
KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
AFDELING INFORMATICA
Celestijnenlaan 200A — B-3001 Leuven

Type Constructor Polymorphism for Scala: Theory and Practice

Promotoren :

Prof. Dr. ir. W. JOOSEN

Prof. Dr. ir. F. PIESSENS

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Adriaan MOORS

May 2009

KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
AFDELING INFORMATICA
Celestijnenlaan 200A — B-3001 Leuven

Type Constructor Polymorphism for Scala: Theory and Practice

Jury :

Prof. Dr. ir. H. Hens, voorzitter

Prof. Dr. ir. W. Joosen, promotor

Prof. Dr. ir. F. Piessens, promotor

Prof. Dr. D. Clarke

Prof. Dr. ir. P. Dutré

Prof. Dr. T. Holvoet

Prof. Dr. M. Odersky

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Adriaan MOORS

U.D.C. 681.3∗D33

May 2009

c©Katholieke Universiteit Leuven – Faculteit Ingenieurswetenschappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke toe-
stemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2009/7515/48
ISBN 978-94-6018-065-1 (printed version)

Abstract

A static type system is an important tool in efficiently developing correct
software. The recent introduction of “genericity” in object-oriented pro-
gramming languages has greatly enhanced the expressiveness of their type
systems. Genericity, which is also called “parametric polymorphism”, is
extremely useful as it allows the definition of polymorphic lists, which use
a type parameter to abstract over the type of their elements. However, as
genericity is first-order, we cannot again abstract over the type of these
parameterised lists. We generalised Scala’s support for parametric poly-
morphism to the higher-order case, as this additional power turns out to be
useful in practice. We call the result “type constructor polymorphism”, as
Scala programmers may now safely abstract over type constructors, such
as the type of polymorphic lists. We describe the theoretical underpin-
nings as well as the practical side of our extension of Scala’s type system.
Our generalisation, amplified by the synergy with Scala’s existing features
such as implicits, represents an important asset in the library designer’s
abstraction-building tool belt, while the user of these abstractions need not
worry about their inner workings. The theoretical side of the story focusses
on the lacunae in the existing Scala formalisms, and presents Scalina, our
core calculus that solves these. Finally, we elaborate on our vision for fu-
ture improvements of the type system, based on our work on Scalina and
practical experience with type constructor polymorphism.

i

Acknowledgements

I remember very well the thrill of Wouter Joosen hiring me in the summer
of 2004, and would like to thank him, as well as my other supervisor,
Frank Piessens, for keeping that feeling alive — inspiring, supporting, and
challenging me along the way. Thank you, Wouter. Thank you, Frank. It’s
been a great ride, and I’m sure it will continue to be.

I should mention that part of that support came from a research grant
from the Institute for the promotion of Innovation by Science and Technol-
ogy in Flanders (IWT-Flanders).

Besides my supervisors, I would like to extend my gratitude to the
following colleagues for providing me with valuable feedback: Marko van
Dooren, Dave Clarke, Bart Jacobs, Jan Smans, Erik Ernst, Andreas Ross-
berg, Eddy Truyen, and the anonymous reviewers that diligently and self-
lessly improved my papers over the years.

My internship with Martin Odersky at the École Polytechnique Fédérale
de Lausanne was an essential phase of my research — a turning point even
— when everything came together and concrete results finally appeared.
Thank you, Martin, for the thrilling, rewarding challenges you provided me
with, and the great co-operation ever since. Also, thank you for allowing
me to escape Java’s clutches to rediscover the joy of programming in Scala.
Of course, my stay in Lausanne would not have been the great experience
it was without the interesting and fun people whom I met there. So, thank
you, Burak, Gilles, Ingo, Iulian, Lex, Philipp, and Sean!

Once the chain reaction was set off in Lausanne, time really began to
fly. The first internship sparked the next one — at Microsoft Research,
Cambridge — as Don Syme happened to be visiting Lausanne. Thank you,
Don, for another glimpse of language development with a vision, grounded
in the real world. Again, the internship entailed meeting a lot of great
people. Carsten, Mike, Neel, Otmar, and Pat: cheers, guys!

I am proud and grateful to count these colleagues among my friends.
I would also like to thank my other friends, who brightened my life out-

iii

side the office: Peter, Thomas, Dave, Thijs&Stéphanie, Rein&Goedele,
Joaquin&Veerle, Fiona&Koen, Thomas&Sara, Bobby&Kathy, Ilse&Bram,
Geraldine&Gijs, Marko, Batist, Kim, Lieselot, as well as my sister, Anne-
Katrien, and her fiancé, Stijn. Please accept my apologies if you were not
mentioned explicitly, my only excuse is the mental exhaustion often experi-
enced when nearing the end of writing a dissertation. Finally, I would like
to thank my family, and especially my parents, Gerard and Marie-Michèle,
without whom none of this would have been possible, in every possible
sense. Bedankt voor jullie onvoorwaardelijke steun en liefde!

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Other work . 5
1.3 Structure of the thesis . 5

2 Background and State of the Art 7
2.1 Efficiently producing correct software 8

2.1.1 Testing . 9
2.1.2 Formal verification 10
2.1.3 Type systems . 11

2.2 Higher-kinded types . 12
2.2.1 Functional programming languages 14
2.2.2 Object-oriented programming languages 14

2.3 Scala . 16
2.3.1 Outline of the syntax 16
2.3.2 Classes, traits, and objects 16
2.3.3 Functions . 18
2.3.4 Types . 20
2.3.5 Encoding higher-kinded types 21

2.4 Conclusion . 22

3 Type Constructor Polymorphism for Scala 23
3.1 Introduction . 23
3.2 Reducing code duplication 25

3.2.1 Improving Iterable 27
3.2.2 Example: using Iterable 32
3.2.3 Members versus parameters 32

3.3 Of types and kinds . 33
3.3.1 Surface syntax for types 33
3.3.2 Kinds . 34

v

vi CONTENTS

3.3.3 Subkinding . 36
3.3.4 Example: why kinds track bounds 36
3.3.5 Kind soundness . 37
3.3.6 Conclusion . 37

3.4 Bounded Iterable . 38
3.5 Full Scala . 40

3.5.1 Implementation . 40
3.5.2 Variance . 42
3.5.3 Refactoring the collections library 44

3.6 Leveraging Scala’s implicits 45
3.6.1 Introduction to implicits 46
3.6.2 Encoding Haskell’s type classes with implicits . . . 48
3.6.3 Exceeding type classes 51
3.6.4 Aside: implicit arguments versus subtype bounds . . 52

3.7 Conclusion . 54

4 Scalina: the Essence of Abstraction in Scala 57
4.1 Introduction . 57

4.1.1 Kind soundness . 58
4.1.2 Methodology . 61
4.1.3 Contributions . 62

4.2 Scalina: syntax and intuitions 62
4.2.1 Syntax . 63
4.2.2 Core concepts . 63
4.2.3 Example: polymorphic lists 68

4.3 Terms . 71
4.3.1 Computation . 71
4.3.2 Classification . 74

4.4 Types and kinds . 76
4.4.1 Computation . 76
4.4.2 Subtyping . 78
4.4.3 Classification . 82
4.4.4 Subkinding . 85

4.5 Design space . 87
4.6 Encoding system F sub

ω . 89
4.7 Meta-theory . 90
4.8 Related work . 92

4.8.1 Modelling OO . 92
4.8.2 Kind soundness . 93

4.9 Conclusion . 94

CONTENTS vii

5 Conclusion and Future Research Direction 97
5.1 Summary of contributions 97

5.1.1 Type constructor polymorphism 97
5.1.2 The essence of abstraction in Scala 98

5.2 Future work . 98
5.2.1 A scalable type system 100

5.3 Conclusion . 104

List of Publications 116

Biography 119

Dutch Summary

viii CONTENTS

List of Figures

3.1 Syntax for type declarations (type parameters and abstract
type members) . 33

3.2 Diagram of levels . 34
3.3 Kinds (not in surface syntax) 35

4.1 Scalina Syntax (terms and types) 64
4.2 Scalina Syntax (kinds, etc.) 66
4.3 Type Expansion for Run-time Lookup 72
4.4 Term Evaluation . 73
4.5 Term Classification . 75
4.6 Type Normalisation . 77
4.7 Type Expansion . 79
4.8 Subtyping (1/2) . 80
4.8 Subtyping (2/2) . 81
4.9 Subtyping for members . 82
4.10 Classifying Types (1/2) . 83
4.10 Classifying Types (2/2) . 84
4.11 Well-formedness of members 84
4.12 Subkinding . 86

A.1 Diagram van levels . v

ix

x LIST OF FIGURES

List of Tables

4.1 Abstraction mechanisms: overview 88
4.2 Informal encoding of system F sub

ω -syntax in Scalina 91

xi

xii LIST OF TABLES

List of Listings

2.1 Expressing Iterable using parameterisation 21
2.2 Encoding Iterable’s type parameters as members 21
3.1 Limitations of Genericity 25
3.2 Removing Code Duplication 26
3.3 Builder and Iterator . 27
3.4 Buildable . 28
3.5 Iterable . 29
3.6 List subclasses Iterable 30
3.7 Building a List . 31
3.8 Building an Option . 31
3.9 Example: using Iterable 31
3.10 NumericList: an illegal subclass of Iterable 36
3.11 Safely subclassing Iterable 37
3.12 Essential changes to extend Iterable with support for

(F-)bounds . 38
3.13 (Bounded) subclasses of Iterable 39
3.14 String as a subclass of Iterable 39
3.15 Example of unsoundness if higher-order variance annotations

are not enforced. 43
3.16 Snippet: leveraging implicits in Iterable 46
3.17 Using implicits to model monoids 47
3.18 Summing lists over arbitrary monoids 47
3.19 Using type classes to overload <= in Haskell 48
3.20 Encoding type classes using Scala’s implicits 49
3.21 Desugaring view bounds . 50
3.22 Making implicits explicit . 50
3.23 Set cannot be made into a Monad in Haskell 51
3.24 Monad in Scala . 52
3.25 Set as a BoundedMonad in Scala 52
3.26 Comparing bounds and implicits 53

xiii

xiv LIST OF LISTINGS

3.27 Iterable with flatten . 53
4.1 Expressing Iterable using parameterisation 58
4.2 Encoding Iterable’s type parameters as members 59
4.3 NumericList: an illegal subclass of Iterable 59
4.4 The encoding of NumericList eludes the type checker . . . 60
4.5 Using un-members to recover kind soundness 61
4.6 Polymorphic List in Scalina 69
4.7 Parametric List in Scala . 70
A.1 De beperkingen van genericity iii
A.2 Code duplicatie verwijderen iv
A.3 Iterable uitgedrukt mbv. type parameters vii
A.4 Iterable’s type parameters encoderen als members vii
A.5 NumericList: een ongeldige subklasse van Iterable . . . vii
A.6 De foutieve encoding van NumericList ontsnapt de type

checker . viii
A.7 Kind soundness herstellen via un-members ix

Chapter 1

Introduction

Essentially, a programming language allows a programmer to implement a
solution to a certain problem. Furthermore, the programmer must be able
to accurately describe the problem, so that the language can verify whether
the solution indeed solves the problem at hand. Of these three facets —
implementation, specification, and verification — our research focusses on
the latter two.

