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The relationship between primary school children’s inhibition and the 

processing of rational numbers 

Abstract 

Processing rational numbers is difficult for many children. The natural number bias is one 

possible explanation for why children struggle with rational numbers. It refers to the tendency to 

overgeneralise the properties of natural numbers. In this study it is argued that in order to be successful 

in rational number tasks, individuals need to inhibit or suppress their unwanted impulses (in this case 

the tendency to apply natural number properties). It was investigated whether inhibition plays a role in 

the occurrence of the natural number bias among primary school children by administering two rational 

number tasks, two Stroop tasks and a questionary measuring inhibitory skills. The results indicated that 

primary school children were hampered by the natural number bias both in terms of accuracy rates and 

response times. Additionally, the results did not yield strong evidence for a relationship between 

inhibition and the occurrence of the natural number bias. 
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Introduction 

For decades, studies have shown the struggle of primary school children when processing rational 

numbers. For example, children find it difficult to identify the largest decimal in a set (Resnick et al., 

1989; Sackur-Grisvard & Léonard, 1985), or explain why a fraction contains two numbers (Smith et al., 

2005). It is important to further examine these difficulties since fraction knowledge of primary school 

children predicts later mathematics achievement in high school (Siegler et al. 2012). One of the 

explanations frequently raised for these difficulties is the natural number bias, or the tendency to 

overgeneralise the properties of natural numbers, which results in the application of these properties in 

rational number tasks in cases where this is inappropriate (Ni & Zhou, 2005; Smith et al., 2005). The 
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origins of this bias are still a matter of debate (Ni & Zhou, 2005), yet a possible explanation can be 

found in the culturally privileged character of natural numbers (Gelman, 2000). Based upon early 

experiences with natural number (e.g., counting songs or board games) and the considerable emphasis 

placed on natural numbers during the first years of formal instruction, children create an idea of how 

numbers behave based on the properties of natural numbers (Gelman, 2000; Greer 2004). This can result 

in errors since the properties between natural and rational numbers may differ (Van Hoof et al., 2017c).  

An example of a difference between rational and natural numbers can be found in the way one 

can determine their size. Longer numbers are often believed to be larger, which is true for natural 

numbers but not always for rational numbers (e.g., 65 is larger than 8, but 0.65 is not larger than 

0.8).;Concerning fractions, children frequently perceive the numerator and the denominator as two 

separate numbers and fail to take into account the ratio between them, which may lead to the incorrect 

idea that when the value of the numerator, the denominator or both increases; the total numerical value 

of a fraction increases as well (Durkin & Rittle-Johnson, 2015; Meert et al., 2010; Smith et al., 2005; 

Van Hoof et al., 2013). Previous research documented that higher accuracy rates and/or faster reaction 

times are attained on items where applying the properties of natural numbers lead to a correct answer 

on rational number tasks too (called congruent items) compared to items where applying the natural 

number properties would result in an incorrect answer (called incongruent items) (e.g., Van Hoof et al., 

2021). Furthermore, this bias (either in accuracy rates or in reaction times) arises among primary school 

children (Van Hoof et al., 2015b),secondary school students (Van Hoof et al., 2013), adults (DeWolf & 

Vosniadou, 2014; Vamvakoussi et al., 2012), and even mathematicians (Obersteiner et al., 2013). 

Besides a difference in size, natural and rational numbers also differ in terms of operations (e.g., 

Multiplication makes bigger for natural numbers but not necessarily for rational numbers), and density 

(e.g., There is always a finite number of natural numbers between two natural numbers, while there are 

infinitely many between two rational numbers; Van Dooren et al., 2015). This study focuses on size 

since research has indicated the importance for this property in young children’s development of rational 

number understanding (Van Hoof et al., 2015b). 

Theoretical frameworks 
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Two theoretical frameworks which can be seen as complementary perspectives through which 

to view this bias are frequently used to explain why individuals show a natural number bias.  

The framework theory approach to conceptual change 

This first theory starts from the assumption that learners structure knowledge and experiences 

in order to make sense of the world. These frameworks represent “a relatively coherent and principle-

based system, which is generative in that it allows children to make predictions and explanations and 

deal with unfamiliar problems” (Vamvakoussi & Vosniadou, 2010, p.185). When learners are 

confronted with new experiences or knowledge, they try to fit these new insights into the already existing 

frameworks in their minds (Vamvakoussi & Vosniadou, 2010). The process is almost effortless when 

new information is in line with the already existing framework, and new information is merely added. 

In contrast, when the new knowledge is incompatible with the frameworks that learners already built, 

the prior understanding of the learner is in conflict with the newly presented knowledge and conceptual 

change is needed, i.e. this prior knowledge needs to be revised (Merenluoto & Lehtinen, 2004; 

Vosniadou, 1994; Vosniadou et al., 2008). This is a challenging and time-consuming process since 

existing frameworks are often based on implicit assumptions of which the learner is unaware, and that 

are often given up only partially (Van Hoof et al., 2017a; Vamvakoussi & Vosniadou, 2010; Vosnadou, 

1994).  

