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Abstract

We employ a Lévy process subject to only negative jumps to describe
the motion of asset values. This specification permits fast computation
of first passage probabilities. As a result we are able to calibrate all CDS
curves for the 125 iTraxx underliers weekly and develop a time series for
the implied parameter values. A variety of models are investigated for
the process: gamma, inverse Gaussian and the one sided CGMY, here
referred to as CMY.



1 Introduction

There has been an exponential growth in credit derivatives in recent years.
Culminating with a developed liquid market in Credit Default Swaps (CDS),
for example the 125 names in the iTraxx and CDX indices.

There are basically two main classes of models for credit pricing: intensity
based models and structural models. This manuscript proposes a structural
model for the asset value process with default occurring the first time asset value
breaches a low barrier. This barrier typically corresponds to the recovery value
of the firm’s debt. In this regard, the model shares structural characteristics of
the Black-Cox model [2].

Most available structural models, like the Black-Cox model, use a stochastic
process with continuous paths to model the firm’s asset value. For example, the
Black-Cox model is built upon the hypothesis that the asset value is described
by a Geometric Brownian motion (Black-Scholes model). Because, a Brownian
motion has continuous sample paths, in the Black-Cox setting, an event of
default occurs exactly when the asset value of the firm hits the deterministic
barrier. It is never the case that the firm’s value overshoots the default level.
Moreover, it is furthermore well known that due to the continuous path nature
of Brownian motion and the underlying Normal distribution, the model cannot
represent a realistic behavior of short term default probabilities. Indeed, the
Brownian motion needs, because of its continuous paths, a substantial amount
of time to reach a low barrier under a realistic volatility assumption. From
a technical point of view, this implies that default times are in some sense
predictable. In a situation where one is far away from the barrier, one is sure
no default will occur the next instant. In reality however, default can occur
at any time (cfr. Parmalat event). Moreover, empirical evidence suggests that
the underlying (log)normal distribution does not accurately describe the law
of motion in asset values. Default events are most of the time triggered by
shocks (which are represented by downward jumps in the asset value). So any
process modeling the stochastic nature of losses should reasonable include jumps
and needs to incorporate skewness in the underlying return distribution. Lévy
processes, incorporate exactly these jumps and asymmetry features and have
proven already their modeling abilities in other settings [7] like equity and fixed
income and have recently found their way into credit risk. This paper illustrates
this by proposing such a Lévy based model that moreover turns out to be very
tractable.

More precisely, we build a model, where default is indeed triggered by asset
value crossing a very low barrier, and we further assume that the asset value
process is described by an exponential of a Lévy process with an upward drift
and only downward jumps. Such processes are called spectrally negative or one
sided negative jump Lévy processes with positive drift. As such, we take into
account both asymmetry and fat-tail behavior.

One could argue that in contrast to the behavior of stock prices where possi-
bly both up and down jumps are present, a firm tries to follow a steady growth
(up trend drift) but is exposed to shocks (negative jumps). It thus seems apriori



reasonable to model the underlying firm’s value in a default model by a process
with a positive drift subject to negative jumps. In this work we will focus purely
on the one-sided situation. In contrast to double sided Lévy processes, which
were for example applied by Cariboni and Schoutens [3], we do not need to solve
a rather time-consuming Partial-Integro-Differential Equation (PIDE) in order
to obtain the default probabilities over time. Indeed, the advantage of only
allowing negative jumps in the driving Lévy process is the fact that we can cal-
culate extremely fast the first passage time distributions (default probabilities)
by exploiting the remarkable Wiener-Hopf factorization in combination with
results by Rogers [5] and by performing a very fast double Laplace transform
inversion. In contrast to the double sided situation, where the solution of the
PIDE takes typically a couple of seconds on an ordinary computer, the double
Laplace transform inversion can be performed within a fraction of a second.

