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Abstract—Energy management in buildings equipped with
renewable energy is vital for reducing electricity costs and
maximizing occupant comfort. Despite several studies on the
scheduling of appliances, a battery, and heating, ventilating, and
air-conditioning (HVAC), there is a lack of a comprehensive and
time-scalable approach that integrates predictive information such
as renewable generation and thermal comfort. In this paper, we
propose an online energy management framework to incorporate
the optimal energy scheduling and prediction model of PV
generation and thermal comfort by the model predictive control
(MPC) approach. The energy management problem is formulated
as coordinated three optimization problems covering a fast and
slow time-scale.This heavily reduces the time complexity without
significant negative impact on the global nature and quality of the
result. Experimental results show that the proposed framework
achieves optimal energy management that takes into account the
trade-off between the electricity bill and thermal comfort.

Index Terms—online energy management, model predictive
control, thermal comfort, smart PV system

I. INTRODUCTION

Realizing a sustainable future, an energy management system
has the most critical role in smart energy systems such as
smart homes and smart buildings. The smart energy systems
are often equipped with photovoltaic (PV) panel, battery, and
various appliances as electric load. In particular, the heating,
ventilation, and air conditioning (HVAC) is generally respon-
sible for a significant proportion of the building consumed
energy. The main concern of occupants in a building is to
reduce electric bills and maximize occupant comfort; thus, co-
scheduling all energy subsystems, including the HVAC with
comfort consideration, is becoming more attractive.

Many studies have been reported on scheduling the energy
subsystems in a building [1]–[3]. Time deferrable appliances
such as dishwashers can be scheduled by solving the mixed-
integer linear programming (MIP) [1]. The model predictive
control (MPC) and receding horizon approach are often em-
ployed to schedule the battery and the HVAC with future
information [2], [3]. However, these works often assume the
impossible situation that the amount of renewable genera-
tion is perfectly known in advance. Moreover, they focus
on HVAC scheduling as just an energy reduction problem,
with no consideration for thermal comfort. Hence, there is
a lack of a comprehensive and time-scalable approach for a
building incorporating the predictive information for renewable
generation and thermal comfort.

In this paper, we focus on developing an online optimization
framework for a smart residential building. The proposed

Fig. 1. Schematic view of online energy management framework.

framework aims to minimize the electric bill and maximize
the thermal comfort, balancing the trade-off between them.
The MPC structure, covering a fast and slow time-scale, is
capable of getting the optimal schedules for appliances, a
battery, and HVAC in real-time. Besides, we introduce a PV
generation forecast and thermal comfort estimation model to
provide useful information. Notably, a linear regression model
of thermal comfort predicts optimal temperature set-points
adaptively based on a small historical data subset.

II. ONLINE ENERGY MANAGEMENT FRAMEWORK

Fig.1 shows an overview of our framework. The key idea of
this framework is the iteration of prediction and optimization at
different time scales. First, the framework obtains the PV power
forecasting and thermal comfort estimation in the near future,
e.g., the upcoming one day. The framework then optimizes the
schedules of energy subsystems, including appliances, HVAC,
and a battery at a medium resolution to reduce the complexity.
After that, a short-term scheduling loop is performed to incor-
porate the solution at a fine-grain resolution. The optimization
problem is mathematically formulated and solved by mathemat-
ical solvers. Finally, the obtained schedules are applied to the
targeted system. While prior work formulated an online energy
management framework [4], this paper additionally extends to
minimize electric bills as well as maximize thermal comfort.

A. System model

Smart residential building structure: In Fig. 1, our tar-
get building model is shown. We assume a smart residential
building comprises PV panels, a battery to store the generated
energy, appliances that include non-shiftable / shiftable appli-
ances and HVAC, and a router to control energy flow. This



