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Abstract

Serial dependence is present in most time series data sets collected in psychological research. This

paper investigates the implications of various approaches for handling such serial dependence, when one

is interested in the linear effect of a time-varying covariate on the time-varying criterion. Specifically,

the serial dependence is either neglected, corrected for by specifying autocorrelated residuals, or modeled

by including a lagged version of the criterion as an additional predictor. Using both empirical and

simulated data, we showcase that the obtained results depend considerably on which approach is selected.

We discuss how these differences can be explained by understanding the restrictions imposed under

the various approaches. Based on the insight that all three approaches are restricted versions of an

autoregressive distributed lag model, we demonstrate that accessible statistical tools, such as information

criteria and likelihood-ratio tests can be used to justify a chosen approach empirically.



Keywords

Psychological dynamics, serial dependence, time series analysis, intensive longitudinal data.

Acknowledgements

This work was supported by a research fellowship from the German Research Foundation (DFG) awarded

to Janne Adolf, by research grants from the Fund for Scientific Research-Flanders (FWO, Project No.

G.074319N), the Research Council of KU Leuven (C14/19/054 and iBOF/21/090), awarded to Eva Ceule-

mans.

Declarations of interest

The authors declare the absence of any financial, intellectual, or other conflicts of interest which may have

biased any aspect of this manuscript.

Open practice statement

The materials used in this manuscript are available online through the open science framework. These

supplementary materials include the scripts used to generate and analyze simulation data, the experimental

data, and scripts used to analyze the experimental data.

Ethics

This manuscript uses data collected during an experimental study. This study was approved by the local

ethics committee (Social and Societal Ethics Committee at the KU Leuven; case number G-2020-2772-

R2(MIN)).

https://osf.io/esmwa/?view_only=e15f7207e24f4a52a7f6aaa73baa2291


1 Introduction

In recent years, psychological science has started to devote increasing attention towards studying intra-1

individual variability in psychological phenomena over time (Molenaar, 2004). Affective science in particular2

has seen a steep rise of studies investigating within-person linear relationships between momentary affect3

and time-varying covariates of interest, such as influential events (e.g. Vanhasbroeck et al., 2022; Takano4

et al., 2014; Silk et al., 2003; Lafit et al., 2021). This entails gathering intensive longitudinal data (ILD)5

which consist of many repeated measurements (Ariens et al., 2020) of both the criterion and the covariate.6

To study the within-person relationship of interest, researchers often specify linear regression (LR) mod-7

els, regressing the criterion yt, e.g. negative affect, on the covariate xt. Nevertheless, the ubiquitous phe-8

nomenon that observations closer in time are typically more similar than those further apart can imply a9

form of dependence between the observations which is not accommodated for by the classical LR model.10

Indeed, a textbook issue for regression based analysis of repeated measures designs is the possibility that the11

model residuals are correlated over time, violating the independence assumption and detrimenting inference12

(Wooldridge, 2012, p.412-414).13

Reviewing empirical studies, one can broadly delineate three approaches in how researchers have ad-14

dressed the issue of serial dependence. Firstly, some researchers neglect the serial dependence by fitting a LR15

model, and proceeding with inference about the relationships in the data (e.g. Silk et al., 2003; Gard et al.,16

2014). A second approach consists of adjusting the model specification to correct for the autocorrelation in17

the residuals. The most popular specification, which we will focus on in this manuscript, is the specifica-18

tion of an autoregressive (AR) equation for how the residuals behave over time (e.g. Takano et al., 2014;19

Myin-Germeys et al., 2001; Asparouhov and Muthén, 2021; Ravindran et al., 2020; Mak and Schneider,20

2020; Dixon-Gordon and Laws, 2021; Johnson et al., 2020; Kung et al., 2021; Whelen and Strunk, 2021).21

The idea is that with the temporal dependence controlled for, inference on the regression effect of X on Y22

can safely proceed. A third option is to include additional effects in the model, by adding lagged versions of23

the observed criterion and sometimes also the covariate as predictor variables (e.g. Stevenson et al., 2022;24

Hamaker et al., 2018; McNeish and Hamaker, 2020). Adding the lagged criterion makes it explicit that one25

expects current criterion scores to depend on previous ones. We term these three approaches neglecting,26

correcting, and lagged observed variables respectively.27

The question of when which approach should be used for a given data analytic problem naturally rises.28

Answering this question is important, since conclusions about the effects of the covariate on the criterion can29

differ depending on which approach is selected (e.g. Asparouhov and Muthén, 2020). While the neglecting30

approach can be understood as a model without serial dependence and thus as a special case of both31
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correction and lagged observed variable approaches, the differences between the correction approach and the32

lagged observed variables appear less well understood in the behavioral sciences literature.33

In this paper we therefore provide an overview of the differences between these approaches. This is34

accomplished by considering the approaches and the models they imply as restricted versions of a more35

general autoregressive distributed lag (ADL) model (e.g. Hendry et al., 1984), and studying the restrictions36

each approach imposes. Importantly, recapitulating econometric literature (e.g. Hoover, 1988), we demon-37

strate that the correcting approach imposes non-linear (so-called common-factor (CF)) restrictions on the38

parameters of the ADL model. We highlight that these CF restrictions imply a particular form of dynamics39

which may or may not be valid for the relationships in the data at hand. We go on by illustrating that40

simply picking an approach and imposing restrictions without testing their adequacy is a poor strategy,41

since imposing invalid restrictions can bias the estimated regression parameters as well as the estimated SEs,42

seriously distorting inference. We demonstrate such misspecification biases in a simulation study and pay43

attention to model selection procedures, which can be used by applied scientists to justify a chosen approach44

empirically. Specifically, we discuss information criteria (AIC and BIC) and formal likelihood-ratio tests of45

the restrictions imposed under the approaches. The relevance of these topics for the behavioral literature is46

emphasized by applying the various approaches to data from a behavioral experiment. We place the reader in47

the position of an applied scientist modeling the relationship between a contextual cue and affect over time.48

We find substantial differences in the estimated effects depending on which serial dependence approach one49

employs. Moreover, the size of these differences in parameter estimates directly corresponds to the extent50

that the restrictions implied by the various approaches appear violated.51

To make the materials as accessible as possible, we focus on N = 1 versions of the employed models. We52

nevertheless show that the restrictions and considerations for misspecification biases extend straightforwardly53

to multilevel models in Appendix 3. In this appendix, we also provide simulation evidence by reanalysing54

data generated by Asparouhov and Muthén (2020).55

The structure of the manuscript is as follows: In section 2, we tie the various approaches to different56

models, providing the necessary background for the remainder of the paper. In section 3, we discuss how the57

various approaches can be considered as special cases of the ADL model, paying particular attention to the58

CF restriction. Section 4 discusses estimation, model comparison, and misspecification biases. In section59

5 we present the N = 1 simulation study. Section 6 contains our data analytic example. The discussion60

focuses on a number of important implications of these findings for the analysis of ILD in the behavioral61

sciences.62
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2 Regression models for the analysis of ILD63

Regarding notation, we use β to denote a regression effect. We specify which predictor it relates to in64

subscript. Whenever this predictor is actually a lagged variable, we include L in the subscript. In the65

superscript we specify which model the regression effect belongs to.66

2.1 Linear regressions67

We start from the LR model, which posits a linear relationship between a covariate X and a criterion Y .68

When the LR is applied to time series xt and yt where t ∈ N indexes discrete time, the formulation is69

straightforward:70

yt = βLR

0 + βLR

x xt + vt

vt
iid∼ N(0, σ2

v)
(1)

