p.1 Black & White Box Testing

Black & White Testing:
Bridging Black Box Testing and White Box Testing.

E. Steegmans, P. Bekaert, F. Devos, G. Delanote, N. Smeets, M. van Dooren and J. Boydens

Department of Computer Science, K.U.Leuven

Abstract

Since the mid 1970s, software testing has been dominated by two major
paradigms, known as black box testing and white box testing. Strategies for
black box testing are based on the specification of the software component
under test. Test suites developed using the black box paradigm reveal errors
against the functional requirements of software components. Strategies for
white box testing are based on the internals of software components. White
box test suites are derived from the source code of the software component
under test. Because programs can be represented in terms of graphs, solid
coverage criteria can be defined for white box testing strategies. In this pa-
per, we start with a brief overview of the principles underlying black box
testing and white box testing. Hereafter, we propose a process for testing
software components in which both paradigms are used at appropriate
points in the software life cycle. We also touch upon the applicability of
both paradigms in testing object-oriented programs.

1. Introduction

Strategies for software testing have traditionally been classified in black box testing strategies
and white box testing strategies. Black box testing starts from the specification of a software
component, resulting in test suites that check the correctness the external behavior of the com-
ponent under test. Black box testing has not been in use that much in the software industry,
largely because proper documentation is often lacking for software components. The introduction
of object-oriented programming, amplified by an increased interest in pluggable software compo-
nents is slowly changing this (bad) practice. Indeed, if software components are to be re-used over
and over again, proper documentation is a fundamental requirement. This explains a renewed in-
terest in strategies for black box testing.

White box testing builds upon the internals of a software component. Strategies for white box
testing are not facing the problems of black box testing; a software component without an inter-
nal implementation simply cannot be deployed. Another big advantage of white box testing is its
sound mathematical background. The source code of a software component can be transformed
into a graph, meaning that all the mathematical machinery underlying graph theory can be ap-
plied in developing white box testing strategies. The most important contribution of these
mathematical foundations is the definition of solid criteria for checking the coverage of a test
suite. All this explains why white box testing has been in use for a number of decades. Recently,
interest in the area of software testing has increased. This has resulted in a series of more ad-
vanced white box testing strategies such as dataflow testing and program slicing.

Strategies for software testing are applied to software systems and their components. For both
black box testing and white box testing, the software components under test are routines. A rou-
tine can range from a very simple function to a complete program. Imperative programming lan-

Black & White Testing p.2

guages use different terms for routines, such as functions and procedures in older generations of
programming languages, and methods in object-oriented programming languages. The unifying
characteristic of a routine is that it produces some outputs, given some inputs. Inputs can be sup-
plied directly via a list of arguments, or indirectly by means of some stored data. In the same way,
outputs can be yielded directly using some return types or indirectly by changing the state of some
stored data.

In this paper, we start in section 2 with a survey of the paradigm of black box testing. We dis-
cuss the basic principles underlying black box testing, illustrate with some example strategies and
conclude with pros and cons of black box testing. In section 3, we continue with an overview of
white box testing. As for black box testing, we discuss the principles of this paradigm, we illustrate
it with some strategies and discuss the strengths and weaknesses of this approach. In section 4, we
illustrate an overall strategy in which black box testing and white box testing are combined. In this
way, the strengths of both paradigms are combined, and their weaknesses are largely eliminated.

2. Black Box Testing

The paradigm of black box testing states that test suites must be derived from the specification
or the documentation of the component under test. Strategies for black box testing do not use
any information concerning the internals of the tested component. The specification of a com-
ponent describes the outputs produced by the component for each possible set of input values.
Specifications of software components are said to be declarative: they describe what can be ex-
pected from a component, without revealing how the component achieves its effects. For that
reason, black box testing is often referred to as functional testing, because it is directed towards
the external behavior of the tested component.

In this section, we first look at techniques to work out proper documentation for components.
In section 2.1, we introduce the paradigm of Design by Contract for developing specifications of
software components. In section 2.2 we continue with a brief overview of some of the most wide-
spread strategies for developing black box tests. In section 2.3, these different strategies for black
box testing are evaluated. Finally, we discuss the major pros and cons of black box testing in sec-
tion 2.4.

2.1 Documentation of Software Components

Writing proper documentation for software components is often neglected at the different
stages of the software life cycle. Much too often, the internals of software components are devel-
oped without an in-depth study of their external behavior. It is generally known that a lack of
proper documentation is one of the main reasons for high maintenance costs. The introduction of
object-oriented programming, building further upon the general notion of abstract data types, has
given some new impulses in the area of software documentation. Indeed, one of the key concepts
of object-oriented progamming is encapsulation, which states that implementation details of ob-
jects must be hidden from outside users.

