI-blood agar, and incubated at 37°C. Colony forming units (CFU) were 

analyzed 24 h after plating and results are expressed as CFU per 50 mg of tissue or 

per mL. To determine the viral load in the MHV-3 experiments, a plaque assay was 

performed. Briefly, tissue homogenates were added onto a confluent monolayer of 

L929 cells in 24-well plates. The plates were incubated for 1 h and were gently 

agitated every 10 min to assure equal distribution of the sample. Subsequently, 

cultures were covered with the overlay medium [Dulbecco's Modified Eagle's 

Medium (DMEM – Cultilab, Campinas, São Paulo, Brazil) containing 0.8% 

carboxymethylcellulose (Sigma-Aldrich), 2% FCS (Cultilab)]. The plates were 

incubated for 2 days, at 37°C, and 5% CO2. After incubation, cultures were fixed with 

10% neutral buffered formalin for 1 h and stained with 0.1% crystal violet (Laborclin). 

Virus titers were determined by visual analysis of the plaques and expressed as 

plaque-forming units (PFU). 

4.2.4. ELISA 

The measurement of cytokines and chemokines in lung tissue and 

bronchoalveolar lavage was performed using ELISA. A lung fragment was weighed 

and suspended in a solution containing protease inhibitors and subjected to 

homogenization. Either the supernatant of the lung processing or the BALF were 

used for analyses. The ELISAs were performed according to the manufacturer's 

suggested procedures (R&D Systems). 

4.2.5. BALF protein concentration 

To assess the edema formation and the extent of the tissue damage, the 

concentration of protein in the BALF was measured using Bradford assay (Bio-Rad, 

Hercules, California, USA). Briefly, the working reagent is diluted 5 times and mixed 

with the BSA standards and samples. After an incubation of 30 min at RT, the 

absorbance was measured at a wavelength of 595 nm (800 TS Absorbance Reader 

with the Gen5 software – both from Biotek) 
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4.2.6. Assessment of respiratory mechanic dysfunction 

Invasive forced spirometry was performed to evaluate lung function. As 

previously described by Russo et al. (370), mice were anesthetized with ketamine 

and xylazine, tracheostomized, placed in a body plethysmograph, and connected to 

a computer-controlled ventilator (Forced Pulmonary Maneuver System; Buxco 

Research Systems, Wilmington, NC, USA).  Under mechanical respiration, the tidal 

volume (TV), volume per minute (MV), peak of compliance (Cpk), dynamic 

compliance (Cdyn), and lung resistance (Rl) were determined by the resistance and 

compliance test. Next, a quasistatic Pressure-Volume maneuver was performed to 

obtain the total lung capacity (TLC), residual volume (RV), and inspiratory capacity 

(IC). This maneuver consists in inflating the lungs to +30 cm of H2O and slowly 

exhaling until -30 cm of H2O. Then, the lungs were inflated to +30 cm of H2O and 

immediately connected to a highly negative pressure to enforce expiration till -30 cm 

of H2O, to identify the fast-flow volume. The forced vital capacity (FVC) and forced 

expiratory volume at 20 or 50 ms (FEV 20 or FEV50) were measured during this last 

maneuver, and the Tiffeneau–Pinelliindex (FEV20/FVC or FEV50/FVC) was 

calculated using these two variables. Suboptimal maneuvers were rejected, and for 

each test in every single mouse, at least three acceptable maneuvers were 

conducted to obtain a reliable mean for all numeric parameters. 

4.2.7. Histopathological analysis 

Lungs for histopathological analysis were collected and inflated via the 

trachea with 4% formaldehyde in PBS. The samples were fixed overnight using the 

same solution, processed with different concentrations of ethanol and xylol, 

embedded in paraffin, and sectioned (5 μm). Sections were stained with hematoxylin 

and eosin for the evaluation of airway inflammation, vascular inflammation, 

parenchymal inflammation, and polymorphonuclear infiltrates (322). The histological 

analysis was performed by an independent pathologist that was blinded to the 

experimental conditions. 
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4.2.8. Statistical analysis 

The data were analyzed using the GraphPad PRISM software (GraphPad, 

USA, version 9.0.0). The one-way ANOVA test was performed followed by the 

Bonferroni correction. Significance was determined by comparing the different time 

points with the control, unchallenged group; between each condition for the WT and 

the KO mice and between the WT and KO mice within each condition; and between 

control, treated, and non-treated (vehicle) groups. P-values were indicated as 

follows: * = p< 0.05 when compared to the corresponding control group and # = 

p<0.05 when comparing wild-type and knockout groups or when compared to the 

vehicle group. 

 

4.3. Results 

4.3.1. Time-course of S. aureus-induced pneumonia mice model 

S. aureus-induced pneumonia is characterized by a massive influx of cells, 

mainly neutrophils, into the lungs, which is essential to control the bacterial load, but 

may cause severe tissue damage (187). Blocking chemokine binding to GAGs can 

be used as a strategy to reduce the cell migration to control tissue inflammation. In 

this sense, the treatment with CXCL9(74-103) is able to reduce the recruitment of 

neutrophils in different models of acute inflammation (131,371,372). It is therefore 

interesting to study this peptide in our bacterial infection model because it has great 

potential to reduce the troubles of uncontrolled inflammation. To be able to make a 

well-considered decision on the best time points for treatment and euthanasia, we 

first studied the time course of this infection. 

In the first time point evaluated, 12 h after the infection, there was a relevant 

increase in cells, mainly neutrophils but also mononuclear cells, accumulating in the 

BALF (Figure 29A-C). The numbers of neutrophils were high during the whole period 

analyzed (Figure 29B). In contrast, mononuclear cells had even higher counts later, 

at 48 h. In addition to cell accumulation in BALF, we evaluated the changes in body 

weight (Figure 29D) and the bacterial load in BALF and lungs (Figure 29E, F). Twelve 

h after the infection, the animals had a major decrease in body weight that was 
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sustained at 24 h, but self-limited and reversed at 48 h. Accordingly, the bacterial 

load in BALF and lungs was already strongly reduced at 48h after infection. It should 

be noted that the number of bacteria in the lungs was higher than in the BALF (Figure 

29E), which can probably be explained by the high number of adhesion molecules 

produced by S. aureus that ensure its adhesion to the tissue (373). Therefore, we 

concluded that the peak of inflammation in this model is around 12 to 24 h and that 

the resolution of inflammation starts after 48 h, based on the increase in 

mononuclear cells, the body weight, and the bacterial load. Consequently, we 

decided to stablish the time point of 24 h to investigate the anti-inflammatory effect 

of CXCL9(74-103) peptide in this model. 
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Figure 29 – S. aureus infection kinetics. C57BL/6 mice were infected with S. aureus (108 

CFU/mouse) or saline (Ctrl group) and dissected at the indicated time intervals. (A) Numbers 

of leukocytes in BALF were counted in Bürker chambers. Neutrophils (B) or mononuclear 

cells (C) in BALF were differentially counted in cytospin slides. Changes in body weight (D) 

were calculated with the weight before infection (day 0) as reference. Bacterial load was 

measured in the lungs (E) and BALF (F). Data are shown as mean ± SEM. Each symbol in 

panels A-C, E, and F represents data of an individual mouse. *p< 0.05 when compared with 

the healthy, unchallenged control group. #p<0.05 when comparing different time points with 

12 h. ANOVA test followed by Bonferroni correction was used in the graphs with normal 
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distribution. Otherwise, Kruskal-Wallis with Dunn's multiple comparisons test was used. n=5-

6. 

4.3.2. CXCL9(74-103) treatment improves the accumulation of cells in BALF and 

lung elasticity but does not affect other inflammatory parameters in the S. 

aureus-induced pneumonia mice model 

CXCL9(74-103) is a GAG-binding peptide that competes with chemokines for 

display on the GAGs of the vessel wall, which leads to the reduction in chemokine-

directed neutrophil recruitment (129,131). In our experimental bacterial pneumonia 

model, CXCL9(74-103) treatment starting at 6 or 12 h after the infection with S. 

aureus reduced the numbers of total cells (Figure 30A) and neutrophils in BALF 

(Figure 30B) and improved the clinical score (Figure 30D). In contrast, the treatment 

did not decrease the number of mononuclear cells (Figure 30C), the concentration 

of protein in BALF (Figure 30E), nor the bacterial load in BALF and lungs (Figure 

30F, G). In fact, the bacterial load in BALF was increased in the group treated 6 h 

after the infection (Figure 30G), but an additional experiment should be performed 

to confirm this rather surprising finding.  
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Figure 30 – CXCL9(74-103) treatment reduces several inflammatory parameters in S. 

aureus infection. C57BL/6 mice were infected with S. aureus (108 CFU/mouse) or saline 

(Ctrl group) and dissected 24 h later. At the indicated times after the challenge, mice were 

treated with CXCL9(74-103). (A) Numbers of leukocytes in BALF were differentially counted 

in Bürker chambers. Neutrophils (B) or mononuclear cells (C) in BALF were counted in 

cytospin slides. Clinical score (D) was calculated based on observational parameters and 

changes in body weight. The concentration of protein in BALF was measured to assess 

pulmonary edema (E). Bacterial load was measured in the lungs (F) and BALF (G). Data 

are shown as mean ± SEM. Each symbol represents data of an individual mouse. *p< 0.05 

when compared with the healthy, unchallenged control group. #p<0.05 when comparing 

different time points with the vehicle. ANOVA test followed by Bonferroni correction was 

used in the graphs with normal distribution. Otherwise, Kruskal-Wallis with Dunn's multiple 

comparisons test was used. n=6. 

The accumulation of neutrophils observed in bacterial infection is usually 

associated with high levels of pro-inflammatory mediators. Besides the recruitment 

of additional immune cells, such as neutrophils and macrophages, cytokines and 

chemokines dictate the pace of inflammation because they are indispensable in the 

activation of the leukocytes (374). To better understand the inflammation and the 
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mechanisms behind the CXCL9(74-103) effect, we measured some cytokines that 

are important in S. aureus infection (375). Interestingly, the treatment was not able 

to alter the levels of CXCL1 (Figure 31A), IL-1β (Figure 31B), IL-6 (Figure 31C), and 

TNF-α (Figure 31D) in BALF and the levels of CXCL1 (Figure 31E), IL-1β (Figure 

31F), and TNF-α (Figure 31G) in lungs. Thus, despite the changes in cell 

accumulation, the cytokines evaluated were not affected by CXCL9(74-103) and are 

not related with its molecular mechanisms. 
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Figure 31 – CXCL9(74-103) treatment does not affect the levels of cytokines in S. 

aureus infection. C57BL/6 mice were infected with S. aureus (108 CFU/mouse) or saline 

(Ctrl group) and dissected 24 h later. At the indicated times after the challenge, mice were 

treated with CXCL9(74-103). Levels of CXCL1 (A), IL-1β (B), IL-6 (C), and TNF-α (D) were 

measured in BALF by ELISA. Levels of CXCL1 (E), IL-1β (F), and TNF-α (G) were measured 

in the lungs by ELISA. Data are shown as mean ± SEM. Each symbol represents data of an 

individual mouse. *p< 0.05 when compared with the healthy, unchallenged control group. 

ANOVA test followed by Bonferroni correction was used in the graphs with normal 

distribution. Otherwise, Kruskal-Wallis with Dunn's multiple comparisons test was used. n=6. 
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Additionally, we assessed the pulmonary mechanic function to evaluate 

whether CXCL9(74-103) could prevent the loss of elasticity and the reduction in 

pulmonary volumes and airway flow caused by S. aureus infection. As observed in 

Figure 32, the only parameter that improved by the treatment was the lung elasticity 

(Figure 32A), while the lung volumes (Figure 32B), and the airway flow (Figure 32C) 

are not different from the untreated, vehicle group. 

It is known that the excess of leukocytes has an important role in lung tissue 

damage. Even so, despite the obvious reduction in cell recruitment after CXCL9(74-

103) treatment, this was not enough to reverse the damage caused by the infection 

and the initial inflammatory response (Figure 33). In the histology preparations of 

lung tissue, intense inflammatory infiltrates and the destruction of lung structures can 

be observed in all infected groups (Figure 33A). Lung inflammation was also 

quantified and expressed as histopathological score and histopathological damage 

(Figure 33B, C). 
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Figure 32 – CXCL9(74-103) treatment only improves the lung elasticity in S. aureus 
infection. C57BL/6 mice were infected with S. aureus (108 CFU/mouse) or saline (Ctrl 
group) and dissected 24 h later. Right before euthanasia, pulmonary mechanic functions 
were assessed. At the indicated times after the challenge, mice were treated with 
CXCL9(74-103). Invasive forced spirometry was performed to investigate functional 
modifications in pulmonary mechanics. The assessed parameters were (A) Lung elasticity 
represented by Peak of Compliance (Cpk), Lung Resistance (RI), and Dynamic Compliance 
Forced (Cdyn); (B) Lung volumes by Minute Volume (MV), Total Lung Capacity (TLC), 
Inspiratory Capacity (IC), and Tidal Volume (TV); (C) Airway flow by Tiffeneau-Pinelli index 
(FEV20/FVC) and Forced Expiratory Volume at 20 ms (FEV20). Data are shown as mean ± 
SEM. Each symbol represents data of an individual mouse. *p< 0.05 when compared with 
the healthy, unchallenged control group. #p<0.05 when comparing different treatment 
groups with the vehicle. ANOVA test followed by Bonferroni correction was used in the 
graphs with normal distribution. Otherwise, Kruskal-Wallis with Dunn's multiple comparisons 
test was used. n=6-12. 
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Figure 33 – CXCL9(74-103) does not affect the tissue damage in S. aureus infection. 

