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A B S T R A C T

Maintenance is a challenging operational problem where the goal is to plan sufficient preventive
maintenance (PM) to avoid asset overhauls and failures. Existing work typically relies on strong
assumptions (1) to model the asset’s overhaul and failure rate, assuming a stochastic process with
known hazard rate, (2) to model the effect of PM on this hazard rate, assuming the effect is
deterministic or governed by a known probability distribution, and (3) by not taking asset-specific
characteristics into account, but assuming homogeneous hazard rates and PM effects. Instead of
relying on these assumptions to model the problem, this work uses causal inference to learn the effect
of the PM frequency on the overhaul and failure rate, conditional on the asset’s characteristics, from
observational data. Based on these learned outcomes, we can optimize each asset’s PM frequency
to minimize the combined cost of failures, overhauls, and preventive maintenance. We validate our
approach on real-life data of more than 4,000 maintenance contracts from an industrial partner.
Empirical results on semi-synthetic data show that our methodology based on causal machine learning
results in individualized maintenance schedules that are more accurate and cost-effective than a
non-causal approach that does not deal with selection bias and a non-individualized approach that
prescribes the same PM frequency to all machines.

1. Introduction
Maintenance constitutes an intricate operational prob-

lem. The challenge is to avoid failures and costly over-
hauls, while simultaneously minimizing the cost of pre-
ventive maintenance (PM). We consider the problem of
deciding on the frequency of PM interventions, where the
optimal frequency minimizes the combined cost of both PM
and detrimental outcomes resulting from deterioration, such
as failures or overhauls. To optimize the PM frequency,
existing work typically makes strong assumptions regarding
the asset’s hazard rate, i.e., the frequency with which failures
and overhauls occur, and the effect of PM on this hazard
rate. Moreover, existing maintenance policies assume asset
homogeneity in the hazard rate and/or PM effect by not
taking asset characteristics into account. We argue that all
of these assumptions can be violated in practice.

First, most work assumes the asset’s overhaul and fail-
ure rates follow a stochastic process that is known to the
decision-maker, which is typically not the case in practice
(de Jonge et al., 2015). Moreover, estimating the parameters
of the stochastic process from data is challenging due to
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censoring (Louit et al., 2009; Fouladirad et al., 2018) and still
requires assuming a certain type of statistical distribution
that might not coincide with the actual overhaul or failure
rate. Finally, most existing work assumes asset homogeneity
and does not incorporate the effects of the asset’s character-
istics on the overhaul and failure rates. In reality, however, an
older asset might be more prone to failure and require more
PM interventions than a more recent one.

Existing work also requires assumptions on the effect
of PM on the overhaul and failure rates. A broad spectrum
of maintenance effects have been studied in the literature,
ranging from perfect maintenance, which restores the system
to a state as good as new, to worst maintenance, where
maintenance causes the asset to fail (Pham and Wang, 1996).
Existing approaches in imperfect maintenance assume that
the effect is either deterministic or stochastic following a
specified probability distribution. These assumed effects,
however, might not always correspond to the actual effect.
Moreover, the effect of PM is typically assumed to be iden-
tical for all assets. In reality, the effect of the same type of
PM intervention could be very different for different assets.
For example, changing a gear would likely have a different
impact on a brand-new asset compared to the exact same
maintenance intervention on an old, worn-down asset.
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In this work, we relax these assumptions regarding the
hazard rate and the PM effect. Instead, we propose a data-
driven maintenance policy that learns the effect of the PM
frequency on the resulting overhaul and failure rates, con-
ditional on the asset’s characteristics. This approach allows
to flexibly learn the outcomes for different PM frequencies
from historical, observational data using machine learning,
rather than assuming a prespecified (or known) hazard rate
and PM effect based on expertise, and to design an asset-
specific PM schedule based on the learned outcomes.

These benefits are achieved by framing maintenance as a
problem of causal inference. We argue that the challenge in
maintenance is that, for each specific asset, we only observe
one overhaul and failure rate corresponding to the PM fre-
quency that was administered in practice. We never observe
the counterfactual outcomes, i.e., what would have happened
if that asset had received more or less maintenance. Because
of this, we never know whether the optimal PM frequency
was prescribed. Causal inference offers a solution to this
problem by predicting each individual asset’s hypothetical
overhauls and failures at different PM frequencies. By learn-
ing a model that predicts the overhaul and failure rate given
the PM frequency, we can optimize the PM schedule to
minimize the total estimated cost. Essentially, we propose
using observational data to learn an asset-specific digital
twin for maintenance that predicts the overhaul and failure
rate should an asset be prescribed a certain PM frequency.

This work contributes to the extant literature on preven-
tive maintenance by proposing a novel prescriptive frame-
work for maintenance that prescribes each asset’s desired
preventive maintenance frequency based on the estimated
effect of PM on its overhaul and failure rates. To this aim,
we frame maintenance as a problem of causal inference
and leverage state-of-the-art machine learning methods for
causal inference. These models learn to estimate an asset’s
potential outcomes for different PM frequencies from obser-
vational data. Moreover, we formulate a prescriptive policy
that uses the potential outcomes to decide on the optimal
PM frequency that minimizes the total cost of failures,
overhauls and PM interventions. Empirically, we contribute
by demonstrating the use of our causal inference framework
on a dataset consisting of more than 4,000 maintenance
contracts of industrial equipment provided by an industrial
partner. Finally, as our proposed approach itself comes with
assumptions, we discuss their viability in the context of
maintenance.

2. Related work
Maintenance has been studied extensively in operations

research, with a wide variety of proposed maintenance poli-
cies (Wang, 2002; Ding and Kamaruddin, 2015; de Jonge
and Scarf, 2020). Our work touches upon the literature on
time-based maintenance, imperfect maintenance, condition-
based maintenance, as well as prescriptive analytics and
causal inference.

2.1. Time-based maintenance
We consider the problem of finding an optimal PM fre-

quency, equivalent to finding the optimal period between PM
interventions, known as time-based maintenance (Barlow
and Hunter, 1960). This approach has been widely studied
and, because of its simplicity, it is still frequently used
in practice (Ahmad and Kamaruddin, 2012; Faccio et al.,
2014). The key idea is to perform PM with a constant
frequency throughout the asset’s lifetime. Typically, this
optimal PM frequency is found by modelling the stochastic
overhaul and failure rates using a statistical distribution and
then finding the PM frequency that minimizes the estimated
total cost (Ahmad and Kamaruddin, 2012).

The drawback of most existing time-based maintenance
policies is that they model failures and overhauls using an
assumed stochastic process. Estimating the parameters of
this stochastic process can be difficult due to censoring.
This is because, in reality, assets are often maintained be-
fore failure occurs. Even if the parameters of the stochastic
process can be estimated from data, the process itself can be
misspecified. Moreover, existing work on time-based main-
tenance typically does not consider asset heterogeneity. Our
proposed approach does not rely on a parametric model of
the asset’s overhauls and failures, but estimates each asset’s
overhaul and failure rates given the PM frequency using a
flexible machine learning model, conditional on that asset’s
characteristics.