An immediate consequence of encapsulation is that the behavior of a software component is
not exposed in terms of its internal behavior. This means that other formalisms are needed to
explain the behavior of a software component to its users. The paradigm of Design by Contract
[Meyer] introduces some rather simple concepts to structure the documentation of software com-
ponents in a rigorous way. Basically, the paradigm states that the documentation of a software
component must be interpreted as a contract between its users on the one hand, and the develop-
ers of the component on the other hand. Both parties involved in the contract are assigned some
rights and some duties. Clients of software components must obey all the conditions, known as
preconditions, imposed on the usage of the component. Developers on the other hand, must pro-
duce all the effects, resulting from a proper usage of the component. Clients have the right to ex-
pect proper results; developers have the right to expect proper usage.

Strictly speaking, Design by Contract uses a formal language to specify preconditions, post-
conditions and class invariants. This formal language is typically some form of first-order logic
intertwined with set-theoretical expressions. In practice, formal specifications are only rarely used

p.3 Black & White Box Testing

in documenting software components. However, the ideas underlying Design by Contract can be
applied just as well using some natural language to express preconditions, postconditions and class
invariants. The ever growing interest for Model Driven Architecture[Frankel] may give new im-
pulses to a more formal specification of software components during the early stages of software
development. However, it is not to be expected that formal specifications will be used in the near
future on large scales in practical software engineering.

Example 1 illustrates the basic principles underlying Design by Contract by means of a specifi-
cation of a method to compute the greatest common divisor of two given integer numbers. The
specification is worked out in Java[Eckel], using concepts offered by javadoc to structure the
documentation in a number of sections. In Java, documentation for methods is structured using so-
called tags.

e The tag is used to describe the role of each of the arguments in the specified
method.
* The tag is used to describe the result returned by the specified method. In

Example 1, two successive return-clauses specify that the value returned by the method is
indeed the greatest common divisor of the given numbers. Notice that these clauses are
specified both formally and informally. The formal specifications uses Java operators, ex-
tended with notations for quantifiers, such as the universal quantifier'.

e The tag is used to describe exceptions that can be thrown by the specified
method. The method for computing the greatest common divisor may throw an Illegal Ar-
gument Exception, indicating that it was not possible to compute the specified result. Ac-
cording to the specification worked out in Example 1, the method may throw this excep-
tion if at least one of the given numbers is negative, or if both given numbers are zero.

public static long gcd (long a, long b)
throws IllegalArgumentException

Example 1: Specification of a Java-method to compute the greatest common divisor.

Other tags are introduced or proposed to document Java programs. As an example, simple tags
such as and are used to identify the author a some class definition or method,
respectively to refer to other parts of the documentation. Other languages have introduced similar
formalisms for documentation purposes. As an example, C# uses XML as a flexible notation for
documenting classes and their members. As another example, the Unified Modeling Language
(UML) [Fowler] fully supports preconditions, postconditions and invariants in developing class
diagrams at the level of object oriented design. The Unified Modeling Language is complemented
with the Object Constraint Language (OCL) [Warmer] to specify design elements in a formal way.

! Readers not familiar with formal specifications in logic, may skip them. A firm understanding of formal specifica-
tions is not needed to understand the rest of the paper.

Black & White Testing P-4

2.2 Strategies for Black Box Testing

In this section, we briefly discuss two of the most popular strategies for black box testing. In
section 2.2.1, we discuss boundary value testing as a simple approach for setting up a suite for
testing the external behavior of a software component. Being a simple technique, boundary value
testing can be automated to a large extent. Section 2.2.2 introduces equivalence class testing as a
more in-depth strategy for black box testing. This approach requires more input from the test
team and rewards this with a test suite of superior quality.

2.2.1 Boundary Value Testing

Boundary value testing is a simple strategy for setting up a series of tests for software compo-
nents. The strategy starts from the observation that lots of errors tend to occur near extreme
values for input variables. A study ordered by the U.S. Army revealed that a large portion of er-
rors in software systems are boundary value faults. A typical example are loops iterating through a
sequence of elements. Often such loops fail to handle the last element in the sequence, or attempt
to iterate one more element beyond the last element in the sequence.

