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Abstract

To deal with increasing amounts of data, decision and policymakers frequently turn to advances
in machine learning and artificial intelligence to capitalise on the potential reward. But there is also
a reluctance to trust black-box models, especially when such models are used to support decisions
and policies that affect people directly, like those associated with transport and people’s mobility.
Recent developments focus on explainable artificial intelligence to bolster models’ trustworthiness.
In this paper, we demonstrate the use of an explainable-by-design model, Bayesian Networks,
on travel behaviour. The model incorporates various demographic and socioeconomic variables
to describe full day activity chains: activity and mode choice, as well as the activity and trip
durations. More importantly, this paper shows how the model can be used to provide the most
relevant explanation for people’s observed travel behaviour. The overall goal is to show that model
explanations can be quantified and, therefore, assist policymakers to truly make evidence-based
decisions. This goal is achieved through two case studies to explain people’s vulnerability as it
pertains to their total trip duration.

Keywords: Bayesian networks, Explainable artificial intelligence, Most relevant explanation,
Activity chain

1. Introduction

Advances in activity-based travel models allow the model builder to represent an urban trans-
portation system accurately. The models richly describe the population in terms of their socio-
economic variables. The resulting activity and mode choice behaviour of individuals can allow for
comprehensive, full-day mobility patterns. These accurate models make it possible for urban and
transport planners to anticipate both intended and, hopefully, unintended consequence as they
consider and evaluate policy interventions.

But the advances in modelling come at a price. Both Rasouli and Timmermans (2014) and
Hasnine and Habib (2021) highlight these data-hungry models’ plight as they review state of the art
in activity-based and the associated mode-choice models, respectively. Many of the more advanced
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models rely on detailed travel surveys with travel diaries or high-resolution geospatial positioning
system (GPS) data as the latter becomes more ubiquitous (Wand et al., 2018). The collected data
is frequently only a tiny sample of the population, given the cost and survey burden.

Researchers subsequently turn to advanced pattern recognition algorithms to process and make
sense of the limited data’s travel behaviour. These estimated behavioural models aim to accurately
capture the complex decision processes individuals go through when making choices about the
activities and the trips connecting those activities. Some of these behavioural models are basic
rule-based heuristics, while others are complicated and nested models relying on utility-maximising
assumptions. Researchers and model estimators aim to find an acceptable trade-off between model
complexity, computational burden, and how well the model reflects reality. And all these trade-offs
should be subjected to what the available data will and will not support.

The end goal of these often sophisticated models is to affect change in the form of improved
mobility. But how to translate the models into practice and predict future efficacy is often a
daunting task for practitioners and policymakers.

Koushik et al. (2020) recently reviewed the various machine learning applications and artificial
intelligence (AI) related to activity-travel behaviour. Many applications use AI for predicting
travel behaviour like travel time (Abdollahi et al., 2020), route (Xinyue et al., 2018) and mode
choice (Hagenauer and Helbich, 2017), to name but a few. Since the early development of expert
systems in the 1970s, it soon became apparent that experts are reluctant to trust the system if
they do not understand how it obtained the result (Teach and Shortliffe, 1981). Many early expert
systems had comparable accuracy to domain experts (Buchanan and Shortliffe, 1985). The key
to trust in an AI system is explaining its reasoning and decisions. So the focus of AI systems
shifted to supporting human intelligence rather than imitating it (Lacave and Dı́ez, 2002). For
an AI system to be trustworthy, it should explain how it makes conclusions and why the findings
are appropriate for domain experts to understand (Yuan et al., 2011). Regardless of the form,
an essential issue in AI resolution is what to explain: a good explanation should address the
task’s objectives (Leake, 1995). Koushik et al. (2020) conclude their review with the concern that
the (lack of) interpretability of many machine learning techniques remains an issue for transport
researchers.

The contribution of this paper is two-fold. Firstly, it applies Bayesian Network (BN) theory to
explain individuals’ activity- and mode choice behaviour. BNs are gaining traction as a machine
learning approach because it is highly interpretable, and the learned structure is the result of
empirical data, expert knowledge, or some combination. It is this combination that is of value
in this paper. The network presented includes demographic variables, activity and trip variables,
and the temporal variables associated with activity and trip durations. This addition of temporal
variables is not only novel, it also improves the performance of the BN on synthesising travel
patterns.

This paper’s second contribution demonstrates the BNs explanatory power, which is different
to past research that used BNs for their predictive ability (Aghaabbasi et al., 2020; Zhang et al.,
2019) and synthesis of populations (Sun and Erath, 2015; Joubert, 2018) and their daily activity
chains (Joubert and De Waal, 2020). Lacave and Dı́ez (2002) categorise the explanation in BNs into
three groups: the knowledge base, the reasoning process and evidence. Recently, a fourth group,
decisions, was suggested by Derks and De Waal (2020). In this paper, we focus on the explanation
of the evidence. Can we explain why we observe certain phenomena in people’s travel behaviour?
Can policymakers mitigate risk for vulnerable groups in the process? To demonstrate its usefulness
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in policy, we show how to explain travellers’ vulnerability quantitatively. While there is interest
in explainability in the expert system literature, most contributions on BNs are limited to address
the theoretical aspects. In this paper we provide a roadmap on how to apply explainability. Our
application demonstrates Most Relevant Explanation, a method that produces both precise and
concise explanations.

The remainder of the paper is structured as follows. Section 2 reviews the advances in and
need for explainability in artificial intelligence. The section then turns more specifically to the
application of AI in transport and travel behaviour. The following section, Section 3, introduces
the BN model and the data used to learn its structure and posterior probabilities. The model
is evaluated by means of standard machine learning evaluation metrics. Section 4 presents one
metric’s theory, the most relevant explanation, and applies it in Section 5 to two examples of
vulnerable groups. The paper concludes in Section 6 with some remarks about the future outlook
for explainable machine learning.

