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a b s t r a c t 

The success of Vision Transformer (ViT) in various computer vision tasks has promoted the ever- 

increasing prevalence of this convolution-free network. The fact that ViT works on image patches makes 

it potentially relevant to the problem of jigsaw puzzle solving, which is a classical self-supervised task 

aiming at reordering shuffled sequential image patches back to their original form. Solving jigsaw puzzle 

has been demonstrated to be helpful for diverse tasks using Convolutional Neural Networks (CNNs), such 

as feature representation learning, domain generalization and fine-grained classification. In this paper, 

we explore solving jigsaw puzzle as a self-supervised auxiliary loss in ViT for image classification, named 

Jigsaw-ViT. We show two modifications that can make Jigsaw-ViT superior to standard ViT: discarding 

positional embeddings and masking patches randomly. Yet simple, we find that the proposed Jigsaw-ViT 

is able to improve on both generalization and robustness over the standard ViT, which is usually rather a 

trade-off. Numerical experiments verify that adding the jigsaw puzzle branch provides better generaliza- 

tion to ViT on large-scale image classification on ImageNet. Moreover, such auxiliary loss also improves 

robustness against noisy labels on Animal-10N, Food-101N, and Clothing1M, as well as adversarial exam- 

ples. Our implementation is available at https://yingyichen- cyy.github.io/Jigsaw- ViT . 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Vision Transformer (ViT) [1] is an architecture inherited from 

atural Language Processing [2] while applied to image classifi- 

ation with taking raw image patches as inputs. Different from 

lassical Convolutional Neural Networks (CNNs), the architectures 

f ViTs are based on self-attention modules [2] , which aim at 

odeling global interactions of all pixels in feature maps. More 

recisely, ViTs take sequential image patches as inputs, and the 

ttention mechanism enables interaction and aggregation di- 

ectly among patch information. Therefore, compared to CNNs 

here image features are progressively learnt from local to global 

ontext via reducing spatial resolution, ViT enjoys obtaining 

lobal information from the very beginning. Up till now, such 

onvolution-free networks have been achieving great success on 

arious computer vision tasks, including image classification [3–8] , 

bject detection [6,9,10] , semantic segmentation [9–11] and image 

eneration [12] , etc. 
∗ Corresponding author. 
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The fact that ViTs work on image patches makes it potentially 

elevant to one classical image patch-based learning task, that is, 

igsaw puzzle solving. Solving jigsaw puzzle aims at reordering 

huffled sequential image patches back to their original form. 

n practice, the problem is interesting for cultural heritage and 

rchaeology to search the correct configuration given numerous 

ragments of an art masterpiece [13] . However, in the Computer 

ision community, the most interesting aspect could be that it 

rovides off-the-shelf annotations for free considering a given 

mage. Despite its simplicity, it has shown effectiveness in diverse 

omputer Vision tasks based on CNNs such as: self-supervised fea- 

ure representation learning [14] , domain generalization [15] and 

ne-grained classification [16] . Motivated by the fact that both 

igsaw puzzle solving and ViT share the same basis of learning 

rom image patches, we consider incorporating solving jigsaw 

uzzle to ViT for image classification tasks. 

In this paper, we explore leveraging the jigsaw puzzle solv- 

ng problem as a self-supervised auxiliary loss of a standard ViT, 

amed Jigsaw-ViT. Precisely, as shown in Fig. 1 , in addition to the 

tandard classification flow in the end-to-end training, we add a 

igsaw flow whose goal is to predict the absolute positions of the 

nput patches by solving a classification problem. Notably, we make 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Overview framework of our Jigsaw-ViT . (Top) We incorporate jigsaw puzzle solving (in blue flow) into the standard ViT for image classification (in red). During the 

training, we jointly learn the two tasks. (Bottom) The details of our jigsaw puzzle flow. We mask some patches, i.e., patch masking, and remove positional embeddings when 

feeding patches to ViT. For each unmasked patch, the model should predict the class corresponding to the patch position. 
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wo important modifications compared to the naive jigsaw puzzle 

hen feeding input patches to ViTs: (i) we get rid of the positional 

mbeddings in the jigsaw flow, by which we prevent the model 

rom cheating from explicit clues in the positional embeddings; 

ii) we randomly mask some input patches, i.e., patch masking , 

nd then aim at predicting only the positions of those unmasked 

atches, hence making the prediction rely on global context rather 

han several particular patches. 

Despite its simplicity, we find that our Jigsaw-ViT is able to 

mprove on both generalization and robustness over the standard 

iT, which is usually rather a trade-off [17] . To be specific, in 

erms of generalization, we observe a steady increase in classifi- 

ation accuracy on ImageNet-1K [18] that our jigsaw flow brings 

o the ViTs. As for robustness, we first show that the proposed 

igsaw flow provides consistent improvement against noisy labels 

n three important real-world benchmarks, i.e., Animal-10N [19] , 

ood-101N [20] and Clothing1M [21] . Then, we show that our pro- 

osed Jigsaw-ViTs can effectively enhance the robustness of ViTs 

gainst adversarial attacks in both black-box and white-box attack 

ettings. 

