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Abstract

Arc proton therapy (ArcPT) is a new modality in cancer treatments. It delivers the proton beams

following a sequence of irradiation angles while the gantry is continuously rotating around the patient.

Compared to conventional proton treatments (intensity modulated proton therapy, IMPT), the num-

ber of beams is significantly increased bringing new degrees of freedom that leads to potentially better

cancer care. However, the optimization of such treatment plans becomes more complex and several

alternative statements of the problem can be considered and compared in order to solve the ArcPT

problem. Three such problem statements, distinct in their mathematical formulation and properties,

are investigated and applied to solving the ArcPT optimization problem. They make use of (i) fast

iterative shrinkage-thresholding algorithm (FISTA), (ii) local search (LS) and (iii) mixed-integer pro-

gramming (MIP). The treatment plans obtained with those methods are compared among them, but

also with IMPT and an existing state-of-the-art method: Spot-Scanning Proton Arc (SPArc). MIP

stands out at low scale problems both in terms of dose quality and time delivery efficiency. FISTA

shows high dose quality but experiences difficulty to optimize the energy sequence while LS is mostly

the antagonist. This detailed study describes independent approaches to solve the ArcPT problem

and depending on the clinical case, one should be cautiously picked rather than the other. This paper

gives the first formal definition of the problem at stake, as well as a first reference benchmark. Finally,

empirical conclusions are drawn, based on realistic assumptions.
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therapy, Oncology

1. Introduction

At this time, arc proton therapy (ArcPT) has not yet any commercial available software solution

to optimize treatment plans. Moreover, due to the increased degrees of freedom and complexity

of optimization along the arc trajectory, generating an ArcPT treatment plan efficiently is one of the

hindrances for a future clinical implementation. A treatment plan normally includes all parameters that

allow the calculation of radiation dose to be delivered to the patient. A prototype of the ArcPT delivery

machine, built by the IBA company, exists and is being studied at the Beaumont clinic in the United

States [17] (Fig. 2). The finalized product is still under development by IBA. In this study we have

developed and investigated three optimization techniques, namely, fast iterative shrinkage-thresholding

algorithm (FISTA), local search (LS), and mixed-integer programming (MIP). We compared them with

the existing state-of-the-art iterative SPArc optimization framework [8].

Constributions. The main contributions of this work are: (i) We introduce the first reference bench-

marks for this problem, generated through several processing steps performed on a realistic medical

image set. The benchmarks are accessible from Open Source Dataverse [33] and can be used freely for

testing. (ii) Three new optimization algorithms to generate ArcPT treatments plans are proposed.

(iii) Whereas most existing studies showcase a single plan optimization method in several different

disease sites, this is the first comprehensive and quantitative comparison across several existing and

new ArcPT optimization techniques.

2. Background, challenge and related work

Background. Radiotherapy (RT) treats cancer with ionizing radiation, mostly x-ray photons. However,

protons offer unique physical properties by stopping in the tumor and releasing most of their energy at

the end of their track, known as the Bragg Peak [32]. The interest in proton therapy (PT) delivery has

therefore increased. This modality has a clinical potential over RT because radiation dose deposited

beyond the tumor can be avoided while at the same time the proximal dose remains low, thereby

reducing the radiation toxicity in healthy tissues. Nowadays, state-of-the-art PT treatments are de-

livered through intensity modulated proton therapy (IMPT) using pencil beam scanning (PBS)[12].

Typically made up of 2 to 4 fixed-angle beams, as illustrated in Fig. 1 (left), IMPT delivers each beam
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with multiple smaller intensity modulated beams [22], called spots, each reaching a specific location

of the target. Moreover, to irradiate the target in depth, multiple energy layers per beam angle (also

referred to as incidence angle or irradiation angle) are needed. Therefore, an IMPT treatment is de-

livered spot-by-spot within a same energy layer, layer-by-layer within a beam, and then beam-by-beam.

ArcPT builds on top of IMPT in the sense that, instead of delivering the treatment with a few

fixed-angle beams, it uses a gantry that rotates continuously around the patient with a variable speed

and delivers the treatment following a predefined discrete series of irradiation angles, called the angular

control points. An arc is hence defined by a start, stop, and step angles and by specifying the gantry

rotation direction. This is depicted in Fig. 3. ArcPT is expected to increase treatment conformity

and robustness [28] and to achieve better clinical goals in terms of tumor coverage and organs at risk

sparing [27].

Challenge. When the number of beam angles is increased (e.g. from to 3 to 46) to form an arc and

the amount of energy layers in each beam of the arc is kept as numerous as in the IMPT treatment

(Fig. 1, left), usually in the order of tens, a so-called arc multi-field plan is obtained (Fig. 1, center).

Unfortunately, this high number of beams (and energy layers) results in a significant increase in the

complexity of the optimization problem, computationally demanding in time and memory. Moreover,

although conducting to potentially better treatments, the plan obtained on Fig. 1 (center) would,

above all, not be delivered in practice due to the huge delivery time required to deliver each set of

energy layers in each beam which affects the patient’s comfort and directly relates to the number of

patients that can be treated in a day. Indeed, the PT system spends a large part of the delivery time

to switch the energy between layers, namely, the energy layer switching time (ELST). Therefore, the

challenge of ArcPT plan optimization lies in selecting as few energy layers as possible, ideally only

one for each beam direction to reduce the ELST and obtain deliverable ArcPT plans (Fig. 1, right).

Moreover, due to the magnetic hysteresis effect, the PT device takes more time to increase the energy

than decreasing it, which means that the energy switch-downs should be favored over the switch-ups,

to further reduce the ELST. The key to obtain such sparsity in energy is thus the selection and the

sequence of the energy layers while keeping sight of the dosimetric objectives to get a fully-optimized

treatment plan.

State-of-the-art. Today, only a few research groups have investigated this research topic and published

methods of optimizing ArcPT plans. For instance, RaySearch (RaySearch Laboratories AB, Stock-
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holm, Sweden), has recently published a proof-of-concept method of energy layer and spot selection,

coined ELSA (Early Layer and Spot Assignment), prior to spot weight optimization [9].They were able

to produce high-quality ArcPT plans in a fast optimization process at the cost of losing degrees of

freedom in the solution space, caused by these well-separated steps for ELSA and spot weight opti-

mization. Furthermore, an oncology group from UCLA has published some results on a parsimonious

algorithm named ELO-SPAT [10], minimizing an objective function made of several terms. The terms

control the selection and sequence of the energy layers, therefore including a delivery time criterion.

However, they resort to a non-convex term that can degrade the algorithm performances. Additionally,

a group from Beaumont clinic in the US, developed the Spot-Scanning Proton Arc (SPArc) algorithm

[8][18], an iterative greedy approach based on robust optimization (what-if analysis). At the moment,

this is the most popular and practical method for its simplicity and efficiency. It has been applied to

various disease sites and has shown remarkable results [21][4][6][20][7][16]. The major drawback in the

SPArc is the greediness of its iterative approach, with an optimization process that can spend much

time in refining a solution that might eventually prove to be suboptimal in terms of plan quality. In

this paper, three new algorithms that can tackle the ArcPT challenges are presented and compared

with each other, as well as with existing state-of-the-art methods, in terms of plan quality, energy layer

sparsity, delivery efficiency and, lastly, optimization and dose calculation speed.

3. Proposed Benchmark

This section describes the different steps that were performed to generate the ArcPT treatment

plans based on a primary image set acquired with Computed Tomography (CT). For this study,

a public, open-access, computed tomography (CT) phantom image set collected at MAASTRO

Clinic (Maastricht, NL)[11] in DICOM format was elected. In the field of medical imaging, a

phantom is a specially designed object or synthetic image created to experimentally evaluate and

tune the treatment or imaging workflow. Here, the phantom simulates the abdomen of a small

adult.

Generalities about proton therapy Treatment Planning. The design of plans follows a well estab-

lished procedure made up of three typical stages applicable to all PBS-based PT treatments. They

are illustrated in Fig. 4 and described hereafter:

(1) Spot placement. This first stage determines, for each beam angle chosen beforehand, a
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list of energy layers (EL) to cover the target in depth (the higher the proton energy the

deeper they penetrate in the target). Then for each EL, a grid of irradiation points (namely

spots) is generated. At this step, the plan is thus already defined by the list of spots, with

their x and y positions, their energy, and angular incidence.

(2) Beamlet calculation. The patient geometry is discretized in small three dimensional

volume elements called voxels. With a particular spot (i.e., within a specific energy layer) is

associated a so-called beamlet. As depicted in Fig. 4, a beamlet describes how the irradiation

(elementary dose) from the spot is distributed inside the patient, that is, over the voxels.

These beamlets are obtained by simulating the underlying proton physics, using a dose

calculation algorithm based on a Monte Carlo engine, MCsquare, developed in-house [31].

This type of algorithm is valued for its accuracy although it can be slow.

(3) Spot weight optimization. This is the core of this work, the spot weights (also referred to

as spot intensities) optimization for ArcPT modality. The total dose delivered to the patient

can be computed as the sum of all beamlets weighted by the intensity of the corresponding

spots (See Section 4 Eq. 2). Therefore, we only need to optimize the weights of these

spots so that the total dose map meets the clinical objectives and constraints. Compared to

conventional IMPT plans, new degrees of freedom (the numerous angular positions) and new

constraints (treatment delivery time) arise and make the ArcPT optimization problem more

complex. New plan optimization methods to determine ArcPT spot weight are implemented

in OpenTPS, an in-house treatment planning system (TPS).

