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Abstract

In healthcare, the planning and the management of resources are challenging as
there are always a number of complex and stochastic factors in both demand and sup-
ply. Simulation optimization (SO) that combines simulation analysis and optimization
techniques is well suited for solving complicated, stochastic, and mathematically in-
tractable decision problems. In order to comprehensively unveil the degree to which
SO has been used to solve healthcare resource planning problems, this paper reviews the
academic articles published until 2021 and categorizes them into multiple classification
fields that are related to either problem perspectives (i.e., healthcare services, planning
decisions, and objectives) or methodology perspectives (i.e., SO approaches and appli-
cations). We also examine the relations between the individual fields. We find that
emergency care services are the most applied domain of SO, and that discrete-event
simulation and random search methods (especially genetic algorithms) are the most fre-
quently used methods. The literature classification can help researchers quickly learn
this research area and identify the publications of interest. Finally, we identify major
trends, insights and conclusions that deserve special attention when studying this area.
We suggest many avenues for further research that provide opportunities for expanding
existing methodologies and for narrowing the gap between theory and practice.

Keywords: Health care management; Simulation optimization; Operations management;
Resource capacity planning; Literature review.

1 Introduction
Healthcare providers face a continuous challenge to plan and control their healthcare

delivery processes efficiently since the demand for healthcare services and the related expen-

ditures are growing [124]. Within a healthcare organization, planning and control involve

defining goals and deciding on what to do, how to do it, when to do it, and who should do

it [73]. The main objective of healthcare planning and control is to provide high-quality

and highly efficient services at the lowest possible cost to society. It consists of multiple

managerial areas, e.g., making medical, resource capacity, and financial decisions. In this
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review, we focus on the managerial area of resource planning in healthcare. Specifically,

this area makes decisions on the dimensioning, planning, scheduling, and control of vari-

ous renewable healthcare resources, e.g., operating rooms, ward beds, intensive care units

(ICUs), and staff [66].

However, making these decisions is not straightforward as the real-world healthcare

environment is quite complex, dynamic, and stochastic, which often results in an analyti-

cally intractable problem. In addition, the healthcare system often involves many different

stakeholders, such as patients, medical staff, employers, and government, who might have

conflicting preferences and goals [133]. The Operations Research and Management Sci-

ences (OR/MS) community has taken on these challenges for many years by developing

various methods to improve the healthcare system efficiency, e.g., computer simulation,

mathematical optimization, probability and stochastic models, and decision analysis [75].

Among these methods, simulation optimization (SO) is a potentially useful and flexible

approach for solving complicated, stochastic, and mathematically intractable decision prob-

lems, without having to make many restrictive assumptions [125]. Simulation optimization

(also known as optimization via simulation or simulation-based optimization) refers to the

optimization of a given objective function satisfying some constraints, both of which can

be estimated through a stochastic simulation [53, 5]. It searches for optimal input settings

to the stochastic simulation such that the target objective is optimized. In contrast to

algebraic model-based mathematical programming, the simulation in SO serves as a black

box to model complex, dynamic, and stochastic systems. In recent years, advancements in

computer computing power have increased the popularity of SO methods in diverse fields

such as manufacturing, transportation, medicine and biology [5, 108].

A general simulation optimization problem can be expressed by the following [5]:

min Eω[f(x, y, ω)] (1)

s.t. Eω[g(x, y, ω)] ≤ 0 (2)

h(x, y) ≤ 0 (3)

xl ≤ x ≤ xu (4)

x ∈ Rn, y ∈ Dm. (5)
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The SO problem is to minimize an objective function, which has to be estimated by

simulation. The objective function takes the form of an expected value (i.e., Eω[f(x, y, ω)])

for a specific instance of continuous input variables x and discrete input variables y, with a

realization of random variables in the simulation, i.e., the vector ω (which might or might

not be a function of x and y). Similarly, the stochastic constraints expressed by the vector-

valued function g that involves random variables are also evaluated by the simulation and

expected values are used. There might be other constraints (defined by h(x, y) ≤ 0) that do

not include random variables, and bound constraints on the input variables. In addition,

the objective function can take other forms of measures, e.g., quantiles or the variance.

This paper reviews the articles involving the application of SO in healthcare resource

planning. The purpose of this review paper is threefold. First, we aim to unveil the degree

to which SO has been used to solve the healthcare resource planning problem and to identify

any trends that have arisen in this research field. Second, we want to structure the published

literature in a way that recent research contributions can easily be compared on multiple

angles and connected to each other. Furthermore, interesting patterns might be revealed

and opportunities for future work can be identified. Third, the resulting classification can

help researchers to quickly learn about this field and to quickly identify the papers that are

related to their needs. In addition, we discuss the situations in which SO is most useful, the

complementary relation between SO and other OR/MS methods, the key aspects to consider

and the recent advances in SO that can potentially be applied to healthcare planning.

2 Literature review methodology

2.1 Literature collection, identification and analysis
We used a structured literature search method to ensure that we found key and state-of-

the-art contributions that are under the scope of this review. Table 1 provides a schematic

overview of our search method. First, we identified search terms and used wildcards in

the search terms. These terms include methodology-related terms and healthcare-related

terms. As for the former, “simulation” and “optimization” are used. These two notions

can be combined in various ways: optimization with simulation-based iterations, simulation

with optimization-based iterations, sequential simulation and optimization, and alternate

simulation and optimization [51]. We focus on the papers related to the first category, i.e.,
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where the optimization problem has to work with evaluations of the stochastic objective

function f(x, y, ω).

Table 1. The literature search method.

Step What to do

Step 1: Identify search terms related to the methodology and to healthcare
Step 2: Search the subject categories of OR&MS and HCS&S in WoS
Step 3: Select a base set: the 20 most-cited articles relevant for our review
Step 4: Perform a backward and forward search on the base set articles
Step 5: Include all articles from WoS core collection journals
Step 6: Search in other databases

In terms of the healthcare-related terms, only using the general terms, such as health-

care, hospital, and patient, is not sufficient, since the healthcare delivery involves many

different care services provided by various healthcare organizations. According to the tax-

onomic classification of healthcare resource planning decisions in Hulshof et al. [73], we

consider six care services (i.e., ambulatory care services (ACS), emergency care services

(ECS), surgical care services (SCS), inpatient care services (ICS), residential care services

(RCS) and home care services (HCS)) in order to obtain a more comprehensive pool of

articles. Briefly, ACS provide care for patients without an overnight stay in the hospital,

e.g., outpatient clinics, primary care services, and hospital radiology departments. ECS

face urgent and emergent medical problems, e.g., hospital emergency departments, am-

bulances, and trauma centers. SCS perform operative procedures (surgeries) on patients,

e.g., operating theaters and surgical day care centers. ICS care for hospitalized patients,

e.g., regular wards, intensive care units, and neonatal care units. RCS provide long-term

care and assistance for frail elderly populations, e.g., nursing homes. HCS are provided for

patients by visiting medical staff at the patients’ homes, e.g., medical care at home.

Since Hulshof et al. [73] have identified an extensive list of search terms for each care

service, we use similar search terms (see Table 2) to them. Using those search terms,

we performed an initial search for academic papers published until August 2021 based on

the database of Web of Science (WoS). WoS was chosen as it provides the possibility to

select Operations Research & Management Science (OR&MS) and Health Care Sciences

& Services (HCS&S) as specific subject categories (both are closely related to the topic of

this review) and to sort search results on the number of citations. Refer to the WoS Core
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Collection website (i.e., https://mjl.clarivate.com/home) for a full list of journals within

OR&MS and HCS&S. The search fields involve titles, abstracts, or keywords. Only peer-

reviewed journal articles and articles written in English are considered in this review.

Table 2. Details of literature search terms.

Services Care term Methodology term

General healthcare ∪ health care ∪ medical ∪ hospital ∪ patient

simulation
∩

optimization

ACS outpatient ∪ ambulatory ∪ appointment ∪ clinic ∪
primary care ∪ radiology ∪ diagnostic service$ ∪

diagnostic facilit* ∪ general practi* ∪ community service$
ECS emergenc* ∪ emergent ∪ acute ∪ urgenc* ∪ urgent ∪

accident ∪ ambulance ∪ trauma
SCS operating room$ ∪ operating theat* ∪ operating suite ∪

surger* ∪ surgical
ICS inpatient ∪ bed$ ∪ ward$ ∪ intensive care ∪ neonatal care
RCS nursing home$ ∪ mental care ∪ psychiatric ∪ rehabilitation

∪ long-term care ∪ retirement ∪ elderly ∪ geriatric
HCS home care ∪ home health* home-care ∪ home-health* ∪

care at home
Notes. A search engine can replace $ by zero or one character. A search engine can replace ’*’ by any group
of characters, including no character.

After obtaining an initial list of articles, we expanded this list by performing a backward

and forward search. This search was based on a base set containing the 20 most-cited articles

that are selected from the initial list. Specifically, we identified all articles that are referred

by or refer to one of the articles in the base set and that deal with the application of SO to

healthcare planning. We included relevant articles from all WoS Core Collection journals

at this forward and backward search stage. Furthermore, we also performed a search in

the databases of PubMed and Scopus with our search terms. This search did not produce

significant additions to the already identified set of articles. The resulting articles were

then carefully examined to see whether they are under scope for this review. Finally, 141

papers are selected for inclusion, which were published between 1973 and 2021.

Figure 1 clearly shows that the application of SO in healthcare resource planning is

becoming increasingly popular in the literature. Most of the papers were published in

recent years, especially from 2013 onwards, although SO has had a long and well-known

history of developments [54]. The reason might be, on the one hand, that the ever-improving

healthcare information systems worldwide in recent years [121] provide ample availability

of data to allow for simulation modeling and optimization. On the other hand, with the
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Figure 1. The number of published papers per year.

fast development in computer computing powers, SO is expected to increase its impact on

healthcare problems. There are a total of 60 peer-reviewed journals publishing the selected

papers. Figure 2 shows the journals with at least 3 publications. As can be observed, Health

Care Management Science is the leading journal on this topic with 13 papers, followed by

the European Journal of Operational Research (11 papers).
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Figure 2. The number of published papers per peer-reviewed journal.

