IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, X 1

BeauForT: Robust Byzantine Fault Tolerance for
Client-centric Mobile Web Applications

Kristof Jannes, Emad Heydari Beni, Bert Lagaisse and Wouter Joosen

Abstract—In recent years, part of the web is shifting to a client-centric, decentralized model where web clients become the leading
execution environment for application logic and data storage. However, current solutions to build decentralized web applications with
multiple distrusting parties often involve a decentralized backend of servers running a BFT protocol between them. Existing consensus
protocols using either all-to-all communication, or leader-based gossip suffer from performance degradation in unstable network
conditions. In this paper, we present BeauForT, a purely browser-based platform for decentralized BFT consensus in client-centric,
community-driven applications. We propose a novel, optimistic, leaderless, gossip-based consensus protocol, tolerating Byzantine
replicas, combined with a robust and efficient state-based synchronization protocol. This protocol makes BeauForT well suited for the
decentralized client-centric web and its dynamic nature with many network disruptions or node failures.

Index Terms—Peer-to-peer systems, byzantine fault tolerance, web applications.

1 INTRODUCTION

ROWSERS and client-side web technologies offer increas-
Bing capabilities to enable fully client-side web appli-
cations that can operate independently and in a stand-
alone fashion, in contrast to the server-centric model [1], [2].
Mobile applications are also more and more purely web-
based clients, where the execution environment is just a
browser-based process for a mobile web application. Web
3.0 can be defined as the decentralized web where users
are in control of their data, and that replaces centralized
intermediaries with decentralized networks and platforms.
Community-driven, decentralized networks can open the
road to many use cases for the sharing economy [3] or
shared loyalty programs for local communities [4]. Such
client-centric collaborations can, for example, enable a small
network of merchants in a local shopping street, or at a
farmer’s market to set up a shared loyalty program between
the merchants in an ad-hoc fashion. These small-scale,
specialized collaborative networks can empower motivated
citizens to bring value to their local community, without
involving an incumbent big-tech company that can change
the rules unilateral at any moment.

However, current state-of-the-art peer-to-peer data syn-
chronization frameworks for the browser such as Legion [5],
Automerge [6], [7], [8], and OWebSync [9] focus on full repli-
cation and eventual consistency between trusted clients.
Each replica can modify all data, and all modifications are
automatically replicated to all replicas. These protocols lack
Byzantine Fault Tolerance (BFT). Yet, they are easy to set up
and applications from trusted parties can leverage these to
synchronize and modify a shared data set between them.

Decentralized interactions between distrusting parties
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can be enabled by using a classical BFT consensus proto-
col such as PBFT [10], BFT-SMaRt [11], or HotStuff [12].
These classical BFT protocols are very fast and have a high
throughput, but typically assume server-to-server commu-
nication with low-latency network connections, and assume
every node is connected to all other nodes. Other classical
BFT consensus protocols, such as Tendermint [13], relax the
requirement that every node is connected to every other
node. Nakamoto consensus [14], used in several blockchains
such as Bitcoin and Ethereum [15], relaxes this requirement
and only requires a loosely coupled network. However,
blockchains based on Nakamoto consensus are too slow
for many use cases. They need minutes, or even an hour,
to confirm a transaction with high probability. Moreover,
they consume a large amount of energy and need a lot of
processing power. At last, Avalanche consensus [16] tries to
solve the scalability problem by using the concept of meta-
stability. Only a small subset of replicas needs to be sampled
in each round to reach consensus. However, a replica still
needs a connection to every other replica, as the replicas
that they need to sample change continuously.

Ultimately, a decentralized mobile application should be
able to run in a robust and resilient way over a network
of online client devices such as smartphones. We target
an environment with 10-100 lightweight and mobile web
clients. Such devices have a permanent yet unstable internet
connection over a data subscription, and are operational
and reactive most of the time. I.e., we assume those mobile
devices always have a 3G or 4G connection, but this kind of
connection is less stable than a wired connection and short
disruptions are commonplace. Many existing protocols use
all-to-all communication, which is simply not possible in
a web-based environment. A browser can keep a connec-
tion open to 10-20 other browsers, but after that perfor-
mance deteriorates quickly. Alternatively, there exist gossip-
based protocols, such as Tendermint, that do not require
a connection to every other node. However, Tendermint is
leader-based, which in practice means that when this leader
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fails, consensus will be delayed until the next leader is
elected. Moreover, these existing BFT consensus protocols
are designed for more server-like infrastructure that has
lots of processing power, storage space, and a stable, low-
latency network connection. The motivated citizens in our
envisioned use cases do not have this kind of knowledge,
budget, and infrastructure available to set up a private
network of servers, that are running a BFT protocol between
them. These citizens rather want to use their existing hard-
ware such as a low-end computer, or even a mobile device.

In this paper, we present BeauForT, a novel peer-to-peer
data synchronization framework for decentralized web ap-
plications between mistrusting parties. BeauForT combines
the efficient operation and lightweight setup of a peer-to-
peer data synchronization framework with the resilience
and fault tolerance of a BFT consensus protocol. The novel
BFT protocol, optimized for unstable network conditions
with higher latencies, does not require that all replicas are
directly connected to each other. It also does not rely on a
leader, removing the need for a costly leader-election proce-
dure when this leader is malicious or loses its network con-
nection temporarily. The latter scenario is common in our
target environment. Each browser replica only maintains
the current authenticated state, and does not need to keep
track of an operation log or transaction history, keeping the
storage footprint small. To further reduce the storage and
bandwidth requirements, we use an aggregate signature
scheme called BLS [17]. This also reduces the computational
requirements, as you can verify multiple signatures at once.
The authenticated state and consensus votes are replicated
over multiple hops using a gossip protocol.

To summarize, BeauForT combines the following contri-
butions in a browser-based middleware:

1) Lightweight, leaderless, client-centric Byzantine fault
tolerant consensus.

2) Resilient and robust, state-based synchronization of
both the data and the votes for the consensus protocol
using state-based CRDTs and Merkle-trees.

3) Delayed verification and aggregation of signatures us-
ing the BLS signature scheme.

Our evaluation, using our application use case of a shared
loyalty program between small-scale merchants, shows
that BeauForT is a practical solution for these kinds of
community-driven use cases. BeauForT achieves transaction
finality in the order of seconds, even in networks with
100 browser clients. Compared to other state-of-art BFT
consensus protocols, our protocol is more robust against
unstable network conditions.

This paper is structured as follows. Section 2 presents
a motivational use case. Section 3 presents BeauForT’s
lightweight BFT consensus protocol and the state-based
replication strategy. The detailed web-based middleware
architecture of BeauForT is elaborated in Section 4. Our eval-
uation in Section 5 focuses on many aspects of performance
in both the optimistic scenario as well as more realistic and
even Byzantine scenarios. Section 6 elaborates on important
related work. We conclude in Section 7.

2 MOTIVATION

We first describe an initial use case that would benefit
from the lightweight, robust consensus offered by BeauForT.
The use case involves business transactions happening in
real life and needs interactive performance and robustness,
rather than high throughput or scalability. We then formu-
late our vision on decentralized web applications.