ArcPT benchmark. In our test sets, the beam angles chosen in step (1) were sampled along a

quarter of arc (90°) set with a start angle (90°), stop angle (0°), and a patient couch angle (0°),

yielding a counter-clock wise gantry rotation. We decided to produce arc plans with 5 different

step angles 1°, 2°, 3°, 5°, and 10°, yielding plans with 91, 46, 31, 19, and 10 beams, respectively.

The spot placement was then performed for each beam direction [26] by generating multiple

hexagonal grids stacked in depth to fully cover the 3D target volume with spots separated by

a pre-defined layer spacing and spot spacing. Prior to computing the adequate spot intensities

(i.e., solving the optimization problem), the beamlets were calculated (step (2)) based on the spot

placement using the MCsquare dose engine [31]. Benchmarks of different sizes and accuracy were
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eventually obtained by computing these beamlets under 5 different image resolutions (from 1 to

5mm) using a resampling operation of the DICOM files. A summary of the benchmarks with the

time and memory allocated to produce the beamlet files is reported in Table 1. All the datasets

we produced are publicly available from Open Source Dataverse [33].

4. Notations and Problem Definition

4.1. Notations

We can now introduce notations that will be useful within our optimization framework. In this

paper, the notation used by Gu et al. [10] has been slightly modified for the sake of clarity and ease of

reading.

• B is the sequence of beams forming an arc, defining the angular control points of the gantry and

spaced by a pre-defined step angle; the sequence is ordered by irradiation angle, following the

gantry rotation;

• Eb is the sequence of candidate energy layers for beam b ∈ B, ordered by descending energy

value;

• S is the set of all the spots defined in the plan;

• Se is the set of candidate spots for layer e ∈ E;

• V = T ∪R are the sets of target (T ) and OAR (R) voxels defined in the patient geometry;

• A is the beamlet matrix, containing |S|× |V | elementary dose values (where | · | is the cardinality

operator);

• x is the column vector of spot weights, containing |S| values.

Therefore, the dose map is computed formally as:

d = Ax =
∑
j∈S

Aj xj , (1)

di =
∑
j∈S

Aij xj , Aij ≥ 0 , (2)
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where d ∈ R≥0
|V | is the vectorized dose and di is the elementary dose delivered to voxel i. Eq. 1

encodes the physics of the treatment, i.e., the description of the dose contribution for each spot, as a

linear combination of the beamlets A (input data) and the spot intensities x (decision variables).

For practical reasons, we will mostly use a grouped version of x where each vector component

represents the spot intensities within beam b, xb. The latter is itself a vector where each component

represents the spot weights within beam b and layer e, xe. We also use a compact representation of

x and xb, y and yb that are vectors with each element representing the sum of weights in each beam

and each layer, respectively:

x =


xb

...

xb′

 , xb =


xe

...

xe′

 , y =


yb

...

yb′

 , yb =


ye
...

ye′

 , ye =
∑
j∈Se

xj , (3)

where b, b′ ∈ B and e, e′ ∈ Eb and eq. 3 can be written as a matrix multiplication in a more compact

way:

y = Wx

with W , the summation matrix along the spot dimension.

4.2. Problem statement, constraints, and evaluation

The problem faced by the physicists in ArcPT treatment planning can be ideally formulated by

Program (4-8). The solution is a vector of spot weights x that minimizes the beam delivery time

BDT(x) subject to medical constraints, i.e. target volumes (TV) coverage and organs at risk (OAR)

sparing with minimal, maximal and/or mean prescription and dose limits respectively,

min
x

BDT(x) (4)

s.t. ∀k ∈ TV, ∀i ∈ Tk : pminTk
≤ di ≤ pmaxTk

(5)

∀k ∈ OAR, ∀i ∈ Rk : di ≤ pmaxRk
(6)

∀k ∈ OAR :
1

|Rk|
∑
i∈Rk

di ≤ pmaxmeanRk
(7)

x ∈ RS
≥0 (8)
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with |Tk| and |Rk|, the total number of voxels associated with TV k and OAR k and pmaxRk
stating

a maximal irradiation for any voxel i in a given OAR k, for example the maximal dose in the spinal

cord must not exceed 45 Gy [15].

However, plan optimization methods in the current literature fail at strictly considering clinical

constraints (5)-(7), leading to OARs being irradiated over the acceptable maximal (resp. average)

dose constraint (6) (resp. constraint (7)) if, for example, they are in direct contact with the tumor.

Instead, existing methods, usually based on gradient-descent (continuous) optimization, approximate

them with soft constraints f(d) that penalize an overall (alternative) objective function:

min
x

BDT(x) + f(d) (9)

s.t. d = Ax (10)

x ∈ R|S|
≥0 , (11)

where f(d) is a penalty function evaluating the quality of the simulated treatment dose w.r.t. con-

straints (5)-(7), formulated as a weighted sum of multiple clinical goals depending on the priorities of

the regions of interests (ROI, composed of both TVs and OAR volumes):

f(d) =
∑

k∈ROI

wkfk(d) . (12)

Depending on the clinical objective, fk(d) is typically formulated as a squared l2-norm of the difference

between the dose Ax and prescription p. In practice, multiple clinical goals are encoded using weighted

soft objectives to constrain the minimum, maximum, or mean doses. This way two slightly offset one-

sided quadratic functions can be used to constraint the dose within a band to which we can give either

low or large importance weight. The total cost function can then explicitly written as:

f(d) =
∑
k

wk

|Tk|
∑

i in Tk

min(0, di − pmaxTk
)2 (13)

+
∑
k

wk

|Tk|
∑

i in Tk

max(0, di − pminTk
)2 (14)

+
∑
k

wkmax(0,
1

|Rk|
∑

i in Rk

di − pmaxmeannRk
)2 (15)

+ ... (16)
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Program (9-11) now properly describes the ArcPT problem and shows a real trade-off between

the smooth part dealing with the clinical goals f(d) and the non-smooth part minimizing the beam

delivery time BDT(x). Because a real delivery time model will be certainly not convex and hardly

differentiable, we choose to optimize the energy sequence in the absence of a better model of the

BDT. Indeed, the BDT is predominantly driven by the energy layer switching time (ELST) in ArcPT

therefore we use the ELST as a surrogate to the BDT in our optimization problem. In order to simplify

the model, we assume that it takes 5.5 seconds to switch the energy up versus 0.6 seconds to switch

it down [19]. In this study, we thus assume the ELST to be the sum of all individual switching times

between the active energy layers (layers with non-null spot weights) at each angular control point along

the arc.

Evaluation. To assess a plan and score its quality, the physicists compute dose-volume histograms

(DVH) and the associated DVH metrics for both TVs and OARs. A DVH (see for example Fig. 10)

shows a decumulative distribution of dose within some given ROI. A point on the curve represents the

percentage of the considered ROI that receives a dose less than or equal to the dose value corresponding.

As we want to irradiate the tumor volume, the ideal curve is a step from 100% to 0% at the prescribed

dose to avoid under- and over-dosage. On the other hand, we want to spare healthy organs. This

translates as a ideal step from 100% to 0% at null dose. Obviously, in practice, actual DVH curves

generally look like smoothed steps. In addition to DVH curves, DVH metrics further summarize the

dose map information into a few scalar indicator. For instance, D95 represents the minimal dose

received by at least 95% of the considered volume (usually a target volume).

5. State-of-the-art methods

5.1. SPArc

Developed by Ding et al. [8], SPArc is a greedy heuristic planning optimization algorithm that uses

two nested iterative loops to optimize the dose distribution while increasing the number of control

points to make it denser until a desired arc delivery sampling frequency is obtained. It starts with

a sparse arc, i.e., with very few irradiating directions. Subsequently, the nested loop optimization

algorithm can start. The spot weights are optimized for the current beam-layer configuration. Four

steps follow:

1. Control point resampling: each beam is split into two or more new irradiation directions
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2. Energy layer redistribution between the new sub-control points

3. Energy layer filtration to get rid of low weighting energy layers

At each iteration of optimization, steps (1) to (3) are carried out until the angle sampling frequency

reaches the user-defined parameter. At this stage, SPArc ensures acceptable delivery time by design-

ing plans with 1 to 3 active layers per control point. However, the energy switching pattern is still

arbitrary. SPArc has therefore been improved [18] to re-distribute the energy layers in a more efficient

way, namely, in descending order to mitigate the impact from energy-switch upward on the delivery

time.

Because of its simplicity and proven potential in several studies [4][6][20][16] this algorithm is

appreciated in the community. However, its heuristic and greedy character makes it less efficient in

the treatment plan optimization process. Additionally, the spot weights and the energy sequence are

not optimized jointly but as separate steps and this may result in sub-optimal delivery efficiency and

plan quality. Finally, improvement of plan quality or delivery efficiency of the final treatment plan

may require a reset of the initial sampling process.