Default probabilities are the essential quantities in the calculation of single
name CDSs. These financial instruments are the most widely used credit deriva-
tives and provide protection against defaults of individual firm’s and have seen
an explosive growth over the last decade. They are unfunded securities designed
to transfer the credit exposure of a reference entity between parties and to allow
them to take positions in both directions according to their specific needs. They
are nowadays liquidly traded for thousands of underlying companies. An illus-
tration of the success are the iTraxx and CDX indices. The most popular are
iTraxx Europe main index composed of the most important 125 CDS referenc-
ing European investment grade credits and the CDX.NA.IG index containing
in a similar manner 125 CDSs of North American companies.

The fact that the calculation of default probabilities can be done very fast,
makes the calibration of the model to markets possible and allows us to make
a historical study of the model’s performance for all iTraxx constituents. In
a typical calibration, thousands of these default probabilities and there cor-
responding CDS quotes need to be calculated and hence fast computation of
default probabilities are essential to the success of any model.

The calibration results are very satisfactory as is shown in a calibration
exercise on historical prices of all the CDSs constituting the iTraxx. Calibration
errors are in the order of 1 bp per quote. The historical calibration study also
allows us to form a view on how the market prices moves of different sizes.
We have focussed our attention on the 5, 10 and 20 percentage moves in asset
value and report on the approximate daily arrival rates of a 5 percent move, the
premium of 5 percent moves to 10 percent moves (the spread) and the relative
spread, (the logarithm of the 10 to 5 percent market spread over the 20 to 10
percent market spread).

This paper is organized as follows. In Section 2, we set up the one-sided Lévy
default model and work out the details of the calculation of default probabilities
under the model. In Section 3, we overview some tractable examples based on
some popular spectrally negative Lévy processes, like the Gamma, the IG and
the CMY process. Section 4 deals with the pricing of CDSs under the proposed
model and elaborates on the above mentioned historical calibration study.



2  One Sided Lévy Default Model

2.1 One Sided Firm’s Value Process

We will describe the asset value of the firm by a stochastic process A = {A;,t >
0} and define the default event as the first crossing of some predetermined
barrier R.

We work under the so-called one sided Lévy model in the sense that we
assume that the risk-neutral firm’s value follows an exponential of a spectrally
negative Lévy process X = {X;,t > 0}. Let us in general consider a spectrally
negative Lévy process Y = {Y;, ¢ > 0} without drift and set

Xt:(T'—CL))t‘F}/t,

where w = log(E[exp(Y7)]) in order to make the growth rate on the exponential
of X equal to the risk free interest rate. Then we have

E [exp (2X})] = exp(tvx (2))

where ¥ x (z) is the Lévy exponent that by the Lévy-Khintchin representation
has the form
0

¢X@)=ux+/'(am—1+zqu1»um@,

— 00
where p = r—w is positive and the Lévy measure v(dz) satisfies the integrability
condition 0
/ (|z]* A1) v(dz) < occ.
— 00

In most practical cases the Lévy measure has a density and we write v(dz) =
m(z)dz and refer to it as the Lévy density function. In the physical process,
the Lévy density m(z) represents the arrival rates of jumps of size x in the
process X. For the risk-neutral process, m(zx) is comparable to the market price
of jumps of size x.

The risk neutral model for the firm’s value process (standardized such that
Ap = 1) is given by

At = GXp(Xt), AO =1.
Then default is defined to occur the first time when
Ay =exp(Xy) <R

or equivalently if
X < log(R).

Let us denote by Py (t) the risk-neutral probability of survival or no-default
between 0 and ¢:

Psurv(t) = PQ (XS > log(R),for all 0 <s< t) N

= Py (nggt X, > 1og(R)) ;

= Py(X, >log(R)) (1)



where the subindex @ refers to the fact that we are working in a risk-neutral
setting. Next, we focus on how to calculate the above survival probability. The
method will be based on the Wiener-Hopf factorization identity together with
a double Laplace transform inversion method.

2.2 First Passage Times for Spectrally Negative Lévy Pro-
cesses

In this section we will detail the technique to calculate very efficiently Py (%),
which actually boils down to the calculation of a first passage time (at a low
level) of the underlying Lévy process.

