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The Rogaland Anorthosite Province (RAP) – a typical Proterozoic Anorthosite–Mangerite– 
Charnockite (AMC) plutonic complex exposed in the Sveconorwegian orogen in South Norway – was emplaced  
diapirically through the crust, along a shear zone, at c. 933–916 Ma. The shear zone, recently defined as 
the Farsund Shear Zone (FSZ), crops out along the eastern flank of the anorthosite province, and it is made 
up of strongly foliated, steeply dipping, banded gneisses. The banded gneisses comprise a diversity of  
lithologies: metabasites, granitoid gneisses, augen gneisses and kinzigitic gneisses. Major and trace element  
compositions of samples mostly from the banded gneisses and the neighbouring granite gneiss permit 
us to unravel the nature of the various protoliths.  The kinzigitic gneisses result from metamorphism of  
pelitic sediments, while the augen gneisses belong to the high–K calc-alkaline series similar to the Feda suite  
(c. 1050 Ma), a major component of the Sirdal magmatic belt (SMB, 1070–1020 Ma). The meta- 
basites comprise jotunites comparable to the intermediate rocks of the AMC suite (933–916 Ma) as well as  
amphibolites and norites with trace element signatures consistent with an oceanic origin.  
Charnockitic gneisses could result from anatexis in CO2-rich conditions or from fractionation of felsic  
magma similar to that of the charnockite-grante Farsund intrusion (931–926 Ma). Some leucogranitic layers  
have a typical REE distribution of migmatitic leucosome. Other granite layers can be distinguished from the  
massive granite gneiss that has higher Th, Pb and Rb concentrations and [La/Yb]N ratios, but all granites 
display high–K calc-alkaline affinities compatible with an island-arc origin. The granite gneiss is comparable 
to the SMB rocks and the granite layers to the Suldal arc lithologies (c. 1520–1480 Ma). The FSZ hosts thin 
interleaved layers of rocks corresponding to the major lithologies exposed at regional scale. This includes 
jotunites and charnockites probably genetically related to intrusion of the c. 930 Ma anorthosite province, 
and a variety of granitic gneisses, metasedimentary rocks, augen gneisses, and mafic rocks with protolith 
ages ranging from c. 1020 Ma to c. 1500 Ma.
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Introduction
Diapiric rise of anorthosite through ductile migmatites is the dominant mechanism of emplacement of the 
large anorthosite massifs in the Rogaland anorthosite province (RAP) (Duchesne, 1984; Barnichon et al., 
1999; Charlier et al., 2010). This diapirism may have been facilitated by a shear zone as suggested by the  
occurrence of a crustal size geophysical discontinuity revealed by deep seismic data (Andersson et al., 
1996), and synthesised in the crustal tongue model of Duchesne et al. (1999). A component of this shear 
zone has been recently defined on the eastern flank of the magmatic province and called the Farsund 
Shear Zone (FSZ) (Bolle et al., 2010). This shear zone coincides with a unit of banded gneiss, interlayered 
with thin units of granitic gneiss and augen gneiss (Falkum 1982, 1985; Marker et al., 2003). 

We investigate here the petrology and geochemical compositions of various lithologies outcropping  
mainly in the banded gneisses near the RAP in the FSZ north of the Hidra anorthosite intrusion (Demaiffe 
et al., 1973; Demaiffe & Hertogen, 1981; Duchesne et al., 2001) and the Farsund charnockite-granite  
intrusion (Vander Auwera et al., 2014a), and also farther to the east, in the Rogaland–Vest Agder gneiss complex  
(Falkum, 1982, 1985) (Figs. 1, 2 & 3). We show that various types of mafic and felsic rocks produced at  
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Figure 1. Schematic structural map of the Rogaland Anorthosite Province (RAP), Farsund intrusion and adjacent  
areas, highlighting foliation trajectories. Adapted from Bolle et al. (2010). The Sirdal magmatic belt (SMB) after  
Coint et al. (2015) and Slagstad et al. (2018). The orthopyroxene–in isograd after Falkum (1982). Abbreviations: EO —  
Egersund–Ogna anorthosite, AHR – Amdal–Helleren–Rodland anorthosite, ÅS — Åna–Sira anorthosite, BKSK – Bjerkreim– 
Sokndal layered intrusion and A — its apophysis, H — Hidra anorthosite, G — Garsaknatt anorthosite, F — charnockite– 
granite Farsund intrusion, L — Lyngdal granodiorite, AMC — anorthosite–mangerite–charnockite, HBG — hornblende 
biotite granite. Foliation trajectories are drawn from foliation and igneous layering in the anorthosite bodies, igneous  
modal layering in the cumulates of the BKSK layered intrusion, and igneous and magnetic foliations in the Farsund and  
Lyngdal intrusions, as well as in the BKSK felsic rocks and the Apophysis. The concordant steeply dipping gneisses along the  
eastern margin of the RAP delineate the Farsund Shear Zone.
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various depths from tapping different sources (the crustal zone concept of Annen et al., 2006) have  
intruded this shear zone. Most intrusions are coeval with the RAP but we provide geochemical evidence 
that some could be related to older phases in the evolution of the gneiss complex, possibly up to 1500 
Ma. The FSZ might have been active for a long interval of time. 