5.2. ELO-SPAT

Gu et al. developed the algorithm ELO-SPAT [10]. It solves the optimization problem by including a

regularization strategy, to address the ArcPT non-smooth problem stated in Eq. 9-11. In particular, it

uses the proximal gradient method (PGM)[1], a popular technique to solve non-smooth optimization

problems for image reconstruction. However, traditional PGM methods tend to be quite slow on

convergence, so an accelerated proximal gradient scheme is implemented in the computation. The

algorithm chosen is the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [2]. The ELO-

SPAT framework is formulated with an objective function made of several terms to meet all ArcPT

constraints. Based on notations introduced in Section 4, Eq. 17 gives an intuition on the ELO-SPAT

objective function:

argmin
x

∥Ax− p∥2 +
∑
b∈B

∑
e∈Eb

αe ∥xe∥1/22 − β
∑
b∈B

log

(∑
e∈Eb

ye

)
+ γ

∑
b∈B

h(ỹb)

s.t. x ≥ 0,y = Wx (17)
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The first term, namely, the dose fidelity term, encodes the objectives of the treatment. It is a

soft-constraint version of constraints (5)-(7), where the OAR volumes are naturally constrained with

a zero dose. It implicitly contains a weighted sum of several objectives (Eq. 12), each being a squared

l2-norm between the prescription to tumor (and dose limits to OARs) and voxels of the total dose

distribution estimate. The second term is a group sparsity regularization defined by a non-convex

l2,1/2-norm that induces a sparsity at the level of the energy layers, i.e. to obtain as few energy layers

per beam as possible resulting in a reduced ELST. This term is weighted by the hyperparameter αe

and is responsible to turn off non-interesting layers (low weight in layer). The third term represented

by a log barrier behaves as a counter-acting term to the sparsity term in order to distribute the selected

layers across the whole gantry rotating range, a heuristic for obtaining better arc-shaped treatments.

Finally, in the fourth term, a regularization function is used to sequence the energies, in a way that

tends to minimize the delivery time (Eq. 4). This function asymmetrically penalizes energy switching

low-to-high harder than high-to-low, using a one-sided quadratic cost function h that acts on the

energy differences between adjacent beams where the layer with the maximal spot intensity ỹb has

been selected beforehand. In terms of workflow, the algorithm starts from all possible EL’s candidates,

select as few as possible and then encourage energy switch from high to low.

This algorithm raised a lot of attention because it is written in a very well defined mathematical

framework. ELO-SPAT converges towards the global or local minimum (due to non-convex term) faster

compared to SPArc from a mathematical point of view. However, there is still room for improvement,

in particular, in the formulation of some objectives. Firstly using a non-convex group sparsity term

together with FISTA is not proper given that FISTA has been designed to work with convex objective

functions. Next, the log barrier is a really strong term for the intended goal since it uses a continuous

approximation of a penalty that should be null on a large domain. The penalty starts to increase too

early and might shift the optimum where this is not necessary. Finally, for the last term, they use

specially designed discrete gradient operators that need to be updated after every iteration which is

again not ideal for FISTA convex optimization. We worked to improve the formulation of the ArcPT

cost function based on ELO-SPAT.

6. Proposed plan optimization methods

In this section, we present three new, fundamentally different plan optimization methods. One is an

improved variant of ELO-SPAT, thus based on gradient descent. The second method is a local search
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approach, based on simple neighborhood operators and a Simulated Annealing meta-heuristic. The

third method is a Mixed-Integer Programming formulation. As discussed later in Section 9, these three

methods come with significantly different mathematical properties in terms of optimality, treatment

guarantees, and computational effort.

6.1. FISTArcPT

FISTArcPT (eq. 18) is a modified version of the ELO-SPAT objective function formulation:

argmin
x

f(d) + λ
∑
b∈B

∑
e∈Eb

αe ∥xe∥12 +
∑
b∈B

IbC(x) + γ
∑
b∈B−

LeakyReLU(DB
b LSE(zb · tanh(a · yb)) ,

s.t. x ≥ 0,y = Wx , (18)

where B− represents the set B of beams, without the last beam of the sequence B. Each term of

Eq. 18 is described by order of appearance, from left to right, below in details.

1. Dose fidelity

The dose fidelity term f(d) packs multiple objectives into a sum of weighted soft objectives as

described in Eq. 14-16. This term is the core of the treatment plan optimization and occurs in

any RT or PT problem formulation.

2. Group sparsity

For the second term of Eq. 18, we use the group LASSO [30], that is, the sum of squares

of coefficients belonging to the same group and, in this case, the weights belonging to the same

energy layer. It is embodied in a weighted l2,1-norm, contrasting with the non-convex l2,1/2-norm

used in the original ELO-SPAT method. The main reason is that the l2,1 is convex (Fig. 5), which

fulfills the requirements of the FISTA algorithm. Moreover, the proximal operator is simpler to

implement and still efficient for our purpose, the deactivation of layers. The inner l2-norm of

∥xe∥12 enforces selection of all the weights within an energy layer while the outer l1-norm promotes

sparsity in the number of selected energy layers. It is controlled by two parameters, namely, the

constant λ set at the beginning of the optimization and αe that is updated every ten iterations

and defined as:

αe =


1
ye

= 1∑
j∈Se

xj
if ye ≥ 0,

1 otherwise

. (19)
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With proper tuning of λ, this term selects fewer layers out of all candidate layers.

3. Indicator function

The group sparsity term, if used solely, can result in a solution with some beams having multiple

layers activated and some with none, which reduces the arc geometry benefits. To counteract

this effect, we implemented an indicator function IC defined in Eq. 20, as an alternative to the

log barrier in ELO-SPAT:

IC(x) =


0 if x ∈ C,

∞ if x /∈ C

, (20)

where the admissible domain C is defined as

C = {ye :
∑
e∈Eb

ye ≥ ϵ} .

In practice, the function operates if the sum of weights in a beam is less than the tunable thresh-

old, ϵ. If so, it projects the weights of active layers belonging to the beam under consideration

such that the sum of weights in these layers is exactly ϵ. If no layer is active in the beam, it

projects directly the weights of the layer with the minimal gradient on ϵ. This is a smooth way

to ensure that no zero intensity beam remains and that a certain homogeneity in the arc is kept.

By combining the group sparsity term with the indicator function, on average one layer per beam

is selected. However, the energy sequence is not yet optimized.

4. Energy sequencing

To encourage energy switches from high to low and, therefore, to minimize the treatment delivery

time, we devised a differentiable regularization term controlled by the weighting parameter γ. A

hyperbolic tangent is first used to map the sum of intensities of each layer between 0 and 1 with

a a scaling factor tuned for that purpose. Next, this vector is multiplied element-wise by zb, the

vector of energies corresponding to each layer. A log-sum-exp operator is then used as a soft

maximum to select the most eligible energy layer in each beam. After this, a discrete gradient

operator DB
b is applied to each beam. For example, DB

b yb = yb+1 − yb, i.e., the vector of the

intensity difference between the two beams considered. Finally a leaky ReLU function is used to
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asymmetrically penalize the energy switching pattern in the following way:

f(x) =


0.01x if x < 0 (switch-down)

x else (switch-up).

. (21)

Optimizer. The cost function is non-differentiable due to l2,1-norm and indicator function. For this

reason, we decided to use the FISTA optimizer, as in the original ELO-SPAT method, which converges

at an optimal rate of O(1/k2)[2]. The FISTA optimizer engine was implemented in OpenTPS with

the Python package PyUNLocBoX [5] that is based on the original FISTA algorithm [2]. The pseudo

code of FISTArcPT is described in Algorithm 1 and mainly consists in the forward step performing the

gradient descent (dose fidelity and energy sequencing) followed by the backward step achieved through

the proximal operator of the non smooth part of the objective function, i.e., the group sparsity term.

Algorithm 1 Pseudo code for FISTArcPT algorithm

1: Input: Initial weights x0, step α ≥ 0, λ, ϵ, γ
2: for i = 1 to N do
3: xk = update sol(xk) // FISTA acceleration
4: α = update step(xk) // Backtracking
5: xk+1 ← xk − α · ∇f(xk) // Forward step
6: xk+1 ← I≥0(xk+1) // Positive projection
7: xk+1 ← proxλ∥x∥1

2
(xk+1) // Backward step

8: xk+1 ← IC(xk+1) // Indicator II step
9: end for

Convexity. As mentioned in Subsection 5.2, FISTA has been developed to solve convex optimization

problems. By analyzing each term of the FISTArcPT problem statement (Eq. 18), we can check the

convexity of our objective function. Firstly, the fidelity term involves soft objectives in the form of

half-quadratics that are convex functions. By definition, the sum of convex functions is also convex, so

is our total dose fidelity term. The second term is the group sparsity l2,1-norm purposely chosen for its

convex nature, illustrated in Fig. 5. The third term, the indicator function, is convex by observation.

Fig. 6 exposes in a simplified schema the convexity of the set C.

We were not able to analytically determine the convexity of the last objective, the energy sequencing

(ES) function. Instead, a Monte Carlo simulation suffices to prove the non-convexity of the ES function.

Given that the energy sequencing term is a sum of functions over the different beams of the plan, the

non-convexity of only one term in the sum needed to be proved. For some beam b, we evaluate the

function LeakyReLU(DbLSE(zb · tanh(a · yb)). For one evaluation of this function, at minimum four
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variables were needed due to the discrete nature of the gradient that requires two beams (b and b+1)

to operate and also to the fact that yb is a vector containing at least two variables. Jensen’s inequality

[23] was used as convexity criterion requiring the function to be evaluated twice. The Monte Carlo

simulation therefore needs (N4)2 = N8 input variables. Running the simulation during one hour that

generates N = 1000 points per iteration adding up to 23673 iterations, we computed the proportion

of non-convex points to be about 35.7%. Unfortunately, a convex form of the energy sequencing term

could not eventually be found. This conclusion leads to the fact that the optimization problem as

stated in Eq. 1 is non-convex. Therefore, the optimization algorithm FISTA is likely to converge to

local minima and suffers in its performances.