2. Literature review

The sophistication and so-called democratisation of AI systems (Garvey, 2018) in recent years
makes it possible to design and deploy AI systems without human intervention. Still, decisions
derived from AI systems directly affect humans’ lives, which shifted the research focus from AI
performance to eXplainability of AI methods (XAI) (Lipton, 2018). Ironically, the very first AI
systems were easy to interpret. As rule-based expert systems they were developed by generating
rules that linked to the features in the dataset (Buchanan and Shortliffe, 1985). The most common
terms used in XAI are ‘understand’, ‘interpret’, ‘explain’, ‘transparency’ and ‘trust’. These terms
are often used interchangeably and not always consistently. This is where taxonomies (Barredo Ar-
rieta et al., 2020) and workgroups such as the FAccT (Fairness, Accountability, and Transparency)
conference (https://facctconference.org/) play important roles to establish common grounds
among XAI practitioners. One of the primary goals or XAI is trustworthiness (Barredo Arrieta
et al., 2020): does the model act as it is intended to under decision-making? Humans are more
likely to adopt systems that are interpretable, tractable and trustworthy (Zhu et al., 2018).

Many AI models are interpretable or transparent by design. One example of transparency is a
logistic regression model for which the error surface and decision boundaries are clearly understood.
Also available in the suite of XAI methods are model interpretability techniques which are external
to the model architecture (Barredo Arrieta et al., 2020). These include Interpretable Model-
Agnostic Explanations (LIME) (Ribeiro et al., 2016), uncertainty quantification (De Waal and
Steyn, 2020), what-if tools and visualisation.

Bayesian networks are interpretable by design and exhibit post-hoc explanation methods. From
a mathematical point of view, a BN is a compact representation of the joint probability over all
its variables (Nielsen and Jensen, 2009). This is possible because conditional independencies hold
between unconnected variables in the model. Furthermore, from a knowledge representation point
of view, a BN is a graphical model thereby providing a formal communication language which
is easy for both humans and computers to read (Jensen, 1996). Many examples in literature
exist where BNs provide insight into complex, multidisciplinary problems and facilitate expert
knowledge elicitation (Düspohl et al., 2012; Borsuk et al., 2004). These insights are not only
obtained through the transparent design and graphical display of BNs, but also through post-hoc
explanation methods. These methods can be categorised into explanation of the model, reasoning,
evidence and decisions (Derks and De Waal, 2020). We focus on explanation of evidence which is
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to request the state of variables given some evidence (Nielsen and Jensen, 2009). Many examples
of explanation of evidence can be found in medical decision support systems, where one wants
to find the most probable diagnosis, given the clinical observations (Lucas et al., 2000; Geenen
et al., 2006). Two common mechanisms for finding the explanation of evidence are Maximum a
Posteriori (MAP) and Most Probable Explanation (MPE) (Pearl, 1988). The problem with these
two methods are that they produce hypotheses that are overspecified, meaning the explanation
contains irrelevant variables. The reason for this is because they use probability in finding the most
likely configuration of a set of variables, implying that an explanation may contain independent
and/or marginally relevant variables because they have a high probability (Yuan et al., 2011).
What is needed, is a method that returns precise and concise explanations. More recently, such
a method was introduced by Yuan et al. (2011), namely the Most Relevant Explanation (MRE)
which is able to discard less relevant variables from its explanation. MRE performs the task of
returning only the essential knowledge in the explanation. Whereas the main objective of XAI is
to gain trust in the system, explanation of evidence can be thought of as actionable explanation—
the outcome of the explanation itself can be used in decision-making. It is clear to see how such
concise explanations can be very informative and useful in decision-making and policy formulation,
as oppose to only returning accurate predictions which is the case for many AI systems. The
usefulness of explanation of evidence was illustrated in a recent application in forensic science
where the explanation of evidence is used to evaluate contesting propositions given a set of DNA
evidence (Taroni et al., 2021).

How is this relevant to transport and, more specifically, transport policy? In their review,
Rasouli and Timmermans (2014) argue that while activity-based models have developed and ad-
dressed the significant shortcomings of the classical four-step model, much development is still
required. One particular opportunity for improvement they identified is the ability of activity-
based models to capture people’s behaviour more accurately. The review highlights that studying
travel behaviour using discrete choice models has several disadvantages. The utilitarian approach
has its foundation in either random utility or rational choice theory. The latter assumes that
decision-makers have perfect knowledge of all the choice alternatives and have enough capacity
and time to review them all. Ma (2015) echoes the unrealistic assumptions. The estimated models
frequently employ logistic regression, of which the interpretation is notoriously hard if going be-
yond the “relative sign is correct” and “relative order of magnitude” or statistical significance of
determinants.

In response to the shortcomings of the mainstream travel behaviour models, more recent
advances specifically consider bounded rationality that better emulates natural human decision-
making and causal models of decision-making under uncertainty. Ma (2015) indicates that when it
comes to understanding people’s travel behaviour, various factors influence one’s choice: journey,
socio-demographic and spatial characteristics, and socio-psychological factors. For policymakers,
it is essential to understand travel behaviour because the aim of a policy is frequently to affect
changes in behaviour. A better understanding of the behaviour will likely result in higher effi-
cacy and insightful anticipation of both intended and unintended consequences. Aghaabbasi et al.
(2020) also use BN as a predictive model to understand what influences students to use (and use
frequency) of ride-sharing options.

