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Abstract
This work focuses on the capacitated dispersion problem for which we study several

mathematical formulations in different spaces using variables associated with nodes,

edges, and costs. The relationships among the presented formulations are investi-

gated by comparing the projections of the feasible sets of the LP relaxations onto

the subspace of natural variables. These formulations are then strengthened with

families of valid inequalities and variable-fixing procedures. The separation prob-

lems associated with the valid inequalities that are exponential in number are shown

to be polynomially solvable by reducing them to longest path problems in acyclic

graphs. The dual bounds obtained from stronger but larger formulations are used to

improve the strength of weaker but smaller formulations. Several sets of computa-

tional experiments are conducted to illustrate the usefulness of the findings, as well

as the aptness of the formulations for different types of instances.
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dispersion problem, extended formulation, location science, polyhedral combina-
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1 INTRODUCTION

Dispersion problems, also known as diversity problems, are a family of-hard optimization problems that consist in selecting

a subset of elements from a given set in such a way that a distance measure between the selected elements is maximized. These

problems are found in different application fields, specially when diversity is a constituent factor: biology, biodiversity and

ecology, genetics, ethnicity and gender diversity, heterogeneous formation of work teams and committees, academic curriculum

design, public facility location, market planning, financial portfolio design, and so forth.

Several versions of dispersion problems can be identified in the literature. From the perspective of their objective function,

the most common is the maximization of the sum of distances among the selected elements (MaxSum). It is also frequent to find

objectives aiming at maximizing the minimum distance (MaxMin). Less frequent are those objectives that maximize the mean

(MaxMean) or the minimum sum (MaxMinSum) of such distances. In [12, 32], a variety of different-nature objective functions

in the context of dispersion are covered, and in [30] a detailed study of the solution structure obtained with four mathematical
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2 LANDETE ET AL.

objectives is conducted. From these papers, we can conclude that the MaxMin objective function is particularly useful when it

is desirable to obtain elements in a set that are far from one to another and, at the same time, as equidistant as possible. From

the perspective of the size of the set of selected elements that constitute a feasible solution, two types of problems have drawn

the attention of researchers: on the one hand, the so-called p-dispersion variants for which that size, say p, is exogenously fixed;

on the other hand, we find models subject to economic or physical resource constraints but not explicitly restricted to obtain

solution sets with cardinality p, known as constrained dispersion variants. Briefly, we can say that the former ones directly

address their applicability requirements by considering a prefixed number of elements to select. However, this simplification

might sometimes be unrealistic and, in those cases, the latter may be preferred.

As reviewed in [25], the first results on maximizing dispersion started to be published for the p-dispersion version in [6]

where this problem is studied on a tree-graph structure. In [20], the study was extended to more general graphs and an integer

linear formulation was proposed and applied to small examples. Later, advances in solution techniques for this version were

proposed: the first design of a heuristic and an exact method to solve small instances of the problem was proposed in [11],

followed by the simulated annealing and tabu search proposals in [19, 21], respectively. A proof that its MaxMin version is

-hard was provided in [17], where a proposal of a greedy randomized heuristic for its solution was also given. Since [18],

several heuristic algorithms for the MaxSum model have been proposed. They were reviewed and compared to a scatter search

based technique in [15]. Later, an application of the GRASP methodology for solving the MaxMin version in a very efficient

manner was proposed in [34]. More recently, an exact procedure for solving the p-dispersion problem based on the relationship

between the p-dispersion problem and a collection of node packing problems was devised in [37], which allowed to solve

instances with up to 1000 nodes in less than one hour of computing time.

In the context of constrained dispersion models, the work [35] expanded the horizons of dispersion problems with the

inclusion of capacity and cost constraints, originally motivated by applications in location science. Lately, several papers have

tackled these constrained problems: [26, 28, 31] studied the dispersion problem with a capacity constraint, and [27] extended

these models in several directions by the addition of different features related to costs and capacity issues, generalized some of

these models and proposed methodologies to solve them.

In this work, we focus on a version of the constrained dispersion problem known as the capacitated dispersion problem

(CDP). In it, given a set V of n elements that we call nodes or facilities, a positive capacity ci for each node i, a nonnegative

distance 𝑑ij between any pair of distinct nodes i and j, and a positive demand B to cover, we would like to find a subset V ′
of

nodes such that their sum of capacities is large enough to cover the demand, that is,
∑

i∈V ′⊆V ci ≥ B, and the nodes in V ′
are as

distant as possible from one another, that is, mini,j∈V ′⊆V∶i≠j 𝑑ij is maximum. This version was originally proposed in [35] and

coined as the MAX-DIST/CAP problem. Some applications of this problem version arise in the context of:

• Public urban facility planning, when one looks to determine the location of facilities to cover a general demand for

a service, and seeks for the facilities to be as distant as possible, for example, in the case of power generation plants

to decrease the risk of damage from accidents at other facilities. Also, when determining the location of similar-type
facilities like hospitals, schools or airports, to avoid overlapping geographical areas of services since locating them close

to each other may deteriorate the ease of access by a large extent of the population (see, e.g., [36]).

• Franchise business schemes, to avoid local competition and cannibalization effects within a chain of retail franchises [27].

• Indoor layout planning when social distance is required, for example, during the COVID-19 pandemic [7, 29].

In [31], the CDP was first formulated as the following nonlinear integer program:

max min
i,j∈V ∶ i<j

𝑑ijxixj,

s.t.:

∑

i∈V
cixi ≥ B,

xi ∈ {0, 1}, ∀i ∈ V ,

where variable xi takes value 1 if node i ∈ V is selected (facility i is open), and 0 otherwise. The developments in [26, 28, 31]

pay special attention to the adaptation of powerful metaheuristic methodologies to solve this dispersion variant. However, as

pointed out in [25], no work about theoretical aspects of its formulations has been presented so far.

In this work, we try to cover this research gap. To do so, we first present some general results that are based on the x-variables

defined above (Section 2). Then, three formulations and their associated valid inequalities are introduced, and methods to solve

the related separation problems when the valid inequalities are exponential in number are provided. We compare the bounds of

the linear programming relaxations of these formulations theoretically (Section 3). We conduct a computational study to see

the performances of such formulations and valid inequalities, as well as the scope of applicability of each model. Based on the

results, we outline an approach that makes use of stronger and larger formulations to improve the performance of weaker and

smaller formulations (Section 4). We finish this work with some conclusions and motivate future research directions.
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LANDETE ET AL. 3

2 GENERAL RESULTS

To eliminate trivial cases, we assume that at least two facilities should be open to cover the demand, that is, ci < B for all i ∈ V ,

and that we do not need to open all facilities, that is, there exists j ∈ V such that
∑

i∈V⧵{j} ci ≥ B. If all distances are equal to

each other, then the optimal value is equal to this distance if it is possible to cover the demand, and the problem is infeasible

otherwise. So we also assume that there are at least two different distance values. Finally, we assume, without loss of generality,

that 𝑑ij = 𝑑ji for all i, j ∈ V with i < j since, otherwise, we can consider the larger distance and ignore the other.

Let X = {x ∈ {0, 1}n ∶
∑

i∈V cixi ≥ B}. Set X is a 0-1 knapsack cover set (see, e.g., [3], and the references therein) and any

valid inequality for this set is also valid for the feasible sets of all our formulations. The aim of our study is to propose other

valid inequalities.

First we have an optimality condition to break symmetry:

Proposition 1. Let i, j ∈ V be two distinct nodes such that 𝑑it ≤ 𝑑jt for all t ∈ V ⧵ {i, j} and maxt∈V 𝑑it ≤ 𝑑ij. Then there
exists an optimal solution to CDP such that xi ≤ xj.

Proof. Suppose that i and j are such that i ≠ j, 𝑑it ≤ 𝑑jt for all t ∈ V ⧵ {i, j} and maxt∈V 𝑑it ≤ 𝑑ij. Let x be an optimal

solution with xi = 1 and xj = 0, and V ′ = {k ∈ V ∶ xk = 1} be the set of open facilities in the solution. Observe

that the optimal value is less than or equal to mink∈V ′⧵{i} 𝑑ik. Setting xj = 1 gives an alternative optimal solution since

mink∈V ′⧵{i} 𝑑ik ≤ 𝑑it ≤ 𝑑jt for all t ∈ V ′ ⧵ {i} and mink∈V ′⧵{i} 𝑑ik ≤ maxt∈V 𝑑it ≤ 𝑑ij. ▪

Next, we propose an approach to compute lower and upper bounds on the optimal value of CDP.

For each j ∈ V , we first compute an upper bound on the optimal value of the problem in which we enforce to open facility

j by maximizing the minimum distance between j and other facilities to open to be able to cover the demand.

Proposition 2. Let x ∈ X and j ∈ V. If xj = 1, then the objective function value for x is at most 𝜃j =
maxV ′⊆V⧵{j}∶

∑
t∈V′ ct+cj≥B mini∈V ′ 𝑑ji.

Proof. For the problem restricted with xj = 1, 𝜃j is the optimal value of the relaxation obtained by replacing all

distances 𝑑it with i, t ≠ j with a very large number. ▪

To compute 𝜃j, we sort the facilities in V ⧵ {j} in nonincreasing order of 𝑑jt’s (if ties occur, we favor nodes with larger

capacity) and find the smallest integer l such that
∑l

t=1
ct ≥ B − cj. Then 𝜃j = 𝑑jl.