C57BL/6 mice were infected with S. aureus (108 CFU/mouse) or saline (Ctrl group) and 

dissected 24 h later. At the indicated times after the challenge, mice were treated with 

CXCL9(74-103). (A) Representative hematoxylin and eosin-stained preparations of lung 

tissue from mice. Scale bar: 50 μm, as reported in the figure. (B) Histopathological score 

and (C) Contingency graph according to ranges of tissue damage (severe, intense, 

moderate, mild, and absent). Data are shown as mean ± SEM in panel B. *p< 0.05 when 

compared with the healthy, unchallenged control group. ANOVA test followed by Bonferroni 

correction was used in the graphs with normal distribution. Otherwise, Kruskal-Wallis with 

Dunn's multiple comparisons test was used. n=5-6. 
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4.3.3. CXCL9(74-103) treatment improves several inflammatory parameters in the 

MHV-3 induced pneumonia mouse model 

The murine model using MHV-3 was previously standardized by Andrade et 

al (77) and, based on the concentration-response and the time course observed in 

that work, we challenged the mice with 3×103 PFU/mouse and they were euthanized 

3 days later, at the peak of pulmonary infection. Due to the lack of stability of 

CXCL9(74-103), the treatment was done twice a day and started immediately before 

the challenge (0h group) or 12 h after viral instillation (12h group). Additionally, the 

animals were monitored daily for changes in posture, appearance, and body weight, 

but only the body weight was affected by the infection. Therefore, it was used as a 

parameter to evaluate the clinical features of this model. 

As observed in Figure 35, compared to control animals, mice infected with 

MHV-3 and treated with vehicle (Vh) lost body weight, and their BALF contained 

more neutrophils and proteins than the control group, demonstrating that the virus is 

able to induce lung inflammation. In addition, we can confirm that the infection was 

established in the lungs, since it was possible to recover around 10² PFU/g of MHV-

3 virus in the lung tissue (Figure 34). Regarding the CXCL9(74-103) treatment, we 

observed that the total number of cells in BALF is reduced in the 12h group (Figure 

34A), while neutrophils are decreased in both treated groups (Figure 34B). 

Mononuclear cells are not affected by the infection nor the treatment, (Figure 34C) 

indicating the key role of neutrophils in the inflammation. In addition to the 

recruitment of cells, CXCL9(74-103) treatment starting at 12 h can also decrease the 

bodyweight loss (Figure 34D) and does not increase the leakage of proteins to the 

alveolar space when compared to the control group (Figure 34E), as opposed to the 

untreated group. Lastly, all the changes observed in the treated groups were not 

reflected in the viral load, as this is not positively or negatively affected by CXCL9(74-

103) (Figure 34E). 
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Figure 34 – CXCL9(74-103) treatment reduces several inflammatory parameters in 

MHV-3 infection. C57BL/6 mice were infected with MHV-3 (3×103 PFU/mouse) or saline 

(Ctrl group) and dissected 3 days later. At the indicated times after the challenge, mice were 

treated with CXCL9(74-103). (A) Numbers of leukocytes in BALF were counted in the Bürker 

chamber. Numbers of neutrophils (B) or mononuclear cells (C) in BALF were counted in 

cytospin slides. Changes in body weight (D) were calculated with the weight before infection 

(day 0) as reference. The concentration of protein in BALF was measured to assess 

pulmonary edema (E). Viral load was determined in the lungs by titration (F). Data are shown 

as mean ± SEM. Each symbol in panels A-C, E, and F represents data of an individual 

mouse. *p<0.05 when compared with the healthy, unchallenged control group. #p<0.05 

when comparing treatment groups with the vehicle. ANOVA test followed by Bonferroni 

correction was used in the graphs with normal distribution. Otherwise, Kruskal-Wallis with 

Dunn's multiple comparisons test was used. n=6. 

Similar to what we did for S. aureus infection, we measured the cytokines 

associated with MHV-3 infection in both BALF and lungs. The cytokines/chemokines 

selected were also based on the report of Andrade et al (77): IL-6, IL-1β, CXCL1, 
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and CCL3 (Figure 35). Interestingly, the cytokine levels were not significantly 

elevated in BALF 3 days after the MHV-3 infection, though IL-6 levels tended to be 

higher in infected mice. Surprisingly, the treatment that started 12 h after the 

challenge, seemed to induce an increase in IL-6 (Figure 35A) and CXCL10 (Figure 

35C), compared to uninfected control animals, and IL-1β (Figure 35C), compared to 

mice that received vehicle. In contrast, IL-6 (Figure 35E), IL-1β (Figure 35F), and 

CCL3 (Figure 35H) levels were increased in the lungs when mice were infected with 

MHV-3, while CXCL10 (Figure 35G) was surprisingly reduced. Pretreatment (0h) 

with CXCL9(74-103) only attenuated the increase in IL-6 levels (Figure 35E) and 

both treatments prevented the increase of IL-1β levels in the lungs (Figure 35F). 
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Figure 35 – CXCL9(74-103) treatment does not affect the levels of cytokines in MHV-3 

infection. C57BL/6 mice were infected with MHV-3 (3×103 PFU/mouse) or saline (Ctrl 

group) and dissected 3 days later. At the indicated times after the challenge, mice were 

treated with CXCL9(74-103). Levels of IL-6 (A), IL-1β (B), CXCL10 (C), and CCL3 (D) were 

measured in BALF by ELISA. Levels of IL-6 (E), IL-1β (F), CXCL10 (G), and CCL3 (H) were 

measured in the lungs by ELISA. Data are shown as mean ± SEM. Each symbol represents 

data of an individual mouse. *p< 0.05 when compared with the healthy, unchallenged control 

group. ANOVA test followed by Bonferroni correction was used in the graphs with normal 

distribution. Otherwise, Kruskal-Wallis with Dunn's multiple comparisons test was used. n=5-

6. 

Despite the rather modest cytokine production, the pulmonary mechanic 

functions were substantially impacted by the MHV-3 infection. All the parameters 

evaluated – lung elasticity (Figure 36A), lung volumes (Figure 36B), and airway flow 

(Figure 36C) – by the forced spirometry got significantly worse after the viral 

challenge. However, the pretreatment (0h) was effective to reverse them all to basal 

levels and prevent the pulmonary mechanical distress caused by MHV-3. Here, the 
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treatment starting immediately before the challenge was more effective than starting 

12 h after, in contrast with the observed in the other experiments. 

Lastly, the tissue damage was evaluated by histopathological analysis. As 

observed in Figure 37A, the MHV-3 infection caused a massive influx of leukocytes 

and the destruction of the airway walls, which can be directly related with the forced 

spirometry results. Nevertheless, in contrast to lung function measurements, the 

mice treated 12 h after the challenge displayed a significant improvement in the 

histopathological score and damage (Figure 37B, C), showing that this group has 

less intense and frequent tissue damage, while the 0h group did not have significant 

improvement when compared with the Vehicle group. 
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Figure 36 – CXCL9(74-103) treatment improves several parameters of lung function in 
MHV-3 infection. C57BL/6 mice were infected with MHV-3 (3×103 PFU/mouse) or saline 
(Ctrl group) and dissected 3 days later. Right before euthanasia, pulmonary mechanic 
functions were assessed. At the indicated times after the challenge, mice were treated with 
CXCL9(74-103). Invasive forced spirometry was performed to investigate functional 
modifications in pulmonary mechanics. The assessed parameters were (A) Lung elasticity 
represented by Peak of Compliance (Cpk), Lung Resistance (RI), and Dynamic Compliance 
Forced (Cdyn); (B) Lung volumes by Minute Volume (MV), Total Lung Capacity (TLC), 
Inspiratory Capacity (IC), and Tidal Volume (TV); (C) Airway flow by Tiffeneau-Pinelli index 
(FEV20/FVC) and Forced Expiratory Volume at 50 ms (FEV20). Data are shown as mean ± 
SEM. Each symbol represents data of an individual mouse. *p< 0.05 when compared with 
the healthy, unchallenged control group. #p<0.05 when comparing different time points with 
the vehicle. ANOVA test followed by Bonferroni correction was used in the graphs with 
normal distribution. Otherwise, Kruskal-Wallis with Dunn's multiple comparisons test was 
used. n=6. 
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Figure 37 – CXCL9(74-103) does not affect the tissue damage in MHV-3 infection. 
C57BL/6 mice were infected with MHV-3 (3×103 PFU/mouse) or saline (Ctrl group) and 
dissected 3 days later. At the indicated times after the challenge, mice were treated with 
CXCL9(74-103). (A) Representative hematoxylin and eosin-stained preparations of lung 
tissue from mice. Scale bar: 50 μm, as reported in the figure. (B) Histopathological score 
and (C) Contingency graph according to ranges of tissue damage (severe, intense, 
moderate, mild, and absent). Data are shown as mean ± SEM in panel B. *p< 0.05 when 
compared with the healthy, unchallenged control group. ANOVA test followed by Bonferroni 
correction was used in the graphs with normal distribution. Otherwise, Kruskal-Wallis with 
Dunn's multiple comparisons test was used. n=5-6. 
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4.4. Discussion 

GAGs function as structural elements, but also as cellular effectors, because 

they can act as signaling molecules or as regulators that control protein activity. 

Through interaction with proteins, such as growth factors, chemokines, and 

adhesion molecules, or their corresponding receptor complexes, GAGs have been 

shown to modulate a wide range of biological processes, including directional cell 

migration, regulation of enzymatic activities, extracellular matrix assembly, and 

receptor binding/signaling (376). These processes are relevant in different 

(patho)physiological processes, including cardiovascular disease (377), cancer 

(378), infectious diseases (379), inflammation (380), and wound healing (381). In the 

diapedesis process, the GAG-chemokine binding is essential, because it ensures 

the presentation of chemokines on the endothelial layer of blood vessels, creating a 

concentration gradient, and allowing the chemokine receptors from the recruited 

cells to bind to their respective chemokine. The latter interaction guides the activated 

leukocyte to the inflamed site (382). In addition, GAG binding often protects the 

chemokines from enzymatic degradation, increases their stability, and promotes 

their multimerization (120). 

GAGs have many pharmacological properties such as anti-inflammatory, anti-

viral, anti-angiogenesis, anti-neoplastic, and anti-metastatic effects (383). Based on 

that, several studies have been developed using GAGs or molecules that compete 

with GAGs for chemokine-binding as therapeutic targets. For instance, Hylan G-F 

20 provides significant pain relief in patients with knee osteoarthritis (384) and NOX-

A12 releases CXCL12 from stromal cell-surface–bound GAGs, neutralizing this 

chemokine interfering with cell migration in chronic lymphocytic leukemia (385). 

Thus, GAG-chemokine binding is a potential therapeutic target for the development 

of anti-inflammatory strategies, especially in the context of chronic non-resolving 

inflammation or hyperinflammation and autoimmune diseases (386). In our study, 

we used the chemokine-derived peptide CXCL9(74-103), which binds to GAGs, 

competing with the natural GAG-chemokine binding and, consequently, reducing the 

chemokine’s activity and the recruitment of neutrophils (131). 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/antiangiogenic-activity
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The timing of the application of neutrophil-targeting drugs is crucial. Hence, 

we performed kinetics experiments of the S. aureus pneumonia model, and we 

observed that the peak of inflammation in this model is around 12 h after the infection 

and the bacterial load in lung tissue and BALF is significantly reduced at 48 h (Figure 

29). Based on these results, we decided to treat the mice at 6 or 12 h after the 

bacterial challenge and perform the euthanasia at 24 h. The mice treated at 6 h had 

a higher bacterial load in BALF, demonstrating that the early recruitment of 

neutrophils is indispensable for the control of S. aureus infection. This is in 

accordance with Robertson et al, given that the depletion of neutrophils impaired the 

control of S. aureus infection and led to decreased rates of survival in a murine model 

of pneumonia (387).  