In previous work (Joubert and De Waal, 2020), a Bayesian network (BN) was developed to
synthesise activity-based travel demand data. The results showed that Bayesian networks can
successfully synthesise both activity and trip chain structures accurately and outperforms a fre-

4



quentist approach. Of importance in the original study was the ability to synthesise activity chains
of all travel patterns, and not only the frequently observed ones like home-work-home or home-
education-home. This led to the conclusion that understanding the behaviour behind the less
frequently observed travel patterns may provide valuable insight to decision-makers.

What can we learn from adding a temporal dimension? It could tell us, for example, the amount
of time people spend outside their homes. For example, a person with two jobs, using public
transport will most probably leave home in the early hours and return after dark. Furthermore, it
could shed light on the most probable demographic profile associated with this travelling behaviour.

3. The model

This section explains the data preprocessing and its use in learning the BN structure. This
paper benefits from the diary component of the City of Cape Town’s 2013 travel survey, which
2974 households completed. The survey solicited information about the household size, income,
mobility impairments and vehicle ownership at the household level. At the individual level, the
survey includes data on each household member’s age, gender, and mobility pattern in the form of
an activity chain.

3.1. Demographic and travel variables

Table 1 shows the demographic variables’ encoding This paper only uses a subset of the travel
diary records, namely those 7 345 individuals in the working-age categories: Young, Early career
and Late career. Young individuals are in the age range of 13 to 23; Early career individuals in
the range 24 to 45; Late career in the 46 to 68 range. We argue that working-age individuals
have a prominent and different behaviour pattern than school-going children and retired persons.

Since many households choose not to provide household income information, the travel survey
accommodates this in the hhInc variable by estimating the income using an asset index from Filmer
and Pritchett (2001). In 2013 terms, Low income refers to a monthly income of ZAR3 200 or below
(using an exchange rate of EUR1 = ZAR17.23 and USD1 = ZAR14.26 that equates to approx-
imately EUR186, or USD224). The ceiling for the next income class, LowMiddle, is ZAR25 600
per month (EUR1 486 or USD1 795); for HighMiddle, it is ZAR51 200 per month (EUR2 972 or
USD3 590); and high income is anything higher.

The unique record reflects both the household id and the member number. Consequently,
one can easily calculate the household size, which is, in line with the Jakarta study of Yagi and
Mohammadian (2008), a helpful characteristic in developing countries where households tend to
be larger. The Couple category reflects a two-member household. This category, contrary to
what the name suggests, also represents single-parent households with one child. A small family
is 3 to 5 members, and a large family is six members or more. Finally, the housing variable
distinguishes between formal and informal dwellings and aims to see if housing formality affects
the travel demand.

Table 2 summarises the encoding scheme for the travel variables related to activity and mode
choice. Most activity types are straightforward, except for e3, which might be context-specific
to South Africa. General safety issues and a high reliance on a private car means that many
(more affluent) people tend to drop or collect their children from school using their vehicle. As
such, it is a dedicated activity type that cannot be incorporated with say education, generally,
because it is much shorter. In line with previous work, this paper simplifies some variable classes.
Firstly, we combined primary and secondary (e1) with tertiary education (e2) into simply education
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Table 1: Encoding scheme for demographic variables. In the Values column the numbers in brackets represent the
number of occurrences of the specific variable value. The first group of variables relates to individual characteristics,
and the second group to household characteristics (Adapted from Joubert and De Waal (2020)).

Code Description Values

gender Gender Female (3 853); Male (3 465)

age Aggregated age group based on
Census categories

Young (1 562); Early career (3 536); Late career (2 247)

edu Completed education None (332); Primary (1 309); Secondary (4 632); Tertiary
(1 072)

license Whether the individual has a
driver’s license

Yes (2 725); No (4 620)

access The number of vehicles the per-
son has access to

None (3 416); Single (1 956); Multiple (1 973)

employed Whether the individual is em-
ployed

Yes (3 582); No (3 763)

travelForWork Whether the individual’s work
is, effectively, driving or travel-
ling

Yes (308); No (6 535)

workFromHome Whether the person works from
home

Yes (283); No (6 649)

hhInc Calculated asset value as the
proxy for household income

Low (1 912); LowMiddle (4 439); HighMiddle (636); High

(358)

hhSize Household size Single (332); Couple (1 018); Small (3 953); Large (2 042)

housing Type of housing for the main
dwelling

Informal (745); Formal (6 600)

(e). Secondly, recreational visits to friends (v) were recoded as leisure (l) activities. Thirdly, we
reclassified activities with a medical purpose (m) as other activities (o).

For mode choice, we group all forms of public transport together, which, in South Africa,
represents the majority-share paratransit mode referred to as minibus taxis, formal bus, commuter
rail and bus rapid transit. Bus rapid transit is likely underrepresented in the survey data as it was
in its infancy at the survey time.

Figure 1 uses a Sankey diagram (R Core Team, 2019; Allaire et al., 2017; Chang, 2018) to
depict activity chains’ structure as we observe them in the travel diary. The height of a bar
connecting two adjacent activity types indicates the proportion of observations. For example, a
large number of working-age individuals stay at home with no travel activity. One sees this as
the thick connection between home (h) as the first activity and none (n) as the second activity.
Unfortunately, this is in line with the country’s high (official) unemployment rate of 32.5% in
December 2020. The unofficial rate is even higher. The reader can also see a thick connector
between home (h) and work (w), of which the majority then connects to home (h) again at the next
echelon. The rapidly diminishing widths mean that most persons have relatively short activity
chains, which is in line with the literature. Researchers often choose to only focus on the main
activity chain configurations: home-work-home and home-education-home.
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Table 2: Encoding scheme for activity types and trip modes.