Loyalty programs. Integrated loyalty programs can be
more effective than traditional loyalty programs that are
limited to a single company [18]. Think about airlines that
award miles which can be redeemed with several part-
ners. Such collaborations usually introduce an extra trusted
intermediary and add more layers of management and
operational logistics. This trusted party can charge high
transaction costs to be part of the integrated network. For
small merchants on a farmer’s market or in a local shopping
street, this operational overhead is too much of a burden.
A decentralized peer-to-peer network can enable fast and
secure creation, redemption, and exchange of loyalty points
across different merchants.

Vision. We envision that communities will be able to use
BeauForT as a platform to explore new applications and use
cases that were previously not feasible. While our initial
proof-of-concept implementation is targeting the browser,
the techniques explained in this paper can be easily ported
towards native mobile and lightweight desktop applica-
tions. BeauForT does not need any complex infrastructure,
and it currently provides a simple JavaScript-based API,
which allows many developers to start developing decen-
tralized applications. Those decentralized applications can
be made open source, which allows many people to verify
and vouch for them. Local communities who want to set up
a decentralized application between the local participants,
can use such an application and do not need to concern
themselves with a complex infrastructure setup to run the
application. Nor do they need to rely on a general purpose
third party network, such as a public blockchain.

3 BEAUFORT PROTOCOL

This section explains the state-based consensus protocol
used in BeauForT. First, it describes the adversary model
and its properties. Then it explains the protocol specifica-
tion. Proofs can be found in Appendix A.

3.1 System model

We assume a partially synchronous network [19]. Messages
can be delayed, dropped or delivered out of order. An
adversary might corrupt up to f replicas of the n > 3f + 1
total replicas. They can deviate from the protocol in any
arbitrary way. Such replicas are called Byzantine, while the
replicas that are strictly following the protocol are called
honest. At least 2 f+1 honest replicas should be able to make
a connection to each other. In practice, they are transitively
connected to each other, but only directly connected to a few
replicas. The topology can change over time. If no progress
is being made on a new proposal, replicas will close some
existing connections and connect to a few different replicas.
Each replica will gossip its neighbors to every replica it con-
nects to. We assume attackers are computationally bounded
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Fig. 1. State transition diagram of the BeauForT consensus protocol.

and it is infeasible to forge the used asymmetric signatures
or find collisions for the used cryptographic hash functions.

We address in this paper a replicated key-value store
for which replicas coordinate agreement using a Byzantine
Fault Tolerant consensus protocol, such that the following
classical properties hold [20]:

o Termination: Every correct replica eventually decides
some value.

Validity: If all replicas are correct and propose the same
value v, then no correct replica decides a value different
from v; furthermore, if all replicas are correct and some
replica decides v, then v was proposed by some replica.
o Agreement: No two correct replicas decide differently.

o Integrity: No correct replica decides twice.

All writes to a key-value pair are atomic, meaning that
only a single state transition can happen at any time. Extra
application-level conditions can be applied to limit who
can write to it, and which values are acceptable given the
previous value. BeauForT does not use a leader to coor-
dinate the protocol, removing a common single-point-of-
failure compared to many existing BFT protocols. In such
leader-based protocols, the failure of a leader leads to a long
delay before consensus can be reached. This is even the case
for rotating leader protocols such as HotStuff [21]. The set
of replicas is fixed, and changes to the replica set have to
be made outside the protocol, e.g., by halting the protocol,
updating the set of replicas on all replicas, and start the
protocol again. Consensus is reached for each key-value pair
separately, which means that each key has its own instance
of the BeauForT protocol.

3.2 Protocol specification

The specification of the protocol is shown in Algorithm 1.
The state of a replica consists of three parts. The first part is
the current value (line 1) and a quorum certificate (line 2).
The quorum certificate contains signatures of a supermajor-
ity of n— f replicas, and proves the validity of the value. The
second part is a map, which maps rounds to a collection of
votes for the next value (line 4). In each round, there can be
multiple proposed values. The third part consists of a new

Algorithm 1 Basic protocol for replica id.

1: value + L

2: gc4+— L

3: forv <+ 1,2,3,...do
4; votes <+ ()

> Current accepted value

> Quorum certificate for value
> view

> round — votesInRound

5. wvalue + L > Next value
6 qc 0 > Next quorum certificate
> PREPARE phase
7: as a proposing replica:
8: wait for value val from client
9: votes[0] < {VOTE(v, 0, val, PRE-commIT) }
10: as a non-proposing replica:
11: wait for any value in votes
12: forr < 0,1,2,3,... do > round
> PRE-COMMIT phase
13: if “-HASVOTED(votes[r]) then
14: val < WINNINGVALUE(votes|0])
15: vote VOTE(U, r,val, PRE—COMMIT)
16: votes[r] « votes[r] U {vote}
17: wait for (n — f) votes in votes|r|
18: val + WINNINGVALUE(votes|[r])
19: valVotes <— VOTESFORVALUE (votes|r|, val)
20: if LEN(valVotes) > (n — f) then
21: vote < VOTE(v, r, val, coMMIT)
22: value' + val
23: gc’ + qc’ U {vote}
24: else
25: val < WINNINGVALUE(votes|0])
26: vote < VOTE(v, r + 1, val, PRE-COMMIT)
27 votes[r + 1] < {vote} Uwvotes[r + 1]
28: continue
> COMMIT phase
29: wait for (n — f) votes in gc’:
30: if LEN(votes) — 1 > r then
31: value' < L
32: qgc 0
33: continue
34: value + value’
35: gc + qc
36: function WINNINGVALUE(votes|r])
37: return argmax,qiye
38: LEN({v € votes]r| : v.value = value})
39: function VOTESFORVALUE(votes|r], value)
40:  return {v € votes[r] : v.val = value}
41: function HASVOTED(votes|[r])
42:  return 3 v € votesr| : v.id = id

43: function VOTE(view, round, val, type)
44: return (val, id, SIGN (view, round, val, type, id))
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proposed value (line 5) and a partial quorum certificate for
that value (line 6).

Consensus is reached in two steps, first a supermajority
needs to be reached in the last round of the wvotes, then
a supermajority needs to be reached for the next quorum
certificate. The first step will establish a resilient quorum,
while the second step will guarantee that sufficiently many
replicas know that such a quorum has been achieved. The
flow of the protocol is shown in Fig. 1.

3.2.1 Proposing new values

To write a new value, a replica has to propose a new value
to the other replicas. This process is the PREPARE phase in
Algorithm 1. The proposing replica adds the new value
and its vote to round 0 of votes (line 9). As the protocol
is leaderless, any replica can be a proposing replica and
multiple replicas can propose a new value simultaneously.
Replicas are only allowed to vote once in each round for
each view, so if the replica already voted for another value
in that round, it will have to wait until consensus is reached
for the current set of votes, and propose the new value in
the next view. The non-proposing replicas will receive the
new proposal(s) via the gossip protocol, and also enter into
the next phase.