The basic principles underlying 1 X2___J|. _________________ I
boundary value testing are illustrated in ! : !
Figure 1. For each input variable, tests | |
will be set up involving (1) the minimum pe ¢ o
value of that input variable, (2) a value | ° |
just above that minimum value, (3) a A ¢ aTTTT X
normal value, (4) a value just below the : : >
maximum value, and (5) the maximum Figure 1: Principles of Boundary Value Testing.

value for that input variable. For the

algorithm to compute the greatest

common divisor, this strategy would result in testing the method with the following values for the
first argument: ©, 1 0, Long.MAX_VALUE/2,Long.MAX_VALUE-10 and
Long.MAX_VALUE. For all these tests, some arbitrary value for the second argument will be
used. Similar tests must be worked out covering the range of the second argument.

Several variants on the basic strategy for boundary value testing have been proposed. Robust-
ness testing extends the tests generated by a basic boundary value testing strategy with values out-
side the regular domain of input values. In the example of computing the greatest common divi-
sor, this would lead to extra tests for which the method has announced to throw exceptions. An-
other extension to boundary value testing is worst-case testing. In this strategy, all the selected
values in the different ranges for input arguments are combined one by one. For the greatest
common divisor, this strategy would for instance include a test involving the largest possible value
for both arguments. Special value testing is yet another variation on the general theme of bound-
ary value testing. In this strategy, the test suite is extended with tests covering special values for
input variables. With this strategy, the test suite for the method computing the greatest common
divisor might be extending with cases testing the correctness of the method with the value O for
both arguments.

Boundary value testing is supported by several commercially available tools, generating test
suites for methods involving arguments of primitive types. It is indeed not hard to see, that most
of the work underlying boundary value testing can be automated. All a decent tool needs to find
out is the possible range of values for the different arguments involved. The generation of the test
suite is then a pure mechanical activity. An example of a tool supporting value boundary testing is
the so-called T Too!/ which is integrated in several integrated development environments (IDE).

2.2.2 Equivalence Class Testing

Equivalence class testing [Myers, Mosley] is a more refined strategy for building black box
tests. In this strategy, the domain of possible input values is partitioned into disjoint subsets. The
basic criterion to partition the input domain is that the software component under test behaves
the same for each set of values in a particular subset. An actual test is then included in the test
suite for one representative set of values from each subset. For some methods, it is more appro-
priate to partition the domain of possible output values, instead of the domain of input values. In

p.5 Black & White Box Testing

that case, the individual tests in the test suite will be such that they each generate an output in a
different subset of the partition.

The basic principles underlying 4

equivalence class testing are illus- R B Lo 1= A
trated in Figure 2. In the example, | o | ° I e |
the range of input values for the L o 1 I

first argument is partitioned into ' ! ' '
three subsets; the range of input val- I I I [
ues for the second argument is parti- | | | |
tioned into two subsets. In total, this
results in a portioning of the input Figure 2: Principles of Equivalence Class Testing.

domain into 6 subsets. The gener-

ated test suite will use a representative value from each of these six subsets. For the algorithm to
compute the greatest common divisor, there is no reason to partition the input domain. As a con-
sequence, basic equivalence testing for this method would be restricted to a single test.

As for value boundary testing, several types of equivalence class testing have been proposed. First
of all, one distinguishes between weak and strong strategies for equivalence class testing. The
strategy described is referred to as strong equivalence testing: the test suite is build using a single
representative from each subset resulting from the partitioning of the input domain. In weak
equivalence testing, the test suite is constructed in such a way that a value from each partition is
taken. In the example of Figure 2, three test cases would be sufficient in that case. A further por-
tioning distinguishes between normal and robust equivalence class testing. Strategies for normal
equivalence testing restrict their values to legal values for each of the input variables. In this re-
spect, the strategy described in Figure 2 is a normal equivalence testing strategy. In a robust
equivalence testing, the test suite is extended with illegal values for the different input variables.

v

It must be obvious that equivalence class testing has the potential to result in test suites of su-
perior quality. First of all, there are good reasons to believe that the test suite is more complete.
By definition, different cases that can be distinguished in the specification of a method will be
covered by different tests. This is not at all guaranteed by value boundary testing. On top of more
complete test suites, strategies for equivalence class testing will avoid redundant tests. This is one
of the major problems of boundary value testing strategies, which will typically produce lots of
tests, which all cover more or less the same case in the specification of the software component
under test.