Applied to the natural number bias, this theory assumes that learners experience difficulties with 

rational numbers because of their extensive earlier encounters with natural numbers, which are used to 

create a coherent framework with implicit ideas of how numbers behave. Due to the differences between 

natural and rational numbers, this framework may be incorrect when working with rational numbers. As 

a result, learners need to undergo conceptual change, the initial structure of their mental framework has 

to be restructured (Vamvakoussi & Vosniadou, 2010; Vosniadou et al., 2008). As learners start from a 

naïve idea of how rational numbers behave (based on natural number knowledge), and move towards 

the correct idea of how rational numbers behave it is not uncommon for them to reach intermediate 

states of understanding, where they try to combine the initial number knowledge with the correct number 

knowledge. An example of a naïve concept is thinking that longer decimals are always larger. This idea 
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is based upon natural number knowledge (e.g., Longer natural numbers are always bigger; González-

Forte et al., 2020; Van Hoof et al., 2017a; Vamvakoussi & Vosniadou, 2010; Vosnadou, 1994). 

Although most studies have attributed this error to a natural number bias, Roell et al., (2019a) found 

evidence that this error could also partially be explained by a visuospatial bias due to the interference 

between the magnitude of the numbers to be compared and their physical length. In an intermediate state 

of understanding the learner could for example show a reversed bias and think in the opposite way, that 

longer decimals are smaller (González-Forte, 2020; Van Hoof et al., 2017a; Vamvakoussi & Vosniadou, 

2010; Vosniadou, 1994).  

The dual process theory 

The framework theory to conceptual change does not explain why people do not succeed in 

certain tasks when they have internalised all the necessary knowledge and skills to complete these tasks 

successfully. Since about a decade, scholars have acknowledged the possibility that the new, correct 

knowledge and the incompatible prior knowledge may co-exist, and influence learners’ performance. 

This is where the dual process theory comes into play (Gillard et al., 2009). This theory assumes the 

existence of two types of cognitive processes: heuristic processes (which are unconscious, fast and 

automatic, also called intuitive), and analytical processes (which are slow and controlled) (Gillard et al., 

2009; Evans, 2008). Since heuristic reasoning does not always lead to a correct answer, the interference 

of analytical reasoning may be required to correctly solve a task. When this analytical reasoning is 

necessary, there are two possibilities: Firstly, analytic reasoning does not interfere and a rather quick, 

though incorrect answer in line with the heuristic reasoning will be given. Secondly, analytical reasoning 

will interfere with heuristic reasoning. The analytical processing will evaluate the correctness of the 

answer obtained by heuristic reasoning, tries to inhibit a possible incorrect answer, and attempts to 

develop a correct answer; a process being more time consuming (De Neys et al., 2010; Evans, 2008; 

Gillard et al., 2009; Van Hoof et al., 2013; Van Hoof et al., 2017c). Hence, according to the dual process 

theory, incorrect answers are generated when heuristic reasoning is not enough to generate a correct 
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answer and the interference of analytic reasoning is absent or when the interference of analytical 

reasoning is not successful (Gillard et al., 2009; Van Hoof et al., 2017c).  

The dual process theory is an overall theory of how the human mind works and can be applied 

to various mathematical topics, such as the natural number bias (Gillard et al., 2009; Houdé & Guichart, 

2001). Here, it is assumed that learners first encounter natural numbers and, therefore, knowledge on 

how natural numbers behave is first acquired and the most automatized knowledge. Researchers thus 

assume that knowledge of natural numbers is heuristic in nature. Since rational number knowledge is 

achieved at a later age, it is assumed to be less deeply acquired than natural number knowledge and thus 

based on analytical reasoning (De Neys et al., 2010; Gillard et al., 2009; Van Hoof et al., 2017c). 

Consequently, more time is needed to solve incongruent items (since natural number knowledge needs 

to be inhibited) compared to congruent items (where inhibition of natural number knowledge is not 

necessary; Van Hoof et al., 2021). Several studies have indicated that secondary school children, 

adolescents, and even experienced mathematicians indeed need more time to correctly solve incongruent 

items compared to congruent items when processing rational numbers (Obersteiner et al., 2013; 

Vamvakoussi et al., 2012; Van Hoof et al., 2013). Therefore it could be interesting to examine if 

inhibitory control has an influence on the occurrence of the natural number bias.  

Inhibition 

In tasks where natural number bias related errors are made, it is assumed that individuals use 

their knowledge of natural numbers to make sense of rational numbers (e.g., Ni & Zhou, 2005). Here, 

suppressing natural number knowledge is necessary to obtain a correct response, which in line with prior 

research described in the previous paragraph is described as heuristic in nature (Christou, 2015). Hence, 

inhibition, one’s ability to control “attention, behaviour, thoughts and/or emotions to override a strong 

internal predisposition or external lure” (Diamond, 2013, p.136), will be the focus of the study.  

Previous research has indicated that seventh graders, adolescents and adults need inhibitory 

control to correctly solve incongruent fractions and decimals (Fu et al., 2020; Roell et al., 2019b; Rossi 

et al., 2019; Van Hoof et al., 2021). However, one can assume that the necessary fraction and decimal 



INHIBITION AND RATIONAL NUMBERS 

7 

 

knowledge is already well established in adults, while this is not yet the case in primary school children. 