To summarize, our contributions are as follows: First , we pro- 

ose to introduce the jigsaw puzzle solving task into ViT-based 

odels, namely Jigsaw-ViT, with two techniques: removing posi- 

ional embeddings, and randomly masking patches. Second , empiri- 

al results suggest that our jigsaw flow not only improves the gen- 

ralization ability of ViTs on large-scale image classification, but 

lso the robustness against label noise and adversarial examples. 

ur implementation is available at https://yingyichen-cyy.github. 

o/Jigsaw-ViT . 

. Related work 

Solving jigsaw puzzle in CNNs Solving jigsaw puzzles aims at re- 

overing an original image from its shuffled patches, which is a 

lassical pattern recognition problem dating back to [22] . Rather 

han setting the jigsaw puzzle solving as the ultimate goal [23] , 

owaday works treat solving jigsaw puzzles as a pre-text task to 

ther visual recognition tasks [15,16] . These methods assume that 

ich feature representations could be learnt in a self-supervised 

anner, which would be useful for fine-tuning with task-specific 

ata. For example, [15] solves classification and jigsaw together to 
54 
mprove semantic understanding for domain generalization tasks, 

nd [16] combines jigsaw puzzles and the progressive training for 

ne-grained classification. These methods use full sequential image 

atches and are built in the context of CNNs, while here we ran- 

omly mask image patches and introduce jigsaw naturally in the 

ontext of ViTs. 

Vision Transformers Transformer proposed in [2] originally de- 

igned for natural language processing has shown promising per- 

ormance for Computer Vision tasks [1,4–6] . Vision Transformers 

ViTs) [1] directly inherit from transformer with image patch se- 

uences as inputs, and have achieved superior performance than 

heir counterpart CNNs for various tasks [9–11,24] . The success 

f ViTs has also encouraged the emergence of a wide variety 

f ViT variants [3–5,25] . One of the most representative works 

s DeiT [3] , which introduces a distillation token and a teacher- 

tudent strategy specific to transformers, leading to competitive 

erformance on ImageNet [18] . Although ViTs are convolution-free, 

ecent works [6,26,27] also build stronger ViT variants by resem- 

ling some merits from CNNs. Notably, our work is different from 

24] since [24] does not include jigsaw puzzle solving in the opti- 

ization goal, where they only shuffle patches in the triplet loss 

ranch. 

Learning with noisy labels The task aims at learning models 

chieving good clean test accuracy while being trained on noisy 

nnotated data. Mainstream solutions include: label correction 

hich corrects possibly wrong labels with more consistent substi- 

utes [28,29] , semi-supervised learning which trains networks in a 

emi-supervised manner with only the clean labels used [30] , and 

ample reweighting which assigns more weights to samples possi- 

ly clean [31] . In particular, for sample reweighting, Co-teaching 

31] is a classical method that cross-updates its two base net- 

orks on the small-loss samples selected by its peer. Based on this, 

ested Co-teaching [32] improves performance by including com- 

ression regularization during the training. 

Adversarial examples Deep neural networks are fragile to ad- 

ersarial examples [33] where human-imperceptible perturbations 

n clean images can cheat the network to give wrong predic- 

ions. These adversarial examples can be generated in the white- 

ox settings where attacker has full access to information inside 

he target model. Mainstream attacks include Fast Gradient Sign 

ethod (FGSM) [34] , projected gradient descent (PGD) [35] , the 

https://yingyichen-cyy.github.io/Jigsaw-ViT
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nsemble auto-attack (AA) [36] , etc. In real-world scenarios, adver- 

arial attacks are commonly done in black-box settings since the 

uch information, e.g., gradients, of the target models are hard 

o obtain. Existing black-box attacks are mostly conducted either 

n query-based [37] or transfer-based ways [38] . The former re- 

ies on querying the outputs of the target models, while the lat- 

er uses surrogate models to generate adversarial examples. Recent 

ork [39] also studies the adversarial robustness of ViTs where an 

nsemble of ViTs and CNNs can achieve good robustness. 

. Method 

In this section, we present details of the proposed Jigsaw-ViT. A 

rief introduction to ViT [1] is firstly given in Section 3.1 . Then, we

resent our Jigsaw-ViT in Section 3.2 . 

.1. Vision transformer 

Given an image I ∈ R 

H×W ×C , where H and W are spatial di- 

ensions and C denotes the number of channels, we first di- 

ide the image into a sequence of non-overlapped 2D patches 

 p ∈ R 

L ×(P ×P ×C) where the patch resolution is P × P and L = HW/P 2 

s the sequence length (the number of patches). In ViT [1] , 

hese patches are linearly projected to D -dimensional features 

sed as the patch embeddings [ z 1 0 , z 2 0 ... z 
L 
0 ] 

T ∈ R 

L ×D . A learn-

ble class token denoted by CLS, i.e. , z cls 
0 

∈ R 

D is prepended 

o the sequence of the patch embeddings z 0 leading to z 0 = 

 z cls 
0 

, z 1 
0 
, z 2 

0 
... z L 

0 
] T ∈ R 

(L +1) ×D . Usually, positional embeddings p =
 p 

cls , p 

1 , p 

2 ... p 

L ] T ∈ R 

(L +1) ×D are added to the sequential patch

mbeddings, thus v 0 = z 0 + p serves as the input to the Trans- 

ormer encoder. 