Geological context
We have investigated metamorphic rocks in the wall rock of the RAP based on the geological maps of 
Falkum (1982) and Marker et al. (2003) (Figs. 2 & 3). Three types of lithological units are distinguished 
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in the field at regional scale: (1) augen gneiss; (2) banded gneiss which comprises different phases of 
grey granitic gneiss with sporadic amphibolitic (noritic) and metasedimentary (pelite, quartzite) layers  
(Marker et al., 2003) (also defined as locally migmatitic by Falkum, 1982); (3) granitic gneiss, grey,  
weakly foliated. Recent field work, petrographic studies, geochemical analyses and geochronological 
data (Slagstad et al., 2013, 2018; Coint et al., 2015) have revealed that east of the orthopyroxene-in 
(opx–in) isograd (Falkum, 1982; Tobi et al., 1985; Maijer & Padget, 1987), the 3 lithological units belong 
to the 1070–1010 Ma Sirdal Magmatic Belt (SMB) that is a composite NNW–SSE-trending granitoid  
batholith, comprising elongate and variably foliated plutons of granodiorite, granite and leucogranite 
(Slagstad et al., 2013; Bingen et al, 2015; Coint et al., 2015). Thin banded gneiss units, interleaved within 
granitoid plutons, have been interpreted as xenoliths or panels of older wall rocks (Coint et al., 2015). 
The granitoids intruded in pressure conditions of 0.38–0.48 GPa (Coint et al., 2015), between 1066 ± 
10 and 1020 ± 15 Ma (Bingen & van Breemen, 1998; Möller et al., 2002; Slagstad et al., 2013, 2018; 
Bingen et al., 2015; Coint et al., 2015). A large part of the belt is made up of silica-rich biotite granite to  
leucogranite. Plutons of biotite + amphibole K–feldspar-phyric quartz-monzonite to granodiorite are 
specifically called the Feda suite (1050 ± 8 Ma) and Fennefoss augen gneiss (1031 ± 2 Ma) (Bingen 
& van Breemen, 1998). These are characterised by a magnesian, high–K, high–Sr–Ba, calc-alkaline  
geochemical signature. An augen gneiss intrusion, the Liland body, occurs close to the RAP (Fig. 1) at 
some 15 km from the main SMB (Bingen, 1989). With an age of 1051 ± 4 Ma (Bingen & van Breemen, 
1998), it is considered as belonging to the SMB and represents an offshoot of the Feda suite (Fig. 1). 

The studied region, located between the SMB and the RAP, is part of the pre–Sveconorwegian basement 
(the Hardangervidda Rogaland sector) that continues to the north and merges in the Mesoproterozoic 
Suldal Arc (Roberts et al., 2013) that comprises c. 1500 Ma amphibolitic to rhyodacitic gneisses, gabbroic 
to granitic gneisses, as well as granitoids. 

In Rogaland, the high-grade gneisses of the basement have suffered two metamorphic cycles 
(Kars et al., 1980; Tobi et al., 1985). The first one (M1) of regional extension has culminated in UHT  
conditions in the upper amphibolite to granulite facies (Drüppel et al., 2013) in the time window between 
c. 1045 Ma and c. 992 Ma (Laurent et al., 2018a), and the second one (M2) has developed in an aureole  
around the AMC complex at c. 930 Ma and has also reached UHT conditions (Laurent et al., 2018b). 
An orthopyroxene isograd in quartzo-feldspathic rocks (Figs. 1 & 3) has been defined (Kars et al., 1980;  
Falkum, 1982) that shows a progressive E to W increase in metamorphic grade from amphibolite facies to 
granulite facies at the contact with the RAP. The two isograds that characterise the gneisses north of the  
Egersund–Ogna anorthosite and the Bjerkreim–Sokndal layered intrusion – an osumilite isograd in meta- 
sedimentary rocks and a pigeonite isograd in leucogranitic gneisses (Tobi et al., 1985) – have not been  
recognised in the studied area. However, Wilmart & Duchesne (1987) provided evidence ¬from a hercynite +  
quartz paragenesis armoured in porphyroblastic garnet in a kinzigitic gneiss (sample 81.12.1) ¬ that UHT  
conditions could have been reached in the banded gneisses close to the AMC complex (Fig. 2). 