Moreover, given that inhibition is difficult for young children and still matures during adolescence 

(Diamond, 2014; Luna, 2009), the relationship between inhibition and rational number processing could 

be more pronounced in this younger age group compared to seventh graders and adolescents. To our 

knowledge, only two studies have investigated the relationship between inhibitory skills and the 

occurrence of the natural number bias in primary school children. First, Avgerinou and Tolmie (2020) 

investigated the association between inhibition and the natural number bias in 8- to 10-year-olds, and 

concluded that lower performance on a non-numerical Stroop task leads to longer response times when 

correctly solving incongruent items in a fraction and decimal comparison tasks, but only under 

conditions of high cognitive load. Second, Gómez et al., (2015) found that reaction times as measured 

by a numerical Stroop task predicted accuracy scores of incongruent items in a fraction comparison task.  

 However, there may be some limitations with these studies. First, both studies did not control 

for benchmarking or gap thinking. Benchmarking refers to using reference points (e.g., 1/2) to make it 

easier to compare different fractions (Obersteiner et al., 2020). Items are easier when one of the fractions 

is below 1/2 and the other one is above 1/2, for instance, or when one fraction is very close to 1 while 

the other is clearly not. Gap thinking refers to a reasoning on the difference between the numerator and 

the denominator: the difference between the numerator and denominator of each fraction is being 

compared and the fraction with the smallest difference (or gap) is seen as the largest fraction 

(Obersteiner et al., 2013). Gap thinking is a commonly used, and essentially an incorrect strategy, that 

in many cases may still lead to the correct solution (González-Forte et al., 2020). In the studies of Gómez 

et al. (2015) and Avgerinou and Tolmie (2020), the use of benchmarking and gap thinking cannot be 

excluded, and engaging in these strategies could affect the results. Therefore, it is valuable to use an 

item set that is controlled for these two approaches.  

Secondly, as far as we know both studies first investigated if the children in their sample showed 

signs of a natural number bias by only looking at the general scores of the children. By concluding that 

the overall group of children is hindered by the natural number bias, the authors used this full sample to 

investigate if scores on the natural number bias are related to inhibitory skills. However, it is possible 
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that some children show signs of a reversed natural number bias, and that this phenomenon is not seen 

when only looking at the performances of the overall group. Children who attain a better score on 

incongruent items due to their intermediate state of understanding in the conceptual change process, 

know that rational and natural numbers behave differently, but fail to really understand how rational 

numbers behave, resulting in answering in the opposite way than one would see if they had a natural 

number bias (e.g., A child thinks 4/7 is smaller than 3/4 as 4 is larger than 3 and 7 is larger than 4; 

Reinhold et al., 2020). A child with a reversed bias answers incongruent items more correctly and/or 

needs less time to correctly answer incongruent items compared to congruent items. Inhibition may here 

play a role since children need to supress their initial reasoning to correctly answer congruent items. 

It is possible that the studies of Avgerinou & Tolmie (2020), and Gómez et al., (2015) found a 

relationship between inhibitory skills and the natural number bias due to not controlling for 

benchmarking and gap thinking, or not excluding children with a reversed natural number bias. In this 

study, we tried to further examine the relationship between inhibition and the natural number bias by 

first designing an item set that controlled for the distance effect (Meert et al., 2010), benchmarking and 

gap thinking, and second by excluding children who show signs of a reversed natural number bias, in 

order to deliver stronger evidence for the relationship between inhibition and the natural number bias.  

The present study 

The first part of the study examines if the primary school children in our sample show signs of 

the natural number bias when comparing fractions or decimals. Based on previous research, we 

hypothesize that this bias will manifest itself in terms of lower accuracy rates on incongruent items 

and/or longer response times on correctly solved incongruent items compared to congruent items, both 

for fractions and for decimals (e.g., Obersteiner et al., 2013; Van Hoof et al., 2015b). This leads us to 

the first research question: Do primary school children show signs of the natural number bias in terms 

of accuracy rates and/or reaction times when comparing the size of fractions and the size of decimals? 

The second part of this study examines the role of inhibition in processing rational numbers. As argued 

before, learners may need to inhibit their heuristic knowledge (based on properties of natural numbers) 
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in order to generate a correct answer to incongruent rational number tasks (Christou et al., 2015; Gómez 

et al., 2015; Van Hoof et al., 2017c). Therefore it is interesting to investigate if inhibition plays a role in 

the occurrence of the natural number bias. This leads to the second research question: Is there a 

relationship between inhibitory skills of primary school children and the presence of the natural number 

bias? We hypothesize that children who have stronger inhibitory skills will show less traces of the 

natural number bias. 

Methods 

Participants  

A total number of 70 children (31 boys, 39 girls) coming from three schools in [blinded] 

participated in this study. Data was collected from fifth graders (Mage =10.11), who already received one 

year instruction on both decimals and fractions, since it is important that the participants have a certain 

amount of knowledge about rational numbers, and to assure that no ceiling effects on the rational number 

tasks occurred since this could distort the results. The data was collected according to the ethical 

guidelines of [Blinded], and all parents signed an informed consent.  