The Transformer encoder [2] consists of alternating layers of 

ayer normalization, multi-head self-attention and multi-layer per- 

eptron blocks, denoted as LN(·) , MSA (·) and MLP (·) , respectively. 

or an encoder with N layers, the final class prediction y pred is the 

nal embedding associated to the class token v cls 
N 

, such that 

v ′ 
i 
= MSA (LN(v i −1 )) + v i −1 , i ∈ [1 , 2 , ..., N] 

v i = MLP (LN(v ′ 
i 
)) + v ′ 

i 
, i ∈ [1 , 2 , ..., N] 

 pred = MLP (LN(v cls 
N 

)) . 
(1) 

.2. Jigsaw-ViT 

Solving jigsaw puzzles aims at reordering shuffled sequential 

atches back to their original format. Previous CNN-based methods 

ave proved that various computer vision tasks are benefited from 

earning jigsaw puzzles [14–16] . In this section, we show how to 

ncorporate a jigsaw puzzle flow into the regular end-to-end train- 

ng of standard ViTs. 

The overview of our approach is illustrated in Fig. 1 where im- 

ge classification problem using ViT is the focus in this paper. More 

recisely, our goal is to train a ViT model that jointly considers 

olving the standard classification and jigsaw puzzles in its opti- 

ization objective. Accordingly, the total loss L total simultaneously 

nvolves two cross-entropy losses ( CEs), i.e., the class prediction 

oss on the class token L cls and the position prediction loss on the 

atch tokens L jigsaw 

: 

 total = CE(y pred , y ) 
︸ ︷︷ ︸ 

L cls 

+ ηCE( ̃ y pred , ̃  y ) 
︸ ︷︷ ︸ 

L jigsaw 

(2) 

here ˜ y pred and 

˜ y denote the position prediction and the corre- 

ponding real position, respectively, and η is a hyper-parameter 

alancing the two losses. 

As detailed in the bottom part of Fig. 1 , our injected jigsaw puz-

le flow is different from naive jigsaw puzzle implementation in 
55 
wofold: (i) we get rid of positional embeddings in the jigsaw puz- 

le flow; (ii) we randomly mask � γ L � patches in the input where

∈ [0 , 1) is a hyper-parameter denoting the mask ratio. The for- 

er prevents models from being cheated from explicit clues in the 

ositional embeddings, and the latter encourages the prediction to 

ely on global context rather than several particular patches. Their 

elpfulness for the main classification task is shown in Section 4 . 

ince the proposed jigsaw puzzle solving is a self-supervised task, 

t can be easily plugged into existing ViTs without modifying the 

riginal architecture. 

Architecture We employ DeiT-Small/16 [3] without distillation 

oken as the backbone in our experiments if not specified, which 

s the same architecture as ViT-Small/16 in [1] . DeiT-Small/16 has 

he embedding dimension of D = 384 with 6 heads, N = 12 lay- 

rs and the total number of parameters is approximately 22M. The 

raining image resolution is 224 × 224 leading to 14 × 14 patches 

s inputs. The prediction head of the image classification flow is 

 single fully connected layer mapping from the encoder embed- 

ing dimension to the number of classes. For our jigsaw flow, we 

dopt a 3-layer MLP head after the encoder where the dimensions 

f the first two layers are equal to the encoder embedding dimen- 

ion, and the output dimension of the last layer equals to the total 

umber of image patches ( L = 14 × 14). 

. Experiments 

In this section, we demonstrate the effectiveness of our ap- 

roach on three tasks: generalization on large-scale classification 

n ImageNet [18] , and robustness to noisy labels and adversar- 

al examples. In Section 4.1 , we evaluate our approach on the 

lassification task with ImageNet dataset. In Section 4.2 , we ex- 

ensively validate our approach on three real-world noisy label 

atasets: Animal-10N [19] , Food-101N [20] and Clothing1M [21] . 

n Section 4.3 , we show our jigsaw flow improves ViTs’ robustness 

gainst adversarial examples. Ablation study is given in Section 4.4 . 

urther discussions on setting jigsaw puzzle solving as a pretext 

ask and exploring the benefits of Jigsaw-ViT to downstream tasks 

re additionally provided in Section 4.5 . More experimental details 

ncluding ablations can be found in the supplementary material. 

.1. Generalization on large-scale image classification 

ImageNet [18] is a standard dataset for large-scale image classi- 

cation, and we use ILSVRC-2012 ImageNet-1K dataset containing 

 , 0 0 0 classes and approximately 1.3M images for the evaluation 

f our Jigsaw-ViTs in improving standard ViTs on large-scale image 

lassification task. 