We mainly focused on rocks from the banded gneisses (Figs. 2 & 3) that comprise metabasites, augen 
gneisses, granitoids rocks and kinzigitic gneisses. Most samples were collected in the banded gneisses 
that crop out along the FSZ (Bolle et al., 2010) (Fig. 2).  These samples were thus affected by the two 
cycles of metamorphism. Some samples (Fig. 3) are located near Lundevatn, more to the east, farther 
from the RAP, in another banded gneiss unit cropping out close to the SMB. These samples were clearly 
affected by the M2 cycle as shown by reaction rims between amphibolite and felsic lithologies (Tobi et 
al., 1985; Vander Auwera, 1993). We have also investigated samples from the granite gneiss unit that 
is exposed east of the FSZ (Fig. 2). All samples were strongly affected by several phases of deformation, 
particularly those located in the FSZ (Bolle et al., 2010).

The FSZ is described by Bolle et al. (2010). It is a NW–SE-trending, c. 70 km-long up to 3 km-thick, 
high-strain zone exposed along the northeastern contact of the RAP. It consists of granulite facies  
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gneisses characterised by a steeply dipping tectonic lithological layering (or banding) (Fig. 1), recording  
extensional or transtensional deformation. The diversity of gneisses hosted in the shear zone are  
analysed hereafter. The timing of deformation clearly overlaps with the timing of emplacement of the 
Rogaland Anorthosite Province, i.e., 933–916 Ma (Schärer et al., 1996; Vander Auwera et al., 2011). 
Re–Os dating of molybdenite in quartz and quartzo-feldspathic layers (Gursli mines) range from 946 ± 3 
to 917 ± 3 Ma, recording mineralisation and deformation in the shear zone (Bingen et al., 2006).

Methods of investigation
Representative samples of the major lithologies have been collected. A short petrographic description 
of the samples is given in Electronic supplements 1 & 2. Detailed field relationships of most samples 
are described in guide books – locality 4.10 in Duchesne et al. (1987), and locality 4.3 in Duchesne & 
Korneliussen (2003) – and for the samples around the lake Lundevatn in Vander Auwera (1993). 

The samples were analysed for major and trace elements. X–Ray fluorescence on a CGR Lambda 2020 
spectrometer (University of Liège) was used to analyse Si, Ti, A1, total Fe, Mn, Mg, Ca, K and P on Li  
borate glass discs, as well as Na, Rb, Sr, Zr, Y, Ni, Co, Zn, V, Cr, Ba, Ce, La and Nd, on pressed powder 
pellets. FeO was measured by titration.

Instrumental neutron activation analyses for REE, U, Th, Ta, Hf, Sc, Rb and Cr were carried out at 
the Afdeling Fysico-Chemische Geologie, KUL, Leuven, under the supervision of Jan Hertogen. The  
agreement between the two methods is excellent. When several methods were used, the values from 
the NAA have been preferred. 

Lithological units
Metabasites

Three types of metabasite have been documented in the banded gneiss units. They are  
characterized by their mineral paragenesis: 1. hornblende-bearing amphibolitic metabasites; 2. 
hornblende and biotite-bearing amphibolitic metabasites; 3. two-pyroxene noritic metabasites.  
A fourth type assembles samples from the other types that, whatever their mineralogy, have high 
P, Ti and Zr contents, characters that are typical of jotunites (Fe–Ti–P-rich hypersthene diorites or  
monzonorites). This group is called jotunitic metabasites. Jotunites are typical members of the AMC 
plutonism, particularly in the RAP where they occur as chilled margins of the Bjerkreim–Sokndal and 
Hidra intrusions as well as in a large dyke system (Duchesne et al., 1989; Duchesne, 1990). 

Sample locations and major and trace elements compositions are given in Electronic Supplement 3 and 
short petrographic features are reported in Electronic Supplement 1. 