The model thus assumes that the criterion score at time t is a linear function of the covariate at time t71

and the error, vt. The parameters βLR

0 and βLR

x are intercept and slope parameters respectively. The errors72

vt are assumed to be independently and identically distributed (iid) according to a normal distribution with73

zero mean and variance σ2
v . When applying such models to time series, one may find after fitting the model74

that the observed errors or regression residuals, v̂t, are correlated with themselves at previous time points,75

which violates the independence assumption. When one ignores this assumption violation and proceeds with76

inference, one follows the neglecting approach.77

2.2 Autoregressive residuals78

Many researchers opt to ’correct’ for serial dependence in the residuals of a LR model by specifying an AR79

model (Hamilton, 1994 p.53-56) for how they behave over time. Such a model can be formulated as:80

yt = βCF

0 + βCF

x xt + ut

ut = βCF

Luut−1 + vt

vt
iid∼ N(0, σ2

v),

(2)

and has been termed the autocorrelation correction LR (ACLR, McGuirk and Spanos, 2009) model. The81

reason for the superscript CF for the ACLR model parameters will become evident in section 3.1. Again,82
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βCF

0 is an intercept and βCF

x a slope parameter. The error process ut is assumed to follow an AR equation,83

with AR effect βCF

Lu. Throughout the manuscript we confine ourselves to AR processes with stable and finite84

means, variances, and auto(co)variances, and as such the AR effects in this manuscript are assumed to be85

smaller than 1 in absolute value (for more details about this restriction, see Hamilton, 1994, p. 45-47).86

Furthermore, we confine ourselves to first-order or AR(1) processes, the temporal dependence of which is87

captured by a single AR parameter, linking current values of the variable to preceding values (at time t-1).88

2.3 Lagged criterion variables89

The third strategy for accommodating serial dependence is to specify a lagged effect of the criterion variable90

(LCV). Such a model can be written as:91

yt = βLCV

0 + βLCV

x xt + βLCV

Ly yt−1 + vt

vt
iid∼ N(0, σ2

v)
(3)

The model formulation is similar to the LR model, but now yt−1 serves as a predictor for yt in addition92

to the covariate xt. The effect of yt−1, βLCV

Ly , is an AR effect conditional on xt.93

2.4 Distributed lags: Unifying the approaches94

Less common in the behavioral sciences is to allow for lagged covariate effects on top of lagged criterion95

effects. Nevertheless these models, which are termed ADL models, will play a crucial role in what follows.96

The simplest ADL model may be formulated as:97

yt = βADL

0 + βADL

x xt + βADL

Ly yt−1 + βADL

Lx xt−1 + vt

vt
iid∼ N(0, σ2

v)
(4)

Each of the previous three approaches can be considered a special case of this ADL model (see also98

Hendry et al., 1984), which brings us to the next section.99

3 Restrictions on ADL parameters100

It is evident that the full or free ADL model contains the LCV model as a special case. Specifically, the LCV101

model imposes a restriction on the effect of xt−1 , namely that this effect equals zero, βADL

Lx = 0. The LR102
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model is also a special case of the ADL model in that it imposes two restrictions, namely that βADL

Lx = 0 and103

βADL

Ly = 0. As will be shown in the next section, the nature of the restriction is a bit more involved for the104

ACLR model. To facilitate its exposition, and since the presence of an intercept term has no implications105

for the results presented in the manuscript, we assume that the data is centered prior to analysis such that106

the various intercept terms become 0.107

3.1 The common factor restriction108

The simplest way to notice that the regression parameters are constrained in a nonlinear way when a LR109

with AR errors is specified (see Hoover, 1988), is by noting that equation 2 specifies two equalities for ut:110

ut = βCF

Luut−1 + vt and ut = yt − βCF

x xt. If the equations are assumed to describe the evolution of yt and ut111

for all time points, it is obvious that ut−1 = yt−1 − βCF

x xt−1 also holds. Substituting the first equality for ut,112

and subsequently the second equality for ut−1 we find that:113

yt = βCF

x xt + ut |Equation 2

yt = βCF

x xt + βCF

Luut−1 + vt |Substitute ut

yt = βCF

x xt + βCF

Lu(yt−1 − βCF

x xt−1) + vt. |Substitute ut−1

Writing these terms out, we obtain that:114

yt = βCF

Luyt−1 + βCF

x xt − βCF

LuβCF

x xt−1 + vt. (5)

The ACLR model can thus be written as an ADL model:115

yt = βADL

Ly yt−1 + βADL

x xt + βADL

Lx xt−1 + vt. (6)

by imposing the nonlinear CF restriction βADL

Lx = −βADL

x βADL

Ly (Hendry and Mizon, 1978), with βCF

Lu = βADL

Ly .116

To understand why this restriction is referred to as a ’common factor’ restriction - and has nothing to117

do with common factors as in common latent variables -, we introduce the lag operator L. The operator118

simply returns the variable at the previous time point, and thus acts on a variable xt such that Lxt = xt−1119

(see Hamilton, 1994, chapter 2). This allows us to represent an AR(1) process yt = βLyyt−1 + vt simply as1
120

1The term (1 − βLyL) is a lag polynomial, and if |βLy | < 1, it is invertible (Hamilton, 1994, p.28-29). It is well known
that inverting an AR(1) process yields an equivalent infinite order moving average (MA) process: yt = vt(1 − βLyL)−1.
Here, (1 − βLyL)−1 = (1 + (βLyL) + (βLyL)2 + ...), and as such inverting the polynomial corresponds to solving by recursive
substitution.
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(1 − βLyL)yt = vt. In terms of lag operators, the ADL under the CF restriction can be written as:121

yt = βLyyt−1 + βxxt − βxβLyxt−1 + vt

yt − βLyyt−1 = βxxt − βxβLyxt−1 + vt

(1 − βLyL)yt = βx(1 − βLyL)xt + vt

(7)

The common factor corresponds to the presence of the factor (1 − βLyL) for both yt and xt (Hoover,122

1988).123

3.2 Implications of the CF restriction124

The role of the nonlinear CF restriction βADL

Lx = −βADL

Ly βADL

x might seem rather abstract, but is actually very125

concrete: It ensures that xt has only a transient effect on yt. That is, the constrained direct effect of xt−1126

on yt cancels out its indirect effect via yt−1, which equals βADL

Ly βADL

x . This cancelling out implies that the127

influence of xt on yt does not accumulate over time:128

(1 − βLyL)yt = βx(1 − βLyL)xt + vt

(1 − βLyL)−1(1 − βLyL)yt = βx(1 − βLyL)−1(1 − βLyL)xt + (1 − βLyL)−1vt

yt = βxxt + (1 − βLyL)−1vt

yt = βxxt + vt + βLyvt−1 + β2
Lyvt−2 + ...

yt = βxxt +
∞∑

i=0
βi

Lyvt−i

(8)

Hence, if a CF restriction holds, previous covariate values xt−1, xt−2, ..., xt−i do not enter into the129

equation. In other words, xt has no lasting effects on yt. Only the variation in yt due to the error process130

vt - and hence the variation independent of xt - is carried over in time. In contrast, both the LCV and131

ADL models imply such carry over effects of covariate influences, to the extent that βADL

Lx is different from132

−βADL

Ly βADL

x (see Appendix 1).133

Whether the CF restriction is appropriate thus depends on whether we may presume that a particular134

covariate has a purely transient effect which does not last in the above sense. From a substantive perspective,135

this appears overly restrictive for many commonly used covariates in affective science. Imagine y1, y2, ..., yt136

reflect measurements of negative affect, and x1, x2, ..., xt reflect emotionally relevant events. The CF restric-137

tion implies that the effects of the events on negative affect do not last, while the effects of all unmeasured138
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factors in vt do.139

A CF specification nevertheless makes sense in some situations, which we can investigate by formulating140

particular models for how the covariate behaves over time. For instance the CF restriction holds when the141

covariate is time itself (xt = t, see Hendry and Juselius, 2000, equation 7). Such a model is used to model142

a linear time trend in the data around which the process displays AR(1) dynamics. One can think of this143

situation as first detrending the data to then yield the AR(1) dynamics contained in the error terms of this144

regression (Michaelides and Spanos, 2020; Wooldridge, 2012, p.368).145

A second plausible model for the behavior of a covariate is an AR(1) process. Indeed the covariate146

may also display serial dependence and and one might think of joint VAR(1) process having generated the147

covariate and criterion data. In this VAR(1) process, the contemporaneous effect of xt on yt is accommodated148

by a contemporaneous covariance between the error terms (see Appendix 2). In this case, we can delineate149

two situations in which the CF restriction holds. The first situation is that yt and xt have identical AR150

effects and no crossregressive effects, implying that yt and xt have equal lag one autocorrelations (Appendix151