Activity type Trip mode

Code Description Code Description

h home n none
w work c private car
e education p public transport
e3 dropping/picking up kids at school w walk
s shopping o other
l leisure
o other

3.2. The discretisation of temporal variables

In addition to the demographic and travel variables described in the previous section, we intro-
duce variables of two temporal dimensions: activity and trip durations. In the diary, respondents
report the start and end times of each trip taken. Assuming a day starts and ends at midnight, one
can derive the activity and trip durations. While there were a few exceptions, which we removed
for this paper’s work, most activity chains start and end at home. As opposed to the demographic
and travel variables, the time stamped variables are continuous and need to be discretised. Even
though BNs can accommodate continuous Gaussian distributions, we decided on the discretisation
of temporal variables for the two reasons. Firstly, the synthesis of temporal variables (as oppose to
the other chain variables in the network) is not an objective of this paper’s model. Therefore, an
approximation of these variables is good enough and lowers the computational burden. Secondly,
discretisation into time intervals which are intuitive provide valuable insight to the explanations.
For example, it is plausible that an activity with duration t > 8.5 could constitute a long work
day.

This paper applied k-means clustering to discretise the durations (Hahsler et al., 2021), using
three clusters for the shorter trip durations and four for the longer activity durations. The input
data for the activity clustering includes all activity durations, irrespective of their type or positions
in the chain. The same holds for trip durations. Table 3 summarises the clustering results.
Each discrete duration variable has an additional none category to indicate, for example, if an

Table 3: Clustering results to discretise activity and trip durations.

Duration, ttt (hours)

Cluster Activity Trip

1 None None
2 0.0 < t ≤ 1.5 0.0 < t ≤ 0.5
3 1.5 < t ≤ 5.0 0.5 < t ≤ 1.0
4 5.0 < t ≤ 8.5 t > 1.0
5 t > 8.5 –

activity only consisted of a home-work-home chain, that there was no third trip and hence no
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associated duration either. For reasons that will become apparent later in this paper, we include
two summative variables: one for the daily trip duration and the other for the daily activity
duration.

3.3. Structural learning

Once the data is prepared, the BN model can be constructed. When constructing a Bayesian
network structure as a directed acyclic graph, the model builder can either machine learn it from
data alone, expert knowledge alone, or some combination. Given the described data above, we used
a score-based learning algorithm and the minimum description length (MDL) as the score which
finds the structure that minimises the MDL (Griinwald, 2005). Once the structure is established,
the probabilities are calculated using an EM algorithm (Jensen, 1996).

An exhaustive search over the entire space of possible BNs quickly becomes intractable as the
number of possible networks explodes with the number of. The Tabu algorithm (Teyssier and
Koller, 2012) is a greedy search method that keeps a collection of previously used operators such
as an addition and deletion in memory. These operators are tabu and cannot be reversed in
succeeding steps. In addition to the Tabu algorithm, restricting the direction of some arcs also
limits the exploding search space. For example, demographic variables can influence travel and
temporal variables, but not the other way around.

Travel and temporal variables also cannot affect prior travel and temporal variables and there-
fore, assumes forward dynamics. The structural learning of the network is unsupervised as the
ground truth is not known. The objective is to discover all direct probabilistic relationships in a tree
structure (a graph without cycles). In this paper, BayesiaLab v9.2.1 (http://bayesialab.com/)
provides the computational infrastructure to perform the structural learning of the Bayesian net-
work. A similar network structure could also be obtained with libraries in R (R Core Team, 2019;
Scutari, 2010). The learning algorithm is score-based and utilised the minimum description length
(MDL) as the score. Figure 2 illustrates the resulting network structure.

Figure 2: Learned Bayesian network structure with temporal variables included.

The figure suggests that there are recurring patterns, the topic of the following subsection.
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3.4. Time-stamped models

When working in a domain that evolves, one can model a discrete component for each time unit
to capture recurring patterns (Nielsen and Jensen, 2009). Guo et al. (2019) use the BNs to study
the dynamics of people’s mobility decisions over time as they consider major life events. In this
paper, this unit of time refers to a specific activity (trip purpose) and the subsequent trip and its
purpose. For example, a child at school (origin activity), walking (mode) to home where ‘walking’
represents the trip mode.

We base the recurring patterns on both the learned structure (Figure 2) and Joubert and
De Waal (2020). One distinct emerging pattern is the direct links between subsequent trips. This
relationship between consecutive trips addresses an essential aspect often identified as a gap in
current literature models: choosing a mode early in the trip chain influences later mode choices.
For example, if you travel by car to work in the morning, the vehicle has to get back home in the
evening.

Secondly, the trip mode influences trip duration. Intuitively this makes sense, as we know a
public transport trip takes longer than its private car counterpart. Similarly, the type of activity
affects its course. Knowing an activity is of type ‘work’ allows us to predict that it will take longer
than a shopping activity.

In contrast to typical time-stamped models (Nielsen and Jensen, 2009), the number of observa-
tions in our travel survey drastically decreases for more extended activity and trip chains. Figure 1
illustrates the diminishment of observations as more and more respondents conclude their activi-
ties for the day. Therefore, there are more observations to support the patterns observed earlier
in the chain. We acknowledge this diminishing evidence, and we aim to conserve these patterns
throughout the chain. The flexibility of BNs to combine data and expert knowledge allows us to
adjust the machine-learned structure to support expert inputs. Figure 3 illustrates the time-sliced
component inferred. Finally, Figure 4 shows the BN structure resulting from both the data and

Figure 3: Time-sliced component.

expert knowledge.

3.5. Model evaluation

To evaluate the model, we investigate each chain independently in terms of accuracy, precision
and F-score. We compare the results with those established in Joubert and De Waal (2020) (see
Tables 4 & 5). The third column in the tables indicates the cumulative occurrences of the activity
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Table 4: Activity chain results. The activities are denoted as h (home); w (work); s (shopping); e (education); l
(leisure); o (other); and e3 (dropping off or picking up children at school).