Procedure 

All participants engaged in a fraction comparison task, a decimal comparison task, a numerical 

Stroop task, a non-numerical Stroop task, and a reaction time test, all created in OpenSesame. The 

instruction was given to work as accurate and as fast as possible. The participants received three practice 

trials before the beginning of each task, feedback was given when the practice trials were answered 

incorrectly. For each task, half of the correct answers were presented on the left side of the screen, while 

the other half was presented on the right side. The children had to indicate the correct answer by pressing 
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‘d’ (if left was correct), or ‘k’ (if right was correct) on the keyboard. Additionally, teachers were asked 

to fill out a questionnaire about the inhibitory skills of the participating children.  

Instruments 

Rational number knowledge 

The fraction comparison task was based on previous research of Obersteiner et al., (2013), and 

had two different types of fractions: fractions with common components (fraction CC task) and without 

common components (fraction WCC task). Additionally, each of these types of fractions had both 

congruent and incongruent items. In the fraction CC task, congruent items are fractions with common 

denominators (e.g., 2/5 and 1/5); incongruent items are fractions with common numerators (e.g., 1/3 and 

1/8). In the fraction WCC task, congruent items are items where the largest fraction has also the largest 

numerator and the largest denominator (e.g., 4/9 and 3/7); incongruent items are items where the 

numerical larger fraction is the fraction with the smallest numerator and the smallest denominator (e.g., 

1/3 or 2/7). The test contained 48 items, 12 fractions in each condition. The item set was controlled for 

benchmarking to 0, 1/2, and 1 by not using fractions smaller than 0.1, fractions bigger than 0.9, and by 

using 12 fraction pairs with both fractions below 0.5 and 12 pairs with both fractions above 0.5. 

Additionally, the item set was controlled for the distance effect by assuring that the mean distance 

between the congruent and incongruent items was equal. A Mann-Whitney test indicated that the mean 

distance between congruent and incongruent items was the same for the fraction CC task (U = 43.00, p 

= 0.92) and the fraction WCC task (U = 68.00, p = .843). Moreover, the item set controlled for gap 

thinking where possible. Half of the items in the congruent condition of the fraction WCC task controlled 

for this phenomenon. It is mathematically impossible to control for gap thinking in the incongruent 

condition or in the fraction CC task. Lastly, all of the used fractions were proper and irreducible.  

The decimal comparison task contained 24 congruent (where a longer decimal is the larger 

decimal e.g., 0.218 and 0.19) and 24 incongruent items (where the longer decimal is the smaller decimal 

e.g., 0.42 or 0.392) (e.g., Van Hoof et al., 2015a)., and controlled for benchmarking at 0 and ½, in the 
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same way as in the fraction task, and for the distance effect, the mean distance between the congruent 

and incongruent items was the same (U = 275, p = 0.788).  

Inhibition 

Inhibition was measured by a numerical and non-numerical Stroop task and the BRIEF-2 (e.g., 

Bellon et al., 2016). In the numerical Stroop task, children were asked to indicate the physically biggest 

number. The task included 20 items, whereof half congruent (where the physical biggest number also 

had the biggest numerical value) and half incongruent (where the physical bigger number had the lowest 

numerical value). The physically bigger items were three times bigger compared to the physically 

smaller items.  

In the non-numerical Stroop task, children had to indicate the physically biggest animal out of 

two animals. The test contained 10 congruent items where the physical biggest animal is also the biggest 

animal in real life (e.g., The comparison of a caterpillar and a camel, when the camel is physically 

represented bigger), and 10 incongruent items where the physically biggest animal is the smallest animal 

in real life (e.g., The comparison of a rhino with a ladybug, when the ladybug was physically represented 

as the biggest animal).  

The Behaviour Rating Inventory of Executive Function-2 (or BRIEF-2) is a standardised 

questionnaire that measures the executive functions of 5 to 18 year olds. The test is divided into eight 

subareas of executive functioning of which inhibition is one (Huizinga & Smidts, 2020). For this study, 

the teachers were asked to fill out the items concerning inhibition (8 items), in which the teacher is 

confronted with different behaviours that children could pose (e.g., The child acts without thinking), and 

has to indicate to what extent the child has exposed this behaviour during the last six months, on a three 

point scale (never – sometimes – always) (Huizinga & Smidts, 2020). It can be assumed that the BRIEF-

2 and Stroop tasks capture different aspects of inhibition since they are not correlated (Bellon et al., 

2016). 

Reaction time 
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This study controlled for reaction time since it was considered as both in the dependent variables 

and in several inhibition measures, that speed of responding plays a major role. The reaction time test 

was re-used from a previous study of Bellon et al. (2016) containing 20 items in which children have to 

indicate the colored figure out of two figures.  

Data analysis 

 In order to answer our first research question a GEE (generalized Estimating of Equations) was 

used in order to take into account the possible within-subject correlations across the various items (Liang 

& Zeger, 1986). Due to its dichotomous nature, the accuracy rates were analysed by a binary logistic 

regression, whereas the continuous response times were analysed by a linear regression (e.g., Van Hoof 

et al., 2013).  