2a; see also Spanos, 1987; Mizon, 1995). A second situation pertains to unequal AR effects, but then the152

CF restriction implies the presence of an additional compensatory crossregressive effect from xt−1 to yt. In153

this situation, the lag one autocorrelations of yt and xt will also differ (Appendix 2b; see also McGuirk and154

Spanos, 2009).155

The above examples show that CF constrained model structures can imply highly restrictive relationships156

for how criterion and covariate behave over time, which may not be valid for a particular data analytic157

problem (as stressed in the econometric literature; Hendry and Mizon, 1978; Hoover, 1988; Mizon, 1995;158

Spanos, 1987; McGuirk and Spanos, 2009). The utility of the CF restriction for psychological science can159

thus best be gauged by providing empirical evidence for its absence or presence.160

4 Estimation, model comparison, and misspecification biases161

4.1 Estimation162

The parameters of the considered models can be estimated in a variety of ways2. In this paper we employ163

maximum likelihood (ML) estimation as implemented in the Mplus (Muthén and Muthén, 2017, ver. 8.5)164

software, placing constraints on the regression parameters where appropriate. For instance, when estimating165

the parameters of an ACLR model, we specify a CF restricted ADL with the non-linear constraint on βADL

Lx .166

We opt for ML estimation since we shall use the log-likelihood values for model comparison and selection167

2Ordinary least squares is the classical approach for estimating the parameters of the ADL, LR, and LCV models. Generalized
least squares is the classical method employed for the ACLR (Aitken, 1936, Cochrane and Orcutt, 1949)
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(see next subsection). It is important to note that the implications of the different approaches that we aim168

to point out are related purely to the model structures rather than the method by which their parameters169

are estimated. It is straightforward to replicate the various results presented in the manuscript using other170

estimation methods. For example, in our reanalysis of the multilevel data generated by Asparouhov and171

Muthén, 2020 in appendix 2, we employ Bayesian estimation as done in their original paper.172

4.2 Model selection173

Model selection procedures enable to empirically decide among the various model structures discussed. In174

this paper we discuss two approaches, one based on information criteria, and the other based on formal175

statistical testing.176

Information criteria do not require the considered models to be nested, and as such can be used to directly177

compare the various approaches. The two most popular criteria are the Bayesian information criterion (BIC,178

Schwarz, 1978) and the Akaike information criterion (AIC, Akaike, 1974). For the ADL model for instance,179

these information criteria are calculated as BICADL = −2 ℓADL + pADL ln(N) and AICADL = −2 ℓADL + pADL 2180

respectively. After computing the AIC (resp. BIC) values of all considered models, the model with the181

lowest value is selected. AIC and BIC thus differ in the imposed penalty term, in that AIC only considers182

the number of model parameters p, whereas BIC also takes the number of time points N into account. For183

the sample sizes we consider in this paper, the penalty value will be lower for AIC, implying that AIC will184

favor more general models than BIC.185

Likelihood-ratio tests can also be considered for the models we discuss, since each model is nested in186

the free ADL model. The free ADL model can thus be used as a full model, and a chosen competitor as187

the alternative model. Concretely, a likelihood-ratio test of the CF restriction (e.g. Burridge, 1981) tests188

the null hypothesis H0 : βADL

Lx + βADL

x βADL

Ly = 0 against the alternative H1 : βADL

Lx + βADL

x βADL

Ly ̸= 0. The test189

statistic λ is obtained by calculating the difference between the log-likelihood values associated with the190

ML solutions of the CF constrained and the free ADL model, ℓCF and ℓADL, and multiplying this difference191

by −2, hence λ = −2(ℓCF − ℓADL). The test statistic is compared with a central χ2 distribution with a192

single degree of freedom, stemming from the additional free parameter βLx in the free ADL relative to193

the CF constrained ADL. Although other tests can be considered (e.g. Sargan, 1980), MCMC studies on194

the performance of likelihood-ratio tests of the CF restriction have reported to perform adequately (e.g.195

Garijo and Lacambra, 2011) even when the number of time points are relatively limited (Mur and Angulo196

(2006) considered T = 25, for instance). Tests of the other restrictions can be formulated in analogous197

ways, comparing the log-likelihood of a model under the desired restrictions with the one of the free ADL198
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model using a central χ2 distribution with degrees of freedom equalling the difference in the number of freely199

estimated parameters.200

4.3 Misspecification biases201

As highlighted previously, imposing CF and other restrictions without putting them to a test can have202

detrimental effects for estimation if restrictions are invalid. Specifically, regression effect and SE estimates203

can be biased. We refer to these as misspecification biases. Biased regression effect estimates can arise due204

to omitting a relevant predictor (omitted variable bias, Wooldridge, 2012, p. 88-92), or due to ’forcing’ a205

relationship to hold which does not (e.g., the CF restriction on the ADL parameters). Biased SE estimates206

can arise if temporal dependence is not properly modeled leading to correlated errors. This is particularly207

relevant in the context of a LR fit to serially dependent data (the neglecting approach). It is important208

to note that, unlike small sample biases that are known to affect AR modeling (see Maeshiro, 2000; Krone209

et al., 2017), the discussed misspecification biases do not diminish as sample size increases. They instead210

persist as we illustrate in the following section.211

To already provide two more concrete examples in the context of the models we discuss, omitted variable212

bias is for instance to be expected when data generated by a free ADL model is fit with the LCV model. The213

data generating model implies a nonzero βLx, yet the LCV estimation model incorrectly restricts βLx = 0.214

Since the omitted xt−1 also correlates with yt−1, β̂LCV

Ly will display bias. An example of forcing an invalid215

restriction to hold would occur when the the ACLR model is fit to the data generated by the free ADL216

model (Spanos, 1987). The ACLR constrains βLx in the ADL in a specific way, forcing βADL

Lx = −βADL

Ly βADL

x as217

we have seen. If however βADL

Lx ̸= −βADL

Ly βADL

x , the estimation model is misspecified. As such, the estimates of218

the ACLR model parameters will deviate from the true values to the extent the restriction is invalid.219

5 Simulation study220

5.1 Problem221

The purpose of our simulation study is to compare the performance of four approaches for dealing with serial222

dependence in ILD: neglecting (LR), correcting (ACLR), and two approaches that include lagged observed223

variables (ADL and LCV). Modeling performance is cast in terms of biases in the regression effect estimates224

and SE estimates, and estimation precision. The theory above allows us to make specific predictions about225

the emergence of misspecification biases (see section on expectations). As for model selection, we assess AIC226

and BIC performance in selecting the true data generating model, and the performance of likelihood-ratio227
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tests, particularly when testing for the adequacy of a CF restriction and LCV restriction.228

5.2 Design229

The present simulation study is based on a recently reported simulation study by Asparouhov and Muthén230

(2020) in which they pitted a multilevel LCV (DSEM) against a multilevel ACLR (RDSEM). We build on231

their design, refining and extending it in a number of ways. Importantly, although we focus on N = 1232

models, the results we report here generalize to the multilevel case (see reanalysis of the original datasets in233

appendix 3).234

5.2.1 Data generation235

Concerning data generation, we include the free ADL as a simulation model, on top of the LCV and ACLR.236

We further distinguish 2 conditions for the ADL simulation models, one where the CF restrictions are ’far’237

from holding (ADL), and one in which the CF restrictions are only ’slightly’ violated (ADLs). Our data238

generating models can thus be seen as ADL models differing in their implications for βLx (see Table 1).239

Next to the data simulation model, we vary two more data characteristics, further extending the design240

of Asparouhov and Muthén (2020) . Firstly, we include 3 settings for T , {50, 150, 1000}. Additionally, we241

vary the serial in dependence in the covariate, γ. We generate the covariate according to an AR(1) model242

with AR effect γ = .7 or γ = 0, implying lag-one autocorrelations of the same size. We thus have 24 (4 x243