Most samples are coming from the FSZ (Fig. 2) where the various types are intimately mixed. It is  
particularly the case in Trolldalen (Fig. 2) where samples 81–12–20 and 81–12–12 are jotunitic,  
81–12–11 is a two-pyroxene norite, 81–12–2 and 81–12–5 are biotite-free amphibolites, and 87–5 is a 
biotite-bearing amphibolite. Farther east from the RAP (but within the orthopyroxene isograd) (Fig. 3), 
samples 89–75 (Tjellesvik), 89–57 and 89–58 (Flikka) are biotite-bearing amphibolite and 84–24 (Moi) 
is a jotunitic metabasite. Thus, there are no apparent relationships between the metabasite types and 
the distance to the RAP.
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The geochemical contrast between the various types is shown in Figs. 4 & 5. The group of jotunitc 
rocks, defined by P2O5, TiO2 and Zr (Fig. 4A, B, D), tends to have a lower Mg# and higher Ba and Ce  
compositions (Fig. 4E, F) than the other metabasites. For the other elements the jotunitic rocks are 
similar to the other types, thus of little help in the discrimination process.

Compared to the biotite-bearing amphibolites, the biotite-free amphibolites have lower P2O5 (Fig. 4A), 
Zr (Fig. 4D) and Ba (Fig. 4E) contents with lower REE contents and flatter REE distributions (Fig. 5). The 
K2O content of the biotite-bearing amphibolite is consistent with the presence of biotite in the mineral 
assemblage (Fig. 4C). Finally, the two-pyroxene noritic metabasites are similar to the biotite-bearing  
amphibolite for most elements but show higher values in SiO2 (52–56 SiO2) and lower Mg# (c. 0.4)  
(Fig. 4F).
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Figure 4. Harker diagrams showing the discriminating characters of the jotunitic metabasites compared with the other 
metabasites. A typical jotunite composition (the Tjörn parental magma of Duchesne & Hertogen, 1988) is also plotted to 
show its similarities with the jotunitic metabasites.
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Paragneisses

A paragneiss occurrence (sample 81.12.1; Fig. 2) in the banded gneiss unit close to the contact with the 
Apophysis (Trolldalen) has been documented. It is a kinzigitic gneiss that contains garnet, cordierite, 
sillimanite, K–feldspar, plagioclase, hercynite, Fe–Ti oxides and quartz. Armoured relics of spinel-quartz 
aggregates in garnet suggest that temperatures >900°C were attained at c. 6 kbar in the contact aureole 
of the RAP (Wilmart & Duchesne, 1987). This gneiss locally shows evidence of migmatisation processes: 
sample 81.12.1B has a leucosome (L) associated with a melanosome (M); sample 81.12.1A is taken 
from the homogeneous part of the gneiss. Their major and trace element compositions are reported in 
Electronic Supplement 3. 

Augen gneisses

Two augen gneiss occurrences have been sampled in the banded gneiss unit of the FSZ: 81.12.16 
in Trolldalen and 81.16.3 in Eikeland (Fig. 2). They both contain K–feldspar megacrysts in a  
granoblastic matrix of equigranular grains of plagioclase, quartz, clinopyroxene, orthopyroxene, 
rare dactylitic biotite, apatite and zircon. The chemical compositions (Electronic Supplement 3) are  
compared to selected samples of the Feda and Liland augen gneisses (Bingen, 1989; Bingen et al., 1993) 
in Fig. 6. Both samples are calc-alkalic (Fig. 6A), magnesian (Fig. 6B), and belong to the high–K calc- 
alkaline series (Fig. 6C). In Harker diagrams they are similar to the less evolved samples of the Feda  
suite (but have slightly lower Mg#) (Fig. 6D). The REE content (Fig. 6E) is typically higher than in the Feda 
suite, and the spidergram (Fig. 6F) is similar with a less pronounced Nb negative anomaly and higher  
Zr contents. Although the Liland augen gneiss intrusion is located close to the FSZ (Fig. 2), Fig. 6 suggests 
that it is compositionally more differentiated and distinct.  
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Granitoids