Tools supporting strategies for equivalence class testing are harder to develop. The major
problem is derive equivalence classes from method specifications. So far, only some experimental
tools are available. Some difficult problems must still be resolved before they can really be used in
practice. In practice, the test team must develop the equivalence classes manually. Once the input
domain is partitioned, tools exist to generate a quality test suite in a mechanical way.

2.3 Comparison of Strategies for Black Box Testing

In addition to boundary value testing and equivalence class testing, other strategies for devel-
oping black box test suites have been proposed. One of these strategies uses decision tables in set-
ting up the different tests. In this paper, this strategy is not discussed in detail. Decision table-
bases testing is especially useful when lots of dependencies exist among the different input vari-
ables for the software component under test.

A

Figure 3 compares the number of tests resulting from the .
different strategies for black box testing. The size of a test . Number of

.) e . . umber of tests
suite may be an important criteria, because it determines the AN
time needed to execute the test suite. It may be no surprise \.
that boundary value testing results in test suites involving a \\\\\\
lot of elements. The more reasoning is done in setting up .
test suites, the less tests will be included in the suite. For that Bound. Equiv. Decision
reason, the number of test cases resulting from equivalence Value Class Table

class testing is quite a lot smaller compared with boundary Figure 3: Number of Tests per Black

Box Strategy.

Black & White Testing p.6

value testing. Practice further shows that decision table-based testing results in even smaller test
suites.

Figure 4 sketches the effort required to develop test suites by means of the different strategies.

It has already been pointed out that boundary value testing is to a large extent a pure mechanical
process. The human effort is therefore low. Equivalence ‘

class testing cannot be fully automated. The partitioning .
of the input domain must be done by the test team. Be- .////
cause decision tables are even harder to set up, this strat- ,/
egy requires the biggest effort from the test team. e
7 Effort
The effort required to set up a test suite and the num- ¢

ber of tests are important criteria. However, the biggest Bound Equiv Decisio
and most important question is how effective the test . : n

suite is in finding errors in the software component under Figure 4: Effort for setting up Test

test. This is probably the major drawback of strategies for Suites.

black box testing. Because the internal of the component

under test are not taken into account, this type of question cannot be answered. It is only possible
to give some vague guidelines concerning which strategy to use in which case:

* Boundary value testing or equivalence class testing are best used if input variables refer to
physical quantities. This is especially true if the input variables are independent of each
other. For physical quantities, it is always possible to define an order on the input domain.
Moreover, criteria for partitioning such domains are usually easy to find.

* Equivalence class testing and decision table-based testing are best used if input variables refer
to logical quantities, and if these variables are independent of each other. Logical quantities
are usually difficult to order, which makes it difficult to apply boundary value testing.

e Decision table-based testing is best used if input variables are highly dependent of each
other. This is what decision tables have been introduced for in the first place: describing
which actions to take under complex conditions, built from complex combinations of more
simple conditions.

2.4 Advantages and Disadvantages of Black Box Testing

Most of the advantages of strategies for black box testing are rather straightforward to derive
from its principles. The biggest advantage probably is that black box testing is directed towards
the outside behavior of software components. After a series of black box tests, there will be some
confidence that the tested component indeed behaves as described in its specification.

e The test suite can be designed as soon as the specifications of the software components are
completed. Ideally, specifications are built rather early in the process of developing soft-
ware components. Moreover, because the test suite is independent of the internal of the
component under test, there is no need to change the suite each time the implementation
of the component changes.

e The test team needs no knowledge of implementation issues, including programming lan-
guages or other tools used in the implementation of the component under test. This means
that it is possible for project leaders to hire non-software people to work out test suites as
soon as specifications have been worked out. The software team itself can then continue
working out the implementation of the component.

e Strategies for black box testing help in exposing ambiguities, inconsistencies or gaps in
specifications of software components. Proper documentation has always been a problem in
the area of software engineering. If a test suite is set up based on that documentation, lots
of shortcomings can be revealed, especially if people outside the development team are re-
sponsible for testing software components.

The disadvantages of strategies for black box testing are also easily derived from their basic
principles. As mentioned above, the biggest shortcoming of black box testing is the lack of objec-
tive criteria to evaluate the quality of test suites. As an immediate consequence, there will always
remain some doubts concerning the correctness of a software component, for which only some
black box tests have been worked out. Other disadvantages of black box testing are briefly de-
scribed below:

p.7 Black & White Box Testing

* Without clear and concise specifications of software components, black box test suites are
hard, if not impossible, to develop. Because proper documentation is often still lacking,
black box testing cannot be applied in some software projects.