2.2 Organization of the review
We propose to use the classification fields in the order of how they should be tackled

by authors when solving the healthcare resource planning problems of interest, which can

well serve the purposes of this review. These classification fields are shown as follows:

� What is the scope: reviewing the literature according to the various healthcare services
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and the key decisions that need to be made, along with a discussion on the main problem

characteristics of the application.

� What are the objectives: describing the objectives (e.g., access time, utilization, overtime,

and financial value) and the type of objective functions (i.e., single/multiple objectives).

� What are the SO approaches: discussing the simulation modeling methods and the opti-

mization algorithms/packages used in the SO modeling process, along with the type of

decision variables (i.e., discrete or continuous) and the stochastic constraints.

� Applying and validating the model : indicating the information on the validation of simu-

lation modeling, the testing (data) of the SO models, and the implementation in practice.

Each section includes a discussion of the specific field based on the selected papers and

an explanation of the terminology when needed, along with a classification table that lists all

relevant papers. Pooling these tables together serves as a reference tool to identify the subset

of papers according to a certain characteristic. They additionally should enable the reader

to learn how to solve the healthcare planning problem by the SO method. We also look into

the relations between the individual classification fields by considering multiple dimensions

simultaneously. Some sections discuss potential opportunities for future research.

3 What is the scope
When tackling the healthcare resource planning problem, the initial set of decisions to

be made relates to the problem setting (e.g., care services and problem characteristics) and

to the planning decisions. As for the decisions, researchers frequently distinguish between

the strategic (long-term), the tactical (medium-term), the operational offline (short-term),

and the operational online (real-time) decision levels. Table 3 classifies the literature based

on the six care services and on the hierarchical decision levels.

3.1 Strategic decision level
The strategic decision level addresses the design, dimensioning and development of

the healthcare delivery process based on aggregated information and forecasted demand.

Overall, this decision level most frequently applies the SO method.

Table 3 shows that most SO studies that focus on this decision level are for emergency

care services, relating to capacity dimensioning (e.g., determining the optimal resource
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Table 3. Classification based on care services and planning decisions.

Strategic Tactical Offline Online

ACS [90, 59, 38, 157] [101, 86, 106, 32, 27,
131, 85, 84, 83, 82, 14,
167, 117, 72, 145, 138,
104, 168, 137, 159]

[129, 136, 159, 48, 49,
182, 40, 44, 20, 142,
155, 25, 8, 60]

[129]

ECS [119, 162, 161, 115, 170,
26, 184, 116, 156, 177,
78, 37, 76, 56, 6, 61, 150,
98, 62, 127, 55, 178, 3,
35, 99, 57, 42, 34, 50, 58,
97, 112, 100, 77, 65, 135,
175, 149, 171]

[152, 151, 64, 173, 122,
144, 36]

[115, 26,
176, 184,
130, 1, 56,
4]

SCS [107, 128, 123, 12] [174, 164] [93, 92, 43, 160, 9,
141, 154, 94, 118, 47,
169, 165, 105, 46, 183]

ICS [111, 71, 67, 110, 88,
185, 2, 166, 132, 126]

[179, 95] [114, 113, 11, 163]

RCS [181, 180, 13]
HCS [148, 18]

capacity in the hospital emergency department [3, 58, 35, 34]) and ambulance location

(e.g., assigning available ambulances to different locations [116, 26, 76, 37]) decisions. This

is due to the fact that the evaluation of these decisions usually needs to model highly

complex and uncertain operational processes in which unscheduled patients with a higher

urgency and with various degrees of illness or injury have to be provided with timely

emergency medical services. This leads simulation to be a useful tool. For example, in the

emergency departments, it is important to model patient flows from arrival to discharge,

and to account for stochastic activities (e.g., patient arrivals and their associated care) [55,

42, 34, 97]. Furthermore, capacity dimensioning decisions often consider multiple resources

(e.g., receptionists, doctors, nurses and beds) in the care activities, which will lead to a

large number of combinations of decision variables (e.g., 4320 combinations in [3]), while

the ambulance location problem over a network of bases has an exponentially large solution

space [78, 115].

Other care services sometimes apply SO to handle capacity dimensioning decisions in

order to best balance provider capacity and patient demand. Examples include determining

the number of beds [166, 185, 132, 111] and staff [88, 132, 111] in the inpatient healthcare

facilities (e.g., wards and ICUs), determining the number of operating rooms [128] and

staff [107] in surgical care facilities. Most of these papers incorporate complex real-world

8



characteristics, including random patient arrivals [88, 166, 185], uncertain service times

(e.g., lengths of stay [88, 166, 185], and surgical procedure durations [107]), interactions

among service activities [107, 132], and possible rejections [88, 166], etc.

3.2 Tactical decision level
At the tactical decision level, resource capacity settled at the strategic level is subdivided

over different patient groups (e.g., disease type and urgency) and is spread over different

time slots (e.g., dates and time intervals). Capacity levels can be temporarily adjusted be-

tween patient groups or on a day (e.g., overtime). Decisions at this level often demonstrate

a combinatorial nature, e.g., allocating capacity to patient groups or time slots [64].

Most of the reviewed studies that focus on this decision level are for ambulatory care

services, including decisions on capacity allocation, staff-shift scheduling (assigning staff

to shifts), admission control (selecting patients from the waiting lists to be admitted) and

appointment scheduling (determining the length of the appointment interval, etc). SO

is typically chosen since it can search for high-quality solutions in a large search domain

while simultaneously accounting for complex and stochastic factors in ambulatory facilities

[85, 86, 131, 83]. Examples include uncertain patient demand [104, 168, 159, 86], variable

service times [145, 168, 83, 86], unpunctuality [145, 85], no-shows/abandonment [131, 137,

83], walk-in patients [27, 167], and variable-interval rules [86, 85]. Furthermore, SO has an

ability to incorporate complex probability distributions (e.g., an uncommon service time

distribution [83, 159, 145, 86] and nonstationary patient arrivals [168, 27, 137]).

In emergency care services, Sinreich et al. [152] and Sinreich and Jabali [151] use

simulation-based models to solve staff-scheduling problems as the complex patients’ clinical

pathways and the high degree of interactions between different staff members complicate

such problems. In inpatient care services, some authors use the SO framework to analyze

patient overflow strategies (to secondary inpatient units) [179, 95] and bed reallocation

(among wards) [95] in the context of uncertain patient arrivals and lengths of stay (LOS).

3.3 Operational decision level (offline and online)
The operational level (both ‘offline’ and ‘online’) involves short-term decisions at the

individual patient and resource levels. Offline operational planning is the planning of known

patient demand in advance given fixed capacity, while online operational planning deals
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with the monitoring and control of the healthcare delivery process reacting to realized

and unforeseen events. The operational decision level usually demonstrates an exponential

growth of the solution space with any increase in the number of patients, in the time blocks

of resources as well as in the random realizations of uncertain variables [160, 182].

In Table 3, two common examples of offline operational planning with SO are patient-

to-appointment scheduling and surgical case scheduling. In these cases, detailed operational

factors are often incorporated, e.g., uncertain arrivals of unplanned patients [49, 160], pa-

tient unpunctuality [129, 44, 40, 160], stochastic service durations [129, 136, 44, 160, 43], no-

shows [129, 136, 44, 40], and heterogeneous sequences of services [142]. Each patient/surgery

type is often assumed to have its own probability distribution function for the uncertain

activities [44, 142, 105, 43]. Patient behavioral factors (e.g., selection and abandonment

[49]) and server behavioral factors (i.e., a service speedup in response to congestion [182])

are sometimes considered in appointment scheduling.

In inpatient care services, patient admission/discharge planning from the hospitalized

units is studied [114, 113, 11, 163]. The solutions obtained by SO are structurally different

from those solved by other models since SO considers many real-world factors in the model,

e.g., patient health status dynamics [11], general LOS distributions [114], and the dependent

relationship between the patient LOS and the ICU bed occupancy level [113].

At the online operational level, SO is used to optimize the decisions of ambulance

dispatching [26, 176] and ambulance relocation [184, 176]. SO is a suitable method at this

level since it is able to mimic the real-time state of the healthcare system. For example,

ambulance dispatching is a real-time decision that must take into consideration the current

state of the system (i.e. busy and idle ambulances) when selecting the ambulance to respond

to incoming emergency calls [26, 176].

In summary, the SO approach is most frequently applied to emergency care services and

to strategic decisions (e.g., capacity dimensioning and ambulance location decisions). The

SO approach can capture operational dynamics, uncertainty, and complexity in the model.

It has the ability to effectively solve large-scale healthcare planning problems. Meanwhile,

there is a growing interest to account for behavioral factors of patients and servers in

healthcare resource planning, e.g., reneging behavior of patients (i.e., patients deciding to

leave without being seen), preferences of patients (e.g., on the service date and on the care
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staff) and staff working efficiency in relation to different conditions (e.g., the number of

waiting patients). Future research could integrate some of these behavioral factors into SO

models to have a more realistic representation of the healthcare system.

4 What are the objectives
When the problem characteristics and the key decisions are known to the researchers,

they have to address the questions of what the objectives are and how these objectives are

handled. Table 4 shows that the patient access times to healthcare services are frequently

thought of as an objective in the reviewed research. Here, the access times are a general

term which includes many similar measures related to patient waiting, e.g., the typical

patient waiting times [64, 86, 182, 168, 119], the number of patients who can be served

before/beyond a time limit [170, 1, 35] and the response time by emergency services [177, 26,

37]. Another popular objective is optimizing the LOS in a facility or the patient throughput

(i.e., the number of patients that are served). The number of patient deferrals (e.g., patient

rejection and patient cancellation) is considered less frequently.