3 x 2) data cells in our simulation design. Per design cell, we generated 500 data replications using Mplus244

(Muthén and Muthén, 2017, version 8.5). Data were generated with an intercept of 0, and were centered245

prior to analysis. For all data simulation conditions, we set βLy = .7.246

5.2.2 Estimation and Analysis247

Per replicated dataset we fit four estimation models: LR, ACLR, LCV, and ADL. In total we have 96 (24 x 4)248

estimation conditions, the data from each cell being estimated by the 4 estimation models. Model fitting was249

also conducted in Mplus, and the Mplus results were processed in R (R Core Team, 2021, version 4.1.1). In250

each case, the intercept was fixed to 0 during estimation. Per design cell and estimation model, we extracted251

the mean of each parameter estimate and SE estimates over replications from the Mplus output. To assess252

biases of the regression effect estimators, the average of the parameter estimates was compared with the253

parameter value underlying the data generating model. For biases in the SE estimators, the average of the254

SE estimates was compared with the empirical SD (i.e. the observed precision) of the parameter estimates.255

Regarding model selection and comparison, we extracted BICs and log-likelihoods for each estimated256
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Models βx βLy Restriction on βLx βLx

ADL 1 0.7 None 0.5
ADLs 1 0.7 None -0.5
ACLR 1 0.7 −βxβLy -0.7
LCV 1 0.7 0 0

Table 1: Data generating models of the simulation study with utilized parameter values, and the restrictions implied for βLx.
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model. As an index of performance, we calculated the proportion of cases that each estimation model257

attained the lowest BIC when fit to data generated by a particular simulation model. For the LR tests,258

our index of performance is obtained by calculating the proportion of times H0 was rejected, allowing us to259

assess the power and type 1 error rates, depending on whether the data were generated under one of the260

constrained models or an ADL respectively. All utilized scripts can be found in the supplementary materials.261

5.3 Expectations262

5.3.1 Misspecification biases263

For our specific design, we can summarize our expectations on (mainly) misspecification biases per estimation264

model, with two exceptions. The first obviously concerns the cases where the data simulation model is fitted265

and for which we expect no misspecification biases in neither regression effect nor SE estimates. This case266

is not re-iterated in the following list. The second exception, which is detailed in the following, concerns the267

situation where the LR is fitted to data from the ACLR, which is different from the situation where data268

come from the full ADL or the LCV model.269

• ADL (fitted to LCV or ACLR data): Since the various models are nested in the ADL and it thus270

represents an over-specified model, we do not expect to find any biases when the ADL is fit to data271

generated by the competing models.272

• LCV (fitted to ADL or ACLR data): In these cases xt−1 is omitted from the model while it has unique273

effects on yt conditional on the predictors in the estimation model, xt and yt−1. It is also correlated274

with yt−1. We therefore expect omitted variable bias for the effect estimate of yt−1, β̂LCV

Ly . If xt is275

autocorrelated (i.e., xt and xt−1 and consequently xt and yt−1 become correlated, see Ariens et al.276

(2022)), we additionally expect omitted variable bias for the effect estimate of xt, β̂LCV

x (see Section277

4.1.3). We do not have specific bias expectations for SE estimates.278

• ACLR (fitted to ADL or LCV data): The corresponding CF restricted ADL imposes the restriction279

βADL

Lx = −βADL

Ly βADL

x . We thus expect misspecification biases in both β̂CF

x and β̂CF

Ly. If data are generated280

under the ADLs, we expect biases to be less pronounced, because the restriction is less strongly violated.281

We do not have specific expectations for the SE estimates.282

• LR: If fitted to ADL or LCV data, xt−1 and/or yt−1 are omitted while both or at least yt−1 have283

unique effects on yt conditional on the predictor in the LR. However, only if xt is autocorrelated will284

it be correlated with xt−1 and yt−1, and will there be omitted variable bias for β̂LR

x .285
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• LR: If fitted to CF restricted ADL data, xt−1 and yt−1 are again omitted, but only the part of yt−1286

independent of xt−1 has a unique effect on yt conditional on the predictor in the LR. This part of yt−1287

is thus per definition not correlated with xt, also if xt is autocorrelated, so we expect no biases in the288

regression effect estimates. In fact, it is actually simpler to think explicitly of the ACLR as underlying289

the data: In this case we omit only ut−1, which is under no circumstances correlated with xt, hence,290

there cannot be omitted variable bias. For the SE estimate of β̂LR

x we expect - generally under the LR291

model based on various textbook warnings - bias, at least if the covariate is autocorrelated (Woolridge,292

p. 413 f.).293

Importantly, we expect all misspecification biases to persist in large samples.294

5.3.2 Model selection295

Regarding model selection, both for BIC and likelihood-ratio tests, we expect good model selection perfor-296

mance in large samples, with a slight attenuation in small samples (e.g. Mur and Angulo, 2006). Specifically,297

we expect nominal type 1 error rates (α = .05) and low type 2 error rates for the likelihood-ratio analysis,298

and we expect AIC and BIC to accurately select the correct model over competitor models. We have no299

particular expectations with respect to γ. We are interested in how the performance of a likelihood-ratio300

test of a CF restriction depends on the extent of misspecification, i.e. the comparison between ADL and301

ADLs data simulation conditions.302

5.4 Results303

For reasons of presentability, we report for misspecification biases the conditions T = 50 (small samples) and304

T = 1000 (large samples). The supplementary materials contain the results for all conditions.305

5.4.1 Misspecification biases and estimation precision306
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Estimation condition ADL LCV ACLR LR
γ T βLy βx βLy βx βLy βx βx

ADL
0.0 50 -0.03 (0.07) [-0.01] 0.00 (0.14) [ 0.00] 0.07 (0.07) [ 0.01] -0.01 (0.16) [ 0.00] 0.05 (0.09) [ 0.01] -0.57 (0.16) [ 0.03] -0.06 (0.29) [ 0.01]
0.7 50 -0.01 (0.04) [-0.01] 0.00 (0.14) [ 0.00] 0.06 (0.04) [ 0.01] 0.23 (0.13) [ 0.01] 0.20 (0.06) [ 0.01] -0.33 (0.23) [ 0.05] 1.29 (0.35) [-0.19]
0.0 1000 0.00 (0.01) [ 0.00] 0.00 (0.03) [ 0.00] 0.09 (0.01) [ 0.00] 0.00 (0.03) [ 0.00] 0.09 (0.02) [ 0.00] -0.58 (0.03) [ 0.01] -0.01 (0.07) [ 0.00]
0.7 1000 0.00 (0.01) [ 0.00] 0.00 (0.03) [ 0.00] 0.07 (0.01) [ 0.00] 0.23 (0.03) [ 0.00] 0.23 (0.01) [ 0.00] -0.34 (0.05) [ 0.01] 1.63 (0.08) [-0.05]

ADLs
0.0 50 -0.06 (0.10) [-0.01] 0.00 (0.14) [ 0.00] -0.22 (0.09) [-0.03] 0.01 (0.15) [-0.01] -0.05 (0.11) [-0.01] -0.09 (0.12) [ 0.00] 0.00 (0.19) [-0.01]
0.7 50 -0.07 (0.10) [-0.01] 0.00 (0.14) [ 0.00] -0.22 (0.08) [-0.03] -0.16 (0.13) [-0.03] -0.02 (0.10) [-0.01] -0.02 (0.15) [ 0.00] 0.21 (0.15) [-0.10]
0.0 1000 0.00 (0.02) [ 0.00] 0.00 (0.03) [ 0.00] -0.17 (0.02) [-0.01] 0.00 (0.03) [ 0.00] 0.00 (0.02) [ 0.00] -0.09 (0.03) [ 0.00] 0.00 (0.04) [ 0.00]
0.7 1000 0.00 (0.02) [ 0.00] 0.00 (0.03) [ 0.00] -0.17 (0.02) [ 0.00] -0.20 (0.03) [ 0.00] 0.04 (0.02) [ 0.00] -0.02 (0.03) [ 0.00] 0.27 (0.03) [-0.02]