Charnockite
Several occurrences of charnockitic rocks are found in the FSZ and in the Flikka banded gneiss. They 
include a small homogeneous body (Breimyrknuten granite: 81.24, 81.35.4), an offshoot in the Apophy-
sis (81.12.18), thick (decametric) layers (82.14, 81.46), and thin (dm–thick) layers (89–57, 89–58). The 
Breimyrknutan granite (Fig. 2) was mapped and described by Duchesne et al. (1987) as a small body 
of charnockite (hypersthene granite) showing intrusive contacts against the banded gneiss unit. It is a 
massive, unfoliated (except in a few places), coarse-grained rock. The offshoot 81.12.18 (Trolldalen) is 
interpreted as resulting from a back-veining process. In agreement with the definition of Streckeisen 
(1974, 1976), the rocks contain orthopyroxene. They belong to the high–K calc-alkaline series (Fig. 7A) 
and are ferroan (Fig. 7D). Compared to granites, their composition is characterised by a relatively low 
SiO2 content (63–70%) and a high content in mafic elements (Fig. 7B) with high FeOt (Fig. 7E) and TiO2 
(Fig. 7F). The Th is very low (Fig. 7G) and the Rb is low (Fig. 7J). The REE are moderately fractionated  
(Fig. 8A) with [La/Yb]N <10 and Eu/Eu* c. 1. 

Figure 6. Augen gneiss compositions from the Farsund Shear Zone compared to the Liland intrusion and to selected 
samples of the Feda suite (data from Bingen, 1989; Bingen et al., 1993). A and B:  MALI and Fe* vs. SiO2 of Frost et 
al. (2001); C: K2O vs. SiO2 of Peccerillo & Taylor (1976); D: Na2O+K2O–FeOt–MgO diagram; E: chondrite-normalised  
REE compositions, normalising values after Sun & McDonough (1989); F: NMORB normalised spidergrams, normalising 
values after Sun & McDonough (1989). 
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Figure 7. Granitoids compositions. A: K2O vs. SiO2 (Peccerillo & Taylor, 1976); B: Na2O+K2O–FeOt–MgO diagram; C and 
D: MALI and Fe* vs. SiO2 (Frost et al., 2001); E to J: Harker diagrams of significant elements.
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Granitoids
Several types of granitoids can be distinguished on a geochemical basis. Firstly, granite gneisses;  
secondly, granitoid layers in the banded gneisses which can be subdivided into granite (s.s.) and  
leucosome layers. All types belong to the high–K calc-alkalic series (except for sample 89–75 which is 
calc-alkaline) (Fig. 7A) but the granites are exclusively ferroan, the granite gneiss and the leucosome 
layers being magnesian to ferroan (Fig. 7D). Compared to the granite layers, most granite gneisses are 
richer in Th (Fig. 7G), Pb (Fig. 7I) and Rb (Fig. 7J) and lower in FeOt, TiO2 (Fig. 7E, F) and Zr (Fig. 7H). The 
REE distributions show high contents, high [La/Yb]N ratios and high Eu negative anomalies in granite 
gneiss (except the intriguing 73–48) (Fig. 8B), slightly lower REE contents and La/Yb ratios and small Eu 
anomalies in granitic layers (Fig. 8C), and the lowermost REE contents with large positive Eu anomalies in 
leucosome layers (Fig. 8D). Sample 81.27.1D (Fig. 8B) is a granite gneiss with a high HREE content which 
resembles the profile of a granite band but its high Pb and Th concentrations preclude its belonging to 
this group. Two hololeucocratic granites (samples 81.27.2 and 83.22.2C) are very low in Fe, Ti and Zr 
(Fig. 7).

Tracing the origin of the various rock types 
Metabasites

The jotunitic metabasites can be related to the RAP magmatism.  They have indeed strong similarities to 
the jotunite compositions (Duchesne et al., 1989; Vander Auwera et al., 1998, 2011) that are intimately 
linked to the AMC plutonism, irrespective of whether they are interpreted as parental magmas (e.g., 
Duchesne et al., 1999; Liégeois et al., 2002) or residual liquids (Bybee et al., 2014). The influence of the 
metamorphic phases on metabasite compositions has been assessed by Vander Auwera (1993) who 
has shown that P, Ti and Al are inert components in the transition from amphibolite facies to granulite 
facies. Thus, P/Al and Ti/Al ratios are not modified in the process and the high P2O5 and TiO2 values have 
not been significantly modified and thus reflect original characteristics. It is worth noting that a jotunite 
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(sample 84–24 from Moi) typically shows the development of a hypersthene rim at the contact with the 
neighbouring felsic band. As shown by Vander Auwera (1993), the rim development took place after the 
folding of the banded gneisses which implies the early intrusion of the jotunitic magma in the envelope 
prior to the M2 contact metamorphism and its associated deformation in the shear zones. This jotunite 
could be contemporaneous with the early phase of the RAP formation and be older than 930 Ma.