Remark 1. UB = maxV ′⊆V∶
∑

t∈V′ ct≥B minj∈V ′ 𝜃j is an upper bound on the optimal value of CDP.

In the sequel, we assume that V is sorted by 𝜃j such that 𝜃1 ≥ · · · ≥ 𝜃|V| favoring nodes with larger capacities. Given this

order, it is straightforward to compute UB by finding the smallest integer l such that
∑l

j=1
cj ≥ B. Then UB = 𝜃l.

In some cases, we may improve this upper bound as follows.

Proposition 3. Let l be the smallest integer with
∑l

j=1
cj ≥ B. If C = {1, … , l} is such that

∑
j∈C⧵{t} cj < B for all t ∈ C

and if mini,j∈C∶i<j 𝑑ij < UB then we update UB as UB = max{mini,j∈C∶i<j 𝑑ij, 𝜃l+1}.
Moreover, if UB = mini,j∈C∶i<j 𝑑ij, then x∗ with x∗i = 1 if i ∈ C and x∗i = 0 otherwise is an optimal solution and UB is

the optimal value of CDP.

Proof. If C = {1, … , l} is such that
∑

j∈C⧵{t} cj < B for all t ∈ C, then a feasible solution either uses exactly the

nodes in set C or it includes at least one node j∗ from V ⧵ C. If mini,j∈C∶i<j 𝑑ij < UB, then if the solution uses exactly

the nodes in set C then the objective function value of this solution is mini,j∈C∶i<j 𝑑ij. If the solution includes at least

one node j∗ from V ⧵ C, then as V is sorted, we know that 𝜃j∗ ≤ 𝜃l+1. Hence max{mini,j∈C∶i<j 𝑑ij, 𝜃l+1} is a valid upper

bound.

If UB = mini,j∈C∶i<j 𝑑ij, then x∗ with x∗i = 1 if i ∈ C and x∗i = 0 otherwise is feasible and mini,j∈C∶i<j 𝑑ij is also a lower

bound. This proves that x∗ is an optimal solution. ▪

Remark 2. By computing 𝜃j’s and UB, we find subsets of V with sufficient capacity to cover the demand. The minimum

distance among the nodes in each subset is a lower bound (LB) for CDP.

Example 1. To illustrate the above results, consider the next example with five nodes and the following distances:
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4 LANDETE ET AL.

i ⧵ j 1 2 3 4 5

1 – 4 3 3 4

2 4 – 4 2 2

3 3 4 – 6 6

4 3 2 6 – 2

5 4 2 6 2 –

The capacities are c = (2, 2, 1, 1, 1) and B = 5. First, we compute the 𝜃’s. To compute 𝜃1, we sort V as 2 – 5 – 3 – 4. Then we

open facilities using this order until the capacity is at least B− c1 = 3. We need to open facilities 2 and 5 and thus 𝜃1 = 𝑑15 = 4.

The lower bound we obtain from the feasible solution in which we open facilities 1, 2 and 5 is 2 since 𝑑25 = 2. Similarly, we

have 𝜃2 = 4 (we open 1 and 3 in addition to 2 and the lower bound is 3), 𝜃3 = 4 (we open 4, 5 and 2 in addition to 3 and the

lower bound is 2), 𝜃4 = 2 (we open 3, 1 and 2 in addition to 4 and the lower bound is 2), 𝜃5 = 2 (we open 3, 1 and 2 in addition

to 5 and the lower bound is 2). So 𝜃 = (4, 4, 4, 2, 2). As set V is already sorted with respect to 𝜃’s, we can immediately calculate

UB = 4. Now, since C = {1, 2, 3} is such that the demand cannot be covered if any node in C is not used and mini,j∈C∶i<j 𝑑ij = 3,

we can update the upper bound as UB = max{mini,j∈C∶i<j 𝑑ij, 𝜃l+1} = max{3, 2} = 3. As we also have a lower bound of 3, the

problem is solved.

3 FORMULATIONS AND VALID INEQUALITIES

We present three mathematical formulations to tackle the problem, along with families of valid inequalities and variable-fixing

processes to strengthen each of them. In addition to this, we connect these formulations by comparing the projections of the LP

relaxations’ feasible sets by taking advantage of the fact that all have in common the x-variables previously defined. Their main

differences arise from the point of view we take when modeling the problem: nodes, edges, or costs—a priori information that

could be exploited in order to speed up the solution process.

The goal of this section is then twofold: on the one hand, to provide possible formulations for the problem; on the other

hand, to theoretically compare these formulations in order to identify which of them are more promising for computation.

3.1 Kuby formulation
Our first formulation is a direct modification of the p-dispersion formulation from [20] (see also [36]) and consists of:

max m, (1)

s.t.: m ≤ 𝑑ij + Dmax(2 − xi − xj), ∀i, j ∈ V ∶ i < j, (2)

x ∈ X, (3)

where Dmax is the largest distance, that is, Dmax = maxi,j∈V∶i<j 𝑑ij. Let K0 be this formulation and XK be its feasible set. The

projection of XK on to the space of x, denoted by ProjxXK , is the same as set X.

In the sequel, D is an upper bound and D is a lower bound onto the optimal value of CDP. Without loss of generality,

we assume that each one is equal to one of the distances. An obvious upper bound is Dmax and an obvious lower bound is

Dmin = mini,j∈V∶i<j 𝑑ij.

Proposition 4. The formulation obtained by replacing constraints (2) with

m ≤ 𝑑ij + (D − 𝑑ij)(2 − xi − xj), ∀i, j ∈ V ∶ i < j, 𝑑ij < D (4)

and by adding the constraint

m ≤ D, (5)

is a correct formulation. The smaller D is, the stronger the formulation is.

Proof. As the upper bound D corresponds to a distance value, either m = D or the optimal solution uses at least two

nodes i and j whose distance 𝑑ij < D. In the latter case, constraints (4) for such pairs of i and j ensure that m ≤ 𝑑ij. For a pair

i, j such that 𝑑ij < D and xi+xj ≤ 1, constraint (4) is redundant since 𝑑ij+(D−𝑑ij)(2−xi−xj) = D+(D−𝑑ij)(1−xi−xj) ≥ D.

This shows that the formulation is correct.

Let D1 and D2 be two upper bounds with D1 > D2. For a pair i, j ∈ V with i < j,
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LANDETE ET AL. 5

• if 𝑑ij < D2, then (4) with D = D2 implies (4) with D = D1,

• if D1 > 𝑑ij ≥ D2, then (5) with D = D2 implies (4) with D = D1 since 𝑑ij + (D1 − 𝑑ij)(2 − xi − xj) ≥ 𝑑ij ≥ D2,

• and if 𝑑ij ≥ D1, then (5) with D = D2 implies (5) with D = D1.

Hence the formulation with D = D2 is stronger than the formulation with D = D1. ▪

Corollary 1. If D = Dmax, then constraints (4) and (5) become

m ≤ 𝑑ij + (Dmax − 𝑑ij)(2 − xi − xj), ∀i, j ∈ V ∶ i < j. (6)

It is easy to see that this formulation is stronger than K0.

Proposition 5. There exists an optimal solution to CDP that satisfies

xj = 0, ∀j ∈ V ∶ 𝜃j < D, (7)

xi + xj ≤ 1, ∀i, j ∈ V ∶ i < j, 𝑑ij < D. (8)

Corollary 2. If D = Dmin, then we do not get any inequalities (7) and (8).

Let K(D,D) be the formulation obtained by replacing constraints (2) with (4) and (5) and adding (7) and (8).

Proposition 6. Let S ⊆ {j ∈ V ∶ 𝜃j < D}. Without loss of generality, assume that S = {j1, … , j|S|} and is sorted in the
same way as V. Let 𝜃j

0
= D. Then,

m ≤ D −
|S|∑

s=1

(𝜃js−1
− 𝜃js)xjs (9)

is a valid inequality for set XK .

Proof. Given a solution (x,m) ∈ XK , let S∗ = {j ∈ S ∶ xj = 1}. If S∗ = ∅, then m ≤ D is satisfied. Otherwise, let

S∗ = {j∗
1
, … , j∗|S∗|} be sorted in the same manner as V . We know that 𝜃j∗

|S∗ |
is an upper bound on m. Let 𝜃j∗

0

= D. The

right-hand side of the inequality is D−
∑|S|

s=1
(𝜃js−1

−𝜃js)xjs ≥ D−
∑|S∗|

t=1
(𝜃j∗t−1

−𝜃j∗t ) since for each j∗t ∈ S∗ if s is such that j∗t = js,
then 𝜃j∗t−1

≥ 𝜃js−1
. Since D−

∑|S∗|
t=1
(𝜃j∗t−1

−𝜃j∗t ) = 𝜃j∗
|S∗ |

, we have that m ≤ 𝜃j∗
|S∗ |
= D−

∑|S∗|
t=1
(𝜃j∗t−1

−𝜃j∗t ) ≤ D−
∑|S|

s=1
(𝜃js−1

−𝜃js)xjs .