 In order to answer our second research question, correlational and multiple hierarchical linear 

regressions were conducted. First, a new variable was created as a measure of the natural number bias 

(mean accuracy incongruent items / mean accuracy congruent items) for each of the rational number 

tasks. This variable represents how many times less incongruent items are answered correctly compared 

to congruent items. To create a measure of learners’ inhibition skills, the same operation (accuracy 

incongruent/ accuracy congruent) was repeated for the Stroop tasks. Additionally, in order to include 

the reaction time data in the analyses, a new variable was created that represents how much more time 

was needed to correctly solve an incongruent item compared to a congruent item (median reaction time 

correctly solved incongruent items / median reaction time of correctly solved congruent items) for each 

rational number task (as a measure of the natural number bias) and the Stroop tasks (as a measure of 

learners’ inhibition). This leads to the following newly created variables: three natural number bias 

accuracy scores (fractions CC, fractions WCC, decimals), three natural number bias reaction time scores 

(fractions CC, fractions WCC, decimals), two inhibition accuracy scores (numerical and non-numerical 

Stroop task) and two inhibition reaction time scores (numerical and non-numerical Stroop task). It is 

important to note that the creation of these new variables may result in negative relations between 

inhibition measures and the natural number bias. For instance, a child who is hindered by the natural 

number bias in terms of accuracy and has lower inhibitory skills in terms of reaction time, would receive 
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a natural number bias accuracy score below 1 and inhibition reaction time score above 1, resulting in a 

negative relationship.  

Results 

Outliers were identified as participants who did not understand the Stroop or rational number 

tasks (e.g., Participants scoring below 50% on both conditions in a certain task), and as items with 

response times that deviated more than three standard deviations from the mean of each task and 

congruency per participant, and lastly, extremely low reaction times (below 500 ms for the rational 

number tasks and 250 ms for the Stroop tasks). Ceiling effects were found for accuracy rates on the 

Stroop tasks, in both the congruent and incongruent condition (see Table 1). Remarkably, participants 

attained a higher mean reaction time in the reaction time task compared to the Stroop tasks. The reaction 

time task was the first task for the participants, whereas the experiment always ended with two Stroop 

tasks. Since the operation (pressing ‘d’ or pressing ‘k’) was the same for all tasks, it may be that learning 

effects have occurred, which could explain this finding. 

The natural number bias 

In a first step, it was analysed whether the primary school children showed signs of the natural 

number bias (in terms of the accuracy and/or response time on a given item). In a second step – if a 

natural number bias could be found- it was investigated whether the strength of this natural number bias 

was equally large in all three rational number tasks.  

Accuracy rates 

Across all task types, analyses revealed a significant main effect of congruence, indicating that 

children answered congruent items (M = 82%, SD = .39) more accurately than incongruent items ( M = 

61%, SD =.49), χ² (1, N = 6456) = 82.70, p < .001. There was a significant main effect of task, χ² (2, N 

= 6456) = 173.71, p < .001. On average children answered 77% correctly on the decimal task, 73% in 

the fraction CC task, and 59% in the fraction WCC task. Further, a significant interaction effect between 

item and task was found, χ² (2, N = 6456) = 77.32, p <.001, the natural number bias was not equally 

strong among the three different rational number tasks. The pairwise comparison indicated that 

congruent items were answered more correctly compared to incongruent items for each of the three 
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rational number tasks (see Table 2). According to the odds ratios, the bias was the weakest in the fraction 

WCC task (OR = 1.34, 95 % CI [1.10, 1.63]), stronger in the decimal task (OR = 3.78, 95% CI [3.15, 

4.53]), and the strongest in the fraction CC task (OR = 6.36, 95% CI [4.89, 8.27]). 

Reaction times 

Next, the reaction times of the correctly answered congruent items were being compared to 

reaction times of the correctly solved incongruent items (See Table 3). Since the GEE including an 

interaction effect between congruency and task was unable to achieve convergence, a GEE including 

only a main effect of congruency was conducted for each task separately. Children did not need more 

time to correctly solve incongruent items (M = 1802.15ms, SD = 931.87) compared to congruent items 

(M = 155.96ms, SD = 840.47) in the decimal task χ² (1, N = 2470) = 1,62, p =.203. A main effect of 

congruence was found for the fraction CC task, χ² (1, N = 1159) = 5.45, p =.02, indicating that children 

had longer reaction times in order to solve the incongruent items correctly (M =3868.40ms, SD = 

3681.35) compared to the congruent items (M = 2309.07ms, SD =1432.28). Finally, a main effect of 

congruence was found for the fraction WCC task, χ² (1, N = 959) = 6.12, p <.013. Children needed more 

time to solve incongruent items (M = 4824.68ms, SD = 5040.43) correctly compared to congruent items 

(M = 4300.94ms, SD = 6129.22). According to the Cohen’s d effect size, the natural number bias was 

the strongest in the fraction CC task (d = 0.49) , and the weakest in the fraction WCC task (d = 0.09).  

Inhibition and the natural number bias 

Correlational and multiple hierarchical linear regressions were conducted in order to examine 

the relationship between inhibition and the natural number bias. Scores below or higher than three 

standard deviations of their mean score were eliminated, together with children who show a reversed 

natural number bias (i.e. scoring above 1.05 on the natural number bias accuracy score or scoring below 

.95 on the natural number bias reaction time score for each rational number task). The correlation matrix 

can be found in Table 4. Since a lot of the children showed signs of a reversed bias, it was chosen to 

work with a pairwise deletion. The number of students ranged between 35 to 64 for this analysis. The 

number of participants ranged from 22 to 61 for each linear regression (concrete numbers can be found 

in the regression tables). The different assumptions of regression were tested before conducting the 
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different linear regressions. All VIF’s were below 1.5, the assumption of homoscedasticity was not met 

for the natural number bias accuracy score on the decimal task. Consequently, these results should be 

interpretated carefully.  