The other types of metabasites are more difficult to interpret. The classical view that these  
amphibolites could have a metasedimentary origin can be readily rejected because there are no  
associated carbonate rocks in the banded gneisses. Thus, the amphibolite protoliths must have an  
igneous origin and could have been affected to various degrees by migmatisation processes, indicated 
in particular by a sharp decrease of F and an increase of Nb and Ta when passing into granulite-facies 
conditions (Vander Auwera,1993). In addition, this author concluded that the REE distributions are 
not significantly affected by metasomatic processes and must reflect geochemical properties of the  
protolith. The flat REE distributions of the amphibole metabasites and the relatively low [La/Yb]N ratios 
of the biotite-bearing amphibolites and two-pyroxene norites (Fig. 5) are consistent with an oceanic 
origin, a feature which is corroborated by the Ti–V diagram of Shervais (1982) and the Ti–Zr diagram of 
Pearce & Cann (1973) (Fig. 9).
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The metasedimentary character of the kinzigitic gneiss

The major element compositions of the kinzigitic gneiss and its migmatitic leucosome and  
melanosome, projected in the Eskola triangles (Eskola, 1920), show that the homogeneous  
sample 81.12.1A was initially a pelitic sediment essentially made up of quartz, chlorite and muscovite  
(Fig. 10). The pelitic character is corroborated by the REE distribution compared to the Post-Archaean  
Argillaceous Shales (PAAS) (Taylor & McLennan, 1985) (Fig. 11). It is also very close to the upper  
continental crust composition of Taylor & McLennan (1985) except for an intriguing low Sr content 
(Fig. 11C). It is worth noting that the leucosome composition is particularly depleted in HREE and 
shows a positive Eu anomaly (Fig. 11B), features characteristic of migmatitic leucosomes (see below).  
The melanosome is enriched in HREE and complements the leucosome composition. 
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Migmatitic leucosomes

Some of the granite layers in the banded gneiss are interpreted as migmatitic leucosome essentially 
on the basis of their REE distributions (Fig. 8D) that show low REE concentrations and a clear positive 
Eu anomaly. The same is also observed in sample 81.12.1BL (Fig. 11B), the leucosome associated with 
the kinzigitic gneiss 81.12.1A. Such REE profiles are commonly observed in migmatitic rocks (Barbey et 
al., 1989; Vander Auwera, 1993; Duchesne & Wilmart, 1997), and are usually interpreted as resulting 
from selective anatexis of feldspar and quartz, with heavy REE retained in the residue by an accessory 
mineral such as zircon and common mafic minerals. A detailed discussion is outside the framework of 
the present paper.

 Charnockites

Two possible origins of charnockitic compositions have been proposed, and they both seem to be 
compatible with available major and trace element data. On the basis of experimental data in a pure 
CO2 gas phase, Wendlandt (1981) has argued that charnockitic melts could be produced by anatexis. 
Field relationships were supporting this mechanism for the Breimyrknutan granite (Duchesne et al., 
1987; Duchesne et al., 2001). 

Another process for the formation of charnockites has been documented in the neighbouring  
Farsund intrusion (Vander Auwera et al., 2014a). A differentiation series starting at around 65% SiO2  
(a quartz monzonitic composition AD011) and extending up to 72% SiO2 has been defined. It can also be  
explained by classical concepts of plutonic crystallisation. The chemical variation trends are shown in 
Fig. 12 and compared to the compositions of our samples in the FSZ.  These trends globally mimic our 
compositions if natural variations in compositions are considered, namely in the Breimyrknutan body 
and in two samples, 89–57g1 and 89–57g2, from the same layer. 

Comparison with the Sirdal magmatic belt

In the high-grade gneiss domain of South Norway, the banded gneiss formations have been intruded 
by plutons of the Sirdal magmatic belt (SMB) and are thus older than 1070 –1020 Ma (Coint et al., 
2015; Slagstad et al., 2018). Could some magmatic products from the SMB have intruded the FSZ? The 
occurrence of the Liland augen gneiss, dated at c. 1051 Ma (Bingen & van Breemen, 1998), that crops 
out close to and parallel to the FSZ (Fig. 1) is evidence that the SMB intrusive process can inject magma 
batches at some distance (10 –15 km) outside the main belt. It is therefore plausible (and the simplest 
interpretation) that augen gneisses with compositions analogous to the Feda suite could also represent 
SMB offshoots emplaced in the 1070–1020 Ma interval.