* Because black box testing does not build upon knowledge of the internals of software com-
ponents, it is possible that some paths through the code are left untouched. As a result,
software components may turn out to fail, once they are invoked with input values trav-
ersing these unexplored program paths. This explains why pure black box testing will never
result in 100% confidence concerning the proper functioning of the tested component.
White box testing strategies try to resolve this issue.

3. White Box Testing

Contrary to strategies for black box testing, white box testing strategies use the implementa-
tion of software components to develop test suites. The implementation of a software compo-
nent describes ow the component produces output values out of input values. It is worked out in
some programming language. If that programming language is an procedural language like C, or an
object-oriented programming language like Java or C#, the internals of a software component are
said to be operational. In building test suites, strategies for white box testing analyze the structure
of the source code. White box testing is therefore also referred to as structural testing. Glass box
testing is also often used as a synonym for white box testing.

Because strategies for white box testing start from an in-depth analysis of the source code,
they are amenable to rigorous definitions, mathematical analysis and precise measurements. This
turns out to be one of the major benefits of white box testing strategies. They will be able to pro-
duce some precise figures concerning the quality of a test suite. White box testing is not a new
paradigm in the area of software testing. Some strategies were already defined in the mid 1970s, in
the context of the paradigm of structured programming.

In this section, we first describe what is meant by an in-depth analysis of source code. In sec-
tion 3.1, we describe how the source code of a software component can be described in terms of a
graph. Such graphs are at the heart of all white box testing strategies. In section 3.2 we give a
brief overview of path testing strategies. These strategies introduce coverage criteria that are de-
fined directly on top of the program graph. In section 3.3, data flow testing is introduced as a
more in-depth type of white box testing. In this type of strategies, the program path is used as an
instrument to derive additional information related to the usage of variables in the analyzed code.
This additional information then serves to introduce some solid coverage criteria for test suites.
Finally, we discuss the major pros and cons of white box testing in section 3.4.

3.1 Program graphs

White box testing strategies use the source code of software components as the basic informa-
tion for building test suites. Example 2shows a possible implementation of the method for com-
puting the greatest common divisor, in view of the specification worked out in Example 1. The
algorithm starts with throwing an illegal argument exception, if the method is invoked under con-
ditions in which the greatest common divisor cannot be computed. In Java, the throwing of an
exception in the body of a method, immediately terminates the execution of the method. After
having handled the special cases in which one of the given numbers is 0, the body of the imple-
mentation uses the property that the greatest common divisor of two numbers a and b, is equal to
the greatest common divisor of a-b and b, provided a is greater than b. As an example, the
greatest common divisor of 63 and 14, is equal to the greatest common divisor of 49 and 14.

public static long gcd (long a, long b)
throws IllegalArgumentException
{

if ((@<0) || (b<B) || ((a==0) & (b==20)))
throw new IllegalArgumentException();

if (a == 0)
return b;
if (b == 0)

return a;

Black & White Testing p.8

while (a != b)

if (a > b)
a=a-b;
else
b=>b- a;
return a;

}

Example 2: Implementation of a Java-method for computing the greatest common divisor.

Given the source code of Example 2, white box testing strategies will try to derive a proper
test suite from it. Solid criteria for this are discussed in the following sections. One rather intuitive
criterion is that each case in the source code should be executed at least once by some element of
the test suite. For the algorithm to compute the greatest common divisor, this might lead to the
following tests. In section 3.2, we will see that this test suite satisfies the criterion of path cover-
age.

e [-3,25],[33,-7] and [0, O] for testing the illegal cases that will lead to the throwing of

an illegal argument exception.

e [0,25]and [37, 0] for the testing the correctness of the instructions dealing with the case
in which exactly one of the given arguments is 0.

e [12,12],[39,13],[17,51]and [126, 240] for the actual algorithm for computing the
greatest common divisor of non-special values. The first test covers the case in which the
loop immediately terminates. The second and third test deal with the case in which one of
both input variables is consistently diminished. The last test then deals with the case in
which both input variables are diminished during the execution of the loop.