Training details We train both DeiT [3] and our Jigsaw-ViT from 

cratch following the same training protocols in [3] , where AdamW 

s taken as optimizer with the base learning rate of 5e-4, a weight 

ecay of 0.05, the overall batch size as 1,024, and 300 training 

pochs. If not specified, for all experiments, we follow the data 

ugmentation strategies in [3] , e.g., Rand-Augment, MixUp and 

utMix. We set the balancing hyper-parameter in (2) η = 0 . 1 and 

ask ratio γ = 0 . 5 here. 

Results Table 1 shows the performances of Jigsaw-ViTs with 

ifferent backbones on ImageNet-1K validation set and ImageNet 

2 [40] which is a distinct test set suitable for measuring the over- 

tting level of models. The backbones include DeiT [3] with differ- 

nt capacities from tiny to base. DeiT-Tiny/16 is similar to DeiT- 

mall/16 but with fewer parameters: embedding dimension of 192 

ith 3 heads, 12 layers and the total number of parameters is ap- 

roximately 5M. DeiT-Base/16 has an embedding dimension of 768, 

2 heads, 12 layers and an approximate total number of parame- 

ers of 86M. For all architectures on both datasets, adding jigsaw 

ranch consistently improves upon the baselines by training from 
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Fig. 2. Attention map associated to the class token of the last layer . We show the attention map for DeiT-Small/16 [3] and Jigsaw-ViT trained on ImageNet-1K [18] . 

Jigsaw-ViT learns clearer salient-object attentions over the listed instances. More examples can be found in the supplementary material. 

Table 1 

Image classification on ImageNet-1K [18] validation set and ImageNet V2 [40] . 

We compare to DeiT [3] with different capacities and report top-1 accuracy (%). We 

also show how much each Jigsaw-ViT model is above the baseline with ↑ . 

Backbone #params 

ImageNet-1K ImageNet V2 

Baseline Jigsaw-ViT Baseline Jigsaw-ViT 

DeiT-Tiny/16 5M 72.2 74.1 ↑ 1 . 9 60.2 61.4 ↑ 1 . 2 
DeiT-Small/16 22M 79.8 80.5 ↑ 0 . 7 68.5 69.3 ↑ 0 . 8 
DeiT-Base/16 86M 81.8 82.1 ↑ 0 . 3 71.0 71.0 
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cratch or fine-tuning, verifying the effectiveness of our Jigsaw-ViT 

n attaining better generalization performances on large-scale im- 

ge classification. 

To further investigate the impact of our injected jigsaw flow in 

iTs, we visualize the self-attention maps of the baseline ViT and 

igsaw-ViT trained on ImageNet-1K with DeiT-Small/16 in Fig. 2 fol- 

owing the visualization protocols in [51] , which concatenates fea- 

ures of different heads associated to the class token. As in Fig. 2 ,

igsaw-ViT is able to learn more distinctive salient-object atten- 

ions than DeiT-Small/16. The reason of this difference can be that 

olving jigsaw puzzle in ViT requires to understand the whole im- 

ge so as to predict the correct spatial relationship between differ- 

nt image patches with a randomly shuffled order. Note that there 

re noisy hightlights on the background for both DeiT-Small/16 

nd Jigsaw-ViT. This is consistent with the statement in [51] that 

upervised ViTs attend less well to objects in both qualitatively 

nd quantitatively than pure self-supervised ViTs. However, even 

hough there are noises in attention maps, the proposed Jigsaw-ViT 

till manages to obtain better attention maps than its counterpart 

eiT-Small/16. We refer to supplementary material for more visual 

esults. 

.2. Robustness to label noise 

A more challenging classification problem is conducted to eval- 

ate our Jigsaw-ViTs, that is, the image classification with noisy la- 

els. Three popular real-world noisy label datasets are extensively 

valuated: Animal-10N [19] , Food-101N [20] and Clothing1M [21] , 

here Animal-10N [19] and Food-101N [20] are with noisy labels 

t a relatively low ratio, Clothing1M [21] contains noisy labels at a 

igh ratio. 

Training details Animal-10N [19] consists of 10 classes of animal 

mages crawled online with manually annotated labels. The dataset 

onsists of 50 , 0 0 0 training images with label noise ratio ∼8% and

 , 0 0 0 clean testing images. Food-101N [20] contains 310 , 009 train- 

ng images of food recipes collected online and are classified 101 

lasses with noise ratio ∼20%. Following [20] , the learnt models 

hould be evaluated on the test set of Food-101 of 25 , 250 clean 

abeled images. Clothing1M [21] is a large-scale dataset containing 
56 
 million images of clothing crawled online. The dataset is cate- 

orized into 14 classes, containing 1 , 0 0 0 , 0 0 0 training images with

oise ratio ∼38% and 10 , 526 test images. We follow the prepro- 

essing in [29,32] for this dataset. 

We train all the models from scratch, unlike most methods re- 

uiring extra data and learning from ImageNet-1K pretrained mod- 

ls [29,30,43,50] , e.g., methods in Tables 2 (b) and 3 use ImageNet- 

K pretrained ResNet-50 [49] . We use AdamW with a weight de- 

ay of 0.05 and train for 400K iterations with batch size 128. The 

raining starts with a linear learning rate warm-up for 20K steps 

nd cosine learning rate decay with a maximum learning rate of 

e-3 and a minimum of 1e-6. 