3.2.2 Consensus

Consensus about which value will be accepted in a view
is reached in two phases, called prRE-comMIT and coMMIT in
Algorithm 1. Honest replicas will always vote for the value
with the most votes in round 0 (line 13-16). If multiple
values have the same number of votes, the lexicographic
order of the hash of those values is taken as a tiebreaker. If
a round has reached a supermajority of votes for a single
value, then no new round can be started anymore, and
the replicas will start creating a new quorum certificate
(line 20-23). If a supermajority of the replicas have voted
in a round, but not a single value reaches a supermajority,
a new round is started (line 24-28) and all replicas can vote
again in this new round. The replicas are only allowed to
vote on the current winner in round 0 according to their
local state (line 13-16). Because each replica might have a
different state on the current set of votes in round 0, there
can still be multiple values in the next round without any
supermajority for a single value.

Another factor is Byzantine nodes trying to halt the
system by voting not according to the rules. However, the
set of possible values to vote on gets smaller with every
round, and eventually the view of all the honest replicas
on the votes in round 0 will become the same, and the
winning value can be chosen unanimously. The reason for
this is that a replica does not simply send a message with
his vote to the others, but instead gossips the entire state.
This includes all votes for the previous rounds. This means
that when two replicas disagree with each other in a certain
round, once they communicate with each other, they will
learn each other’s state. In the next round they will both
vote for the same value (as their local state of votes[0]
will be the same). Malicious replicas can try to shift the
balance to violate liveness, but with each round they have
less possibility to do so. Because when they gossip votes]i]
they also gossip the previous rounds which should show

why they voted on a certain value. If a replica detects that
another replica is Byzantine, it will exclude this Byzantine
replica permanently, and its votes do not count anymore.

Once a replica enters the COMMIT phase, it will wait for
n — f replicas to also confirm that the proposed value can be
committed (line 29). A malicious replica can trick an honest
replica to enter this phase without support of enough honest
replicas. For this reason, during this waiting period, if the
replica observes that other replicas started a new round,
it will realise its mistake and remove the partial commit
certificate and go back to the PRE-COMMIT phase (line 30-
33). The malicious replica can also be detected, as there will
be two signatures of him signing two votes for two different
values in the same round.

If n — f replicas agree and add their vote to the quorum
certificate for the next value, the value will be accepted and
the quorum certificate will be stored to later convince other
replicas that the value is indeed correct (line 35).

3.2.3 Correctness

The integrity and validity properties are trivially satisfied.
We can now reformulate the agreement and termination
properties more precisely as a safety and liveness property:

Theorem 1 (correctness). Let R be a cluster of n replicas
with f Byzantine replicas and n > 3f + 1. BeauForT’s
correctness is defined by the following two properties:

o Safety: If replicas Ry, Ry € R are able to construct
quorum certificates gc; for value value; and gcy for
value values at view v, then value; = values.

o Liveness: If an honest replica R € R proposes a new
value value; at view v, eventually a replica will be able
to construct a quorum certificate gc for some value at
view v.

We prove that BeauForT satisfies these properties in Ap-
pendix A.

3.2.4 State-based replication protocol

During all phases in the algorithm, the state is continuously
replicated to the other replicas. The full state, including all
votes in the consensus protocol, is replicated by using a
state-based gossip protocol. A major feature of gossip-based
communication is its reliability [22]. Each time a new state is
received, the local state is merged with the remote state. This
protocol synchronizes data peer-to-peer using state-based
Conlflict-free Replicated Data Types (CRDTs) [23] combined
with a Merkle-tree [24] to efficiently replicate the updated
state, similar to OWebSync [9] or Merkle Search Trees [25].
All key-value pairs are put inside a Merkle-tree. Each key-
value pair is a separate instance of the consensus protocol in
Algorithm 1. The Merkle tree is used to efficiently replicate
the state between any two replicas. A replica will first send
its own root hash to another replica. If those hashes are
equal, that replica knows that both replicas have the same
state, and the gossip protocol ends. If however the hashes
are not equal, that replica will descend in the Merkle-tree
and send all hashes in the next level of the tree to the first
replica. This process continues until a specific key-value
pair is reached, and then the full state of the consensus
protocol in Algorithm 1 is sent (value, gc, v, votes, value’
and ¢c’). The state of the protocol can be represented as
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Fig. 2. Example of the state-based synchronization with 4 replicas A, B, C, D. Only the current votes and gc’ are shown. Arrows represent a state

transfer.

a CRDT: votes and qc are Grow-only Sets [23], and a
state associated with a higher view number overwrites any
older state, much similar to a LWWRegister [23]. There are
two extra constraints imposed on the CRDTs due to the
Byzantine nature. First, signatures have to be correct, no
replica may accept any invalid signature, if a replica does
send a wrong signature, it can be considered Byzantine, and
the other replicas will drop their connection to it. Secondly,
not all states are valid. For example, votes keeps track of the
different rounds, but no new round can be started unless
n — f votes in the previous round are present, and no
consensus has been reached yet. When a replica receives an
invalid state, it will be ignored, and the other replica can be
considered Byzantine. If those n— f votes are all for the same
next value, then no new round is started. These constraints,
signatures and invalid states, are verified before the CRDTs
are merged. By using a state-based approach, rather than the
operation-based approach of operation-based CRDTs [23],
blockchains [14], or traditional BFT protocols, we only need
to store the current state together with some metadata. There
is no need to store the full log of all operations to later
convince replicas that were temporarily offline of the new
state. Replicas also do not need to keep track of the state of
other replicas, or which messages are already received by
which replica. If a new value and quorum certificate with
a higher view are received, then the protocol will accept
the new state, and the protocol will reset back to line 3 of
Algorithm 1 with that newer view. Note that we do not
explicitly show the gossiping in Algorithm 1 to keep the
algorithm compact. During the whole protocol, the state is
continuously gossiped between the replicas. This way, votes
or gc’ will eventually contain enough votes to continue in
the protocol specification. The state-based replication also
helps with the consensus protocol. Instead of only sending
proposals and decisions to other replicas, the full state of
votes and gc’ is sent. This approach allows replicas to hold
each other accountable when they cast their vote. Their
votes should support why they voted for a specific value,
otherwise they will be considered Byzantine and excluded
from the network.

3.2.5 Examples

An example of this replication process is shown in Fig. 2.
There are four non-Byzantine replicas with an empty set of
votes and empty gc¢’ at to. The scenario starts at ¢; with
replica A proposing a new value v (line 7-8 of Algorithm 1).
The state is replicated to the other replicas randomly. In the
example, the state is gossiped to replica B and C at ¢, and
those replicas merge the received state with their local state.

Since B and C did not yet vote in this view and round, they
will cast their vote for the current winning value (line 10-15
of Algorithm 1). This process continues at t3 when replica B
sends its state to replica A and C. At t3, replica C observes
that a supermajority of the replicas support value v, and it
starts working on a new quorum certificate to determine if
at least a supermajority of the replicas also knows about this
(line 17-21 of Algorithm 1).