The treatment with drugs that inhibit the chemokine activity and the 

recruitment of neutrophils in infections has a complex timeline since these cells are 

essential for the clearance of the pathogen but might also be linked with excessive 

inflammation and tissue damage (366). The main outcome of the CXCL9(74-103) 

administration was a reduction in neutrophil accumulation in the lungs and in clinical 

severity score in both treated groups (Figure 30). This is in agreement with previous 

articles published by our group that showed that a reduction in neutrophil numbers 

was associated with less inflammation in murine models of gout (372), AIA (129), 

and K. pneumoniae-induced pneumonia (371).  

Despite the reduction in the number of neutrophils, CXCL9(74-103) treatment 

did not decrease levels of inflammatory cytokines, nor prevent tissue damage 

(quantitated with the histopathological score). In contrast with what was observed by 

Boff et al. in more than one study (129,371), the treatment with CXCL9(74-103) did 

not affect the levels of cytokines and chemokines in either BALF or lungs in our 

model. This fact is probably related with the complexity of the infection and the 

reminiscent inflammation, considering that the treatment did not deplete neutrophils 

completely and many inflammatory reactions were still ongoing. The same 

incoherence was observed in the lung function parameters, as only the lung elasticity 

was recovered by the peptide treatment 6 or 12 h after the challenge. Interestingly, 
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neutrophil elastase induces elastic fiber degradation and impair the elastic fiber 

assembly, resulting in loss of lung elasticity. Thus, the reduction of neutrophils is 

associated with the observed in the pulmonary function evaluation (388). In 

summary, CXCL9(74-103) is able to lessen the inflammation in pneumonia induced 

by S. aureus, but not all the inflammatory parameters are reduced by the peptide 

and, especially, the tissue damage was not reversed. This indicates that CXCL9(74-

103) alone is not effective in the treatment of this model of pneumonia and more 

studies should be performed to study combinations of this peptide with antibiotics or 

other anti-inflammatory drugs. 

Although neutrophils play a prominent role in bacterial infections, their role in 

viral infections is not fully explored and varies greatly depending on the virus. In 

pneumonia caused by the Influenza virus, for instance, neutrophils are extensively 

recruited and have a major role in pulmonary damage (389). In contrast, in 

Chikungunya virus infection, neutrophils and specifically NETs can capture and 

neutralize the virus, being essential for viral load control (390). In the case of SARS-

Cov-2 infections, neutrophils are also extensively present and, associated with a low 

count of lymphocytes, indicative for a poor prognosis in COVID-19 (391). Not much 

is known about the role of neutrophils in murine models of pneumonia induced by 

MHV-3. According to Andrade et al. (77), there is an increase in neutrophil 

accumulation in the lungs 3 days after the infection. Nevertheless, they are not the 

main accumulating cell type, representing approximately 15% of cells only. The 

same is observed using a mouse-adapted SARS-Cov model (392). Based on those 

reports, we euthanized the mice on day 3 and we indeed observed an increase of 

neutrophils in the vehicle group. Interestingly, the group treated 12 h after the 

infection had a significant decrease in total cells and neutrophils. This group also did 

not have increase of pulmonary edema when compared to the Ctrl group, suggesting 

that the inflammation and tissue damage was reduced after CXCL9(74-103) 

administration. Nonetheless, no reduction was observed in the cytokine and 

chemokine levels. Surprisingly, some cytokines in the BALF are even increased after 

the CXCL9(74-103) treatment, which does not match with available reports (371). 
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The infection with MHV-3 via nasal instillation causes mild lung inflammation 

and severe lung dysfunction. Here, we observed that pretreatment with CXCL9(74-

103) was able to reduce the loss of elasticity, the disturbance in the lung volumes, 

and the impairment of airway flow caused by the virus. Likewise, hACE2-transgenic 

mice infected with SARS-CoV-2 also had a decrease in inspiratory capacity and 

compliance and an increase in resistance (393). Histopathological analysis 

confirmed the positive impact of CXCL9(74-103) treatment. The mice treated with 

the peptide 12 h after the infection showed a partial reduction in the histopathological 

score and the frequency of intense and moderate tissue damage. The recovery of 

treated mice may be associated with the reduction in neutrophil recruitment, which 

has a major role in tissue damage and, consequently, lung dysfunction (394,395). In 

addition, we observed that for some parameters pretreatment was better, whereas 

for others the treatment starting at 12 h was more efficient. This fact demonstrates 

the complexity of this model. It also enlightens the need for more studies to further 

explore the role of neutrophils, to reveal the specific impact of GAG-binding peptides 

on cell recruitment and to further establish the relation between cell recruitment and 

disease outcome. 

There are several limitations in the use of MHV-3 to study pneumonia and, 

especially to study Sars-Cov-2-induced pathology. Due to its preference for the liver, 

MHV-3 causes a mild infection in the lungs and the infection time-course is very 

different from the one observed in COVID-19. In addition, despite the similarities 

shared by these viruses, there are differences between them that need to be 

addressed (396). Nevertheless, MHV-3 is an important tool to bring insights and 

elucidate some mechanisms that might be relevant in other contexts as well. Many 

therapeutic strategies for COVID-19 are being studied with the help of β-

coronaviruses, such as the programmed cell death protein 1 and its ligand (PD-1/PD-

L1) blockade (397) and the combination of Remdesivir and Ivermectin (398). 

In summary, we used two very different models of pneumonia to explore the 

benefits of the CXCL9(74-103) treatment. Each pathogen infects cells and spreads 

over time through a distinct mechanism. Neutrophils are essential for bacterial 
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clearance in pneumonia caused by S. aureus, but not in MHV-3. In a viral infection, 

neutrophils are also relevant, but mainly to propagate inflammation and recruit new 

cells. There is a significant variance in the time course and clinical manifestations of 

both infections as well. The effects of the S. aureus infection on the lungs manifest 

rapidly and systemic symptoms were observed in approximately 12 h, while MHV-3 

affects the lungs gradually and the peak of inflammation is around 3 days after the 

challenge. It is important to notice, however, that the amount of virus instilled is way 

smaller compared to the number of bacteria, since MHV-3 in higher numbers quickly 

infects the liver and the mice die due to liver failure (77). These differences are 

reflected in our results and should be taken into consideration when investigating the 

data. 

In general, we can conclude that CXCL9(74-103) has the potential to 

ameliorate the burden of pneumonia induced by S. aureus and MHV-3. However, 

more studies should be performed to find the ideal time points for the treatment of 

the inflammation without impairing infection control. Remarkably, MHV-3 induced 

tissue damage and lung dysfunction were greatly reverted by CXCL9(74-103) 

treatment and this might help in the search for COVID-19 treatments.  
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Leukocyte trafficking is a key factor in immunological responses and is tightly 

coordinated by chemokine signaling. Recent studies linked dysregulation in the 

chemokine system to the development of cancer and inflammatory illnesses. 

Therefore, chemokine receptors are currently being considered potential therapeutic 

targets. Approximately, 50 chemokine receptor-targeting medicines have been 

created in the last decades, but only three were fully approved in clinical trials (399): 

Maraviroc, a CCR5 antagonist with anti-HIV properties (400), Plerixafor, a CXCR4 

antagonist for non-Hodgkin’s lymphoma and multiple myeloma (401), and 

Mogamulizumab, an anti-CCR4 monoclonal antibody for treatment of T cell leukemia 

and lymphoma (402). In addition, other drugs are being developed and might be 

approved for clinical use in the following years, such as the CXCL12 inhibitor NOX-

A12 in the treatment of different types of cancer, such as brain and pancreatic cancer 

(385). Despite their significant potential, a limited number of drugs associated with 

chemokines were approved, and they are mostly related with HIV and cancer. Thus, 

much of this field is yet to be explored and new approaches should be used to further 

elucidate the chemokine signaling pathways and allow development of new 

medicines. 

In the present study, we used three different paths to study chemokines and 

chemokine receptors in the context of lung inflammation. First, we characterized the 

receptors expressed in lymphocytes in the period of resolution of inflammation 

induced by LPS, allowing the future application of specific inhibitors to further explore 

the role of these cells. Then, we focused on the role of a chemokine receptor, CCR2, 

in the inflammation profile of ARDS. Finally, we evaluated the therapeutic effects of 

a GAG-binding peptide, CXCL9(74-103), in models of pneumonia induced by S. 

aureus and MHV-3.  

The role of the different populations of lymphocytes in the resolution of 

inflammation is not fully uncovered. Since the general ablation of T and B cells did 

not affect the resolution of LPS-induced ARDS seen in RAG2-deficient mice, we 

decided to try and identify subpopulations of lymphocytes based on their chemokine 

receptor expression pattern. We reasoned that this information would allow us 
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thereafter to block a specific chemokine receptor to evaluate whether the 

corresponding lymphocyte subpopulation is involved in the resolution of ARDS. As 

the main receptor expressed by lymphocytes in the resolution phase, CXCR3 is a 

potential therapeutic target. By its inhibition, CXCR3 has been proven important for 

the progression of apical periodontitis (403), inflammatory fibrosing diseases (404), 

autoimmune diseases and graft rejection (405), airway hyperresponsiveness and 

inflammation (406), to name a few conditions. In general, CXCR3+ lymphocytes are 

important for the development of inflammation. However, in our model, we observed 

the enhancement of these cells in later time points but not at the peak of 

inflammation. Therefore, we still aim to further elucidate the role of CXCR3+ 

lymphocytes in the resolution of LPS-induced ARDS. 

CCR2 is a crucial receptor in monocyte recruitment and activation by the 

recognition of its high-affinity ligand CCL2 (317,318). Using CCR2-deficient mice, 

we unraveled that the development and resolution of ARDS driven by LPS do not 

require CCR2. Even though the development of the disease was not affected, we 

observed different patterns of cell recruitment, particularly in the early stages of the 

inflammation in the absence of CCR2. Similarly, the resolution of inflammation was 

not impaired by the lack of CCR2, but different populations of macrophages were 

observed in the lungs. Therefore, the initial neutrophil recruitment and later AM 

proliferation balance out the absence of monocyte recruitment. The plasticity of AM 

is very relevant in lung inflammation because they patrol the alveolar epithelium and 

eliminate pathogens, but also exert different anti-inflammatory and pro-resolving 

functions (407). 

Next, we investigated the effects of the CXCL9(74-103) therapy using two 

distinct models of pneumonia. In general, the treatment reduced the accumulation 

of neutrophils in the lungs, leading to different outcomes according to the causative 

pathogen. In the S. aureus-induced pneumonia, the clinical severity score and 

parameters of lung elasticity were improved after CXCL9(74-103) treatment 6 or 12 

h post-infection. However, lung histopathologic damage and other parameters of 

lung dysfunction were not affected by the peptide. Importantly, the treatment with 

CXCL9(74-103) 12 h after the infection did not increase the bacterial load, being the 
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most appropriate treatment time evaluated in this study. The ambiguous results 

observed in this model are probably related to the difficult decision regarding timing 

the therapy and the balance between the beneficial and harmful roles of neutrophils 

in bacterial infections. The struggle to find this balance is commonly observed in the 

literature (366). For instance, the treatment with Kineret, an IL-1 receptor antagonist 

(IL-1Ra), affects the IL-1/IL-8 signaling cascade but leads to an increase in the 

bacterial burden in the lungs (408). Another example is the treatment of septic 

arthritis with DF2156A, a non-competitive antagonist of chemokine receptors 

important in the recruitment of neutrophils: CXCR1/2. According to Boff et al., the 

early treatment with DF2156A led to an increase in bacterial load, while the later 

treatment prevented the increase in bacterial load, and reduced the local 

nociception, but did not improve tissue damage (409). In contrast, in MHV-3 induced 

pneumonia, the role of neutrophils is mainly to extent inflammation and induce the 

recruitment of new cells, instead of actively controlling the virus. Here, besides 

reducing neutrophil accumulation, CXCL9(74-103) treatment partially prevented 

weight loss and lung dysfunction and did not increase the viral load in the lungs. 

Therefore, the reduction in neutrophil recruitment in this model might be beneficial 

and should be explored. Several studies show that excessive neutrophil numbers or 

neutrophil products are associated with disease severity and tissue damage. For 

instance, neutrophils recruited to the lungs in COVID-19, by producing excessive 

ROS, might spread a local inflammatory response turning it systemic and more 

severe (410). In addition, the use of Baricitinib, a JAK1/JAK2 inhibitor, induced a 

reduction in lung infiltration by inflammatory cells, including neutrophils, and, 

consequently, controlled lung pathology in a model of COVID-19 (411). Similarly, 

neutrophil-predominant immune responses are associated with worse outcomes in 

influenza infections (412). Reparixin, a CXCL8 inhibitor targeting its two receptors 

CXCR1/2, has been tested in a Phase II clinical trial to improve the outcome of a 

severe COVID-19 infection. The results of the study were encouraging but should 

be confirmed in a large Phase III trial (413). 