LCV
0.0 50 -0.04 (0.09) [-0.01] 0.00 (0.14) [ 0.00] -0.03 (0.08) [-0.01] 0.00 (0.14) [ 0.00] 0.00 (0.10) [ 0.00] -0.33 (0.13) [ 0.01] -0.03 (0.23) [ 0.00]
0.7 50 -0.03 (0.07) [-0.01] 0.00 (0.14) [ 0.00] -0.02 (0.05) [-0.01] 0.01 (0.12) [ 0.00] 0.15 (0.08) [ 0.00] -0.17 (0.18) [ 0.02] 0.75 (0.23) [-0.13]
0.0 1000 0.00 (0.02) [ 0.00] 0.00 (0.03) [ 0.00] 0.00 (0.02) [ 0.00] 0.00 (0.03) [ 0.00] 0.05 (0.02) [ 0.00] -0.34 (0.03) [ 0.00] 0.00 (0.05) [ 0.00]
0.7 1000 0.00 (0.01) [ 0.00] 0.00 (0.03) [ 0.00] 0.00 (0.01) [ 0.00] 0.00 (0.03) [ 0.00] 0.19 (0.01) [ 0.00] -0.18 (0.04) [ 0.01] 0.95 (0.05) [-0.04]

ACLR
0.0 50 -0.06 (0.11) [-0.01] 0.00 (0.14) [ 0.00] -0.29 (0.09) [-0.04] 0.01 (0.16) [-0.01] -0.06 (0.11) [-0.01] 0.00 (0.12) [ 0.00] 0.01 (0.19) [-0.01]
0.7 50 -0.08 (0.11) [-0.01] 0.00 (0.14) [ 0.00] -0.30 (0.10) [-0.04] -0.25 (0.14) [-0.05] -0.07 (0.11) [-0.01] 0.00 (0.14) [ 0.00] 0.00 (0.14) [-0.09]
0.0 1000 0.00 (0.02) [ 0.00] 0.00 (0.03) [ 0.00] -0.24 (0.02) [-0.01] 0.00 (0.04) [ 0.00] 0.00 (0.02) [ 0.00] 0.00 (0.03) [ 0.00] 0.00 (0.04) [ 0.00]
0.7 1000 0.00 (0.02) [ 0.00] 0.00 (0.03) [ 0.00] -0.24 (0.02) [-0.01] -0.32 (0.03) [-0.01] 0.00 (0.02) [ 0.00] 0.00 (0.03) [ 0.00] 0.00 (0.03) [-0.02]

Table 2: Results for misspecification biases. Columns denote estimation models, rows denote simulation conditions. Per estimation model, we report bias of parameter
estimates, (SD of parameter estimates), and [bias of SE estimates] for the parameter given in the corresponding column.
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Table 2 displays the results regarding misspecification biases and estimation precision, which we briefly307

summarize. The results in general confirm our expectations regarding misspecification biases. Firstly, the308

ADL does not display evidence of misspecification bias. Small sample biases in β̂ADL

Ly appear to be present,309

as expected, and can also be found for correctly specified LCV and ACLR models. Estimating the ACLR310

model parameters results in biased regression effect estimates when data was generated by the LCV or the311

ADL conditions. We observe biases both for β̂CF

Ly and β̂CF

x . Especially the latter effect estimate is biased. The312

covariate being autocorrelated changes the bias pattern. In the ADLs condition, biases remain present, but313

are attenuated, confirming our expectation that the extent of bias depends on the extent of misspecification.314

These biases persists in large T situations. The LCV displays biases in β̂LCV

Ly when data is generated by the315

ADL or ACLR models. Biases in β̂LCV

x are however found only if the covariate is autocorrelated. Again316

these biases persist in large samples. The LR displays biases in β̂LR

x when data is generated by the ADL or317

LCV models, but only when the covariate is autocorrelated. In these cases we see that the SE estimates318

also display bias, they are in fact deflated, see Wooldridge (2012), p. 414. These biases persist in large319

samples. When data is generated under the ACLR, β̂LR

x appears unbiased regardless of autocorrelation in320

the covariate.321

Looking at estimation precision, we note that the observed SD of β̂LR

x always appears larger compared to322

those of the well-specified competing models. This indicates that, although omitting temporal relationships323

present in the data does not always cause misspecification bias, it can improve estimation precision3. These324

precision differences are substantial in small samples.325

5.4.2 Model selection326

Figure 1 panels A and B show the proportion of cases each estimation model was selected based on AIC and327

BIC respectively, with panels showing the different data generating models. In panel C, the results of the328

likelihood-ratio tests are presented. We first remark on likelihood-ratio test performance in terms of type 1329

and 2 error rates, after which we discuss the information criteria results.330

Likelihood-ratio tests of the CF restriction331

• For data generated by the ACLR model we find that likelihood-ratio tests of the CF restriction have332

nominal type 1 error rates. For γ = 0, the type 1 error rates are .07, .06, and .05 for T = 50, 150, and333

1000 respectively. γ = .7 does not alter these results, where we find .06, .06, and .06 respectively.334

• For data generated by the ADL, we find that likelihood-ratio tests of the CF restriction do not result335

in type 2 errors, the tests correctly refuted the null hypothesis for all datasets.336

3In general however, the inclusion of irrelevant predictors is known to decrease estimation precision (Wooldridge, 2012, p.
88)
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Figure 1: Results of the model comparison analysis. In panels Aand B, we report the results for the AIC and BIC analysis
respectively, and in panel C the results for the likelihood-ratio tests are shown. In panels A and B, the proportion of cases where
AIC or BIC was lowest (y-axis) over estimation models (x-axis) is displayed. The plots are faceted by simulation condition,
further separating the different simulation models and the case where the covariate was not autocorrelated (left, γ = 0) with
cases where the covariate was autocorrelated (right, γ = .7). Colors denote settings for T . In panel B, the proportion of cases
H0 was rejected is displayed (y-axis). Here, the plots are faceted by which H0 was tested, with on the x-axis the simulation
model employed. Dotted lines are included within plots to facilitate discrimination.
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• For data generated by the ADLs, we find that likelihood-ratio tests of the CF result in increased type337

2 error rates in small samples. For γ = 0, the type 2 error rates are .8, .5, and 0 for T = 50, 150, and338

1000 respectively. For γ = .7, the type 2 error rates are .51, .12, and 0 respectively.339

Likelihood-ratio tests of the LCV restriction340

• For data generated by the LCV, we find that likelihood-ratio tests of the LCV restriction have nominal341

type 1 error rates. For γ = 0, the type 1 error rates are .07, .06, and .05 for T = 50, 150, and 1000342

respectively. γ = .7 does not alter these results, where we find .06, .05, and .04 respectively.343

• For data generated by the ADL, we find that for γ = 0, the type 2 error rates are .09, 0, and 0 for T344

= 50, 150, and 1000 respectively. For γ = 0.7, we find .16, 0, and 0.345

Information criteria results346

Figure 1, panels A and B, show that AIC and BIC respectively yield fairly similar model selection results347

as using likelihood-ratio tests. Yet there are some discernible differences. For smaller sample sizes (i.e.348

T = 50 or T = 150) and when data was generated under either the LCV or ACLR models, AIC tends349

to incorrectly favor the more general ADL compared to the likelihood-ratio tests, and especially compared350

to BIC. If the data were generated under an ADL, we see that AIC tends to outperform BIC, at least for351

T = 50. For data generated under the ADLs condition, we observe worse AIC and BICperformance in that352

they both often erroneously select the ACLR or LCV models, as was also the case for the likelihood-ratio353

tests. In comparative terms, AIC performed best in this condition, followed by the likelihood-ratio tests and354

BIC. In large T situations, BIC and the likelihood-ratio tests appear to perform particularly well, while AIC355

still often incorrectly selects the ADL model. It is known that AIC tends to overestimate model orders in356

AR settings, even in large T situations (Talata, 2005)357

To conclude this section, the results suggest that these accessible model selection tools can perform well358

in selecting the simulation model. However, model selection accuracy appears strongly dependent on both359

the effect sizes and the number of available time points: ’slight’ violations of the CF restriction resulted in360

worse model comparison performance, particularly in small samples.361

6 A data-analytic example362

In this section we analyze data from a simple experimental paradigm, a variant of which is reported in363