2.2. Imperfect maintenance
Most existing work assumes that preventive maintenance

restores the system to a state that is as good as new. However,
maintenance is typically imperfect in reality. Different main-
tenance effects have been studied in the literature, ranging
from maintenance that restores the system to a perfect state
to maintenance that makes the system’s state worse (Pham
and Wang, 1996). Consequently, developing maintenance
policies that incorporate imperfect maintenance is an impor-
tant research problem.

Existing work models the effect of imperfect mainte-
nance as either stochastic (based on a known probabil-
ity distribution) or deterministic (Pham and Wang, 1996;
Chukova et al., 2004). Stochastic effects include the (𝑝, 𝑞)
rule, where maintenance is as good as new with probability
𝑝 and as good as old with probability 𝑞 = 1 − 𝑝 (Nakagawa,
1979a,b; Brown and Proschan, 1983), and its age-dependent
variant (𝑝(𝑡), 𝑞(𝑡)) (Block et al., 1985). Other work assumes
a deterministic effect. Improvement factor models assume
that maintenance decreases the system’s failure rate by a
deterministic improvement factor (Malik, 1979). Similarly,
in virtual age models, imperfect maintenance decreases the
system’s age or failure rate with a deterministic factor 𝑞
where 0 < 𝑞 < 1 (Kijima, 1989; Tanwar et al., 2014).

The literature has proposed methods for estimating the
parameters of these imperfect maintenance models from data
and corresponding goodness-of-fit tests (Liu et al., 2011;
de Toledo et al., 2015; Zhang and Xie, 2017). However, these
approaches still start from a (deterministic or stochastic)
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model of the PM effect that can be misspecified in practice.
Moreover, the goodness-of-fit tests only verify whether the
model corresponds to the asset pool globally. Conversely,
our approach estimates an effect that is, first, model-free
as it does not assume a certain type of effect and, second,
machine-dependent, as it is based on individual character-
istics. This is achieved by learning the overhaul and failure
rates for different PM frequencies from observational data.
Finally, a key difference with our approach is that we do not
consider the effect of a single PM intervention, but rather
focus on the outcomes over a period of time caused by
different PM frequencies.

2.3. Condition-based maintenance
Data-driven, condition-based maintenance policies have

recently gained importance in the maintenance literature
(Bousdekis et al., 2021). Condition-based maintenance is
a policy in which maintenance is optimized based on the
machine’s state or its characteristics (Gits, 1992; Alaswad
and Xiang, 2017). Especially relevant to our work are recent,
predictive maintenance approaches that learn a predictive
model from data to decide on the appropriate maintenance
interventions (Swanson, 2001; Carvalho et al., 2019). Var-
ious authors propose using neural networks due to their
flexibility and ability to extract features from data (Fast et al.,
2008; Tian, 2012; Wu et al., 2013; Lu et al., 2018).

A typical approach is to predict the machine’s health
from its characteristics and apply maintenance when a degra-
dation threshold is reached. This is achieved by monitoring
the machine’s health using a data-driven model to predict
whether a failure is imminent. When the perceived risk is too
high, e.g., exceeding a degradation threshold, an intervention
can be scheduled to avoid failure (e.g., as in Bey-Temsamani
et al., 2009; Do et al., 2015; Matyas et al., 2017; Poppe et al.,
2018; Nemeth et al., 2018; Ansari et al., 2019). Therefore,
various works have proposed predicting failures using ma-
chine learning models (Kusiak and Verma, 2011; Lee et al.,
2017; Leukel et al., 2021) with several recent approaches
based on neural networks specifically (Jansen et al., 2018;
Chen et al., 2019a,b, 2020; Savitha et al., 2020; Orrù et al.,
2020; Alves et al., 2020; Zhao and Huang, 2021; Ye and
Yu, 2021; Figueroa Barraza et al., 2022). By incorporating
asset characteristics in the estimation, predictive policies can
account for asset heterogeneity.

The downside of condition-based approaches is that they
only predict the asset’s deterioration and do not consider the
impact of PM on this deterioration. The time at which the
deterioration threshold is reached and PM is planned, might
not correspond to the optimal timing to most effectively
perform maintenance and remedy the deterioration. Ideally,
maintenance should not be performed just before the asset
fails, but at the time when it is most effective at lowering
the asset’s failure probability. To this end, it is important
to estimate the asset’s hazard rate resulting from a certain
PM frequency, which is exactly what our approach aims to
achieve.

Similar to the general literature on imperfect mainte-
nance, existing condition-based approaches that consider
imperfect maintenance also assume either a deterministic
or stochastic maintenance effect. There exist three broad
categories of condition-based approaches that account for
imperfect maintenance (Alaswad and Xiang, 2017). A first
category considers minimal maintenance with a determinis-
tic effect, in which a system has several deterioration stages
and imperfect maintenance returns the system to the previ-
ous stage. A second category considers stochastic effects,
where the maintenance effect is governed by an assumed
probability distribution. Finally, in improvement factor mod-
els, imperfect maintenance decreases the system’s hazard
rate with a (deterministic) factor between zero and one.
To the best of our knowledge, no existing condition-based
approaches aim to learn the effect of maintenance from data.

2.4. Prescriptive analytics and causal inference
Instead of assuming a hazard rate or PM effect, this

work uses machine learning models to learn the effect of
maintenance using techniques from causal inference. Causal
inference aims to estimate the effect of a certain cause
from data, in our case the failure rate resulting from a
given PM frequency. Ideally, estimating maintenance effects
would be done by conducting a randomized controlled trial:
assigning different PM frequencies to a collection of (simi-
lar) machines and comparing the outcomes (Rubin, 1974).
However, in practice, this approach can be prohibitively
expensive, unfeasible, or even unethical (e.g., when consid-
ering life support equipment in hospitals). In maintenance, it
would generally be challenging to randomly assign varying
levels of PM to different machines, because an excessively
low PM frequency might risk not ensuring minimal service
levels. When randomized controlled trails are impossible, we
need to rely on historical, observational data of machines and
their maintenance to learn the outcomes caused by different
PM frequencies.

The challenge of working with observational data is
that this data is biased due to existing maintenance policies
that were in use (Rubin, 1974). For example, as a result of
an existing policy, machines more prone to failure might
have been more likely to receive more maintenance in the
past. This phenomenon, called selection bias or confounding
bias, can result in biased estimates of the counterfactual
outcomes if ignored. Under certain assumptions, specialized
tools from the causal inference literature can be used to
tackle exactly this problem and learn causal effects from
observational data, i.e., in the presence of selection bias (Yao
et al., 2021). Specifically, our work is related to learning
potential outcomes for continuous-valued interventions (Im-
bens, 2000; Hirano and Imbens, 2004; Imai and Van Dyk,
2004; Schwab et al., 2020; Bica et al., 2020), e.g., the PM
frequency1. Learning the outcomes for different levels of a
continuous treatment is also referred to as learning a dose-
response curve.