model only buys the electricity from the power company via
the utility grid in case of a power shortage. On the other hand,
the surplus energy is charged to the battery, or wasted inside
the system without selling to the grid.
PV forecasting: The PV generation has a high fluctuation
due to meteorological stochastic phenomena. Thus, the PV
generation forecast is necessary to balance demand and energy
production. We use the forecast data provided by the PV
nowcasting model [5], which can predict short-term generation
based on sky-image, NN model, and highly accurate physics-
based modeling framework [6]. That provides sufficient plan-
ning for online energy management.
Battery: We use an equivalent circuit model introduced in
[7] as a liquid-state lithium-ion battery model. This model
can accurately predict a battery runtime and non-linear I-
V characteristics based on a state of charge (SOC) of the
battery. In this paper, this model is implemented to reduce the
charge/discharge energy loss and estimate the battery’s internal
state accurately.
Appliance model: We consider two sets of appliances: non-
shiftable (the starting time can not be deferred) and shiftable
(the starting time can be shifted to the other time slot) appli-
ances. The framework also optimizes the shiftable appliance
schedule with constraints of user preferences minimizing the
electric bill. Each shiftable appliance is characterized by four
parameters [8]: (1) operating time, (2) configuration time,
which is the time to be able to start the appliance, (3) deadline,
which is the time by which the appliance must be completed,
and (4) power profiles. The shiftable appliance must be sched-
uled from the configuration time until the deadline.
Building thermal and HVAC model: To provide the indoor
temperature control and ensure thermal comfort, we capture the
building dynamics using the following equation [9]:

T in
t+1 =(1− ∆t

τ
) · T in

t +
∆t

τ
· {T out

t

− 1000R · (PAC · COP · ut +Qgain
t )} (1)

where t is a time index, and ∆t is length of time resolution. T in

and T out are the indoor and outdoor temperatures, respectively.
τ and R show the time constant and the thermal resistance for
the building dynamics, and they are identified by the building
datasheet. Qgain is the thermal gain in kW for the building
such as solar radiation and internal heat. PAC and COP are
rated power and coefficient of performance of the HVAC,
respectively. We assume the air conditioner with an inverter
as HVAC, i.e., HVAC output can be continuously controlled
from 0% to 100%. Thus, the manipulated variable u for each t
is introduced and scheduled with the range from 0% to 100%.

B. Thermal comfort estimation

To improve thermal comfort for building zones, we introduce
the Fanger’s predicted mean vote (PMV) / predicted percentage
of dissatisfied (PPD) model [10] widely adopted to a real
application. Fanger’s model can predict the occupants’ level of
dissatisfaction in a zone based on environment and occupant
parameters, e.g., indoor temperature, humidity, metabolic rate,
and clothing insulation.

Fig. 2. Dual time-scale optimization flow of online energy management
framework.

Since our framework controls the indoor temperature, we
need to express Fanger’s model as a function of the thermal
zone’s temperature only. Therefore, we employ a linear regres-
sion model same as appeared in [11] to construct a thermal
model for the indoor temperature in the following form:

PMVt = θ0t + θ1t · T in
t (2)

where θ0 and θ1 are the weights. The weights for each t are
iteratively updated and refined every day using only the latest
historical data of last x days and near time window (-y steps ∼
+y steps of same time). This model’s concept is based on the
fact that Fanger’s factors (e.g., metabolic rate, clothing, and so
on.) are almost constant for the last few days, while the weather
such as humidity can be considered similar for a given time slot
between consecutive days [11]. In this paper, x and y are set
to 15 and 3 same as in [11].

When the PMV is 0, the dissatisfied rate (PPD) is minimum
(5%), i.e., the best case. From the model (2), for all time steps,
we extract the temperature set-point T set

est,t to minimize the PPD,
and the upper / lower bound, denoted by Tupper

est,t and T lower
est,t ,

which ensures the acceptable PPD limit of less than 10% in the
ASHRAE 55 standards. These values are used in the objective
function and the constraints.

III. DUAL TIME-SCALE OPTIMIZATION

Fig. 2 shows the dual time-scale optimization flow of the
proposed framework. The framework comprises multiple op-
timization stages for each purpose, considering different two
time-scales, which are coarse- and fine-grain time scale. In this
way, we deal with long- and short-term system dynamics simul-
taneously, which allows to heavily reduce the time complexity
while maintaining high solution quality.