Hence the inequality is again satisfied. As all solutions (x,m) ∈ XK satisfy inequality (9), this inequality is valid for set

XK . ▪

Example 2. Consider an instance with five nodes, c = (3, 4, 4, 3, 2) and B = 9. The distance matrix is:

i ⧵ j 1 2 3 4 5

1 – 8 3 9 1

2 8 – 7 1 3

3 3 7 – 6 9

4 9 1 6 – 1

5 1 3 9 1 –

In this example, 𝜃 = (8, 7, 7, 6, 3). If we take D = 7, nodes 4 and 5 have 𝜃 values below the upper bound and we obtain

the following inequalities (9) for different choices of S:

S = {4}, m ≤ 7 − (7 − 6)x4,

S = {4, 5}, m ≤ 7 − (7 − 6)x4 − (6 − 3)x5,

S = {5}, m ≤ 7 − (7 − 3)x5.

In case we take D = 6, then node 5 is the only node with a 𝜃 value below the upper bound: inequalities (9) reduce to the

inequality m ≤ 6 − (6 − 3)x5.

Separation: Let (m, x) be a feasible solution for the LP relaxation of K(D,D). We would like to check whether this

solution satisfies inequalities (9). Let V< = {j ∈ V ∶ 𝜃j < D}. Inequalities (9) can be separated in polynomial time

by solving a longest path problem in an acyclic network. For this purpose, we define a directed graph G = (N,A) where
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6 LANDETE ET AL.

N = {0, n + 1} ∪ {j ∈ V< ∶ xj > 0} and A = {(i, j) ∶ i, j ∈ N, i < j}. For (i, j) ∈ A with j = n + 1, we set the length of the

arc to 0 and for others we set the length of the arc to (𝜃i − 𝜃j)xj with 𝜃0 = D. A directed path from 0 to n + 1 that visits a set

of nodes S = {j1, … , j|S|} can visit them in the order 0 → j1 → · · · → j|S| → n + 1 with j1 < · · · < j|S|. Such a path has

length
∑|S|

s=1
(𝜃js−1

−𝜃js)xjs . To minimize the right-hand side of inequality (9), we maximize
∑|S|

s=1
(𝜃js−1

−𝜃js)xjs and hence we find

a longest path. The longest path problem is easy to solve since the graph is acyclic.

Let KV(D,D) be the formulation obtained after adding all inequalities (9) to K(D,D).

Proposition 7. Let V≥ = V ⧵ V<. If the following system
∑

j∈V≥
cjx′j ≥ B, (10)

x′i + x′j ≤ 1, ∀i, j ∈ V≥ ∶ i < j, 𝑑ij < D, (11)

0 ≤ x′j ≤ 1, ∀j ∈ V≥ (12)

has a solution, then the optimal value of the LP relaxation of KV(D,D) is D. Otherwise this LP relaxation has an optimal
value smaller than D.

Proof. Suppose that the above system has a solution x∗. Let xj = x∗j for j ∈ V≥, xj = 0 for j ∈ V<
, and m = D. Let

i, j ∈ V with i < j and 𝑑ij < D. First observe that constraints (7) are satisfied since any j with 𝜃j < D ≤ D is in V<
.

We know that xi + xj ≤ 1 for i, j ∈ V≥ with i < j and 𝑑ij < D. In addition if i ∈ V<
then xi = 0 and if j ∈ V<

then

xj = 0. Thus xi + xj ≤ 1 for all i, j ∈ V with i < j and 𝑑ij < D. Since D ≤ D, constraints (8) are satisfied. Moreover,

(D− 𝑑ij)(2− xi − xj) ≥ D− 𝑑ij and consequently the right-hand side of constraint (4) is at least D and the solution (m, x)
satisfies constraints (4).

Since xj = 0 for all j ∈ V<
, (m, x) also satisfies all inequalities (9) and is optimal for the LP relaxation of KV(D,D).

If (10)–(12) do not have a solution, then for all (m̂, x̂) that are feasible for the LP relaxation of KV(D,D), either

• there exists i, j ∈ V≥ with i < j, 𝑑ij < D and x̂i + x̂j > 1 and the right-hand side of constraint (4) is less than D,

• or there exists j ∈ V<
with x̂j > 0 and the right-hand side of (9) is less than D for S = {j}.

In both cases, m̂ < D. ▪

Example 2 (continued). For D = 6, system (10)–(12) is

3x′
1
+ 4x′

2
+ 4x′

3
+ 3x′

4
≥ 9,

x′
1
+ x′

4
≤ 1,

x′
2
+ x′

3
≤ 1,

0 ≤ x′j ≤ 1, j = 1, 2, 3, 4.

This system has no solution. Indeed, the optimal values of the LP relaxations of K0, K(9, 1), and K(6, 1) are 10.6, 8.29,

and 5.76, respectively (Dmax = 9 and Dmin = 1). The optimal solution for the LP relaxation of K(6, 1) is x = (0.07,

0.53, 1, 0.50, 0.53). Using D = 3, we can add inequalities x1 + x5 ≤ 1, x2 + x4 ≤ 1 and x4 + x5 ≤ 1 to this LP relaxation,

obtaining x = (0.11, 0.55, 1, 0.44, 0.55) with an LP bound of 5.67. Finally, we add m + 3x5 ≤ 6 to obtain the LP bound

of 5.5.

3.2 Edge formulation
A second formulation, proposed in [31], uses edge variables yij for all i, j ∈ V with i < j to obtain a linear model. This is the

classical linearization for the product of binary variables: yij is 1 if both variables xi and xj are 1, and is 0 otherwise. The edge

formulation is as follows:

max m,
s.t.: yij ≤ xi, ∀i, j ∈ V ∶ i < j,

yij ≤ xj, ∀i, j ∈ V ∶ i < j,
xi + xj ≤ yij + 1, ∀i, j ∈ V ∶ i < j, (13)

m ≤ 𝑑ij + (Dmax − 𝑑ij)(1 − yij), ∀i, j ∈ V ∶ i < j, (14)

yij ∈ {0, 1}, ∀i, j ∈ V ∶ i < j, (15)

x ∈ X. (16)
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LANDETE ET AL. 7

Note that one can drop the first two sets of constraints. Let E(Dmax,Dmin) be this formulation and XE be its feasible set, that is, the

set of all (m, x, y) that satisfy (13)–(16). We have that Projm,xXE = XK . Hence, the edge formulation is an extended formulation

for our problem.

It is also possible to relax the integrality of y variables and replace constraints (15) with yij ≥ 0 for all i, j ∈ V with i < j.
Our preliminary computational results showed that this was not advantageous in terms of computation time. So we keep the y
variables as binary variables in the edge formulation.

In the sequel, for any formulation F, PF denotes the feasible set of the LP relaxation of F.

Proposition 8. Projm,xPE(D
max
,D

min
) = PK(D

max
,D

min
).

Proof. Let (m, x) ∈ Projm,xPE(D
max
,D

min
). Then there exists y such that (m, x, y) ∈ PE(D

max
,D

min
). As all the constraints

defining PK(D
max
,D

min
) except (6) are also part of the definition of PE(D

max
,D

min
), to prove that (m, x) ∈ PK(D

max
,D

min
), we only

need to show that (m, x) satisfies (6). This is easy since for i, j ∈ V with i < j, the right-hand side of constraint (6) is

𝑑ij+(Dmax−𝑑ij)(2−xi−xj) ≥ 𝑑ij+(Dmax−𝑑ij)(1−yij) since 1−xi−xj ≥ −yij and Dmax ≥ 𝑑ij. As 𝑑ij+(Dmax−𝑑ij)(1−yij) ≥ m,

constraint (6) is satisfied. So, Projm,xPE(D
max
,D

min
) ⊆ PK(D

max
,D

min
).

Now let (m, x) ∈ PK(D
max
,D

min
) and define y as yij = (xi + xj − 1)+ for all i, j ∈ V with i < j. Clearly 0 ≤ yij ≤ 1. If

xi+xj ≥ 1, then yij = xi+xj−1 and the right-hand side of constraint (14) is 𝑑ij+(Dmax−𝑑ij)(1−yij) = 𝑑ij+(Dmax−𝑑ij)(2−
xi − xj). This is greater than or equal to m by (6). If xi + xj < 1, then yij = 0 and the right-hand side of constraint (14) is

Dmax. We know that Dmax ≥ m for all (m, x) ∈ PK(D
max
,D

min
) since constraint (6) for the pair i, j with the largest distance

becomes m ≤ 𝑑ij = Dmax. So, all constraints (14) are satisfied by (m, x, y) and (m, x) ∈ Projm,xPE(D
max
,D

min
). Hence, we

proved that PK(D
max
,D

min
) ⊆ Projm,xPE(D

max
,D

min
). ▪

As it was the case with the Kuby model, stronger models can be obtained by using better upper and lower bounds. Let

E(D,D) be the model obtained by replacing constraints (14) in E(Dmax,Dmin) with

m ≤ 𝑑ij + (D − 𝑑ij)(1 − yij), ∀i, j ∈ V ∶ i < j, 𝑑ij < D (17)

and

m ≤ D

and by adding (7), (8) and yij = 0 for all i, j ∈ V ∶ i < j with 𝜃i < D or 𝜃j < D or 𝑑ij < D.

Since Projm,xXE = XK , any valid inequality for XK is also valid for XE. Let EV(D,D) be the formulation obtained by adding

all inequalities (9) to E(D,D).

Proposition 9. Projm,xPE(D,D) = PK(D,D) and Projm,xPEV(D,D) = PKV(D,D).