Specification and verification are tackled in various ways by different
languages. For example, in a dynamically typed language, such as Ruby,
the problem is generally specified using unit tests — small programs that
execute a part of the implementation and check its result — and verification
thus corresponds to running these tests. Similarly, run-time assertions may
be used to specify the implementation’s desired behaviour, and verification
amounts to evaluating these conditions while the program is running. Both
techniques detect bugs that arise while the program is running. Thus, in
this approach to verification, if a buggy fragment of the program is not
executed, the error is not discovered.

In a statically typed language, such as Scala, types are used as a
lightweight way of specifying the problem, and verification is performed
before the program is run. The expressible properties are typically not as
rich as with unit testing or run-time assertions, but verification deals with
all possible executions of the program. Soundness of the type system im-
plies that it will detect all violations against the specifications that it can
express. The trade-off is that verification is a conservative approximation,
in the sense that it may rule out valid programs. However, type checking
can be made more flexible to combine the best of both worlds.

A sophisticated type system allows the expert programmer to encapsu-
late domain knowledge so that the mainstream programmer, as the user of

1

2 Introduction

these abstractions, may soundly instantiate them. The type system com-
municates and enforces rich constraints on how these abstractions may be
used: it acts on behalf of the expert programmer so that the number of
users of an abstraction scales independently of the availability of the pro-
grammer that designed them.

This approach hinges on two equally important requirements: the type
system must be powerful enough to allow the expert to express the required
constraints, while being unobtrusive to the user: it should be the guiding
hand, not the yoke that constrains.

As a simple example, consider parametric polymorphism, which most
statically-typed object-oriented languages now support as “genericity”.
This feature allows the expert programmer to accurately express several
important abstractions, such as a communication channel that transmits
objects of a given type, where that type may be chosen by the user of the
channel. The abstraction itself ensures that the channel will indeed only
convey this type of object. Another common example is that of polymor-
phic lists.

Parametric polymorphism can be understood by considering the cor-
responding construct at the level of values: functions, or, equivalently,
methods. A method’s result is parameterised by the concrete value of
its parameters, which need not be known concretely for the method to be
written. However, in order to get an actual result, the method must be sup-
plied with concrete arguments for its parameters. Similarly, a polymorphic
class or method can be expressed in terms of its type parameters, which
represent unknown types that must be made concrete by the clients of the
class or method.

As a concrete example, the successor function is not sensitive to (does
not “care” about) the exact value of the number that it increases — it can
do so for any number (ignoring overflow). Similarly, the polymorphic class
of lists is not sensitive to the exact type of its elements. For any given type,
the list can ensure that it only holds element of that type. At the same
time, users of the list would like this information to be preserved: they
know that they are dealing with a list of integers, for example, and adding
another integer to the list should result in a list of integers, while the list
should prevent a string from being added.

Now, with parametric polymorphism this kind of consistency can be
enforced without defining a new list for every specific type. A polymorphic
list simply abstracts over the concrete type of its elements using a type
parameter. As such, a polymorphic list can be thought of as a function
that operates on types: it takes an arbitrary type T and yields the type of

1.1 Contributions 3

the list that holds elements of that given type T . To ensure consistency, a
list of elements of type T only allows another element of type T to be added
to the list. This way, when the user retrieves the first element of a list of
elements of type T , for example, the list may guarantee that the element
has type T , irrespective of the concrete type that this T stands for.

Without parametric polymorphism, the implementer of the list could
only express that it holds any object (using subtype polymorphism), and,
for every interaction, the user had to check (resorting to run-time casts)
that the expected type of object was retrieved. Thus, genericity constitutes
a win on both fronts: the expert acquired an important tool, and the
user needs not worry about casting anymore. Even though, instead of
casting, the user now has to know about type parameters, type inference
can correctly determine most type parameters automatically, so that the
net effect of introducing genericity into the language is indeed positive.

Finally, the mainstream approach to genericity has a significant short-
coming: it is limited to first-order parametric polymorphism. This means
that a type parameter can only stand for a type that is not parameterised.
Thus, a type that abstracts over a type – a “type constructor” – cannot
be abstracted over. This may seem like an esoteric restriction, but it turns
out that it rules out several relevant object-oriented abstractions.

We generalised Scala’s support for parametric polymorphism to the
higher-order case, and call the result “type constructor polymorphism”,
since we can now abstract over type constructors. This extension fits nicely
with the Scala philosophy of fusing functional and object-oriented program-
ming [OAC+06, OSV08].

1.1 Contributions

This thesis describes our addition to the tools available to the expert Scala
programmer, while shielding the user from the increased complexity. Fur-
thermore, it is not an isolated patch. It is a step along the way to a more
powerful as well as a more user-friendly type system. More concretely, our
experience with type constructor polymorphism indicates that a more gen-
eral kind of polymorphism will provide further opportunities for scrapping
boilerplate and defining more powerful abstractions in general. This is an
exciting avenue for future research.

Concretely, we discuss the following contributions:

we designed an extension of Scala with type constructor polymor-
phism

4 Introduction

we implemented the design in the official Scala compiler

we devised a novel design pattern that relies on our extension and
showed how it removes redundant code in Scala’s collections library

we developed a new formalism for Scala that resolves an issue with
the encoding of our extension in the existing formal model

Our design smoothly generalises Scala’s existing support for parametric
polymorphism to the higher-order case. It is fully backwards compatible,
with minor syntactic changes and no impact on the performance of com-
piled programs. We implemented our design in the official Scala compiler,
including support for higher-order subtyping and (definition-site) variance,
type constructor inference, and kind inference and kind checking.

To validate our extension, we devised the Builder pattern, which encap-
sulates the creation of collections. Briefly, it uses type constructor polymor-
phism to abstract over the collection that it builds, so that this behaviour
can be implemented once. Thus, methods that produce different types of
collections in various ways (e.g., map, filter, slice,. . .), no longer need
to be duplicated for every type of collection that they create.

A more thorough validation was recently performed by Martin Odersky,
when refactoring Scala’s collections library. The library could be cleaned
up significantly, with minimal impact on existing users. Moreover, the
refactoring used a novel style of programming, which revealed interesting
opportunities to further refine and extend the type system. This experience
has validated the utility of our extension and the corresponding program-
ming methodology in a realistic and intricate setting. At the same time,
the encountered limitations indicate that our proposed refinements — such
as kind polymorphism — are warranted. Finally, other researchers have
since used type constructor polymorphism in their own work [HORM08].

Besides the practical validation, we have developed a theoretical under-
pinning for our extension. We first experimented with encoding it in an
existing Scala formalism, the νObj calculus [OCRZ03], but discovered a
subtle, though fundamental, shortcoming of the formalism that precludes a
faithful encoding of type parameters as their object-oriented counterpart,
abstract type members. Thus, we developed a new object-oriented calcu-
lus that emphasises uniform support for abstraction at the value and type
levels, and that fully subsumes parameterisation, the functional style of
abstraction.

To briefly touch on our plans for future work, we observe the trend of
introducing abstraction mechanisms at ever-increasing levels: first, generic-
ity allows abstracting over types (but not type constructors) at the level of

1.2 Other work 5

types, we generalised this to allow abstracting over type constructors, and
note that abstracting over kinds would lift certain limitations of type con-
structor polymorphism, such as the verbosity of abstracting over bounds,
or even the impossibility of abstracting over variance annotations.

Instead of keeping with these incremental improvements, it seems ap-
propriate to investigate a mechanism that escapes this cadence, that in-
corporates this trend of an abstraction mechanism at level N introducing
the need for an abstraction mechanism at level N + 1. Thus, we see level
polymorphism, which Sheard is investigating in Ωmega [She08], as an im-
portant direction of future research. In a sense, Scalina foreshadows this
by striving to provide a uniform way of abstracting over values and types
at the level of types and values alike. We will elaborate on this in chapters
2 and 5.

1.2 Other work

The core contribution that is discussed explicitly in this thesis was realised
in the broader context of programming language research, which resulted
in several other contributions to the field:

the exploration of datatype-generic programming in Scala [MPJ06,
Moo07], which was the original motivation for extending Scala with
direct support for type constructor polymorphism;

maintenance and further development of Scala’s library for combina-
tor parsing [MPO08b], and a novel (experimental) library of combina-
tors to specify variable scoping as part of the grammar, which uses a
lightweight approach to data-type generic programming to reduce the
boilerplate that is normally required to correctly implement substitu-
tion and other aspects of variable binding – moreover, this library also
provides a domain-specific language to express typing rules, factoring
out the algorithmic details using a monad for logic programming;

collaboration on an approach to polymorphically embed domain-
specific languages in Scala [HORM08] – the parser combinators are a
concrete example of this idea.

1.3 Structure of the thesis

The following chapter sets the scene for the rest of this thesis; it motivates
why the type system is an important asset in producing correct software,

6 Introduction

it introduces Scala, and it discusses research related to type constructor
polymorphism.

Chapter 3 presents type constructor polymorphism, its utility, sound-
ness, and feasibility. More concretely, we discuss Scala’s collection library as
a realistic application of type constructor polymorphism, we introduce the
underlying theory, and we show that its integration in an object-oriented
language makes the type system more powerful, at a modest cost in com-
plexity from the viewpoint of the users as well as the language implementer.

Chapter 4 introduces Scalina, a purely object-oriented calculus that in-
troduces the missing link for an object-oriented calculus to faithfully encode
functional-style abstraction. Thus, it provides the formal underpinning of
type constructor polymorphism. Furthermore, we use it for our research
on uniformly abstracting over types and values at the level of values and
types.

Chapter 5 reflects on the presented contributions and sketches the do-
main in which the continuation of our research is situated.

Chapter 2

Background and State of the
Art

In a broader sense, our thesis is that the type system is an essential tool in
producing high-quality software. The following chapters discuss our con-
crete contributions, which are focussed on improving a certain aspect of
Scala’s type system. In this chapter, we explore the research area that is
concerned with specifying and verifying functional correctness of software.
We focus on correctness as a measure for software quality, ignoring the
plethora of other metrics, which are often much harder to measure objec-
tively. In Chapter 5 we will return to this discussion, and describe in more
detail the “ideal” type system that we are working towards.

Besides actually implementing it, producing correct software can be
split in two tasks: specification and verification. These tasks should be
performed in the same modular fashion as the implementation. Clearly, we
require concise and precise specifications that are easy to write and under-
stand. Of course, verification must accurately detect discrepancies between
the implementation and its specification. More interestingly, though, verifi-
cation must be flexible in order to match the importance that is attributed
to the correctness of a certain module at a certain point in the development
process. Roughly speaking, if it is too costly to specify simple correctness
criteria, the approach will not be used; if it is easy to specify simple criteria,
but impossible to tackle the hard ones, the approach is of limited use.