1The number of PM interventions is discrete, but the number of PM
interventions per running period (i.e., PM frequency) is continuous-valued.
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Causal inference has been applied to a variety of appli-
cations, such as personalized medicine (Berrevoets et al.,
2020), economic policy design (Athey and Wager, 2021),
marketing (Varian, 2016; Devriendt et al., 2018), and educa-
tion (Webbink, 2005). Moreover, it is related to prescriptive
analytics (Verbeke et al., 2020, 2022), which has recently
gained importance in operations research (Bertsimas et al.,
2019; Bertsimas and Kallus, 2020). This work uses causal
inference to predict a machine’s failure rate and overhaul
rate for different PM frequencies and, consequently, to de-
cide upon a personalized PM schedule. To the best of our
knowledge, this is the first application of causal inference
for maintenance optimization.

3. Problem overview
This work aims to solve the problem of prescribing an

asset’s PM frequency to minimize the costs resulting from
overhauls, failures, and PM. In particular, we are moti-
vated by the challenge faced by a provider of full-service
maintenance contracts. The service provider is responsible
for maintaining the client’s asset at a predetermined price
(Deprez et al., 2021). To maximize its profit margin, the
service provider needs to decide on the PM frequency that
minimizes the costs of failures, overhauls, and PM. The PM
frequency is usage-based and defined over a running period,
which corresponds to a standardized number of running
hours. For each contract, the service provider has access
to contract characteristics, such as the type of machine it
concerns and the machine’s age at contract start. We consider
each machine as a single-unit system.

We assume the service provider conducts a single type
of planned PM intervention and needs to decide on the
frequency of these interventions. Planned PM aims to pre-
vent two types of events: overhauls and failures. The first,
overhauls, are unplanned, comprehensive maintenance in-
terventions during which large parts of the machinery need
to be replaced. From the viewpoint of the full-service main-
tenance provider, these are the most costly type of event. The
second, machine failures, are also unplanned and result in an
urgent need for maintenance as the machine stops running
until corrective maintenance occurs. A failure also incurs a
cost to the service provider that is smaller than the cost of an
overhaul, but larger than the cost of PM.

The overall goal is to find each contract’s optimal PM
frequency that minimizes the combined cost of planned
PM, overhauls and failures, from the perspective of the
service provider. Although planning more PM interventions
is likely to result in less overhauls and failures, it comes at
an increased maintenance cost. Therefore, the optimal PM
frequency is a trade-off between costs resulting from planned
PM on the one hand and costs resulting from unplanned
overhauls and failures on the other hand. Due to heterogene-
ity in the contracts and associated machines, maintenance
might need to be planned more frequently for some con-
tracts. Therefore, it is important to consider the contract’s
characteristics when deciding on the PM frequency. To this

aim, the service provider has access to information on past
contracts, including the administered PM frequency, and the
overhaul and failure rates observed for that PM frequency.

Let each contract be defined as a tuple
(

𝐗, 𝑇 , 𝑂(𝑇 ), 𝐹 (𝑇 )
)

.
𝐗 ∈  ⊂ ℝ𝑑 denotes a vector of (static) characteristics
of the contract and the associated machine. The treatment,
in our case the PM frequency, corresponds to the number
of PM interventions that were applied per running period,
and is denoted as 𝑇 ∈  ⊂ ℝ+. Finally, 𝑂 ∈  ⊂ ℝ+

and 𝐹 ∈  ⊂ ℝ+ are the observed number of overhauls
and failures per running period, i.e., the overhaul and failure
rates. Following the causal inference literature, we adopt
the Rubin–Neyman potential outcomes framework (Rubin,
2004, 2005) and denote the overhaul intensity 𝑂 and failure
rate 𝐹 for a given maintenance frequency 𝑡 as 𝑂(𝑡) and 𝐹 (𝑡).

𝐗

𝑇

𝑂 𝐹

Figure 1: Diagram illustrating the assumed causal relation-
ships between the different variables. 𝑋: Asset characteristics,
𝑇 : PM frequency, 𝑂: Overhaul rate, and 𝐹 : Failure rate.

The objective is to decide on each asset’s optimal PM
frequency 𝑡∗𝑖 that minimizes the total cost per running period.
We assume a cost model per running period similar to Faccio
et al. (2014). Each asset 𝑖’s cost per running period consists
of the combined costs of PM, overhauls and failures, which
all depend on the decision-variable, i.e., the PM frequency
𝑡𝑖:

𝑐𝑖(𝑡𝑖) = 𝑐𝑡 𝑡𝑖
⏟⏟⏟

PM

+ 𝑐𝑜 𝑜𝑖(𝑡𝑖)
⏟⏟⏟
Overhauls

+ 𝑐𝑓 𝑓𝑖(𝑡𝑖)
⏟⏟⏟

Failures

, (1)

for 𝑖 ∈ {1,… , 𝑛}. We assume that the costs of PM, over-
hauls, and failures are deterministic and known (𝑐𝑡, 𝑐𝑜, 𝑐𝑓 ∈
ℝ+).

To assist the service-provider’s decision-making, data is
available on 𝑚 past contracts  =

{

(𝐱𝑖, 𝑡𝑖, 𝑜𝑖, 𝑓𝑖)
}𝑛
𝑖=1. For

each of these past contracts, only one potential outcome was
observed for 𝑂 and 𝐹 given that contract’s PM frequency
𝑇 : 𝑜𝑖(𝑡𝑖) and 𝑓𝑖(𝑡𝑖). The other, counterfactual outcomes are
never observed—this is known as the fundamental problem
of causal inference (Holland, 1986). The challenge in causal
inference is to predict, for a new contract, the potential
outcomes for all possible values of 𝑇 using historical, ob-
servational data.

For each observed contract 𝑖, decisions regarding the
administered PM frequency 𝑡𝑖 were based on its character-
istics 𝐱𝑖 according to a (possibly unknown) existing policy,
resulting in selection bias or confounding bias in the data. In
observational data, we can expect a relationship between an
asset’s characteristics and the PM frequency it received. For
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example, the service provider might know from experience
that older machines are more likely to fail when not receiving
frequent PM and, because of this, typically prescribed more
maintenance to those machines in the past. Factors that influ-
ence both the administered PM frequency and the outcome,
the failure and overhaul rate, are called confounders. In this
example, age is a confounder affecting both the received
PM frequency and the resulting failure rate. We show the
assumed causal structure of the problem in Figure 1.

The presence of confounders and selection bias is typi-
cally the case when working with observational data. This is
because past PM frequencies were not assigned at random,
but based on information on the contract and machine. Be-
cause of the associations between confounders and the PM
frequency, assets that received relatively infrequent PM are
different from assets that received relatively more frequent
PM. This phenomenon, called selection bias, complicates
learning the relationships between overhaul and failure rates,
the PM frequency, and asset characteristics. Therefore, when
learning a predictive model for estimating the overhaul and
failure rate resulting from a given PM frequency from obser-
vational data, we are required to adjust for selection bias to
obtain unbiased estimates.