6.2. Local Search optimizer

Alternatively to the gradient-based methods, we propose a simpler method based on the local search

(LS) algorithm, described in Algorithm 2. It implements a Simulated Annealing [13] meta-heuristic

for approximating the optimal solution x∗, minimizing

f(x) = f(d) + α sparsity + γ ELST . (22)

Starting from an initial incumbent (i.e., current) solution x, Algorithm 2 iteratively modifies it by

using a set of five neighborhood operators. At each iteration, it randomly chooses a solution x′ in the

current neighborhood N (x) (line 4) and either accepts it and resets the distance counter d to zero

(line 6) or rejects it and increments d (line 11). Whether a candidate solution is accepted as the new

incumbent solution or not depends on a predefined acceptance criterion function, described below,

which implements the so-called Simulated Annealing. A restart strategy is also implemented in line

14: whenever the current incumbent solution becomes too distant (in terms of local changes) from the

last best solution x∗, the search simply restart from x∗. At the end, the algorithm simply returns the

best solution x∗ encountered so far, which is stored at line 8.

Initial solution. If not specified, the initial solution is constructed by simply assigning a zero value

to every spots. Otherwise, any possible value assignment of the spots can be considered as an initial

incumbent solution for the LS algorithm.

Stopping criterion. The stopping criterion designed here simply depends on the computational time

budget that the user allocates to the algorithm. Once the allotted time elapsed, the criterion is met.
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Algorithm 2 Local Search algorithm

Let x = {xs : s ∈ S} be an initial solution.
2: Set x∗ ← x; Set the distance counter d to 0

while some stopping criterion is not met do
4: Select a solution x′ uniformly at random in N (x)

if some acceptance criterion is met on x′ then
6: set x to x′ and d to 1;

if f(x′) < f(x∗) then
8: x∗ ← x′

end if
10: else

d← d+ 1
12: end if

if d = dmax then
14: restart: set x← x∗

end if
16: end while

return x∗, the best solution found

Notice that alternative stopping criteria may be devised, based on convergence indicators, for example:

relative quality of the last improvements, delays between previous improvements, etc.

Neighborhood operators. We consider five neighborhood operators in N (x): i) select a spot at random

and set its value to zero; ii) select a spot at random and assign a random positive value in ]0,M ],

where M is the highest possible intensity; iii) select an activated layer at random and set all its spots

to value zero; iv) select a layer at random and reassign random positive values to all its spots; v)

find the target voxel for which the total dose is the farthest from the prescription, select one of its

contributing spots at random and assign it the (non-negative) value that minimizes the dose difference

from that voxel to the prescription. At each iteration, the local search algorithm simply selects an

operator at random. We notice that classical improvement avenues for such neighborhood based op-

timization method include an adaptive mechanism that selects the current operator probabilistically,

according to its success rate observed so far, preferring operators that contributed at generating rel-

atively many interesting solutions, that is, that passed the acceptance criterion. Such a mechanism

is, however, typically implemented whenever the neighborhood operators include more complex and

computationally demanding operations (e.g, large neighborhood search, [24]).

Incremental computation. An important property of the proposed set of neighborhood operators is that

given a current solution x, any neighboring solution x′ ∈ N (x) is actually constructed incrementally

from x. In particular, the new objective value f(x′) is also incrementally computed provided f(x). In
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all our operators (i to v), both computations of x′ and f(x′) are done in O(|S|) linear time, relatively

to the number |S| of spots. Incremental computation and evaluation is in fact a necessary property of

any efficient local search approach. On the contrary, every iteration of gradient based methods such as

SPArc, ELO-SPAT or FISTArcPT, involve the heavy matrix-vector product Ax of worst-case O(V S2)

complexity.

Acceptance criterion. We use a Simulated Annealing (SA) acceptance criterion [13]. Improved so-

lutions are always accepted, while degraded solutions are accepted with a probability that depends

on the degradation magnitude and a temperature parameter, i.e. the probability of accepting x′ is

e−
1−f(x)/f(x′)

T . The temperature T is updated by a cooling factor 0 < fT < 1 at each iteration of

Algorithm 2: T ← fT · T . During the search process, T gradually evolves from an initial tempera-

ture Tinit to nearly zero. We also implement a restart strategy : each time the current temperature T

decreases below a fixed limit Tmin, T is reset to Tinit. In all experiments, SA parameters were set to

Tinit = 5, Tmin = 10−6, and fT = 0.8.

6.3. Mixed-Integer Programming Formulation

An exact alternative to approximate optimization methods as presented above is to use a MIP

formulation and an appropriate solver, allowing a complete search of the solution space to be conducted

in order to prove optimality. Furthermore, the treatment requirements can be guaranteed, as hard

constraints, instead of using soft constraints with minimized violations, as it is often the case with

gradient-based methods, hence approximating the initial (i.e., ideal) treatment problem stated in

(4)-(8).

Energy sequencing. We represent a specific sequence of energy layers (EL) as a path in a directed

graph, from a source node 0− which has outgoing directed edges (0−, n) to every EL n ∈ E, to a

sink node 0+ which has incoming edges from every EL, passing by a network of edges that link the

ELs altogether: there is an edge (m,n) for each pair of ELs such that n belongs to a strictly higher

beam than m. We note Eedges the set of all edges that constitute the graph, whereas E− = E ∪ {0−},

E+ = E ∪ {0+}, E± = E ∪ {0−, 0+} denotes the nodes. Remark that the digraph resulting from

Eedges allows for valid energy sequencing only. In particular, a unique path from 0− to 0+ enforces

that at most one EL is activated in each beam; otherwise, the path would contain forks. Finally, a

non-negative value cmn gives the cost of using edge (m,n) ∈ Eedges in the path, that is, the cost of

switching from layer m to layer n, as illustrated in Fig. 7.
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6.3.1. Linear model

Let xj and emn be decision variables such that

• ∀j ∈ S : xj determines the intensity attributed to a spot j ∈ S,

• emn are redundant variables determining whether some EL switch happens: ∀m,n ∈ E± : emn =

1 if (m,n) ∈ Eedges and layer n ∈ E+ is activated directly after layer m ∈ E−, otherwise emn = 0.

Then, the arc proton therapy treatment optimization problem can be modelled as a mixed-integer

two-index flow formulation

min
x1,...,x|S|

∑
i∈R,j∈S

Aijxj (23)

s.t.: ∀i ∈ T pminT ≤
∑
j∈S

Aijxj ≤ pmaxT (24)

∑
n∈E+

e0−n =
∑

n∈E−

en0+ = 1 (25)

∀m ∈ E
∑
l∈E−

elm =
∑

n∈E+

emn (26)

∑
(m,n)∈Eedges

cmn emn ≤ U (27)

∀m ∈ E, ∀j ∈ Sm xj ≤ I
∑
l∈E−

elm (28)

∀j ∈ S 0 ≤ xj ≤ I (29)

∀(m,n) ∈ Eedges emn ∈ {0, 1} (30)

The objective function (23) minimizes the total dose on the OAR voxels, provided (24) each target

voxel i ∈ T receives its prescribed treatment, here in the range [pminT, pmaxT], and (27) the total energy

sequencing cost does not exceed a predefined bound U . In order to stick with the previous methods,

we assume cmn = 1 when m is of lower energy than n, 0 otherwise, so that the total summation simply

gives the number of EL switch-ups. The set of constraints (25)-(26) are classical flow conservation

constraints, ensuring that the selected edges from Eedges form a unique path (without fork) from

source 0− to sink 0+.

The relation between each energy layer and its associated spots is defined by constraints (28). A

positive constant I represents the highest possible intensity assigned to any spot. In fact, a spot j for
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which the energy layer m is not activated (i.e., is not part of the flow) must necessarily be assigned

energy xj = 0. Finally, the aforementioned decision variables are defined in (29)-(30), where we notice

that contrarily to x’s, the flow variables emn are binary integers.

Benefits and lessons from the MIP problem statement. In contrast to the previous methods, the exact

MIP statement provides guarantees on the optimized treatment plan that will fulfill the constraints. In

fact, any feasible solution for constraints (24-30) guarantees fulfilling the treatment requirements (5) on

the target voxels (here that every target voxels receives a dose between pminT and pmaxT ). Otherwise,

alternative statements can easily be formulated in order to enforce (6) and/or (7), while minimizing the

energy sequencing cost. Furthermore, any optimal solution for program (23-30) guarantees the best

possible treatment. For instance, one can set U = 5 and, therefore, determine whether a treatment

that satisfies the [pminT, pmaxT] target dose prescription bounds actually exists when limiting to 5 EL

switch-ups and what is its side effect cost in terms of OAR irradiation. Therefore, varying the EL

bound U eventually provides a Pareto curve, describing the possible compromises between treatment

quality and duration, for a particular use case. Finally, from a mathematical point of view, the problem

statement as a linear model tells us that the energy sequencing can be represented by a convex function,

not only for 0-1 switch up counts, but also for any possible cost functions to measure duration, as a

simple pre-computed cmn table.

6.3.2. Computational complexity

The inherent complexity of the ArcPT treatment problem, stated in (4)-(8), has not been addressed

yet in the literature. Is the problem NP-hard? It could be that the problem is in fact polynomial,

but remains intractable at this time, due to the typically huge size of the beamlet matrix A. This

question will likely remain open for now, although we propose a preliminary analysis, where we draw

the first basic complexity boundaries by determining two variants of our problem: a special case that

is polynomial and a generalization that we prove to be NP-complete.

Energy sequencing is hard. Unlike linear programming, which is known to be solvable in polynomial

time, (e.g., using interior point methods [25]), integer and mixed-integer programming are naturally

NP-hard in general. It is easy to see that program (23)-(30), without energy sequencing, that is, when
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removing constraints (25)-(28) and (30), leads to a linear program:

min
x1,...,x|S|

∑
i∈R,j∈S

Aijxj

s.t.: ∀i ∈ T pminT ≤
∑
j∈S

Aijxj ≤ pmaxT

∀j ∈ S 0 ≤ xj ≤ I ,

which is solved in polynomial time. Therefore, if the overall treatment problem is NP-hard, the

complicated part of the problem actually lies in the energy sequencing. By setting a value U that is

large enough to never be reached by the summation (27), that is, the problem becomes polynomial if

one does not care about the beam delivery duration.