The problem with current approaches to producing correct software is
that they are either easy to use, but unable to verify complex specifica-
tions, or else they can express and verify precise specifications, but it is
prohibitively costly to do so. Unfortunately, a module typically does not
require thorough verification during the prototyping phase, but it will cer-

7

8 Background and State of the Art

tainly require more quality assurance once the product matures. Currently,
this inherent evolution requires an expensive switch to a different verifica-
tion technique, since none of them is both flexible and powerful enough to
deal with both situations efficiently.

In this chapter, we survey the three most widely used techniques to
enforcing functional correctness, pointing out where they are lacking. We
briefly describe our proposed solution – a scalable type system – but defer
a more detailed discussion to Chapter 5, as this is a long-term research
objective. Briefly, for a verification approach to be a worthy investment,
it must be so powerful as to deal with the complex requirements of crucial
modules in a mature product, while being so flexible and scalable as to
facilitate applying it from the prototyping stage onwards, evolving smoothly
alongside the implementation.

Chapter outline This chapter provides breadth so that the following
chapters can focus on depth. We first sketch the broader research area of
software specification, in which our work is situated. Since we leveraged
Scala as a platform for validating our research, we provide a quick intro-
duction. Finally, we discuss research that relates to the thesis as a whole.
More specifically, we introduce the notion of higher-kinded types, trace
their heritage in the functional programming community, and underscore
their novelty in the context of an object-oriented programming language.

2.1 Efficiently producing correct software

By the divide-and-conquer adage, modular development, which relies on en-
capsulation, is essential in implementing any non-trivial piece of software.
To properly encapsulate a module, its functionality must be described accu-
rately without revealing its inner workings. Thus, to understand a module,
a client need not look further than its specification, as it is independently
guaranteed to be sound with respect to its implementation. The quality
of software – its functional correctness – can be measured objectively by
checking that the specification and the implementation correspond.

Several challenges arise in verifying that a module’s implementation
meets its specification. Individually, specification, implementation, and
verification are complex tasks. Ensuring their mutual consistency while
evolving them independently is an even greater challenge. The expecta-
tions of software necessarily change over time, as does its implementation.
Besides the obvious changes in requirements, this evolution also arises from
bugs in the specification and the implementation that must be fixed.

2.1 Efficiently producing correct software 9

The three most commonly used approaches to checking functional cor-
rectness are: testing, type checking, and formal verification. A fourth is
extracting programs from proofs, but it is not that widely used. In the
remainder of this section we discuss these approaches in turn, highlighting
their strengths and weaknesses. Section 5.2.1 discusses how these strengths
can be integrated into the type system.

2.1.1 Testing

The most direct way of checking whether a program is correct is to sim-
ply execute it and check the result. In this approach, the functionality
is specified by implementing a suite of tests that each execute a part of
the program, and verification simply consists of executing these tests and
checking their results.

Since tests are developed in the same language as the program itself, this
approach is readily mastered by a programmer. Tests for different parts can
be written individually, and failing tests do not block development. This
facilitates modular software development and rapid prototyping. Thus, the
approach scales well with the desired degree of correctness by varying which
test failures are taken into account.

However, testing does not scale well with the complexity of the program
and its specification due to the local nature of a test – each exercises only
a small fragment of the program. Specifications are programs and verifica-
tion corresponds to program execution. Thus, specification and verification
are coupled relatively tightly. Moreover, there is no significant step up in
abstraction in going from program to specification. More precisely, specifi-
cations are not quantified over program executions, nor can they abstract
over program entities.

Many of the challenges in the testing approach can be traced back to
this lack of abstraction. The notion of code coverage springs from the
inability of quantifying over program runs. Whereas a type system can
provide high-level guarantees that hold for every execution of a well-typed
program – e.g., that it never calls a non-existent method – testing cannot
directly express such a constraint.

Similarly, testing requires concrete input, as it cannot abstract over it.
Thus, a specification is only verified for a specific set of values. Moreover,
testing a certain module often requires input from another module, e.g.,
an object that is an instance of a class that is defined in another module.
To respect modularity, dependencies on other modules must be limited to
the interfaces declared by that module. Thus, the foreign class cannot

10 Background and State of the Art

be used directly, and a mock object must be created that implements the
interface. Recent work on automated [GKS05], parameterised [TS06], and
assume-guarantee [BGP06] testing aims to address these shortcomings.

2.1.2 Formal verification

A more abstract way of ensuring functional correctness is to introduce a for-
mal logic as a layer of indirection between the program and its specification.
Concrete programs are approximated automatically by more high-level for-
mulae in a logic, and specifications express the desired functionality as
logical formulae about the encoded program. Finally, verification amounts
to showing that the formulae that encode the specification are derivable
from the logical encoding of the implementation. Typical approaches to
program verification such as JML [LBR06] and Spec# [BLS05] involve an
automated theorem prover to show the derivability of the formulae that
constitute the specification. However, they also include tools to derive
tests from specifications, or to check certain assertions dynamically.

The expressive power of the approach stems from the employed logic,
such as Hoare logic [Hoa83], or its extension to separation logic [Rey02].
One aspect of this expressiveness is quantification over program entities.
On one hand, this is a step up from testing, where the lack of this kind
of quantification forces the creation of mock objects. Furthermore, static
verification reasons about every possible execution of a program at once,
thus quantifying over program execution. On the other hand, static verifi-
cation of these high-level assertions is prone to false positives, whereas tests
are based on concrete data, so that a failure is never spurious. In general,
static verification allows richer specifications, but they are harder to write
and verify. Tests are simpler, though more labour-intensive, to write.

This trade-off between complexity and expressive power is well known in
software engineering. Modules and polymorphism are some of the most im-
portant tools to battle complexity and spread the investment cost, without
sacrificing expressive power. Unfortunately, the logics that are currently
used in these approaches do not support all of these language constructs.
More precisely, the logics are not higher-order, so that a formula cannot
abstract over another formula. It is possible to work around this by dupli-
cating the formula as a pure method, which can then be abstracted over
using the programming language’s polymorphism. Nonetheless, full sup-
port for reuse is essential for formal verification to succeed.

From the perspective of the language designer, another kind of redun-
dancy arises in this approach. Besides the program verification logic, the

2.1 Efficiently producing correct software 11

type system induces a logic of its own. Care must be taken to align them.
More precisely, the way a program is approximated by logic formulae in
the verification logic should incorporate the correctness criteria that are
enforced by the type system. Instead of introducing an independent logic
for program verification, we propose — as future work — to enrich the type
system so that its logic can accommodate program verification.

2.1.3 Type systems

Few general-purpose program languages have a type system that rivals
formal verification in specification power. Sophisticated type systems, such
as those of Haskell or Scala, can express interesting invariants about data
structures, but they do not subsume the state of the art in specification
languages. Thus, we focus on how type systems should evolve in order to
compete with the previous approaches, rather than discussing the status
quo.

Nonetheless, functional correctness can be specified and verified us-
ing the type system, and languages with a rich dependent type sys-
tem [AMM05], which have been available for quite some time, support
this. Moreover, Nanevski et al have recently integrated Hoare-style speci-
fications [NMB08] in such a type system. An even more powerful way to
achieve this integration is to enrich the type system so that we can embed
a domain-specific language for verification into it. Either way, verification
is integrated into the type system so that polymorphism can be applied to
specifications.

More generally, reuse must be fostered at all levels by ensuring that
polymorphism and other language constructs apply to specifications, types,
and values alike. Sheard is exploring level polymorphism in Ωmega, a
Haskell-like language that supports type-level computation [She07].

To make such a powerful type system practical to use, it must easily
be “muted” so that it does not get in the way while prototyping. Later,
when correctness becomes more important, its strength is dialled up so
that it can express precise specifications. In terms of verification, the type
system thus subsumes testing in a dynamically typed language as well as
full-blown formal verification. Recent work on optional [BG93], soft [CF91],
gradual [AD03, ST07], and hybrid [Fla06] type checking is taking important
steps towards this goal.

Another kind of flexibility can be derived from applying the Curry-
Howard isomorphism [How69] to automated theorem proving in logic, which
corresponds to the type system inferring missing code based on its expected

12 Background and State of the Art

type. As an example of this idea, Djinn generates Haskell functions based
on their type, and QuickCheck is an automatic testing tool that generates
test data based on its type [CH00]. This is another illustration of how
types can be put to good use, generating missing implementations during
the prototyping phase, or by helping to automate testing.

Furthermore, the type system itself should be extensible, so as to ex-
press and encapsulate domain-specific specification “templates” that can be
reused with many modules in the same problem domain, so that the cost of
developing these type system modules can be amortised. Bracha describes
the idea of plugging in different modules into the type checker [Bra04], and
Chameleon [WSSR05, SS08] is an important step towards realising this
goal. On one hand, Chameleon is a Haskell-like functional language at the
level of values; on the other hand, type-level programs are expressed us-
ing constraint handling rules [Frü94]. More recently, Schrijvers et al have
proposed an approach in which functional programming is used at both
levels [SJCS08].

Finally, it is no longer reasonable to expect type checking to be de-
cidable. A diverging type checker simply indicates a bug in the type-level
program, and a type-level debugger [SSW03a, SSW03b] should be available
to help fixing it.

The remaining challenge is to integrate these ideas into a scalable type
system, which is discussed in more detail in Section 5.2.1.

2.2 Higher-kinded types

To quote Strachey, who coined the term “parametric polymor-
phism” [Str67]:

Parametric polymorphism is obtained when a function works
uniformly on a range of types; these types normally exhibit
some common structure [. . .]

Technically, parametric polymorphism is simply the type-level equiv-
alent of the core construct of the simply-typed lambda calculus [Chu40]:
lambda abstraction. More commonly called a “function”, a lambda ab-
straction is a value that abstracts over another value. Thus, a function is
a “polymorphic value”. At the level of types, a polymorphic type is a type
that is parameterised. Thus, a polymorphic type, or a “type constructor”,
can be thought of as a function on the level of types: it takes a type as an
argument and produces a type as its result.

2.2 Higher-kinded types 13

In the early 1970’s, Girard [Gir72] and Reynolds [Rey74] indepen-
dently formalised these ideas. The serendipity of research on logic and
programming languages resulting in the same system – called “system F”
or “second-order lambda calculus” – is a striking real-life illustration of the
Curry-Howard isomorphism [How69], which relates logic and programming
languages. Briefly, it states that a type can be seen as a proposition, and
a proof of that proposition corresponds to a term that is classified by that
type. Thus, type checking and proof checking are closely related.

The strength of polymorphism can be categorised with respect to its
order. At the level of values, first-order polymorphism does not allow a
function to abstract over a function. Second-order polymorphism relaxes
this a little, in the sense that it admits second-order functions, functions
that abstract over a first-order function. Higher-order polymorphism al-
lows abstracting over a function that abstracts over a function that ab-
stracts over a function, and so on. At the level of types, the simply-typed
lambda calculus is zero-order, as there is no way to abstract over types
at all, whereas system F supports second-order polymorphism, and system
Fω supports type constructors that abstract over type constructors that
abstract over type constructors, and so on.