Chain
Occurrences
in test set

Cumulative
occurrences

Joubert and
de Waal (2020)

Dynamic
Bayesian network

A P F A P F

h 726 49.4% 50.1% 50.0% 48.8% 51.9% 51.4% 50.8%
h-w-h 275 68.1% 68.0% 21.0% 20.0% 75.4% 33.9% 33.7%
h-s-h 107 75.4% 85.0% 7.6% 7.9% 84.1% 5.6% 6.4%
h-e-h 107 82.7% 87.0% 6.7% 7.9% 87.3% 9.2% 8.8%
h-l-h 70 87.5% 92.8% 3.2% 4.1% 91.4% 4.8% 4.5%
h-o-h 46 90.6% 94.6% 1.9% 3.6% 93.9% 6.1% 6.3%
h-w-w-h 20 92.0% 98.2% 0.7% 7.0% 98.0% 0.0% –
h-o-w-o-h 19 93.3% 97.3% 1.2% 5.3% 98.1% 0.0% –
h-e3-h 12 94.1% 98.6% 0.9% 9.9% 98.5% 0.0% –
h-o-w-h 8 94.6% 99.1% 0.6% 12.3% 98.4% 0.0% –
h-e3-h-e3-h 7 95.1% – – – 99.5% 0.0% –

Table 5: Trip chain results. The trips are denoted as n (none); p (public transport); w (walk); c (car); and o (other).

Chain
Occurrences
in test set

Cumulative
occurrences

Joubert and
de Waal (2020)

Dynamic
Bayesian network

A P F A P F

n 726 49.4% 50.0% 49.9% 48.6% 51.9% 51.4% 50.8%
p-p 193 62.6% 74.7% 15.5% 14.8% 79.2% 23.0% 23.9%
w-w 154 73.0% 82.5% 8.9% 9.2% 83.4% 18.3% 17.6%
c-c 142 82.7% 82.7% 8.8% 9.4% 85.4% 24.6% 24.6%
o-o 109 90.1% 86.6% 7.0% 7.3% 86.4% 6.7% 6.5%
c-c-c-c 23 91.7% 97.0% 1.4% 5.2% 97.2% 5.0% 4.7%
c-c-c 15 92.7% 97.7% 0.9% 5.5% 98.4% 0.0% –
p-p-p-p 9 93.3% 98.2% 0.8% 7.5% 98.0% 0.0% –
p-p-p 8 93.9% – – – 98.8% 0.0% –
w-w-w-w 8 94.4% 99.2% 0.3% 16.7% 99.0% 0.0% –
c-c-c-c-c 5 94.8% – – – 99.5% 0.0% –
o-o-o 5 95.1% – – – 99.3% 0.0% –
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Figure 4: Time-stamped Bayesian network.

or trip chain in the test set. We only calculate the performance metrics of unique occurrences
up to ±95% coverage of the test set. It can be seen that the Dynamic BN compare better that
the baseline model of Joubert and De Waal (2020) for many of the chain and trip configurations,
except for configurations with very few occurrences in the test set. Consequently, the inclusion of
temporal variables results in better activity and trip chain synthesis performance than the baseline
model. This concludes the first objective of the paper.

The temporal variables are stochastic and therefore a metric such as root mean square error
(RMSE) between the observed and predicted test cases is appropriate. The calculated RMSE for
total activity chain duration is 6.50 hours, and 1.32 hours for total trip duration. These values
are very high and can be explained as follows. Many of the observations in the test set contains
zero durations because the individuals did not travel. If you synthesise an activity and trip chain
for an individual who, in the test set, did not travel, the duration discrepancy is significant. Also,
temporal variables are discretised as explained in Section 3.2. When synthesising an activity or
trip duration, a value is randomly sampled that is uniformly distributed between the bin extremes.
Fewer bins have the benefit of capturing more observations per bin, making the model better
specified. Yet, fewer bins are also wider, aggravating the impact of the estimation error when
sampling from the wide bin. The objective of the model, however, is not to synthesise or predict
temporal variables, but to utilise them as categorical variables for the purpose of what-if analysis
in the next section. In the case of temporal variables, we move beyond the machine learning
objectives of the model towards the second objective of the paper, namely that of explainability
which specifically addresses concerns of policy and decision makers.
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4. Explanation of evidence in Bayesian networks

One potential concern one would like to address in policy formulation, is the time that people
spend out of home. For example, a person working two jobs is likely to spend more than eight
hours out of home, thereby potentially leaving or arriving at home in the dark. Furthermore, this
duration may increase if a person makes use of public transport, in stead of driving his own car.
Lastly, it can be of value to know if a person’s last trip is in walk-mode, which might increase the
security risk if this takes place during night time.

Contrary to Joubert and De Waal (2020) where the BN was used for synthesising activity
chains, this paper is concerned with explaining why some variables are in their particular states,
given a set of target variables. This type of explanation falls in the category of active explanations
as set out in Section 2. The task at hand is to find the best explanatory hypothesis to explain the
observation (also referred to as the evidence set).