Vanhasbroeck et al. (2022). The purpose is to make the role of the restrictions more tangible, and emphasize364

the relevance of these issues for applied work. In the experiment, a gambling paradigm, participants (N =365
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89) were asked to repeatedly chose between 4 choice options (doors), behind which were located monetary366

gains or losses. Unbeknownst to the participants, the series of gains or losses was predetermined by the367

experimenters. Figure 2 panel A displays an example of an experimental trial, showing that the cumulative368

gains or losses were available as cue at the top of the screen. After each trial they were asked to report369

their affective state on the evaluative space grid (Larsen et al., 2009, see Figure 2 panel A). The next370

trial commenced 1 second after the affective evaluation, the participant’s reported position on the grid371

disappearing with each new trial. As such, positive and negative emotions were measured over 152 trials372

(preceded by 10 practice trials). Figure 2 panel B displays a time series of (within-person) standardized NA373

responses and gambling winnings for a single participant.374

Figure 2: Panel A displays an example of a trial. Participants see four doors (middle), the evaluative space grid (bottom)
and their cumulative gambling winnings (top). Upon selecting a door, a monetary win or loss was displayed behind the door,
and participants asked to indicate their emotional state on the evaluative space grid. Panel B displays a time series of a single
participant. Standardized gambling winnings and NA reports are displayed.

We are interested in the relationship between negative affect (NA) and the gambling winnings displayed375

on the screen, where NA functions as the criterion variable yt and the gambling winnings as the covariate376

xt. To this end, we extract the NA responses by using the y−coordinates of the evaluative space grid.377

Moreover, the practice trials are removed, and all variables are standardized to have mean zero and unit378

variance. For each participant, we then fit four models: (1) the LR, (2) the LCV (3) the ACLR, and (4)379

the ADL model, and compute their BIC values. All four models postulate within-subjects variation in NA380

and a contemporaneous effect of the displayed gambling winnings on NA, but they assume different forms381

of serial dependence, as previously explained. To again highlight the specificities of the ALCR model, recall382

that it assumes that only the variation in NA that is not due to the gambling winnings carries over across383

trials. The ADL and LCV in contrast allow also the effects of the experimental manipulation to be lasting384

in time.385
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We first inspect the autocorrelations in the residuals4 of a simple LR model, displayed in Figure 3, panel386

A. As expected, serial dependence is present for many individuals. Moreover, BIC never favored the LR387

model. Rather, the ADL, ACLR, and LCV models were selected for respectively 72, 14, and 3 participants.388

AIC favored these models in 77, 9, and 3 participants, hence selecting the more general ADL model for 5389

participants. This result pattern is in line with the pattern observed in section 5.4.2 where we saw that AIC390

tends to favor more general models than BIC for the sample sizes we consider. While we by no means have a391

guarantee that the ADL is the ”correct” model, and we should further verify the adequacy of the restrictions392

it invokes, these values suggest to refute both the CF specification, the LCV, and the LR for the majority393

of participants.394

Next, Figure 3, panel B displays violin plots of the estimates of the four models over individuals. Overall,395

the estimates of the gambling stimuli effects β̂x are negative, indicating that increased winnings are associated396

with decreased NA. The estimates of the serial dependence β̂Ly are positive overall. Importantly, there are397

substantial differences between the approaches, since the violins display different characteristics (e.g. spread)398

depending on which approach is selected. For a small number of participants the LR even results in positive399

estimates β̂LR

x , which would rather paradoxically imply that larger winnings are associated with increased400

NA. The estimates of the error variance are on average largest for the LR model and smallest for the ADL401

model. The ADL model appears to explain most variability in the affective responses on average, over402

competitor models.403

We then try to tie the size of these estimate differences to the extent that the restrictions appear violated,404

based on the ADL estimates. Concretely, we expect that the differences one obtains in the covariate effect405

(β̂x) when fitting an ADL model versus an ACLR model depend on how strongly the CF restriction appeared406

violated. The researchers conclusions regarding the covariate should thus differ as a function of the extent407

that |β̂ADL

Lx + β̂ADL

x β̂ADL

Ly | > 0, where |.| denotes absolute value. For the LCV model, we expect conclusions to408

differ as a function of the extent that |β̂ADL

Lx | > 0. This is indeed what we see in Figure 3, panels C1 and409

C2. Finally, we also inspect the BIC values, expecting that BIC favors the ADL model over a particular410

competitor to the extent that the restriction imposed by the latter appears violated. This pattern is indeed411

found in Figure 3 panels D1 and D2.412

7 Discussion413

In this manuscript, we have endeavored to address the important issue of how to select an appropriate414

technique for handling serial dependence in the context of regression models of ILD. We compared the415

4These residuals were extracted using the lm() function in R.
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Figure 3: Panel A displays a histogram of the lag-1 autocorrelations in the residuals of a LR model fit to the data. Panel
B displays violin plots of the estimates of the parameters over individuals. Colors distinguish the estimates of covariate effect
(β̂x), the serial dependence (β̂Ly or β̂Lu), and the error variance (σ̂2

v). The x-axis denotes which estimation model the estimates
belong to. Dotted lines are included to facilitate discrimination. Panels C1 and C2 show how the estimates differ between the
ACLR and ADL (C1), and LCV and ADL (C2). The y-axis displays the difference in estimates of βx between the approaches
in absolute value. The x-axis displays the the extent to which the corresponding restriction appeared violated based on the
ADL estimates. Color is included to show the interaction between the extent of change and the estimated effect of βCF

Ly (C1)
and βLCV

Ly (C2). Panels D1 and D2 show that the differences in BIC (y-axis) depend on the extent to which the corresponding
restriction appeared violated.

practice of neglecting serial dependence with two common forms of dynamic specification, allowing for AR416

errors versus allowing for AR effects for the observed variables. We first elucidated the differences between417

the various approaches by considering a more general ADL model, where the restrictions implied under418

each approach can be scrutinized. The restrictions imposed under the LR and LCV modeling approaches419

are relatively straightforward, hence attention was paid to the nonlinear CF restriction imposed under the420
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correction approach, and reference to the econometric literature was provided. The CF restriction provides421

a general condition by which a LR model with AR(1) errors can be written as an equivalent ADL model. It422

implies that the covariate only has a transient effect on the criterion variable, its influence does not carry423

forward or last in time.424

As evidenced in our simulation studies and analytic example, when presented with serial dependence,425

neglecting this information (i.e., neglecting approach) and proceeding with inference based on the LR model426

parameter estimates can evidently be problematic. The estimates of the regression effects can be biased,427

sometimes to the point of implying nonsensical results. Furthermore, SE estimates can be biased, which428

can invalidate the results of hypothesis tests. These considerations become particularly important when429

covariates are autocorrelated. Importantly, misspecification bias also occurs when erroneously using the430

correcting and lagged criterion variable approaches. Furthermore, the size of the biases depends on the431

extent to which the restrictions are violated. Yet, the ADL was able to accurately recover the parameters432

in each case, since it relaxes the various restrictions. These considerations extend to multilevel models (i.e.433

DSEM and RDSEM), as demonstrated in appendix 3.434

Regarding model selection, in large T situations (e.g. T = 1000), BIC and the likelihood-ratio tests435

performed well at selecting the true model from the competing approaches, whereas AIC often wrongly436

selected the more general ADL model. In smaller samples, (e.g. T = 50), the decision can become more437

difficult in some conditions. Particularly choosing between the ACLR and ADL models for data generated438

under a ’slight’ violation of the CF restriction was troublesome. Likelihood-ratio tests suffered from larger439

type 2 errors in these conditions. AIC tended to favor the more general ADL model, both correctly and440

incorrectly, while BIC displayed a tendency to favor more restrictive alternatives. We conclude that for441

shorter time series AIC appears to be the more prudent index in the sense of avoiding misspecification442

whereas for longer time series BIC appears to be the better option.443

In practice the number of available time points may be low, and uncertainty about these decisions high.444

