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1 Introduction & Problem Setting

Nonlinear Model Predictive Control (NMPC) for trajectory
planning is a topic that currently receives a widespread in-
terest from the (robotics) research community. Classical
NMPC schemes are supposed to stabilise a nonlinear sys-
tem, reject disturbances to it and lead to agile control of that
system which requires high NMPC update rates. The control
inputs are computed by solving an Optimal Control Problem
(OCP), minimising an objective e.g. time of the total trajec-
tory or distance to be travelled to reach a target, subject to
constraints such as collision avoidance, a model of the sys-
tem dynamics, actuator limits, etc.

For nonlinear systems in complex environments or with lim-
ited onboard computation power, e.g. drones or autonomous
vehicles, reaching high update rates and guaranteeing feasi-
bility is often intractable. A widely used approach to reduce
computational complexity is the Real-Time Iterations (RTT)
technique [1]. RTI applies only the first iteration of an op-
timization solver to the system. It does not guarantee con-
straint satisfaction and can lead to collisions and infeasible
controls that do not satisfy the modelled nonlinear system
dynamics.

We propose an alternative NMPC strategy - Asynchronous
NMPC (ASAP-MPC) - that deals with finite computation
times that can extend over multiple update intervals but
guarantees feasibility with respect to the constraints by solv-
ing the OCP to convergence. A low-level stiff feedback con-
troller is added to guarantee that the actual state x(¢) tracks
the computed NMPC solution such that x(¢) =~ £(¢). The ex-
pected finite computation time is maximally m samples.

2 Asynchronous NMPC

Figure 1 shows the principle for a one-dimensional example.
Suppose at time #;, a new solution A is available. Since a
finite computation delay is expected, based on solution A
and the current on-trajectory state %(;), an estimation of the
future on-trajectory state £(;1,,) is made. The next solution
B is constrained to start from this future point. Awaiting
solution B, solution A (red) is tracked up to m samples in
the future. Once computed, solution B is stitched to A at

f(li_»,_m).

If solution B arrives earlier at #; < t;4,,, solution A is still
tracked up to f;4,, after which the newly computed solution

B is tracked up to #j,,,. Suppose the next solution (C) ar-
rives just-in-time after m samples at #; = ;4 ,, solution C is
stitched to solution B and immediately tracked. The future
trajectory from solution B is discarded. Repeating this up-
date procedure leads to a continuous trajectory in time for
x(t), constructed by asynchronously stitching new solutions
to each other.
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Figure 1: Working principle of the update strategy in ASAP-
MPC, illustrated for a one-dimensional example.
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