Strategies for white box testing all start from an
analysis of the source code under test. For that pur-
pose, the source code is represented in terms of a
directed graph. Strategies for white box testing
commonly use so-called decision-to-decision paths
(DD-Paths) [Miller]. Nodes of a such a program
graph represent sequences of statements or parts of
statements that begin with the outway of a decision
statement and end with the inway of the next deci-
sion statement. No internal branches occur in such a
sequence. Arrows in the graph then denote possible
flows through the source code. Figure 5 shows the
program graph for the body of the method for com-
puting the greatest common divisor.

e The top node of the graph consists in check-
ing whether the first argument is negative. If
it is indeed negative, execution may flow to
the node in which the exception is thrown. If
the argument is not negative, execution flows
to the node in which the second argument is
checked for a negative value.

e The bottom of the graph represents the nodes
involved in the loop. If the input values are
not equal, execution flows to the node
searching for the largest value of both. From
there on, execution is directed to the node in Eigyre 5. Program graph for greatest common
which the smallest value is subtracted from the divisor.
largest value. From these nodes, execution
flows back to the controlling node of the
loop.

* Notice that program graphs are typically constructed in such a way that they all have one
entry node and one exit node. This explains why the node in which the exception is thrown
and the different return-nodes, proceed with flowing to a common point through which the
program graph can be exited.

p.9 Black & White Box Testing

Loops have always been a bit of a problem in analyzing program graphs. In the context of
white box testing, loops are typically represented by a single node, that can be refined into a
graph on its own. In Figure 5, this is represented by the dotted rectangle, representing the entire
loop as a single node. If that node would node have been worked out in detail, the program graph
would flow from the node in which the second input variable is checked to be zero, through the
node representing the loop, to the node in which the resulting value is returned.

Program graphs involving DD-paths are a condensed way to capture the structure of the inter-
nals of a software component. Instead of producing nodes for each statement or statement-part in
the source code, sequences of statements that by definition flow from the one statement into the
other are grouped together in a single node. Lots of commercial tools are available producing DD-
path graphs for programs written in a great variety of imperative and object-oriented program-
ming languages.

3.2 Path Testing

Once a program graph is available for the software component under test, test suites can be set
up using different criteria concerning the flow through the graph. Path testing strategies involve
criteria directly related to the program graph itself. All these criteria somehow determine to
which extent elements of the program graph are covered by elements of the test suite. Some of
the most widely used coverage criteria are described below:

1. Statement coverage, referred to as C,, imposes that each node in the program graph must
have been executed by at least one element in the test suite. In the example graph for the
greatest common divisor, this criterion is satisfied by a test suite involving the input values
[0,0],[0,7],[12,0], [24,16]. These tests are sufficient to visit each node in the pro-
gram graph at least once.

2. Predicate Coverage, referred to as C,, imposes that each edge in the program graph must
have been traversed by at least one element in the test suite. This criterion is more strict
than statement coverage, because now each branch out of a node must have been followed
at least once. In the example graph for the greatest common divisor, this criterion is satis-
fied by a test suite involving the input values [-3,6], [7,-9],[0,0], [0,7], [12,0],
[24,16]. Again, it should be easy to see that this suite traverses each edge in the program
graph of Figure 5.

3. Predicate Coverage + Loop Coverage, referred to as C,, imposes predicate coverage as de-
scribed above complemented with some additional criteria concerning possible loops in the
source code. The simplest form of loop coverage states that at least one test should jump
out of the loop immediately, and at least one test should traverse the loop at least once. A
more extended form of loop coverage imposes a test in which the loop is executed a mini-
mum number of times, a test in which the loop is traversed a medium number of times, and
a test in which the loop is traversed a maximum number of times. In the example graph for
the greatest common divisor, loop coverage would impose at least one additional test using
equal values for both input variables (e.g., [12, 12]).

4. Path Coverage starts by examining all possible so-called basis paths through the source
code represented in terms of a program graph. The notion of a basis path, which is due to
McCabe, structures all possible paths through a graph in a vector space. We will not explore
these mathematical foundations in this paper. In the example graph for the greatest com-
mon divisor, this criterion would be satisfied by a test suite involving the input values [-
3,6],[7,-9],[0,0],[0,7],[12,0],[12,12],[17,51][39,13] and [24, 16]. Addi-
tional tests are added in this case, to cover paths flowing only through the then-part, re-
spectively the else-part of the conditional statement inside the body of the loop.

Nowadays, most quality organizations impose at least predicate coverage in white box testing
for software components. Statement coverage is also widely accepted and is mandated by the
ANSI Standard 187B.

Black & White Testing p.10

3.3

In

Data flow Testing

data flow testing [Rapps], the program graph for the software component under test is fur-

ther analyzed. Data flow testing focuses on points at which variables receive values and on points
at which values assigned to variables are used. The approach is said to formalize the intuition of
testers. Moreover, although data flow testing starts from the program graph, the approach is said
to move back in the direction of functional testing strategies.