Inhibition and the accuracy rates  

Multiple hierarchical regressions were conducted to investigate the relationship between 

inhibition and accuracy rates on each of the three rational number tasks. Five variables were used to 

measure inhibition: the BRIEF-2, two inhibition accuracy scores, and two inhibition reaction time 

scores. The variable that correlated the most with the corresponding depending variable was entered 

first in each analysis. Bayesian Factors were calculated for each predictor separately. Concerning the 

decimal task, the BRIEF-2 was found to be a significant predictor. Including this variable explained 

7.3% of the additional variance (p = .040) (see Table 5). The results indicated no significant relationship 

between any other measure of inhibition and the natural number bias accuracy score on the fraction tasks 

(see Table 6, and 7). 

Inhibition and reaction times  

Correlational and hierarchical regressions were conducted to further investigate the relationship 

between inhibition and the reaction time score on each rational number task. Given the young age of the 

children, we expected to find traces of the natural number bias in many children. Therefore we did not 

exclude children who performed below chance. It could be argued that children performing below 

chance-level did not understood the rational number tasks, especially given the low accuracy rates on 

the fraction WCC task. However, we have strong reasons to believe that the children did understand the 

fraction WCC task. First, we included fifth graders, who already received a year instruction on rational 

numbers, and administered only fractions containing numerators and denominators below 11. Second, 

children received three practice trails at the start of each task, and received feedback when solving the 

trials incorrectly. Third, the instruction of the fraction WCC task was identical to the instruction of the 

fraction CC task, where the accuracy rates were well above chance. Although it thus seems unlikely that 

children did not understand the fraction WCC task, it is advised to still interpret the results carefully as 

the accuracy rates were rather low. The same five inhibition measures were used as for the accuracy 
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scores. In each model, we controlled first for reaction time, followed by the variable that correlated the 

most with the corresponding depending variable. Bayesian Factors were again calculated. The results 

indicated no significant relationship between any measure of inhibition and the natural number bias 

reaction time score on any of the rational number tasks (see Table 8, 9, and 10).  

Discussion 

Our study extended previous research by controlling for the benchmarking and gap thinking, 

and by eliminating children with a reversed natural number bias. Our results confirmed that primary 

school children show signs of a natural number bias both in terms of accuracy rates and/or reaction 

times. The score on the BRIEF-2 is a significant predictor for the natural number bias accuracy score on 

the decimal task. The assumption of homoscedasticity was not met for this linear regression, thus this 

finding should be interpretated carefully. These results do not confirm the results of Fu et al. (2020), 

Roell et al. (2019b), Rossi et al. (2019), and Van Hoof et al. (2021), who found clear evidence that 7th 

graders, adolescents, and adults need to inhibit their natural number knowledge in order to correctly 

solve the incongruent fractions and decimals. The results also contradict the findings of Gómez and 

colleagues (2015), as we did not find reaction times on the numerical Stroop task predicted accuracy 

rates when comparing incongruent fractions. This could be due to many possible reasons, which we will 

discuss below. 

First, although it is necessary to eliminate children with a reversed natural number bias, this led 

to a small number of participants in some regressions. Therefore the lack of statistical power may have 

hindered findings of significant relationships, as the post hoc power analyses indicated poor statistical 

power for all regressions (see Tables 5 – 10).  

Second, the correlational approach used in this study differs from the previously used 

experimental approaches such as the negative priming paradigm Fu et al., 2020; Roell et al., 2019b; 

Rossi et al., 2019) or the strategy switch cost approach (Van Hoof et al., 2021). Moreover, different 

measures of inhibition were used.  

Third, the used inhibition tasks can explain conflicting findings. For instance: Although the 

subscales of the BRIEF-2 are reliable (Huizinga & Smidts, 2020), it is possible that subscale was too 
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limited to measure small differences in inhibition between participants (Bellon et al., 2016). Similarly, 

despite the well-established replicable experimental effects of the Stroop tasks, these tasks may be less 

suited to investigate individual differences, especially given the high accuracy rates on the Stroop tasks. 

This can be explained by the different meanings of reliability being hold by the two approaches. While 

correlational approaches are interested in between-subject variance, experimental approaches search for 

within-subject variance, thus from a correlational approach, a reliable instrument is able to rank 

individuals, whereas from an experimental approach the reliability is defined by the ability to replicate 

effects (Hedge et al., 2018). Additionally, while inhibiting the numerical value or the real-size of the 

animals is more in line with the inhibition necessary in the fraction tasks, inhibiting the physical size of 

numbers and animals is more in line with the inhibition necessary in the decimal comparison task. In 

sum, administering different inhibition tasks (e.g., different types of Stroop tasks, flanker task, go/no-

go task, stop-signal task) could lead to different results. 

Fourth, in previous research, a relationship between inhibition and the natural number bias was 

found among older children (e.g., Fu et al., 2020; Roell et al., 2019b; Rossi et al., 2019; Van Hoof et al., 

2021), while we fail to find this relationship in younger children. It could be possible that the children 

in our study are not yet aware of their primary intuitions, which explains the absence of a clear 

relationship between inhibition and the presence of the natural number bias: there are no responses being 

inhibited. A new study including a longitudinal approach could be interesting to investigate at which 

specific time point inhibition starts to play a role.  