Even though a higher-order type system supports abstracting over types
of any order, zero-order types must not be confused with higher-order ones.
Similarly, on the value level we can abstract over functions and simple values
– “zero-order functions” – alike, but a function must still be distinguished
from an ordinary value since the former can be applied to a suitable ar-
gument, whereas a value cannot. Functions are distinguished from regular
values by their type, which is constructed from the function type construc-
tor (⇒). Similarly, monomorphic types are classified by the kind ", and
type constructors have a kind that is constructed from the type-function
kind constructor (→). For example, 1 : Int, and the identity function
on integers (referred to as id) is written1 x: Int ⇒ x. Thus, id has
type Int ⇒ Int, and the application id(int) has type Int. At the type
level, List has kind " → ", and as Int is classified by ", List[Int] again
has kind ".

The nesting level of the kind constructor → corresponds to the order of
the type. First-order polymorphism admits a type of kind " → ", but not
of kind (" → ") → ", which is second-order. Types of higher-order kinds
are also called higher-kinded types.

It is important to point out that a higher-kinded type is not the
same as a higher-ranked type. The latter type arises from a mixed style

1We use Scala syntax, which is explained below.

14 Background and State of the Art

of polymorphism, where a value abstracts over a type. Consider the
(type-)polymorphic version of the identity function in the notation of sys-
tem F sub

ω : Λα : ".λx : α. x. This function has type ∀α : ".α ⇒ α, which
in turn has kind ". The type Λα : ".α ⇒ α looks similar, but it has
kind " → ", and therefore does not classify any value. The polymorphic
identity function has a rank-1 type. A type’s rank refers to the nesting
depth of the ∀ type constructor [KT92].

These systems, along with those that allow types to depend on values,
or that provide richer ways of forming types, have been organised in the
λ-cube by Barendregt [Bar91].

2.2.1 Functional programming languages

Fragments of system F have served as the basis for many programming
languages. The most notable example is Haskell [HJW+92], which has
supported higher-kinded types for over 15 years [HHJW07].

Although Haskell has higher-kinded types, it eschews subtyping. Most
of the use-cases for subtyping are subsumed by type classes, which handle
overloading systematically [WB89]. However, it is not (yet) possible to
abstract over class contexts [Hug99, Jon94, Kid07, CJSS07]. In our setting,
this corresponds to abstracting over a type that is used as a bound, as
discussed in Section 3.6.3.

The interaction between higher-kinded types and subtyping is a well-
studied subject [CW85, Car88b, CCH+89, PS97, CG03]. As far as we know,
none of these approaches combine bounded type constructors, subkinding,
subtyping and variance, although all of these features are included in at
least one of them.

2.2.2 Object-oriented programming languages

Languages with virtual types or virtual classes, such as gbeta [Ern99], can
encode type constructor polymorphism through abstract type members.
The idea is to model a type constructor such as List as a simple abstract
type that has a type member describing the element type. Since Scala has
virtual types, List could also be defined as a class with an abstract type
member instead of as a type-parameterised class:

abstract class List { type Elem }

Then, a concrete instantiation of List could be modelled as a type
refinement, as in List{type Elem = String}. The crucial point is that
in this encoding List is a type, not a type constructor. So first-order

2.2 Higher-kinded types 15

polymorphism suffices to pass the List constructor as a type argument or
an abstract type member refinement.

Compared to type constructor polymorphism, this encoding has a seri-
ous disadvantage, as it permits the definition of certain accidentally empty
type abstractions that cannot be instantiated to concrete values later on.
By contrast, type constructor polymorphism has a kind soundness property
that guarantees that well-kinded type applications never result in nonsen-
sical types. This is discussed in more detail in Chapter 4.

Type constructor polymorphism has recently started to trickle down to
object-oriented languages. Cremet and Altherr’s work on extending Feath-
erweight Generic Java with higher-kinded types [CA08] partly inspired the
design of our syntax. However, since they extend Java, they do not model
type members and path-dependent types, definition-site variance, or inter-
section types. They do provide direct support for anonymous type construc-
tors. Furthermore, although their work demonstrates that type constructor
polymorphism can be integrated into Java, they only provide a prototype of
a compiler and an interpreter. However, they have developed a mechanised
soundness proof and a pencil-and-paper proof of decidability.

Finally, we briefly mention OCaml and C++. C++’s template mech-
anism is related, but, while templates are very flexible, this comes at a
steep price: they can only be type-checked after they have been expanded.
Recent work on “concepts” [GJS+06] supports modular type checking by
encapsulating the requirements of templates as concepts, so that the li-
brary implementation can be checked separately from its clients. A concept
is similar to an abstract class in Scala, which declares abstract type and
value members. Concepts thus encapsulate requirements, and a generalised
notion of constraints is used to express a template’s requirements. These
constraints resemble Haskell type class contexts and Scala’s implicit argu-
ments. Finally, concept maps are provided to aid retro-active extension;
they are closely related to type class instances, or implicits values in Scala.
Scala’s implicits and their relation to Haskell type classes are discussed in
Section 3.6.

In OCaml (as in ML), type constructors are first-order [LDG+07, 6.8.1].
Thus, although a type of, e.g., kind " → " → " is supported, types of kind
(" → ") → " → " cannot be expressed directly. However, ML dialects
that support applicative functors, such as OCaml and Moscow ML, can
encode type constructor polymorphism in much the same way as languages
with virtual types.

16 Background and State of the Art

2.3 Scala

This section briefly introduces Scala [OAC+06, OSV08]. We assume famil-
iarity with a Java-like language, and focus on what makes Scala different.

2.3.1 Outline of the syntax

A Scala program is essentially a tree of nested definitions. A definition
starts with a keyword, followed by its name, a classifier, and the entity to
which the given name is bound, if it is a concrete definition. If the root of the
tree is the compilation unit, the next level consists of objects (introduced
by the keyword object) and classes (class, trait), which in turn contain
members. A member may again be a class or an object, a constant value
member (val), a mutable value member (var), a method (def), or a type
member (type). Note that a type annotation always follows the name (or,
more generally, the expression) that it classifies.

On one hand, Scala’s syntax is very regular, with the keyword/name/-
classifier/bound entity-sequence being its lead motif. Another important
aspect of this regularity is nesting, which is virtually unconstrained. On
the other hand, syntactic sugar and type inference enable flexibility and
succinctness. For example, buffer += 10 is shorthand for the method
call buffer.+=(10), where += is a user-definable identifier. Moreover, the
classifier can be elided from most definitions; the compiler can infer it from
the right-hand side.

2.3.2 Classes, traits, and objects

In Scala, a class can inherit from another class and one or more traits. A
trait is a class that can be composed with other traits using mixin composi-
tion. Mixin composition is a restricted form of multiple inheritance, which
avoids ambiguities by linearising the graph that results from composing
classes that are themselves composites. The main difference between an
abstract class and a trait is that the latter can be composed using mixing
inheritance. Another difference is that traits cannot define constructors2.
There are a few more – internal – differences due to the constraints of the
underlying platform.

Thus, the reader may safely think of a class as a degenerate kind of
trait that is included in Scala for pragmatic reasons. For brevity, most
examples use traits, even though an (abstract) class can be used instead if
mixin composition is not required.

2This limitation may be lifted in future versions.

2.3 Scala 17

Classes may contain type members. An abstract type member is similar
to a type parameter. The main difference between parameters and members
is their scope and visibility. A type parameter is syntactically part of the
type that it parameterises, whereas a type member – like value members –
is encapsulated, and must be selected explicitly. Similarly, type members
are inherited, while type parameters are local to their class.

Type parameters are made concrete using type application. Thus, given
the definition class List[T], List is a type constructor (or type func-
tion), and List[Int] is the application of this function to the argument
Int. Abstract type members are made concrete using abstract type member
refinement, a special form of mixin composition. Note that List is now an
abstract class, since it has an abstract member T:

trait List {
type T

}

This abstract member is made concrete as follows:

List{type T=Int}

Note that, with the extension that is discussed in Chapter 3, abstract
type members may also be parameterised, as in type Container[X].

The complementary strengths of type parameters and abstract type
members are a key ingredient of Scala’s recipe for scalable component ab-
stractions [OZ05]. Furthermore, the ability to specify a self type for a class
also plays an important role. Essentially, a self type expresses an assump-
tion about the type of the instances of a class. A class with self type T can
only be instantiated as part of a composition that is a subtype of T. By
default, a class’s self type is the class itself, so in absence of an explicit self
type declaration, this condition is trivially met by simply instantiating the
class.

As an example, suppose we wish to express that the type checker
component (Typers) relies on the abstract syntax component (Syntax),
and support for substitution (Substitution). Thus, we define a trait
Typers and declare its self type to be the intersection type Syntax with
Substitution, which is a subtype of both Syntax and Substitution.

Note that a class’s own type is implicitly included in its self type, so that
this and its alias self, which we introduced as part of the self type declara-
tion, actually have the type Typers with Syntax with Substitution.
The notation is reminiscent of a function type, since a class can be approx-
imated as a function that takes an instance and returns a record of the
methods that can be called on that instance.

18 Background and State of the Art

trait Typers { self : Syntax with Substitution ⇒
}

Finally, an object introduces a class with a singleton instance, which
can be referred to using the object’s name. Consider the following object
definition.

object Foo

This definition can be approximated3 as follows:

class Foo
val Foo: Foo = new Foo

2.3.3 Functions

Since Scala is a functional language, functions are first-class values. Thus,
like an integer, a function can be written down directly: x: Int ⇒ x +
1 is the successor function on integers. Furthermore, a function can be

passed as an argument to a (higher-order) function or method. Functions
and methods are treated similarly in Scala, the main difference is that a
method is called on a target object.

The following definition introduces a function len that takes a String
and yields an Int by calling String’s length method on its argument s:

val len: String ⇒ Int = s ⇒ s.length

In the classifier of the definition, the type String ⇒ Int, the arrow
⇒ is a type constructor, whereas it introduces an anonymous function on
the right-hand side (where a value is expected). This anonymous function
takes an argument s of type String and returns s.length. Thus, the
application len("four") yields 4.

Note that the Scala compiler infers [OZZ01] the type of the argument
s, based on the expected type of the value len. The direction of type
inference can also be reversed:

val len = (s: String) ⇒ s.length

The right-hand side’s anonymous function can be abbreviated using
syntactic sugar that implicitly introduces functional abstraction. This can
be thought of as turning String’s length method into a function:

3A couple of subtleties are lost in translation, namely the initialisation behaviour and
the self type.