Let Tc and Tf be the planning period of coarse- and
fine-grain time scale, respectively. ∆tc and ∆tf be the time
resolution of coarse- and fine-grain time scale, respectively. In
accordance with the MPC, the framework iterates the following
process every internal period, e.g., 15 min. First, the PV
forecasting and the comfort estimation model provides pre-
dictive information. Then, appliance scheduling (AS) decides
shiftable appliance schedule. Next, the thermal and battery
scheduling (TBS) calculates the battery and HVAC schedules.
These schedules are obtained for a long period of Tc (e.g.,
24 hours), with coarse-grain resolution ∆tc (e.g., 15 min). For



the long planning period, PV forecasting is roughly performed:
history-based prediction. After that, the fine-grained energy
scheduling (FES) is executed to provide precise control for a
short period ∆tf (e.g., 15 min) with a resolution ∆tf (e.g., 1
sec). Based on the above procedures, the comprehensive energy
management dealing with appliances, HVAC, and a battery is
realized in real-time. The details of the framework are described
as follows:

A. Appliance scheduling

In the AS, the ON-OFF schedules of shiftable appliances are
optimized by solving the MIP problem. To capture long-term
system dynamics such as PV generation and electricity prices,
Tc and ∆tc take typically 24 hours and 15 min, respectively.
The main financial concern of a smart residential building’s
occupant is the electric bill. Therefore, the objective function is
to minimize the electric bill, and the solution of the AS contains
the optimal schedules for shiftable appliances and energy
purchases from the utility grid. Note that HVAC and battery
scheduling are omitted and solved in the next problem, and
this decomposition reduces the time complexity significantly.
Only the appliance schedules are employed, and the rest are
discarded and recalculated in the following problem.

B. Thermal and Battery Scheduling

The TBS realizes the optimal HVAC and battery scheduling
for the same time scale as AS. The input is shiftable appliance
schedules obtained by AS, electricity price, weather infor-
mation, and optimal temperature set-points T set

est with limits
Tupper
est /T lower

est discussed in Sec. II-B. In order to balance trade-
off between electric bill and thermal comfort, we employ the
weighted sum approach, and the objective function is defined
and minimized as follows:

Jopt = ω · Jcost + (1− ω) · Jcomfort + Pe ·
∑
tc

stc (3)

where:

Jcost =

Tc∑
tc=0

ξtc · Etc/Billmax (4)

Jcomfort =

Tc∑
tc=0

(T in
tc − T

set
est,tc)2/|T error

max | (5)

where ω is the weight to control the trade-off. Pe is a large
penalty constant (e.g., set to 1000), and stc is a non-negative
slack variable that takes the value by which T in

tc exceeds
the limits Tupper

est,tc and T lower
est,tc . ξtc means electricity price per

kWh, and Etc is the purchased energy from the grid. Jcost
and Jcomfort are cost functions indicating electric bill and
indoor temperature error from optimal set-point. To treat these
functions equally in the weighted sum, they are normalized [12]
by possible maximum values Billmax and T error

max .
The formulation includes battery model and energy flow

constraints for the building, but the details are omitted because
of space limitations. Hence, the TBS realizes the co-scheduling
of the HVAC and the battery. Since the battery generally has a
great impact on energy usage, this co-scheduling will provide
more flexibility to the trade-off between the electric bill and

TABLE I
RESULTS OF TOTAL ELECTRIC BILL AND AVERAGE PPD FOR PROPOSED

AND FIXED SET-POINT METHODS.

Method Proposed method

Comfort Balanced Eco

Electric bill [cents] 210 201 189
Average PPD [%] 5.17 5.75 9.22

Method Fixed set-point method

24◦C 25◦C 26◦C 27◦C

Electric bill [cents] 235 220 206 192
Average PPD [%] 12.7 6.46 6.15 9.70

thermal comfort. The accurate battery model includes non-
linear equations; thus, this problem has to be dealt with by
a non-linear programming (NLP) solver. Then, the obtained
battery power trajectory is utilized as reference values in the
FES.

C. Fine-grained Energy Scheduling

The FES realizes short-term energy management to inter-
polate the coarse-grain schedules of the other two problems.
We formulate the NLP problem to minimize the mismatch
between demand and PV generation. The PV nowcasting model
provides the forecast profiles of PV power generation. Besides,
the equivalent circuit battery model is integrated to capture the
transient energy loss. The FES usually employs 15 min period
as Tf , because a 15 min period is well-balanced between PV
forecast accuracy and the optimization problem’s dimension.
Meanwhile, the time resolution ∆tf is set to be 1 sec to
consider battery dynamics whose time constant is usually a
few seconds. We also introduce the constraint to ensure that
the battery power does not deviate greatly from the reference
battery power provided by TBS. The precise battery power
schedule optimized by the FES is also applied to the targeted
system.