NP-hardness: the case of the lower bounded energy sequencing variant. A direct generalization of the

problem can be obtained by considering a lower bound L on the energy sequencing time, in addition

to the upper bound U , hence replacing (27) with

L ≤
∑

(m,n)∈Eedges

cmn emn ≤ U .

In order to prove the hardness of this generalization, we show how to achieve the polynomial reduction

from the well-known NP-complete subset sum problem (SSP): given a multiset K and a target value

Y , decide whether some subset of the items of K sums exactly to Y . Let us construct our EL directed

graph (that of Fig. 7), such that there is one column per item k ∈ K, only one node in each column

(representing the value of k), and finally cmk equals the value of the target node k, whatever the source

node m. Clearly, a path in the constructed directed graph represents a particular subset selection with

its associated total value. Any decision algorithm for our generalized treatment problem then decides

the SSP, when L = Y = U . Our generalized problem is then NP-complete, as any given solution can

be verified in polynomial time, (i.e., the problem is in NP).

6.3.3. Large Neighborhood Search.

NP-hard or not, preliminary experiments showed that the ArcPT treatment optimization problem

remains complicated to solve in practice. In fact, the disadvantage of problem statement (23)-(30),

common to all complete optimization methods, is that it hardly scales up to realistically-sized prob-

lems. In this section, we propose a basic workaround, by exploiting a well-known technique: large
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neighborhood search (LNS).

LNS [24] relieves the optimization process by considering, iteratively, sub-parts of the entire op-

timization problem. It works as follows. Given a current (sub-optimal) solution x, select a subset

xi, . . . , xj of decision variables and fix their current values in x. This results in a sub-problem in which

part of the variables are fixed, whereas the remaining variables could be optimized. By solving this

sub-problem to optimality, one obtains a new current solution x′, which is necessarily as good as x.

Starting from an initial solution xinit, this process can be repeated as long as needed.

LNS can be seen as a variant of our local search method defined in Algorithm 2, in which the only

neighborhood operator N consists in this variable-selection and optimization process. Because N may

not deteriorate the current solution x, N (x) is always accepted. LNS is therefore a ”hill-climbing”

heuristic method.

Variable selection. As the energy layers form a partition of the decision variables, it seems natural

that the variable decision mechanism follows these energy layers. At each iteration of the LNS and

given the current solution x, the optimization is then performed by restricting the treatment to use

only a subset of the energy layers (ELs). This subset is composed of all the ELs that are currently

activated in x, as well as a percentage (5% in our experiments) of randomly selected ELs. Any EL

that does not belong to the selection is necessarily not activated in current x, and therefore all the

associated decision variables are set to zero in the MIP model for the upcoming optimization.

Initial solution and bi-objective optimization. Finding an initial feasible solution, which satisfies con-

straints (24-30), is already really challenging. Instead, it would be easier to start from an empty

solution, thus no activated EL, and iteratively improve the solution by activating ELs. Some iter-

ations would then activate some ELs, whilst deactivating some of those ELs that were previously

activated (this is why currently activated ELs are always part of the variable selection), and so on,

hence continuously improving the current solution through the LNS iterations. The workaround we

propose is then to relax constraints (24) so that an empty initial solution becomes feasible:

∀i ∈ T :
∑
j∈S

Aijxj ≤ pmaxT.
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At each LNS iteration, the current MIP model (i.e., having only subset of the decision variable available

for optimization) is then optimized based on the following lexicographical bi-objective function

max
x1,...,x|S|

∑
i∈T,j∈S

Aijxj , min
x1,...,x|S|

∑
i∈R,j∈S

Aijxj

, which maximizes the total treatment on the target voxels T first and minimizes the irradiation on

OAR voxels R second. In other words, a soft constraint substitutes for the hard constraint on the

lower bound of the target voxels’ prescribed dose.

LNS: pros and cons. The direct advantage of the LNS approach is that each iteration actually ends

up with a solution. In fact, for large instances, the complete MIP approach may require hours (or

even not terminate) before providing a feasible, even sub-optimal, solution. By sacrificing the opti-

mality guarantee, i.e., by renouncing the model completeness, the MIP model can still be exploited

to construct and improve solutions, yet sub-optimal, scaling to larger problem instances. However,

in addition to optimality, with the relaxation of lower bounding constraints in Eq. 24, part of the

treatment guarantees are lost with the LNS approach.

7. Comparison strategy

Plan optimization methods. From the proposed benchmark (see Section 3), ArcPT plans have been

generated and optimized, using the three algorithms proposed in Section 6. To serve as first reference

point, IMPT plans (fixed-angle beams) were also produced. Another reference point was given by

SPArc plans (described in Section 5.1), obtained with a Python implementation of the original SPArc

algorithm in our in-house TPS. All these plan optimization methods were empirically compared to

each others.

Key performance indicators (KPIs). The KPIs used for this study are divided into four main categories:

1. The first KPIs in importance relate to the planned dose quality: the dose volume histograms

(DVHs), re-normalized to D50 (dose ← dose · p/D50) for an easier comparison. Quantitative

KPIs are also extracted from the DVH, such as the absolute difference between D95 and D5,

written as |∆(D95, D5)|), characterizing the uniformity of dose distribution within the target

volume, as well as the conformity index (CIRTOG[29]) that describes how tightly the prescription

dose is conforming to the target.
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2. The next KPIs relate to the time delivery efficiency of the plan, which depends on the sparsity

of energy layers and the number of energy switches upwards or downwards, further summarized

in the ELST metric used as a surrogate of the delivery time and given in the tables.

3. The third KPIs are the final numbers of spots (nonzero spot weights) and layers (activated layers

with non-null intensity), which are provided as proxies for the degrees of freedom available to

the spot weight optimizer.

4. The Last KPIs are the optimization times, which were also reported in the comparison tables. Al-

though all the algorithms ran on the same machine, execution times should be regarded carefully

because each algorithm makes use of different programming languages. FISTArcPT is written

in Python3, whereas the local search and MIP were implemented in C++. For the last two, the

optimization time depends on the time limit set in the input parameters. Furthermore, whenever

the MIP found the optimal solution, it would necessarily stop before reaching the time limit.

Benchmarks. For the patient data, we are using the benchmark defined in Section 3 with clinically

acceptable dose resolutions of 2 mm and 1 mm. In addition, to assess the quality of the different plans,

the algorithms were executed on two target sizes: 1.47 cm3 (small target) and the same but dilated

using 1 cm margin (expanded target). The initial degrees of freedom available to the spot weight

optimizer are reported in Table 2 for both modalities, i.e., IMPT and ArcPT (across all methods).

ArcPT plans (FISTArcPT, LS, MIP) were initialized with a pre-defined arc set between 0◦ and 90◦

with a counter-clock rotation and a step angle set to 2◦. The SPArc plans were initialized with three

beams (77.0◦, 45.0◦ and 13.0◦) with a maximum number of splits set to 4 so that the same arc design

would be obtained. The IMPT plans were designed by initializing 3 beams at equal angular distances,

at 0◦, 45◦ and 90◦, respectively.

Experimental settings. The proposed methods come with many hyper-parameters. They were tuned in

a preliminary study (A) and they remained fixed in the next experiments. Notice that a convergence

report of each proposed algorithm is also provided in B, as well as a description of the algorithm

behaviour, for various problem scales in C. The dose prescription to the target is set to 60 Gy and

no objectives nor constraints are set on the OARs because they are not included in the analysis. The

maximum number of iterations, set to 4000, was used as stopping criterion for all the FISTArcPT

plans. IMPT plans were optimized by applying a SciPy implementation of L-BFGS [3] in OpenTPS

to a beamlet decomposition of the dose. SPArc also relies on the L-BFGS algorithm for each step of
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optimization. The stopping criteria used for SciPy L-BFGS optimizations are the maximum number

of iterations, set to 100, or whenever the convergence was acceptable with a relative error in function

values not exceeding 0.001.

8. Results

The optimization methods presented in Sections 5-6 are intrinsically different but they all aim at

designing ArcPT plans. This section demonstrates the proof of concept of each proposed method

and also identifies the reasons for which one outperforms some others for specific key performance

indicators.

Results on the small target. The different final dose distributions obtained with each algorithm are

shown in Fig. 8 (2 mm resolution) and Fig. 9 (1 mm resolution), as well as the DVH comparison in

Fig. 10. The KPIs can be compared in Table 3. In general, all the algorithms perform well, showing

results that compare with the reference, that is, the IMPT treatment. FISTA struggles the hardest

to reduce the number of switch-ups and to obtain a good layer sparsity with at most one energy layer

active in each beam. For the lowest resolution instance (2mm), MIP performed the best and was

able to reduce the number of switch-ups to zero, eventually yielding the smallest ELST, while still

covering the target homogeneously. For arc plans with 1 mm of resolution, the dose conformity to the

target is poor, especially for those obtained with the LS method. Hot spots appear indeed in the dose

distributions (Fig. 9), because no objective in the cost function prevented the optimizer from depositing

dose in any locations outside the target. Anyway, SPArc seems to give the best performances at high

resolution with a very good homogeneity of the dose in the target and an acceptable time for energy

layer switching.