2.3 Scala 19

val len: String ⇒ Int = _.length

Finally, since Scala is purely object-oriented at its core, a function is
represented internally as an object with an apply method that is derived
straightforwardly from the function. Thus, one more equivalent definition
of len:

object len {
def apply(s: String): Int = s.length

}

Methods may define one or more lists of value parameters, in addition
to a list of type parameters. Thus, a method can be seen as a value that
abstracts over values and types. For example, def iterate[T](a: T)
(next: T ⇒ T, done: T ⇒ Boolean): List[T] introduces a method
with one type parameter T, and two argument lists. Methods with multiple
argument lists may be partially applied. For example, for some object x
on which iterate is defined, x.iterate(0) corresponds to a higher-order
function with type (Int⇒Int, Int⇒Boolean) ⇒ List[Int]. Note that
the type parameter T was inferred to be Int from the type of the argu-
ment a.

Finally, we show how methods can be encoded using only abstract mem-
bers and mixin composition. This is not an essential aspect of the intro-
duction to Scala, but this pattern will return in Section 2.3.5, where it is
used to abstract over types instead of values. A method definition can be
encoded by an abstract class with abstract members for the method’s ar-
guments, and a concrete member with a fixed name to define the method’s
result:

trait Len {
val s: String
val apply: Int = s.length

}

Method invocation is now split in two phases: first, the abstract mem-
bers, which represent the arguments, are made concrete by mixing in
an anonymous class, and the resulting class is instantiated. Second, the
method’s result is computed by selecting the apply member.

(new Len { val s: String = "four"}).apply

20 Background and State of the Art

2.3.4 Types

To a Java programmer, most Scala types will be familiar, except for in-
tersection types, path-dependent types, type selection, and definition-site
variance annotations. Finally, certain types are spelled differently: Object
becomes Any, Unit is a regular type that corresponds to the void key-
word in Java, and Nothing is the (uninhabited) subtype of all types, which
cannot be expressed in Java.

An intersection type, such as A with B can be understood as the type
that is a subtype of both A and B. A type is a subtype of an intersection type
if it is a subtype of every constituent of the intersection. The members of
an intersection type correspond to the members of the mixin composition of
the constituent types, where the linearisation order determines overriding,
except that concrete members trump abstract ones.

Scala introduces path-dependent types as a companion to type mem-
bers. To ensure soundness, an abstract type member may only be selected
on a singleton type, which has the shape p.type, where p is a path. A path
is an expression that is statically known to always refer to the same value.
This restriction is imposed syntactically; a path has the shape x.l0.. . ..lN ,
where x is an immutable variable, and the li refer to immutable value
members (introduced by the val keyword). Furthermore, path equality,
and thus equality of singleton types, is decided based on syntactic criteria,
so that type checking remains decidable.

A type selection such as p.type#T is abbreviated to p.T in Scala. If
T is an abstract type member, the types p.T and q.T are equal iff the
paths p and q are equal, which corresponds to the requirement that q has
type p.type.

Another difference with Java is that Scala allows type parameters to
specify their variance. Variance enriches the subtyping relation so that sub-
typing of two types that are constructed from the same type constructor
can be derived from their type arguments. For example, class List[+T]
introduces the type constructor List, whose type parameter is covari-
ant. This means that List[A] is a subtype of List[B] iff A is a sub-
type of B. With a contravariant type parameter, this is inverted, so that
class OutputChannel[-T] entails that OutputChannel[A] is a subtype
of OutputChannel[B] iff A is a supertype of B. Without an explicit vari-
ance annotation, type arguments must be equal for the constructed types
to be equal.

2.3 Scala 21

trait Iterable[A, Container[X]] {
def map[B](f: A ⇒ B): Container[B]

}

trait List[A] extends Iterable[A, List]

Listing 2.1: Expressing Iterable using parameterisation

trait TypeFunction1 { type A }

trait Iterable extends TypeFunction1 {
type Container <: TypeFunction1

def map[B](f: A ⇒ B): Container{type A = B}
}

trait List extends Iterable { type Container = List }
Listing 2.2: Encoding Iterable’s type parameters as members

2.3.5 Encoding higher-kinded types

Before we extended Scala with type constructor polymorphism, it could
be encoded to a certain extent. As discussed above, Scala’s abstract type
members closely correspond to type parameters, and abstract type member
refinement can be seen as the object-oriented counterpart of type applica-
tion. Here, we show the essence of the encoding; it is discussed in more
detail in the following chapters.

To make this concrete, Listing 2.1 uses type constructor polymorphism
to express the well-known Iterable abstraction in Scala. The Iterable
trait (an abstract class) takes two type parameters: the first one repre-
sents the type of the elements, and the second one abstracts over the type
constructor of the container. To denote that it abstracts over a type con-
structor, the Container parameter declares a formal type parameter X.

Listing 2.2 demonstrates the encoding. Here, Iterable abstracts over
the type of its elements and the container using abstract members. The A
type member is inherited from TypeFunction1, and the Container type
constructor parameter is represented as an abstract type member that is
bounded to be a TypeFunction1. map’s result type is expressed by refining
Container’s abstract type member A so that it equals B.

22 Background and State of the Art

Besides the syntactic overhead, the major disadvantage with this encod-
ing is that it may result in the accidental definition of non-sensical types.
Type constructor polymorphism solves both problems, as discussed in the
following chapter.

2.4 Conclusion

This chapter motivated our focus on the type system from a broader per-
spective. We briefly surveyed different approaches to producing correct
software, and discussed why the type system approach is the most promis-
ing one. Essentially, the type system can express rich specifications in an
abstract way. Since a lot of work has already gone into supporting reuse
and modularity through the type system, giving specifications the same
status as types lifts the benefits long enjoyed by software engineers to the
realm of software verification. The direct integration of specifications into
the language reduces redundancy and eases co-evolution of implementation
and specification.

Furthermore, the type system can be made much more flexible than
the rigid systems that are the norm in current statically typed languages,
without losing the associated benefits. According to the importance of
correctness in a certain module, its specification may range from irrelevant
and non-existent, over being checked without being enforced, to extremely
precise and mandatory. Finally, expressive types can also be leveraged to
generate missing pieces of the implementation, so that the investment pays
off even beyond encapsulation, enforcement, and the prevention of bugs.

The rest of this thesis describes our concrete contributions to improv-
ing an aspect of Scala’s type system. The second half of this chapter in-
troduced our extension, type constructor polymorphism, which generalises
Scala’s support for parametric polymorphism to the higher-order case. We
discussed the long history of research on higher-order polymorphism, which
has mostly been limited to functional programming languages. Finally, the
subset of Scala that is used in the examples of the following chapters was
introduced, including the encoding of our extension and the intuition be-
hind its limitations. The following chapters elaborate on the theory and
practice of type constructor polymorphism, they explain in detail why the
encoding was lacking, and introduce a novel object-oriented calculus that
does support a faithful encoding.

Chapter 3

Type Constructor
Polymorphism for Scala

This chapter is based on the paper that we presented at OOPSLA
2008 [MPO08a]. The paper was written by the author of this thesis, except
for parts of the introduction and of Section 3.6, which were contributed
by Martin Odersky. The co-authors provided significant help in improving
the structure and the presentation of the paper. We also acknowledge the
anonymous reviewers for their helpful feedback. Part of the research – the
author’s implementation of type constructor polymorphism in the Scala
compiler – was performed during a stay at prof. Odersky’s lab at EPFL.

3.1 Introduction

First-order parametric polymorphism is now a standard feature of statically
typed programming languages. Starting with System F [Gir72, Rey74] and
functional programming languages, the constructs have found their way
into object-oriented languages such as Java, C#, and many more. In these
languages, first-order parametric polymorphism is usually called generics.
Generics rest on sound theoretical foundations, which were established by
Abadi and Cardelli [AC96, AC95], Igarashi et al. [IPW01], and many others;
they are well-understood by now.

One standard application area of generics are collections. For instance,
the type List[A] represents lists of a given element type A, which can be
chosen freely. In fact, generics can be seen as a generalisation of the type
of arrays, which has always been parametric in the type of its elements.

First-order parametric polymorphism has some limitations, however.

23

24 Type Constructor Polymorphism for Scala

Although it allows to abstract over types, which yields type constructors
such as List, these type constructors cannot be abstracted over. For in-
stance, one cannot pass a type constructor as a type argument to another
type constructor. Abstractions that require this are quite common, even in
object-oriented programming, and this restriction thus leads to unnecessary
duplication of code. We provide several examples of such abstractions.

The generalisation of first-order polymorphism to a higher-order system
was a natural step in lambda calculus [Gir72, Rey74, BMM90]. This the-
oretical advance has since been incorporated into functional programming
languages. For instance, the Haskell programming language [HJW+92]
supports type constructor polymorphism, which is also integrated with its
type class concept [Jon95]. This generalisation to types that abstract over
types that abstract over types (“higher-kinded types”) has many practi-
cal applications. For example, comprehensions [Wad92], parser combina-
tors [HM96, LM01], as well as more recent work on embedded Domain
Specific Languages (DSL’s) [CKcS07, HORM08] critically rely on higher-
kinded types.

The same needs – as well as more specific ones – arise in object-oriented
programming. LINQ brought direct support for comprehensions to the
.NET platform [BMS05, Mei07], Scala [OAC+06] has had a similar feature
from the start, and Java 5 introduced a lightweight variation [GJSB05,
Sec. 14.14.2]. Parser combinators are also gaining momentum: Bracha uses
them as the underlying technology for his Executable Grammars [Bra07],
and Scala’s distribution includes a library [MPO08b] that implements an
embedded DSL for parsing, which allows users to express parsers directly
in Scala, in a notation that closely resembles EBNF. Type constructor
polymorphism is crucial in defining a common parser interface that is im-
plemented by different back-ends.

Chapter outline We present type constructor polymorphism and moti-
vate its introduction in a real-world object-oriented language by showing
how it reduces boilerplate code, that it is safe, and that it can be imple-
mented in a production-quality compiler.

Section 3.2 demonstrates that our extension reduces boilerplate that
arises from the use of genericity. We establish intuitions with a simple
example, and extend it to a realistic implementation of the comprehensions
fragment of Iterable.

Section 3.3 present the type and kind system. We discuss the surface
syntax in full Scala, and the underlying model of kinds that capture both
lower and upper bounds, and variances of types. Based on the ideas es-

3.2 Reducing code duplication 25
3.2 Reducing code duplication 25

trait Iterable[T] {
def filter(p: T ⇒ Boolean): Iterable[T]
def remove(p: T ⇒ Boolean): Iterable[T]
= filter (x ⇒ !p(x))

}

trait List[T] extends Iterable[T] {
def filter(p: T ⇒ Boolean): List[T]
override def remove(p: T ⇒ Boolean): List[T]
= filter (x ⇒ !p(x))

}
Listing 3.1: Limitations of Genericity

tablished in the theoretical part, Section 3.4 refines Iterable, so that it
accommodates collections that impose bounds on the type of their elements.

We have validated the practicality of our design by implementing our
extension in the Scala compiler, and we report on our experience in Sec-
tion 3.5. Throughout this chapter, we discuss various interactions of type
constructor polymorphism with existing features in Scala. Section 3.6 fo-
cusses on the integration with Scala’s implicits, which are used to encode
Haskell’s type classes. Our extension lifts this encoding to type constructor
classes. Furthermore, due to subtyping, Scala supports abstracting over
type class contexts, so that the concept of a bounded monad can be ex-
pressed cleanly, which is not possible in (mainstream extensions of) Haskell.