Among the resource-related measures, a main objective is minimizing overtime. More-

over, overtime is often coupled with idle time in the objective function (e.g, [183, 169,

159, 86]), since there exists a clear trade-off between them. A third frequently studied

objective is utilization. Leveling the resource availability/workload is sometimes regarded

as an objective which basically aims to reduce the variability in the resource use over dif-

ferent days/service units and to achieve a stable operation of the facility. Minimizing the

makespan (closing time) of a facility is occasionally considered.

There are some reasons for the SO approach to frequently incorporate the patient access

times and/or the resource overtime in the objective function. First, these performance

measures might be affected by many environmental factors in the healthcare system and

SO is able to effectively model the complex relationship between them. For instance,

Woodall et al. [168] and Mousavi et al. [119] resort to simulation (optimization) to estimate

the patient waiting time since a closed-form expression is not available in their complex

case hospital. Second, the realized values of these performance measures are often not

known until the real time, and thus these have to be estimated by simulation. For example,

the ambulance response time (i.e., the time between an emergency call and the ambulance
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Table 4. Classification based on performance measures in the objective function.

Dimension Objective References

Patient-
related

Access
times

[97, 127, 13, 128, 153, 99, 43, 168, 144, 152, 160, 84, 163, 85,
86, 93, 35, 64, 33, 57, 122, 177, 119, 42, 142, 107, 105, 27, 106,
182, 95, 141, 129, 82, 169, 166, 131, 48, 44, 165, 36, 14, 159,
83, 176, 40, 101, 26, 102, 104, 156, 170, 65, 1, 37, 173, 178,
172, 31, 30, 18, 12, 4, 135, 149, 167, 25, 8, 60, 61, 171, 72, 150]

LOS [114, 11, 97, 127, 99, 57, 50, 59, 34, 136, 138, 55, 149, 123,
175, 38]

Throughput [97, 99, 128, 43, 105, 3, 115, 88, 149, 167, 117, 157, 164]
Deferral [118, 141, 94, 153, 166, 49, 114, 11, 126]

Resource-
related

Overtime [118, 163, 86, 27, 169, 131, 44, 159, 83, 40, 183, 154, 160, 93,
106, 182, 129, 48, 165, 151, 92, 167, 18, 46, 72]

Idle time [118, 163, 86, 27, 169, 131, 44, 159, 83, 40, 183, 154, 84, 85,
82, 14, 32, 72]

Utilization [97, 99, 128, 127, 50, 94, 153, 49, 13, 113, 47, 149]
Leveling [151, 43, 168, 144, 152, 71, 155, 174, 157]
Makespan [141, 142, 107, 20, 9, 25, 60]
Size [57, 181, 180, 137, 78]

Financial
value

[93, 165, 92, 50, 34, 126, 33, 119, 111, 58, 62, 100, 112, 185, 2,
103, 145, 110, 179, 184, 132, 134, 130, 67, 38, 18, 12, 162, 161]

Other [92, 119, 111, 185, 2, 57, 183, 106, 182, 136, 122, 177, 95,
148, 76, 77, 98, 109, 39, 91, 63, 90, 116, 162, 161, 149, 25,
46, 8, 56, 6, 72, 150, 164]

arrival at the event site [37]) only becomes exactly known when the emergency patient is

reached.

Many articles also explicitly consider financial objectives as healthcare facilities need to

be cost-efficient when facing limited budgets. Examples include the overall revenue/profit

(e.g., [185, 33, 110, 134, 179]), the staffing cost (e.g., [58, 62]), and the financial represen-

tation of operational inefficiencies (e.g., overtime and patient waiting time [165, 93]).

Apart from the typical objectives, the SO approach can easily define and measure

problem-specific objectives by directly counting them in the simulation output. They are

classified into the “other” categorization in Table 4. These include, for example, the fairness

and equity measure for care [76, 185], the patient mortality/survival rate [177, 116], and

the penalty of service speedup in response to congestion [182].

A vast majority of papers use the form of an expected value in the objective function

(i.e., equation (1)). Only a few papers consider other types of measures to optimize, e.g.,
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the variance [43, 152, 155, 153], the maximum [174, 30] and some quantile [48]. Specifically,

d’Obrenan et al. [43] minimize the ward occupancy variance during the planning period.

Yip et al. [174] minimize the maximum patient occupancy in wards to reduce the peak ward

occupancies. Fan et al. [48] develop a robust selection of the best approach and compare it

with other approaches based on the mean and the p-quantile of the cost function.

In certain healthcare planning problems, it might be appropriate to consider other types

of risk measures. Specifically, quantile-based risk measures are useful since they go beyond

the mean and allow healthcare decision makers to determine best systems at various levels

of risk. For instance, to reduce patient waiting, conservative decision makers could use

a larger quantile for their system selection, while more aggressive decision makers could

use a smaller quantile. Also, Coelho and Pinto [37] discuss that it is interesting to study

in an emergency medical system not only the average but also the maximum response

time. The reason is that minimizing the average response time might reduce the number

of ambulances in regions with a small density of emergency calls, possibly increasing the

maximum response time in these regions.

SO is a flexible tool in finding high-quality solutions while considering multiple perfor-

mance measures [83]. Table 5 shows that a majority of studies (around 57%) have multiple

objectives to optimize at the same time. Among them, the patient-related (e.g., access

times) and the resource-related (e.g., overtime and idle time) performance measures are

often simultaneously incorporated in the objective function [44, 159, 86].

When multiple objectives are considered, different types of objective functions have

been used to optimize the healthcare planning problem, including three main methods.

First, one common method is to use a numerical weight for each objective to convert

the multi-objective problem into a single-objective problem (e.g., [160, 182, 159, 166]).

This method has some limitations: (1) knowledge is necessary about the weights of the

objectives, (2) trade-offs among the objectives are not clear, and (3) it may result in only

one final solution. Second, to overcome these disadvantages, an alternative solution consists

of searching for the Pareto solutions in the multi-objective problems. Pareto solutions

are a set of nondominated solutions, which are chosen, if no single objective could be

improved without the sacrifice of at least one other objective. Researchers have developed

various optimization algorithms to find Pareto solutions, e.g. non-dominated sorting genetic
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Table 5. Classification based on objective function type.

Objective function Type References

Single objective [3, 59, 112, 62, 100, 148, 20, 35, 64, 156, 71, 173,
9, 67, 155, 130, 152, 181, 65, 137, 138, 170, 180, 1,
113, 184, 32, 55, 116, 132, 178, 63, 78, 91, 134, 37,
88, 109, 174, 26, 47, 90, 102, 104, 172, 179, 39, 101,
115, 56, 6, 123, 175, 167, 117, 31, 30, 4, 61]

Multiple objectives Weighted [93, 92, 84, 85, 97, 86, 163, 43, 58, 160, 14, 98, 151,
82, 83, 42, 145, 77, 99, 141, 154, 27, 131, 105, 183,
110, 106, 118, 165, 36, 40, 44, 182, 48, 136, 159,
166, 176, 129, 169, 162, 161, 149, 25, 46, 8, 18, 12,
60, 135, 72]

Pareto-based [111, 114, 107, 142, 34, 153, 50, 57, 185, 49, 2, 76,
103, 119, 95, 126, 11, 167]

Stage-based [160, 168, 94]

algorithm II (NSGA-II) [2, 126, 50, 50] and ϵ constraint method (to constrain one objective

function) [114, 11, 185]. Third, several studies address the problem with multiple objectives

in different stages in which a series of single-objective problems are optimized separately

[94, 168, 160].

In summary, SO has the ability to include various (typical and problem-specific) per-

formance measures in the objective function. Due to this ability, future research could

integrate the effect of behavioral factors into the objectives in SO models, e.g., the penalty

of a service speedup. However, the challenge is how to accurately measure the relationship

between the behavioral factors and the objective outcomes, which might be nonlinear and

complicated in healthcare. In the objective function, it is interesting to consider variance-

or quantile-based risk measures in healthcare. Some advanced SO literature has provided

evidence supporting the use of quantile estimates as the measure of comparison (e.g., [19]).

In addition, identifying Pareto solutions in multiple-objective SO (MOSO) problems in

healthcare is an interesting area since preferences among healthcare stakeholders are al-

ways conflicting [133]. The challenge is that solving a MOSO problem normally requires

more computational effort than solving single-objective problems. According to a recent re-

view [74], the future development of MOSO methods should notice two points: (1) keeping

parallel algorithmic implementation in mind, and (2) first studying biobjective problems.
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5 What are the SO approaches
In order to achieve the desired goal, researchers should now decide on how to model and

solve such problems in terms of simulation methods and of optimization algorithms/packages.

5.1 Categorization based on simulation method
Table 6 categorizes the articles based on the simulation modeling methods. In the

reviewed papers, discrete-event simulation (DES) is by far the most popular method to

model healthcare operations. The reason is that DES enables the study of discrete, dy-

namic, and stochastic systems with various levels of detail and complexity in the healthcare

environment. Monte Carlo simulation (MCS) is the second most popular method. MCS is

a discrete, static, and stochastic simulation method, which is a scheme applying random

numbers for solving certain problems. MCS is usually used to estimate the unknown func-

tion (i.e., f(x, y, ω) or g(x, y, ω)) by repeatedly generating many independent sample paths

for each solution. Agent-based simulation (ABS) is found to be the least popular simulation

method from the three. However, ABS can simulate the interacting and autonomous agents

whose behaviors and interactions with their environment (including other agents) are mod-

eled as a set of behavioral rules [77]. For this reason, we observe that ABS is a useful tool

to study healthcare systems with complex behaviors, e.g., the planning of epidemic-control

resources [98, 77] and the planning of hospital emergency departments [97, 109].

Table 6. Simulation modeling methods.