In these cases, the researcher must contemplate the possibility of bias by constraining βLx, and the cost445

in terms of estimation precision due to estimating βLx freely (Hendry and Mizon, 1978). Nevertheless, we446

found that freely estimating lagged effects when these are present in the data can increase the precision of447

β̂x.448

In our data analytic example, we showed that our findings are relevant for psychological science. Dif-449

ferences obtained between the approaches when applied to a data analytic problem displayed a direct cor-450

respondence with the extent to which the various restrictions appeared violated, and BIC favored the ADL451

model to the extent that the various restrictions appeared violated. Interestingly, we also found evidence452

that different model structures appeared appropriate for different individuals.453
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An at once exciting and unnerving conclusion is that whenever serial dependence is present, it should454

be included in the modeling strategy. Moreover, by simply ’correcting’ for the dependence in the residuals,455

one is inadvertently implying a specific form of dynamics, which to the best of our knowledge never appears456

tested for in applied work, nor justified in the first place.457

For applied researchers who have reason to believe that one of the models discussed in this manuscript458

is applicable, we therefore recommend that the analysis commences with an ADL model. From this ADL459

model, the appropriateness of imposing various specific restrictions corresponding to the more widely used460

and reported LCV, ACLR, or LR models can be tested empirically using model selection techniques.461

The strategy of starting with fitting a general model and sequentially imposing restrictions and testing462

their adequacy is referred to as general to specific modeling in the econometric literature. This strategy is463

intended to safeguard applied researchers from the perils of misspecification (Sims, 1980; Campos et al.,464

2005). Our results suggest that the strategy should play an important role as well in the analysis of ILD in465

the behavioral sciences. An important disclaimer in this respect is that the ADL model we discussed in this466

manuscript needs not be the appropriate general model. Therefore, the restrictions it imposes can also be467

scrutinized in the context of yet more general models. For instance, one could include higher-order lags of468

the variables in the model to check whether the serial dependence is appropriately dealt with by conditioning469

on the previous time point.470
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8 Appendices471

8.1 Appendix 1: Lasting effects of the covariate in the ADL and LCV models472

In the manuscript we noted that the special case for which the ADL model implies only a transient effect473

of the covariate is when the CF restriction holds. To see that an ADL model in general, and also a LCV474

model, implies lasting effects of previous covariate scores on the criterion at time t, we present derivations475

analogue to the ones presented in the manuscript.476

First, we express the general ADL model in terms of lag operators (cf. Hoover, 1988) as:477

yt = βLyyt−1 + βxxt + βLxxt−1 + vt

yt − βLyyt−1 = βxxt + βLxxt−1 + vt

(1 − βLyL)yt = βx(1 + βLx

βx
L)xt + vt.

(9)

Now we can again divide by (1 − βLyL):478

(1 − βLyL)yt = βx(1 + βLx

βx
L)xt + vt

(1 − βLyL)yt = (βx + βLxL)xt + vt

(1 − βLyL)−1(1 − βLyL)yt = (1 − βLyL)−1(βx + βLxL)xt + (1 − βLyL)−1vt |Divide by (1 − βLyL)

yt = (βx + βLxL)xt + βLy(βx + βLxL)xt−1 + β2
Ly(βx + βLxL)xt−2 + ...

+ vt + βLyvt−1 + β2
Lyvt−2 + ...

|(1 − βLyL)−1 = 1 + (βLyL) + (βLyL)2 + ...

yt = βxxt + βLxxt−1 + βLyβxxt−1 + βLyβLxxt−2 + β2
Lyβxxt−2 + β2

LyβLxxt−3 + ...

+ vt + βLyvt−1 + β2
Lyvt−2 + ...

yt = βxxt +
∞∑

i=0
βi

Ly(βLx + βxβLy)xt−(i+1) +
∞∑

i=0
βi

Lyvt−i.

.479

In case of the LCV model, where βLx = 0, the obtained result simplifies to:480
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yt = βxxt +
∞∑

i=0
βi

Ly(0 + βxβLy)xt−(i+1) +
∞∑

i=0
βi

Lyvt−i

yt = βxxt +
∞∑

i=0
βi+1

Ly βxxt−(i+1) +
∞∑

i=0
βi

Lyvt−i

yt =
∞∑

i=0
βi

Lyβxxt−i +
∞∑

i=0
βi

Lyvt−i.

.481

In both cases, the ADL and the LCV model, we see an accumulation of past effects of xt on yt because482

covariate influences carry over in time. This is in contrast to the CF constrained ADL (equation 8 in the483

manuscript), where the covariate only has a transient effect.484

8.2 Appendix 2: Common factor restrictions in a VAR(1) model485

In these appendices we investigate what a CF restriction implies if the covariate follows an AR(1) process,486

with AR effect γ, and covariate and criterion are represented jointly in terms of a VAR(1) process. Similarly487

to how we could observe the ACLR’s CF restriction as a restriction on the parameters of an equivalent488

ADL, we now investigate the CF restriction on the ADL parameters as restrictions on the parameters of an489

equivalent VAR(1) model (see Mizon, 1995, McGuirk and Spanos, 2009).490

In the manuscript we distinguished two cases depending on properties of the VAR(1) transition matrix.491

To make matters as digestible as possible, we discuss the two separately.492

8.2.1 Appendix 2a: Common factors and equal AR effects in a diagonal transition matrix493

Consider the following bivariate VAR(1) with a diagonal transition matrix where {|βLy|, |γ|} < 1:494

yt

xt

 =

βLy 0

0 γ


yt−1

xt−1

 +

ϵt

ζt

 ,

ϵt

ζt

 iid∼ MV N


0

0

 ,

 σ2
ϵ σϵζ

σϵζ σ2
ζ


 .

(10)

Since the transition matrix is diagonal, the variables are ’mutually granger non-causal’ (Spanos, 1987,495

Hamilton, 1994, p.303-304). There is a contemporaneous relationship, at each time point the error processes5
496

5The terminology ’innovation process’ is usually used for error processes in time series contexts, we use the error terminology
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covary with covariance σϵζ . We specify a direction of this contemporaneous relationship by decomposing ϵt497

into a part of variability explained by ζt, and a part vt which is unrelated to ζt:498

ϵt = βxζt + vt. (11)

Here, βx = rζϵ
σϵ

σζ
= σϵζ

σ2
ζ

. The variance of the remaining term vt, σ2
v , is restricted by this decomposition:499

σ2
v = σ2

ϵ − β2
xσ2

ζ .6500

By design, vt is uncorrelated with ζt, so we may express the system as:501

yt = βLyyt−1 + βxζt + vt,

xt = γxt−1 + ζt,vt

ζt

 iid∼ MV N


0

0

 ,

σ2
v 0

0 σ2
ζ


 .

(13)

Since xt, is generated by a stable AR(1) process with coefficient γ, it follows that ζt = (1 − γL)xt. This502

implies that503

yt = βLyyt−1 + βxζt + vt,

ζt = (1 − γL)xt,vt

ζt

 iid∼ MV N


0

0

 ,

σ2
v 0

0 σ2
ζ


 .

(14)

We thus may express the equation for yt as an ADL in lag operator notation:504

(1 − βLyL)yt = βx(1 − γL)xt + vt. (15)

From this, it is evident that the system will common factor if βLy = γ, which we could define as β∗
Ly.505

here due to its familiarity for researchers working with with linear regression models.
6In terms of error variances, we get:

σ2
ϵ = E(ϵ2

t )

σ2
ϵ = E((βxζt + vt)2)

σ2
ϵ = E(β2

xζ2
t + 2βxζtvt + v2

t )

σ2
ϵ = β2

xE(ζ2
t ) + 2βxE(ζtvt) + E(v2

t )

σ2
ϵ = β2

xσ2
ζ + σ2

v .