Finally, Martin Odersky’s refactoring of Scala’s collection library relied
heavily on type constructor polymorphism. In Section 3.5.3, we briefly
discuss how this experience validates our extension, as well as the oppor-
tunities for improvement that emerged.

3.2 Reducing code duplication with type con-
structor polymorphism

This section illustrates the benefits of generalising genericity to type con-
structor polymorphism using the well-known Iterable abstraction. The
first example, which is due to Lex Spoon, illustrates the essence of the prob-
lem in the small. Section 3.2.1 extends it to more realistic proportions.

Listing 3.2 shows a Scala implementation of the trait Iterable[T]. It
contains an abstract method filter and a convenience method remove.
Subclasses should implement filter so that it creates a new collection

legend: copy/paste:
redundant code

Listing 3.1: Limitations of Genericity

tablished in the theoretical part, Section 3.4 refines Iterable, so that it
accommodates collections that impose bounds on the type of their elements.

We have validated the practicality of our design by implementing our
extension in the Scala compiler, and we report on our experience in Sec-
tion 3.5. Throughout this chapter, we discuss various interactions of type
constructor polymorphism with existing features in Scala. Section 3.6 fo-
cusses on the integration with Scala’s implicits, which are used to encode
Haskell’s type classes. Our extension lifts this encoding to type constructor
classes. Furthermore, due to subtyping, Scala supports abstracting over
type class contexts, so that the concept of a bounded monad can be ex-
pressed cleanly, which is not possible in (mainstream extensions of) Haskell.

Finally, Martin Odersky’s refactoring of Scala’s collection library relied
heavily on type constructor polymorphism. In Section 3.5.3, we briefly
discuss how this experience validates our extension, as well as the oppor-
tunities for improvement that emerged.

3.2 Reducing code duplication with type con-
structor polymorphism

This section illustrates the benefits of generalising genericity to type con-
structor polymorphism using the well-known Iterable abstraction. The
first example, which is due to Lex Spoon, illustrates the essence of the prob-
lem in the small. Section 3.2.1 extends it to more realistic proportions.

Listing 3.1 shows a Scala implementation of the trait Iterable[T]. It
contains an abstract method filter and a convenience method remove.
Subclasses should implement filter so that it creates a new collection

26 Type Constructor Polymorphism for Scala

Why Type Constructor Polymorphism Matters 3

trait Iterable[T] {
def filter(p: T ⇒ Boolean): Iterable[T]
def remove(p: T ⇒ Boolean): Iterable[T] = filter (x ⇒ !p(x))

}

trait List[T] extends Iterable[T] {
def filter(p: T ⇒ Boolean): List[T]
override def remove(p: T ⇒ Boolean): List[T]
= filter (x ⇒ !p(x))

}

Listing 1. Limitations of Genericity

trait Iterable[T, Container[X]] {
def filter(p: T ⇒ Boolean): Container[T]
def remove(p: T ⇒ Boolean): Container[T] = filter (x ⇒ !p(x))

}

trait List[T] extends Iterable[T, List]

Listing 2. Removing Code Duplication

have the same result type, but the only way to achieve this is by overriding it
as well. The resulting code duplication is a clear indicator of a limitation of
the type system: both methods in List are redundant, but the type system
is not powerful enough to express them at the required level of abstraction in
Iterable.

Our solution, depicted in Listing 2, is to abstract over the type constructor
that represents the container of the result of filter and remove. Our improved
Iterable now takes two type parameters: the first one, T, stands for the type
of its elements, and the second one, Container, represents the type constructor
that determines part of the result type of the filter and remove methods.

Now, to denote that applying filter or remove to a List[T] returns a
List[T], List simply instantiates Iterable’s type parameter to the List type
constructor.

In this simple example, we could also have used a construct like Bruce’s
MyType [9]. However, this scheme breaks down in more complex cases, as we will
demonstrate in Section 2.2. First, we introduce type constructor polymorphism
in more detail.

2.1 Type constructors and kinds

A type that abstracts over another type, such as List in our previous exam-
ple, is called a “type constructor”. Genericity does not give type constructors
the same status as the types which they abstract over. As far as eligibility for

abstractionlegend:

instantiation

Listing 3.2: Removing Code Duplication

by retaining only the elements of the current collection that satisfy the
predicate p. This predicate is modelled as a function that takes an element
of the collection, which has type T, and returns a Boolean. As remove
simply inverts the meaning of the predicate, it is implemented in terms of
filter.

Naturally, when filtering a list, one expects to again receive a list. Thus,
List overrides filter to refine its result type covariantly. For brevity,
List’s subclasses, which implement this method, are omitted. For con-
sistency, remove should have the same result type, but the only way to
achieve this is by overriding it as well. The resulting code duplication is a
clear indicator of a limitation of the type system: both methods in List
are redundant, but the type system is not powerful enough to express them
at the required level of abstraction in Iterable.

Our solution, depicted in Listing 3.2, is to abstract over the type con-
structor that represents the container of the result of filter and remove.
The improved Iterable now takes two type parameters: the first one, T,
stands for the type of its elements, and the second one, Container, rep-
resents the type constructor that determines part of the result type of the
filter and remove methods. More specifically, Container is a type pa-
rameter that itself takes one type parameter. Although the name of this
higher-order type parameter (X) is not needed here, more sophisticated
examples will show the benefit of explicitly naming1 higher-order type pa-
rameters.

Now, to denote that applying filter or remove to a List[T] returns
a List[T], List simply instantiates Iterable’s type parameter to the
List type constructor.

In this simple example, one could also use a construct like Bruce’s
MyType [BSvG95]. However, this scheme breaks down in more complex

1In full Scala ‘_’ may be used as a wild-card name for higher-order type parameters.

3.2 Reducing code duplication 27

trait Builder[Container[X], T] {
def +=(el: T): Unit
def finalise(): Container[T]

}

trait Iterator[T] {
def next(): T
def hasNext: Boolean

def foreach(op: T ⇒ Unit): Unit
= while(hasNext) op(next())

}
Listing 3.3: Builder and Iterator

cases, as demonstrated in the next section.

3.2.1 Improving Iterable

In this section we design and implement the abstraction that underlies
comprehensions [Wad92]. Type constructor polymorphism plays an es-
sential role in expressing the design constraints, as well as in factoring
out boilerplate code without losing type safety. More specifically, we dis-
cuss the signature and implementation of Iterable’s map, filter, and
flatMap methods. The LINQ project brought these to the .NET platform
as Select, Where, and SelectMany [Mei06].

Comprehensions provide a simple mechanism for dealing with collec-
tions by transforming their elements (map, Select), retrieving a sub-
collection (filter, Where), and collecting the elements from a collection
of collections in a single collection (flatMap, SelectMany).

To achieve this, each of these methods interprets a user-supplied func-
tion in a different way in order to derive a new collection from the elements
of an existing one: map transforms the elements as specified by that func-
tion, filter interprets the function as a predicate and retains only the
elements that satisfy it, and flatMap uses the given function to produce a
collection of elements for every element in the original collection, and then
collects the elements in these collections in the resulting collection.

The only collection-specific operations that are required by a method
such as map, are iterating over a collection, and producing a new one.
Thus, if these operations can be abstracted over, these methods can be
implemented in Iterable in terms of these abstractions. Listing 3.3 shows

28 Type Constructor Polymorphism for Scala

trait Buildable[Container[X]] {
def build[T]: Builder[Container, T]

def buildWith[T](f: Builder[Container,T] ⇒ Unit)
: Container[T] = {

val buff = build[T]

f(buff)

buff.finalise()
}

}
Listing 3.4: Buildable

the well-known, lightweight, Iterator abstraction that encapsulates iter-
ating over a collection, as well as the Builder abstraction, which captures
how to produce a collection, and thus may be thought of as the dual of
Iterator.

Builder crucially relies on type constructor polymorphism, as it must
abstract over the type constructor that represents the collection that it
builds. The += method is used to supply the elements in the order in which
they should appear in the collection. The collection itself is returned by
finalise. For example, the finalise method of a Builder[List, Int]
returns a List[Int].

Listing 3.4 shows a minimal Buildable with an abstract build
method, and a convenience method, buildWith, that captures the typi-
cal use-case for build.

By analogy to the proven design that keeps Iterator and Iterable
separated, Builder and Buildable are modelled as separate abstractions
as well. In a full implementation, Buildable would contain several more
methods, such as unfold (the dual of fold [GJ98]), which should not
clutter the lightweight Builder interface.

Note that Iterable (Listing 3.5) uses a type constructor member,
Container, to abstract over the precise type of the container, whereas
Buildable uses a parameter. Since clients of Iterable generally are not
concerned with the exact type of the container (except for the regularity
that is imposed by our design), it is neatly encapsulated as a type member.
Buildable’s primary purpose is exactly to create and populate a specific
kind of container. Thus, the type of an instance of the Buildable class

3.2 Reducing code duplication 29

trait Iterable[T] {
type Container[X] <: Iterable[X]
def elements: Iterator[T]

def mapTo[U, C[X]](f: T ⇒ U)
(b: Buildable[C]): C[U] = {

val buff = b.build[U]
val elems = elements

while(elems.hasNext) buff += f(elems.next)

buff.finalise()
}
def filterTo[C[X]](p: T ⇒ Boolean)

(b: Buildable[C]): C[T] = {
val elems = elements

b.buildWith[T]{ buff ⇒
while(elems.hasNext){
val el = elems.next
if(p(el)) buff += el

}
}

}
def flatMapTo[U,C[X]](f: T⇒Iterable[U])

(b: Buildable[C]): C[U] = {
val buff = b.build[U]
val elems = elements

while(elems.hasNext)
f(elems.next).elements.foreach{ el ⇒ buff += el }

buff.finalise()
}

def map[U](f: T ⇒ U)
(b: Buildable[Container]): Container[U]

= mapTo[U, Container](f)(b)
def filter(p: T ⇒ Boolean)

(b: Buildable[Container]): Container[T]
= filterTo[Container](p)(b)

def flatMap[U](f: T ⇒ Container[U])
(b: Buildable[Container]): Container[U]

= flatMapTo[U, Container](f)(b)
}

Listing 3.5: Iterable

30 Type Constructor Polymorphism for Scala

class List[T] extends Iterable[T]{
type Container[X] = List[X]

def elements: Iterator[T]
= new Iterator[T] {

// standard implementation
}

}
Listing 3.6: List subclasses Iterable

should specify the type of container that it builds. This information is still
available with a type member, but it is less manifest.

The map/filter/flatMap methods are implemented in terms of the
even more flexible trio mapTo/filterTo/flatMapTo. The generalisation
consists of decoupling the original collection from the produced one – they
need not be the same, as long as there is a way of building the target collec-
tion. Thus, these methods take an extra argument of type Buildable[C].
Section 3.6 shows how an orthogonal feature of Scala can be used to relieve
callers from supplying this argument explicitly.