Method References

DES [185, 91, 84, 83, 37, 145, 26, 78, 180, 115, 152, 14, 181, 122, 119, 76, 64, 62,
104, 106, 63, 50, 2, 126, 34, 103, 153, 49, 107, 142, 111, 128, 101, 102, 134, 35,
166, 129, 183, 178, 110, 39, 90, 136, 184, 131, 173, 59, 141, 13, 179, 27, 82, 9,
1, 169, 132, 57, 114, 168, 144, 127, 42, 36, 95, 137, 113, 138, 47, 174, 11, 55,
65, 33, 67, 38, 149, 60, 135, 56, 123, 117, 31, 30, 4, 61, 157, 171, 164]

MCS [3, 40, 176, 94, 92, 118, 93, 154, 43, 109, 25, 18, 150, 129]
ABS [109, 98, 97, 99, 77, 6, 175]

Notes. DES: Discrete-event simulation; MCS: Monte Carlo simulation; ABS: Agent-based simulation.

5.2 Categorization based on paper focus (algorithm/package)
Table 7 provides a classification of the literature based on three categories: methodology-

focused, domain-focused with developed algorithms or with optimization packages. Methodology-
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focused papers focus on developing/improving SO algorithms and usually use simple health-

care resource planning problems (so-called toy problems) to demonstrate the performance

of the proposed SO algorithm. In contrast, domain-focused papers aim to tackle practical

healthcare resource planning problems (with the help of SO), and they tend to relax some

stringent assumptions or to involve more realistic characteristics in the SO model. To solve

such problems, some authors might develop and apply efficient algorithms (i.e., domain-

focused with developed algorithms), while others might directly apply existing optimization

packages (i.e., domain-focused with optimization packages).

Table 7 reveals that the focus of SO is on solving practical healthcare problems while

methodology-focused papers with healthcare “toy problems” are very rare. Although a ma-

jority of articles develop/apply sophisticated SO algorithms to solve their planning prob-

lems, a fair number of domain-focused SO studies also use built-in optimization packages

within a simulation software. OptQuest is the most popular optimization package which

is often integrated with Arena, a DES software (e.g., [179, 27, 11]). In addition, some

algorithm-focused papers (e.g., [37, 154, 178]) use OptQuest as a comparison/benchmark.

Table 7. Classification based on focus.

Type Focus References

Developed
algorithm

Methodology [112, 48, 107, 170]
Domain [154, 122, 110, 98, 184, 101, 131, 129, 145, 160, 93, 3, 26,

116, 76, 90, 43, 148, 136, 173, 142, 39, 64, 20, 118, 91, 104,
159, 78, 119, 151, 50, 155, 180, 153, 62, 111, 182, 183, 115,
152, 77, 14, 99, 97, 126, 130, 84, 92, 141, 35, 176, 63, 166,
134, 2, 100, 49, 106, 32, 105, 34, 59, 37, 185, 103, 102, 44,
181, 177, 94, 163, 83, 165, 58, 40, 178, 156, 172, 88, 162,
161, 8, 12, 6, 175, 25, 18, 60, 135, 56, 123, 31, 4, 46, 61, 72,
150, 164]

Optimization
package

Domain [154, 122, 110, 113, 109, 85, 114, 138, 86, 71, 179, 13, 47,
168, 137, 174, 144, 127, 95, 132, 42, 27, 11, 82, 169, 57, 36,
9, 55, 1, 65, 33, 128, 37, 178, 46, 38, 149, 117, 30, 157, 171]

5.3 A gentle introduction to simulation optimization algorithms
We classify the SO algorithms according to whether they can address problems with dis-

crete or continuous decision variables [17, 5], as shown in Table 8. The acronyms associated

with the SO algorithms will be used throughout this paper.
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Table 8. Classification of SO algorithms and their associated acronyms.

Variables Solution space Algorithms More specific algorithms

Discrete
decision
variables

Finite and
small solution
space

Ranking and selection (R&S) Indifference-zone procedures (IZ)
Optimal computing budget allocation (OCBA)

Multiple comparison
procedures (MCPs)

Large/infinite
solution space

Ordinal optimization (OO)
Direct search methods (DSMs)
Random search methods (RS) Tabu search (TS)

Continuous
decision
variables

Genetic algorithms (GAs)
Simulated annealing (SA)
Scatter search (SS)
Particle swarm optimization (PSO)

Metamodel-based methods (MMs) Response surface methodology (RSM)
Artificial neural networks (ANNs)
Kriging (KR)

Gradient-based methods (GMs)
Sample path optimization (SPO)

Notes. Many of the algorithms that are applicable to the problem with continuous decision variables are also, with some modifications,
applicable to the problem with large/infinite solution spaces, e.g., ordinal optimization, direct search methods, and random search methods.

When decision variables are discrete and the solution space is finite and small (typically

with hundreds of solutions), algorithms include ranking and selection (R&S) and multiple

comparison procedures (MCPs). R&S has two main formulations: (1) to minimize the

number of simulation runs needed subject to a specified probability of correct selection of

solutions (most procedures try to guarantee that the performance of the eventually selected

solution differs from the optimal solution performance by at most δ, called the indifference-

zone (IZ) [79]) and (2) to maximize the probability of a correct selection subject to a

specified computational budget (called the optimal computing budget allocation (OCBA)

[29]). Unlike R&S, MCPs run a number of simulation replications per solution to draw

inferences on the performance measures by constructing confidence intervals.

When the feasible solution space is large (or potentially infinite), algorithms that have a

search procedure are required. Ordinal optimization focuses on sampling a selected subset

of the solutions and on evaluating them to choose the best one [68]. Direct search methods

are defined as the sequential examination of potential solutions generated by some strategy

[89]. Many direct search methods developed for SO are extensions of the ideas for derivative-

free optimization [89]. Random search methods sample a set of feasible solutions in each

iteration, conduct simulations, and then use the simulation results to decide what solutions

should be sampled in the next iteration and which one is the current best solution [7].

In the area of continuous SO problems, metamodel-based methods are typically use-
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ful and focus on learning the relationship between input decision variables and output

responses to approximate a potential functional form (known as a metamodel) [17]. The

functional forms can be diverse, e.g., polynomials, artificial neural networks, and Kriging

[15]. Response surface methodology is a metamodel-based method that often constructs

linear/quadratic approximations to the objective function [17]. Unlike metamodel-based

methods, gradient-based methods and sample path optimization require both differentia-

bility and continuity in the objective function. Gradient-based approaches attempt to make

a movement in the gradient direction given a current best value of the decision variables

[52]. Sample path optimization first takes many simulation runs, and then tries to optimize

the resulting estimates, rather than working with the underlying unknown function itself.

5.4 Categorization based on SO algorithm

5.4.1 Categorization based on variables and stochastic constraints
According to Table 9, most papers focus on the problems that only have discrete de-

cisions to make. These discrete decision variables might either be binary (e.g., patient-to-

appointment scheduling [40, 44]), integer-ordered (e.g., the number of staff [58, 35, 88]),

or categorical variables (e.g., indexing different combinations of multiple input parameters

[128, 57, 159]). A few papers solely involve continuous decision variables, e.g., time-related

decisions (e.g., the appointment time of patients [182, 154, 20]) and budget-related deci-

sions (e.g., [55, 77]). Relatively fewer papers address both discrete and continuous vari-

ables together. These papers tackle the two kinds of variables either in a separate way

[160, 136, 126, 110], by assuming some discrete variables to be continuous and rounding

the optimal solution to get integer values [166, 111], or by solving a mixed integer linear

programming [185, 118].

In some SO problems, certain constraint functions might not be directly available, re-

ferred to as stochastic constraints (see Table 10). Specifically, they are constraints imposed

on the maximum expected waiting times (e.g., [185, 100, 85]), on the probability of patient

rejection [114, 11], on the expected overtime [43, 93], and on the expected bed occupancy

[126, 43]. Three methods are observed in the reviewed papers to address the stochastically

constrained problem. First, stochastic constraints can get into objective functions by using

penalty functions [126, 111, 35] or a Lagrangian function [112], which facilitates the use
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Table 9. Classification based on the type of decision variables.

Type of variable References

Discrete [128, 169, 165, 172, 109, 100, 114, 113, 144, 11, 13, 177, 33,
43, 176, 40, 163, 92, 93, 97, 99, 129, 48, 58, 44, 86, 106, 131,
27, 85, 141, 84, 42, 83, 82, 98, 14, 94, 168, 32, 1, 101, 119,
39, 115, 103, 64, 35, 26, 104, 2, 76, 90, 102, 179, 37, 174, 95,
148, 57, 88, 62, 50, 34, 78, 116, 142, 178, 132, 184, 138, 180,
137, 107, 170, 112, 181, 152, 67, 3, 173, 71, 156, 151, 159,
145, 46, 38, 149, 117, 30, 167, 162, 161, 8, 12, 6, 175, 135,
123, 31, 61, 72, 164]

Continuous [122, 36, 182, 183, 105, 77, 154, 20, 55, 9, 47, 134, 153]
Discrete & continuous [160, 118, 166, 136, 110, 126, 185, 111, 25, 18, 56]

of a standard SO algorithm to solve the problem. The major challenge of using penalty

functions is the proper tuning of penalty parameters. Second, some SO algorithms (e.g.,

R&S [160, 100] and sample path optimization [163, 92, 43, 93]) themselves or with suitable

adaptions have the ability to deal with the stochastic constraints. Third, specific techniques

(e.g., violation-constraint handling [64]) can be incorporated into the SO algorithm.

Table 10. Classification based on the stochastic constraints.

Object Type References

Patients Expected waiting time
/service quality

[58, 3, 59, 112, 85, 97, 62, 100, 20, 35, 64, 160,
185, 25, 18, 30, 31, 167]

Expected rejection
/cancellation rate

[114, 11, 163]

Resources Expected overtime [93, 92, 163, 43, 160, 167]
Expected occupancy [43, 163, 126]

Other [84, 111, 110, 18]

Notes. Other constraints include, e.g., caregivers’ duty length.