Results We report top-1 accuracy on datasets with low noise 

ate, i.e., Animal-10N [19] and Food-101N [20] in Table 2 . Inter- 

stingly, the baseline DeiT-Small/16 [3] achieves promising results 

n both datasets and already outperforms some competitive ap- 

roaches, which demonstrates the powerful capabilities of ViTs 

n this task. Note that, in terms of model complexity, this ViT 

s comparable to ResNet-50 and much lighter than VGG architec- 

ures which are commonly used in the community. Our Jigsaw-ViT 

rained under L total consistently outperforms DeiT-Small/16 trained 

nder a single L cls with substantial improvements. Moreover, our 

ethods also achieve the best performances on both datasets in 

able 2 among all compared state-of-the-art methods specifically 

esigned for this noisy label task. These results indicate that our 

eployed auxiliary loss can implicitly serve as a practical reg- 

larization for learning with noisy labels. Similarly in Table 3 , 

e observe the same tendency on the experiments with Cloth- 

ng1M [21] dataset. Despite the high noisy ratio on Clothing1M, 

ur Jigsaw-ViTs maintain to achieve promising results. 

Additionally, it is worth mentioning that our method can serve 

s complementary strategies to other state-of-the-art methods to 

urther boost their performances. In particular, we incorporate 

ur Jigsaw-ViT to NCT [41] (Jigsaw-ViT+NCT). NCT is a two-stage 

ethod designed for combating label noise. Notably, by imple- 

enting NCT with our Jigsaw-ViT, the top-1 accuracy of NCT is 

mproved by 0.4%, achieving the state-of-the-art result of 75.4%. 

hese experiments not only verify the superiority of Jigsaw-ViTs 

s a stand-alone method, but also the effectiveness as a promising 

omplementary tool to existing methods in combating label noise 

ith boosted performances. 

.3. Robustness to adversarial examples 

In this section, we investigate the robustness of Jigsaw-ViT 

gainst adversarial examples with perturbations on input images 

nder both black-box and white-box attaches. 

Training details Adversarial examples are crafted images by 

dding visually imperceptible perturbations to the clean im- 

ges, which deteriorates the model predictions. In accordance to 
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Table 2 

Image classification on datasets with low noise rate. We compare to state-of-the-art approaches and report test top-1 accuracy (%) on Animal-10N [19] (noise ratio ∼ 8 %, 

in Table (a)) Food-101N [20] (noise ratio ∼ 20 %, in Table (b)). We also show how much Jigsaw-ViT model is above DeiT-Small/16 [3] with ↑ . 
Method CE 

[29] 

Dropout 

[41,42] 

SELFIE 

[19] 

PLC 

[29] 

NCT 

[32,41] 

S3 

[43] 

Ours 

DeiT-Small/16 [3] Jigsaw-ViT 

Acc. (%) 79.4 81.3 81.8 83.4 84.1 88.5 87.2 89.0 ↑ 1 . 8 
Backbone VGG-19bn [44] , #params: 143.7M, FLOPS: 19.7G DeiT-Small/16, #params: 22M, FLOPS: 4.6G 

(a) Animal-10N [19] 

Method CE 

[29] 

CleanNet 

[20] 

MWNet 

[45,46] 

SMP 

[47] 

NRank 

[48] 

PLC 

[29] 

WarPI 

[46] 

DeiT-Small/16 [3] Jigsaw-ViT 

Acc. (%) 81.7 83.5 84.7 85.1 85.2 85.3 85.9 84.2 86.7 ↑ 2 . 5 
Backbone ResNet-50 [49] , #params: 25.6M, FLOPS: 4G DeiT-Small/16, #params: 22M, FLOPS: 4.6G 

(b) Food-101N [20] 

Table 3 

Image classification on datasets with high noise rate. We compare to state-of-the-art approaches and report test top-1 accuracy (%) on Clothing1M [21] (noise ratio ∼ 38 %). 

We also show how much Jigsaw-ViT + NCT is above NCT with ↑ . 
Method JO 

[28] 

PLC 

[29] 

ELR + 

[50] 

DivideMix 

[30] 

S3 

[43] 

NCT 

[32,41] 

Ours 

DeiT-Small/16 [3] Jigsaw-ViT Jigsaw-ViT + NCT 

Acc. (%) 72.2 74.0 74.8 74.8 74.9 75.0 71.6 72.4 75.4 (Comp. NCT ↑ 0 . 4 ) 
Backbone ResNet-50 [49] , #params: 25.6M, FLOPS: 4G DeiT-Small/16, #params: 22M, FLOPS: 4.6G 
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ection 4.1 , we conduct the experiments on the models trained 

ith ImageNet-1K [18] . Following [56] , the validation set with 

0 , 0 0 0 images are used as clean samples to generate adversarial 

xamples. In the experiments, both black-box and white-box set- 

ings are considered for adversarial attacks. 