Proof. Similar to the proof of Proposition 8. ▪

Additional valid inequalities for XE can be derived using the y variables:

Proposition 10. Let E = {e1, … , e|E|} be a subset of V × V such that 𝑑e
1
> · · · > 𝑑e|E| . Let 𝑑e

0
= D. The inequality

m ≤ D −
|E|∑

e=1

(𝑑e−1 − 𝑑e)ye (18)

is a valid inequality for set XE.

Proof. Similar to the proof of Proposition 6. ▪

Let EV+(D,D) be the formulation obtained by adding all inequalities (18) to formulation EV(D,D).

Proposition 11. The optimal values of the LP relaxations of formulations EV(D,D) and EV+(D,D) are equal to D if
and only if (10)–(12) has a solution.

Proof. Suppose that (10)–(12) has a solution x′. As in the proof of Proposition 7, let xj = x′j for j ∈ V≥, xj = 0 for

j ∈ V<
, yij = (xi + xj − 1)+ for all i, j ∈ V with i < j, and m = D. For i, j ∈ V with i < j and 𝑑ij < D, we have yij = 0

either because i, j ∈ V≥ and xi + xj ≤ 1 or at least one of i and j is in V<
and the corresponding x variable is 0. Then it

is easy to see that all constraints (17) and inequalities (18) are satisfied. From the proof of Proposition 7, we also know
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8 LANDETE ET AL.

that all inequalities (7)–(9) are satisfied. Hence (m, x, y) is in PEV(D,D) and PEV+(D,D) and is optimal for the LP relaxations

of both EV(D,D) and EV+(D,D).
If (10)–(12) does not have a solution, then for all (m, x, y) in PEV(D,D) and PEV+(D,D) we are in one of the two cases:

Either there exists a pair i, j ∈ V≥ with i < j, 𝑑ij < D, xi + xj > 1 and yij > 0. Then the right-hand side of constraint (17)

is less than D. Or there exists j ∈ V<
with xj > 0 and the right-hand side of (9) is less than D for S = {j}. In both cases,

m < D. ▪

3.3 Telescopic formulation
We now model the capacitated dispersion problem by writing the objective function as a telescopic sum of terms (see [8]).

Successful applications of this modeling framework in location science are, among others, those in [1, 2, 4, 5, 10, 13, 14, 16,

22, 33], which make use of the so-called cumulative binary variables and, depending on the work, are referred to as covering,

radius, or ordering models.

Let D1 < · · · < DK represent all the distinct values in the distance matrix. Let  = {1, … ,K − 1}. We know that K ≥ 2

and the optimal value is at most DK . The capacitated dispersion problem can also be formulated as

max DK −
K−1∑

k=1

(Dk+1 − Dk)uk, (19)

s.t.: xi + xj ≤ 1 + uk, ∀i, j ∈ V ∶ i < j, ∀k ∈  ∶ 𝑑ij = Dk, (20)

uk−1 ≤ uk, ∀k ∈  ⧵ {1},
uk ∈ {0, 1}, ∀k ∈ ,
x ∈ X,

where uk = 0 if the dispersion is greater than Dk, and 1 otherwise. This model has an optimal solution (x, u) in which u satisfies

uk = 0 for k = 1, … , k′ − 1 and uk = 1 for k = k′, … ,K − 1 for some k′ ∈ {1, … ,K}, xi + xj ≤ 1 for all pairs i and j such

that i < j and 𝑑ij < Dk′ , and there exists a pair i, j ∈ V with i < j such that xi = xj = 1 and 𝑑ij = Dk′ . The objective function

value is DK −
∑K−1

k=1
(Dk+1 − Dk)uk = DK −

∑K−1

k=k′ (Dk+1 − Dk) = Dk′ .

Let T(Dmax,Dmin) be the model obtained by changing (19) to max m and by adding the constraint m ≤ DK −
∑K−1

k=1
(Dk+1 −

Dk)uk. The above model has the same LP bound as T(Dmax,Dmin). The reformulation with variable m is done to enable com-

parison with the previous formulations. Let XT be the feasible set of T(Dmax,Dmin). Again we have Projm,xXT = XK . So the

telescopic formulation is also an extended formulation.

As before, stronger formulations can be obtained by using better upper and lower bounds. Let T(D,D) be the formulation

obtained after fixing uk = 1 for all k with Dk ≥ D, and adding uk = 0 for all k with Dk < D and xj = 0 for all j ∈ V with 𝜃j < D
to formulation T(Dmax,Dmin).

Proposition 12. Projm,xPT(D,D) ⊆ PK(D,D).

Proof. Let (m, x) ∈ Projm,xPT(D,D). Then there exists u such that (m, x, u) ∈ T(D,D). If D = DK′ , then after fixing uk = 1

for all k = K′
, … ,K−1, we get DK−

∑K−1

k=1
(Dk+1−Dk)uk = D−

∑K′−1

k=1
(Dk+1−Dk)uk. Since D−

∑K′−1

k=1
(Dk+1−Dk)uk ≤ D

we have m ≤ D. Let i, j ∈ V with i < j and 𝑑ij < D and k′ be the index such that 𝑑ij = Dk′ . Then

D −
K′−1∑

k=1

(Dk+1 − Dk)uk ≤ D −
K′−1∑

k=k′
(Dk+1 − Dk)uk

≤ D −
K′−1∑

k=k′
(Dk+1 − Dk)uK′ ,

where the first inequality holds since uk ≥ 0 and Dk+1 − Dk ≥ 0 for all k = 1, … , k′ − 1 and the last inequality holds

since uk ≥ uk′ and Dk+1 − Dk ≥ 0 for all k = k′, … ,K′ − 1. Now D −
∑K′−1

k=k′ (Dk+1 − Dk)uK′ = D − (D − DK′ )uK′ .

As uk′ ≥ xi + xj − 1, we have D − (D − Dk′ )uk′ ≤ D − (D − Dk′ )(xi + xj − 1). Using Dk′ = 𝑑ij, the latter is equal to

𝑑ij+ (D−𝑑ij) + (D−𝑑ij)(1− xi− xj) = 𝑑ij+ (D−𝑑ij)(2− xi− xj). Hence m ≤ 𝑑ij+ (D−𝑑ij)(2− xi− xj) and (m, x) satisfies

constraint (4).

Finally, observe that for i, j ∈ V such that i < j and 𝑑ij < D, if 𝑑ij = Dk then uk = 0 together with (20) gives

xi + xj ≤ 1. ▪
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LANDETE ET AL. 9

In general, Projm,xPT(D,D) ≠ PK(D,D). We show this with a small example.

Example 3. Consider the following instance with three nodes, c = {10, 10, 10}, B = 18 and the following distance

matrix:

i ⧵ j 1 2 3

1 – 2 1

2 2 – 3

3 1 3 –

Solution (m, x) = (2.8, 0.5, 0.7, 0.6) is in PK(3,1) although there is no u such that (m, x, u) is in Projm,xPT(3,1). It is in PK(3,1)
because 𝑑ij + (Dmax − 𝑑ij)(2 − xi − xj) ∈ {2.8, 3} and 10 × 0.5 + 10 × 0.7 + 10 × 0.6 = 18. If u exists, it must satisfy

u1 ≥ 0.5 + 0.6 − 1 = 0.1, u2 ≥ 0.5 + 0.7 − 1 = 0.2 and u1 ≤ u2. Thus,

DK −
K−1∑

k=1

(Dk+1 − Dk)uk = 3 − u1 − u2 ≤ 3 − 0.1 − 0.2 = 2.7 < m.

Proposition 13. For j ∈ V, let kj be the index such that Dkj = 𝜃j. Then, inequality
xj ≤ ukj (21)

is valid for XT .

Proof. Follows from the definition of 𝜃j. ▪

Let TV(D,D) be the formulation obtained by adding inequalities (21) to T(D,D).

Proposition 14. Projm,xPTV(D,D) ⊆ PKV(D,D).

Proof. Let (m, x) ∈ Projm,xPTV(D,D) and u be such that (m, x, u) ∈ PTV(D,D). We know that (m, x) ∈ PK(D,D). To prove

that (m, x) ∈ PKV(D,D), we need to show that (m, x) satisfies inequalities (9). Let S = {j1, … , j|S|} ⊆ {j ∈ V ∶ 𝜃j < D}.
Without loss of generality, we can assume that D = 𝜃j

0
> · · · > 𝜃j|S| . For each js ∈ S, 𝜃js is equal to some distance value not

larger than D. Let ks be the index with 𝜃js = Dks . Also let k0 = K′
. Then, D−

∑|S|
s=1
(𝜃js−1

−𝜃js)xjs = D−
∑|S|

s=1
(Dks−1

−Dks)xjs .

Since xjs ≤ uks , we have D −
∑|S|

s=1
(Dks−1

− Dks)xjs ≥ D −
∑|S|

s=1
(Dks−1

− Dks)uks . Observe that k0 > · · · > k|S|. For

s ∈ {1, … , |S|}, we also have (Dks−1
− Dks)uks =

∑ks−1
−1

𝜅=ks
(D𝜅+1 − D𝜅)uks ≤

∑ks−1
−1

𝜅=ks
(D𝜅+1 − D𝜅)u𝜅 since uks ≤ u𝜅 for all

𝜅 = ks, … , ks−1 − 1. Hence, D−
∑|S|

s=1
(Dks+1 −Dks)uks ≥ D−

∑|S|
s=1

∑ks−1
−1

𝜅=ks
(D𝜅+1 −D𝜅)u𝜅 = D−

∑K′−1

k=k|S|
(Dk+1 −Dk)uk ≥

D−
∑K′−1

k=1
(Dk+1−Dk)uk. Now, since m ≤ D−

∑K′−1

k=1
(Dk+1−Dk)uk and D−

∑K′−1

k=1
(Dk+1−Dk)uk ≤ D−

∑|S|
s=1
(𝜃js−1

−𝜃js)xjs ,

inequality (9) for set S is satisfied. Hence (m, x) ∈ PKV(D,D). ▪

Figure 1 summarizes the information in Propositions 8,9,12, and 14. All the feasible sets refer to (D,D). The figure states

the inclusion relationships between the six feasible sets PK , Projm,xPE, Projm,xPT , PKV , ProjmxPEV , and Projm,xPTV .