5.4.2 Categorization based on used SO algorithm
Table 11 categorizes the papers according to the SO algorithms. It is observed that

random search methods have been by far the most popular SO technique applied. Genetic

algorithms are the most frequently used random search methods. Generally, the GA-based

SO includes four steps: (1) initialize a population of solutions (chromosomes), (2) evaluate

the solutions (fitness) through simulation, (3) choose solutions and generate a new solution

(offspring) by crossover and mutation, and (4) repeat until certain stopping criteria are
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met. To further improve the problem solving efficiency of GAs, additional approaches such

as R&S (OCBA [63, 153, 49] and IZ [165]) and other RS methods (e.g., simulated annealing

[63] and custom neighborhood search algorithm [185]) have been integrated with GAs. Tabu

search shows up as another popular random search method in the SO framework. Similarly

to GAs, simulation is used for evaluating the move of the TS iteration to reach better

solutions. To improve TS’s efficiency, some researchers adapt the basic TS [177, 2, 142].

For example, a reactive tabu search is developed to solve the ambulance location problem

modeled in the SO framework [177].

Table 11. Classification based on applied SO algorithms.

Algorithm Type References

R&S IZ [160, 100, 165, 48]
OCBA [34, 101, 102, 64, 50, 63, 35, 153, 49, 103]

MCPs [170]
OO [103, 134]
DSMs [110, 39, 111]

RS

GAs [90, 184, 131, 116, 148, 173, 153, 49, 59, 107, 63, 50, 2, 126, 185,
175, 25, 18, 4, 56, 46]

TS [92, 94, 43, 136, 142, 84, 141, 32, 105, 177, 83, 40, 2, 123]
SA [92, 136, 91, 35, 63, 167, 60]
PSO [34, 101, 102, 12, 31]
SS [90, 84, 32, 83]
Other [92, 94, 177, 40, 118, 163, 98, 76, 64, 104, 119, 99, 106, 172, 166,

159, 62, 6]

MMs

RSM [178, 122, 105, 154, 77, 88]
ANNs [64, 119, 178, 38, 175, 135]
Kriging [37, 12]
Other [178, 130, 166, 156, 185, 6]

GMs [166, 122, 160, 129, 182, 183, 112]
SPO [160, 92, 94, 118, 163, 93, 176, 43, 20, 8]
Other [84, 83, 176, 37, 156, 40, 98, 185, 91, 145, 3, 26, 20, 78, 151, 155, 180,

115, 152, 14, 97, 44, 181, 58, 27, 12, 31, 4, 135, 162, 161, 150, 61]

Notes. Other algorithms include, e.g., custom heuristics for optimization (e.g., [115, 176, 58, 180]) and
additional techniques to improve the classical SO algorithms (e.g., neural network accelerators [84, 83]
and variance reduction techniques [40, 27]).

Metamodel-based methods, among which RSM and ANNs are the most popular meth-

ods, are next in line when enumerating frequently used SO algorithms. Most of the RSM-

based articles use two sequential procedures to approximate a polynomial metamodel (e.g.,

[122, 154, 77, 105]). ANNs are powerful to estimate complex nonlinear input-output rela-
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tionships [178, 119, 64]. The primary drawback might be the excessive use of simulation

runs in one area before exploring other areas of the search space [53]. Kriging is a more

efficient method since it provides at candidate solutions a predictor variance which can

indicate poorly sampled areas in the solution space. For example, Coelho and Pinto [37]

apply Kriging-based SO to solve the ambulance location problem and the predictor variance

is used to balance local and global searches.

Sample path optimization is often integrated with other optimization methods (e.g., RS

methods) to find (near-)optimal solutions in the reviewed papers (e.g., [93, 118, 94, 92]).

Compared to SPO, gradient-based methods using sample gradients are generally more ef-

ficient [183, 160]. Although the gradient-based methods are typically designed for SO

problems with continuous input variables, there exists research that uses it to deal with

discrete input variable problems [166, 129, 112]. For instance, in Pan et al. [129], discon-

tinuities of the gradient cost function are smoothed by smoothed perturbation analysis to

derive the unbiased gradient estimation.

Among the R&S methods, basic IZ procedures are usually used to select better solutions

(e.g., appointment/surgery schedules [165, 48, 160], staffing levels [100]) among a small set

of solutions with some statistical guarantee. Extensions of IZ frameworks are introduced

in some research [48, 165]. Specifically, Fan et al. [48] develop a new IZ formulation and

design two selection procedures that can select the solution with the best worst-case mean

performance in the presence of input uncertainty (i.e., robust simulation optimization).

Another R&S method, OCBA, is usually integrated with random search methods in order

to effectively allocate simulation budgets in the search process for single-objective problems

[101, 64, 102] or for multi-objective problems (in this case, MOCBA) [34, 49, 50].

Many studies advise to consider a more nuanced aspect of healthcare operations by

incorporating important real-life features that have been ignored. As a result, existing al-

gorithms might become more time-consuming for large-scale and complex problems. Future

research needs to further improve the efficiency of algorithms. One possible approach is to

devote more computational power to identifying elite solutions within early iterations and

then to increase the accuracy of the best solution for later iterations. Another challenge

consists of specifying an appropriate input distribution in simulation modeling since there

might be multiple possible distributions to fit the input parameters. Therefore, robust sim-
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ulation optimization methods could be developed to deal with this situation, which seek

solutions that are robust to the input uncertainty. Two main approaches exist for robust

SO: the worst-case approach (see [21]) and the mean-variance trade-off approach (see [41]).

Robust SO has seldom been investigated in the healthcare resource planning context (we

are only aware of [48, 12]), which constitutes an interesting area for future research.

6 Validating and applying the model
The final steps consist of validating the developed SO models (in terms of the simu-

lation component and the whole model) to illustrate the applicability of the research. A

cornerstone to the success of applying SO to healthcare planning is to check whether the

simulation model can provide a satisfactory range of accuracy that is consistent with the

intended application of the model (i.e., model validation [143]). As evident from Table 12,

only 41% of the surveyed articles explicitly mention performing a validation of the simu-

lation model, while many articles do not mention this. Several ways are used for model

validation in the literature.

First, if the real data are available, model validation is often performed by comparing

the simulation output with the existing system data regarding a single performance mea-

sure (e.g., [61, 13, 36, 88]) or multiple performance measures (e.g., [47, 35, 64, 179, 90, 97]).

Normally, simultaneously comparing multiple performance measures can provide a more

accurate simulation model, since many healthcare planning problems consider multiple

components of the real system and involve several performance measures. The comparison

could be done informally by simply comparing summary statistics (e.g., the sample mean

[35, 90, 13, 100]) or more formally conducted by performing appropriate statistical proce-

dures (e.g., a correlation test [90, 34], a hypothesis test [36, 149], and confidence interval

procedures [173, 178, 172, 88, 128]) for the performance measures.

A formal statistical procedure is more reliable than simply comparing summary statis-

tics since the simulation outputs are stochastic. Whereas a hypothesis test produces only a

“reject”/“fail-to-reject” conclusion, a confidence interval procedure provides this informa-

tion (according to the interval missing/containing zero) and further quantifies the magni-

tude by which the expectations differ. The latter procedure is more preferable for model

validation since the users can decide whether the difference between the model and the
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Table 12. Validation of simulation models and test of SO models.

Type References

Validation
of
simulation
models

Real data
(single measure)

[157, 36, 128, 91, 55, 116, 61, 172, 13, 37, 88, 31, 33,
32, 113, 141, 138, 107, 65, 30, 14, 150]

Real data
(multi-measure)

[95, 57, 34, 63, 1, 168, 67, 173, 117, 47, 35, 64, 179,
90, 49, 135, 175, 100, 149, 153, 111, 178, 97, 137, 123,
162, 161, 157]

Expert opinion [36, 95, 57, 128, 34, 63, 91, 55, 116, 1, 168, 67, 173, 2,
159, 174, 50, 157]

Others (unclear) [149, 4, 144, 78, 110, 77, 98]

Test of SO
models

Theoretical
data

[9, 83, 119, 183, 118, 112, 176, 154, 40, 20, 92, 148, 93,
78, 18]

Real data [42, 180, 103, 26, 115, 145, 184, 76, 129, 39, 132, 27,
82, 169, 114, 11, 122, 134, 152, 181, 142, 62, 102, 136,
84, 185, 3, 101, 126, 104, 106, 166, 59, 131, 156, 94,
163, 99, 170, 48, 109, 71, 85, 86, 151, 155, 44, 58, 177,
160, 182, 130, 165, 43, 110, 95, 57, 127, 65, 33, 179,
1, 36, 137, 168, 144, 113, 138, 174, 55, 13, 47, 37, 91,
35, 64, 90, 141, 111, 14, 50, 34, 128, 107, 173, 67, 178,
153, 49, 2, 172, 77, 88, 98, 97, 32, 105, 116, 159, 100,
46, 4, 25, 56, 167, 8, 38, 123, 12, 31, 162, 161, 6, 175,
30, 149, 117, 135, 60, 61, 157, 171, 72, 150, 164]

Implement-
tion

Support tool [127, 174, 20, 128, 178, 168, 181, 3, 98, 38, 161, 164]
In practice [101, 103, 97, 138, 99, 164]

system is practically significant, depending on the model’s purpose and the user’s utility

function. Furthermore, the assessment and comparison could be made by using graphical

plots, which are quite useful for facilitating understanding and buy-in from practitioners.

Second, expert opinion and experience could be taken into account in the development of

the simulation model. This facilitates the simulation model to be reasonable and consistent

with perceived system behavior (called face validity). In the reviewed literature, this way

is usually used as an additional and reinforcing step to validate the model (e.g., [63, 168,

128, 116, 36]). There is often “a tacit assumption that statistical methods for comparing

model output with observed data are the “gold standard” and face validity is an inferior

method of validation” [23]. However, when the real data are not available, it is important to

incorporate expert knowledge and to discuss simulation results with healthcare practitioners

(e.g., [159, 174, 50, 157]).