For simplicity, the mapTo method is implemented as straightforwardly
as possible. The filterTo method shows how the buildWith convenience
method can be used.

The result types of map, flatMap, and their generalisations illustrate
why a MyType-based solution would not work: whereas the type of this
would be C[T], the result type of these methods is C[U]: it is the same
type constructor, but it is applied to different type arguments!

List can now easily be implemented as a subclass of Iterable, as
shown in Listing 3.6. The type constructor of the container is fixed to
be List itself, and the standard Iterator trait is implemented. This
implementation does not offer any new insights, so we have omitted it.
Listing 3.7 shows the object that implements the Buildable interface for
List.

To illustrate the versatility of the Buildable abstraction, Listing 3.8
implements the Buildable interface for Option. An Option corresponds
to a list that contains either 0 or 1 elements, and is commonly used in Scala
to avoid null’s.

3.2 Reducing code duplication 31

object ListBuildable extends Buildable[List]{
def build[T]: Builder[List, T]
= new ListBuffer[T] with Builder[List, T] {

// += is inherited from ListBuffer
// (Scala standard library)
def finalise(): List[T] = toList

}
}

Listing 3.7: Building a List

object OptionBuildable extends Buildable[Option] {
def build[T]: Builder[Option, T]
= new Builder[Option, T] {

var res: Option[T] = None()

def +=(el: T)
= if(res.isEmpty) res = Some(el)
else throw new UnsupportedOperation-Exception(">1

elements")

def finalise(): Option[T] = res
}

}
Listing 3.8: Building an Option

val bdays: List[Option[Date]] = List(
Some(new Date("1981/08/07")), None,
Some(new Date("1990/04/10")))

def toYrs(bd: Date): Int = // omitted

val ages: List[Int]
= bdays.flatMapTo[Int, List]{ optBd ⇒

optBd.map{d ⇒ toYrs(d)}(OptionBuildable)
}(ListBuildable)

val avgAge = ages.reduceLeft[Int](_ + _) / ages.length

Listing 3.9: Example: using Iterable

32 Type Constructor Polymorphism for Scala

3.2.2 Example: using Iterable

This example demonstrates how to use map and flatMap to compute the
average age of the users of, say, a social networking site. Since users do
not have to enter their birthday, the input is a List[Option[Date]]. An
Option[Date] either holds a date or nothing. Listing 3.9 shows how to
proceed.

First, a small helper is introduced that computes the current age in
years from a date of birth. To collect the known ages, an optional date is
transformed into an optional age using map. Then, the results are collected
into a list using flatMapTo. Note the use of the more general flatMapTo.
With flatMap, the inner map would have had to convert its result from
an Option to a List, as flatMap(f) returns its results in the same kind
of container as produced by the function f (the inner map). Finally, the
results are aggregated using reduceLeft (not shown here). The full code
of the example is available online2.

Note that the Scala compiler infers most proper types (we added some
annotations to aid understanding), but it does not infer type constructor
arguments. Thus, type argument lists that contain type constructors, must
be supplied manually.

Finally, the only type constructor that arises in the example is the List
type argument. In fact, in this example, it could have been inferred by

the compiler, but this is not always possible in more complex scenarios.
This demonstrates that the complexity of type constructor polymorphism,
much like with genericity, is concentrated in the internals of the library.
The upside is that library designers and implementers have more control
over the interfaces of the library, while clients remain blissfully ignorant of
the underlying complexity. (As noted earlier, Section 3.6 will show how the
arguments of type Buildable[C] can be omitted.)

3.2.3 Members versus parameters

The relative merits of abstract members and parameters have been dis-
cussed in detail by many others [BOW98, TT99, Ern01]. The Scala philos-
ophy is to embrace both: sometimes parameterisation is the right tool, and
at other times, abstract members provide a better solution. Technically, it
is possible to safely encode parameters as members, which – surprisingly
– was not possible in earlier calculi. Chapter 4 discusses this encoding in
detail.

2http://www.cs.kuleuven.be/∼adriaan/?q=genericshk

http://www.cs.kuleuven.be/~adriaan/?q=genericshk

3.3 Of types and kinds 33

TypeParamClause ::= ‘[’ TypeParam {‘,’ TypeParam} ‘]’
TypeParam ::= id [TypeParamClause]

[‘>:’ Type] [‘<:’ Type]

AbstractTpMem ::= ‘type’ TypeParam

Figure 3.1: Syntax for type declarations (type parameters and abstract
type members)

Our examples have used both styles of abstraction. Buildable’s main
purpose is to build a certain container. Thus, Container is a type param-
eter: a characteristic that is manifest to external clients of Buildable, as
it is (syntactically) part of the type of its values. In Iterable a type
member is used, as its external clients are generally only interested in
the type of its elements. Syntactically, type members are less visible, as
Iterable[T] is a valid proper type. To make the type member explicit,
one may write Iterable[T]{type Container[X]=List[X]}. Alterna-
tively, the Container type member can be selected on a singleton type
that is a subtype of Iterable[T].

3.3 Of types and kinds

Even though proper types and type constructors are placed on equal foot-
ing as far as parametric polymorphism is concerned, one must be careful
not to mix them up. Clearly, a type parameter that stands for a proper
type, must not be applied to type arguments, whereas a type constructor
parameter cannot classify a value until it has been turned into a proper
type by supplying the right type arguments.

In this section we give an informal overview of how programmers may
introduce higher-kinded type parameters and abstract type members, and
sketch the rules that govern their use. We describe the surface syntax that
was introduced with the release of Scala 2.5, and the underlying conceptual
model of kinds.

3.3.1 Surface syntax for types

Figure 3.1 shows a simplified fragment of the syntax of type parameters and
abstract type members, which we collectively call “type declarations”. The
full syntax, which additionally includes variance annotations, is described

34 Type Constructor Polymorphism for Scala

!

"

#

$

%

&

'

(

)

%

*

+

,

-

)

%

+./

".0 ,1203".04

5 3567684

,120

!"9"!!

:56"7;

(<1=3".06"".04

!"9"!"9"!

(<1=

>

>

>

>

?@<221A1?<01B.

2CD0/E1.F

@GFG.HI

Why Type Constructor Polymorphism Matters 5

trait Iterable[T] {
type Container[X]

def filter(p: T ⇒ Boolean): Container[T]
}

Listing 1. Iterable with an abstract type constructor member

is the kind of the type that results from applying the type constructor to an
argument.

For example, class List[T] gives rise to a type constructor List that is
classified by the kind * → *, as applying List to a proper type yields a proper
type. Note that, since kinds are structural, given e.g., class Animal[FoodType
], Animal has the exact same kind as List.

Our initial model of the level of kinds can be described using the following
grammar3:

K ::= ∗ | K → K

The rules that define the well-formedness of types in a language without
type constructor polymorphism, correspond to the rules that assign a kind * to
a type. Our extensions generalises this to the notion of kind checking, which is
to types as type checking is to values and expressions.

A class, or an unbounded type parameter or abstract type member receives
the kind K’ → * if it has one type parameter with kind K’. For bounded type
parameters or abstract members, the kind K’ → K is assigned, where K corre-
sponds to the bound. We use currying to generalise this scheme to deal with
multiple type parameters. The type application T[T’] has the kind K if T has
kind K’ → K, and T’ is classified by the kind K’.

Finally, the syntactical impact of extending Scala with type constructor poly-
morphism is minor. Before, only classes and type aliases could declare formal
type parameters, whereas this has now been extended to include type parameters
and abstract type members. Listing 2 already introduced the notation for type
constructor parameters, and Listing 1 completes the picture with an alternative
formulation of our running example using an abstract type constructor member.

The next section elaborates on the example of this section. More concretely,
we introduce an implementation of Iterable that crucially relies on type con-
structor polymorphism to make its signatures more accurate, while further re-
ducing code duplication. Section 2.3 discusses Scala’s implicits and shows how
they can be leveraged in Iterable. This approach is then generalised into an
encoding of Haskell’s type classes, which – thanks to type constructor polymor-
phism – applies to constructor classes as well.

3 In Section 3, we will extend this model with support for bounds, and Section 5
describes the impact of variance on the level of kinds.

E=BEG="0/EG2

0/EG"?B.20=C?0B=2

Figure 3.2: Diagram of levels

in the Scala language specification [Ode07]. Syntactically, our extension
introduces an optional TypeParamClause as part of a type declaration.
The scope of the higher-order type parameters that may thus be introduced,
extends over the outer type declaration to which they belong.

For example, Container[X] is a valid TypeParam, which introduces a
type constructor parameter that expects one type argument. To illustrate
the scoping of higher-order type parameters, Container[X] <: Iterable
[X] declares a type parameter that, when applied to a type argument Y –
written as Container[Y] – must be a subtype of Iterable[Y].

A more complicated example, C[X <: Ordered[X]] <: Iterable[X]
introduces a type constructor parameter C, with an F-bounded higher-order
type parameter X, which occurs in its own bound as well as in the bound
of the type parameter that it parameterises. Thus, C abstracts over a type
constructor so that, for any Y that is a subtype of Ordered[Y], C[Y] is a
subtype of Iterable[Y]

3.3.2 Kinds

Conceptually, kinds are used to distinguish a type parameter that stands
for a proper type, such as List[Int], from a type parameter that abstracts
over a type constructor, such as List. An initial, simplistic kind system
is illustrated in the diagram in Fig. 3.2, and it is refined in the remainder
of this section. The figure shows the three levels of classification, where
entities in lower levels are classified by entities in the layer immediately

3.3 Of types and kinds 35

Kind ::= ‘*(’ Type ‘,’ Type ‘)’
| [id ‘@’] Kind ‘->’ Kind

Figure 3.3: Kinds (not in surface syntax)

above them.
Kinds populate the top layer. The kind " classifies types that classify

values, and the → kind constructor is used to construct kinds that classify
type constructors. Note that kinds are inferred by the compiler. They
cannot appear in Scala’s surface syntax.

Nonetheless, Fig. 3.3 introduces syntax for the kinds that classify the
types that can be declared as described in the previous section. The first
kind, "(T, U), classifies proper types (such as type declarations with-
out higher-order type parameters), and tracks their lower (T) and upper
bounds (U). It should be clear that this kind is easily inferred, as type
declarations either explicitly specify bounds or receive the minimal lower
bound, Nothing, and the maximal upper bound, Any. Note that inter-
section types can be used to specify a disjunction of lower bounds, and a
conjunction of upper bounds. Since we mostly use upper bounds, we ab-
breviate "(Nothing, T) to "(T), and "(Nothing, Any) is written as ".

We refine the kind of type constructors by turning it into a dependent
function kind, as higher-order type parameters may appear in their own
bounds, or in the bounds of their outer type parameter.

In the examples that was introduced above, Container[X] introduces
a type constructor parameter of kind " → ", and Container[X] <:
Iterable[X] implies the kind X @ " → "(Iterable[X]) for Container.
Finally, the declaration C[X <: Ordered[X]] <: Iterable[X] results in
C receiving the kind X @ "(Ordered[X]) → "(Iterable[X]). Again,
the syntax for higher-order type parameters provides all the necessary in-
formation to infer a (dependent) function kind for type constructor decla-
rations.