4. Methodology
Our methodology consists of a predict-then-optimize

framework, see Figure 2 for a high-level overview. First,
we predict each new contract’s potential outcomes, i.e., its
overhaul 𝑜𝑖(𝑡) and failure rate 𝑓𝑖(𝑡) for PM frequencies 𝑡 ∈ 𝑇 ,
based on its characteristics 𝐱𝑖. Therefore, the first step is to
train a machine learning model to estimate these potential
outcomes from observational data on past contracts . In
a second phase, we use these predictions to estimate each
contract’s total cost per running period for different PM
frequencies 𝑡 ∈ 𝑇 . The PM frequency is chosen to minimize
the resulting total cost of overhauls, failures, and PM.

In what follows, we first introduce standard assumptions
that are required to estimate potential outcomes from obser-
vational data in Section 4.1. Second, we describe how we
estimate the potential outcomes by learning a causal machine
learning model from observational data. We used a state-
of-the-art methodology called SCIGAN (Bica et al., 2020).
This is described in Section 4.2. Third, in Section 4.3, we
describe how these predictions are used to determine each
machine’s optimal PM frequency that minimizes the total
estimated cost.

4.1. Assumptions
The challenge in estimating potential outcomes from

observational data is dealing with selection bias. Learning
unbiased estimates of the potential outcomes from obser-
vational data requires making three standard assumptions:
consistency, overlap, and unconfoundedness (Imbens, 2000;
Bica et al., 2020). The first, consistency, means that each
contract’s observed outcomes for 𝑂 and 𝐹 given PM fre-
quency 𝑇 = 𝑡 are its potential outcomes 𝑂(𝑡) and 𝐹 (𝑡):

Assumption 1: Consistency. 𝑌 = 𝑌 (𝑡) for all 𝑡 ∈ 𝑇 .

This assumption implies that there is only one version of
the treatment and that the mechanism used to assign the
treatment does not matter. It is violated if, for example,
the prescribed PM is not performed for some assets, e.g.,
when some clients do not adhere to the PM frequency
prescribed by the service provider. Consistency may seem
straightforward, but ensures that the PM schedule prescribed
by the service provider will be observed in practice.

The second assumption, overlap or positivity, ensures
that each possible contract 𝐱𝑖 has a non-zero probability of
receiving each frequency of PM interventions 𝑡𝑖:
Assumption 2: Overlap. For all 𝐱 ∈  with 𝑝(𝐱 > 0) and
𝑡 ∈  ∶ 0 < 𝑝(𝑡|𝐱) < 1.

This implies that, for each observed machine, it was a
priori possible to observe each PM frequency, although
not necessarily with the same probability. This assumption
would be violated when, for example, machines older than
five years always receive at least ten PM interventions per
running period. In that case, the probability of receiving a
PM frequency lower than ten is zero for those machines,
implying a violation of the overlap assumption. In that case,
we would not be able to account for selection bias, as no
observations would exist to infer what would happen to old
machines at low PM frequencies.

The third and final assumption, unconfoundedness or no
hidden confounders, ensures that there are no unobserved
variables influencing both the treatment assignment 𝑇 and a
potential outcome 𝑂(𝑡) or 𝐹 (𝑡):
Assumption 3: Unconfoundedness. Conditional on ma-
chine characteristics 𝐗, potential outcomes 𝑂(𝑡) and 𝐹 (𝑡)
are independent of the PM frequency 𝑇 :

{𝑂(𝑡), 𝐹 (𝑡)|𝑡 ∈  } ⟂⟂ 𝑇 |𝐗.
This assumption implies that all information that informed
decisions regarding past PM frequencies are included in the
data. This assumption would be violated if, for example, ma-
chines in some locations were maintained more frequently in
the past, but no record of the machine’s location was kept.
If hidden confounders are present, it is impossible to adjust
for the hidden confounder and, consequently, for selection
bias based on the observed data. Given that Assumptions
1 to 3 are met, controlling for confounding resulting from
machine characteristics 𝐱𝑖 allows accounting for selection
bias in observational data and obtain unbiased estimates.

4.2. Predictive model to estimate the effect of the
PM frequency on overhaul and failure rates

First, we need to predict each contract’s potential out-
comes, i.e., its overhaul 𝑜𝑖(𝑡) and failure rate 𝑓𝑖(𝑡) for each
PM frequency 𝑡 ∈ 𝑇 , based on its characteristics 𝐱𝑖. To this
aim, we learn two machine learning models 𝑔𝑜 ∶ × → 
and 𝑔𝑓 ∶  ×  →  defined by parameters 𝜃𝑜, 𝜃𝑔 ∈ Θ.
The goal is to obtain unbiased estimators of the potential
outcomes:

𝑔𝑜(𝑡, 𝐱) = 𝔼 [𝑂(𝑡)|𝐗 = 𝐱] , (2)
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Total cost 
PM cost 
Cost of failures 
Cost of overhauls

1. Machine information 2. Predict potential outcomes  and 3. Prescribe the PM frequency  to minimize the total cost

CostFeature Value
Machine type 2
Age 10.2
Running hours 2,000
Contract type 1

... PM Frequency 

Failures  
Overhauls  

Potential
outcomes

PM Frequency 

Figure 2: Methodology overview. We present a high-level overview of our methodology. First, machine characteristics 𝐱𝑖 are
used to predict the potential outcomes in terms of overhauls 𝑜𝑖(𝑡) and failures 𝑓𝑖(𝑡). Based on these estimates, the total cost for
different PM frequencies 𝑡 ∈ 𝑇 can then be estimated. Finally, the PM frequency 𝑡∗𝑖 is chosen to minimize the total expected cost.

𝑔𝑓 (𝑡, 𝐱) = 𝔼 [𝐹 (𝑡)|𝐗 = 𝐱] . (3)

In this work, we learn 𝑔𝑜 and 𝑔𝑓 using SCIGAN,
a recently proposed methodology for predicting potential
outcomes of continuously-valued treatments that achieved
state-of-the-art performance across a variety of settings
(Bica et al., 2020). Each model is learned in two steps. First,
a generative adversarial network (GAN) (Goodfellow et al.,
2020) is trained to model the distribution of the potential
outcomes, conditional on the contract’s characteristics. This
is achieved by training two neural networks, where the gener-
ator network learns to generate counterfactual contracts that
cannot be distinguished from factual, observed contracts by
the discriminator network. In a second phase, the GAN is
used to augment the observed training data with generated
counterfactual samples. This way, the augmented data set
contains all potential outcomes, including the factual out-
come and the generated, counterfactual outcomes. This way,
the fundamental problem of causal inference is alleviated as
we “observed” all potential outcomes for each contract and,
because of this, the augmented data set does not suffer from
selection bias. Using the augmented data set, a predictive
model can be trained to predict the potential outcomes in a
supervised manner. For this, we again use a neural network.
Each network is implemented as a multilayer perceptron
(MLP). Section A provides more information on the training
and hyperparameter optimization of the models.