 Fifth, the results of Avgerinou & Tolmie (2020) provided evidence that when comparing 

incongruent fractions and decimals, inhibition was only important in primary school children when high 

levels of cognitive demand were placed on the learner. The possible lack of cognitive demand in our 

task could explain the absence of a correlation between inhibition and the natural number bias.  

 Lastly, it might be that the relationship between inhibition and the presence of the natural 

number bias can only be observed by children with an atypical development of inhibition (e.g. ADHD 

or dyscalculia; Bellon et al., 2016). For instance, Van Hoof et al. (2017b) suggest that learners with 

dyscalculia performed lower on rational number tasks compared to their peers. Moreover, this difference 
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in performance was larger on tasks where inhibiting rational number knowledge was necessary to 

generate a correct answer. A new study could compare if the strength of the relationship between 

inhibition and the natural number bias is the same for typically developing school children and children 

with an atypical development of inhibition.  
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Table 1 

Mean Accuracies and Reaction Times per Task 

Task Congruency Accuracy  Response time (ms) 
  M SD M SD 
Decimals  .77 .423 1542.11   894.839 
 Congruent .88 .330 1526.41   845.675 

Incongruent .66 .475 1557.74   933.117 
Fraction CC  .73 .446 2727.12 2672.996 
 Congruent .89 .310 2307.80 1494.373 

Incongruent .56 .496 3142.24 3416.087 
Fraction WCC  .59 .493 4064.64 5002.800 
 Congruent .62 .485 4230.49 5516.803 

Incongruent .55 .498 3898.99 4427.536 
Numerical 
Stroop 

  
.95 

 
.213 

 
747.51 

 
  602.380 

 Congruent .97 .177 716.86   531.338 
Incongruent .94 .244 778.30   665.130 

Non-numerical 
Stroop 

  
.97 

 
.157 

 
678.01 

 
  408.753 

 Congruent .98 .138 639.04   320.613 
Incongruent .97 .174 716.87   477.906 

Reaction time  .92 .275 864.96   780.419 
 

Table 2 

Pairwise Comparison per Congruency Grouped by Task 

      95% Wald CI for diff. 
(I) task* 
congruency 

(J) task*item Mean difference 
(I-J) 

SD df Sig. Under Upper 

Decimal*CO Decimal*IC .34 .041 1 <.001 .26 .42 
Frac CC*CO Frac CC*IC .43 .040 1 <.001 .36 .51 
Frac WCC*CO Frac WCC*IC .26 .050 1 <.001 .16 .35 

Note. Frac = Fractions 
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Table 3 

Mean Reaction Times Correctly Solved Items  

Task Item M (in ms) SD 
Decimals  1661.81   889.142 
 Congruent 1555.96   840.467 
 Incongruent 1802.15   931.871 
Fractions CC  2838.03 2637.902 
 Congruent 2309.07 1432.283 
 Incongruent 3868.40 3681.347 
Fractions WCC  4546.15 5648.833 
 Congruent 4300.94 6129.216 
 Incongruent 4824.68 5040.433 
Numerical Stroop    726.75   527.847 
 Congruent   708.20   494.140 
 Incongruent   746.00   560.429 
Non-numerical Stroop    671.89   401.578 
 Congruent   638.13   317.831 
 Incongruent   705.95   469.043 
Reaction time    819.41   607.618 
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Table 4  

Correlation Matrix Inhibition and the Natural Number Bias 

 1. 2. 3. 4. 5. 5. 7. 8. 9. 10. 11. 12. 
1. Reaction time -            
2. Non-numerical Stroop (acc) -.004 -           
3. Non-numerical Stroop (RT) -.051 .038 -          
4. Numerical Stroop (acc) -.116 -.171 .018 -         
5. Numerical Stroop (RT) .347 -.102 .279* .091 -        
6. BRIEF-2 .088 .094 .060 .178 -.025 -       
7. Decimals (acc) .417** -.008 -.129 .111 .226 .143 -      
8. Fractions CC (acc) -.123 .082 -.119 .125 -.014 -.102 .080 -     
9. Fractions WCC (acc) -.305* .180 -.130 -.236 -.171 -.014 .030 .585** -    
10. Decimals (RT) -.349* -.211 -.204 .195 -.006 -.002 -.186 -.102 .251 -   
11. Fractions CC (RT) .021 -.276 .090 .138 .134 -.281* -.013 .001 -.143 .163 -  
12. Fractions WCC (RT) .229 .189 -.036 -.111 -.084 -.163 -.019 -.133 -.162 -.211 .197 - 

Note. acc = accuracy, RT = reaction time, **correlation is significant at the at the 0.01 level (2-tailed), *correlation is significant at the 0.05 level (2-tailed). 
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Table 5 

Inhibition and Accuracy Rates on the Decimal Task (n = 58, power = .69) 