Imagine now the same four non-Byzantine replicas.
Replica A again proposes a new value vy, but concurrently
replica B proposes another value v,. If we use the same
gossiping path as in Fig. 2, then at 5 replica B and C receive
the vote from replica A. Replica B will not vote anymore,
because it already voted for his own value vy. At t3, replica
B gossips its state to replica A and C. Replica A will now
have one vote v; (his own) and one vote for vs (from B).
Replica C however will now have two votes for v; (from A
and C) and one vote for vs (from B). Since replica C now
has n — f = 3 votes in round 0, but there are only two votes
for the winning value, it will start a new round and vote
for the winning value in votes[0], which is v;. B will now
also vote for v; in votes[l] and a commit certificate can be
created after the round 1.

Imagine now that replica D also receives the votes from
A and B between t; and t5. If the vote from B comes in
first, then D will also vote for v, and start a new round with
a vote for vy (as this is the winning value in its opinion).
So after ¢3 we now have replica C in round 1 with v; and
replica D in round 1 with vy. The other replicas A and B are
still in round 0 until they receive more votes. If, for example,
replica C now gossips its state to D, all votes in round 0 will
become known, and all replica will deterministically vote
for the same value v5 in the next round (if we assume the
hash of v is larger then the hash of vy).

Since replicas will vote for the first value they observe,
a well-placed replica that is able to send its request to
enough other replicas first is able to prevent requests from
other replicas from ever being accepted. This does satisfy
the liveness constraint that was specified formally in Sec-
tion 3.2.3: in which we specify that when new values are
proposed, some value should be eventually accepted. The
protocol does not provide deterministic fairness, i.e., no
guarantees are made for a single proposed value. In practice,
we have two arguments in favor of our model. First, when a
replica notices that no progress is being made on a proposal,
it will close some connections randomly and open new
connections to other replicas. This makes it much harder for
such a well-placed replica to be well-placed for a long time.
Second, our use-case of loyalty points across small-scale
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merchants prevents any problems because only the client
(customer) is able to sign a message to spend loyalty points
at a certain merchant. In this case, only a single proposal
will ever be present if the client is honest, and it will always
be eventually accepted by the network.

3.2.6 Delaying signature verification

For brevity, we did not show the actual verification of
signatures in Algorithm 1. However, in the basic protocol,
each time a new signature is received, it needs to be verified.
This can become quite costly, and therefore BeauForT will
use a fast path and delay the verification of any incoming
signatures. BeauForT will just accept and replicate them,
until a decision needs to be made, such as starting a new
round or starting to create a new proposed quorum certifi-
cate. Only then, all signatures will be verified in one batch. If
all signatures are valid, the protocol can continue as normal.
If there are invalid signatures, then those will be removed
and BeauForT will continue to collect more signatures and
verify them on arrival. This hybrid approach enables very
fast consensus when all replicas are honest, while gracefully
degrading to a slower, more costly protocol that can detect
which replicas are actively acting Byzantine.

4 ARCHITECTURE AND IMPLEMENTATION

This section describes the client-centric architecture, de-
ployment, and implementation of BeauForT. This middle-
ware architecture is key to support the BFT consensus and
synchronization protocol described in the previous section.
BeauForT is fully web-based and written in JavaScript and
can execute in any recent browser without any plugins.
This section first describes the overall architecture. Then it
explains our use of aggregate signatures using BLS to reduce
the size of the data.

4.1 Overall architecture

The BeauForT middleware architecture consists of five main
components (Fig. 3): (i) a public interface that offers an API
for developers, (ii) a peer-to-peer network component to com-
municate directly with other browsers, (iii) a consensus com-
ponent to handle the consensus protocol described in the
previous section, (iv) a membership component to handle all
cryptographic operations, and (v) a store component to save
all state to persistent storage. The last three components run
on a different browser thread by using Web Workers.

(i) Public interface. This component provides an API to
application developers to use this middleware. It provides
four functions to modify the application state: GET (key)
returns the current value at the given key, SET (key,
value) submits a proposal to update the value at the
given key, DELETE (key) deletes the value at the given key.
A tombstone is kept for correct replication, LISTEN (key,
callback) supports reactive programming by calling the
callback with the new value each time a new value for the
key is confirmed by the network.

Apart from those functions, the middleware also pro-
vides a constructor function to initialize the middleware by
passing the following four configuration parameters: the list
of all members of the network together with their public key,

the private key of the replica, the URL to the signaling server
to set up the peer-to-peer connections, and an access-control
callback to verify state changes. This access control callback
is called before voting for a new proposed value, with both
the old and new values as arguments. It should return a
boolean whether to allow this change or not. This callback
enables the implementation of basic access control policies
on the values. One example is to embed the public key of
the owner into the value and requiring each new value to
be signed by the owner. This value can only be changed by
the owner, and supports passing ownership by changing the
embedded public key.

(ii) Peer-to-peer network. The P2P Network component
manages the peer-to-peer network and is responsible for the
replication of the state-based CRDTs. Many browser-based
replicas are connected to each other using WebRTC (Web
Real-Time Communications). WebRTC enables a browser to
communicate peer-to-peer. However, to set up those peer-
to-peer connections, WebRTC needs a signaling server to
exchange several control messages. Once the connection is
set up, all communication can happen peer-to-peer, without
a central server. Another WebRTC peer-connection can also
be used as a signaling layer, so once a replica is connected
to another one, it can also connect to all of its peers, without
the need of a central signaling server. In our adversary
model, this server is assumed to be trusted. If this signaling
server would be malicious, the safety of the system is not
endangered as no actual data is sent to this central server.
However, some peers might not be able to join the network
and the required supermajority might not be reached, which
violates liveness. The use of multiple independent signaling
servers can lower the risk of this happening. At startup,
every replica will connect to some other replicas randomly.
In our implementation, a connection will be made to at
least seven other replicas. This number is arbitrarily, but
performed best in our experimental evaluation. A higher
number will increase resource usage, and decrease the po-
tential to batch multiple updated states together. A lower
number will increase the number of hops, and therefor
increase the latency. To defend against an eclipse attack,
where few Byzantine neighbors try to surround an honest
replica to break liveness, a replica can periodically create
new connections to other peers and drop older connections
when no updates are being gossiped to them, or when
proposals are not being voted on. This is similar on how
Bitcoin works [14].

(iii) Consensus. The Consensus component handles the
consensus protocol described in Section 3. It maintains a
Merkle-tree of all key-value pairs and uses the state-based
CRDT framework OWebSync [9] to replicate the local state
to other replicas using the P2P Network component. The
Merkle-tree is constructed using the Blake3 cryptographic
hash function. For performance reasons, the hash function
is implemented in Rust and compiled to WebAssembly.

(iv) Membership. The Membership component contains
all cryptographic material and is responsible for all cryp-
tographic operations such as signing and verification of
signatures. We use an aggregate signature scheme called
BLS [17]. Section 4.2 provides more details about the BLS
implementation. It is implemented in C and compiled to
WebAssembly.
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Fig. 3. Browser-based architecture of BeauForT.