(12)
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Hence, if the AR effects in the diagonal transition matrix are equal, there exists a common factor (1−β∗
LyL):506

(1 − β∗
LyL)yt = βx(1 − β∗

LyL)xt + vt. (16)

This implies that yt and xt have identical lag-one autocorrelations, which are in this case both equal to507

β∗
Ly: From Lütkepohl (2005), p.27, eq. 2.1.31, we know that the lag-one autocovariances implied by a VAR(1)508

model can be obtained via B Σxy, where B is the transition matrix and Σxy is the model-implied (lag-zero)509

covariance matrix. In our case, with the diagonal transition matrix, we get the following expressions for the510

lag-one autocovariances of yt and xt, σyLy and σxLx:511

σyLy = β∗
Lyσ2

y,

σxLx = β∗
Lyσ2

x.

(17)

Dividing by the respective variances σ2
y and σ2

x yields the model-implied autocorrelations ρyLy and ρxLx,512

which equal β∗
Ly in both cases.513

8.2.2 Appendix 2b: Common factors and unequal AR effects in a triangular transition matrix514

Consider the unrestricted ADL, where we specify an AR(1) model for the serial dependence in the covariate:515

yt = βxxt + βLyyt−1 + βLxxt−1 + vt,

xt = γxt−1 + ζt,vt

ζt

 iid∼ MV N


0

0

 ,

σ2
v 0

0 σ2
ζ


 .

(18)

We will write this system in reduced form (i.e. as a VAR, containing lagged predictors and covarying516

errors), and use the lag operator consistently:517
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yt = βLyLyt + βxxt + βLxLxt + vt |ADL definition for yt

yt = βLyLyt + βx(γLxt + ζt) + βLxLxt + vt |xt = γLxt + ζt

yt = βLyLyt + βxγLxt + βLxLxt + βxζt + vt |Distribute and rearrange

yt = βLyLyt + βxγLxt + βLxLxt + ϵt |Define ϵt = βxζt + vt

yt = βLyLyt + (βxγ + βLx)Lxt + ϵt. |Factorize

As in the previous section, defining ϵt = βxζt+vt implies that ϵt and ζt covary with covariance σϵζ = βxσ2
ζ ,518

furthermore, σ2
ϵ = σ2

v + β2
xσ2

ζ .519

Now we impose a CF restriction: βLx = −βLyβx:520

yt = βLyLyt + (βxγ + βLx)Lxt + ϵt |Previous equation

yt = βLyLyt + (βxγ − βxβLy)Lxt + ϵt |βLx = −βxβLy

yt = βLyLyt + βx(γ − βLy)Lxt + ϵt. |Factorize

And as such the system is:521

yt = βLyLyt + βx(γ − βLy)Lxt + ϵt,

xt = γLxt + ζt,ϵt

ζt

 iid∼ MV N


0

0

 ,

 σ2
ϵ σϵζ

σϵζ σ2
ζ


 .

(19)

.522

In typical VAR notation, and knowing that σϵζ = βxσ2
ζ and σ2

ϵ = β2
xσ2

ζ + σ2
v , we are left with the result523

found in McGuirk and Spanos, 2009 (equation 18), but for a single covariate:524
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yt

xt

 =

βLy βx(γ − βLy)

0 γ


yt−1

xt−1

 +

ϵt

ζt

 ,

ϵt

ζt

 iid∼ MV N


0

0

 ,

 σ2
ϵ σϵζ

σϵζ σ2
ζ


 .

(20)

We can see that the CF restriction implies a crossregressive effect of xt−1 on yt, βx(γ − βLy), that is525

proportional to the difference in AR effects resulting in an upper triangular transition matrix. In the case of526

equal AR effects, said crossregressive effect becomes 0 and the transition matrix diagonal. This special case527

thus corresponds to the previously discussed VAR(1) system.528

The lag-one autocorrelation of yt implied by the model can be derived as (see again Lütkepohl, 2005,529

p.27, eq. 2.1.31):530

ρyLy = σyLy

σ2
y

ρyLy =
βLyσ2

y + βx(γ − βLy)σxy

σ2
y

ρyLy = βLy + βx(γ − βLy)σxy

σ2
y

.

(21)

The implied lag-one autocorrelation of xt is:531

ρxLx = σxLx

σ2
x

ρxLx = γσ2
x

σ2
x

ρxLx = γ.

(22)

Also at the level of the implied lag-one autocorrelations, we see that if γ ̸= βLy, then the autocorrelation532

of yt will differ from the one of xt as a function of the difference between the AR effects.533
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8.3 Appendix 3: Multilevel (Hierarchical) models534

8.3.1 Multilevel CF restrictions535

ILD often consist of N = many individual time series from different participants. In such designs, the536

regression models are often formulated as multilevel models and modeling the level 1 (i.e., within-subjects-537

level) residuals as AR(1) processes has also been considered (Asparouhov and Muthén, 2020). Consider as a538

simple example a multilevel ACLR model, where parameters βCF

x and βCF

Lu are fixed across individuals (i ∈ N539

indexes the individual):540

yit = βCF

x xit + uit,

uit = βCF

Luui t−1 + vit,

vit
iid∼ N(0, σ2

v).

(23)

It is evident that the same substitution procedure employed for the errors ut in the N = 1 case can be541

employed for the within-subjects-level errors of the above multilevel model, uit. Doing so, one finds that the542

multilevel ACLR model corresponds to a multilevel ADL model constrained by the CF restriction −βCF

LuβCF

x :543

yit = βCF

x xit + βCF

Luyi t−1 − βCF

LuβCF

x xi t−1 + vit,

vit
iid∼ N(0, σ2

v).
(24)

If βCF

Lu and βCF

x were allowed to vary across individuals by specifying them as random effects, then also544

the CF restriction would turn into a random effect. The take away message is that multilevel specifications545

with AR(1) residuals impose the analogue kinds of restrictions on the model parameters as those discussed546

for N = 1 models. These restrictions will therefore again lead to misspecification bias.547

8.3.2 Reanalysis of Asparouhov and Muthén (2020)548

Asparouhov and Muthén (2020) conducted a simulation study, pitting a multilevel LCV model (DSEM in549

their terminology) against a multilevel ACLR model (RDSEM in their terminology), finding biases in the550

estimates of the regression effects when the models were fit to data generated by the alternative. Specifically,551

they conducted simulations with the following parameter settings for the DSEM and RDSEM specification:552

βx = 1, βxb
= −1 (a between person-level effect of the covariate), βLy (DSEM) or βLu (RDSEM) = 0.7. The553

covariate xi t was generated according to an AR(1) model, with an AR effect of 0.7. The researchers reported554
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biases for β̂x, β̂xb
, and β̂Ly or β̂Lu when the models were fit to data generated under the alternative.555

It follows from the exposition we provide in this manuscript that fitting a multilevel ADL model to this556

data will lead to an accurate recovery of the parameters from data generated under either the DSEM or557

RDSEM specification. Specifically, data generated by the RDSEM model will, when estimated with the558

multilevel ADL model, result in a within-subjects effect βADL

Lx = −βADL

x βADL

Ly . Data generated under the DSEM559

model will simply result in the ADL recovering βADL

Lx = 0. For this analysis, we employed Bayesian estimation560

using Mplus as in Asparouhov and Muthén (2020). The only modification we made to their code was to561

include a lagged effect for the covariate in the DSEM estimation code.562

8.3.3 Results563

Simulation models RDSEM DSEM True value

β̂Ly .69 [-.01] .70 [.00] 0.7
γ̂ .70 [.00] .70 [.00] 0.7
β̂x 1.00 [.00] 1.00 [.00] 1
β̂Lx -.69 [-.01] .00 [.00] -0.7 or 0
β̂b -1.01 [.01] -.96 [-.04] -1

Table 3: Results of the reanalysis of the simulation data reported in Asparouhov and Muthén (2020). We report the average
ADL parameter estimates over replications, and bias in square brackets.

Table 3 shows that, as expected, the parameters are estimated accurately by the multilevel ADL model564

when data are generated under either the DSEM or RDSEM specification. Importantly, we obtain for the565

RDSEM condition an estimate of the effect of the lagged within-subjects covariate βADL

Lx = −βADL

x βADL

Ly , and566

for the DSEM condition we recover βADL

Lx = 0.567
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