4.3. Optimization of the maintenance cost
The predicted potential outcomes allow estimating the

costs incurred at different PM frequencies. It can be seen
that, using the predicted potential outcomes, all terms in
Equation (1) depend on the PM frequency 𝑡𝑖:

𝑐𝑖(𝑡𝑖) = 𝑐𝑡 𝑡𝑖 + 𝑐𝑜 𝑜𝑖(𝑡𝑖) + 𝑐𝑓 𝑓𝑖(𝑡𝑖). (4)

Each machine’s optimal PM frequency 𝑡∗𝑖 is found by min-
imizing the expected cost: 𝑡∗𝑖 = argmin𝑡𝑖 𝑐𝑖(𝑡𝑖) for all 𝑖 ∈
{1,… , 𝑛}. To account for heterogeneity in the contracts, the
PM frequency is optimized for each specific machine.

5. Results
We validate our methodology empirically using data

provided by an original equipment manufacturer that offers
full-service maintenance contracts to their customer base.

By optimizing the PM frequency, they can minimize the
total cost of such a contract, resulting from PM, overhauls,
and failures. In Section 5.1, we first present the data used in
our experimental analysis. Section 5.2 describes the semi-
synthetic data generating procedure that we used to eval-
uate the predicted potential outcomes and prescribed PM
frequencies. In Section 5.3, we present the evaluation met-
rics and benchmarks used. Finally, Section 5.4 presents the
empirical results of our experimental analysis.

5.1. Data
Our data set contains more than 4,000 full-service main-

tenance contracts. For each contract 𝑖, we have information
𝐱𝑖 relating to the characteristics of the machine, the con-
tract, and maintenance-related events. An overview of the
information available in the data is presented in Table 1 and
an excerpt is shown in Table 2. Maintenance-related events
(PM interventions, overhauls, and failures) are presented per
running period, which is a set number of running hours. For
reasons of confidentiality, the exact number of running hours
per period is not revealed in this article. Costs are averaged
over all events and re-scaled for reasons of confidentiality.

The data is preprocessed as follows. Categorical vari-
ables are encoded with dummies and 𝐱𝑖 is standardized.
The PM interventions, overhauls, and failures that occurred
throughout the contract are converted to the number of
events per running period to calculate each contract’s PM
frequency, overhaul rate, and failure rate. For future con-
tracts, the exact number of running hours might not be
known when the contract starts, but an estimate would
typically be available.

5.2. Semi-synthetic data generating procedure
In order to obtain a good predictive model, we need to

be able to accurately predict the overhaul and failure rates at
different PM frequencies. However, if we test this predictor’s
accuracy using only observational data, we can verify the
model’s ability to accurately predict the observed outcome,
the overhaul and failure rates only at the observed PM fre-
quency 𝑡𝑖 (the observed outcome), but not the overhaul and
failure rates if the machine had received more or less mainte-
nance (the unobserved outcomes). This makes the evaluation
of causal models challenging, as only one potential outcome
is observed for each contract in our dataset. Therefore, we
rely on semi-synthetic data to evaluate our model. This

Vanderschueren et al.: To appear in the International Journal of Production Economics Page 6 of 14



Prescriptive maintenance with causal machine learning

Variable Domain

Machine information
Type {1,… , 7}
Age at contract start (in years) [0, 39]
Running hours at contract start [2500, 110000]

Contract information
Type {1, 2}
Duration (in days) [180, 5850]
Running hours during contract [0, 186000]
Average running hours per year [300, 8500]

Preventive maintenance per running period
PM frequency [0, 20]

Outcomes per running period
Number of overhauls [0, 128]
Number of failures [0, 185]

Average costs (in e)
Preventive maintenance 73
Overhaul 207
Failure 104

Table 1
Data overview. Overview of the available contract information
on machine and contract characteristics, preventive mainte-
nance interventions, overhauls, and failures. For confidentiality,
we present PM interventions, overhauls, and failures per
running period, which is an undisclosed number of running
hours. Similarly, the costs are averaged and re-scaled.

approach is commonly used in both maintenance (see e.g.,
Deprez et al., 2021) and causal inference (e.g., Berrevoets
et al., 2020).

The key idea of the semi-synthetic setup is to create a
test set containing each contract’s potential outcomes at all
possible PM frequencies, instead of only the observed out-
come at one administered PM frequency. This is achieved by
generating the outcomes at all possible PM frequencies 𝑜𝑖(𝑡)
and 𝑓𝑖(𝑡) for all possible PM frequencies 𝑡 ∈ 𝑇 , based on
the contract’s real characteristics 𝐱𝑖. This allows us to create
(1) a training set with only one observed PM frequency for
each contract, equivalent to observational data, and (2) a
test set containing potential outcomes for all possible PM
frequencies for each contract, which are never observed in
reality but needed for evaluation.

Potential outcomes 𝑜𝑖(𝑡) and 𝑓𝑖(𝑡) are generated based on
the observed characteristics 𝐱𝑖 and PM frequencies 𝑡 ∈ 𝑇 .
For the failure rates, we have:

𝑓𝑖(𝑡) = 9 𝜎

(

𝐯⊺𝑓𝐱𝑖
⏟⏟⏟
Base rate

− 1
10

𝜎
(

𝐰⊺
𝑓𝐱𝑖

)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
PM effect

𝑡 + 𝜖𝑓
⏟⏟⏟

Noise

)

, (5)

with 𝐯𝑓 ,𝐰𝑓 ∼ 
(

(0, 1)𝑑×1
)

and 𝜖𝑓 ∼  (0, 1). 𝜎 de-
notes the logistic function. This way, each machine has a
base failure rate that is diminished by administering more
frequent PM, where both the base rate and PM effect depend
on the contract’s characteristics 𝐱𝑖. The factor 9 rescales
the average failure rate to roughly the same number in the
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Figure 3: Semi-synthetic data. We represent the observed
outcomes for contracts in the training and validation set by
dots and the potential outcomes for contracts in the test set
by a line. The bold lines illustrate the overhaul rate, failure
rate, and total cost averaged across all contracts.

original, observed data. For the overhaul rates, we similarly
have:

𝑜𝑖(𝑡) = 7 𝜎

(

𝐯⊺𝑜𝐱𝑖
⏟⏟⏟
Base rate

− 1
10

𝜎
(

𝐰⊺
𝑜𝐱𝑖

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
PM effect

𝑡 + 𝜖𝑜
⏟⏟⏟

Noise

)

, (6)

where 𝐯𝑜,𝐰𝑜 ∼ 
(

(0, 1)𝑑×1
)

and 𝜖𝑜 ∼  (0, 1).
Using the semi-synthetic setup, the contracts in the test

set have known potential outcomes for all possible values of
𝑡𝑖 ∈  based on Equations (5) and (6). Conversely, the train-
ing and validation sets include only one observed outcome
for one PM frequency 𝑡𝑖. An illustration of a generated data
set is shown in Figure 3. The training, validation, and test
sets respectively consist of 50%, 25% and 25% of the data.
Experiments are repeated five times.