     Change Statistics  
 R R Square Adjusted R 

Square 
Std. Error of 
the Estimate 

R Square Change F Change df1 df2 Sig. F Change BF10 

BRIEF-2 .271 .073 .057 .43718 .073 4.434 1 56 .040 0.617 
Numerical Stroop (acc) .316 .100 .067 .43475 .027 1.629 1 55 .207 0.636 
Numerical Stroop (RT) .380 .144 .097 .42778 .044 2.805 1 54 .100 0.782 
Non-numerical Stroop (RT) .394 .155 .092 .42906 .011 .679 1 53 .414 0.554 
Non-numerical Stroop (acc) .403 .163 .082 .43129 .007 .454 1 52 .504 0.553 

Note. acc = accuracy, RT = reaction time.Table 6 

Inhibition and Accuracy Rates on the Fraction CC Task (n = 32, power = .35) 

     Change Statistics  
 R R Square Adjusted R 

Square 
Std. Error of 
the Estimate 

R Square Change F Change df1 df2 Sig. F Change BF10 

BRIEF-2 .311 .097 .066 .33944 .097 3.206 1 30 .083 0.905 
Numerical Stroop (acc) .355 .126 .065 .33961 .029 .097 1 29 .333 0.543 
Non-numerical Stroop (RT) .371 .126 .065 .33961 .012 .380 1 28 .543 0.566 
Numerical Stroop (RT) .376 .142 .014 .34876 .004 .130 1 27 .721 0.561 
Numerical Stroop (acc) .392 .154 -.009 .35288 .012 .373 1 26 .547 0.659 

Note. acc = accuracy, RT = reaction time. 
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Table 7 

Inhibition and Accuracy Rates on the Fraction WCC Task (n = 61, power = . 46) 

     Change Statistics  
 R R Square Adjusted R 

Square 
Std. Error of 
the Estimate 

R Square Change F Change df1 df2 Sig. F Change BF10 

Numerical Stroop (acc) .236 .056 .40 1.77483 .56 3.485 1 59 .067 0.883 
Non-numerical Stroop (acc) .275 .076 .44 1.77101 .20 1.255 1 58 .267 0.565 
Numerical Stroop (RT) .308 .095 .47 1.76796 .19 1.200 1 57 .278 0.610 
Non-Numerical Stroop (RT) .323 .104 .40 1.77441 .009 .586 1 56 .447 0.566 
BRIEF-2 .323 .104 .23 1.79032 .000 .009 1 55 .926 0.486 

Note. acc = accuracy, RT = reaction time. 

Table 8  

Inhibition and Reaction Times on the Decimal Task (n =39, power = .38) 

     Change Statistics  
 R R Square Adjusted 

R Square 
Std. Error of 
the Estimate 

R Square Change F Change df1 df2 Sig. F Change BF10 

Reaction time .179 .032 .006 .30019 .032 1.224 1 37 .276 0.512 
Non-numerical Stroop (RT) .293 .086 .035 .29571 .054 2.129 1 36 .153 1.210 
Numerical Stroop (acc) .344 .118 .042 .29461 .032 1.269 1 35 .268 0.656 
BRIEF-2 .345 .119 .015 .29876 .001 .036 1 34 .850 0.522 
Non-numerical Stroop (acc) .361 .130 -.001 .30128 .011 .432 1 33 .516 0.366 
Numerical Stroop (RT) .386 .149 -.011 .30265 .019 .702 1 32 .408 0.691 

Note. RT = reaction time, acc = accuracy. 
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Table 9 

Inhibition and Reaction Times on the Fraction CC Task (n = 22, power = .29) 

     Change Statistics  
 R R Square Adjusted 

R Square 
Std. Error of 
the Estimate 

R Square Change F Change df1 df2 Sig. F Change BF10 

Reaction time .066 .004 -.045 1.47376 .004 .088 1 20 .769 0.397 
Non-numerical Stroop (acc) .305 .093 -.003 1.44324 .089 1.855 1 19 .189 1.022 
BRIEF-2 .402 .162 .022 1.42554 .069 1.475 1 18 .240 0.774 
Non-numerical Stroop (RT) .469 .220 .037 1.41475 .059 1.275 1 17 .274 1.180 
Numerical Stroop (RT) .470 .221 -.022 1.45717 .001 .025 1 16 .877 0.616 
Numerical Stroop (acc) .471 .222 -.090 1.50477 .000 .004 1 15 .952 0.718 

Note. acc = accuracy, RT = reaction time. 

Table 10 

Inhibition and Reaction Times on the Fraction WCC Task (n = 47, power = . 50) 

     Change Statistics  
 R R 

Square 
Adjusted 
R Square 

Std. Error of 
the Estimate 

R Square Change F Change df1 df2 Sig. F Change BF10 

Reaction time .229 .052 .031 .50503 .052 2.482 1 45 .122 0.786 
Non-numerical Stroop (acc) .297 .088 .047 .50093 .036 1.738 1 44 .194 0.704 
BRIEF-2 .360 .130 .069 .49512 .041 2.040 1 43 .160 0.881 
Numerical Stroop (acc) .360 .130 .047 .50095 .000 .005 1 42 .943 0.470 
Numerical Stroop (RT) .396 .157 .054 .49900 .027 1.328 1 41 .256 0.698 
Non-numerical Stroop (RT) .398 .158 .032 .50478 .001 .066 1 40 .798 0.576 

Note. acc = accuracy, RT = reaction time.
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