The whole SO model should be tested with data and/or applied in practice to examine
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whether the model performs as expected. Table 12 shows that a majority of papers test their

research based on real-world data. However, simply testing developed models on real-world

data does not mean that the models can be implemented in reality. We define a two-level

scale of implementation: (1) the development of a decision support system/graphical user

interface, and (2) the actual implementation in practice. The former aims to develop a user-

friendly decision support tool based on the proposed SO model for healthcare managers to

use in practice, while the latter describes the actual test or implementation of the proposed

model in a real healthcare facility. Notice that even properly built decision support systems

may not be adopted/implemented in practice. We learn that less than 12% of the articles

(around 8% for (1) and 4% for (2)) report on the implementation of the models. The

latter figure is comparable to previous findings in the healthcare OR/MS literature review

of Brailsford et al. [24] who report a figure of 5.3%. The reasons for the small number of

implementations in practice might be the difficult development of a platform system that

needs to be linked to many healthcare databases [127] and the lack of enough data that can

be collected [63, 91, 109]. Moreover, the developed methods might be too complicated to

implement in practice and the methods require a large change in provider practice/culture.

Among those sparse studies that report on actual implementation, Li et al. [101] conduct

a pilot study in the hospital endocrine department to validate their SO-based research that

manages the service priorities between appointment patients and walk-in patients in real

time. Woodall et al. [168] indicate that some of their solution results for staffing decisions

at a cancer center have been adopted by the management. However, these authors provide

few details about the implementation process and the lessons learned from it. In contrast,

Lee et al. [97] provide detailed steps to implement the developed SO system in a hospital

emergency department for optimizing the workflow. They learn that the collaborative effort

between healthcare participators and OR researchers results in scientific advances on both

fronts. Similarly, Visintin et al. [164] present some fundamental aspects to the successful

implementation, mainly including (1) to reduce top management and staff skepticism about

the model and (2) to introduce changes to their established way of working.

In short, SO models appear to suffer from the same issues as other healthcare OR/MS

approaches, i.e., only a small part of the papers reports on the (real-life data based) model

validation of simulation and even fewer papers report on the implementation in practice.
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For future work, we encourage the development of accurate healthcare simulation mod-

els and the provision of key information on the actual implementation. To facilitate the

implementation, it is important that the proposed method should be easy-to-implement

(and -understand) on the practitioner side at least to some degree. The practical imple-

mentation may also require the development of Information Communications Technology

solutions that are possibly integrated with the healthcare organizations’ database systems.

7 Relations between classification fields
In this section, we will look at the relations between the individual classification fields.

Tables 13 and 14 combine a few fields and list numbers of publications at the intersections.

Table 13 (from the column perspective) shows that the DES method and RS algorithms

have extensively been used with almost all the fields. MCS and SPO are frequently applied

to similar fields. Both are more likely to be applied to lower-level decision problems (i.e.,

operational offline level), where stochastic constraints and multiple objectives are involved.

This is understandable as MCS is often used to estimate mathematical expectations of

objective functions (e.g., resource overtime) and of stochastic constraints.

ABS is often applied to strategic decision problems with discrete decision variables. This

seems counterintuitive since ABS is able to handle lower-level decision problems. One reason

is that ABS is exclusively used to study emergency care services in the reviewed literature

[97, 109, 98, 77]. As Hulshof et al. [73] indicated, emergency care services inherently have

shorter planning horizons than other care services. As a result, some of the strategic decision

problems of emergency resource planning are much related with lower-level operations that

could be modeled in ABS. Furthermore, in ABS-based papers, the developed SO algorithm

is exclusively tested on real-life data and the results have a higher likelihood (3 out of 7

papers) to be implemented in practice compared to other simulation methods. Thus, it

is emerging and promising to integrate ABS into different SO algorithms to facilitate the

implementation. However, ABS is seldom integrated with optimization software packages.

Table 13 also shows that MMs are another popular SO algorithm that can be applied to

various problem settings and combined with different simulation methods. The relatively

lower numbers of publications compared to RS (in many fields) indicate that there are

many opportunities for future work. R&S, MCPs and OO are often developed to deal with
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Table 13. The number of publications to perform a method/implementation (column) with
a field (row).

Field Simulation method SO algorithm
Imple-
ment.

All DES MCS ABS
R,M,
O∗ DSMs RS MMs GMs SPO

All 89 14 7 16 3 71 18 7 11 17
Strategic level 64 44 2 6 8 2 27 13 2 0 11
Tactical level 32 25 0 0 3 0 20 2 1 0 5
Offline level 38 15 10 0 4 0 21 2 4 10 1
Online level 9 7 2 0 0 0 4 1 1 1 0

Discrete var. 104 64 9 6 11 1 53 11 2 8 15
Continu. var. 13 8 1 1 2 0 4 4 3 1 1
Both 11 7 3 0 1 2 8 2 2 2 0

Stoch. constr. 29 13 6 1 4 2 17 2 2 6 3

Single obj. 59 41 2 3 8 1 28 8 1 1 7
Multiple obj. 71 38 11 4 8 2 41 8 5 10 6

DES 89 89 1 0 11 3 47 9 4 0 11
MCS 14 1 14 1 0 0 7 1 1 7 1
ABS 7 0 1 7 0 0 4 3 0 0 3

Method. focus 4 1 0 0 2 0 1 0 1 0 0
Doma. develop. 103 56 13 6 16 3 56 17 7 11 11
Doma. package 42 36 2 1 0 1 15 5 1 0 7

Validation 59 46 1 4 8 2 29 7 0 0 8
No mention 82 43 13 3 8 1 42 11 7 11 9
Theory data 15 5 7 0 0 0 8 2 2 6 1
Real data 125 83 7 7 15 3 62 16 5 5 16
Implement. 17 11 1 3 2 0 4 2 0 1 17

Notes. All means the total number of publications associated with that row or column. All might not equal the
sum of the numbers in that row/column since multiple methods might be used in a paper or “other” methods
are used. ∗R, M, O: R&S, MCPs, OO.

decision problems with discrete variables and integrated with DES in a real-data context.

We find a strange trend that all GMs-based papers do not explicitly mention the validation

procedure of simulation even though those papers are mainly domain-focused. One reason

might be that those papers focus more on developing and testing advanced SO algorithms.

In addition, implementation is more likely to be reported in papers that handle higher

decision levels (i.e., strategic and tactical levels) with discrete variables and that use real-

life data to test the models. This might be explained by the fact that higher decision levels

involve a smaller number of stakeholders of the healthcare facility (e.g., top management)

and avoid too many interruptions to the day-to-day working of frontline staff.
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Table 14. The number of publications to use an objective (column) with a field (row).

Objective Performance measures

All Single Multi.
Acce.
times

LOS
Throu-
ghput

Def-
erral

Over-
time

Idle
time

Utili-
zation

Leve-
ling

Make-
span

Finan-
cial

All 59 71 73 16 13 6 25 18 12 9 7 29
Strategic level 64 30 25 26 12 8 3 0 0 8 2 1 22
Tactical level 32 13 17 23 1 3 0 9 11 0 5 0 2
Offline level 38 9 29 22 3 2 3 17 8 4 2 6 4
Online level 9 7 2 5 0 1 0 1 0 0 0 0 2

Stoch. constr. 29 12 18 15 4 4 3 7 4 1 1 2 10

DES 89 41 38 46 13 6 6 7 8 9 5 5 18
MCS 14 2 11 8 0 2 0 7 3 1 1 1 3
ABS 7 3 4 2 3 2 0 0 0 2 0 0 0

DSMs 3 1 2 0 0 0 0 0 0 0 0 0 2
RS 71 28 41 41 7 5 4 14 13 7 1 6 13
MMs 18 8 8 10 2 2 1 1 1 0 0 0 5
GMs 7 1 5 5 0 0 1 4 1 0 0 0 1
SPO 11 1 10 7 0 1 0 6 3 1 1 1 2

Validation 59 31 22 29 9 6 2 1 3 9 4 2 11
No mention 82 28 49 44 7 7 4 24 15 3 5 5 18

Notes. All means the total number of publications associated with that row or column.

From the row perspective of Table 13, we notice some interesting connections. First,

many of the SO algorithms are applicable to the other type of decision variables and to the

stochastically constrained problem, with some modifications. This means that the type of

decision variables (discrete or continuous) and the incorporation of stochastic constraints

are not decisive criteria when choosing the SO algorithm. Second, multi-objective problems

tend to be more common than single-objective problems under almost all SO algorithms.

This reveals the capability of the SO approach to deal with multiple objectives.

Table 14 reveals some interesting patterns between the objective function field and other

classification fields. First, the decision problems of tactical and offline operational levels

are more likely to consider multiple objectives (e.g., patient access times, resource overtime

and idle time), while this is not the case for strategic decision problems where patient

access times or financial objectives are often considered. Second, stochastically constrained

papers often involve the objectives of patient access times, financial values and resource

overtime. Most of these measures also appear in the stochastic constraints (see Table

10). For example, patient access times can be optimized in the objective function or can be

defined in a constraint to limit the maximum times. Third, validation-mentioning literature
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often uses the objectives of patient access times, LOS, utilization, throughput and financial

measures. Understandably, these measures (especially, the first four) are often used as key

performance indicators to validate the simulation model in the literature.

8 Discussion

8.1 Where to use SO for healthcare
The number of articles on using SO to study healthcare resource planning problems in

recent years is obviously growing (from 19 articles in 2004–2012 to 117 articles in 2013–2021,

see Figure 1). Despite this fact, the relative use of SO to other OR/MS methodologies

(e.g., simulation, mathematical programming and analytical stochastic models) in similar

healthcare problems still remains small. Specifically, simulation modeling has been used for

a wide range of applications in healthcare [22, 24]. Mathematical programming (e.g., linear

programming and integer programming) and analytical stochastic models (e.g., queueing

theory and Markov Decision Processes) are also popular methods to deal with resource

planning in the six care services according to Hulshof et al. [73].