In a first analysis, we use the PM frequency 𝑡𝑖 that
was observed in practice for the training and validation set.
In other words, we only simulate the overhaul and failure
rates. In a subsequent analysis, we evaluate our approach
for different levels of selection bias by also controlling the
observed PM frequencies in the training and validation set.
For this, we manipulate the level of selection bias by making
the observed PM frequencies 𝑡𝑖 more or less dependent on
the contract characteristics 𝐱𝑖, using an approach similar to
Bica et al. (2020). More specifically, we control the selection
bias by assigning PM frequencies based on sampling from a
beta distribution:

𝑡𝑖 ∼ 20Beta
(

1 +
𝜆𝛿𝑖
10

, 1 + 𝜆𝛿𝑖

)

, (7)

where 𝛿𝑖 = 𝜎(w𝑏𝐱𝑖) with w𝑏 ∼ 
(

(0, 1)𝑑×1
)

. 𝛿𝑖 ensures
that assignment of the PM frequency is based on observed
features 𝐱𝑖. This way, we control the level of selection bias
by setting 𝜆. A value of 𝜆 = 0 results in Beta(1, 1) or a
uniform distribution. This implies that we randomly assign
each machine’s PM frequency with equal probability for
each PM frequency in 𝑇 . Therefore, 𝜆 = 0 results in a
situation equivalent to a randomized controlled trial. Higher
values of 𝜆 imply more selection bias, with 𝜆 = 30 resulting
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Machine information Contract information Maintenance-related event frequencies
Type Age Running hours Type Duration Running hours Running hours PM frequency Overhaul rate Failure rate

[years] contract start [days] during contract average per year 𝑡𝑖 𝑜𝑖(𝑡𝑖) 𝑓𝑖(𝑡𝑖)

4 0 528.88 1 1,826 12,391.63 2,434.67 1.42 0.19 0.91
5 12 77,301.37 1 1,764 29,131.68 4,907.42 2.24 2.57 7.24
6 15 39,312.72 1 2,555 8,906.65 2,694.49 2.89 5.92 8.47
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
2 16 61,948.75 0 1,764 21,303.56 3,912.07 4.02 0.25 2.52

Table 2
Data excerpt. We present an excerpt of the data set, showing examples of covariates related to the machine and contract 𝐱𝑖, and
maintenance related events per running period: the observed PM frequency 𝑡𝑖, the overhaul rate 𝑜𝑖(𝑡𝑖), and the failure rate 𝑓𝑖(𝑡𝑖).
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(a) Effect of 𝜆 on the individual machines’ PM frequency distributions
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Figure 4: Simulating selection bias. (4a) We simulate a training data set where each contract’s (observed) PM frequency is drawn
from its probability distribution, shown in green, using Equation (7) for different values of 𝜆. When 𝜆 = 0, each contract has equal
probabilities of receiving each PM frequency between 0 and 20, corresponding to randomly assigned PM frequencies. Increasing
𝜆 makes the distributions more dependent on contract characteristics and therefore more diverse. This way, certain contracts will
more likely receive less frequent PM, resulting in selection bias. Higher values of 𝜆 imply more diversity in the distributions and,
consequently, more selection bias. (4b) We show how the PM frequency is distributed among the different contracts, both in
reality and as a result of different values of 𝜆. Larger values of 𝜆 result in more selection bias, with a value of 30 resulting in an
overall PM frequency distribution close to the original.

in an overall distribution of the PM frequencies over the
entire training set that is similar to the observed distribution.
In other words, 𝜆 = 30 corresponds to a realistic level of
selection bias. Figure 4a shows each contract’s distribution
from which the PM frequency is sampled, for different values
of 𝜆. A higher value of 𝜆 increases the diversity of the
different contracts’ PM frequency distributions, resulting in
more selection bias in the training data. Figure 4b compares
the observed distribution of PM frequencies over all con-
tracts in the original data and the overall distributions of PM
frequencies resulting from different values of 𝜆.

5.3. Performance evaluation
We evaluate our predict-then-optimize approach using

three different metrics. First, we evaluate the ability of the
machine learning model to accurately predict a contract’s
overhaul 𝑜𝑖(𝑡) and failure rate 𝑓𝑖(𝑡) over different levels of
PM frequencies 𝑡 ∈ 𝑇 . This is measured using the mean
integrated square error (MISE) (Silva, 2016; Schwab et al.,
2020):

MISE = 1
𝑛

𝑛
∑

𝑖=1
∫

𝑚

0

(

𝑦𝑖(𝑡) − �̂�𝑖(𝑡)
)2 d𝑡, (8)

for 𝑦𝑖(𝑡) ∈ {𝑜𝑖((𝑡), 𝑓𝑖(𝑡)}. Because we simulate the outcomes
(see Figure 3), we know the ground truth 𝑦𝑖(𝑡) for each
𝑡 ∈ 𝑇 . Second, to evaluate the accuracy of the prescribed

maintenance frequencies 𝑡∗𝑖 , we consider a variant of the
policy error (PE) (Schwab et al., 2020) that compares the
prescribed PM frequency with the optimal PM frequency:

PE = 1
𝑛

𝑛
∑

𝑖=1

(

𝑡∗𝑖 − 𝑡∗𝑖
)2 . (9)

The optimal PM frequency 𝑡∗𝑖 can be found numerically
by searching over the total cost incurred at each possible
PM frequency 𝑡 ∈ 𝑇 . Third, we evaluate the prescribed
maintenance frequency in terms of costs using the policy
cost ratio (PCR) that compares the costs of the estimated
optimal PM frequency 𝑐𝑖(𝑡∗𝑖 ) with the cost of the optimal PM
frequency 𝑐𝑖(𝑡∗𝑖 ):

PCR = 1
𝑛

𝑛
∑

𝑖=1

𝑐𝑖(𝑡∗𝑖 )
𝑐𝑖(𝑡∗𝑖 )

. (10)

For all metrics, a lower value indicates better performance
with 0 being the optimal value for MISE and PE and 1 for
PCR.

Our proposed maintenance policy uses SCIGAN to learn
the individual treatment effects (ITE), i.e., each contract’s
overhaul and failure rate for different PM frequencies and
will be referred to as SCIGAN–ITE. We benchmark against
two other policies (see Table 3). First, a policy based on
a neural network (MLP) that learns 𝑜𝑖 and 𝑓𝑖 given 𝐱𝑖 and
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Methodology Selection bias? Individualized?

SCIGAN–ITE ✓ ✓

MLP–ITE ✗ ✓

SCIGAN–ATE ✓ ✗

Table 3
Methodologies overview. Our proposed, individual policy,
SCIGAN–ITE, prescribes the PM frequency based on the
individual treatment effect (ITE) estimated using SCIGAN.
This proposed approach is analyzed using an ablation study
and compared with two variants. The first, MLP–ITE, does
not account for selection bias. The second, SCIGAN–ATE, is
a general policy based on the average treatment effect (ATE)
and is not individualized towards each individual machine.

𝑡𝑖 in a completely supervised manner without adjusting for
selection bias (MLP–ITE). This allows us to assess whether
there is a benefit of using the GAN to adjust for selection
bias. Second, the average policy (SCIGAN–ATE) sets a
single optimal 𝑡∗ for all contracts based on the average
(instead of the individual) PM effect. This allows to validate
the benefit of an individualized policy tailored towards each
specific machine.