Results on the expanded target. Dilating the target by 1 cm happens to complicate the problem con-

siderably and the algorithms faced more difficulties to solve it, as can be observed in Table 4 and in

the DVH plotted in Fig. 13, especially when the CT resolution is thinner (1 mm). Despite a good

ELST, the DVH obtained with the LS algorithm is off the 5% tolerance around the prescription with

a large D5. Similarly, MIP can deal with the 2-mm resolution data set but failed to produce a decent

solution for the 1 mm resolution with major deviations observed in its DVH. FISTA struggles again

to reduce the ELST compared to the other optimizers. In terms of dose maps (Fig. 11), the solution

obtained with FISTA displays aggregated beams on the dose map despite the indicator function meant
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to address this kind of issue. Moreover, the energy layers selected by each algorithm are visible on the

dose distribution plots. This could be explained by the fact that the layer spacing chosen is too large

or there are not enough beams to cover the energy space smoothly. Surprisingly, IMPT outperforms

arc plans. Possible explanations could be that the degrees of freedom (DOF) available in the arc

modality are not exploited properly by the various optimizers. As MIP starts from a solution with null

spot weights and solves the problem progressively by selecting a subset of the layers (LNS approach,

see Section 6.3.3), it struggles to activate spots and layers resulting in a very small final number of

activated spots and layers. The same observation holds for the LS method, even though it is caused by

the neighborhoods operators that (de)activate layers and spots at random. Finally, FISTA and SPArc

seem to use the available DOFs in the arc better than LS or MIP, although they cannot outperform

the IMPT plans in terms of dose quality. A reason could be that the optimizer needs to run longer in

order to deal with these many DOFs and obtain a better solution eventually.

9. Discussion

We presented three new methods of optimizing treatment plans for arc proton therapy. Theoretical

analysis and experimental evidences revealed the strengths and weaknesses of each method.

Firstly, FISTArcPT, which extends a classical gradient descent algorithm with regularization terms

to control the number and the sequence of energy layers in each beam belonging to the arc, is the

ideal method in the sense that it fully benefits from the arc geometry and its degrees of freedom

and finds locally optimal solution with rapid convergence of objective function values. This method

was able to produce good quality plans in terms of target homogeneity and conformity. However,

the sensitivity to the hyper-parameters in the objective function and the need to tune them finely

on case-by-case basis makes it inconvenient, especially considering the potential future use in clinic.

Also, the inter-dependence between those parameters makes the algorithm biased and could lead to

rapid local minima, without any means to get out of them, especially because of the definition of

the shrinkage group parameter αe, that depends on the intensity of each layer. In addition, because

the objective function is not formulated to fulfill all the FISTA assumptions as defined by Beck et

al. [2], this convex optimization iterative approach could underperform and also be trapped in local

minima. Recall that we found, in Section 6, that the energy sequencing term of the objective function

is actually not convex. Aside from those theoretical properties, the matrix-vector product Ax involved

in the dose fidelity term is in practice the heaviest operation in the algorithm. It is clear through
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the examples that the larger the involved matrices are, with increases in resolution and/or target size,

the longer the optimization time will be, and this linearly. Lastly, in addition to give an approximate

solution (no treatment guarantees with soft objectives), FISTA is primarily an incomplete method,

like all gradient-descent-like algorithms, because it does not consider the entirety of the solutions space

and there is therefore no optimality guarantee (unless the objective function is convex, which is not

our case).

Secondly, a local search approach with simulated annealing has been tested. In contrast to FISTAr-

cPT, LS uses a randomized approach and will therefore probably never yield the same solution twice.

Also, the simulated annealing meta-heuristics allows for escaping from local minima. LS was able to

give solutions with high delivery efficiency (in terms of ELST) but is mostly discarded due to poor

dose quality, especially for large-scale datasets. Regarding the optimization time, defined by the user

time limit, it is less impacted by the size of the problem compared to FISTArcPT. In fact, in LS the

computationally demanding matrix-vector product (in the gradient step of FISTArcPT) is carried out

incrementally through the neighborhood operators. Besides, those neighbourhood operators remain

very simple, and they could even be improved to get better results for larger-scale problems. Another

point to consider is that any kind of objectives and/or constraints, including more realistic ones, such

as the BDT, can be easily implemented with such algorithms, without any concerns in terms of con-

vexity or similar properties. However, it is noteworthy that the local search algorithm is a heuristic

method with no optimality guarantee and, like FISTA, it yields an approximate solution with no actual

guarantee of treatment feasibility or acceptability. In any case, if the dose quality does not improve

in the future upgrades of the algorithm, it cannot be used for treatment planning. Nevertheless, LS

could be used as a fast pre-optimization step to obtain an initial solution with an arc configuration,

such as a specific number of upwards energy switching which would then ease the search for the main,

subsequent algorithm.

Thirdly, Mixed Integer Programming is a method with good potential: given enough time, it

ultimately finds the optimal solution to the problem at hand, thereby guaranteeing the best possible

treatment. New objectives and constraints can be easily implemented with this problem statement

as long as they remain linear. With MIP, the user can, for example, set the number of switch-ups

allowed in the arc at the beginning of the optimization, as well as the range of dose to the target

voxels, at the expense of losing degrees of freedom of the arc method, like SPArc. However, this type

of algorithm, even though giving excellent solutions for small data sets, can rapidly struggle hard once
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the problem reaches a certain size, requiring hours before providing a feasible, sometimes sub-optimal

solution if only it ever terminates. Several attempts have been made to address this problem scale

issue. In particular, we have exploited a well-known technique: large neighborhood search (LNS) at

the cost of losing part of the treatment guarantees. Another idea could be a multi-resolution approach,

with a first optimization at a very low resolution to obtain a good result quickly and to input it as

an initialization for a subsequent optimization at higher resolution and so on until the desired dose

resolution is obtained.

Energy sequencing. The common point of all the three proposed problem statements and associated

solvers (mathematically speaking, completely different from each other) is the difficulty to optimize

the energy sequence as observed in the results. Stating the problem with continuous functions and

using gradient-based methods such as FISTA [2], the convexity of the objective function is important

to guarantee optimal performances of the solver. In the context of ArcPT, devising such functions

is complex because of the discrete nature of arc therapy, leading to a delivery time estimator that

is neither convex nor differentiable. Even though we simplified the real estimator by optimizing the

energy sequence as a proxy of the BDT, we were not able to define a convex formulation that can be the

Achilles heel of our optimization. In contrast, MIP allowed us to formulate a convex estimator for the

energy sequencing, at the expense, however, of introducing integrality constraints, which complicate

the problem considerably. Regarding the LS algorithm, we assume that, if the energy sequencing was

not in the objectives, the cost function would be convex and a solution would be more easily found and

this, even without the simulated annealing meta-heuristic. The reason is that the energy sequencing

term is the cause of the local minima in which we are trapped. Yet, when we will implement a real

model of the delivery time, the local search algorithm combined with the simulated annealing could

become the most suitable method of beam delivery time optimization.

SPArc. Compared to SPArc, FISTArcPT was able to give similar dose quality in all cases. Only

MIP could outperform SPArc in the small target cases, which indicated its high potential for the

ArcPT problem. SPArc provided a reproducible plan solution (though not necessarily optimal) in

both small and expanded target with different resolutions. Compared to clinical IMPT, SPArc is an

advanced IMPT optimization framework that implements a greedy, iterative re-sampling process. It is

noteworthy, though, that the limitations of SPArc (or other similar methods) could only appear, from

a theoretical standpoint, for more complex cases with OAR sparing for example where the heuristic
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greediness of SPArc and its restriction to a limited number of degrees of freedom could lead to under-

performance compared to the proposed solution methods. It is therefore still difficult to demonstrate

the superiority of the proposed methods with this simple test case. Yet, all the reported results should

be analyzed cautiously since the benchmarks are not obtained from real patients.

Treatment uncertainties. No uncertainties have been taken into account neither in the optimization

process nor in the treatment evaluation. In a clinical environment, the treatment plan has to be robust

against various type of uncertainties before it can be delivered to the patient. They are usually divided

into two main categories, namely, aiming errors, relatively to the tumor position, and range errors,

concerned by the nature of the tissues the protons must traverse to reach a targeted depth. Integrating

the robustness into each optimization schemes presented in this paper can be complex and will impact

the quality of the results. The usual way to do it is to compute N scenarios that takes into account all

types of errors that can occur before and during treatment, e.g., the patient set up errors are modeled

as a shift of the beamlets, giving N sets of beamlets. The next step is to determine the worst-case

scenario and to minimize the corresponding objective function; repeating these two steps iteratively

allows the performance to be lower-bounded. In our in-house TPS, OpenTPS, we have implemented

this worst-case robust optimization. FISTArcPT could then be able to produce robust-optimized

plans already. A robust version of our local search algorithm can be obtained by considering worst-

case scenarios in a sampling-based approach. In fact, as long as the sample remains of reasonable size,

our objective function can still be incrementally computed on each scenario independently. Finally, the

method of mixed-integer programming will require more elaborated mathematical techniques in order

to obtain robust treatment plans. Given a set of sampled scenarios, the L-shaped method [14] can be

exploited to minimize expected penalties. Dealing with the inherent uncertainties of our treatment

process is definitively a challenging issue, yet necessary. This is, however, out of our current scope,

and left for further work.

10. Conclusions and future research directions

Arc proton therapy is an emerging cancer treatment modality, showing great potential and signifi-

cant advantages over radiotherapy with x-rays and even over conventional proton therapy treatments.

However, designing a valid treatment plan for this new modality defines a complex optimization prob-

lem, for which very few plan optimization methods exist in the particle therapy community. In practice,
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at the time of writing, there is still no proven or approved software solution available for the clinicians

and further investigations is needed to develop the treatment planning system for ArcPT.