In BNs terms, this means that rather than updating beliefs given evidence, we are interested
in finding the most probable values, or instantiation, for a set of variables (Korb and Nicholson,
2011). A theoretical framework for explanations in BNs can be found in Derks and De Waal
(2020). The paper introduces a taxonomy of explainability in Bayesian networks into the categories
of explainability of the model, reasoning, evidence and decisions. Existing machinery includes
explaining evidence such as Maximum a Posteriori assignment (MAP) (Pearl, 1988), and most
probable explanation (MPE) (Kwisthout, 2011). MAP is the most general method used to calculate
the most probable instantiation of a set of n variables by finding the assignment for the n variables
that maximises P (X1 = x1, . . . , Xn = xn|E) where E is the evidence (Korb and Nicholson, 2011).
The output of MAP is the full joint probability table for many variables and its calculation has
been shown to be at least NP complete (Park, 2002). Instead of finding the instantiations of all n
variables, MPE finds the instantiation of all the non-evidence nodes. MPE is calculated similarly
to probability updating (Nielsen and Jensen, 2009; Korb and Nicholson, 2011). MAP and MPE are
full instantiations of the target variables. The limitation of them as explanation methods is that
they tend to generate explanations that are or too complex. Users want accurate explanations,
but they do not want to be burdened with unnecessary details (Yuan et al., 2011). This begs the
question: What constitutes a good explanation? Yuan et al. (2011) argue that a good explanation
should consist of two basic properties, namely preciseness and conciseness. Precise addresses the
accuracy criterion in the sense that the explanation should decrease the surprise value of the set
of target variables to be explained. Concise addresses the challenge of overspecified explanations
and aims to prune less relevant variables from the explanation.

4.1. Generalised Bayes Factor

The next step is to decide on a relevance measure to evaluate the quality of an explanation.
Measuring preciseness is intuitive and given that a BN is a probabilistic graphical model, it makes
sense that the measure should be probabilistic in nature. Obvious choices are probability and
likelihood of the evidence. Likelihood of evidence has been used in calculating most probable
explanation. The problem is that a likelihood measure has the property called irrelevant conjunc-
tion which means that adding an irrelevant fact to the explanation does not change its likelihood
(Rosenkrantz, 1994). Likelihood thus addresses preciseness, but not conciseness.

We turn to the Bayes factor, which provides a measure to compare two competing models
(Bernardo and Smith, 2009), similarly to testing a full vs. reduced model in classical statistics.
They assess evidence for each of the competing models corresponding to a specific hypothesis.
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Consider two competing models, M1 and M2 with corresponding hypothesis H1 and H2. The
posterior odds in favour of model M1 over M2 is:

BF12 =
P (M1|D)

P (M2|D)
=

P (D|M1)

P (D|M2)
× P (M1)

P (M2)
(1)︷ ︸︸ ︷

Posterior odds =
︷ ︸︸ ︷
Likelihood ratio×

︷ ︸︸ ︷
Prior odds

The likelihood ratio provides a measure of whether observing D increased or decreased the odds
on H1 relative to H2 by updating the prior odds (Bernardo and Smith, 2009): BF12 > 1 signifies
that given D, H1 is now more relatively plausible as oppose to BF12 < 1 which signifies that the
relative plausibility of H2 has increased. Although these values are relative, a guidance scale was
proposed by Jeffreys (1961) in order to determine the significance of the Bayes factor value. The
scale signifies 1 < BF12 < 3 as barely worth mentioning, 3 < BF12 < 10 as substantial,
10 < BF12 < 30 as strong, 30 < BF12 < 100 as very strong and BF12 > 100 as decisive.
If P (M1) = P (M2) and the parameter spaces Θ1 = Θ2, then the Bayes factor reduces to the
likelihood ratio. The logarithms of the ratios in Equation (1) is referred to as the weight of
evidence (WOE) (Good, 1985):

log posterior odds = weight of evidence H1 : H2 + log prior odds (2)

A very early application of WOE dates back to the Banburismus method devised by Alan Turing
at Bletchley Park where the accumulating weights of evidence were a measure in favour for the
most likely settings of the Enigma machine (Alexander, 1945).
Moving closer to using the Bayes factor as a relevance metric for explanation in BNs, let us define
the following parameters:

M ≜ a set of target variables in a BN.

e ≜ the set of evidence on the remaining variables (excluding the M).

x ≜ explanation for the given set of evidence.

Where the Bayes factor is used to compare two hypotheses, Yuan et al. (2011) defined the
generalised Bayes factor in order to compare multiple hypotheses.

4.2. Most Relevant Explanation

Yuan et al. (2011) discuss several properties of GBF, of which the key property is that it is able
to weigh the relative importance of multiple variables and then only include the most relevant
ones in the explanation. The result of this is a definition of a method called Most Relevant
Explanation (MRE) which uses the GBF as relevance metric to find explanations for a given set
of evidence (Yuan et al., 2011):

Definition 4.1. Let M be a set of target variables, and e be the partial evidence on the
remaining variables in a Bayesian network. The most relevant explanation finds an explanation x
for e that maximises the generalised Bayes factor score GBF (x; e), i.e.,

MRE(M ; e) = argmax
x,∅⊂X⊆M

GBF (x; e). (3)
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In many cases, one might be interested in not only the singleton explanation which maximises the
GBF , but also other competing explanations. This provides additional information and
confidence in the best explanation. For example, if the difference between the top and second
explanation is very small, the explanations might be very sensitive to input parameters (Yuan
et al., 2011). The most obvious approach is to find the top k explanations based on the highest
GBF scores. The drawback of this approach is that one might find explanations that are supersets
of other explanations and thereby not provide the user with useful alternatives to choose from. In
order to produce explanations that are diverse and representative, Yuan et al. (2011) defined
filters to remove strongly and weakly dominated explanations from the top k solution set.