Next, we generalize the idea of inequalities (21).

FIGURE 1 Inclusion relationships between feasible sets

Proposition 15. Let C ⊂ V with |C| ≥ 2 and compute kC as follows. Let l′ be the index with Dl′ = mini,j∈C∶i<j 𝑑ij.

• If
∑

j∈C cj ≥ B, then kC = l′.
• If

∑
j∈C cj < B, then let l′′ be the index with

Dl′′ = max
V ′⊆V⧵C∶

∑
t∈V′∪C ct≥B

min
i∈V ′

𝛿i,

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22132 by E

V
ID

E
N

C
E

 A
ID

 - B
E

L
G

IU
M

, W
iley O

nline L
ibrary on [27/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 LANDETE ET AL.

where 𝛿i = minj∈C 𝑑ij for i ∈ V ⧵ C. Set kC = min{l′, l′′}.

Inequality
∑

j∈C
xj ≤

∑

j∈C
ukj + ukC − uk′C , (22)

where k′C = minj∈C kj, is valid for XT .

Proof. First observe that if xj = 1 for all j ∈ C, then DkC is an upper bound on the optimal value and so ukC = 1. As

we also have ukj = 1 for all j ∈ C, both sides of the inequality are equal to |C|. If
∑

j∈C xj ≤ |C|− 1, then if ukC − uk′C ≥ 0

the inequality is satisfied since xj ≤ ukj is satisfied for all j ∈ C. The remaining case is when
∑

j∈C xj ≤ |C| − 1 and

ukC − uk′C = −1. In this case ukC = 0 and uk′C = 1. When uk′C = 1, ukj = 1 for all j ∈ C since k′C = minj∈C kj. Hence, the

right-hand side is equal to |C| − 1 and the inequality is again satisfied. ▪

As we did in computing 𝜃j’s, here we sort the nodes in set V ⧵ C in nonincreasing order of 𝛿i’s. Let 𝜋 be the order, that is,

𝛿𝜋(1) ≥ · · · ≥ 𝛿𝜋(|V⧵C|) and l be the smallest integer such that
∑l

i=1
c𝜋(i) ≥ B −

∑
j∈C cj. Then, kC is the index with DkC = 𝛿𝜋(l).

Remark 3. Inequality (22) with kC = l′ is also valid.

Remark 4. For C ⊂ V with |C| ≥ 2, inequality (22) is implied by the sum of inequalities xj ≤ ukj over j ∈ C unless

kC < k′C.

Our preliminary experiments showed that inequalities (22) for subsets C with |C| ≥ 3 are not useful in reducing the com-

putation times. So for further comparison, we let TV+(D,D) be formulation TV(D,D) plus inequalities (22) for subsets C with

|C| = 2.

Remark 5. The integrality of the uk variables can be relaxed.

4 COMPUTATIONAL EXPERIMENTS

In this section, we report some computational experiments performed to complement the contribution of the previous sections.

We start by providing details about the experimental setting. Then, we show results of a comprehensive numerical study

performed using a subset of instances, aiming at investigating the computational efficacy of each formulation as well as their

potential applications. We present later several solution procedures for taking advantage of the polyhedral study performed. We

finish the section by extending the tests to larger instances, where we compare with the state-of-the-art algorithms devised for

this problem [31], and we show the advantages of using the procedures proposed.

4.1 Experimental design: Technology employed and test instances
Our computational experiments have been performed on a machine with an Intel i5-8500 processor, 3.6 GHz, and 64 GB of

RAM, running Ubuntu 20.04.2-64 bits Linux operating system. The procedures have been implemented in the C language,

making use of the IBM ILOG CPLEX solver version 12.10 through its Callable Library, and compiled with the gcc compiler

version 7.5 using optimization flag -O3. This solver has been used with the exploitation of multithreading capabilities, that is,

regardless of the solution method, all cores (six in our case) are available for use. Other than this, the default parameters are

assumed unless otherwise stated.

Benchmark instances of diversity problems can be downloaded from the MDPLIB public domain [23]. Several datasets

previously employed in different studies on many variants of such problems can be found on this website. Among them, we

consider the following three to be of special relevance: the data proposed in [18] where the cost values were generated as the

Euclidean distance from randomly generated points; the dataset generated in [9] in which the matrices were randomly generated

following a uniform distribution either in the interval [0, 10] or [0, 1000], depending on the instance; and the SOM dataset,

proposed in [24], where the distance matrices were generated with random numbers between 0 and 9 from an integer uniform

distribution. These sets were reviewed and adapted to the capacitated version of the dispersion problem in [31] by randomly

generating a capacity value in the range [1, 1000] for each node. To generate B, the authors computed the sum of all nodes’

capacities and set B as this sum multiplied by a factor in the set {0.2, 0.3}; thus two different B values were created for each

instance data.
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LANDETE ET AL. 11

On the other hand, [14] generated instances for the maximum dispersion problem. Among them, we focus on those in the

WEEE set in which the coordinates of nodes are generated uniformly from the square Q = ((0, 0), (10, 10)) and the distances

between nodes are computed using the 𝓁2-metric.

Following these papers, as well as the references therein, we motivate three major ways of creating distance matrices for the

capacitated dispersion problem:

1. Euclidean distances between randomly generated points in R2
.

2. Data randomly generated following a uniform distribution in a large given interval.

3. Data randomly generated following a uniform distribution for which the possible integer distance values are chosen from

a small range.

Accordingly, we have generated two sets of instances that we have used in different experiments. The first set, which we

named the testing set, consists of a collection of medium-size instances that we use for carrying out an in-depth analysis of

the formulations proposed along the manuscript. The second, the competitive set, consists of larger-size instances that turn out

to be more challenging and that can be used for competitive comparisons among the most prominent formulations identified

in previous experiments. In all instances of both sets, each B value has been determined as the sum of the nodes’ capacities

multiplied by a factor as in [31]. To avoid instance duplicity, we note that when generating each instance data, the random seed

has been set to a different value. The particular characteristics of the two sets follow.

• Testing set, consisting of three subsets of instances of different natures:

– Euclidean type: this subset, labeled in the tables as “Euclid.,” involves 15 instances in total, with n = {100,110, 120}.
The capacity value for each node is randomly obtained in the integer interval [1, 1000] following a uniform distribution.

– Uniform type with large range of possible values (labeled “Uni_LR”): this set also involves 15 instances in total, with

n = {120,125, 140}. The distance value for each pair of nodes is uniformly generated in the integer range [100, 1000].
The capacity value for each node is again randomly obtained in the integer interval [1, 1000] following a uniform

distribution.

– Uniform type with small range of possible values (labeled “Uni_SR”): this set involves seven instances in total, with

n = {200, 250}. This time, the distance value for each pair of nodes is uniformly generated in the integer range [1, 10],
and the capacity value for each node is randomly obtained in the integer interval [100, 3000] following a uniform

distribution.

• Competitive set, consisting of two types of instances:

– Euclidean type: this set involves 50 instances in total, with n = {150, 175, 200, 300}. The capacity value for each node

is randomly obtained in the integer interval [1000, 4000] following a uniform distribution. Moreover, following the

idea in [14], for each node the coordinates are generated uniformly distributed in the square ((0, 0), (10, 10)).
– Uniform with small range of values directly taken from the SOM dataset originally proposed in [24]. It consists of 11

large-size instances generated in [31], whose sizes are in the set {300, 400, 500}. As mentioned before, the distance

matrices of the SOM set are generated with random numbers between 0 and 9 from an integer uniform distribution, and

the capacity value for each node is randomly obtained in the integer interval [1, 1000] following a uniform distribution.

The instances from these sets can be downloaded from the following link.
1

4.2 Computational experiments
We show now a set of results of a comprehensive numerical study performed aiming at investigating the computational efficacy

of each formulation and several designs of solution procedures.

4.2.1 Comparison of the LP bounds

Using the testing set of instances, we perform a comparison of the LP bounds of our formulations. Table 1 summarizes this

comparison in which the first four columns refer to the nature of the data, the instance identifiers, the number of nodes and

the optimal values. Three sets of columns follow, one for each formulation type. For each of these sets, a column is devoted

to a particular configuration of the formulation. We compute the upper bound D using Remark 1 and Proposition 3 and the

lower bound D using Remark 2. We consider formulations K0, K1 = K(Dmax,Dmin), K2 = K(D,Dmin), K3 = K(D,D) and

K4 = KV(D,D) for those of the Kuby family, E5 = EV+(D,D) for the edge family, and T4 = TV(D,D) and T5 = TV+(D,D)

1
https://www.dropbox.com/sh/fk8rie01339ehme/AADLO4WlO1nobBTVP0VRC64Ja?dl=0
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12 LANDETE ET AL.