In order to apply the inversion methodology described below, what is needed
is that for large z we have that

Y(z) — pz

. — 0. (2)

Equivalently this means that

1 0
lim — (e** =14 z(|Jz| A1) v(dz) = 0.

z—oo z f o
The condition can be checked out in every specific application.
Since default is triggered by the crossing of a low barrier, or equivalently
by the point where the running minimum will cross that level, essential in the
sequel will be the distribution of the running maximum and minimum of the

Lévy process. Define the running maximum and minimum of the Lévy process
X ={X;,t >0} by

X = supXy,
u<t

X, = infX

Ay 7111%1‘, u

Let T, and independent exponential random variable with parameter A.
Then Laplace transform of the process taken at an exponential time is given by

Elexp (2 X1,)] = )\)\1/1(2’)

For this expression we have the remarkable factorization (valid for general Lévy
processes):

= (9N G)
= Elexp (:X(T1))] E [exp (X (T1))]

A —1(2)

In other words, the Laplace transform of the process X at an independent expo-
nential time factorizes into the Laplace transforms of the running minimum and



the running maximum taken at exponential time. This is the so-called Wiener-
Hopf factorization; 1y (z) and 1} (z) are called the (left and right) Wiener-Hopf
factors. These factors are unique.
Moreover, classical Lévy process theory (see for example [1, Corollary 2],
[6] or [4]) shows that for a spectrally negative processes the right Wiener-Hopf
factor equals
/H*

W) = 5

where §* is a constant depending on A : §* = §*()\), and that 5* is a solution
to

P(B) = A
In other words the running maximum at an exponential time (with parameter
)\) is exponentially distributed with parameter 3* = =1 ()).
It follows that N 5
—z
vy (2) = ————.
N OB

Now note that by partial integration

¥y (2)

/t_oo/x—o /\eXp(_/\t)eXp(Zm)fﬁt(l‘)dxdt

/ / Aexp(—At) exp(zx)zP (X, > x)dxdt
t =—00

)\z/ / exp(—At) exp(zx) P(X,; > x)dzdt
t =—00
A G* —z
A—(z) B
Let us now focus on the time at which the running minimum crosses for the
first time a barrier z, i.e.

HI = lnf{t : Xt < fL'}
then

flt,x) = P(H_p>t)
= PX,> ).

Hence, we observe that the double Laplace transform of f
t=o00 T=00
g\, z) = / / exp(—At — zx) f (¢, z)dadt
t z=0
=0

= / / exp(—At + zz) P (X, > x) dzdt
t r=—00




We may then write for real numbers
z = 2] —iz
= A —1iXg

that
T=00 t=o00
g(A1 —idg, 21 —i29) = / / exp(—A1t + idat — 212 + izox) f (¢, )dtdx
x=0 t=0

so that
g(A\1 —idg, 21 —i29)

is the double Fourier transform of
exp(—Mt — z12) f(t, x)

So by the inverse Fourier transform we have that

)\2100

1 2o . . . .
exp(—Ait—z12) f(t,x) = W/ / exp(—idgt—izox)g(A1—iAg, 21 —129)dzad s
A Zo=—00

2=—00

or equivalently we may write

1 Y . . . .
f(t,z) = o2 /. / - exp((A1 — i)t + (21 — iz2)x)g(A1 — ide, 21 — 122)d2z2dAs
1
= - )2 /F /1“ exp(At + zz)g(, z)dAdz

- ex zZx B = 2 z
- <2w>2/pl/p2 PN+ 22) ) B gz 4

where the contour I'y = {A; + iA\g|A2 = —00--- 4+ 00)} and the contour I's =
{71 +i22]22 = —c0 -+ + 00)}.