5.4. Empirical results
In this section, we present the results of the semi-

synthetic experiments based on more than 4,000 mainte-
nance contracts. Section 5.4.1 addresses (1) whether there is
improved performance resulting from adjusting for selection
bias and (2) whether an individualized policy per contract
outperforms a general policy that does not take contract
characteristics into account. In Section 5.4.2, we show the
importance of accounting for selection bias by evaluating
the different policies’ performance for varying levels of
selection bias (Section 5.4.2).

5.4.1. Benefits of a causal, individualized PM policy
Table 4 reports the empirical results for the predictions

and PM frequencies obtained using each methodology. The
left part of Table 4 compares the ability of SCIGAN and
MLP of accurately predicting the overhaul and failure rate
at different PM frequencies. SCIGAN achieves the low-
est error measured by the MISE. It predicts the overhaul
and failure rate more accurately than the supervised MLP
that does not account for selection bias. In the right part
of Table 4, we assess the quality of the PM frequencies
prescribed by the different approaches. These results show
that the relatively more accurate predictions of the individ-
ualized, prescriptive approach (SCIGAN–ITE) also result
in better PM frequencies. On the one hand, SCIGAN–ITE
prescribes PM frequencies that are closer to the optimal PM
frequency compared to the supervised (MLP–ITE) and non-
individualized approach (SCIGAN–ATE), measured using
the PE. On the other hand, SCIGAN–ITE also results in
the lowest total cost as indicated by the PCR, achieving a
cost that is 7% higher than the optimal policy, compared
to 11% for MLP–ITE and 24% SCIGAN–ATE. The gap of
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Figure 5: Evaluating the policies’ decisions. We compare the
accuracies and costs of the prescribed PM frequencies by look-
ing at each model’s performance over all contracts. (Left) We
show how the differences between the prescribed and optimal
PM frequency are distributed per model. (Right) We show the
distribution of all contracts’ policy cost ratios resulting from
each model. Results are shown for one representative iteration.

7% between SCIGAN–ITE and the optimal policy can be
explained by the model being trained on limited data and
the presence of noise in the data.

Figure 5 takes a closer look at these results, by showing
how each model’s performance of each contract individually,
rather than looking only at the average performance over all
contracts. The left panel in Figure 5 assesses how close each
contract’s PM frequency is to the optimal PM frequency, by
showing each model’s error distribution, i.e., the differences
between the prescribed and optimal PM frequencies for all
contracts. For SCIGAN–ITE most of the errors are close
to zero, indicating that the prescribed PM frequency is
typically reasonably close to the optimal PM frequency. By
comparison, MLP–ITE and SCIGAN–ATE more frequently
prescribe a PM frequency that deviate from the optimal
PM frequency, illustrated by the heavier tails in their dis-
tributions. The right panel in Figure 5 looks at the costs
resulting from each contract’s prescribed PM frequencies, by
showing the distribution of each contract’s PCR, i.e., the cost
resulting from the prescribed PM frequency relative to the
cost incurred by the optimal PM frequency. SCIGAN–ITE
typically frequently obtains a PCR close to one, indicating
that it incurs costs that are close to the optimal policy. By
comparison, MLP–ITE and especially SCIGAN–ITE more
frequently incur costs that are much higher than the costs
resulting from the optimal PM frequency. These findings
correspond to the findings averaged over all contracts in
Table 4.

The improved performance of SCIGAN compared to
a standard MLP suggests that learning PM effects from
observational data requires accounting for selection bias.
Moreover, the relatively worse performance of the non-
individualized approach, SCIGAN–ATE, compared to the
individualized approach, SCIGAN–ITE, shows the benefit
of an individualized, machine-dependent policy for imper-
fect maintenance that takes into account machine character-
istics and accounts for machine heterogeneity.
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MISE
Overhauls Failures

SCIGAN 𝟎𝟕.𝟕𝟏 ± 𝟎.𝟔𝟎 𝟏𝟒.𝟏𝟔 ± 𝟏.𝟔𝟖
MLP 10.25 ± 1.33 18.27 ± 3.65

PE PCR

SCIGAN–ITE 𝟐.𝟒𝟎 ± 𝟎.𝟒𝟔 𝟏.𝟎𝟕 ± 𝟎.𝟎𝟏
MLP–ITE 4.36 ± 1.25 1.11 ± 0.02
SCIGAN–ATE 8.77 ± 1.07 1.24 ± 0.04

Table 4
Empirical evaluation. We compare performance for the different policies over five simulation runs. We evaluate each model’s
ability to accurately predict the potential outcomes 𝑜𝑖(𝑡) and 𝑓𝑖(𝑡) using the MISE, as well as each model’s ability to accurately
prescribe PM frequencies (PE) and to minimize costs (PCR). For all metrics, a lower value is better.

5.4.2. Importance of accounting for selection bias
The results in the previous section were obtained for

the level of selection bias that was observed in reality, by
using the PM frequencies in the training set as originally
observed. In this section, we obtain more insight into the
influence of selection bias by comparing the performance of
SCIGAN–ITE and MLP–ITE for varying levels of selection
bias. This is achieved by controlling the level of selection
bias using 𝜆 (see Equation (7)). At 𝜆 = 0, there is no
selection bias. In this case, each contract’s PM frequency
is randomly drawn from the domain of all possible PM
frequencies, with each contract having equal probabilities of
receiving each PM frequency. In other words, setting 𝜆 = 0
results in data similar to a randomized controlled trial, which
would be ideal for learning causal effects. Even though
randomly assigning PM frequencies is not reasonable in the
context of maintenance, this simulation allows us to study
the influence of selection bias on performance. Increasing 𝜆
makes a machine’s observed PM frequency less random and
more dependent on its characteristics and, therefore, results
in more selection bias.

Figure 6 compares SCIGAN’s and MLP’s abilities of
predicting overhauls and failures, as well as their ability of
prescribing good PM frequencies, for varying levels of selec-
tion bias. SCIGAN achieves good predictive performance in
terms of MISE for the entire range of operating conditions,
ranging from no selection bias and randomly assigned PM
frequencies (𝜆 = 0) to realistic levels of selection bias
(𝜆 = 30). Conversely, the MLP, a supervised approach that
does not adjust for selection bias, accurately predicts the
potential outcomes when the PM frequencies in the training
set are randomized (𝜆 = 0), but results in notably worse
predictions compared to SCIGAN when selection bias is
present at higher levels of 𝜆. This result implies that it is
important to adjust for dependencies between a contract’s
characteristics and its observed PM frequency when estimat-
ing PM effects from observational data. Similarly, SCIGAN
is robust towards higher levels of 𝜆 and selection bias in
terms of decision-making, illustrated by stable values for PE
and PCR across different levels of selection bias, whereas
MLP results in less accurate and more costly decisions as
bias increases.