IV. SIMULATION RESULTS

In the simulation study, we consider the simulation period of
five days in August. The parameters of the proposed framework
are: Tc = 24 h, ∆tc = 15 min, Tf = 15 min, and ∆tf = 1
s. Thus the optimization flow is executed every 15min. The
CPLEX v12.9 and IPOPT v3.12 are used as the MIP solver
and the NLP solver, respectively. Note that the total solution
time of the three optimization problems is average under 10
sec for modern laptop PC (Intel Core-i7 6600U CPU with 2.60
GHz clock frequency and a 16 GB of DDR3 RAM). Therefore,
the solution can be obtained in real-time, even using the solvers
that are not fully optimized for runtime.

We consider real-time pricing policy as the electricity pricing
scheme and use the actual profiles from company ComEd,
US. The peak power of the PV panel is set to 4 kWp, and
the average error of the PV forecast is 25% for the long-
term and 12% for the short-term [5], respectively. The battery
size is 4kWh, and the parameters of the circuit model are
chosen from [7]. The average daily total demand is 18 kWh
without HVAC. We use the DRED dataset as demand profiles
of non-shiftable and shiftable appliances [13]. Three shiftable
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Fig. 3. Comparison of indoor temperature and electric bill for occupied period
with different weights.

appliances, including dishwasher, clothes washer-dryer, and EV
charger, are scheduled once a day. The rated power and the
COP of the HVAC are 2 kW and 2.5, respectively. We use the
building, occupants, weather data in the public dataset of the
US office [14]. We assume that the target residential building
is occupied all day from 8 am-12 pm and 1 pm-6 pm.

Firstly, we compare the proposed method, which decides the
temperature set-points adaptively based on comfort estimation,
with a method that employs a fixed set-point for indoor tem-
perature [15]. Depending on the value of the weights ω, three
modes are derived from the proposed method. Hence, “Eco”,
“Balanced”, and “Comfort” correspond to ω = 0.1, 0.5, 0.9,
respectively. Table I shows the results of the total electric
bill and actual average PPD for five days. From the results,
the proposed method outperforms the fixed set-point method
in both electric bills and PPD. In particular, both ”Comfort”
and ”Balanced” achieved a PPD of less than 6%. This result
implies that the comfort estimation model provides a suitable
temperature set-point.

In Fig. 3, the resulting indoor temperature and electric bill
during the occupied period for each mode are shown. Fig. 3
reveals that the pattern of indoor temperature and electricity
purchase changes according to the value of the weights ω. In
the upper figure, it is shown that the temperature set-point given
by the comfort estimation model T set

est adaptively changes, and
the upper and lower temperature bound, denoted by Tupper

est

and T lower
est , also changes. From the lower figure, when the

electricity price is low such as 10 am and 12 pm, the electricity
is mainly purchased to reduce the electric bill. The proposed
method considers the adaptive temperature set-point as well as
the electricity price.

Fig. 4 shows the trade-off between the electric bill and
average PPD with different battery capacities. Each point
of curves corresponds to different weights, which are ω =
0.1, 0.3, 0.5, 0.7, 0.8, 0.9 from the left. As shown in Fig. 4,
the battery introduction has a high impact on the trade-off.
Meanwhile, the large battery of 10kWh saturates the trade-
off; thus, the battery capacity should be carefully chosen
considering the trade-off and initial cost of the battery.

V. CONCLUSION AND OUTLOOK

This paper proposes a thermal comfort aware online energy
management framework for comprehensive energy scheduling
(e.g., shiftable appliances, HVAC, a battery) in a smart res-
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idential building. We formulate the optimization problem as
an MPC approach that incorporates PV prediction and thermal
comfort estimation models. The result shows that the proposed
method can balance the trade-off between the electric bill and
thermal comfort.

In this research, we employ the adaptive temperature set-
points based on Fanger’s model. However, there would be a
gap between Fanger’s model and actual comfort in the practical
case. Therefore, one future work is to reflect the occupant’s
preference based on occupant’s vote and sensing information.
On the other hand, we assume that the HVAC system is ideal,
e.g., COP is set to constant. Accordingly, the introduction of
an accurate HVAC model is also the future direction to realize
an energy-efficient framework.
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