Performing this double transform gives us directly f(¢, z) the probability that
the minimum stays above negative x in t units of time. There is no problem
with 2z or the contour I's but for the contour I'j and A\ = A\; — i)y we have to
solve the complex equation

P(B) = A\ —idg

for the right value of §*. This can be quite a difficulty and renders the solution
relatively intractable.
The suggestion by Rogers in [5] is to alter the contour I'; to the contour

Lo =9¢(T1/p),

which is allowed if the condition (2) is satisfied. The underlying reason is that
on this new contour, solving for ( is easy. Indeed for a value ¥ (\/pu) = ¥((A1 —
iX2)/p) € Ty, we have

Y(B) = (A )



and we have the solution
B=An
Defining
h(A) = (A p)

we then write

flta) = — (27102 /F | /F (A + 2 (h(Y), 2)Ah(N)dz
_ —(27102 /F 0 /F HO)esp(hN)E+ z)g(h(), )Nz
=~ [, [ e ) g T s
_ 7(2717)2 /F U /F HO) (b1 + 2 (h(A)W “() VT

The required double integral is approximated for fixed ¢ and x, by the double
sum following Abate and Whitt,

N
hih
Svo = S D Z "(ay + inhy) g(h(ay +inhy), az + imhs)

472
n=—N m=—N
x exp {th(a; +inhi) + x(as + imhs)}

It is suggested that we take

Ay
ay = ?ll
As
ag = E
™
hy = a0
™
he = -
Al = A2 =22
lh = lb=1
M = 15
N = 12

Finally one performs an Euler summation

M
. (M
I):E 2 M<k)SN+k
k=0

where we use M = 15 and N = 12.



3 Examples

3.1 The Gamma Process

The density function of the Gamma distribution Gamma(a, b) with parameters
a >0 and b > 0 is given by:
a

fGamma(l'; a, b) = m x

a

“Lexp(—axb), x>0.

The characteristic function is given by:
PGamma(u;a,b) = (1 —iu/b)™% wu€R.

Clearly, this characteristic function is infinitely divisible. The Gamma-process
G = {G;,t > 0} with parameters a,b > 0 is defined as the stochastic process
which starts at zero and has stationary, independent Gamma-distributed in-
crements. More precisely, the time enters in the first parameter: G, follows a
Gammal(at, b) distribution.

The Lévy density of the Gamma process is given by

m(z) = aexp(—bzr)r ™, x> 0.

The properties of the Gamma(a,b) distribution given in Table 1 can easily
be derived from the characteristic function.

Gammal(a, b)

mean a/b
variance a/b?
skewness 2/v/a

kurtosis 3(1+2/a)

Table 1: Mean, variance, skewness and kurtosis of the Gamma(a, b) distribution.

Let us start with a Gamma-process G = {Gy,t > 0} with parameters a > 0
and b > 0. As driving Lévy process (in a risk neutral setting), we then take:

Xy =put— Gy, tel0,1],

where in this case p = r — log(¢(—7)) = r + alog (1 + b_l). We hence have a
deterministic up-trend and negative shock are coming from a Gamma process.
We refer to this model as the Shifted Gamma model (SG).

The characteristic exponent in this case is available in closed form. More
precisely,

z
Y(z) = pz — alog (1 + Z) .
Note further that

a

)\ /
h(>\)—/\—alog(1+> andh(/\)_l—m,

ub
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3.2 The IG Process

The Inverse Gaussian 1G(a,b) law with parameters a > 0 and b > 0 has char-
acteristic function:

o1 (u;a,b) = exp (—a(\/ —2iu + b% — b)) , ueR

The IG-distribution is infinitely divisible and we define the IG-process I =
{I;;t > 0} with parameters a,b > 0 as the process which starts at zero, has
independent and stationary IG-distributed increments, and such that:

Elexp(iul;)] = ¢1¢(u; at,b) = exp (—at(\/ —2iu +b% — b)) , ueR

meaning that I; follows a IG(at,b) distribution.

The density function of the IG(a, b) law is explicitly known:

fra(z;a,b) = \/% exp(ab) x7%% exp(—(a®z ! +b%2)/2), > 0.

The Lévy density of the IG process is given by

1
m(x) = a exp (—2b2x> x73/?, x> 0.

1G(a,b)
mean a/b
variance a/b?
skewness 3/Vab
kurtosis | 3(1 + 5(ab)™1)

Table 2: Mean, variance, skewness and kurtosis of the IG(a,b) distribution.