Strategies for data flow testing start from definitions, reflecting points at which variables are

used.
ables:

In particular, the approach distinguishes between defining nodes and usage nodes for vari-

A node in a program graph is a defining node for a variable, if and only if the given variable
is defined in the statement fragment corresponding to the given node. Defining a variable
means assigning a new value to that variable. Input statements, assignments statements,
loop control statements and method calls are possible examples of defining nodes. The
nodes labeled args, respectively a-=b are defining nodes for the variable a in the pro-
gram graph of Figure 6. The first node corresponds to the binding of the actual arguments
to the formal arguments of the method; the second node assigns a new value to the variable
a.

A node in a program graph is a usage node for a variable, if and only if the given variable is
used in the statement fragment corresponding to the given node. Using a variable means
reading the value currently stored in that variable. Output statements, assignments state-
ments, loop control statements and method calls are possible examples of defining nodes.
Usage nodes for the variable a are marked with a dotted line in Figure 6. The node labeled
a<0 apparently uses the value of the variable a; the nodes labeled ret are usage nodes be-
cause they both return the value of the variable a as the ultimate result of the method.

Qualifying nodes as defining nodes and usage

nodes for variables may lead to a detection of types
of errors referred to as define/reference anomalies.
Examples of such errors are attempts to use vari-
ables before they are defined, to define variables that
are never used and to define a variable several times
before they are used. Define/reference anomalies can
be detected by a pure static analysis of the source | b<O ——— P

code.

Given the definition of defining nodes and usage
nodes for variables, the program graph can be fur-
ther analyzed, searching for different types of paths:

Given the analysis of a program graph in terms

Modern compilers signal this type of errors.

A definition-use path with respect to some ret g
variable is a path that starts with a defining

node for the given variable and ends with a us- —>
age node for that variable. The path starting P ret g

at the node labeled args in Figure 6, and
ending in the node labeled a==0 is an exam-
ple of a definition-use path for the variable a.

A definition-clear path with respect to some
variable is a definition-use path such that no
other node than the initial node of the path is

a defining node for the given variable. The : \
definition-use path of Figure 6, described :
above is also a definition clear path for that é-- @ b1:a

variable.

o
B
.,

TR
...l..‘

% .
s a>b
S X

Figure 6: Define/Usage Nodes.

of defining nodes and usage nodes, and given the set
of definition-use paths and definition-clear paths that can be derived from them, a set of coverage
metrics can be defined to measure the quality of a test suite. In this paper, we only briefly discuss

p. 1 Black & White Box Testing

two such criteria; other exist and new ones will be defined as a result of further research. The mes-
sage here is that

* A test suit is said to satisfy the All-Defs criterion, if and only if for every variable, the set
contains definition-clear paths from every defining node of the variable to a use of that
variable.

* A test suit is said to satisfy the All-Uses criterion, if and only if for every variable, the set
contains definition-clear paths from every defining node of the variable to every use of
that variable.

In the context of research on data flow testing, other criteria have been defined. We do not

discuss all of them in this paper. In the context of this paper it is sufficient to get the feeling that
criteria such as the ones above indeed given some appreciation for the quality of a test suite.

At the time of writing, data flow testing has not matured yet. More research is needed search-
ing for better coverage criteria; more experiments must be worked out in order to evaluate how
appropriate suggested coverage criteria are. On top of that, further analysis of program graphs
may lead to other types of information, that may prove to be very useful in the definition of
coverage criteria. One such approach introduces the notion of a program slice as a set of program
statements (nodes) that contribute to or affect the value of a variable at a specific node. What-
ever coverage criteria are used, there is a general consensus that data flow testing has the potential
to replace widely accepted strategies for structural testing on the long run.

3.4 Advantages and disadvantages of White Box Testing

Strategies for white box testing are to a large extent complimentary to strategies for black box
testing. As an immediate consequence, advantages of black box testing typically become disadvan-
tages of white box testing, and vice versa. The major advantage of strategies for white box testing
is that objective criteria can be defined to quantify the coverage of a test suite.

* Because source code can be transformed into graphs, the mathematical machinery of graph
theory can be used to define solid coverage criteria for test suites. Notice that testers them-
selves do not need an in-depth knowledge of the underlying mathematical theory. They
only need to understand simple notions such as defining nodes, definition-clear paths, ...