Go and G, are two multiplicitive cyclic groups of prime
order ¢. Hp : {0,1}* — Gg and H; : {0,1}* — Z, are hash
functions viewed as random oracles.

1) Parameters Generation: PGen(k) sets up a bilinear group
(¢, Go,G1,Gy, €, go, g1) as described by [26]. e is an effi-
cient non-degenerating bilinear map e : Go xGy — G;. go
and g; are generators of the groups Gg and G;. It outputs
params < (q,Go,G1, Gy, €, 90, 91)-

2) Key Generation: KGen(params) is a probabilistic algo-
rithm that take as input the security params, generates
sk < 7, computes and sets pk + g¢;*, and outputs
(sk, pk).

3) Signing: Sign(sk,m) is a deterministic algorithm that
takes as input a secret key sk and a message m. It
computes ¢t < Hy(pk), and outputs o < Ho(m)®** € Gy.

4) Key Aggregation: KAgg({(pki,r:)}7_;) is a deterministic
algorithm that takes as input a set of public key pk and
the multiplicity r pairs. It computes t; < Hi(pk;), and
outputs apk + [}, pkl* ™.

5) (Multi-)Signature Aggregation: Agg(o1,...,0,) is a deter-
ministic algorithm that takes as input n signatures. It
outputs o < [[;"; 0.

6) Verification: Ver(apk, m, o) is a deterministic algorithm
that takes as input aggregated public keys apk € Gy, and
the related message m and signature o € Gg. It outputs

e(g1,0) z e(apk,Ho(m)).

Fig. 4. Formal specification of the optimized BLS signature scheme.

(v) Store. Atlast, the Store component saves all state to the
IndexedDB database. IndexedDB is a key-value datastore
built inside the browser. Each value and the Merkle-tree
are serialized to bytes and stored there under the respective
key. This enables users to close the browser and continue
afterwards without losing the current state.

4.2 Aggregate signatures using BLS

The consensus protocol in Section 3 is resource-intensive
with respect to aggregation and verification of digital sig-
natures. Signatures must be continuously collected and veri-
fied. This means, in every intermediate state of a transaction,
each party needs to keep track of all incoming signatures
and verify them to prevent malicious scenarios. Persis-
tence, management, and transmission of these signatures
are costly, especially in a browser-based setting. Therefore,
our protocol requires short and compact signatures to re-
duce storage and network footprint. Boneh-Lynn-Shacham

(BLS) [17] presented a signature scheme based on bilinear
pairing on elliptic curves. The size of a signature produced
by BLS is compact since a signature is an element of an
elliptic curve group. The aggregation algorithm [27] outputs
a single aggregate signature as short and compact as the
individual signatures, unlike other approaches that rely on
ECDSA, DSA or Schnorr. Other state-of-the-art BFT systems
such as SBFT [28] and HotStuff [12] also use aggregate or
threshold signatures. However, they use it in a different
way. They let the leader compute the aggregate signature.
BeauForT uses a different approach, once a proposed quo-
rum certificate has reached a supermajority of the votes,
any replica can aggregate these into one single aggregated
BLS signature. BeauForT makes a trade-off between per-
formance, bandwidth and storage space. Verifying a single
signature is expensive, however, aggregation is cheap in
performance. For this reason, BeauForT will delay the veri-
fication of the signatures until the latest possible moment
(as explained in Section 3.2.6). Only then the individual
signatures are aggregated and verified. If the verification
fails, a binary search can be conducted to find the in-
valid signatures and remove them. This leads to a higher
bandwidth usage, compared to always aggregating two
shares immediately. But allows for cheaper recovery when
a Byzantine replica is sending invalid signatures. Once a
signature is aggregated and verified, the individual shares
are discarded, saving both bandwidth and storage space.

The standard scheme is vulnerable to rogue public key
attacks. The state-of-the-art approach [26] to mitigate such
attacks is to compute (t1, ..., t,) < H1(pki, ..., pky,) for each
Agg invocation and compute o + [[7_; of', where pk; is
the public key of replica 4, H; is a hash function, and o; is a
signature produced by replica . Although the ¢; values can
be cached, the computation of o would be costly. Moreover,
Agg does not take as input the same set of public keys at
different states of a transaction in our consensus protocol.
Therefore, we distribute the computations by moving the
calculations of the #; and ¢! values to the signing parties,
and as a result, these computations are performed only once.
Now, any replica can run Agg by only computing o;...0p,.
The security properties of BLS remain intact [26], and we
obtain more efficient aggregations at scale. We provide the
mathematical background and formal specification of the
optimized BLS scheme in Fig. 4.

5 EVALUATION

We validated the BeauForT middleware with the loyalty
points use case presented in Section 2. The first subsec-
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tion presents this validation. Next, we present three differ-
ent benchmarks with different scales. The first benchmark
shows the performance results in the optimistic scenario
without network failures or Byzantine failures. The second
benchmark evaluates the performance in a more realistic
scenario with some network failures. The last benchmark
evaluates the performance in the presence of a Byzantine
replica.

5.1 Validation in the loyalty points use case

The deployment of the loyalty points use case consists
of three services: a web application running in a browser
for each merchant, a web server to serve the static web
application files, and a signaling server to set up WebRTC
peer-to-peer connections between the browsers. The web
server is optional. Every merchant can also store those
application files themselves and load them from their local
file system. The signaling server is a trusted component.
However, if trust is not present, you can set up multiple
signaling servers to reduce potential misbehavior. No actual
data is sent to the signaling server. It is only used to discover
other peers on the network. To have a baseline, we compare
BeauForT to two other existing state-of-the-art systems for
BFT consensus: BFT-SMaRt [11], [29] and Tendermint [13],
[30]. BFT-SMaRt is a more traditional BFT protocol, similar
to PBFT [31], where all replicas are connected to each other,
and one leader drives the protocol. If that leader fails, a
new one will have to be elected before any progress can be
made. Tendermint uses gossip for communication between
the replicas. There is still a leader, however, that leader
changes frequently.

5.2 Test setup

To test the performance of BeauForT, we implemented the
use case and deployed it on the Azure public cloud. We
used 21 VMs (Azure F8s v2 with 8 vCPUs and 16 GB of
RAM) with one VM acting as a central server running the
web server and signaling server. The other VMs are running
Chrome browsers inside a Docker container. Each of those
VMs holds one to five browser instances for different scales
of the benchmarks. To simulate a truly mobile environment,
the network is delayed to an average latency of 60 millisec-
onds using the Linux t ¢ tool, which simulates the latency of
a 4G network. Every test is executed 10 times to ensure the
results are reliable. In every run, the network configuration
will be different, because replicas will connect to each other
randomly to form the gossip network.

We are interested in the time it takes to confirm a
transaction, experienced by the browser that submitted the
transaction. Each transaction is a group of loyalty points
being changed from owner. For example, a merchant gives
some loyalty points to a customer or a customer redeems
their loyalty points with a merchant. In the evaluation, the
browser clients will do one transaction per second. This
throughput is more than enough for the local community-
scale use cases we envision. We compare the latency and
network bandwidth with a different number of browsers.
We show a boxplot of the latency results instead of only
the average, as all users should experience fast confirmation
times, and not only the average user.
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Fig. 5. Latency in the optimistic scenario without failures.
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Fig. 6. Network usage in the optimistic scenario without failures.