There are several advantages of using SO and suitable situations to deal with complex

healthcare resource planning problems compared to other methods. First, SO techniques

inherit specific advantages of the traditional simulation method in modeling healthcare

systems [22]. Meanwhile, SO can overcome the limitation that occurs in a typical simulation

study, where only a limited number of system alternatives are evaluated and compared. This

is one of the frequently recognized benefits in the literature (e.g., [83, 64, 86, 107, 57]) since

healthcare resource planning often involves a large solution space (see Section 3).

Second, SO is suitable for solving an optimization problem when the objective func-

tion has no analytical closed-form expression, which is common in complex and stochastic

healthcare systems [168, 119, 134, 185, 107]. Mathematical programming techniques have

a limited ability for this kind of problems. Although stochastic mathematical models (e.g.,

stochastic programming) could overcome some of these limitations, they almost invariably

make the model still more complicated [115, 160]. For instance, Marla et al. [115] discuss

that it is more difficult to incorporate the abandonment behavior of patients in stochastic

programming than in an SO framework.

Third, SO is more tractable and suitable for large problem instances than mathemat-
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ical programming models [182, 160, 78]. For example, Zhang et al. [182] formulate the

appointment scheduling problem as two formulations: a stochastic integer programming

model and a simulation optimization model. They show that the former model can exactly

solve moderate-size problem instances under certain assumptions and the latter achieves

near-optimal solutions for the same problems, while the latter is also able to scale up to

much larger problem instances.

Fourth, analytical stochastic models such as queueing theory and Markov Decision Pro-

cesses could also solve healthcare planning problems under uncertainty [73]. The main

difference between simulation (optimization) and analytical stochastic models is that the

former can describe the detailed activities of individuals and the interactions between them,

while the latter primarily study the flow of homogeneous groups with more strict problem

assumptions (e.g., certain probability distributions). If it is necessary to model a healthcare

system at a higher level of complexity and detail, SO is more suitable [83, 44, 11, 90, 91, 116,

165]. In addition, an SO model is suitable for the situation in which the objective function

cannot be effectively approximated by analytical models [166, 174, 152]. For instance, if

the objective is to reduce the variability in the scheduled workload, SO may be suitable

since the daily workload variability is not easy to capture in analytical models.

However, SO has several disadvantages, including the time, effort and data involved

in developing, validating, and then experimenting the model. Nevertheless, the time and

effort required for model building can be certainly decreasing as more researchers gain

experience and as the power of available software packages increases. The cost of collecting

the required data would ease with the ever-improving healthcare information systems. In

general, a useful guideline in SO modeling is to keep the model as simple as possible while

capturing all necessary factors (key inputs and objective functions) of interest.

8.2 How other methods complement SO for healthcare
An effective resource planning in healthcare might require a combination of multiple

methodologies, which can take advantage of their complementary nature. In this section,

we expand the discussion to other approaches to healthcare planning and their relation to

SO to provide useful insights on how different methodologies could complement SO.

Analytical stochastic models may be used in an exploratory way to determine the effects
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of demand and supply on resource use. The advantage is that once programmed, the models

can be tested and run quickly. In particular, the analytical stochastic models complement

SO for healthcare planning in three ways.

First, they can provide valid/theoretical insights on good modeling assumptions, e.g.,

how patient arrivals [39] or service times [63, 91] should be modeled at the emergency

department, and how the patient flow should be modeled [90, 176, 11, 181]. The fact that

simulation allows for more realistic modeling assumptions does not resolve all modeling

difficulties, e.g., the tradeoff between model confidence and tractability. The analytical

stochastic models in healthcare planning provide insights for managing this tradeoff, which

would be useful for developing high-confidence simulation models and tractable optimization

approaches. Also, many impactful papers outside the reviewed literature use analytical

models to provide theoretical insights on good modeling choices, e.g., on patient arrivals

[80, 81], on service times [146, 45] and on patient flows [70] at a healthcare facility.

Second, they can identify structural insights for healthcare planning problems, which can

then make the problem amendable to SO (e.g., [102, 114, 104, 176, 181, 40]). For instance,

if a paper identifies the structure of the (near-)optimal policy of a dynamic healthcare

planning problem to be of threshold-type (e.g., [147]) or index-based (e.g., [28]) using a

simplified model, this insight can then be used in combination with a simulation model that

relaxes the assumptions and uses SO to find the optimal threshold or to apply the index

policy for the more realistic model. In addition, Li et al. [102] discuss that the investigation

of a simplified patient referral process (with a threshold policy) between hospitals based

on an analytical queueing model can help to identify promising directions of deriving the

optimal threshold for the general model in the SO method.

Third, they can provide approximate formulas on the performance measures, which can

increase the computational efficiency in SO (e.g., [103, 134, 119, 160, 166]). For example,

Mousavi et al. [119] calculate the time of transferring the injured patients to trauma centers

by queueing theory (due to available analytical formulas), and calculate the waiting time

spent inside the trauma center by simulation. Li et al. [103] and Qiu et al. [134] apply a

multi-confidence model-based optimization approach, which integrates the advantages of

queueing model (low confidence, but quick estimation) and simulation (high confidence,

but time-consuming). This integration can relieve the computational challenges in SO for
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healthcare.

Mathematical programming techniques are usually used to provide (near-)optimal solu-

tions subject to a set of constraints that portray the conditions under which the decisions

have to be made. The optimal solutions are searched in an intelligent manner, allowing the

evaluation of healthcare planning problems with a large feasible solution region. Mathe-

matical programming models could complement SO for healthcare planning in two ways.

First, they can be embedded into the SO framework for healthcare planning to solve a

subproblem or to help to find better solutions [168, 141, 43, 142, 151, 176, 83]. For example,

Klassen and Yoogalingam [83] embed mixed-integer programming in the optimization step

of SO to help quickly approach an optimal solution. Saremi et al. [141] incorporate integer

programming and binary programming in SO, which helps to identify the initial solutions

and to provide promising solutions. In d’Obrenan et al. [43], mathematical programming

is first used to solve the healthcare planning problem and then the solutions are further

improved by SO. Furthermore, methods developed for mathematical programming models

can be applied to find optimal solutions of SO once the metamodel is obtained [185, 88].

Second, they can identify structural insights for healthcare planning problems, which

can provide a foundation for applying SO [83, 86, 141, 160, 182]. As noted by Klassen and

Yoogalingam [83], some stochastic mathematical programming studies for appointment

scheduling reveal that the optimal appointment intervals exhibit the dome pattern. This

insight may be used in SO that relaxes the standard assumptions to study how the dome

pattern may change under more realistic settings (e.g., [83, 86]). Tsai et al. [160] reformulate

the original optimization model of the surgical scheduling problem as a two-stage mixed-

integer model. The authors derive that the optimal solution of the second-stage problem is

a boundary solution, which lays a good foundation for implementing SO.

In a stochastic simulation, specifying proper input distributions is often challenging and

meanwhile, simulation cannot exactly evaluate the objective function due to randomness

in the output. Empirical and statistical methods provide a way of gaining knowledge

and information from the collected data. These methods can be used to identify/verify

relationships or infer cause-and-effect relations for the phenomenon of interest in healthcare.

Therefore, empirical and statistical methods could complement SO as follows.

First, they can provide a reliable estimation of the input parameters (e.g., [90, 181, 115,
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182]) and validate the model assumptions (e.g.,[83, 48, 129]) for sophisticated SO models

in healthcare. Kucukyazici et al. [90] integrate an empirical study on patient preferences

in cancer screening programs with SO, which leads to a better estimation of the partici-

pation level and workload at each care facility and provides insights on the design of the

cancer screening facility network in general. Marla et al. [115] use a rich dataset to model

spatiotemporal distributions of emergency calls and to empirically estimate the ambulance

abandonment behavior. The outcomes are incorporated into the SO model, which results

in a reliable ambulance allocation. Klassen and Yoogalingam [83] and Fan et al. [48] assume

lognormal service times for outpatient services as inputs since this distribution has been

found empirically. Outside the reviewed literature, empirical/statistical methods are also

widely used in this respect (e.g., [80, 146, 70]).

Second, they can provide a robust optimum of the SO for healthcare planning problems

[165, 48, 77, 118, 119], and provide managerial insights based on the obtained solutions

[57, 86]. Fan et al. [48] develop a robust selection procedure that selects the best alternative

with some statistical guarantee under input uncertainty. Wang et al. [165] develop an SO

method to sequentially construct a patient schedule using the statistical method of R&S, by

which the best schedule is selected with high confidence. Furthermore, Goienetxea Uriarte

et al. [57] combine data mining techniques (including statistical methods) and SO for ED

capacity dimensioning. This provides decision makers not only with optimal solutions

obtained by SO, but also with valuable knowledge about the variables and their interactions,

which can be found in those solutions and will lead to the best capacity dimensioning. The

latter is interesting since it can increase the practitioners’ understanding of the solutions and

increase the relevance of SO research to healthcare practice. As Terwiesch et al. [158] noted

that one of empirical research’s aims is to test operations management theory, empirical

studies can be used to test whether the outcome of an SO model is supported by empirical

evidence in healthcare.

8.3 Accurate simulation modeling for healthcare
The application of SO to healthcare is contingent on accurate simulation models for the

healthcare systems of interest. On the one hand, if the simulation model is not an accurate

representation of the system, any results derived from the model could be erroneous and
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may lead to costly decisions being made. Even, errors in healthcare simulation modeling

might ultimately result in lives lost and the associated liabilities surrounding such events.

Thus, the tolerable margin for error in healthcare simulation models is limited. On the

other hand, seeking optimal values with inaccurate simulation models would be meaningless.