In black-box settings, we first consider the transfer-based at- 

acks where adversarial examples are generated by attacking surro- 

ate models and then fed into the target models (e.g., our Jigsaw- 

iTs) to evaluate the robustness performance. We then consider 

uery-based attacks, which only require multiple queries of the 

utputs of the target models to perform the attacks. Following 

he settings in [56,57] , methods used for generating the adver- 

arial examples in transfer-based attacks are: FGSM [34] , basic it- 

rative method (BIM) [52] , PGD [35] , momentum iterative boost- 

ng (MI) [53] and the ensemble AA [36] which include white-box 

ttacks. These attacks are crafted under maximum L ∞ 

-norm per- 

urbation ε = 16 with respect to pixel values in [0,255], step size 

= 2 , and number of steps 10 if it is a multi-step attack such

s BIM, PGD and MI [57] . We adopt the pretrained ViT-Small/16 

n [1] and pretrained ResNet-152 [49] on ImageNet-1K [18] as the 

urrogate models which are white-box with gradient available. The 

arget victim models are DeiT-Small/16 and our Jigsaw-ViT whose 

radients are inaccessible. For query-based attacks, we consider 

he popular square attack (Square) [54] with L ∞ 

-norm perturba- 

ion ε = 16 and different querying numbers { 50 , 100 , 200 , 500 } . 
In white-box settings, the adversarial examples are generated 

y directly attacking the accessible target victim models (DeiT- 

mall/16 and our Jigsaw-ViT). We consider both gradient-based 

ttacks including FGSM and PGD, and one typical non-gradient- 

ased attack named CW [55] . As in [57] , we consider FGSM and

GD with the commonly-used L ∞ 

-norm bounds of perturbations 

s ε ∈ [4 , 8 , 16] . For CW, the L 2 -norm perturbations are used with

ox-constraint parameter c = 1 and step size varying in { 10 , 20 } . 
Results Tables 4 and 5 report the top-1 accuracy (%) of the 

ictim DeiT-Small/16 and our Jigsaw-ViT against black-box and 

hite-box attacks, respectively. For adversarial examples generated 

y various attacks on different surrogate models in Table 4 , the 

erformances of target models all degrade drastically compared 

o their clean counterparts in Table 1 , demonstrating the chal- 

enge of this task. In contrast, our Jigsaw-ViTs provides distinctively 
57 
igher accuracy than standard ViTs under both transfer-based at- 

acks and query-based ones. Such robustness of Jigsaw-ViT over 

eiT-Small/16 becomes even more significant as the square attack 

tilizes more queries for stronger crafts in Table 4 (b) . Specifi- 

ally, Jigsaw-ViT exceeds DeiT-Small/16 by 9.7% with maximal 500 

ueries, compared the 2.8% improvement with maximal 50 queries. 

In the white-box attacking results in Table 5 , in addition to 

utperforming DeiT-Small/16 in all cases, our Jigsaw-ViT has non- 

ero accuracy in cases where DeiT-Small/16 is completely crafted 

y the PGD attack ( steps = 7 , ε ∈ { 8 , 16 } ) in Table 5 (a) . Results

n Table 5 (b) relating to non-gradient-based CW attacks further 

emonstrate the effectiveness of the proposed Jigsaw-ViT, together 

erifying that injecting the proposed jigsaw puzzle flow to ViTs 

uccessfully provides improvements on the robustness against ad- 

ersarial examples under various settings. 

.4. Ablation study 

In this section, we first study the effect of positional embed- 

ings in the jigsaw branch, and then investigate the impacts of the 

wo hyper-parameters in Jigsaw-ViT: the loss balancing coefficient 

in (2) , the mask ratio γ of jigsaw image patches. 

Effect of positional embedding in the jigsaw branch We conduct 

xperiments on ImageNet-1K [18] and noisy label datasets includ- 

ng Animal-10N [19] , Food-101N [20] and Clothing1M [21] . Results 

re given in Table 6 , showing that the removal of positional em- 

eddings in the jigsaw branch helps provide consistent improve- 

ent over all tested datasets, which validates our effective design 

f the jigsaw branch in ViTs. 

Impact of η and γ The experimental investigations on the two 

yper-parameter involved in the proposed Jigsaw-ViTs are con- 

ucted on datasets Animal-10N [19] , Food-101N [20] and Cloth- 

ng1M [21] . The results are illustrated in Table 7 . First, Jigsaw-ViT 

rovides consistent improvement on all three datasets compared 

o its non-jigsaw counterpart i.e., DeiT-Small/16 ( η = 0 ). Moreover, 

he improvement is quite robust to the choices of both η and γ . 

econd, injecting the jigsaw puzzle solving with non-zero mask 

atio to ViT indeed brings consistent performance boost over stan- 

ard ViT, as we still observe that non-zero mask ratio γ shows bet- 

er performances than the case of γ = 0 on different datasets and 
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Table 4 

Robustness to adversarial examples in black-box settings. We report top-1 accuracy (%) after attacks on ImageNet-1K [18] validation set (higher numbers indicate better 

model robustness). (a) Transfer-based attacks where adversarial examples are generated by attacking a surrogate model. (b) Query-based attacks where adversarial examples 

are generated by querying the target classifier for multiple times. We also show how much our Jigsaw-ViT model is above DeiT-Small/16 [3] with ↑ . 
Surrogate Target FGSM [34] BIM [52] PGD [35] MI [53] AA [36] 