Contributions. This paper first reviews the literature about the existing approaches to ArcPT that

raise interest in the proton therapy community, namely, SPArc to which we were able to compare

our results and ELO-SPAT from which we based the formulation of one of our proposed method.

Next, a first formal statement of the constrained optimization problem at hand is presented. Cues

in this formalization guide the search for adequate optimization algorithms. Accordingly, we propose

three different approaches to solving the problem, each with a specific problem restatement and an

optimization algorithm. Our new methods are tested on different realistic benchmarks and compared

to the existing state-of-the-art method SPArc as well as to a conventional IMPT method. After

analysis of the influence of hyper-parameters in each method, our algorithms were able to produce

acceptable ArcPT treatment plans. These plans achieve good dosimetric results and delivery efficiency

in general. MIP has shown its superiority compared to the other methods for small targets, as it can

give guarantees on the constraints and objectives defined in the statement of a small-scale problem.

However, for bigger targets, the IMPT plans and SPArc plans are still ahead which leaves some space

to improve our methods depending on the direction we are taking. Anyways, each clinical case can

be different and it is understandable that a method could be more appropriate than another for a

specific case but improper for another case. We should stay realistic and pick the right algorithm

depending on the clinical parameters at stake. Finally, we introduce the first reference benchmark to

design ArcPT plans, obtained from realistic image data sets. This benchmark is made available to the

research community.

Further work. The algorithms both optimize the clinical goals and minimize the delivery time in a

single integrated process, thereby contrasting with SPArc. This followed path clearly suggests the use

of a Multi-Criteria Optimization (MCO) that will be investigated into the future. Robustness is key in

proton therapy due to its dosimetric sensitivity compared to the photon radiotherapy. Implementation

of robust optimization in our ArcPT framework is therefore considered in the near future in order

to make plans robust against uncertainties. Finally, this paper only considered an artificial image,

i.e., a patient phantom, as a proof of concept. We will apply our methods to real patients to further

investigate the potential of ArcPT.
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Appendices

A. (Hyper-)parameters

In this appendix, the computing performances of each algorithm are analyzed. The hyper-parameters

are identified and carefully tuned to achieve the ArcPT goals. Several metrics are therefore evaluated.

First, the layer sparsity, ideally aimed at 100%, i.e. at most one energy layer active per beam angle.

Secondly, we seek to minimize as much as possible the number of energy switch-ups as well as the dose

fidelity term to follow the physician’s prescription. Finally, the homogeneity index (HI = D5-D95) is

used to quantify the uniformity of the dose in the target. It should be as small as possible. In our

problem set-up, only a single clinical objective on the target (uniform dose of 60 Gy) is implemented in

the cost function. For the sake of the analysis, we show results only for the phantom data set created

with 2-mm dose resolution (acceptable in clinic) and comprising 46 beams (step angle = 2◦).

A.1. FISTArcPT

The FISTArcPT algorithm minimizes the cost function described in Eq. 18. This parsimonious

function is built on several terms with specific purposes, each controlled by a weighting parameter. By

varying the value of these parameters, different results can be obtained. The physicist can therefore

fine-tune these parameters in order to achieve the primary goals of the treatment under consideration.

Analysis of weight λ. The first parameter to be analyzed is the weight of the group sparsity term λ.

Recall that we aim at having no more than one energy layer active per beam, hence 100% in layer

sparsity. In Fig. A1a, it can be seen, that acceptable arc sparsity is obtained from λ = 1 with good dose

homogeneity. Fig. A1b shows that the dose fidelity follows the same pattern as the dose homogeneity

in Fig. A1a. This behavior is expected given the fact that the dose fidelity cost is a squared norm of

the difference between total dose computed and the prescription. It also shows that λ should not be

too low in order to turn off non-interesting layers that can potentially reduce the number of switch-ups.

Analysis of weight ϵ. Surprisingly, ϵ has no real impact on this plan. Actually, the indicator function

is not that useful is this specific case. The combination of dose fidelity, sparsity and energy sequencing

already gives an acceptable arc plan. It is only when ϵ > 1.5, that the plan is affected. In fact,

layer sparsity decreases because the re-activation of layers starts to become more important than the

removal.
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Analysis of weight γ. Another important parameter to consider is the energy sequencing weight γ.

Results are shown in Fig. A2 with the sparsity group weight fixed at λ = 1. This parameter was really

hard to tune due to the non-convex nature of the energy sequencing term. Its impact was indeed more

unpredictable. A value of γ = 0.1 was eventually picked following the results on Fig. A2. If γ is too

large, the gradient descent is influenced too much by the energy sequencing term and not enough by

the treatment objectives (encoded in the fidelity term) and the sparsity in layers is difficult to obtain.

While if γ is too small, the energy sequencing term will not have any impact anymore and the energy

layer switching time will not be optimized.

From those results, we decided to fix values for the weighting parameters of the objective function

for the next experiences. Table A1 summarized the chosen parameter values.

A.2. Local Search

The local search algorithm, even though differing radically from the FISTArcPT, has also several

inputs to tweak and orientate the search in the space of solutions. Due to the non-deterministic

character of LS, each experiment was run 5 times. Average and standard deviations over these 5 runs

are therefore reported.

Analysis of weight γ. As FISTArcPT, the local search algorithm has a weight controlling the impor-

tance of the energy sequencing term in the objective function. Fig. A3 illustrates the impact of γ weight

on the number of switch-ups and fidelity term. A value γ = 50 seems to be the best compromise to

have an acceptable ELST and homogeneous dose in the target.

Minimum number of active energy layers per beam. We can set a minimum number of energy layers

to be activated in each beam as a hard constraint in the configuration of the LS algorithm. Table A2

shows a comparison where the minimum number of active layers in a beam is zero and situation

like FISTArcPT, where the minimum is set to one. It is obvious that constraining the algorithm

to activate at least one energy layer per control point is really restrictive and suppresses degrees of

freedom resulting in higher cost, worse HI, and worse ELST.

Maximum number of active energy layer per beam. As we have set a minimum of active energy layers

per beam, we can also set a superior limit on this number. Table A3 summarizes the results. Allowing

more than one layer active per beam gives better dosimetric outcomes and results in a decreased fidelity

cost but at the expense of an increasing energy layer switching time.
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Initial temperature and cooling factor. This couple of parameters influence the behavior of local search

and are used to play on the diversification/intensification trade-off. The higher (resp. lower) the initial

temperature (resp. cooling factor), the more iterations between two resets and, therefore, the higher

diversification. On the opposite, a smaller initial temperature and a higher cooling factor would

increase the intensification. The initial temperature and cooling factor were set according to previous

knowledge to 5 and 0.7 respectively.

From the results obtained in this section, we decided to fix the parameters for the next experiences.

Table A4 reports their values.

B. Convergence

For FISTArcPT, the stopping criterion used in the optimization is the maximum number of iter-

ations. We set it to 1000 to get a good quality and deliverable plan and achieve good layer sparsity.

Fig. B1 displays the result. Except the indicator function, all terms involved in the objective function

described in Eq. 18 are plotted. The total cost in general shows a rapid decrease and then a smooth

convergence and is mainly influenced by the group sparsity term. The energy sequencing term is more

chaotic but still converges after a few hundreds of iterations.

Regarding the local search algorithm, the objective function to be minimized (Eq. 22) is simply a

quadratic function of the difference between the total dose delivered to the target and the prescription

(omitting the OARs) to which the ELST and sparsity objectives are added. Fig. B2 illustrates the

evolution of the cost function for 5 runs. The stopping criterion is a time limit set to 5 minutes. As

expected, the local search is really chaotic at the beginning, exploring solutions in a large neighborhood

but little by little, converges smoothly towards an optimal solution along with the decrease of the

temperature of the system. Compared to FISTA, the convergence is certainly slower but a rapid

solution with specific properties could potentially be used as input to FISTA.

C. Problem scaling

The scale of the problem constitutes a major issue in ArcPT optimization. Depending on the

resolution and size of the beamlet matrix, the algorithms will behave in different ways. We decided

to pick 9 data samples and to analyze them: the two extremes and the middle one, i.e. phantoms

with 1, 3, and 5 mm resolution and with a plan composed of 10, 31, and 91 beams. For the sake of

the comparison, we fixed the maximum number of iterations of FISTArcPT to 1000. This way, each
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test run of FISTA determines the time limit to be set in the LS and MIP algorithm input parameters

(though MIP could stop before the time limit if the optimal solution was found).

As it could be expected, each algorithm behaves in a very different way and this is summarized in

Tables C1-C2-C3. FISTArcPT gets better results in terms of dose homogeneity (D5 - D95) for lower

resolution data samples and smaller number of beams while on the other side, LS-ArcPT behaves in a

complete opposite way with better results at high resolution with a high number of beams. For both

algorithms, the ELST increases with the number of beams in a logical way and are quite compatible

with each other. The MIP algorithm, on the other hand, does not follow the same pattern. Indeed,

the maximum number of energy upwards switches has been constrained to 0 instead of being left as an

optimization objective, hence the very low ELST for each test set. As it can be observed in Table C3,

the MIP gives excellent results in terms of dose homogeneity within the target volume and this, for any

of the test sets. The 5-mm resolution data sets could achieve a better homogeneity index compared

to other resolution sets because the MIP let us push the constraints on the target coverage harder

([pminT = 60, pmaxT = 60.5] Gy instead of [58,62] Gy for the others). It can also be noticed that the

boxes regarding the 1-mm resolution data set with 10 beams in the arc are empty. The reason is that

the MIP could not find any feasible solution with the constraints given even though many combinations

were tried.