Therefore, accurate modeling of healthcare systems requires significant attention, especially

in the application of SO to healthcare. Section 8.2 has provided some important insights

into accurate modeling. This section will highlight that not only model validation should

be carefully performed, but also a suitable choice of the type of simulation plays a role.

There have been consistently ongoing efforts to develop accurate simulation models in

healthcare, such as on hospital inpatient operations [146] and on hospital surgical depart-

ment operations [140]. Validation against real data shows that their model reproduces key

performance measures with some statistical guarantee. Several important aspects need at-

tention when validating the healthcare simulation model. First, due to the complexity of

healthcare simulation, model validation is not only something to be attempted after the

model has already been developed, but also during each possible step of the model de-

velopment. Also, we should validate not only the output of the overall simulation model,

but also the model components (e.g., input distributions). Second, a better method for

comparing system and model output data is to use historical system input data (if com-

plete) to “drive” the model rather than samples from theoretical probability distributions.

This (called the correlated inspection approach) could facilitate a statistically more precise

comparison. Third, care should be taken for the statistical procedures for model validation

(e.g., hypothesis testing and confidence intervals) since they require independent observa-

tions of the output performance measures. We recommend to use a confidence interval

rather than a hypothesis test for model validation.

There are other useful validation techniques that are seldom used in the reviewed papers.

First, one technique is formed by time-series approaches (a time series is a finite realization

of a stochastic process) [96]. They are attractive as only one set of output data is needed

from the system and one set from the model. Second, a good validation idea is to use one set

of data for calibration during the process of improving the model and another independent

set for final model validation [178]. Third, many papers aim to match the mean of the

system data rather than the variance. However, it might be better to consider both the
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mean and the variance in certain healthcare planning situations. For example, when the

aim is to manage and reduce variability in a healthcare system for improving performance,

variation is a key part in simulation. In this case, the data distributions of the system and

the model should sufficiently match. Otherwise it may seriously bias the results. For a

comprehensive coverage on model validation, we refer to Sargent [143] and Law [96].

A suitable choice of the type of simulation is also important for accurate healthcare

modeling, which depends on the nature of the underlying healthcare problem. There are

mainly four simulation techniques applied in healthcare modeling, including DES, MCS,

ABS and system dynamics (SD) [120, 139]. DES is a widely used simulation approach in

healthcare operations and resource planning problems [139], while ABS is less frequently

applied due to its relatively late emergence [120]. This is consistent with our findings.

Compared to ABS (a bottom-up approach), SD is often used to model health systems from

a more integrated (e.g., a hospital as a whole system) or top-level (e.g., healthcare policy

evaluation) angle [120, 139]. In contrast, none of the reviewed works uses SD to model the

healthcare facility. This constitutes a direction for future research.

On top of single-simulation models, there is an increasing interest in hybrid simulation

(defined as models that combine at least two simulation approaches) to take advantage of

the combined benefit [23]. Brailsford et al. [23] indicate that healthcare is the most frequent

and potential area of application for hybrid simulation. However, the validation of hybrid

models requires even more attention and effort than that of a single model since different

types of simulation choices involve different validation methods and data requirements.

These advances in healthcare simulation can be brought into the SO paradigm for

decision making. Attention should be paid to identifying certain structures inside specific

simulation models in order to enhance the performance of SO. For example, ABS has

a multi-level structure and often has a parameter-rich nature to characterize the behavior

and the features of each agent. Exploiting the structural properties of the simulation model

and the dependencies between parameters can reduce the search space size and thus, reduce

the computational cost of parameter evaluation when integrating SO algorithms. When

hybrid simulation is integrated into the SO paradigm, it is beneficial to choose appropriate

simulation techniques at different stages of the entire SO process in order to reasonably use

the time budget.
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8.4 Promising SO algorithms for healthcare
With accurate simulation models, appropriate SO algorithms may be used to solve the

healthcare planning problems. For comprehensive reviews about the recent development of

SO, readers can refer to Amaran et al. [5] and Fu and Henderson [54].

A latest review on R&S is performed by Hong et al. [69]. The authors discuss recent

achievements in adapting classical R&S to various practical problems, e.g., (1) large-scale

R&S (2) constrained R&S, (3) multi-objective R&S, and (4) R&S with input uncertainty.

These achievements could enhance R&S’s potential to solve real-life healthcare planning

problems. For ordinal optimization, Fu and Henderson [54] discuss that it has two key

ideas that continue to heavily affect SO work today, including (1) it is easier to identify

which of two solutions is better than to identify how much better, and (2) one might seek a

near-optimal solution rather than a full-blown optimal solution. This might also be the case

in healthcare applications. Healthcare practitioners might be satisfied with only one/two

correct digits, because this is good enough for the application.

Direct search methods appear to be a promising option due to their simplicity, flexibility

and reliability [89]. Although classical DSMs have been developed heuristically, Audet’s

survey [10] shows that recent DSMs have started to develop a convergence analysis. In

addition, they can now handle multiple objectives, general constraints, and integer and

categorical variables. These extend the ability of DSMs to solve more complex healthcare

planning problems. In contrast to DSMs, gradient-based methods rely on gradient infor-

mation. Although in principle it is often possible to obtain gradient information, general

healthcare planning problems in reality can still make such attempts difficult.

The metamodel-based methods have a large appeal compared to other SO methods due

to two distinct benefits [17]: (1) they obtain a deterministic metamodel response rather

than a stochastic one, and (2) they result in shorter run times in general than the original

simulation. Metamodel-based methods have proven to be beneficial in solving practical

problems [54, 37], which might make their way into the healthcare domain in the coming

years. For recent reviews, see Barton [16] and Kleijnen [87].

Random search methods are applicable to a broad range of problems [7]. They are also at

the core of the SO software that is now widely used. Compared to the above SO algorithms,

model-based methods use a probability distribution over the solution space (rather than
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any current set of solutions as in random search methods) to provide an estimate of more

promising search areas [5]. They seem promising in SO to efficiently search for the solution.

In short, if the research is methodology-focused, a wide range of healthcare toy prob-

lems are available for demonstrating the performance of the proposed SO techniques. If

the research is domain-focused or implementation-oriented in healthcare, the choice of SO

algorithms might play a role. Those algorithms with a stronger ability to effectively account

for real-life healthcare settings and to efficiently solve planning problems are promising. We

also see great potential for many SO algorithms to leverage large-scale parallel computing

that is now widely accessible [54], especially for those computationally-intensive algorithms.

9 Conclusion
This paper provides a comprehensive review of simulation optimization approaches for

healthcare resource planning problems. SO has been shown to be effective for solving

practical healthcare problems that, without too many simplifying assumptions, are too

complex for exact/analytical techniques. We have demonstrated that this technique has

become increasingly popular in recent years and in various care service planning problems.

We have proposed a logical and structural classification method to categorize the articles.

By comparing the literature along different angles, we unveil the degree to which SO

has been applied as well as trends that have arisen in this research field, as follows:

� The SO approach is most frequently applied to emergency care services and to strategic

decisions (e.g., capacity dimensioning and ambulance location decisions).

� Patient access times to healthcare services, resource overtime, and financial value are the

most used objectives. Multiple objectives are often considered and they are commonly

combined into a single weighted objective function.

� DES is a popular simulation modeling method. Among the SO algorithms, random

search methods (especially genetic algorithms) are the most popular. Metamodel-based

methods (especially RSM and ANNs) take the second spot. In addition, optimization

packages (especially OptQuest) are sometimes used.

� Most of the papers test the developed model with real-life data. However, SO appears

to suffer from the same issues as other healthcare OR/MS approaches, i.e., lack of model

validation of simulation and lack of implementation in practice.
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� We also examine the connections between the individual classification fields by consider-

ing multiple dimensions simultaneously. Many intersections between various healthcare

problem settings and SO approaches have not been researched to a large extent.

Based on our analysis of the literature, we identified major observations, insights and

conclusions that deserve special attention when studying this field.

� Where to use SO for healthcare. SO is less widely used in healthcare resource planning

than other OR/MS approaches. SO is suitable for incorporating complex and detailed

problem settings, for evaluating objective functions without analytical forms, as well as

for solving large problem instances in healthcare. However, the time, effort and data

involved in developing, validating and experimenting the model are non-trivial.

� How other methods complement SO for healthcare. Effective healthcare resource planning

might require an integration of SO with other OR/MS approaches. See Section 8.2 for

how these methods could complement SO for healthcare planning.

� Accurate simulation modeling for healthcare. An accurate modeling of healthcare systems

requires significant attention. For this, not only model validation should be carefully

performed, but also a suitable choice of the type of simulation plays a role.

� Promising SO algorithms for healthcare. Various SO algorithms have progressed consid-

erably and many of them have not widely made their way into the healthcare domain.

We see great potential for many cutting-edge SO algorithms to be applied to healthcare

planning, especially with the help of large-scale parallel computing.

We identify avenues for further research that provide opportunities for expanding ex-

isting methodologies and for narrowing the gap between theory and practice.

� New algorithms for old problems. Many healthcare resource planning problems have not

yet fully been explored by SO, e.g., operating room capacity, home care service and

residential care service planning. Moreover, for several already studied problems by SO,

a comprehensive comparison study among different algorithms might be interesting.

� New algorithms for new problems. Real-life healthcare problems appear to be diverse

regarding the type of decision variables, multiple objectives, uncertain parameters (input

distributions and stochastic constraints), and other complex factors (e.g., behavioral

factors and data availability). Thus, more advanced algorithms need to be developed, e.g.,

MOSO algorithms to identify Pareto solutions, robust SO and data-driven algorithms.
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� Impact on practice. To increase the impact of the research on practice, it is necessary to

see closer collaborations between researchers and practitioners in health systems. One key

point is that the proposed method should be easy-to-implement (and -understand) on the

practitioner side. Furthemore, the provision of key lessons on the actual implementation

is beneficial to our research community.
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