The characteristics given in Table 2 can easily be obtained.
Let us start with a unit variance IG-process I = {I;,t > 0} with parameters
a >0 and b > 0. In our model, we then take:

Xf:ut7[f7 t e [0,1]

where in this case p = r — log(¢p(—i)) = r + a(v/2 4+ b%> — b). We hence have
again a deterministic up-trend and negative shock are now coming from a inverse
Gaussian process. We refer to this model as the Shifted IG model (SIG).

The characteristic exponent in this case is available in closed form. More

precisely,
P(z) = pz —a(v/2z+ b2 =0).

Note further that

A(A) = A —a(v/2 L+ 0% —b) and H/(A) = 1 — %(2@*1 6212,
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3.3 The CMY Process

The characteristic function of the CMY distribution CMY(C, M,Y’) with pa-
rameters C, M > 0 and Y < 1 is given by:

by (u; O, M,Y) = exp(CT (=Y ) (M —iu)Y — MY)).

Note that the CMY distribution can be casted sometimes also referred to (with
an other parameter convention) as a Tempered Stable distribution.
The Lévy measure of the CMY process is given by:

m(x) = Cexp(—Maz)z~ 'Y, x> 0.

Observe from the Gamma and IG Lévy densities that these corresponding Lévy
processes are special cases of the CMY-process; take Y = 0 and ¥ = 1/2
respectitvely.

Clearly, this characteristic function is infinitely divisible. The CMY-process
C = {C,t > 0} with parameters C,M > 0 and Y < 1 is defined as the
stochastic process which starts at zero and has stationary, independent CMY-
distributed increments. More precisely, the time enters in the first parameter:
C follows a CMY(Ct, M,Y") distribution.

The properties of the CMY(C, M,Y) distribution given in Table 3 can easily
be derived from the characteristic function.

CMY(C, M,Y)
mean CMY-IT(1-Y)

variance CMY2r(2-Y)
CMY 31(3-Y)

(CMY—2[(2-Y))3/2

Y -4 _
kurtosis | 3 + %

skewness

Table 3: Mean, variance, skewness and kurtosis of the CMY(C,M,Y) distribu-

tion.

Let us start with a CMY-process C = {Cy,t > 0} with parameters C, M > 0
and Y < 1. As driving Lévy process (in a risk neutral setting), we then take:
Xy =pt—C;, tel0,1],

where in this case p = r — log(¢(—i)) = r — CT(=Y)((M + 1)¥ — MY). We
hence have a deterministic up-trend and negative shock are coming from a CMY-
process. We refer to this model as the Shifted CMY model (SCMY).
The characteristic exponent in this case is available in closed form. More
precisely,
P(2) = pz + CT(=Y) (M + 2)¥ — MY).
Note further that

R(A) = A+ CT(=Y)(M + g™ 1Y — MY) and B/~ (M + A\~ H)Y L.
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4 Pricing of Credit Default Swaps

Consider a CDS with maturity 7" and a continuous spread c. The price of a this
CDS is then given by

T T
CDS=(1-R) <—/0 exp(—rs)dP(s)) - c/O exp(—rs)P(s)ds, (3)

where R is the asset specific recovery rate and r is the default-free discount rate.
From this, we find the par spread c¢* that makes the CDS price equal to zero:

(1-R) (f I exp(frs)dP(s)>
fOT exp(—rs)P(s)ds

4.1 Goodness of Fit

We calibrated the different models to a whole family of CDS curves. In the
calibration, we minimized the absolute error between model CDS quotes and
market CDS quotes. We have weekly data from all the 125 companies on the
iTtraxx over the year 2005. So, we have 125 CDS curves for 52 weeks, making
in total 6500 CDS curves with spread rates of 1, 3, 5, 7 and 10 year maturities.
In Table 4, one finds a comparison of the mean error over the 125 components
for the different maturities together with the total error and the average error
per quote for the calibration on the data set of the 5th of January 2005.