The complexity of lung diseases and the chemokine system implies the 

necessity of more studies linking the two fields and exploring their particularities. In 
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summary, the present study showed the different roles of chemokines and 

chemokine receptors and paved the way for the development of new therapeutic 

options for lung inflammation. As observed in Figure 38, we can conclude that 

CXCR3+ and CXCR6+ are the most frequent chemokine receptors expressed by 

lymphocytes in the resolution phase (A), CCR2 is not essential for LPS-induced 

ARDS but its absence changes the profile of cells recruited to the lungs (B), and 

CXCL9(74-103) treatment has beneficial effects in pneumonia models, especially on 

breathing parameters and lung damage inflicted by infection with MHV-3 (C). 
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Figure 38 – Conclusion  
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Supplementary materials 

Table S1 – Antibodies used in the flow cytometry experiments 

Panel Laser Fluorochrome Marker Antibody clone Company 
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) BLUE FITC CD3 145-2C11 eBioscience 

BLUE PerCP-Cy5.5 CD8 53-6.7 eBioscience 

YG PE CXCR3 CXCR3-173 Biolegend 

RED APC-eFluor780 CD4 RM4-5 eBioscience 

RED APC CD49b DX5 eBioscience 

VIOLET BV786 B220 RA3-6B2 BD Biosciences 

UV eFluor 450 CD45 30-F11 eBioscience 

VIOLET Zombie Aqua Live/dead - Biolegend 
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C
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2
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BLUE Alexa fluor 488 GATA-3 TWAJ eBioscience 

YG PE T-bet 4B10 eBioscience 

RED APC 
Mouse lineage 

cocktail  
- BD Biosciences 

RED APC-e780 CD4 RM4-5 eBioscience 

VIOLET BV786 ROR-γt Q31-378 BD Biosciences 

VIOLET BV650 CD90.2 30-H12 BD Biosciences 

UV BUV395 CD3 145-2C11 BD Biosciences 

VIOLET Zombie Aqua Live dead - Biolegend 

C
h

e
m

o
k
in

e
 r

e
c
e

p
to

rs
 (

C
h

a
p
te

r 

2
) 

BLUE FITC CD3 145-2C11 eBioscience 

BLUE PerCP-Cy5.5 CD8 53-6.7 eBioscience 

YG PE CD194 (CCR4) 2G12 Biolegend 

YG PE-Cy7 CD195 (CCR5) HM-CCR5 Biolegend 

RED APC-eFluor780 CD4 RM4-5 eBioscience 

VIOLET BV421 CD193 (CCR3) J073E5 Biolegend 

VIOLET BV711 CD186 (CXCR6) SA051D1 Biolegend 

UV BUV395 CD45 30-F11 BD Biosciences 

VIOLET Zombie Aqua Live/dead - Biolegend 
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BLUE PerCP-eFluor 710 CD103 2E7 eBioscience 

YG PE-Cy7 CD11c N418 Biolegend 

YG PE CD64 X54-5/7.1 Biolegend 

YG PE-CF594 SiglecF E50-2440 BD Biosciences 

RED Alexa Fluor 647 CD206 MMR Biolegend 

RED Alexa Fluor 700 Ly6G 1A8 BD Biosciences 

RED APC-Cy7 Ly6C AL-21 BD Biosciences 

VIOLET eFluor 450 CD11b M1/70 eBioscience 

VIOLET Horizon v500 MHCII M5/114.15.2 BD Biosciences 
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Figure S1. Gating Strategies  

Samples were analyzed in the Flow Jo V10 software and gated as follows. 
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c. Chemokine receptors panel 
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d. Myeloid panel 
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g. Ki-67 panel 
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Table S2. Clinical Score parameters (369) 
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A B S T R A C T   

Macrophages are a heterogeneous population of myeloid cells with phenotype and function modulated according 
to the microenvironment in which they are found. The lung resident macrophages known as Alveolar Macro
phages (AM) and Interstitial Macrophages (IM) are localized in two different compartments. During lung ho
meostasis, macrophages can remove inhaled particulates, cellular debris and contribute to some metabolic 
processes. Macrophages may assume a pro-inflammatory phenotype after being classically activated (M1) or anti- 
inflammatory when being alternatively activated (M2). M1 and M2 have different transcription profiles and act 
by eliminating bacteria, viruses and fungi from the host or repairing the damage triggered by inflammation, 
respectively. Nevertheless, macrophages also may contribute to lung damage during persistent inflammation or 
continuous exposure to antigens. In this review, we discuss the origin and function of pulmonary macrophages in 
the context of homeostasis, infectious and non-infectious lung diseases.   

1. Introduction 

Macrophages can reside in different organs and play a role in tissue 
homeostasis (Mosser et al., 2021). In the lungs, macrophages are crucial 
to the organ development, maintenance of homeostasis, tissue repair 
and the balance between immune cell defence against invaders and 
tolerance to non-inflammatory stimuli (Hou et al., 2021). Macrophages 
are the primary immune sentinels and protect the lung by phagocyting 
inhaled particulate, pathogens, surfactant, apoptotic cells, and cell 
debris (Holt et al., 2008). They initiate the inflammatory response, for 
instance producing pro-inflammatory cytokines and leading to cell 
recruitment, but, on the other hand, these cells are also central in the 
resolution of inflammation by producing anti-inflammatory cytokines 
and engulfing apoptotic cells (Byrne et al., 2015; Cheng et al., 2021). In 
this review, we will briefly discuss the origin of macrophages and their 
role in the lung during infections and non-infectious inflammation. 

2. Macrophage source and function in the lung 

2.1. Macrophage origin and ontogeny 

Macrophages are the first immune cells to appear during the early 

stages of embryonic development and can be found in all organs of the 
body (Gordon and Plüddemann, 2017; Guilliams and Svedberg, 2021). 
In mice and more recently in humans, it has been shown that macro
phages arise from three hematopoietic waves (Bertrand et al., 2005; 
Bian et al., 2020). The first, named primitive, occurs in the 
extra-embryonic yolk sac around embryonic days 6.5–8.5 (E6.5/E8.5). 
In this phase, primitive progenitors give rise to mature macrophages that 
seed all fetal tissues without going through a monocytic intermediate 
(Cox et al., 2021; Stremmel et al., 2018). The second wave, named 
pro-definitive, occurs in the hemogenic endothelium in the yolk sac 
vasculature and gives rise to erythroid and myeloid progenitors (EMPs) 
between E8.5 and E10.5. EMPs then colonize the fetal liver, from where 
they sustain hematopoiesis until birth and also differentiate into fetal 
monocytes (Li et al., 2020; Wu and Hirschi, 2021). The third wave, 
named definitive, starts at E10.5 from the aorta–gonad–mesonephros 
region (AGM) of the yolk sac and gives rise to hematopoietic stem cells 
(HSC). HSCs migrate and colonize the fetal liver where they form a long 
lived pool that will last until adulthood (Wu and Hirschi, 2021). Around 
E17.5 HSCs migrate and colonize the fetal bone marrow where they 
remain throughout adulthood generating all blood cell lineages (Gomez 
Perdiguero et al., 2015; Mass et al., 2016). 

In the lungs, macrophages reside in different anatomical 
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compartments and can be divided into two different populations: alve
olar and interstitial. The alveolar macrophages (AM) are located in the 
lumen of the alveoli, while the interstitial macrophages (IM) are located 
between the lung epithelium and the capillaries (Evren et al., 2020; 
Kulikauskaite and Wack, 2020) (Fig. 1). In mice, AM are originated from 
fetal liver monocytes (Evren et al., 2020; Guilliams et al., 2013; Yao 
et al., 2020). Their differentiation into mature AM after birth requires 
granulocyte macrophage colony-stimulating factor (GM-CSF) and 
transforming growth factor-β (TGF-β) (Shibata et al., 2001; Yu et al., 
2017). IM are present in the lungs before birth, originated from yolk sac 
progenitors and in adulthood replaced by circulating monocytes 
(Liegeois et al., 2018; Schyns et al., 2019). Recently, two distinct 
monocyte derived resident tissue macrophage were described residing 
either next to nerve bundles and fibers or next to blood vessels (Cha
karov et al., 2019). In humans, the origin of the lung resident macro
phages is not fully understood. However, an ongoing recruitment of 
peripheral monocytes into the airways was described with aging and 
after lung transplantation suggesting that majority of AM may arise from 
circulating monocytes (Byrne et al., 2020; Eguíluz-Gracia et al., 2016). A 
recent study using a humanized mouse corroborates that hypothesis by 
identifying blood monocytes as circulating precursors of lung tissue 
monocytes as well as interstitial and alveolar macrophages (Evren et al., 
2021). 

2.2. Macrophage during homeostasis 

Given the lung is continuously exposed to outside environment 
during respiration, several factors can control and modify macrophages 
transcriptional genes and consequently influence their phenotype and 
function (Hussell and Bell, 2014). Macrophages are plastic cells that can 
adapt on demand changing their physiology in response a different 
stimulus. Although too simplistic and mostly based on in vitro experi
ments, macrophages can be classified into distinct phenotypes in anal
ogy of Th1 and Th2 responses called classically activated macrophage 
(M1) and alternative activated macrophage (M2). M1 macrophage in 
response to interferon-γ, display a pro-inflammatory phenotype, which 
favors pathogen destruction via production of pro-inflammatory cyto
kines and reactive oxygen species. Whereas M2 macrophages arise in 
response to interleukin (IL)-4 and IL-10, represent a more diverse 
phenotype presenting anti-inflammatory responses. Studies have 
described different M2 subsets such as M2a involved in wound healing, 
M2b involved in immunoregulation, M2c involved in tissue remodeling 
and recently was described M2d a tumor associated macrophages (TAM) 
which is involved in tumor progression (Abdelaziz et al., 2020; Mosser 
and Edwards, 2008; Yunna et al., 2020). Moreover, many of these 
macrophage status rely on metabolic reprogramming which have major 
implications for macrophage mediated immune response in pulmonary 

tissue (Ogger and Byrne, 2021; Viola et al., 2019). 
During homeostasis, as a general role of macrophages from different 

tissues is the clearance process that remove cellular debris (Zent and 
Elliott, 2017) and the metabolic contribution by recycling iron and heme 
required for hemoglobin synthesis by ingesting blood cells (Allard et al., 
2018; Soares and Hamza, 2016). It is important to highlight that these 
phagocytic activity do not depend on any other immune cell or immune 
signaling, therefore, homeostatic macrophage role is not just based on 
the effector immune function (Mosser and Edwards, 2008). 

In the lungs, AM are the most abundant innate immune cells located 
in the alveolar space (Holt et al., 2008). They are responsible for 
modulate the immune response by avoiding unnecessary inflammation 
(Allard et al., 2018; Thepen et al., 1991). AM are the first cells that 
phagocyte inhaled particulate matter and can capture and transport 
antigens to the draining lymph nodes (Kirby et al., 2009). However, 
these resident cells are not effective in presenting antigens to T cells, due 
to their low expression of costimulatory molecules (Blumenthal et al., 
2001; Chelen et al., 1995), which is beneficial to promote tolerance 
response. AM are essential to lung homeostasis since they maintain lung 
biomechanics by capturing and metabolizing surfactants. Surfactants 
contain a mixture of lipid and protein that sits in the alveolar space 
lowering surface tension to avoid the alveolar collapse (Lopez-Rodriguez 
et al., 2017). Malfunction of AM characterized by accumulation of lipid 
and protein on the alveolar space leads to respiratory failure (Agudelo 
et al., 2020; Trapnell et al., 2003). 

Compared to the AM, IM are not so abundant in the lungs and have 
lower phagocytic potential. Despite that, IM can phagocyte pathogens 
and particles, therefore being considered as a second line of defence 
against invaders (Bedoret et al., 2009; Fathi et al., 2001; Gibbings et al., 
2017; Liegeois et al., 2018; Schyns et al., 2018). Moreover, IM were 
shown to be morphologically smaller and presents higher HLA-DR 
expression than AM (Hoppstädter et al., 2010). In the steady state IM 
have immunoregulatory properties due to the baseline production of 
anti-inflammatory and regulatory cytokines including IL-10, IL-1ra and 
IL-6 (Hoppstädter et al., 2010; Kawano et al., 2016; Sabatel et al., 2017). 

3. Macrophage and disease 

3.1. Macrophage response during non-infectious inflammation 

Several diseases can result from non-infectious stimuli, such as COPD 
(Byrne et al., 2015; Cheng et al., 2021), asthma, silicosis, and asbestosis 
(Laskin et al., 2019). The different types of macrophages, their func
tions, and their relevance in some diseases and in the steady state are 
shown in the Table 1. As previously mentioned, AM are the first line of 
defense against xenobiotics, and particles, they can recognize and 
phagocytose them, and secrete a myriad of mediators to recruit and 

Fig. 1. Distribution of residential macrophages in the lungs. Alveolar macrophages are in the alveolus while interstitial macrophages reside in the interstitium.  
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Table 1 
Different types of pulmonary macrophage.    