On a more general basis, it is worth comparing our granitoids to the SMB database of Slagstad et al. 
(2013) (Fig. 13). It turns out that charnockites with their high contents in FeOt (Fig. 13A) and TiO2 (Fig. 
13B) together with very low Th (Fig. 13C) are not found in the SMB. Many SMB granitoids are rich in Th, 
Pb and Rb, a feature characteristic of our granite gneiss unit, although samples 72.158 and 81.15 have 
[La/Yb]N ratios much higher than any SMB rocks. More samples are needed to constrain the origin of 
our granite gneisses but, globally, as for the SMB, an arc origin cannot be precluded considering their 
high–K calc–alkaline character. Moreover, Figs. 13A, B, D show that our granite layers with their high 
FeOt, TiO2 and Zr contents have very few equivalents in the SMB. Their formation and intrusion during 
the SMB event is thus highly unlikely. We show below that they are possibly related to the older Suldal 
Arc.
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Relationships with the Suldal arc lithologies 

Could the banded gneisses in the study area have any relationships with the older c. 1520–1480 Ma 
Suldal arc lithologies that outcrop in the northwestern part of the Rogaland Hardangervidda sector  
(Roberts et al., 2013)? In the Suldal arc, the major and trace element compositions of grey gneisses  
ranging from 50 to 78% SiO2 and granitoids from 65 to 76% SiO2 have been reported by Roberts 
et al. (2013). These two series of rocks and our granite gneisses and granite layers are high–K  
calc-alkaline and may thus have been formed in the same arc context. There are, however, significant  
differences when trace elements are considered. We compare granite gneissses and the granite layers in the  
banded gneisses to the Suldal granitoids and grey gneisses >70% SiO2 in Fig. 14. It appears that our  
granite gneisses (with typical high Th, Pb, Rb and [La/Yb]N ratios; Fig.14A, B, C, D) are not represented in 
the Suldal arc while our granitic layers cannot be distinguished from the Suldal lithologies (Fig. 14A, B, C, 
D). Thus, we cannot preclude that our granite layers could have been formed by the same process and 
at the same time as the age of the Suldal arc.

0.0

0.5

1.0

1.5

TiO2

10

12

14

16

18

20

Al2O3

0.0

0.5

1.0

MgO

0

1

2

3

4

CaO

0.0

0.1

0.2

0.3

0.4

0.5

P2O5

60 65 70 75
0

2

4

6

K2O

SiO2

60 65 70 75
0

1

2

3

4

Na2O

SiO2

0

2

4

6

8

10

Fe2O3t

Breimyrknutan Other charnockites Charnockitic LLDParental magma AD011

89.57g2

89.57g1

Figure 12. Harker diagrams comparing the charnockitic rocks (Breimyrknutan intrusion and charnockitic layers in  
banded gneiss) with the charnockitic chemical variation trends (LLD) and assumed parental magma composition AD011 
of the Farsund intrusion (data from Vander Auwera et al., 2014a).



14 of 23 15 of 23

J.-C. Duchesne and J. Hertogen        The Farsund Shear Zone: geochemical evidence for lithological diversity in the wall rock of the Rogaland Anorthosite Province

Compared to the less evolved Suldal grey gneisses (Fig. 15), our amphibolite metabasites are  
lower in SiO2 (Fig. 15A) and K2O (Fig. 15C), and higher in FeOt (Fig. 15A). Most biotite-bearing and the  
2-pyroxene metabasites have higher TiO2 contents than the grey gneisses (Fig. 15B). The REE  
distributions in all metabasites (Fig. 15E) show lower [La/Yb]N ratios than in most of the grey gneisses 
(Fig. 15D, E). 

We can speculate that our granite gneiss may have formed in an arc context but with a source  
or evolution different from that of the Suldal arc. Our metabasites with oceanic characteristics could 
belong to altered oceanic material (with overlying sediments, the kinzigitic gneiss) that, in Roberts’  
model, were accreted to a pre-existing continental margin and that were in part underthrust to the 
magma generation zone of the Suldal arc. Finally, the only vestige of the c. 1500 Ma Suldal arc in the 
south of the Hardangervidda-Rogaland sector would be the granite layers in the banded gneisses. 
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Timing of the magmatic events in the shear zone
The FSZ was particularly active during the waning stages of the Sveconorwegian orogeny with the  
intrusion of anorthosite and related rocks. Anorthosite massifs are commonly related to major  
lithospheric structures (Emslie et al., 1994; Scoates & Chamberlain, 1997; Wiszniewska et al., 2002; 
Bogdanova et al., 2004; Shumlyanskyy et al., 2017). On a large scale it has been suggested that the 
RAP intruded along a lithospheric-scale weakness zone (Duchesne et al., 1999) detected through deep 
seismic data (Andersson et al., 1996). The eastern-most part of this structure is now represented by the 
FSZ (Bolle et al., 2010). 