Observational data on maintenance operations is likely
to contain selection bias, because a machine’s PM frequency
that was observed in the past will not have been assigned ran-
domly, but based on machine characteristics–be it following

a technician’s expertise or an existing maintenance policy.
Our empirical results demonstrate the importance of dealing
with selection bias when working with observational data.
Moreover, our results indicate that the generative model
in SCIGAN is able to accurately generate counterfactual
outcomes to overcome selection bias, resulting in both better
predictions and decisions compared to the MLP that does not
use this generative model.

6. Conclusion
This work proposes a novel way to optimize the preven-

tive maintenance frequency. Our causal inference approach
predicts how the failure and overhaul rate would be impacted
by a certain PM frequency, taking the asset’s characteristics
into account. This is achieved by relying on state-of-the-art
machine learning methodologies for causal inference that
learn an asset’s outcomes for different PM frequencies from
observational data on assets that were maintained in the
past. The benefit of our approach is that, unlike existing
approaches, our methodology does need strong assumptions
regarding the failure or overhaul rate or PM effect. These
are usually assumed to be known and are difficult to verify
from data due to censoring, as assets are usually maintained
before failure occurs. Moreover, existing approaches typ-
ically do not account for asset heterogeneity. Conversely,
our approach is to learn an asset’s overhaul and failure rate
resulting from a given PM frequency from observational
data using flexible machine learning models. This allows to
estimate what will happen for a contract given a certain PM
frequency, in terms of overhauls and failures, and makes it
possible to prescribe the PM frequency that minimizes the
combined costs resulting from overhauls, failures, and PM.

Theoretically, we contribute by framing time-based main-
tenance as a problem of causal inference and by proposing
a predict-then-optimize framework to solve this problem.
Empirically, we validate our approach with semi-synthetic
experiments using real-life data on more than 4,000 full-
service maintenance contracts. We find that our proposed ap-
proach outperforms both an approach that does not account
for selection bias and a non-individualized approach in terms
of both accuracy and cost of the prescribed PM schedules.
Moreover, we highlight the importance of dealing with
selection bias when learning from observational data. Past
maintenance decisions were likely not made at random, but
based on the asset’s characteristics. Because of this, machine
learning models need to account for dependencies between
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Figure 6: Results for varying levels of selection bias. We show results for different levels of selection bias in terms of 𝜆 (see
Equation (7)). Although SCIGAN–ITE performs similar to MLP–ITE for lower values of 𝜆, it has better performance for stronger
levels of bias in terms of MISE, PE, and PCR.

asset characteristics and the observed PM frequency in order
to obtain a good estimate of the overhaul and failure rate
for a given PM frequency. These findings show that our
proposed approach offers a powerful and flexible policy for
individualized maintenance.

6.1. Limitations
Our data-driven approach requires observational data

to train the machine learning models. When limited data
is available, more simple machine learning methodologies
based on, for example, linear regression can be preferred to
the presented approach based on neural networks. Choosing
and validating causal inference models is an active area of
research (Alaa and Van Der Schaar, 2019; Parikh et al.,
2022).

Causal inference not only requires data, but also requires
that certain assumptions regarding the data are met. The first,
overlap, implies that each asset could in principle receive
each possible PM frequency, albeit not with the same prob-
ability. This requires a degree of flexibility or variability in
how PM frequencies were assigned in the past. Alternatively,
it might require some experimentation to provide insight into
deviations from the existing policy. Overlap can be tested
(Lei et al., 2021) and characterized (Oberst et al., 2020) from
data. Moreover, recent work has looked at characterizing
uncertainty in regions where overlap is violated (Nethery
et al., 2019; Jesson et al., 2020).

The second assumption, unconfoundedness, is untestable
in practice (Imbens, 2000). However, it can be assessed by
people with domain-knowledge that were in charge of mak-
ing maintenance decisions. The relevant question is whether
all relevant information regarding the assignment of past PM
frequencies is included in the data. If there are unobserved
confounders, adequately adjusting for selection bias might
not be possible, which would result in biased estimates of the
overhaul and failure rate. Recently, sensitivity analyses have
been suggested to assess the influence of hidden confounders
(D’Amour, 2019; Franks et al., 2019). Similarly, methods
have been proposed for quantifying ignorance regarding
the potential outcomes due to possible violations of these
assumptions (Jesson et al., 2021).

6.2. Managerial implications
Optimizing maintenance using causal inference and ma-

chine learning offers a potentially flexible and powerful

maintenance policy. Our approach prescribes the optimal
PM frequency to each individual asset by comparing differ-
ent counterfactual outcomes that would result from differ-
ent maintenance frequencies, by learning a causal machine
learning model from data on assets that were maintained
in the past. Under the right conditions, causal inference
represents a viable and performant paradigm for mainte-
nance optimization. However, our approach also requires a
different way of thinking about maintenance optimization.
A completely data-driven policy for preventive maintenance
is based on assumptions regarding the data and the models
learned from this data. Therefore, maintenance practitioners
should check whether their setting allows for causal infer-
ence, i.e., whether the requirements presented in Section 4.1
are met. If not, practitioners might consider altering their
maintenance operations to satisfy these conditions, e.g., by
running small-scale experiments to observe the effect of
deviating from their existing policies.

6.3. Future work
In terms of future work, it would be valuable to not

only optimize the frequency of one type of PM intervention,
but also consider different possible interventions in terms
of their depth and costs. This way, it would be possible
to alternate cheap, quick visits and more expensive and
thorough visits throughout the asset’s lifetime. Moreover,
it would be interesting to incorporate more flexible timing
of maintenance interventions and consider sequences of
different maintenance interventions, potentially prescribed
based on real-time dynamic data obtained through sensors.
Sequences of treatments have also received attention in the
literature on causal inference (e.g., Robins, 1999; Hernán
et al., 2001; Bica et al., 2019). Finally, it would be interesting
to look at ways of more closely integrating the predictive
model in the decision-making step, e.g., by using approaches
for integrated predict-and-optimize (Elmachtoub and Gri-
gas, 2022) or cost-sensitive learning (Vanderschueren et al.,
2022).

Appendix A Hyperparameter optimization
To make our work more transparent and facilitate the

application of our approach, we provide more information
regarding the training and hyperparameter optimization of
the neural networks used in this work. Table 5 shows training
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Name Range

General
Batch size [32, 64]
Optimizer Adam
Learning rate 0.001

GAN
Hidden neurons [16, 32]
Dosage samples 2
Training iterations 50, 000

MLP
Hidden neurons [32, 64]
Training iterations 10, 000

Table 5
Model training. We show the training settings and hyper-
parameter ranges that were searched, differentiating between
general, GAN-related and MLP-related hyperparameters.

settings and ranges for the different hyperparameters that
were searched over, differentiating between general hyper-
parameters, hyperparameters for the GAN, and hyperparam-
eters for the MLP. For the MLP and MLP–ITE benchmarks,
only the general and MLP hyperparameters were searched
over. For all models, hyperparameter optimization was done
using grid search based on the mean squared error on the
observed outcomes in the validation set. For more details
regarding SCIGAN’s training and optimization, we refer to
Bica et al. (2020) and the accompanying repository available
at https://github.com/ioanabica/SCIGAN.
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