Steady 
state 

Relevance in non-infectious diseases Relevance in infectious diseases 

Macrophage Function COPD Asthma/allergy Silicosis Asbestosis Cancer Gram-pos bacteria 
(Mycobacterium 
tuberculosis 

Gram-neg 
bacteria 

Virus Fungi 

Resident mØ AM: Strategically located at the interface of 
airways and environment, they are sentinels 
of barrier immunity. They are prenatally 
derived and self-maintain during steady 
state. They sustain a naturally 
hyporesponsive state in the steady state but 
can effectively respond under inflammatory 
stimulus. 
IM: IM are the macrophages located in the 
lung tissue interstitium. They are 
considered the second line defense against 
invading microorganism.They do not have 
ability to proliferate being replaced by 
circulating monocytes. The most studied 
function of IM is related to their 
immunoregulatory properties, such as the 
production of IL-10. 

++++

(Neupane 
et al., 
2020) 

+++

(Barnes, 
2004; 
Pappas 
et al., 2013) 

+++

(Draijer and 
Peters-Golden, 
2017) 

+++

(Hamilton 
et al., 2007) 

+++

(He et al., 
2019; 
Nishimura 
et al., 2013)  

+++

(Neupane et al., 
2020; Pieters, 
2008) 

+++

(Neupane 
et al., 
2020) 

+++

(Wang et al., 
2012) 

+++

(Li 
et al., 
2019) 

Inflammatory 
mØ 

Also known as classically activated or M1, 
the inflammatory macrophages have a 
crucial role in the defense against pathogens 
and in the polarization of T CD4 cells 
towards a Th1 profile. This population of 
macrophages is a key player in the 
inflammation since they produce and 
release several pro-inflammatory mediators 
and activate NADPH oxidase system.  

++

(Yamasaki 
and Van 
Eeden, 
2018) 

+

(Saradna et al., 
2018b) 

+

(Zhao et al., 
2020)   

+++

(Le et al., 2020) 
+++

(Demon 
et al., 
2014) 

+++

(Nyman and 
Matikainen, 
2018)  

Reparative 
mØ 

Also known as alternatively activated or 
M2, the reparative macrophages have a 
crucial role in the wound healing and tissue 
repair, fibrosis development, and 
immunoregulation. This population of 
macrophages is able to remove cellular 
debris, and apoptotic cells after tissue 
injury, and also express suppressor 
receptors (such as PD-L1), avoiding the 
further propagation of the inflammation 
and controlling the immune system. Besides 
that, they produce and release growth 
factors (such as TGF-β) and anti- 
inflammatory mediators (such as IL-10), 
promoting regeneration, fibrosis, and 
resolution of inflammation.  

++

(Yamasaki 
and Van 
Eede, 2018) 

+++

(Pappas et al., 
2013; Saradna 
et al., 2018a) 

++

(Sharan 
Tripathi 
et al., 2010) 

+++

(Gu et al., 
2017; He 
et al., 2013) 

+++

(Belgiovine 
et al., 2016; 
Yeung et al., 
2015) 

++

(Le et al., 2020)    

TAM The tumour associated macrophages have 
protumour functions, leading to its growth 
and maintenance.      

++++

(Belgiovine 
et al., 2016; 
Komohara 
et al., 2016)      
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activate other cells such as neutrophils and monocytes. 
In silicosis, for instance, the silica particles are engulfed by the AM 

through a class A scavenger receptor (Hamilton et al., 2006). However, 
the phagocytosed particles are indigestible hence causing lysosomal 
membrane damage and allowing the leaking of enzymes in the cyto
plasm, which leads to the apoptosis of AM and the further propagation of 
the inflammation. In summary, the silica particles phagocytosis results 
in the release of several mediators that will induce a strong inflamma
tory response (Liu et al., 2016; Song et al., 2014). The development of 
excessive inflammation and tissue damage leads to a subsequent pro
gression to pulmonary fibrosis (Liu et al., 2017; Tan and Chen, 2021; 
Wang et al., 2006). It is important to highlight that macrophages con
tributes to fibrosis through all phases of tissue injury and repair sup
porting fibrogenesis and fibrolysis depending on the local tissue 
environment that can drive macrophage response (Lech and Anders, 
2013). 

Furthermore, the emphysema observed in cigarette smoke–induced 
COPD in mice is also related with AM activity (Iizuka et al., 2005; 
Wallace et al., 2009). Mice exposed to cigarette smoke showed increased 
number of AM, which presented morphology and phenotypic change 
that could be restored by smoking cessation (Lugg et al., 2021). More
over, AM secrete metalloproteases such as MMP-9 and MMP-12, leading 
to destruction of the lung parenchyma resulting in emphysema (Gru
melli et al., 2004). MMP-12 is also important in the activation of elastin 
peptides that perpetuates inflammatory responses, particularly IL-17A 
driven processes (Houghton et al., 2006; Rønnow et al., 2019; Zhou 
et al., 2020). 

As previously described, IM are also important in the lung inflam
mation. The production of IL-6 and TNF-α in human and mice have 
remarkable regulatory properties together with the secretion of IL-10 in 
response to lipopolysaccharide (LPS) and DNA containing non- 
methylated CpG motifs (CpG-DNA), for instance (Liegeois et al., 
2018). In addition, the production of IL-10 by IM inhibits the maturation 
and migration of dendritic cells (DC) to the lung leading to the reduction 
of the excessive endotoxin and antigen-induced airway allergic response 
in mice (Bedoret et al., 2009; Toussaint et al., 2013). Although all the 
current findings, the functions of IM are not yet completely covered and 
remain to be investigated (Schyns et al., 2018). 

The M1, release several pro-inflammatory mediators and activate the 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system 
releasing high levels of reactive oxygen species (ROS), which is crucial 
to the development of silica induced inflammation and fibrosis (Cas
tranova, 2004; Fubini and Hubbard, 2003; Locati et al., 2013; Murray, 
2017; Wang et al., 2014). Nevertheless, increased oxidative stress im
pairs macrophage phagocytosis and efferocytosis ability through mito
chondrial dysfunction in COPD alveolar macrophages (Belchamber 
et al., 2019; Eapen et al., 2019). Even though, M1 and M2 macrophages 
have been found in these patients. Cigarette smoke induce M1 polari
zation by increased inducible nitric oxide synthase (iNOS) expression 
and upregulation of pro-inflammatory cytokines contributing to devel
opment of COPD. M2 phenotype are abundant in BALF of COPD patients 
which is involved with MMP12 and TGF-β production, crucial for 
emphysema and fibrosis development (Eapen et al., 2017; Kaku et al., 
2014; Lee et al., 2021; Li et al., 2015). In allergic diseases, such as 
asthma, eosinophils can induce the polarization of M2 that have an 
important role in the disease development, affecting airway inflamma
tion, remodeling, mucus hypersecretion and altered lung function 
(Athari, 2019; Lee et al., 2021; Makita et al., 2015). IL-33 derived from 
airway epithelial cells also induce M2 macrophages, which sustain a Th2 
response in allergic asthma (Lee et al., 2021). 

3.2. Macrophage response during infections 

In the context of infectious lung diseases, AM sense the presence of 
fungi, viruses, parasites, and bacteria. They recognize pathogen com
ponents (PAMPs-pathogen associated molecular patterns) through their 

pattern recognition receptors (PRRs) (Vance et al., 2009) such as 
Toll-like receptors (TLRs 2, 3, 4, 7/8, and 9) and retinoic acid-inducible 
gene-I-like receptors (RLRs), among others (Rehwinkel et al., 2010; 
Wang et al., 2008). The activation of AM results in increased concen
trations of pro-inflammatory cytokines and chemokines, such as TNF-α, 
IL-1β, IL-6, IFN-γ, CXCL1/KC and CCL2/MCP-1 associated with a M1 
phenotype and antimicrobial response (Julkunen et al., 2001; Kirby 
et al., 2005). During infection AM can also polarize to M2 phenotype 
with low antimicrobial activity and more anti-inflammatory response 
secreting large amounts of IL-10, CCL17, CCL22, CCL24, and low levels 
of IL-12 (Divangahi et al., 2015), which can represent a permissive niche 
for persistence of pathogens. The polarization into M2 can be driven by 
alarmins (IL-33, IL-25, TLSP) derived from damaged epithelial cells and 
also by the pathogen itself decreasing immune surveillance (Allard et al., 
2018). 

AMs can play a dual role during bacterial pneumonia. AM are 
required to eliminate for example Streptococcus pneumoniae, Staphylo
coccus aureus and Klebsiella pneumoniae since the depletion of these cells 
in vivo increases lung bacterial load and enhance mortality (Gonza
lez-Ferrer et al., 2021; Pidwill et al., 2021). However, infections with 
intracellular bacteria such as Mycobacterium tuberculosis and Bordetella 
pertussis, macrophages play a detrimental role. In these infections, AM 
polarize to M2 phenotype and can provide a niche for bacterial growth 
(Corleis and Dorhoi, 2020; Kelly and McLoughlin, 2020). 

When it comes to viral infections, macrophages can recognize viral 
proteins and genome triggering antiviral response which can limit viral 
replication and spread. Influenza A infection induce early interferon 
response and increased production of pro-inflammatory cytokines and 
chemokines by AM, despite their failure in release infectious virus 
(Wang et al., 2012). Although AM do not recognise the SARS-CoV-2 
(Dalskov et al., 2020), macrophages recruited to the airways during 
viral infection exacerbate inflammation, which is associated with cyto
kine storm and respiratory distress syndrome during SARS-CoV-2 
infection (Gracia-Hernandez et al., 2020). 

During fungal infections, such as Aspergillus fumigatus, Para
coccidioides brasiliensis and Cryptococcus neoformans, AM and infiltrated 
macrophage are responsible to recognize, phagocyte and destroy those 
pathogens via enzymatic digestion and production of ROS and RNS 
(Bartemes and Kita, 2018; Morais et al., 2016; Wager and Wormley, 
2014; Williams et al., 2016). Despite macrophages ability to eliminate 
infections, some fungi can adapt and resist to immune response through 
mechanisms that reduce chemotaxis, inhibit phagocytosis, resist the 
microbicide effect and escape from phagolysosomes (Gilbert et al., 
2015). 

Macrophages contribute to resistance and susceptibility to in
fections. Some pathogens have developed complex strategies to evade 
immune response. Some general mechanism shared between them 
include: evasion of cell recognition by modification of surface compo
nents; modulation or suppression of macrophage function by evasion of 
phagocytosis; changes in cell metabolism; induction or inhibition of 
apoptosis and by directly kill the cell (Leseigneur et al., 2020; Netea 
et al., 2020; Thakur et al., 2019). 

4. Conclusion and future directions 

Macrophages have protective and pathogenic functions in different 
chronic and acute diseases, whether infectious or non-infectious, in the 
lung. It has been shown that changes in the differentiation, polarization, 
repolarization, and activation of macrophages in the lung can play a 
decisive role in the pathogenesis of a wide variety of inflammatory 
diseases presented in this review (Fig. 2). Due to their large importance, 
these cells are widely studied, although there are numerous questions 
remaining. One of the important field that need to be explored is the 
trained immunity. The mechanisms of how trained immunity can be 
induced and mediate macrophages response in the disease as well as 
how trained immunity can help to design new therapeutic approach 
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(Netea et al., 2020) need to be better investigate. Another attractive 
approach is the macrophage cell based immunotherapy where trans
plantation of macrophage into the lung can improve disease symptoms 
(Happle et al., 2014), suggesting an outstanding advancement with 
immunotherapy. Finally, macrophage plasticity represents a great op
portunity to generate new therapeutics strategy. 
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Abstract: Acute respiratory distress syndrome (ARDS) consists of uncontrolled inflammation that
causes hypoxemia and reduced lung compliance. Since it is a complex process, not all details have
been elucidated yet. In a well-controlled experimental murine model of lipopolysaccharide (LPS)-
induced ARDS, the activity and viability of macrophages and neutrophils dictate the beginning and
end phases of lung inflammation. C-C chemokine receptor type 2 (CCR2) is a critical chemokine
receptor that mediates monocyte/macrophage activation and recruitment to the tissues. Here, we
used CCR2-deficient mice to explore mechanisms that control lung inflammation in LPS-induced
ARDS. CCR2−/− mice presented higher total numbers of pulmonary leukocytes at the peak of
inflammation as compared to CCR2+/+ mice, mainly by enhanced influx of neutrophils, whereas
we observed two to six-fold lower monocyte or interstitial macrophage numbers in the CCR2−/−.
Nevertheless, the time needed to control the inflammation was comparable between CCR2+/+ and
CCR2−/−. Interestingly, CCR2−/− mice presented higher numbers and increased proliferative rates
of alveolar macrophages from day 3, with a more pronounced M2 profile, associated with transform-
ing growth factor (TGF)-β and C-C chemokine ligand (CCL)22 production, decreased inducible nitric
oxide synthase (Nos2), interleukin (IL)-1β and IL-12b mRNA expression and increased mannose receptor
type 1 (Mrc1) mRNA and CD206 protein expression. Depletion of alveolar macrophages significantly
delayed recovery from the inflammatory insult. Thus, our work shows that the lower number of
infiltrating monocytes in CCR2−/− is partially compensated by increased proliferation of resident
alveolar macrophages during the inflammation control of experimental ARDS.