5.3 Optimistic scenario

In the optimistic scenario, every replica is honest and no
replicas fail, so the fast path can be used. One single aggre-
gate signature is verified only before a decision, avoiding
costly signature verifications after every message. As every
replica is honest, this aggregate signature is correct and the
new value can be accepted by all replicas.

Fig. 5 shows the latency for the different technologies.
For the use case of loyalty points, transactions must be
confirmed fast, as people are waiting at checkout to receive
or redeem loyalty points. BeauForT can confirm transactions
within 4 seconds, even with a network of one hundred
browsers. BFT-SMaRt can confirm transactions within half
a second. This is because all replicas communicate directly
with each other. However, having all replicas directly con-
nected to each other is not realistic in a mobile peer-to-peer
network. In contrast, BeauForT and Tendermint use gossip
and need multiple hops before all replicas are reached. This
also causes the increased latency. Furthermore, BFT-SMaRt
uses HMAC to authenticate requests, which are an order
of magnitude faster than the asymmetric signatures used in
BeauForT and Tendermint. We can see a similar pattern in
the bandwidth requirements shown in Fig. 6. In the large-
scale scenario with 100 browsers, BeauForT uses less than 3
Mbit/s, which is acceptable for a typical mobile network.

5.4 Realistic scenario

The same benchmark is now repeated with 25% of the
replicas failing during the benchmark. A failure is simulated
by dropping all network packets to and from that replica.
Replicas fail one by one, with a 5-second delay between
each failure. As all systems are Byzantine fault tolerant, they
should be able to tolerate up to 33% of the replicas failing or
acting Byzantine.
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Fig. 7. Latency in the realistic scenario with network failures. For Beau-
ForT we included an extra scenario in which a Byzantine replica tries to
halt the network. For BFT-SMaRt only the upper whisker is visible, the
box is situated at the bottom.

Fig. 7 shows the latency in this scenario. BeauForT is not
impacted much by the failing replicas and can still confirm
transactions within 5 seconds. The impact on Tendermint
is also small, but the tail latency is doubled to about 10
seconds. BFT-SMaRt however needs to use a costly leader
election protocol when the current leader fails. This process
takes some time, during which no transaction can be com-
mitted. Once a leader is chosen, the same fast performance
can be achieved again. This behavior is clearly visible in
Fig. 7. The median latency of BFT-SMaRt is not affected
by the failures. However, the tail latency increases to 27
seconds for the scenario with 80 replicas. It cannot handle
the case with 100 replicas. BFT-SMaRt is unable to handle
large network sizes when the latency between the nodes
is higher than usual, e.g., in geo-distributed systems or
on mobile networks. This has been shown in the literature
before [25]. Tendermint does have a leader, but it is rotated
round-robin all the time. This makes the failure of a leader
less severe, as a new one will quickly be elected anyway.

5.5 Byzantine scenario

For BeauForT, we performed an extra benchmark with a
Byzantine replica. As long as the honest replicas are still
using the fast path, the Byzantine replica will send extra
invalid signatures. As the signatures are only verified when
a supermajority is reached, the honest replicas only realize
this at the end, and they cannot find out which replica is
Byzantine. Once the fast path is disabled, the signatures
are verified for every message, so malicious replicas can be
detected and excluded from the network. In this case, the
Byzantine replica keeps the signature intact to avoid being
detected. However, it will try to slow down the consensus
by not voting itself.

The latency in this Byzantine scenario is shown in
Fig. 7. BeauForT can handle Byzantine replicas very well
for smaller networks, however, for networks of size 100
replicas, the tail latency becomes 7 seconds. Which might
already be quite high for the use case of loyalty points. This
is mostly due to the cost to verify more BLS signatures. We
did not test the effect of Byzantine replicas for BFT-SMaRt or
Tendermint. As they do not use a fast path when everyone
is honest, the impact is less. However, if the current elected
leader happens to be Byzantine, it can delay the consensus
until some timers end and a new leader is elected [32].

5.6 Discussion and conclusions

We have shown that BeauForT can be used for the loyalty
points use case with up to 100 different merchants, even
when some of them are acting maliciously. BeauForT can
achieve similar latencies as other gossip-based BFT proto-
cols, such as Tendermint. Our evaluation also shows the
trade-offs that BeauForT makes. In an optimal scenario
where there is a good connection available between all
replicas and no network disruptions or crashes happen,
then a classical leader-based protocol such as BFT-SMaRt
will outperform BeauForT. However, as we mention in the
introduction, we envision a more ad-hoc network between
low-end devices on a residential or even a mobile network,
where short-term disruptions are common. Our evaluation
shows that BeauForT is very robust against this kind of set-
ting and achieves similar performance as in the optimal sce-
nario: a transaction is always finalized within 5 seconds. A
leader-based protocol such as BFT-SMaRt is not well suited.
The temporary failure of a leader leads to long commit
times, and even total failure for larger network sizes. This
leader also needs more resources and a direct connection
to every other replica. Keeping 100 WebRTC connections
open in a browser, while theoretically possible, drastically
reduces performance. However, BeauForT does not impose
this, since consensus can be reached gradually over time,
as the full state of the proposals and votes propagates
through the network. BeauForT can confirm transactions
fast, in the order of seconds, without needing a complex
back-end setup or wasting a lot of energy. BeauForT has a
small storage footprint due to its state-based nature.

6 RELATED WORK

Several client-side frameworks for data synchronization be-
tween web applications exist: Legion [5], Automerge [7],
and OWebSync [9]. They make use of various kinds of
Conflict-free Replicated Data Types (CRDTs) [23] to deal
with concurrent conflicting operations, and can synchronize
data peer-to-peer. They are easy to set up and only require
a browser and a peer-to-peer discovery service. However,
they assume trusted operation as the default setting. Some
work has been done in a semi-trusted setting [33], [34]. Re-
cent work [35], [36] also looked into making CRDTs Byzan-
tine fault-tolerant in the eventually consistency model.
BeauForT provides strong consistency.

Permissioned blockchains such as Hyperledger Fab-
ric [37] have closed membership and often use a BFT consen-
sus protocol to order transactions. For example BFT-SMART
in HyperLedger Fabric [11], [29]. The first known BFT proto-
col is Practical Byzantine Fault Tolerance (PBFT) [10]. Other
protocols bring improvements to the original PBFT protocol.
Zyzzyva [38] uses speculative execution which improves
latency and throughput if there are no Byzantine replicas.
However, its performance drops significantly if this premise
does not hold. 700BFT [39] provides an abstraction for
these BFT algorithms. These protocols are targeting a small
number of replicas in a local network. They generally work
in two phases: the first guarantees proposal uniqueness,
and the second guarantees that a new leader can convince
replicas to vote for a safe proposal. HotStuff [12] proposed
a three-phase protocol to reduce complexity and simplify
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leader replacement. This makes HotStuff more scalable.
All these algorithms use a leader to drive the protocol.
When the leader is malicious, the performance can degrade
quickly [32]. GeoBFT [40] is a topology-aware, decentralized
consensus protocol, designed for geo-distributed scalability.
AWARE [41] is a variant of BFT-SMaRt that dynamically
changes the voting power of a replica depending on its
latency over time, decreasing the consensus latency. Beau-
ForT gives every replica equal voting power. In future work,
BeauForT could be extended to associate a weight to each
vote. While we believe this would be especially beneficial
for our target environment with mobile and unreliable
clients, special care will have to be given to ensure safety
will stay intact. BeauForT does not use a leader and replicas
communicate only to a subset of the other replicas using a
gossip-like protocol.