In terms of optimization time, FISTArcPT behaves as expected because, a higher number of beams

translates into a higher number of beamlets and then a more computationally expensive gradient. The

MIP, for its part, was able to to give an optimal solution in a shorter time than the duration limit

set by the FISTA algorithm and this, for any of the test sets. Obviously, the resolution also plays

a role in optimization time with higher resolution, i.e. higher number of voxels that translates in

larger optimization time. Despite the fact that this claim is valid for any of the presented optimization

algorithm, the MIP seems to be the one that could be the most impacted with the time exponentially

with the problem size.
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Figure 1: PT modality and delivery comparison
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Figure 5: Group Lasso penalty: ∥x1∥+ |x2| = 1
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Figure 6: Simplified representation of set C and its convex-
ity. Any pair of points (green) ∈ C, can be connected by a
line that lies in C.

Figure 7: The directed graph resulting from the Eedges edges construction. Source and sink nodes are represented
as the left and right circles. A path in the digraph is necessarily a valid sequence of activated energy layers. In this
simplified example, bold edges represent a possible unique path (from source node 0− to sink node 0+). in which the
dark blue nodes are the activated ELs, and where the first beam has no activated EL.

Figure 8: (Color for print) Optimized dose distributions (2mm resolution) obtained with the different modali-
ties/algorithms - Small target
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Figure 9: (Color for print) Optimized dose distributions (1mm resolution) obtained with the different modali-
ties/algorithms - Small target

(a) 2 mm resolution (b) 1 mm resolution

Figure 10: (Color for print) DVH comparison between the different algorithms used for the small target

Figure 11: (Color for print) Optimized dose distributions (2mm resolution) obtained with the different modali-
ties/algorithms - Expanded target
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Figure 12: (Color for print) Optimized dose distributions (1mm resolution) obtained with the different modali-
ties/algorithms - Expanded target

(a) 2 mm resolution (b) 1 mm resolution

Figure 13: (Color for print) DVH comparison between the different algorithms used for the expanded target

(a) Sparsity (red) and D95 (blue) (b) # of switch-ups (red) and dose fidelity cost value (blue)

Figure A1: (Color for print) FISTArcPT metric versus sparsity group weighting λ

41



(a) Sparsity (red) and HI (blue) (b) # of switch-ups (red) and fidelity cost (blue)

Figure A2: (Color for print) FISTArcPT metric versus energy sequencing weighting γ

(a) ELST (red) and HI (blue) (b) # of switch-ups (red) and fidelity cost (blue)

Figure A3: (Color for print) LS metric versus energy sequencing weighting γ for 5 runs

Figure B1: (Color for print) Convergence of FISTArcPT
objective function

Figure B2: Convergence of 5 runs of LS-ArcPT with the
same input parameters
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CT resolution 1 mm 2 mm 3 mm 4 mm 5 mm
Number of voxels 20,010,375 2,469,888 720,896 304,128 150,176
Step angle Number of spots Beamlet computation time and memory

1°: 91 beams 13,105
5373.3 s
10.5 GB

600.1 s
1.3 GB

185.4 s
395 MB

78.9 s
169 MB

41.5 s
88 MB

2°: 46 beams 6,635
2429.8 s
5.3 GB

297.0 s
668 MB

91.3 s
200 MB

38.5 s
86 MB

20.8 s
45 MB

3° : 31 beams 4,469
1770.8 s
3.6 GB

204.6 s
450 MB

62.0 s
134 MB

27.3 s
58 MB

13.3 s
30 MB

5°: 19 beams 2,622
992.2 s
2.1 GB

117.5
268 MB

36.8 s
80 MB

16.7 s
34 MB

8.4 s
18 MB

10° : 10 beams 1,453
549.8 s
1.2 GB

64.5 s
147 MB

20.1 s
44 MB

8.7 s
19 MB

4.3 s
10 MB

Table 1: Benchmarks characterization of beamlets computation time and file size associated with different CT resolu-
tion and step angles

IMPT ArcPT
Small target #ELs 39 361

#spots 1805 6635
Expanded target #ELs 25 558

#spots 400 29269

Table 2: Degrees of freedom available to optimizer

Metric/Method IMPT FISTA LS MIP SPArc
Resolution (mm) 2 1 2 1 2 1 2 1 2 1

Planned dose quality
|∆(D95,D5)| (Gy) 4.2 5.0 4.0 4.6 4.8 5.5 2.2 4.0 2.9 2.7
D98 (Gy) 56.8 56.7 55.0 56.3 56.5 56.5 58.5 57.3 57.7 58.0
CIRTOG 1.4 1.1 1.2 1.4 1.3 3.7 1.1 1.2 1.3 1.9

Delivery efficiency
#switch-ups 2 2 4 5 2 2 0 0 2 2
#switch-down 22 22 10 9 14 9 8 6 13 12
ELST (s) 24.2 24.2 28 32.9 19.4 16.4 4.8 3.6 18.8 18.2
Sparsity (%) 0 0 95.6 93.5 100 100 100 100 100 100

Degrees of freedom
#ELs activated 25 25 48 48 42 42 40 39 46 46
Non zero spots 400 400 1198 1214 131 228 171 217 1163 1225

Computational performance
Optimization
time (s)

2 12 2000 14000 300 3600 3600 3600 714 4423

Table 3: Metrics comparison between the different methods used for small target
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Metric/Method IMPT FISTA LS MIP SPArc
Resolution (mm) 2 1 2 1 2 1 2 1 2 1

Planned dose quality
|∆(D95,D5)| (Gy) 3.3 3.7 6.0 5.8 8.4 18.4 6.4 23.5 6.5 7.5
D98 (Gy) 57.7 57.5 55.5 55.3 53.8 48.8 53.8 43.6 54.1 52.6
CIRTOG 1.3 1.4 1.1 1.1 1.2 1.5 1.3 2.3 1.7 1.7

Delivery efficiency
#switch-ups 2 2 11 14 2 2 3 2 2 2
#switch-down 35 36 25 24 22 18 18 7 20 20
ELST (s) 32.0 32.6 75.5 91.4 24.2 21.8 27.3 15.2 23.0 23.0
Sparsity (%) 0 0 84.8 80.4 100 100 100 100 100 100

Degrees of freedom
#ELs activated 38 39 60 60 46 46 29 12 46 46
Non zero spots 1897 1805 2949 3139 457 511 433 272 2539 2474

Computational performance
Optimization
time (s)

19 181 20000 76000 3600 3600 12000 12000 2273 14423

Table 4: Metrics comparison between the different methods used for expanded target

Parameter
names

λ γ ϵ

Value 1. 0.1 0.1

Table A1: Tuned parameters in FISTArcPT algorithm
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Minimum 0
active layer in each beam

Minimum 1
active layer in each beam

Fidelity cost 1.29± 0.27 1.66± 0.58
D5 - D95 (Gy) 7.04± 1.21 7.79± 1.66
ELST (s) 57.38± 6.86 96.66± 10.66
#Switch-Up 8.60± 1.20 15.00± 2.10

Table A2: Impact of minimum number of active layer per beam for 5 runs

Max 1 active layer
in each beam

Max 2 active layers
in each beam

Max 3 active layers
in each beam

Fidelity cost 1.29± 0.27 1.19± 0.57 0.69± 0.33
D5 - D95 (Gy) 7.04± 1.21 6.62± 1.55 4.81± 1.30
ELST (s) 57.38± 6.86 80.56± 13.36 95.36± 19.64
#Switch-Up 8.60± 1.20 11.20± 2.04 12.80± 2.79
Sparsity (%) 100.00± 0.00 49.13± 7.48 59.57± 10.69

Table A3: Impact of maximum number of active layer per beam for 5 runs

Parameter
names

γ minEL in beams maxEL in beams Target weight Max spot intensity

Value 50.0 0 1 100.0 20

Table A4: Tuned parameters in LS algorithm

# beams
Resolution 10 31 91

ELST (total)
1 mm 22.5” 32.9” 75.6”
3 mm 29.8” 34.7” 40.2”
5 mm 21.9” 34.1” 40.2”

Optimization time
1 mm 2435” 2595” 3640”
3 mm 180” 500” 1800”
5 mm 60” 160” 860”

D5 - D95 (Gy)
1 mm 5.0 4.7 5.5
3 mm 3.1 3.4 4.0
5 mm 1.6 2.0 2.6

Layer

Sparsity (%)

1 mm 60.0 90.32 92.31
3 mm 50.0 83.87 98.9
5 mm 60.0 90.32 96.7

Table C1: Summary of FISTArcPT experiences

# beams
Resolution 10 31 91

ELST (total)
1 mm 25.0‘’ 41.4” 56.6”
3 mm 14.6” 16.4” 82.8”
5 mm 13.4” 32.3” 55.4”

D5 - D95 (Gy)
1 mm 9.5 4.6 5.4
3 mm 14.2 6.3 2.9
5 mm 7.8 1.8 1.4

Table C2: Summary of LS experiences
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# beams
Resolution 10 31 91

ELST (total)
1 mm / 3” 169.5”
3 mm 2.4” 16.4” 3.6”
5 mm 8.5” 3.6” 3.6”

Optimization time
1 mm / 2041.1” 1357.8”
3 mm 22.3” 65.8” 398.6”
5 mm 2.9” 12.5” 97.8”

D5 - D95 (Gy)
1 mm / 4.1 3.8
3 mm 5.1 5.6 6.2
5 mm 0.7 1.2 2.1

Layer

Sparsity (%)

1 mm / 100.0 78.0
3 mm 100.0 87.1 100.0
5 mm 80.0 100 100

Table C3: Summary of MIP experiences
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