TABLE 1 Upper bounds on the instances of the testing set with each formulation

Family Inst. n Opt. val K0 K1 K2 K3 K4 E5 T4 T5

Euclid. e01 100 269.8 1994.5 1196.3 829.7 829.7 829.7 829.7 801.8 774.5

e02 100 256.7 2083.0 1254.0 845.9 845.9 818.7 818.5 817.6 789.5

e03 100 256.1 2182.7 1319.2 869.7 869.7 869.7 869.7 842.8 816.7

e04 100 256.0 2047.2 1235.0 864.2 864.2 864.2 864.2 836.6 809.2

e05 100 253.6 2080.9 1256.0 847.8 847.8 824.1 824.0 823.2 798.9

e06 120 224.6 2263.4 1377.2 891.6 891.6 864.6 864.5 863.6 836.1

e07 110 264.5 2164.1 1304.5 858.7 858.7 858.7 858.7 830.2 802.5

e08 120 233.1 2110.1 1281.2 803.5 803.5 775.4 775.1 774.0 745.0

e09 110 260.6 2017.6 1217.4 889.2 889.2 889.2 889.2 867.6 846.6

e10 110 233.4 2087.3 1262.8 874.9 874.9 874.9 874.9 850.1 826.6

e11 100 248.5 2159.0 1307.3 888.6 888.6 860.6 860.4 859.5 830.8

e12 100 235.8 2169.2 1310.7 817.1 817.1 817.1 817.1 785.6 757.7

e13 100 264.6 2146.9 1295.0 864.1 864.1 838.8 838.6 837.1 810.9

e14 100 283.3 2160.3 1299.0 779.9 779.9 779.9 779.9 750.3 721.6

e15 100 275.7 2158.9 1301.6 869.4 869.4 869.4 869.4 841.6 814.5

Uni_LR u01 120 297 1714.9 1000.0 856.0 856.0 856.0 856.0 846.4 837.1

u02 120 292 1716.7 1000.0 853.0 853.0 853.0 853.0 845.5 838.2

u03 120 284 1712.8 1000.0 851.0 851.0 851.0 851.0 842.0 833.1

u04 120 297 1712.5 1000.0 865.0 865.0 865.0 865.0 857.4 849.8

u05 120 320 1716.1 1000.0 853.0 853.0 844.7 844.7 844.6 836.2

u06 125 285 1714.9 1000.0 856.0 856.0 848.7 848.7 848.6 841.3

u07 125 297 1714.5 1000.0 847.0 847.0 847.0 847.0 842.5 838.1

u08 125 289 1716.0 1000.0 852.0 852.0 852.0 852.0 844.1 836.4

u09 125 294 1714.7 1000.0 845.0 845.0 845.0 845.0 837.9 830.8

u10 125 287 1714.1 1000.0 843.0 843.0 835.5 835.5 835.4 827.8

u11 140 270 1711.3 1000.0 845.0 845.0 845.0 845.0 838.1 831.4

u12 140 278 1712.3 1000.0 863.0 863.0 854.2 854.2 854.1 845.3

u13 140 252 1712.5 1000.0 856.0 856.0 846.6 846.6 846.5 837.4

u14 140 286 1714.4 1000.0 860.0 860.0 853.0 853.0 852.9 845.8

u15 140 261 1713.6 1000.0 846.0 846.0 838.9 838.9 838.9 831.8

Uni_SR

u_b_1 200 2 17 10 9 9 9 9 9 9

u_b_2 200 2 17 10 9 9 9 9 9 9

u_b_3 200 2 17 10 9 9 9 9 9 9

u_b_4 200 2 17 10 9 9 9 9 9 9

u_b_5 250 2 17 10 9 9 9 9 9 9

u_b_6 250 2 17 10 9 9 9 9 9 9

u_b_7 250 2 17 10 9 9 9 9 9 9

for the telescopic family. Note that results for E1 = E(Dmax,Dmin), E2 = E(D,Dmin), E3 = E(D,D) and E4 = EV(D,D) are not

reported since, according to Section 3, they are the same as those of K1, K2, K3, and K4, respectively. We have also omitted

the results regarding T1 = T(Dmax,Dmin), T2 = T(D,Dmin), T3 = T(D,D) as, in this experiment, their bounds are, respectively,

equal to those of K1, K2, and K3.

Several interesting insights arise from Table 1. Regarding the Kuby formulation, the improvements obtained from K0 to K1,

and also from K1 to K2, are quite abrupt in the three families of instances we are solving. However, we do not find any differences

between K2 and K3. Nonetheless, we obtain again better bounds with K4 for those instances for which violated inequalities (9)

were found (see, e.g., the results corresponding to e02, e05, u05, u06). As for the edge formulation, configuration E5 is able to

slightly improve the bounds compared to the results for K4 in those instances where violated cuts are found. Concerning the

results of the telescopic formulation, it is interesting to see that T4, when compared to E5, is able to improve all the bounds of

the testing set except those of the Uni_SR subset. It can also be seen that T5 obtains the best upper bounds when compared to

all other configurations in this table.

We also note that when solve the instances in the testing set, the average number of added inequalities (8) used in formulation

K3 has been 14.6, and 141.3 and 0, respectively for the three families of instances. None of the inequalities (7) has been found

in this set. Detailed information about these facts is provided in Table A1 of the Appendix.

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22132 by E

V
ID

E
N

C
E

 A
ID

 - B
E

L
G

IU
M

, W
iley O

nline L
ibrary on [27/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LANDETE ET AL. 13

4.2.2 Two solution procedures

In order to solve instances of the capacitated dispersion problem we have devised two procedures. The first one, P1, consists of

a straightforward application of the CPLEX solver to the different configurations of the three families of formulations. Recall

that inequalities (9) and (18) are exponential in number, thus we need a row generation approach for solving models K4, E4

and E5. Our preliminary computational results showed that solving these models using a cut-and-branch technique led to poor

computational performance. For this reason, we devised a second approach, P2, to take advantage of these models, in which we

start by computing UB as explained in Remark 1 and Proposition 3, and by setting D = UB. Then, we check if system (10)–(12)

has a solution. By the application of Proposition 7, if none exists, we solve the LP relaxation of the models by separating

inequalities exactly using the polynomial separation methods presented before. We repeat this process until such a system has a

solution and, then, we use the MILP to solve either model K3 or model E3 with the best D found so far. A sketch of this second

procedure is depicted in Algorithm 1.

Algorithm 1. Procedure P2

Compute UB as explained in Remark 1 and Proposition 3. Set D̄ ∶= UB.

while System (10)–(12) with D̄ has no solution do
if We are solving K4 (resp. E4) then

Separate inequalities (9) exactly.

Solve the LP relaxation of K4 (resp. E4) including the most violated inequality that was separated. Let z∗ be the optimal

value of this LP relaxation.

if We are solving E5 then
Separate inequalities (9) and (18) exactly.

Solve the LP relaxation of E5 including the most violated inequality obtained from each separation procedure. Let z∗ be

the optimal value of this LP relaxation.

Set D̄ ∶= z∗.
Solve K3 or E3 with D̄ using the MILP solver.

We performed a comparison of these procedures with the aim of investigating their computational efficacy. We did so

by registering, for each formulation and instance of the testing set, the CPU time needed, measured in seconds, for solving

the given instance following the procedures described above. Table 2 summarizes this comparison. In this table, we have

divided the information in three sets of columns, one for each formulation type. For each of these sets, a column is devoted

for a particular configuration of the formulation: P1 is applied to K0, … ,K3,E1, … ,E3,T1, … ,T5; P2 is applied with

K4,E4,E5. Several interesting insights arise from this table, all of them regarding the time needed to solve the integer problems

to optimality:

• Euclidean instances:

– In general terms, the Kuby formulations perform better than the edge and telescopic formulations. This difference is

significant, allowing us to discard as competitive options the edge formulations for solving these type of instances.

– By specifically looking at the Kuby columns, we can see that the computing times get smaller with the successive

refinements proposed for this formulation. This is especially remarkable when we compare these results to K0 (the

direct adaptation of the Kuby model). Comparing the P1 with K3 and P2 with K4, we do not appreciate a clear winner.

Despite this fact, we select P2 with K4 as our preferred Kuby method for Euclidean instances since it provides a

relaxation bound at least as good as K3.

• Uniform instances:

– For the case of instances with large range distance values, we see that K3 and T3 both using P1 obtain short computing

times. These two options are significantly better than their corresponding related formulations, especially in the case

of T3 that clearly outperforms T4 and T5.

– The telescopic formulation clearly outperforms the two other formulations in the case of uniform instances with small

range of possible distance values. Among the telescopic options, T2 and T3 seem to be the best options.
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14 LANDETE ET AL.