WebBFT [42] shares a similar vision of client-centric, de-
centralized web applications. However, they only interface
to a backend BFT-SMaRt cluster, instead of running the
BFT protocol directly between browsers. Similarly, earlier
work [43] extended the Web Services Atomic Transactions
specification to include BFT. However, also here the pro-
tocol is running between the backend servers, rather then
between the actual web clients.

Tendermint [13], [30], used in Cosmos, uses Proof-of-
Stake (PoS), where voting power is based on the amount of
cryptocurrency owned by each replica. Because block times
are short, in the order of seconds, there is a limited number
of validators Tendermint can have because finality needs to
be reached for each block. It is also not resistant to cartel
forming, which allows those with a lot of cryptocurrencies
to work together to control the network.

Other protocols use a randomized approach.
Ouroboros [44], HoneyBadger [45], Dumbo [46] and
BEAT [47] use distributed coin flipping for consensus.
HoneyBadger [45] uses threshold encryption [31] for
censorship resilience. Algorand [48] uses Verifiable Random
Functions [49] to select a random committee for the next
round. Avalanche [16], [50] uses meta-stability to reach
consensus by sampling other replicas without any leader.
While Avalanche is lightweight and scalable, it needs to be
able to sample all other validators directly. The number of
connections one can open in a browser without performance
loss is limited. BeauForT supports propagation of votes
over multiple hops.

Several BFT consensus protocols use a leader-less ap-
proach. Although most determinstic BFT consensus proto-
cols designate a special leader, there exist determinstic pro-
tocols that are fully leader-free [51]. However, the algorithm
only terminates in f+3 rounds in the best case, even without
failures. [52] provides a leaderless algorithm that is optimal,
and also provides a fast path in good conditions. It assumes
replicas can directly broadcast to every other honest replica.
A hybrid approach is also possible, DBFT [53] uses a so-
called weak-coordinator which is not required to reach
consensus, but can speed up consensus when this weak
coordinator is honest. Messages are broadcasted to every
other replica. Our protocol only maintains the state of the
protocol, and state-changes are gossiped by dynamically
computing a diff using the Merkle-tree. This naturally al-
lows to batch multiple votes and state changes in a single

network request.

There are several proposals to improve the performance
and response time of BFT consensus. StreamChain [54]
reaches consensus over a stream of transactions instead
of blocks. FabricCRDT [55] uses CRDTs to support con-
current transactions to occur in the same block, using the
built-in conflict resolution of CRDTs to resolve the conflict
automatically. Other approaches also borrow from CRDTs:
PnyxDB [25] supports commuting transactions to be applied
out-of-order. A novel design for gossip in Fabric [56] im-
proves the block propagation latency and bandwidth. Other
approaches dynamically adapt the number of faults the
system can withstand in reaction to threat level changes [57].
While these improvements make BFT faster, none of them
try to reduce the infrastructure requirements to be able to
easily set up an untrusted peer-to-peer network.

Open or permissionless blockchains such as Bitcoin [14]
and Ethereum allow everyone to participate and use Proof-
of-Work (PoW) to reach agreement over the ledger. How-
ever, POW has several flaws [58]. PoW uses a lot of process-
ing power and energy [59] and performs poorly in terms
of latency. It assumes a synchronous network to guarantee
safety. When this assumption is violated, temporary forks
can happen in the blockchain as liveness is chosen over
safety. Therefore, PoW blockchains do not offer consensus
finality, instead one needs to wait for several consecu-
tive blocks to be probabilistically certain that a transaction
cannot be reverted. Simplified Payment Verification (SPV)
mode [14] for clients can reduce the resource usage at the
cost of decentralization.

ByzCoin [60] uses PoW for a separate identity chain
to guard against Sybil attacks but uses a BFT protocol to
order transactions. ByzCoin makes use of collective signa-
tures (CoSi) [61] and a balanced tree for the communication
flow. CoSi makes use of aggregate signatures by construct-
ing a Schnorr multisignature. However, CoSi needs multiple
communication round-trips to generate the multi-signature
and assumes a synchronous network.

The Lightning Network or state channels for Bitcoin [62]
or Ethereum [63], [64] are off-chain protocols that run on top
of a blockchain. A new state channel between known par-
ticipants is created by interacting with the blockchain. After
its creation, participants can use this channel to execute
state transitions by collectively signing the new state. These
transactions do not involve the blockchain and have fast
confirmation times and no transaction costs. However, state
channels assume all participants to be always online and
honest. If this is violated, the underlying blockchain needs
to be used to resolve the conflict, or a trusted third party
can be used [65]. BeauForT uses a similar state-transitioning
protocol where only the latest collectively agreed state needs
to be stored. However, BeauForT can tolerate both failing
and malicious replicas, without resorting to a blockchain or
a trusted third party.

Another approach is to use a trusted hardware compo-
nent [66], [67], [68], [69], [70], [71]. These are faster and less
computationally intensive but require specialized hardware
to be present. Moreover, trusted execution environments
have been broken in the past [72], [73].
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7 CONCLUSION

In this paper, we presented BeauForT. A browser-based
middleware for decentralized, community-driven web ap-
plications. BeauForT uses a client-centric, leaderless BFT
consensus protocol, combined with a robust and efficient
state-based synchronization protocol. BeauForT uses an op-
timized BLS scheme for efficient computation and storage of
signatures. It supports a client-centric, browser-based, state-
based, permissioned datastore with a low infrastructure and
storage footprint for small-scale, citizen-driven networks.
Compared to other state-of-the-art protocols, BeauForT of-
fers consistent and robust confirmation times to achieve
finality of transactions in the order of seconds, even in
failure settings and Byzantine environments. In optimal
environments, with no crashes or Byzantine failure, a leader-
based protocol confirms transactions faster than BeauForT.
In contrast to traditional blockchains, BeauForT does not
store a transaction log or blockchain, keeping the overall
storage footprint small.
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APPENDIX A
SAFETY AND LIVENESS

This section sketches the proof that the algorithm provides
safety and liveness. The protocol described before guaran-
tees both safety and liveness when there are at least 2f + 1
honest replicas available.

A.1 Safety

Lemma 1 (Safety). Let R be a cluster of n replicas with f
Byzantine nodes and with n > 3 f. If replicas R, Ry € R
are able to construct quorum certificates gc; for value
value; and gcs for value values at view v, then value; =
values.