Keywords: ARDS; lung inflammation; CCR2; chemokine; resolution of inflammation; monocytes;
immunology

1. Introduction

Acute respiratory distress syndrome (ARDS) was first described in 1967 [1] and is
defined as noncardiogenic pulmonary edema leading to a respiratory failure with diffuse
bilateral pulmonary infiltrate and tissue injury, besides severe hypoxemia [2]. The patho-
genesis of ARDS includes the dysfunction of the alveolar-capillary membrane, leading to
excessive transendothelial and transepithelial leukocyte migration and the influx of protein-
rich edema fluid into the alveolar space. The inflammation is worsened by the release of
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several pro-inflammatory mediators that can also be cytotoxic, increasing the destruction of
the membrane and diffuse tissue damage [3–5]. ARDS is caused by pulmonary or systemic
inflammation following gastric aspiration, pneumonia, COVID-19, sepsis and trauma [6].
Due to the diverse causes and complex pathogenesis, ARDS treatment is also unspecific,
poorly described, and considered an important unmet medical need [7,8]. In addition
to the high rates of morbidity and mortality, ARDS has a great impact on the quality of
life of patients requiring a better understanding of their pathogenesis and new treatment
options [9,10].

The acute inflammatory response consists of an intricate but well-coordinated chain of
actions that involves molecular, cellular, and physiological changes [11]. The recognition
of the initial insults by lung resident cells causes the production and release of a plethora
of mediators that trigger several inflammatory events. Among the cells involved in the
different phases of inflammation, the alveolar macrophages (AM) are crucial. Being the
most abundant innate immune cell in the alveolar spaces of the lungs [12], AM are the first
line of defense against infections and invaders, recognizing pathogen-associated molecular
patterns, such as LPS from Gram-negative bacteria. They are able to phagocytose and
eliminate these pathogens and release pro-inflammatory cytokines to induce immune cell
recruitment and the development of the inflammation [13]. Additionally, AM are very
important in the late stages of ARDS since the depletion of these cells has been linked with
decreased efferocytosis and lowered control of inflammation [14,15].

The release of several chemotactic factors leads to a broad recruitment of leukocytes
to the lung parenchyma and alveolar space, including polymorphonuclear (PMNs) and
mononuclear cells. CCR2 is an important chemokine receptor that plays a fundamen-
tal role in monocyte recruitment and activation by the recognition of its high-affinity
ligand CCL2 [16,17]. Initially, the early accumulation of monocytes, monocyte-derived
macrophages, and PMNs in the lungs determines local inflammation. Moreover, the ac-
tivation state and viability of these cells modulate the different phases of inflammation,
from the beginning to its resolution. The resolution of inflammation is essential to restore
the tissue to its physiological functioning after the damage caused by the foreign insult
and the inflammatory response. Impairment of this process may lead to an unresolved
inflammation, which lies beneath the pathogenesis of several chronic inflammatory dis-
ease processes [18]. While recruited CCR2+ monocytes have a crucial role in the onset of
inflammation, their presence in the tissue together with the recruitment of non-phlogistic
monocytes in later phases helps to control the inflammation. An important event that
causes the shift to the resolution of inflammation is the apoptosis of PMNs and their
subsequent engulfment by local macrophages. This phenomenon is called efferocytosis
and drives the differentiation of macrophages and their polarization into a pro-resolving
profile, stimulating the production and release of pro-resolving mediators that suppress
the progression of inflammation and promote tissue repair [19–21].

Various experimental models have been used to investigate the molecular mechanisms
of ARDS, with LPS-induced ARDS as one of the most common models [22]. An advantage
of this model is the possibility to investigate the mechanisms inherent to the different
phases of lung inflammation, from the early events to its resolution and tissue repair [23].
Here, we explored in this model the impact on lung inflammation of the CCL2–CCR2 axis
through the use of CCR2 knock-out mice, both at the early pro-inflammatory phase and
during the resolution of inflammation.

2. Results
2.1. Lack of CCR2 Modifies the Recruitment Profile of Monocytes and Neutrophils in Early Time
Points after LPS Instillation

Before studying the role of CCR2 in the model of LPS-induced ARDS, we evaluated
the levels of its ligand, CCL2, in the bronchoalveolar lavage fluid (BALF) of CCR2+/+ and
CCR2−/− mice and observed increased levels of this chemokine mainly on days 2 and
3 after the insult, but at remarkedly higher levels in CCR2−/− mice when compared to
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CCR2+/+ mice (Figure 1A). Next, we analyzed the differences in inflammatory profile in
lungs in both mice upon intranasal LPS challenge.
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Figure 1. CCR2 absence results in increased accumulation of neutrophils and decreased macrophage
numbers in the lungs without affecting changes in inflammation, pulmonary edema, or weight
loss. CCR2+/+ (black symbols) and CCR2−/− (red symbols) C57BL/6 mice were challenged with
LPS (12.5 µg/mouse) or PBS (ctrl group; -) and dissected at the indicated days. Levels of CCL2
(A) were measured in the BALF by ELISA. Absolute numbers of leukocytes in BALF (B) were counted
in Bürker chamber. Absolute numbers of neutrophils (CD45+Ly6G+CD11b+) (C) or macrophages
(CD45+CD11b+Ly6G−CD3−CD19− NKp46−CD103−SiglecF−CD11c− cells) (D) isolated from the
lungs and BALF were quantified by flow cytometry. Pulmonary edema was quantified based on the
protein concentration in the BALF (E). Changes in body weight (F) were calculated with the weight
before challenge (day 0) as reference. Compilation of three experiments. Data are shown as mean ±
SEM. Each symbol in panels A to E represents data of an individual mouse. * p < 0.05 when compared
with the healthy, unchallenged control group. # p < 0.05 when comparing wild type and knockout
group at the same time point. ANOVA test followed by Bonferroni correction was used in panel F;
Kruskal–Wallis with Dunn’s multiple comparisons test was used in panels A–E. n = 6–12.

Regarding the cell accumulation, leukocyte numbers increased on days 1 to 3 af-
ter LPS challenge, with higher total cell numbers in CCR2−/− mice, mostly neutrophils
(Figure 1B,C). In contrast, CCR2+/+ presented with a higher accumulation of macrophages
derived from monocytes in the first two time points as compared to CCR2-deficient mice
(Figure 1D). Interestingly, despite differences in the profile of cells accumulated in the lung
at days 1 to 3, both strains had comparable numbers of cells at later time points, when the
cell counts returned to the basal levels (from day four onwards). In order to evaluate the
impact of those differences in cell influx on lung pathology, we analyzed the total protein
concentration in BALF to quantify pulmonary edema, and the changes in body weight.
However, there were no differences in those parameters between CCR2+/+ and CCR2−/−
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mice during the whole period evaluated (Figure 1E,F), despite being clear that on the first
3 days after the challenge, both CCR2+/+ and CCR2−/− mice had protein leakage into the
alveolar space. Thus, we investigated other parameters to understand the impact of the
differing leukocyte profile in the lungs on tissue inflammation.

2.2. Cytokine Production in the Initial Phases of Inflammation Is Altered in the Absence of CCR2,
but Does Not Impact the Tissue Damage

Cytokines and chemokines were measured in BALF to better determine the inflam-
matory profile of this ARDS model in CCR2+/+ and CCR2−/− mice. IFN-γ and TNF-α are
important cytokines associated with tissue inflammation and damage caused by LPS. Both
cytokines are increased in CCR2+/+ mice, at day 2 after LPS insult for both and at day 3
only for IFN-γ (Figure 2A,B).
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Figure 2. CCR2 deficiency affects cytokine levels in the pro-inflammatory phase of the inflammation.
CCR2+/+ (black symbols) and CCR2−/− (red symbols) C57BL/6 mice were challenged with LPS
(12.5 µg/mouse) or PBS (ctrl group; -) intranasally and dissected at the indicated days. Levels of
IFN-γ (A), TNF-α (B), CXCL1 (C), and NGAL (D) were measured in the BALF by ELISA. Compilation
of three experiments. Data are shown as mean ± SEM. Each symbol represents data of an individual
mouse. * p < 0.05 when compared with the healthy, unchallenged control group. # p < 0.05 when
comparing wild type and knockout group at the same time point. ANOVA test followed by Bonferroni
correction was used in panel B; Kruskal–Wallis with Dunn’s multiple comparisons test was used in
panels A, C, and D. n = 4–12.

Of note, no increase in those cytokines was measured in CCR2-deficient mice at any of
the time points evaluated. However, the level of CXCL1, an important chemokine related
to neutrophil recruitment was increased in CCR2−/− mice already at day 1 (Figure 2C),
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which can explain the more pronounced accumulation of neutrophils in CCR2−/− mice
(Figure 1C) when compared to CCR2+/+ mice. Consequently, more neutrophil gelatinase-
associated lipocalin (NGAL), a protein released specifically by activated neutrophils, was
observed already very early in the absence of CCR2 (Figure 2D).

Despite the outspoken difference in cell accumulation and cytokine production, no
significant alterations were detected on histology. Compared to healthy mice, both CCR2+/+

and CCR2−/− mice presented higher histopathological scores at day 2 after LPS instillation,
as observed in Figure 3. At day 5 after the challenge, the histopathological score is reduced
for both mice, being comparable with the healthy control groups. Interestingly, CCR2+/+

and CCR2−/− have similar results at every time point evaluated, suggesting that, despite
the differences previously demonstrated at the peak of inflammation, the inflammatory
response is resolved within the same time frame in both strains.
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Figure 3. CCR2-deficiency does not influence the histopathological score in CCR2−/− compared to
CCR2+/+ mice. CCR2+/+ (black symbols) and CCR2−/− (red symbols) C57BL/6 mice were challenged
with LPS (12.5 µg/mouse) or PBS (ctrl group; -) and dissected after 2 or 5 days. (A) Representative
hematoxylin and eosin-stained preparations of lung tissue from mice. Scale bar: 50 µm, as reported
in the figure. (B) Histopathological score with ranges of tissue damage (severe, intense, moderate,
mild, or absent). Data are shown as mean ± SEM from one representative out of two independent
experiments. Each symbol represents data of an individual mouse. * p < 0.05 when compared with
the healthy, unchallenged control group (Kruskal–Wallis with Dunn’s multiple comparisons test).
n = 5.

2.3. The Profile of Monocytes/Macrophages Varies between CCR2+/+ and CCR2−/− Mice

CCR2 is an important receptor for monocyte recruitment in the early stages of tissue in-
flammation. The accumulation of these cells in lung tissue directly contributes to increased
inflammation, but the recruited cells also contribute to the end stages of inflammation, with
a crucial participation at the resolution of inflammation and in tissue repair [24]. Thus,
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we evaluated the profile of monocytes and macrophages at different time points after
LPS-induced ARDS.

As expected, the absence of CCR2 prevented vast accumulation of macrophages
(CD45+CD11b+Ly6G−SiglecF−CD3−NKp46−CD19−CD103−), inflammatory monocytes
(CD45+CD11b+SiglecF−Ly6G−CD3−NKp46−CD19−CD103−CD64+Ly6C+), and interstitial
macrophages (CD45+CD11b+SiglecF−Ly6G−CD3−NKp46−CD19−CD103−CD64+MHCII+) in
CCR2−/− mice when compared to CCR2+/+ mice at days 1 to 3 after the challenge (Figures 1D
and 4A,B). In contrast, the number of alveolar macrophages (CD45+SiglecF+CD11c+) was
significantly higher at days 3 and 4 in the CCR2-deficient mice compared to the CCR2+/+

mice, which rather maintained the same alveolar macrophage counts along the whole
duration of the experiment (Figure 4C).
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Figure 4. Largely reduced numbers of Ly6C+ monocytes and interstitial macrophages but in-
creased alveolar macrophage counts are observed in CCR2−/− compared to CCR2+/+ mice.
CCR2+/+ (black symbols) and CCR2−/− (red symbols) C57BL/6 mice were challenged with LPS
(12.5 µg/mouse) or PBS (ctrl group; -) and dissected at the indicated days. Absolute numbers of
Ly6C+ monocytes (CD45+CD11b+SiglecF−Ly6G−Dump−CD103−MHCII−Ly6C+ cells) (A) inter-
stitial macrophages (CD45+CD11b+SiglecF−Ly6G−Dump−CD103−MHCII+ cells) (B) and alveolar
macrophages (CD45+SiglecF+CD11c+ cells) (C) were quantified by flow cytometry. Compilation of
three experiments. Data are shown as mean ± SEM. Each symbol represents data of an individual
mouse. * p < 0.05 when compared with the healthy, unchallenged control group. # p < 0.05 when com-
paring wild type and knockout group at the same time point. ANOVA test followed by Bonferroni
correction was used in panels B and C; Kruskal–Wallis with Dunn’s multiple comparisons test was
used in panel A. n = 4–12.