TABLE 2 CPU time (in seconds) for solving the instances of the testing set with each procedure and model

Kuby formulation Edge formulation Telescopic formulation

P1 P1 P1 P1 P2 P1 P1 P1 P2 P2 P1 P1 P1 P1 P1
Family Inst. K0 K1 K2 K3 K4 E1 E2 E3 E4 E5 T1 T2 T3 T4 T5

Euclid. e01 50 5 1 1 1 8 7 6 6 6 25 76 99 90 149

e02 4 2 6 4 4 48 8 6 9 67 100 238 20 133 557

e03 149 7 4 5 3 9 8 19 19 18 25 133 111 209 181

e04 18 2 3 3 3 8 7 8 8 9 119 1599 129 231 279

e05 46 4 3 2 8 9 8 7 10 24 28 131 64 108 164

e06 7200 82 23 4 12 22 13 11 15 41 7200 4389 1463 1187 2112

e07 209 5 3 3 3 14 7 9 9 9 107 109 109 222 162

e08 171 18 4 5 8 17 20 12 20 36 657 263 190 584 662

e09 721 4 3 9 3 18 34 9 9 9 2819 1281 102 584 734

e10 1093 4 6 10 5 46 14 43 44 44 322 306 223 481 814

e11 27 2 6 2 4 9 7 59 17 32 2697 193 173 156 939

e12 443 5 2 2 2 13 10 7 7 7 213 889 139 161 361

e13 31 5 4 2 5 10 8 8 11 42 640 109 106 58 184

e14 15 3 3 2 3 9 37 6 6 7 82 234 149 58 83

e15 70 5 11 2 11 8 7 7 7 7 524 96 75 233 96

Uni_LR u01 11 17 77 23 77 90 44 61 62 62 42 67 38 143 340

u02 111 101 53 15 53 190 102 68 69 69 59 45 40 277 443

u03 14 15 101 9 101 138 165 87 88 88 47 30 52 174 428

u04 62 42 24 18 23 106 108 45 45 46 49 46 38 163 234

u05 63 12 43 27 26 53 39 44 49 64 47 63 25 81 158

u06 378 172 86 49 19 263 111 91 150 162 77 37 59 264 520

u07 420 65 20 39 20 221 185 124 125 126 75 42 41 714 265

u08 202 17 44 19 43 145 99 82 82 82 47 35 38 273 329

u09 424 76 171 45 171 133 136 88 89 89 72 44 48 95 335

u10 55 318 178 30 26 190 128 81 118 132 65 53 39 399 312

u11 962 1653 1387 30 1388 913 887 911 911 914 218 175 164 1759 1839

u12 91 711 261 36 87 1042 164 390 319 306 85 147 84 1394 2283

u13 166 85 46 33 97 2738 1266 868 1166 918 149 193 191 1045 4722

u14 69 68 259 85 344 512 246 249 402 430 92 106 129 685 1714

u15 125 139 37 196 80 892 967 852 791 804 138 194 174 1869 2746

Uni_SR

u_b_1 184 119 131 131 131 448 293 285 285 286 47 36 36 45 354

u_b_2 189 132 100 100 101 1209 1237 1177 1180 1185 163 98 98 88 220

u_b_3 282 24 131 130 130 516 291 274 274 274 46 46 47 43 782

u_b_4 170 138 131 125 127 362 309 288 288 292 137 36 36 35 552

u_b_5 599 533 346 346 346 4698 3921 3751 3753 3760 95 93 95 503 877

u_b_6 748 336 463 462 464 7211 7210 7211 7210 7211 628 356 357 634 2029

u_b_7 1196 527 426 426 426 7212 7211 7211 7210 7211 422 66 68 297 1074

4.2.3 A result that leads to other solution procedures

Remark 6. If the optimal value of an LP relaxation, say z∗, is less than D, we can update the latter to the largest distance

value not greater than z∗.

Example 2 (continued). In this example, the different distance values are {1, 3, 6, 7, 8, 9}. By the end of Section 3.2,

we know that D = 6 and z∗ = 5.5 < D. We can update D to 3 since we know that the closest distance value not greater

than 5.5 is a valid upper bound.

Remark 6 inspires us to design other solution procedures for the CDP. In particular, a third procedure, P3, can be obtained

with a minor modification of P2. Its difference lies in the application of Remark 6 after step 9 of Algorithm 1. As in the case

of P2, P3 can be applied with K4,E4, and E5. Our last proposal, procedure P4, uses the telescopic formulation: new D values
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LANDETE ET AL. 15

TABLE 3 Insights about the separation procedures in P2 and P3

P2 with K4 P3 with K4 P2 with E5 P3 with E5

D t. Ineq. D t. Ineq. D t. Ineq. Ineq. D t. Ineq. Ineq.
Family Inst. (9) (9) (9) (18) (9) (18)

Euclid. e01 829.7 0 0 829.7 0 0 829.7 0 0 0 829.7 0 0 0

e02 787.5 1 153 787.5 1 111 771.2 65 821 813 771.2 60 388 442

e03 869.7 0 0 869.7 0 0 869.7 0 0 0 869.7 0 0 0

e04 864.2 0 0 864.2 0 0 864.2 0 0 0 864.2 0 0 0

e05 792.4 2 335 792.4 1 140 785.5 13 208 245 785.5 17 144 229

e06 824.7 2 190 824.7 2 160 819.2 24 200 182 819.2 29 190 227

e07 858.7 0 0 858.7 0 0 858.7 0 0 0 858.7 0 0 0

e08 732.7 3 230 732.7 3 177 730.5 20 217 184 730.5 22 181 239

e09 889.2 0 0 889.2 0 0 889.2 0 0 0 889.2 0 0 0

e10 874.9 0 0 874.9 0 0 874.9 0 0 0 874.9 0 0 0

e11 828.5 1 156 828.5 2 120 820.2 10 223 215 820.2 26 173 224

e12 817.1 0 0 817.1 0 0 817.1 0 0 0 817.1 0 0 0

e13 817.4 1 132 817.4 1 108 796.5 22 529 526 796.5 36 245 342

e14 779.9 0 0 779.9 0 0 779.9 0 0 0 779.9 0 0 0

e15 869.4 0 0 869.4 0 0 869.4 0 0 0 869.4 0 0 0

Uni_LR u01 856 0 0 856 0 0 856 0 0 0 856 0 0 0

u02 853 0 0 853 0 0 853 0 0 0 853 0 0 0

u03 851 0 0 851 0 0 851 0 0 0 851 0 0 0

u04 865 0 0 865 0 0 865 0 0 0 865 0 0 0

u05 833 4 389 833 2 115 833 29 231 199 833 23 126 199

u06 838 37 2887 838 4 180 838 30 377 333 838 21 154 131

u07 847 0 0 847 0 0 847 0 0 0 847 0 0 0

u08 852 0 0 852 0 0 852 0 0 0 852 0 0 0

u09 845 0 0 845 0 0 845 0 0 0 845 0 0 0

u10 824 3 248 824 3 128 824 25 228 186 824 20 144 174

u11 845 0 0 845 0 0 845 0 0 0 845 0 0 0

u12 840 5 393 840 5 145 839 63 425 385 839 27 162 177

u13 831 20 1424 831 5 171 829 147 627 591 829 42 219 328

u14 842 6 409 842 3 151 841 59 413 380 841 29 169 224

u15 829 3 204 829 3 110 829 142 203 324 829 23 135 171

(after application of Remark 6) may lead to new u-variables that can be fixed to 1, so we can iterate over a while loop combining

these two remarks until no new D is reached. After this loop, we can solve any integer telescopic formulation using the best D
value found so far. Hence, it can be applied with T1, … ,T5. We compare in Table 3 some information about the longest-paths

separation routines embedded in procedures P2 and P3.

In particular, this table reports three types of measures: the best upper bound obtained (denoted by D), the total computing

time (denoted by “t.”) after the overall separation procedures, and the number of violated cuts added from the two families

of inequalities. From this table some observations arise. First, we observe that the separation procedures of inequalities (9)

are performed in negligible computing time, despite the fact that the number of iterations in the procedure is significant, as

reflected in column ineq. (9). The results of formulation E5 are very interesting since they show a significant increase—most

of the cases, an order of magnitude—in the time spent by the separation routines. This could be due to the increment in size

of the separation problem, as the number of variables in the edge formulation is an order of magnitude larger than the one

in the Kuby formulation. Second, we see that the difference in the application of P2 and P3 to a given formulation affects

only the number of times the separation procedures are applied. Generally, P3 results in shorter separation times with fewer

iterations (violated cuts) required. Notice that no effect is observed on the final value of D. Third, we point out that in this table

no information about the uniform instances with short range is displayed since no violated cuts were found for this subset of

instances.

We perform a last experiment to test P4, whose detailed results are depicted in Table A2 of the Appendix and can be directly

compared with those of the telescopic formulation in Tables 1 and 2. In our opinion, P4 compares unfavorably to the results

reported in Table 2. Hence, we discard it for the competitive testing that will be carried out later.
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16 LANDETE ET AL.

4.3 Competitive comparison on larger instances
In this section, we perform a competitive comparison of the most prominent formulations using medium and large-size instances.

We begin with a set of 35 medium-size Euclidean instances that we divide into three subsets: the first is made of 15

instances with 150 nodes, the second contains 10 instances with 175 nodes, and the third contains also 10 instances with

200 nodes. In Figure 2, we depict a plot for each of the subsets. Each horizontal axis contains the instance number in the

subset, and the vertical axis compares the computing time (in seconds) needed to solve each instance to optimality when we

apply P1 with K0 (gray line) and P3 with K4 (black line). For this experiment, a time limit of 3600 s is imposed for both

methods. As can be seen from this figure, the reported time is significantly shorter when P3(K4) is applied compared to

P1(K0) in most instances. Only instance number 06 of the subset with 200 nodes reached the time limit with P1(K0), while

P3(K4) is able to solve it in just 365 s. Detailed information of the output of this experiment is provided in Table A3 of the

Appendix.
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FIGURE 2 Comparison of CPU times for the two methods with Euclidean instances. (A) Instances with 150 nodes. (B) Instances with 175 nodes. (C)

Instances with 200 nodes
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LANDETE ET AL. 17

Table 4 reports a similar experiment carried out also with P1(K0) and P3(K4) for large-size Euclidean instances, that is,

those with 300 nodes, also imposing a time limit of 3600 s. From the table, we can see that P1(K0) is able to solve 9 out of

15 instances within the time limit. For those instances that P1(K0) has not been able to solve, we report the optimality gap.