Model 1y 3y S5y Ty 10y total average
per quote

SG 3.2088 0.6302 1.4056 0.0274 2.9150 8.1870 1.6374

SIG 2.8384 0.5689 1.3062 0.0280 2.7926 7.5342 1.5068

SCMY 1.4187 0.2203 0.6710 0.2262 1.4836 4.0199 0.8040

Table 4: Mean absolute error (in bp) for calibration of different models on the
125 CDS in iTtraxx on 5th of January 2005

In Figure 1, one sees the fit obtained under the the different models for
company Electrolux AB on that day (o-signs are market prices and +-signs are
calibrated model prices).

One observes, that the SCMY model outperforms the SG and SIG, but that
also for the two latter models the fit is very acceptable.

In Figure 2, one sees a histogram of the absolute errors over the 125 CDS
curves calibration on one particular day under SCMY, namely on the 5th of
January 2005. One sees, that the majority of the 125 companies have an average
error per quote less than 1 bp.

Next, we will look to the time-evolution of the fit. In Figure 3, one sees a the
evolution of the average errors per quote over the 52 weeks for the SIG, SCMY

13



model and the SG model. As expected SCMY outperforms SG and SIG. For
the SCMY model, one can find the evolution of the mean absolute error over
time for each maturity in Figure 4.

4.2 Discussion of CDS Calibration Results

Next, we take a closer look at the calibration results. We focus on the CMY
model, because the two other models, Gamma and IG, are subcases of the CMY
model. We have estimated the three parameters, C, M and Y for each of the
125 underlying CDS curves for each of the 52 weeks.

The estimation is done under risk-neutral measure and hence the interpre-
tation of the Lévy measure is the market prices moves of different sizes. Since,
the Lévy measure is parameterized by three parameters, one may relative freely
estimate the prices of moves at three different size magnitudes. We therefore
focus attention on the 5, 10 and 20 percentage moves in asset value. We report
the approximate daily arrival rates of a 5 percent move and call this variable
the level of the market. In addition, we report the premium of 5 percent moves
to 10 percent moves measured by the ratio of the Lévy measure at 10 percent
to that of 5 percent and call this the 10 to 5 percent market spread. Finally,
we report the relative spread, defined as the logarithm of the 10 to 5 percent
market spread over the 20 to 10 percent market spread. These statistics are
computed as a one-to-one transformation of the parameters for each underlier
and for each date. We then average across all underliers at each date. Figure 5
presents a graph of the level, spread and relative spread together with the mean
of the 5 year cds quote over the year averaged over all names.

We observe that the level of 5 percent moves is just below one move per week.
Though this is high from physical measure viewpoint, the pricing is risk-neutral
and the market prices in a greater degree such moves. The level of down-moves
follows closely to the pattern of the 5 year CDS quote. The spread of 10 percent
to 5 percent move is fairly stable around 20 percent and so the market prices in
a 10 percent move every 5 weeks. We note however, that the structure of these
negatives moves is compensated by the positive drift. We observe that there
is a negative correlation between the mean cds and the relative spread. This
suggests that if CDS rates rise the prices of 5 percent moves follow, but prices
for larger moves like 20 percent remains relatively stable.
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Electrolux AB on 5/1/2005 - IG model [ a=1.0957 b= 3.1179] Electrolux AB on 5/1/2005 - GAMMA model [a= 1.3321 h=6.1088]
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Figure 1: Fit for Electrolux on 5/1/2005 under the IG, GAMMA and CMY
model
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Histogram SCMY model absolute errors Itraxx CDS 5/1/2005
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Figure 2: Histogram of calibration error per quote of SCMY on iTraxx on 5-
Jan-2005
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Evolution of mean error per quote
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Figure 3: Evolution over time of average calibration error per quote of SG, SIG
and SCMY on iTraxx in 2005
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Evolution mean error of of 1,3,5,7 and 10 y CDS quote under SCMY
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Figure 4: Evolution over time of average calibration error per maturity of SCMY
on iTraxx in 2005
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Figure 5: Evolution of level, spread, relative spread and mean cds value under
SCMY calibrated model
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