4.3. The search space for finding explanations

BNs are a compact representation of a joint probability distribution over a domain, which is
beneficial to MRE calculations as MRE can utilise the conditional independencies inherent in a
BN to seek explanations more efficiently (Yuan et al., 2011). One can furthermore limit the
search space by manually excluding nodes and/or define the search space to only include
ancestors of the node or only include the observable Markov Blanket. The Markov Blanket of a
node, say A, includes the ancestors, descendants and the nodes sharing a descendant with
A (Nielsen and Jensen, 2009). Even when limiting the search space for explanations, the search
can be time consuming, especially when the BN contains nodes with multiple states. The
software utilised for all BN computations, BayesiaLab, contains a built-in MRE feature. This
feature uses a genetic algorithm for searching the top-k explanations.
In this section we motivated k-MRE as a method for finding precise and concise explanations for
a given set of evidence in a BN. Given the exclusion of explanations which are neither strongly or
weakly dominated, the user is presented with a minimal set of explanations which are also diverse
and representative. The literature of how to interpret explanations in BNs are few and far
between and mostly limited to text book studies. One of the objectives of this paper is to provide
guidelines on how to find explanations of evidence in a BN and we suggest the following steps:

1. Define the evidence set.

2. Define the search space (which variables to exclude from the search space)

3. Choose the number of explanations to include in the solution set.

4. Choose to filter strong and/or weakly dominated explanations.

In the next section, we follow these steps in two systematic examples.

5. Case Study

5.1. Motivation

This section demonstrates the quantification of explainability in a policy setting. For this
illustration, we use the total time travelling as a proxy for a person’s vulnerability. There are
three plausible arguments for this choice. Firstly, whereas activity duration may result from one’s
own will to spend a particular time on an activity, travel time is a function of many attributes
out of the decision-maker’s control: the circuituity (windiness) of the available bus route; delayed
departure time of paratransit; or the number of transfers required to connect the origin and
destination. Secondly, in most behavioural research, travelling is assigned a negative utility: it
exposes one to the risk of accident or simply the loss of positive utility earned from participating
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in an activity. In a country like South Africa, the risk of travelling is higher given the country’s
crime rates and, in particular, gender-based violence. Thirdly, travel time reduces the time an
individual spends at home, impeding the ability to accumulate sufficient sleep. Research on sleep
deprivation is increasing, and Chaput et al. (2018), in their review article, argue that “[s]leep is
not a waste of time and should receive the same level of attention as nutrition and exercise in the
package for good health”. Consequently, its consideration by and value to policymakers is
plausible.

5.2. Experimental Setup

In this subsection, we define the parameters for the proposed steps from Section 4.3, we first
define the evidence set.

5.2.1. Define the evidence set

Whereas an extremely long activity duration could be by choice, an extreme long trip is likely not
by choice and could potentially hold a security risk, increasing one’s vulnerability. The purpose of
these two case studies is to explain the total trip duration of a person and it is therefore added to
the evidence set. In addition to the total trip duration, we also add a socioeconomic profile as
evidence. We selected two representative profiles, and will introduce them in the later subsections.

5.2.2. Define the search space

We include demographic variables that are not part of the evidence set, as well as travel variables
that relate to activity and mode choice. We omit activity and trip duration variables since they
offer little relevant value as policy levers. For example, policymakers have little control over the
choice of how long people choose to shop or visit with friends. In the case of trip duration, it is
already accounted for in the provided evidence of total trip duration.

5.2.3. Number of explanations in the solution set

As the third step in the proposed methodology, we choose to seek three explanations for the
individuals’ total trip duration. While this number is fairly arbitrary, we argue that since the
network was machine learned, the lower ranking explanations are more likely to be sensitive to
model parameters.

5.2.4. Explanation filter

Forth and finally, we filter both strongly and weakly dominated explanations. This implies that
the resulting explanations are diverse and representative: no explanation is a superset of any
other explanation. These are set through parameters configurations in the software of choice,
BayesiaLab.

5.3. Case study 1: Lilly

The first of the two case studies is based on a fictitious young lady that we will call Lilly. She is a
young employed female. Her evidence set therefore has a Female value for the gender variable,
an EarlyCarrer value for the age variable, and a Yes value for being employed.
If we want to explain the total duration of her trips, we will consider three distinct categories,
each associated with a unique evidence set. An extreme duration is considered to be longer than
6 hours in a 24-hour cycle, a long duration between 1.5 hours and 6 hours, and a short duration
less than 1.5 hours.
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The three most relevant explanations found by the k-MRE feature in BayesiaLab for each
evidence set is given in Table 6.

Table 6: Most relevant explanations for Lilly’s total trip time.

Total
trip

duration

Variables in the search space Generalised
Bayes

FactorDemographic variable Travel variable

Solution income education license workFromHome act2 trip1 trip2 trip3

Extreme

1 – – – – w p – p 152.31

2 – – – – w p – o 25.70

3 – – – Yes – p – o 23.23

Long

1 – – – – w – – – 11.15

2 – – No Yes – – – p 8.07

3 – Secondary – – – – – p 5.95

Short

1 – – – – w – – – 6.74

2 – Tertiary – Yes – w – – 4.73

3 HighMiddle – – Yes – – – w 4.42

In the extreme trip duration scenario, k-MRE attributes the total trip duration to Lilly going to
work directly from home (act2 being w) and using public transport for her first and third trips
(trip1 and trip3 being p). With a GBF of 152.31, this is a decisive explanation.
The second explanation confirms the dependency on public transport, even though it has a
significantly lower GBF of 25.70 compared to the first explanation’s GBF of 152.31. While the
third explanation suggests that the place of work is not as relevant (Lilly can either work from
home or at a formal place of employment), it still attributes the extreme trip duration to the
presence of a third trip, the first of which was made using public transport. Both the second and
third explanations can be considered strong evidence. The presence of work (w for the act2
variable) in many of the explanations is understandable as we specifically gave evidence that Lilly
is employed.
For the scenario where Lilly has a long trip duration, the presence of public transport is still
prominent as the mode choice for the third trip. The difference between the GBF values are
smaller and while the first explanation is considered to be strong evidence, the second and third
explanations are substantial. In this scenario we see the first evidence of Lilly’s level of completed
education to be a determining factor.
What is notable when Lilly has a short total trip duration is that she was able to walk. While
this only features in the second and third explanations, the GBF scores among the three top
explanation differs only slightly. Also noteworthy is that to explain Lilly’s lower vulnerability
(short total trip time), she is more likely to be well educated and be exposed to a higher
household income.
The trend over the three scenarios suggests that the privilege of good education and access to
income allows one the choice of living closer to one’s activities. This is particularly relevant in
urban environments like South Africa that is still marred by its Apartheid history where
low-income earners reside on the periphery of the cities in townships that exhibit limited
accessibility (Ziemke et al., 2018). While policymakers may have anecdotal evidence for these
facts, the application of MRE provides data-driven confirmation if they aim to confront
vulnerability in society.
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5.4. Case study 2: Jean