We will first prove this for the simplified case when
both quorum certificates belong to the same round, and
we will then prove that once a quorum certificate can be
constructed, no more rounds can be started.

Lemma 2. If replicas R;, R € R are able to construct quo-
rum certificates gc; and gcs for value value, and values
respectively with qc1 yiew = GC2 view and qc1 round =
qC2 round, then value; = values.

Proof: Assume two different replicas R; and R» have
constructed a quorum certificate qc; and gce for value
value; and values respectively with gci view = ¢C2 view
and ¢c¢i round = GC2 round- They are constructed in the
same round, so of the n possible votes, at least n — f
replicas have voted on value;, and at least n — f replicas
have voted on wvalues. Honest replicas will never vote
twice in the same view and round. Therefore, at least
n — 2f honest replicas have voted on value; and n — 2f
different honest replicas have voted on values. In total, we
have (n — 2f) + (n — 2f) + f = 2n — 3f replicas that
have voted. We defined n > 3f + 1 before, which gives
2n —3f > 3f + 2 > n+ 1 replicas. This is a contradiction,
there need to be at least n 4 1 replicas to construct two such
certificates for different values, however, we only have n
replicas. So the two values value; and values; have to be
equal. O

Lemma 3. If replicas Ry, Ry € R are able to construct quo-
rum certificates gc; and gcs for value value, and values
respectively with qci yiew = GC2 view, then gci round =
q4C2 round-

Proof: Assume two different replicas R, and Ry have
constructed a quorum certificate gc; and gcp for value
value; and valuey respectively with gci yiew = ¢C2 view
and ¢c¢i round < GC2 round. Since gc; is accepted, at least
n — f replicas vote on the proposed quorum certificate and
at least n — f replicas voted on value; in round gc1 round-
The fact that n — f replicas voted on the proposed quorum
certificate means that at least n—2 f honest replicas observed
n — f votes for value;. Of those votes, at least n — 2f are
coming from honest replicas. The only way to now construct
a quorum certificate gcy for values is to start a new round.
To start a new round, a replica needs to not have voted for
the proposed quorum certificate gc1, and observe a different
winning value values. Yet, at least n — 2f honest replicas
observed that at least n — 2f honest replicas think that
value; is the winning value. This leaves only 2f replicas

who can prefer another value value;. By definition we have
n > 3f + 1. This means that in the worst case, f + 1
honest replicas observe f+1 honest replicas thinking value;
is the winning value, together with f Byzantine replicas.
Value values has only 2f supporting replicas, which is not
enough to start a proposed quorum certificate. So, at least
one replica currently supporting value; needs to switch
votes in a future round. However, once a replica has voted
for a proposed quorum certificate, it will not change their
opinion unless it is convinced that a new valid round is
started. So once n — 2 f honest replicas are locked on a value,
by voting on a proposed quorum certificate, it is impossible
that a valid new round can be started. O

A.2 Liveness

When a new value is proposed, eventually the protocol will
end and a valid quorum certificate is created for a new
value. This value is not necessarily the first proposed value,
and it is not even guaranteed that a specific value ever gets
committed as long as other values continue to be proposed.
Safety is always chosen over liveness. When there are not
enough honest replicas online to reach a supermajority, no
consensus can be reached and the protocol will simply block
and wait for more votes. However, all those replicas do
not need to be online at the same time, since the state is
replicated to all available replicas over time, and votes can
be verified by all replicas in the end.

Lemma 4 (Liveness). Let R be a cluster of n replicas with f
Byzantine nodes and with n > 3f. If an honest replica
R € R proposes a new value at view v, eventually a
replica will be able to construct a quorum certificate gc
for some value at view v.

Lemma 5. If only a single replica R € R proposes a
new value value;, eventually a replica will be able to
construct a valid quorum certificate gc.

Proof: As there is only a single proposed value, all
honest replicas who observe this will cast their vote for that
value. Eventually, an honest replica will observe n — f votes
for value; and that replica can start creating a new proposed
quorum certificate g¢’. Eventually, n — f votes will be cast
to this proposed quorum certificate g¢’ and a valid quorum
certificate gc is constructed and value is committed. O

Lemma 6. If x replicas R , € R propose values value;_ 4,
and no Byzantine replicas vote twice in the same round,
eventually a replica will be able to construct a valid
quorum certificate gc.

Proof: Either a single value reaches a quorum, in
which case the previous lemma holds. Or a split vote occurs
and a new round will be started after n — f votes are
observed. All replicas will base their vote for this new round
on the winning value that they observed from round 0. At
least n — f votes are known, and only f votes are still
unknown. “Known” means known to the one replica that
is making some decision and going ahead in the protocol.
But to make progress, at least n — f replicas need to know
about n — f votes. These votes that are known, are not
necessarily the same for all n — f replicas, but eventually,
all honest replicas will know about the exact same votes. As
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long as not all votes are known to all voting replicas, the
winning value might change. In each new round, either all
unknown votes stay unknown, or one becomes known. In
the former case, then the currently known votes will all be
the same, and a proposed quorum certificate can be started.
In the latter case, one extra vote is known, which might
again result in the system ending up in a split vote, and a
new round will be started. However, this last case can only
happen at most f times. After f + 1 rounds, all replicas
will have voted in round 0, and every replica will observe
the same winning value, and a quorum certificate can be
created. O

Lemma 7. If x replicas 1., € R propose values value;. 4,
eventually a replica will be able to construct a valid
quorum certificate gc.

Proof: If no Byzantine replicas vote twice in the same
round, or only a single value is proposed, the previous
two lemmas hold. If a split vote occurs, a new round
will be started after n — f votes are observed. f of those
votes might belong to Byzantine replicas who can vote
for multiple values. As a new round is only started after
n — f votes, a least n — 2f honest votes are observed.
No Byzantine replica can send conflicting votes to any of
those n — 2f honest replicas, as otherwise those replicas
will detect this conflicting vote and exclude the Byzantine
replica. With exclusion we only mean that their votes are
not counted anymore on each honest replica that observed
that a Byzantine replica voted twice. So it is even possible
that some replicas exclude the Byzantine replica, while other
replicas are still trusting it. However, as all votes will be
gossiped, eventually all honest replicas will know about
the Byzantine replica. Safety will not be violated because
n (in the formula n — f) stays the same. But to reach this
threshold, the votes from Byzantine replicas are ignored. If
another Byzantine replica sends conflicting votes, then after
at most f times, all Byzantine replicas are excluded and the
previous lemma holds. Moreover, no Byzantine replica can
continue to vote on values that are not the winning value.
Each replica is only allowed to vote on the winning value
or any other value that has at least support from f + 1
replicas in the previous round. All honest replicas converge
to a single value, even with Byzantine replicas supporting
other values. Because the protocol only looks to round 0 to
determine the winning value. In the rounds after that, the f
Byzantine replicas can support a different value, but if they
do, they will be excluded as f < f+ 1. This means that after
at most 2 f + 1 rounds, a proposed quorum certificate can be
started, which will be committed. O
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