Regarding P3(K4), all instances are solved before reaching the time limit and many of them are solved in a significantly shorter

computing time compared to P1(K0). In this experiment, P3(K4) is able to find violated inequalities (9) in four instances, as

reported in the last column of the table.

We conclude our competitive comparison by performing an experiment using a set of 10 large-size uniform instances. The

results of this experiment are reported in Table 5. This table is divided into three blocks of different instance sizes that, this

time, are of 300, 400, and 500 nodes, respectively. The instances used here are of our particular interest as they were the largest

generated in [31] although, as reported in that paper, these authors were not able to use them in their experiments since the

meta-heuristic they proposed was only able to obtain solutions with zero objective function value in all cases. In these instances,

the distance values are {0, … , 9}. To tackle these instances we use P3(K4) and P1(T3), the best configurations we found for

the Kuby and telescopic formulations, respectively, in our experiments of Section 4.2. In this experiment, we impose a time

limit of 7200 s for both formulations. As we report in the columns referring to P3(K4), none of the instances are solved with

this formulation after two hours of computing time, and the gap between the lower (LB) and upper bounds (UB) seems far

from being closed. However, we are able to solve to optimality all the instances of the experiment using P1(T3) with relatively

short computing times, as we report in the last two columns of the table. Moreover, we show that the optimal value is 1 for all

instances, in contrast to the value of 0, which was obtained by the heuristic in [31].

TABLE 4 Computational results for large-size Euclidean instances

P1(K0) P3(K4)
n Inst. CPU D OptGap CPU D Ineq. (9)

300 01 3600
∗

91.0 115.1% 3581 – –

02 3600
∗

87.8 7.6% 1085 – –

03 565 92.1 – 491 87.0 351

04 3600
∗

92.6 43.4% 952 88.9 240

05 540 91.2 – 411 87.5 278

06 1520 92.2 – 484 – –

07 2370 92.0 – 425 – –

08 3600
∗

90.1 30.8% 2788 – –

09 3600
∗

92.0 0.6% 2343 87.5 248

10 2788 91.8 – 2230 – –

11 2440 91.6 – 1735 – –

12 1240 89.7 – 671 – –

13 3600
∗

92.7 5.2% 857 – –

14 1355 82.5 – 709 – –

15 985 92.9 – 379 – –

TABLE 5 Computational results for large-size uniform discrete values in {0, … , 9} instances

P3(K4) P1(T3)
n Inst. D UB CPU Opt. CPU

300 SOM-b-10 0 5 7215 1 159

SOM-b-11 0 5 7218 1 128

SOM-b-12 0 5 7215 1 127

400 SOM-b-13 0 6.77 7245 1 278

SOM-b-14 0 6.90 7247 1 251

SOM-b-15 0 6.96 7248 1 267

SOM-b-16 0 6.65 7246 1 490

500 SOM-b-17 0 8 7300 1 589

SOM-b-18 0 8 7303 1 1873

SOM-b-19 0 8 7299 1 1269

SOM-b-20 0 8 7305 1 552
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Finally, we note that we also tested different procedures where we obtained the best upper bounds using E5 and T5 and gave

them to the best performing formulations. However the time spent in computing the upper bounds was not compensated by the

time saved due to the improvement in their quality.

5 CONCLUDING REMARKS

In this article, we have conducted a study of three different families of formulations for the capacitated dispersion problem and

derived valid inequalities for each of them. The theoretical developments have been complemented by a series of computational

tests aiming at evaluating the potential of the findings. By a systematic analysis of all the families of inequalities proposed, we

have been able to devise two solution procedures. The numerical results show that our study rendered two procedures that have

a superior performance when compared to the standard use of a state-of-the-art solver in large instances: P3(K4) for the case

of the Euclidean instances, and P1(T3) for the case of uniform instances.

Although we have considered a setting where the choice of nodes is subject to a knapsack cover constraint, the formulations

we proposed can be adapted easily to incorporate further constraints on the nodes. Their comparison remains valid. The only

parts of our study that are specific to the knapsack cover constraint are the algorithms we use to compute the upper bounds.

Several interesting future research directions can be foreseen: on the one hand, the development of a branch-and-bound

algorithm based on combinatorial relaxations that can be solved without a solver; on the other hand, the analyzed problem has

some similarities with the so-called p-center problem. In fact, the problem that we have dealt in this work is a max-min location

problem whereas the p-center problem is a min-max location problem. In both cases, the objective function can be written as

a variable that is less than or equal in the max-min case, or greater than or equal in the min-max case, a family of expressions.

Therefore, all the structure of valid inequalities that are written as that variable greater than or equal to (or less than or equal

to) an expression can sometimes be rewritten for both the max-min model and the min-max model. An example of inequalities

of this type are (4) and (9).
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APPENDIX

Table A2 shows the results of procedure P4 on T4 regarding the best bound (D) obtained before solving T4, as well as the

computing time needed to apply the while loop over these two remarks until no new D is reached. The last column of the table

also reports the total computing time needed to solve afterwards the integer program with T4. These results can be directly

compared with those of the telescopic formulation in Tables 1 and 2.

Table A3 is divided by rows in three blocks, one for each instance sizes tackled: 150, 175, and 200 nodes. By columns,

we show some measures of the solver performance when applying P1 with K0 (that we abbreviate as P1(K0)) and P3 with

K4 (P3(K4)). The CPU columns report the computing time (in seconds) needed to solve the instance to optimality. For this

experiment, a time limit of 3600 s is imposed for both methods. We also report the value of D for the two methods and the

number of violated inequalities (9) for P3(K4).
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TABLE A1 Valid inequalities (8) added to K3 for the instances in the testing set

Family Inst. Ineq. (8) added

Euclid. e01 19

e02 12

e03 18

e04 18

e05 12

e06 17

e07 10

e08 22

e09 4

e10 5

e11 19

e12 7

e13 10

e14 15

e15 32

Average 14.6

Uni_LR u01 112

u02 140

u03 101

u04 127

u05 137

u06 160

u07 117

u08 181

u09 139

u10 230

u11 132

u12 147

u13 99

u14 120

u15 178

Average 141.3

Uni_SR

u_b_1 0

u_b_2 0

u_b_3 0

u_b_4 0

u_b_5 0

u_b_6 0

u_b_7 0

Average 0
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TABLE A2 Numerical results with P4 on T4

Family Inst. D t. CPU

Euclid. e01 762.45 0 117

e02 783.01 2 271

e03 808.46 2 154

e04 806.28 1 494

e05 789.96 1 501

e06 819.96 2 2336

e07 798.57 1 134

e08 731.14 2 927

e09 839.86 2 674

e10 809.82 1 874

e11 824.24 1 242

e12 733.72 1 190

e13 799.83 2 103

e14 713.6 1 93

e15 805.03 2 207

Uni_LR u01 832.85 1 415

u02 838 1 307

u03 831 1 416

u04 845 1 538

u05 833 1 269

u06 838 1 343

u07 837.87 1 601

u08 833 1 687

u09 826 1 230

u10 824 0 288

u11 827 1 2041

u12 839 1 1065

u13 829 2 4398

u14 841 2 1076

u15 829 1 1487

Uni_SR

u_b_1 9 1 337

u_b_2 9 1 40

u_b_3 9 1 164

u_b_4 9 1 273

u_b_5 9 2 627

u_b_6 9 2 407

u_b_7 9 2 1296
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TABLE A3 Computational results for medium-size Euclidean instances

P1(K0) P3(K4)
n Inst. CPU D CPU D Ineq. (9)

150 01 244 10.2 227 – 0

02 359 9.6 59 – 0

03 296 9.9 61 – 0

04 103 10.0 49 – 0

05 122 9.5 53 – 0

06 322 10.0 183 9–5 94

07 144 10.0 49 – 0

08 761 10.4 78 – 0

09 530 10.1 54 – 0

10 1704 9.9 53 – 0

11 363 9.8 180 9–1 99

12 629 10.2 54 – 0

13 1573 9.5 77 – 0

14 371 10.4 305 – 0

15 369 9.7 255 9.1 104

175 01 230 10.0 161 9.3 113

02 428 10.0 114 – 0

03 401 10.2 185 – 0

04 277 9.5 197 – 0

05 208 10.0 185 – 0

06 226 10.3 397 – 0

07 1616 10.0 396 – 0

08 2509 10.0 229 – 0

09 149 10.2 76 9–6 140

10 344 9.9 97 – 0

200 01 614 10.0 473 – 0

02 535 10.0 477 – 0

03 510 10.2 665 – 0

04 457 10.0 494 – 0

05 1160 9.8 1117 – 0

06 3600
∗

10.1 365 – 0

07 417 9.6 264 – 0

08 947 10.1 212 – 0

09 331 9.8 161 – 0

10 365 10.1 107 – 0
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