In the second case study, the individual is referred to as a more gender-neutral Jean since gender
is not specified. The only demographic variable in the evidence set here is that the person is
young (Young as age variable value) and unemployed (No as employed variable value). The
objective is to omit the gender variable as evidence and see if it actually features in the
explanation.
To address vulnerability, we use the same three evidence categories for total trip duration as we
have done for Lilly. The three most relevant explanations found by the k-MRE feature in
BayesiaLab for each evidence set is given in Table 7. Throughout most of the explanations, the

Table 7: Most relevant explanations for Jean’s total trip time.

Total
trip

duration

Variables in the search space Generalised
Bayes
FactorDemographic variable Travel variable

Solution income education license act2 trip1 trip2 trip3

Extreme
1 – – – e p – p 163.44
2 – – – e – p p 150.81
3 – Secondary – e – – p 143.16

Long
1 – Secondary – e – – p 21.13
2 Low – – e – – p 20.82
3 – – – e p – p 19.13

Short
1 – Secondary No – w – – 8.40
2 – – No – w w – 8.36
3 Low Secondary – e – – – 8.31

presence of education (e for the act2 variable) as the first activity after leaving home is
prominent. This is plausible given the demographic evidence for both age and employment.
The strength of all three explanations for the extreme trip duration is decisive with GBF scores
exceeding 100). The presence of public transport features prominently, especially for the third
trip (trip3). Not only does this suggest there indeed is a third trip, but also that either earlier
trips include may include public transport, or involves multiple transfers to complete the overall
journey.
For long trips, the pattern of public transport, especially as the third trip, remains persistent.
The GBF values indicate strong evidence (10–30) even though the values are much closer
together than for Lilly.
Consistent with Lilly’s case study is that short trips are associated with walk (w) as chosen mode.
Here the lack of a license (variable license having a No value) is presented in two explanations,
as is the fact that Jean has completed at least part of her/his secondary schooling. In two cases
we also see that a Low household income is included in the explanations, once for a long trip and
once for a short trip.

5.5. Discussion of results

What is relevant to policymakers is that both case studies suggest that lower vulnerability
(proxied by total trip duration) can be explained by walking as opposed to using public transport.
This has significant implications, especially in countries (like South Africa) where the lower
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income population, who are more dependent on public transport, reside further away from the
economic centres. Investing in improved public transport (higher frequencies or more services)
may rightfully reduce the total trip duration for users. But such improvements may well be fiscal
suicide for a country because the lower-income people can already not afford to pay the full cost
(or even a representative portion) of the service offering, for two reasons. Firstly, maintaining a
network serving outlying areas is much more expensive than the more traditional network that
sees denser networks and higher frequencies close to the economic center. Secondly, the higher
operating cost must be born by lower-income individuals spread over a larger area with lower
densities. Consequently, such a network will remain highly reliant on substantive subsidies.
The explanations provided by MRE are insightful as they can also challenge bias. For example,
while one may have attributed shorter total trip distance with car ownership and having access

to one or more vehicle in a household, such a bias is not supported by the evidence. At least not
for this data set.
Using data-driven evidence makes a strong case for the alternative policy approach: take the
economic activities to the people. While Lilly, with her access to higher household income, may
afford the choice to relocate closer to her activities of choice, Jean is less able to. But supporting
economic development in the peripheral areas not only addresses the heavy burden of
unemployment pervasive in (South) Africa and many developing nations, it also provides
employment and other activity options within walking distance to the lower income people. As
such, economic development and not public transport infrastructure may indeed yield better
returns on social wellbeing and reducing citizens’ vulnerability.

6. Conclusion

The dataset in this paper has served multiple analyses and decision-support efforts. In a previous
paper the dataset was used to motivate BNs as a competitive method to synthesise activity chain
data and, in doing so, predict people’s daily travel behaviour. Since a well-tested BN was
developed for this purpose, we decided to further investigate the powerful analyses methods
available for BNs. After adding a temporal component to the original BN, we demonstrated how
actionable explainability might contribute to policy formulation by means of the k-MRE method.
We also provided guidelines on how to find explanation of evidence and interpret the outcome.
One of the limitations of k-MRE, is that it can be sensitive to modelling choices. This is
specifically true if the BN is machine-learned and contain multiple states for each variable. Both
these conditions are true in our case. To explore this further, one can supplement MRE with a
sensitivity analysis which investigate how sensitive the model is to small parameter changes.
Future work includes two specific directions. Firstly, given the insightful explanations from this
dataset, it is easy to envisage the insight that might be gained from a more specifically-designed
data set or survey. A tailored data-gathering effort may yield more specific insight to a target
policy question at hand.
Secondly, we used a combination of open-source and proprietary software for the development of
the model and explanation calculations. There is an opportunity to develop open-source code to
make the complete XBN workflow more accessible. Especially since BN libraries such as bnlearn
in R already exist (Scutari, 2010).
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