The Hidra anorthosite massif dated at 932 ± 9 Ma (Vander Auwera et al., 2011) intruded as a  
wedge in the FSZ. It is the youngest intrusion in the area as evidenced by its undeformed structure. The  
charnockitic part of the Farsund intrusion at 931 ± 2 Ma has been emplaced mainly through the same 
channel. This age is within errors similar to the Hidra intrusion but blastomylonitic structures in the 
Farsund intrusion close to the contact with the Hidra intrusion clearly point to a slightly older age than 
this massif. 

The Breimyrknutan charnockite and possibly the charnockitic layers were formed and emplaced  
contemporaneously with the Hidra body and with the Apophysis. The heat flow from both intrusions 
provided the high temperatures required for anatexis. 
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We suggest that the jotunite metabasite intrusions have taken place over a large time interval. They 
can be related to the emplacement of the RAP and more precisely either to the main magmatic stage 
at 933–929 Ma (Schärer et al., 1996; Vander Auwera et al., 2011) or to a later pulse of jotunitic magma 
in dykes at 920–916 Ma (Vander Auwera et al., 2011). Undeformed reaction rims between jotunitic and 
granitic layers at Moi (sample 84–24) (Vander Auwera, 1993) point to the early occurrence of jotunite in 
the envelope of the RAP prior to the deformation linked to the anorthosite emplacement. Such jotunite 
could thus be coeval with the very early stage of the HAOM (High Aluminum Orthopyroxene Megacryst) 
formation dated at 1041 ± 17 Ma (Bybee et al., 2014; Vander Auwera et al., 2014b). 

Do we have evidence of magmatic events in the FSZ during the main Sveconorwegian orogeny (1070 
–1020 Ma)? In the building up of the Sirdal magmatic belt, the banded gneiss units, coined by Falkum 
(1982), were described as “N–S-oriented zones rich in xenoliths” or as “screens of metamorphosed 
and deformed rocks” by Coint et al. (2015). Slagstad et al. (2018) show a geological map of the SMB on 
which kilometre-wide screens can be followed for several tens of kilometres. The xenoliths comprise a 
large variety of rocks from metabasites to granitoidic grey gneisses in various stages of migmatisation. 
The banded gneiss units of Falkum were intruded by the SMB products and are thus at least partly older 
than the 1070–1010 Ma SMB. 

The augen gneisses in the FSZ have calc-alkaline affinities comparable to the Feda trend and could have 
intruded the banded gneiss unit at the time of the SMB magmatism in the same way as the 1051 Ma 
Liland augen gneiss intrusion (Bingen, 1989; Bingen & van Breemen, 1998) at some distance from the 
main magmatic belt. However, they are geochemically distinct from the Liland intrusion but analogous 
to the Feda augen gneiss.
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Finally, we have some indications that the FSZ could have integrated lithologies as old as 1500 Ma. Our 
granite layers are compositionally similar to the Suldal arc grey gneisses and granitoids. In addition, our 
amphibolite- and biotite-bearing metabasites and our metapelitic rocks could represent fragments of 
an oceanic crust and its sedimentary cover cotemporaneous with or even older than the c. 1500 Ma 
Suldal arc.

Conclusions
The FSZ has been intruded by various types of magmatic rocks, besides the anorthosite massifs and 
the BKSK layered intrusion and more specifically in the studied area by the Hidra anorthosite and the  
Farsund massif. Charnockitic layers or bodies were possibly derived by local anatexis, such as the 
Breimyrknutan granite, or derived from fractionation of a quartz monzonitic magma, contemporaneous 
with the RAP magmatism in the 933–916 Ma interval. Jotunites were also emplaced during this event 
or slightly before. Augen gneisses similar to the Feda gneiss are coeval with the 1070–1010 Ma SMB. It 
cannot be precluded that granitic banded gneisses, other than migmatitic leucosomes, could have been 
produced by the same arc-related magmatism as the 1500 Ma Suldal arc. Metabasites with oceanic 
signatures may represent fragments of the ocean crust involved in the Suldal arc subduction and the 
kinzigitic gneisses could be relics of sedimentary material deposited on that crust. The shear zone has 
thus been active during more than 500 Myr and has tapped a variety of sources. It is a major component 
of the Sveconorwegian orogen.
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