Since there was a significant increase in the number of alveolar macrophages in the
CCR2-deficient mice, the proliferation of these cells was evaluated. Two different assays
were performed: the analysis of Ki-67 expression (Figure 5A,B) and the assessment of
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BrdU incorporation in the DNA (Figure 5C,D). Interestingly, the expression of Ki-67 in the
alveolar macrophages was enhanced, and more alveolar macrophages expressed Ki-67 at
3 days after LPS challenge. This effect was even more pronounced in the CCR2-deficient
mice. In the CCR2−/− group, more BrdU had been incorporated at 3 and 4 days after the
LPS challenge in the alveolar macrophages. These results indicate that the lack of CCR2
is linked to the increase in alveolar macrophage proliferation on days 3 and 4, timepoints
associated with the reduction of neutrophils and most likely the beginning of resolution of
inflammation.
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Figure 5. CCR2−/− mice show increased proliferation of alveolar macrophages. CCR2+/+ (black
symbols) and CCR2−/− (red symbols) C57BL/6 mice were challenged with LPS (12.5 µg/mouse) or
PBS (ctrl group; -) and dissected at the indicated days. (A) Absolute number of alveolar macrophages
expressing Ki-67 quantified by flow cytometry using the following markers: CD45+CD11c+SiglecF+Ki-
67+. (B) Mean fluorescence intensity (MFI) of Ki-67 in alveolar macrophages. (C) Absolute num-
ber of BrdU+ alveolar macrophages quantified by flow cytometry using the following markers:
CD45+CD11c+SiglecF+BrdU+. (D) Percentage of BrdU+ alveolar macrophages. Data are shown as
mean ± SEM from one representative out of two independent experiments. Each symbol represents
data of an individual mouse. * p < 0.05 when compared with the healthy, unchallenged control group
(ANOVA test followed by Bonferroni correction). # p < 0.05 when comparing wild type and knockout
group at the same time point (ANOVA test followed by Bonferroni correction). n = 3–5.

2.4. Alveolar Macrophages Can Be Associated with the Final Events of Tissue Inflammation and Its
Resolution in the Absence of CCR2

Different parameters are associated with the resolving phase of acute inflammation,
such as the polarization of macrophages to an M2 profile and the production of pro-
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resolving mediators. Analysis of the expression of CD206, a marker indicative of M2-
polarization in macrophages, showed that the numbers of CD206+ alveolar macrophages
were enhanced after 3 days in CCR2+/+ and CCR2−/− mice. Mice deficient for CCR2 had
even more alveolar macrophages expressing CD206 at day 4 after the LPS stimulation
compared to CCR2+/+ mice (Figure 6A). In contrast, alveolar macrophages expressing
NOS2, a marker for M1 polarization of macrophages, were decreased in the absence of
CCR2 (Figure 6B). Confirming these results, the ratio of Nos2 over Arginase 1 (Arg1) mRNA
expression was significantly reduced in the lungs of mice deficient for CCR2 (Figure 6C).
In addition, pulmonary IL-1β, and IL-12 expression was reduced, while Mrc1 mRNA was
increased in CCR2−/− mice (Supplementary Figure S2). At day 3, the deficiency of CCR2
also led to increased protein levels of TGF-β and CCL22 compared to the wild type mice
(Figure 6D,E). TGF-β is an important cytokine related to resolution of inflammation that
is able to induce apoptosis of leukocytes [25]. Both TGF-β and CCL22 are differentially
produced by M2 macrophages [26,27]. Therefore, the absence of CCR2 is associated with
the increase of AM expressing CD206, the increase of other M2 markers in the lungs/BALF
(Mrc1, CCL22 and TGF-β) and a reduction of M1 markers (Nos2, IL-1β, IL-12b).
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Figure 6. CCR2 deficiency is associated with the increase of molecules related with M2 macrophages.
CCR2+/+ (black symbols) and CCR2−/− (red symbols) C57BL/6 mice were challenged with LPS
(12.5 µg/mouse) or PBS (ctrl group; -) and dissected at the indicated days. Absolute numbers
of CD206+ alveolar macrophages (CD45+CD11c+SiglecF+CD206+ cells) (A) and NOS2+ alveolar
macrophages (CD45+CD11c+SiglecF+NOS2+ cells) (B) quantified by flow cytometry. (C) Ratio of
Nos2 and Arg1 mRNA expression relative to the endogenous control. Levels of TGF-β (D) and CCL22
(E) in BALF quantified by ELISA. Compilation of three experiments in panels A, D, and E; and two
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experiments in panels B and C. Data are shown as mean ± SEM. Each symbol represents data of an
individual mouse. * p < 0.05 when compared with the healthy, unchallenged control group. # p < 0.05
when comparing wild type and knockout group at the same time point. ANOVA test followed by
Bonferroni correction was used in panels A and E; Kruskal–Wallis with Dunn’s multiple comparisons
test was used in panel D. Mann–Whitney U test was used in panels B and C. n = 4–12.

2.5. Depletion of Alveolar Macrophages before the LPS Challenge Leads to Uncontrolled
Inflammation Which Is Worsened in the Absence of CCR2

To further demonstrate the role of alveolar macrophages in the absence of CCR2,
CCR2+/+ and CCR2−/− mice were treated with clodronate-loaded liposomes. As observed
in Figure 7A,B, the depletion of alveolar macrophages was successful since the percentage
and absolute numbers of this specific cell population were reduced. Depletion triggered
an increase in the number of total leukocytes and neutrophils in the alveolar space in both
CCR2+/+ and CCR2−/− mice at 4 days after the LPS challenge (Figure 7C,D). Interestingly,
more leukocytes were detected in CCR2−/− compared to CCR2+/+ mice. To evaluate
the impact of alveolar macrophage depletion on lung pathology, we analyzed the total
protein concentration in the BALF to quantify pulmonary edema. Figure 7E shows that
both CCR2+/+ and CCR2−/− mice had more pulmonary edema after the depletion, but
that the inflammatory insult had still more impact in CCR2 KO mice on day 4, probably
because the resolution of inflammation is delayed in those mice. Lastly, we evaluated the
changes in bodyweight and, while its reduction was observed in all the groups during the
course of the inflammation, only the mice treated with clodronate-loaded liposomes were
not able to recover and still weighed significantly less at day 4 (Figure 7F).
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(CD45+CD11c+SiglecF+ cells) isolated from the lungs and BALF were quantified by flow cytometry.
Total leukocytes (C) and neutrophils (D) in BALF were counted microscopically. Pulmonary edema
was quantified based on the protein concentration in the BALF (E). Changes in body weight (F) were
calculated with the weight before challenge (day 0) as reference. Data are shown as mean ± SEM.
Each symbol represents data of an individual mouse. * p < 0.05 when compared with the respective
group treated with PBS-loaded liposomes. # p < 0.05 when comparing wild type and knockout group
treated with clodronate-loaded liposomes. Mann–Whitney U test was used. n = 5–6.

3. Discussion

The resolution of lung inflammation requires an orchestrated immune response and
several control mechanisms to avoid excessive inflammation and chronic disease [28,29].
CCR2 is a crucial receptor that regulates tissue inflammation through its fundamental
role in monocyte recruitment. The CCL2-CCR2 axis plays an important role in mono-
cyte biology, guiding the compartmentalization of these cells in different tissues during
homeostasis and inflammation. CCR2 deficient mice are known to have lower numbers of
circulating Ly6CHi cells, since CCR2 is required for the mobilization of monocytes from
the bone marrow to the circulation during a systemic inflammatory response [30]. It has
been demonstrated that CCR2 is important in the development of inflammation in lungs
(asthma [31], tuberculosis [32] and pulmonary fibrosis [33]), liver [34], myocardium [35,36]
and others [37] due to its importance in monocyte recruitment.

In this study, we used CCR2-deficient mice to understand the kinetics of lung inflam-
mation using an experimental model of ARDS induced by LPS, which can elicit a powerful
pro-inflammatory, though self-resolving immune response [38]. The lack of CCR2 generally
leads to a decrease of monocytes/macrophages at the site of the inflammation, which
may lead to a milder disease [35,39]. In contrast with our findings, Maus et al. [40,41] and
Francis et al. [42] showed that the absence or blocking of CCR2 dramatically reduced the
recruitment of myeloid cells in general, and not only the monocyte/macrophage popula-
tion, impacting the disease parameters greatly in models of ARDS induced by LPS and
ozone, respectively. Similarly, depletion of circulating monocytes by intravenous injection
of clodronate liposomes 2 days before intratracheal LPS treatment significantly suppressed
the acute lung injury in mice [43]. Adversely, our data show that the reduced monocyte
influx does not prevent development of inflammation in the model of ARDS induced by
intranasal low-dose LPS instillation. We found that in the initial phases of the inflammation,
the absence of CCR2 led to a dramatic decrease in the accumulation of macrophages in the
lungs and an increase in the recruitment of neutrophils, congruous with the higher levels
of CXCL1 in the BALF. Contrastingly, at later time points we did not observe major differ-
ences in the body weight kinetics, inflammatory parameters or immunopathological score
between the two mouse strains indicating that although lack of CCR2 does not prevent
lung inflammation, it does not hamper adequate resolution. We discovered that absence
of CCR2 was compensated by increased proliferation of alveolar macrophages that were
more skewed towards an M2 phenotype as we detected an increased expression of the M2
marker CD206 on alveolar macrophages, and higher levels of CCL22 and TGF-β in the
BALF. In addition, pulmonary Nos2, IL-1β, and IL-12b expression was reduced, while Mrc1
was increased in CCR2−/− mice (Supplementary Figure S2 and Figure 6). Interestingly, the
lower expression of IL-12b might be connected with the reduced levels of IFN-γ observed in
CCR2-deficient mice (Figure 2) [44] and, consequently, the reduction of NOS2 [45]. Together,
those elements are indicative for efficient resolution of inflammation in the CCR2-deficient
mice as the general paradigm states that resolution of acute inflammation is characterized
by the accumulation of pro-resolving macrophages that phagocytose apoptotic cells and
produce pro-resolving molecules [46].

The effect of CCR2 absence at later time points of inflammation is indeed ambivalent.
Previous reports showed that the lack of CCR2 signaling (a) reduces pro-fibrotic responses
in the lungs [34,39]; (b) refrains extracellular matrix remodeling [34], (c) delays the resolu-
tion of inflammation and the recovery of the gastrointestinal functions [43]; (d) improves
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cardiac remodeling [36], and (e) limits recovery following spinal cord injury [47]. In our
study, the deficiency of CCR2 did not change the resolution timeline, suggesting that this
receptor is not crucial in this acute and self-resolving model of lung inflammation. This is
in agreement with the study by Pollenus et al. [48], who observed that CCR2 is dispensable
for the resolution of malaria-induced lung pathology. Together, these studies indicate that
CCR2 divergently affects the development of different diseases probably depending on
the organ involved, the profile and timing of each aspect in the inflammatory response.
According to the mice, the model, and the type of inflammation, monocytes/macrophages
may be beneficial for the proper development and resolution of inflammation, and they
may impact other leukocytes differentially.

Even though CCR2 is essential for the recruitment of monocytes, in the absence of this
receptor, a minor increase in monocyte derived macrophages, monocytes, and interstitial
macrophages at 2 and 3 days after the LPS challenge was observed in the CCR2 knockout
mice when compared with the unchallenged group (Figures 1D and 4A,B). Other chemokine
receptors, such as CCR1, CCR4, and CCR5 and their corresponding ligands, may participate
in the accumulation of macrophages in the absence of CCR2 [49,50]. Besides in recruitment,
these ligands have a role in activation, differentiation and polarization of macrophages in
numerous diseases and contexts [51]. In addition to CC chemokines and their receptors,
the CX3CL1-CX3CR1 axis is also an important pathway mediating monocyte migration,
playing a major, but environment-specific, role in either pro-inflammatory or pro-resolving
responses [52], and contributing to the development of inflammatory diseases, such as
kidney ischemia–reperfusion injury [53] and pulmonary fibrosis [50].