ViT- 

Small/16 

DeiT-Small/16 32.8 40.2 44.7 37.6 59.8 

Jigsaw-ViT 34.8 ↑ 2 . 0 43.0 ↑ 2 . 8 47.7 ↑ 3 . 0 40.2 ↑ 2 . 6 62.5 ↑ 2 . 7 
ResNet- 

152 

DeiT-Small/16 59.0 65.9 67.9 65.3 70.6 

Jigsaw-ViT 60.5 ↑ 1 . 5 68.0 ↑ 2 . 1 69.8 ↑ 1 . 9 66.8 ↑ 1 . 5 72.2 ↑ 1 . 6 
(a) Acc. (%) under transfer-based attacks. 

Attack Num. queries DeiT-Small/16 Jigsaw-ViT 

Square 

[54] 

50 49.3 52.1 ↑ 2 . 8 
100 36.6 41.4 ↑ 4 . 8 
200 22.8 30.8 ↑ 8 . 0 
500 7.2 16.9 ↑ 9 . 7 

(b) Acc. (%) under query-based attacks. 

Table 5 

Robustness to adversarial examples in white-box settings. We report top-1 accuracy (%) after attacks on ImageNet-1K [18] validation set (higher numbers indicate better 

model robustness). (a) White-box attacks with L ∞ -norm perturbation. (b) White-box attacks with L 2 -norm perturbation. We also show how much our Jigsaw-ViT model is 

above DeiT-Small/16 [3] with ↑ . 
Attack Model ε = 4 ε = 8 ε = 16 

FGSM [34] DeiT-Small/16 29.0 25.4 21.1 

Jigsaw-ViT 34.1 ↑ 5 . 1 30.2 ↑ 4 . 8 24.9 ↑ 3 . 8 
PGD [35] , 

Steps = 5 

DeiT-Small/16 1.5 0.3 0.1 

Jigsaw-ViT 5.3 ↑ 3 . 8 2.3 ↑ 2 . 0 1.3 ↑ 1 . 2 
PGD [35] , 

Steps = 7 

DeiT-Small/16 0.5 0.0 0.0 

Jigsaw-ViT 2.9 ↑ 2 . 4 0.6 ↑ 0 . 6 0.2 ↑ 0 . 2 
(a) Acc. (%) under attacks with L ∞ -norm perturbation. 

Attack Steps DeiT-Small/16 Jigsaw-ViT 

CW [55] 10 10.0 14.9 ↑ 4 . 9 
20 1.6 4.7 ↑ 3 . 1 

(b) Acc. (%) under attacks with L 2 -norm perturbation. 

Table 6 

Comparisons between Jigsaw-ViT w/ and w/o pos. emb. We report test top-1 ac- 

curacy (%) on ImageNet-1K [18] and noisy label datasets including Animal-10N [19] , 

Food-101N [20] and Clothing1M [21] . We also show how much Jigsaw-ViT w/o 

pos. emb. is above Jigsaw-ViT w/ pos. emb. with ↑ . 
ImageNet- 

1K 

Animal-10N Food-101N Clothing1M 

Noise ∼ 8 % Noise ∼ 20 % Noise ∼ 38 % 

w/ pos. emb. 80.3 87.3 84.7 71.1 

w/o pos. emb. 80.5 ↑ 0 . 2 88.7 ↑ 1 . 4 86.5 ↑ 1 . 8 72.4 ↑ 1 . 3 

l

t
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s

w

t

s

t

a

e

u

l

ower mask ratios can already lead to good improvements. Hence, 

hese evidences all demonstrate the effectiveness of the proposed 

pproach. 
Table 7 

Ablation study on real-world noisy label datasets. We report test t

(noise ratio ∼ 8 %), Food-101N [20] (noise ratio ∼ 20 %) and Clothing

DeiT-Small/16 [3] . 

Method η MaskRatio A

N

DeiT-Small/16 0 – 8

Jigsaw-ViT 0.5 0 8

0.1 8

0.2 8

0.5 8

1 0 8

0.1 8

0.2 8

0.5 8

2 0 8

0.1 8

0.2 8

0.5 8

58 
.5. Further discussions: pretext and downstream tasks 

To further explore potentials of Jigsaw-ViT, we investigate the 

ettings of both pretext and downstream tasks. First, we set the 

igsaw puzzle solving as a pretext task so as to testify the neces- 

ity of building it as an auxiliary loss term. Second, we consider 

hether Jigsaw-ViT can benefit downstream tasks, such as seman- 

ic segmentation. 