* Because white box testing starts from the source code, testing all parts of a software com-
ponent is within reach. In particular, it is no longer possible to overlook obscure parts of
the source code, because they are an integral part of the internals of the software compo-
nent under test.

The biggest disadvantage of white box testing is probably that test suites can only be developed
late in the life cycle of a software component. Indeed, the implementation of the software com-
ponent must have been worked out before a test suite can be developed.

* Practice shows that many software projects cannot be delivered on time. Because white box
testing can only be started late in the development cycle, there is a potential risk that only
a few tests are carried out, resulting in buggy software products delivered to clients.

» Strategies for white box testing also require testers with an in-depth knowledge of imple-
mentation techniques. The test team must have an in-depth knowledge of programming
languages. In such a context, the test team is often the same team as the team that devel-
oped the software component under test. Needless to say, that insiders will often look over
the mistakes they made themselves is the products they are testing.

4. Black & White Testing

In surveying strategies for black box testing and white testing, we have seen that both para-
digms have their own merits and drawbacks. The major advantage of black box testing is that the
functional requirements for a software component are verified without considering its internals.
Moreover, black box test suites can be set up rather early in the life cycle of a software compo-
nent. The major advantage of white box testing is that it is complemented with solid criteria to
evaluate the coverage of a test suite.

Black & White Testing p. 12

Black box testing and white box testing are not antipodes. In this paper we propose to com-
bine both approaches in an overall strategy for building adequate test suites for software compo-
nents. In this way, the advantages of both paradigms are combined, and the disadvantages are
eliminated. In out view, the processing of testing a software component should be performed in
the following steps:

1. Step 1: Develop a test suite based on the specification of the software component under

test. This part of the test suite will be referred to as the black test suite. This step can be
taken rather early in the development process, as soon as the functional requirements of
the component under test have been written down. Notice also that this part of the test
suite can be developed by non-software experts. This has the additional advantage that the
development team can proceed in parallel with working out the implementation of the
software component.

. Step 2: Test the correctness of the software component using the black test suite. These

tests can be performed as soon as the implementation of the software component under
test has been finished. Typically, a large part of the errors in the implementation of the
software component will be detected in this step. It is rather important to correct detected
errors, until the software component withstands all the tests in the black test suite.

. Step 3: Extend the test suite for the software component under test using the coverage cri-

terion imposed by your favorite strategy for white box testing. Typically, for complex
software components, black test suites will cover about 50% of the actual code. In most
cases, it is not important to strive for a 100% coverage. Typically, the process of comple-
menting the initial black test suite with a white test suite will be stopped as soon as a cover-
age of 80% to 90% is reached.

5. Conclusion

In this paper, we have discussed the basic principles of black box testing and white box testing.
We have surveyed some of the strategies supporting both paradigms, and have discussed their pros
and cons. Because both paradigms are complementary rather than contradictory, we have pro-
posed a testing process, that starts with the development of a black test suite early in the life cy-
cle, and that is complemented with a white test suite late in the life cycle.

References

[Eckel] B. Eckel, Thinking in Java, Third Edition, ISBN 0-13-100287-2, Prentice Hall, 2003.
[Frankel] D. Frankel, Model Driven Architecture, ISBN 0-471-31920-1, Wiley, 2003.

[Fowler] M. Fowler, K. Scott, UML Distilled: A Brief Guide to the Standard Modeling Language,
Second Edition, ISBN 0-201-65783-X, Addison-Wesley, 2000.

[Meyer] B. Meyer, Object Oriented Software Construction, Second Edition, ISBN 0-13-629155-4,
Prentice Hall, 1997.

[Myers] G. Myers, The Art of Software Testing, ISBN 0-471-04328-1, Wiley, 1979.

[Miller] E. Miller, Tutorial: Program Testing Techniques, COMPSAC’77 IEEE Computer Society,
1977.

[Miller] E. Miller, Automated software testing: a technical perspective, American Programmer, Vol. 4,
No. 4, pp. 38-43, 1991.

[Mosley] D. Mosley, The Handbook of MIS Application Software Testing, ISBN 0-139-07007-9, Pren-
tice Hall, 1993.

[Rapps] S. Rapps, E. Weyuker, Selecting software test data using data flow information, /EEE Transac-
tions on Software Engineering, Vol-SE-11, No. 4, pp. 367-375, 1985.

J. Warmer, A. Kleppe, The Object Constraint Language: Getting Your Models Ready for MDA, Second
Edition, ISBN 0-321-17936-6, Addison-Wesley, 2003.