CCR2 is mainly expressed in circulating peripheral blood monocytes, but not in
alveolar macrophages. It is known that alveolar macrophages originate from fetal liver
monocytes and are independent of circulating monocytes [54,55]; therefore, the deficiency
of CCR2 or the inhibition of CCL2 have little or no effect on this cell population [56].
Contrastingly, the interstitial macrophages originate from yolk sac progenitors and in
adulthood they are replaced by circulating monocytes [57,58], thus being susceptible to
CCR2 deficiency. Alveolar macrophages are crucial for the recognition and clearance of
pathogens from the airways, promoting the initiation of host defense as well as the tissue
repair [59]. This cell population is very important for the resolution of lung injury since
they can clear apoptotic neutrophils and tissue debris through efferocytosis [60], avoiding
dying cells from releasing pro-inflammatory and toxic mediators into the surroundings
while activating pro-resolving and repair factors [19]. Indeed, depletion of AMs by in-
tranasal delivery of clodronate liposomes prolonged the inflammation with higher number
of leukocytes in the BALF, lack of bodyweight recovery, and worse pulmonary edema
(Figure 7). Likewise, other studies already showed that depletion of alveolar macrophage
in LPS-induced ALI/ARDS leads to increased influx of polymorphonuclear leukocytes [61]
and more severe disease and lung inflammation [43]. Interestingly, our results show that
these phenomena are more pronounced in the absence of CCR2, supporting our hypothesis
that alveolar macrophages are the key cell in the control of inflammation in CCR2-deficient
mice.

According to Mahida et al. [62], ARDS in humans may be associated with impaired effe-
rocytosis by alveolar macrophages, demonstrating how important this type of macrophage
is. Our findings indeed suggest that increased proliferation of alveolar macrophages can
compensate the lack of macrophages derived from monocytes, promoting proper resolution
of ARDS in the absence of CCR2. It is not totally clear what causes the proliferation of
alveolar macrophages in our study. Granulocyte macrophage-colony stimulating factor
(GM-CSF) and macrophage-colony stimulating factor (M-CSF) are important growth fac-
tors for the expansion of alveolar macrophages [63]. Although there was no difference
in GM-CSF levels between CCR2+/+ and CCR2−/− mice at any time point evaluated,
we observed a mild increase in M-CSF 3 days after the LPS instillation in the CCR2−/−

mice (Supplementary Figure S3). M-CSF is linked with homeostasis of macrophage and
monocyte populations and is able to prone monocytes towards an M2 profile, as shown by



Int. J. Mol. Sci. 2022, 23, 12920 12 of 18

Hamilton et al. [64,65]. It must also be noted that in the CCR2−/− mice, relatively more
growth factor is available per target cell, as less monocytes/macrophages are present in the
lungs of those animals.

In conclusion, in our murine model CCR2 is not essential for the development, nor
the resolution of ARDS induced by LPS. We observed different patterns and intensity
of cell recruitment, especially in the initial phases of the inflammation, although disease
development was not affected. Despite the importance of CCR2 in monocyte recruitment
and the crucial role of macrophages in resolution of inflammation, our data did also not
show major effects on resolution when this receptor was absent. We hypothesize that the
lack of monocyte recruitment is counterbalanced by the recruitment of neutrophils, in
the first days, and later by the proliferation of alveolar macrophages. More studies are
necessary to further elucidate the mechanisms involved in this process and to clarify the
mediators responsible for the enhanced proliferation of alveolar macrophages.

4. Materials and Methods
4.1. Mice

Eight to ten weeks old CCR2−/− and CCR2+/+ were bred in the animal facility in
the Rega Institute for Medical Research, KU Leuven. Previously, CCR2−/− mice were
bought from The Jackson Laboratory (B6.129S4-Ccr2tm1Ifc/J; #004999; Bar Harbor, ME,
USA) and CCR2+/+ C57BL/6J mice from Charles River (JAX™ C57BL/6J SOPF Mice; #680;
Ecully, France). Knockout and wild type mice were mated to generate F1 heterozygotes
that were inter-crossed to create littermates. All animals were maintained with ad libitum
water and food (Ssniff Spezialdiäte, Soest, Germany), in a 12 h dark–light cycle and kept in
a controlled environment. All the experiments were performed within the norms of the
European Union (directive 2010/63/EU) and the Belgian Royal Decree of 29/05/13. They
were approved by the Animal Ethics Committees of KU Leuven (P101/2020) and UFMG
(420/2018).

4.2. ARDS Model

To induce ARDS, 30 µL of Escherichia coli LPS (Sigma-Aldrich, Saint-Louis, MO, USA,
12.5 µg/mouse) was administered intranasally to CCR2−/− and CCR2+/+ mice. Control
animals received the same amount of endotoxin-free phosphate-buffered saline (PBS, Lonza,
Walkersville, MD, USA). Body weight was measured daily, and the mice were euthanized
at different time points after the instillation (1, 2, 3, 4 or 5 days). For the dissection, mice
received an intraperitoneal (i.p.) injection of 100 µL of dolethal (Vetoquinol, Niel, Belgium;
200 mg/mL). Broncho-alveolar lavage fluid (BALF) was obtained by the instillation of
500 µL of PBS through a catheter in the trachea. The fluid was withdrawn and instilled
again two more times, PBS instillation was repeated three times, and the lavages were
pooled. After perfusion with PBS, lungs were collected for analysis by flow cytometry.
The BALF was centrifuged (5 min, 300× g, 4 ◦C) and the supernatant was collected for the
analysis of the cytokine levels by ELISA and protein levels by BCA, whereas the cell pellet
was combined with the cells isolated from the lungs for flow cytometry analysis.

4.3. BALF Protein Concentration

To assess the edema formation and the extend of the tissue damage, the concentration
of protein in the BALF was measured using the Pierce BCA protein assay (ThermoFisher,
Waltham, MA, USA). Briefly, this assay comprises mixing the BCA working reagent with
protein standards and samples followed by an incubation at 37 ◦C for 30 min. The mi-
croplate is cooled to room temperature and the absorbance is read at 562 nm.

4.4. Isolation of Single Cells from the Lungs

During dissection, lungs were removed, cut in small pieces, and collected in RPMI
medium [RPMI GlutaMAX (ThermoFisher) + 5% FCS + 1% penicillin/streptomycin (Ther-
moFisher)] at room temperature (RT). Lungs were then incubated for 30 min at 37 ◦C in
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RPMI medium with digestive enzymes [2 mg/mL collagenase D (Sigma-Aldrich) and
0.1 mg/mL DNase I (Sigma-Aldrich)]. The tissue was homogenized using a needle and
syringe and fresh digestion medium was added for a second incubation at 37 ◦C for 15 min.
After a second process of homogenization, the samples were centrifuged (5 min, 400× g,
RT), and the pellet was resuspended in 1 mL of 10 mM EDTA dissolved in PBS to stop the
digestion. Cells were suspended in PBS + 2% FCS, centrifuged again, and treated with
ACK lysing buffer (ThermoFisher) to lyse RBCs. Subsequently, they were passed through a
70 µm cell strainer and resuspended in PBS + 2% FCS. To determine the number of live cells
per mL, they were diluted in trypan blue solution and counted using a Bürker chamber.
Cells from the lungs were combined with cells from the BALF for flow cytometry analysis.

4.5. Staining and Flow Cytometry

One million cells, 3 million in the case of intracellular staining, per sample were
transferred to 96 well plates and washed with PBS. They were incubated for 15 min at RT in
the dark with a viability dye, Zombie UV (1/1,000; BioLegend, San Diego, CA, USA), and
mouse Fc blocking reagent (MACS Miltenyi Biotec, Bergisch Gladbach, Germany). After the
incubation time, the cells were washed with FACS buffer (PBS + 2% FCS + 2 mM EDTA) and
stained with different panels of monoclonal antibodies (Supplementary Tables S1 and S2)
diluted in brilliant stain buffer (BD Biosciences; Erembodegem, Belgium) for 20 min at
4 ◦C in the dark. The samples were washed with FACS buffer, fixed in 0.4% formaldehyde
in PBS, and transferred to FACS tubes. For the intracellular staining, the surface staining
was performed and, instead of using formaldehyde, they were submitted to fixation and
permeabilization using the fix/perm reagent (eBioscience, San Diego, CA, USA) for 45 min
at RT in the dark, washed with the permeabilization buffer (eBioscience), incubated with
the antibodies binding intracellular antigens (Supplementary Tables S3 and S4) for 30 min
at RT in the dark, and washed again with permeabilization buffer (eBioscience). The
samples were analyzed with a BD LSR Fortessa Flow cytometer (BD Biosciences) and
100,000 live single cells were acquired. For the analysis of the data, FlowJo V10 software
(BD Biosciences) was used, and the gating strategies are described in the Supplementary
Materials (Supplementary Figure S1).

4.6. Proliferation Assays
4.6.1. Ki-67 Staining

Ki-67 is a nuclear protein expressed by proliferating cells and very often used as a
proliferation marker. After the isolation of single cells from the lungs, 3 million cells per
sample were transferred to 96 well plates and the intracellular staining was performed as
described above with the antibodies described in the Supplementary Table S3.

4.6.2. BrdU Staining

Another method to evaluate the cell proliferation is the use of 5-bromo-2’-deoxyuridine
(BrdU – Sigma-Aldrich). One day before the euthanasia, wild type and knockout mice
received an i.p. injection of BrdU (1.5 mg/mouse). After the euthanasia and tissue pro-
cessing, flow cytometry staining was performed as aforementioned. For the intracellular
staining, the cells were permeabilized two extra times and treated with DNAse to ex-
pose incorporated BrdU before the staining with the anti-BrdU antibody (Supplementary
Table S4).

4.7. Quantitation of Neutrophil Products, Growth Factors and Cytokines in BALF by ELISA

Aliquots of cell free BALF were used for the analysis of TNF-α, IFN-γ, GM-CSF,
M-CSF, NGAL, CCL2, CCL22, and CXCL1 by ELISA according to the manufacturer’s
instructions (R&D Systems, Abingdon, UK). Absorbance was measured at 450 nm using
a Biotek photometer (Shoreline, WA, USA) and the Gen5 software (version 2.09, Biotek,
Shoreline, WA, USA).
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4.8. Histology

Lungs for histopathological analysis were collected and inflated via the trachea with
4% formaldehyde (Sigma-Aldrich) in PBS. The samples were fixed overnight using the
same solution, processed with different concentrations of ethanol and xylol, embedded
in paraffin, and sectioned (5 µm). Sections were stained with hematoxylin and eosin
for the evaluation of the intensity and extension of polymorphonuclear infiltrates in dif-
ferent lung compartments, characterizing airway inflammation, vascular inflammation,
and parenchymal inflammation, as described by Horvat et al. [66]. According with the
histopathological score, the tissue damage was classified as absent, mild, moderate, intense,
and severe. The analysis was performed by an independent pathologist that was blinded
to the experimental conditions.

4.9. qPCR Analysis

Following dissection, small lungs were removed from the mice and stored on dry
ice until further use. Using the Qiagen RNeasy mini kit (cat #74106; Qiagen, German-
town, MD, USA), the lungs were subjected to homogenization and RNA extraction accord-
ing to the manufacturer’s instructions. Subsequently, the RNA was converted to cDNA
using the high-capacity cDNA Reverse Transcriptase kit (cat #4368814; Applied Biosys-
tems, San Francisco, CA, USA). IDT primers were used to analyze the gene expression of
Siglec5 (Mm.PT.58.6685529), Mrc1 (Mm.PT.58.42560062), Nos2 (Mm.PT.58.43705194), Arg1
(Mm.PT.58.8651372), IL-1b (MM.PT.58.42940223) and IL-12b (Mm.PT.58.12409997). Ppia
(Mm.PT.39a.2.gs) was used as the housekeeping gene. Per reaction, 10 ng cDNA was
used. qPCR was performed using the TaqMan Gene Expression Mastermix (cat #4369016,
Applied Biosystems) and the 7500 Real-Time PCR system (Applied Biosystems). Relative
gene expression was determined using the 2−∆∆Ct method.

4.10. Depletion of Alveolar Macrophages Using Clodronate Loaded Liposomes

For depletion of alveolar macrophages, 0.5 mg of clodronate in 100 µL (Liposoma,
Amsterdam, The Netherlands) was intranasally instilled in mice under anesthesia 48 and
24 h before the LPS challenge. The same volume of PBS-loaded liposomes was instilled in
the control groups [67]. Four days after the LPS challenge, mice were euthanized, and the
dissection was conducted as described in the topic 4.2.

4.11. Statistics

The data were analyzed using the GraphPad PRISM software (version 9.0.0, Graph-
Pad, La Jolla, CA, USA,). The data was checked for normality by Shapiro–Wilk test and
Kolmogorov–Smirnov test. The data with normal distribution were submitted to the
one-way ANOVA test followed by the Bonferroni correction. In case normality was not
observed, Kruskal–Wallis with Dunn’s multiple comparisons test was performed. If only
two groups were to be compared, Mann–Whitney U test was performed. Significance
was determined between each condition for the CCR2+/+ and for the CCR2−/− mice and
between the CCR2+/+ and CCR2−/− mice within each condition. Statistical differences are
indicated with an asterisk above the individual data sets when compared to the correspond-
ing control group and with horizontal lines with hashtag on top in case of comparison
between the indicated wild-type and knockout groups. p-values were indicated as follows:
* = p < 0.05 when compared to the control group and # = p < 0.05 when comparing wild-type
and knockout groups.
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