Jigsaw puzzle solving as a pretext task We set jigsaw puzzle 

olving, which is a self-supervised learning problem, as a pretext 

ask for learning with noisy labels. During the pretext training, we 

dopt AdamW with a weight decay of 0.05 and train for 200K it- 

rations with batch size 128. We set a linear learning rate warm- 

p for 20K steps and cosine learning rate decay with a maximum 

earning rate of 1e-3 and a minimum of 1e-6. Then, the backbone 
op-1 accuracy (%) on the following datasets: Animal-10N [19] 

1M [21] (noise ratio ∼ 38 %). Note that η = 0 corresponds to 

nimal-10N Food-101N Clothing1M 

oise ∼ 8 % Noise ∼ 20 % Noise ∼ 38 % 

7.2 84.2 71.6 

8.6 86.1 71.9 

8.7 85.8 71.9 

8.7 86.1 71.8 

8.1 86.2 71.8 

8.6 86.1 72.3 

8.6 86.4 72.2 

8.7 86.3 72.1 

8.3 86.7 71.5 

8.6 86.4 71.7 

8.7 86.4 72.4 

9.0 86.5 71.9 

7.8 86.1 71.6 
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Table 8 

Jigsaw puzzle solving as a pretext task. We report test top-1 accuracy (%) of mod- 

els trained with jigsaw puzzle solving being the pretext task (entry “Jigsaw”) and 

without it (entries “✗ ”) on noisy label datasets. We also show how much DeiT with 

jigsaw puzzle solving as pretext task or as auxiliary loss improves over DeiT with 

↑ . 
Method Pretext task Animal-10N Food-101N Clothing1M 

Noise ∼ 8 % Noise ∼ 20 % Noise ∼ 38 % 

DeiT- 

Small/16 

✗ 87.2 84.2 71.6 

Jigsaw 88.0 ↑ 0 . 8 87.3 ↑ 3 . 1 71.9 ↑ 0 . 3 
Jigsaw-ViT ✗ 89.0 ↑ 1 . 8 86.7 ↑ 2 . 5 72.4 ↑ 0 . 8 

Table 9 

Semantic segmentation as a downstream task. Performance of Segmenters [11] 

on ADE20K [58] validation set with pretrained weights provided by DeiT [3] and 

Jigsaw-ViT trained on ImageNet-1K [18] . We also show how much Segmenter with 

Jigsaw-ViT pretrained weight improves over its DeiT pretrained counterpart with ↑ . 
Method Pretrained Pixel Acc. mIoU (SS) 

Seg- 

Small/16 

DeiT-Small/16 80.2 42.3 

Jigsaw-ViT-Small 80.6 ↑ 0 . 4 42.9 ↑ 0 . 6 
Seg- 

Base/16 

DeiT-Base/16 81.1 45.1 

Jigsaw-ViT-Base 81.3 ↑ 0 . 2 45.7 ↑ 0 . 6 
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s fine-tuned on the same noisy label dataset with only L cls used. 

able 8 gives the comparisons of models trained with (entry “Jig- 

aw”) and without (entry “✗ ”) the jigsaw pretext task. Using jigsaw 

uzzle solving as a pretext task successfully outperforms training 

eiTs from scratch without it. It shows that building jigsaw puzzle 

olving as an auxiliary loss term, i.e., Jigsaw-ViT, commonly leads 

o better performances than setting it as a pretext task. Rather 

han utilizing jigsaw puzzle solving as a pretext task, building it as 

n auxiliary loss term in the end-to-end training can in general be 

ncouraged in usage to enhance model’s robustness against noisy 

abels. 

Semantic segmentation as a downstream task Semantic segmen- 

ation aims to label each image pixel with a corresponding cate- 

ory of the underlying object. Segmenter [11] builds upon ViTs and 

xtends to semantic segmentation with extra semantic class tokens 

nd a mask transformer decoder. Since this SOTA should be imple- 

ented on a pretrained ViT, we set the weights of DeiT and Jigsaw- 

iT in Table 1 as pretrained weights for training on the challenging 

DE20K dataset [58] . Table 9 shows that Segmenters with Jigsaw- 

iT pretrained weights outperform their DeiT pretrained counter- 

arts with respect to both mIoU with single scale (SS) inference, 

nd pixel accuracy. These experiments verify that Jigsaw-ViT is also 

romising to benefit downstream task such as semantic segmenta- 

ion, further showing the potentials of our proposed method. 

. Conclusion 

In this paper, we inject jigsaw flow into the standard ViT by 

olving classical jigsaw puzzle as a self-supervised auxiliary loss 

uring optimization, namely Jigsaw-ViT. To better utilize jigsaw 

uzzle solving, we propose to discard the positional embeddings 

n the jigsaw flow to avoid being directly hinted about the ex- 

licit position clues. Meanwhile, we observe that dropping some 

atches, i.e., patch masking, also plays a positive role in this pro- 

edure. The introduced auxiliary loss by injecting the jigsaw flow 

ith the aforementioned two strategies not only enhances ViTs’ 

erformances for large-scale classification on ImageNet, but also 

ttains stronger resistance to label noise and adversarial examples. 

hese show that Jigsaw-ViTs improve standard ViTs in both gener- 

lization and robustness, even though such two aspects are usu- 

lly considered as a trade-off. Our proposed method is an easy-to- 

eproduce, and yet a very effective tool to boost the performance 
59
f ViTs and even a plug-in complementary tool to enhance other 

ethods. 
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