Informally, type constructor polymorphism introduces an indirection
through the kinding rules in the typing rule for type application, so that
it uniformly applies to generic classes, type constructor parameters, and
abstract type constructor members. These type constructors, whether con-
crete or abstract, are assigned function kinds by the kind system. Thus, if
T has kind X @ K → K’, and U has kind K, in which X has been replaced by
U, a type application T[U] has kind K’, with the same substitution applied.
Multiple type arguments are supported through the obvious generalisation

36 Type Constructor Polymorphism for Scala

class Iterable[Container[X], T]

trait NumericList[T <: Number]
extends Iterable[NumericList, T]

Listing 3.10: NumericList: an illegal subclass of Iterable

(taking the necessary care to perform simultaneous substitutions).

3.3.3 Subkinding

Similar to the subtyping relation that is defined on types, subkinding relates
kinds. Thus, we overload <: to operate on kinds as well as on types. As
the bounds-tracking kind stems from Scala’s bounds on type declarations,
subkinding for this kind simply follows the rules that were already defined
for type member conformance: "(T, U) <: "(T’, U’) if T’ <: T and
U <: U’. Intuitively, this amounts to interval inclusion. For the dependent
function kind, we transpose subtyping of dependent function types [AC01]
to the kind level.

3.3.4 Example: why kinds track bounds

Suppose Iterable3 is subclassed as in Listing 3.10. This program
is rejected by the compiler because the type application Iterable[
NumericList, T] is ill-kinded. The kinding rules classify NumericList
as a "(Number) → ", which must be a subkind of the expected kind of
Iterable’s first type parameter, " → ". Now, "(Number) <: ", whereas
subkinding for function kinds requires the argument kinds to vary con-
travariantly.

Intuitively, this type application must be ruled out, because passing
NumericList as the first type argument to Iterable would “forget” that
NumericList may only contain Number’s: Iterable is kind-checked under
the assumption that its first type argument does not impose any bounds
on its higher-order type parameter, and it could thus apply NumericList
to, say, String. The next section elaborates on this.

Fortunately, Iterable can be defined so that it can accommodate
bounded collections, as shown in Listing 3.11. To achieve this, Iterable
abstracts over the bound on Container’s type parameter. NumericList
instantiates this bound to Number. We refine this example in Section 3.4.

3For simplicity, we define Iterable using type parameters in this example.

3.3 Of types and kinds 37

class Iterable[Container[X <: Bound], T <: Bound, Bound]

trait NumericList[T <: Number]
extends Iterable[NumericList, T, Number]

Listing 3.11: Safely subclassing Iterable

3.3.5 Kind soundness

Analogous to type soundness, which provides guarantees about value-level
abstractions, kind soundness ensures that type-level abstractions do not go
“wrong”.

At the value level, passing, e.g., a String to a function that expects
an Integer goes wrong when that function invokes an Integer-specific
operation on that String. Type soundness ensures that application is
type-preserving, in the sense that a well-typed application evaluates to a
well-typed result.

As a type-level example, consider what happens when a type func-
tion that expects a type of kind " → ", is applied to a type of
kind "(Number) → ". This application goes wrong, even though the type
function itself is well-kinded, if it does something with that type construc-
tor that would be admissible with a type of kind " → ", but not with a
type of kind "(Number) → ", such as applying it to String. If the first,
erroneous, type application were considered well-kinded, type application
would not be kind-preserving, as it would turn a well-kinded type into a
nonsensical, ill-kinded, one (such as NumericList[String]).

3.3.6 Conclusion

In summary, the presented type system is based on Polarized Fω
sub [Ste98],

Cardelli’s power type, and subkinding. Our bounds-tracking kind "(L, U).
corresponds to Cardelli’s power type [Car88a]. Subkinding is based on
interval inclusion and the transposition of subtyping of dependent function
types [AC01] to the level of kinds. The integration of these constructs into
an object-oriented type system is the main contribution described in this
section. The following chapter presents a more formal account of this type
system.

38 Type Constructor Polymorphism for Scala

trait Builder[Container[X <: B[X]], T <: B[T], B[Y]]
trait Buildable[Container[X <: B[X]], B[Y]] {
def build[T <: B[T]]: Builder[Container, T, B]

}
trait Iterable[T <: Bound[T], Bound[X]] {
type Container[X <: Bound[X]] <: Iterable[X, Bound]

def map[U <: Bound[U]](f: T ⇒ U)
(b: Buildable[Container, Bound]): Container[U] = ...

}
Listing 3.12: Essential changes to extend Iterable with support for
(F-)bounds

3.4 Bounded Iterable

As motivated in Section 3.3.4, in order for Iterable to model collections
that impose an (F-)bound on the type of their elements, it must accommo-
date this bound from the start.

To allow subclasses of Iterable to declare an (F-)bound on the type
of their elements, Iterable must abstract over this bound. Listing 3.12
generalises the interface of the original Iterable from Listing 3.5. The
implementation is not affected by this change.

Listing 3.13 illustrates various kinds of subclasses, including List,
which does not impose a bound on the type of its elements, and thus
uses Any as its bound (Any and Nothing are kind-overloaded). Note that
NumericList can also be derived, by encoding the anonymous type func-
tion X → Number as Const1[Number]#Apply.

Again, the client of the collections API is not exposed to the relative
complexity of Listing 3.12. However, without it, a significant fraction of
the collection classes could not be unified under the same Iterable ab-
straction. Thus, the clients of the library benefit, as a unified interface for
collections, whether they constrain the type of their elements or not, means
that they need to learn fewer concepts.

Alternatively, it would be interesting to introduce kind-level abstraction
to solve this problem. Tentatively, Iterable and List could then be
expressed as:

trait Iterable[T : ElemK, ElemK : Kind]
class List[T] extends Iterable[T, "]

This approach is more expressive than simply abstracting over the upper

3.4 Bounded Iterable 39

class List[T] extends Iterable[T, Any] {
type Container[X] = List[X]

}

trait OrderedCollection[T <: Ordered[T]]
extends Iterable[T, Ordered] {

type Container[X <: Ordered[X]] <: OrderedCollection[X]
}

trait Const1[T]{type Apply[X]=T}

trait Number
class NumericList[T <: Number]

extends Iterable[T, Const1[Number]#Apply] {
type Container[X <: Number] = NumericList[X]

}
Listing 3.13: (Bounded) subclasses of Iterable

trait Iterable[T >: L <: U, L <: U, U] {
type Container[X >: L <: U] <: Iterable[X, L, U]

}

class String extends Iterable[Char, Char, Char] {
type Container[X >: Char <: Char] = String

}
Listing 3.14: String as a subclass of Iterable

bound on the element type, as kinds can express lower and upper bounds,
and variance. This would become even more appealing in a language that
allows the user to define new kinds [She07].

As a more concrete example, consider the ubiquitous String: concep-
tually, it is a collection of characters, so that it is desirable to model it
as an Iterable. However, this would required extending our bounded
Iterable even further, so that it also abstracts over lower bounds, as
shown in Listing 3.14. Note that we have simplified the bounds L and U to
proper types. More importantly, String does not take any type parame-
ters itself, as Char is the only type that satisfies the bounds on Iterable’s
element type. With kind polymorphism, we could have reused the above
kind-polymorphic definition of Iterable:

class String extends Iterable[Char, "(Char, Char)]

40 Type Constructor Polymorphism for Scala

Another realistic application for kind polymorphism arose during the
refactoring of the collections library, where variance must be taken into
account (see Section 3.5.3). For now, two variants of IterableImpl – the
implementation of the Iterable interface – are necessary: one for covariant
collections, and another for non-variant collections, even though their sole
difference is the variance of two related type parameters:

trait IterableImplCov[+CC[+B] <: IterableImplCov[CC, B]
with Iterable[B], +A]

trait IterableImplNov[+CC[B] <: IterableImplNov[CC, B]
with Iterable[B], A]

With a kind that captures the variance of a type constructor, one
IterableImpl could support both variations.

3.5 Full Scala

In this section we discuss our experience with extending the full Scala
compiler with type constructor polymorphism. As discussed below, the
impact4 of our extension is mostly restricted to the type checker. Finally, we
list the limitations of our implementation, and discuss the interaction with
variance. The implementation supports variance annotations on higher-
order type parameters, but this has not been integrated in the formalisation
yet.

3.5.1 Implementation

Extending the Scala compiler with support for type constructor polymor-
phism came down to introducing another level of indirection in the well-
formedness checks for types.

Once abstract types could be parameterised (a simple extension to the
parser and the abstract syntax trees), the check that type parameters must
always be proper types had to be relaxed. Instead, a more sophisticated
mechanism tracks the kinds that are inferred for these abstract types. Type
application then checks two things: the type that is used as a type con-
structor must indeed have a function kind, and the kinds of the supplied
arguments must conform to the expected kinds. Additionally, one must
ensure that type constructors do not occur as the type of a value.

4The initial patch to the compiler can be viewed at http://lampsvn.epfl.ch/
trac/scala/changeset/10642

http://lampsvn.epfl.ch/trac/scala/changeset/10642
http://lampsvn.epfl.ch/trac/scala/changeset/10642

3.5 Full Scala 41

Since Scala uses type erasure in the back-end, the extent of the changes
is limited to the type checker. Clearly, our extension thus does not have
any impact on the run-time characteristics of a program. Ironically, as type
erasure is at the root of other limitations in Scala, it was an important
benefit in implementing type constructor polymorphism.

Similar extensions in languages that target the .NET platform face a
tougher challenge, as the virtual machine has a richer notion of types and
thus enforces stricter invariants. Unfortunately, the model of types does
not include higher-kinded types. Thus, to ensure full interoperability with
genericity in other languages on this platform, compilers for languages with
type constructor polymorphism must resort to partial erasure, as well as
code specialisation in order to construct the necessary representations of
types that result from abstract type constructors being applied to argu-
ments.

Type constructor inference

Scala uses local type inference [PT00, OZZ01] to ease the burden of type
annotation. In many places, the compiler can reconstruct omitted type
information from the types of expressions and the bounds on abstract types.
Essentially, unknown types are replaced by type variables that record the
constraints that must be met in order for type checking to succeed. The
solution of these constraints determines the missing type.

To extend this algorithm to deal with type constructors, type variables
must now take parameters. More concretely, when inferring a concrete type
constructor for a missing type constructor argument, the corresponding
type parameter is replaced by a type variable. Since this type parameter
has type parameters, the type variable must as well. Thus, the checks that
record the constraints associated with the type variable must be generalised
to deal with parameterised type variables.

At the time of writing, the author’s implementation of type constructor
inference had not yet been incorporated into the latest stable release (ver-
sion 2.7.3), but it is expected to be available in version 2.8 of the official
Scala compiler.

Limitations

Syntactically, there are a few limitations that we would like to lift in up-
coming versions. As it stands, we do not directly support partial type
application and currying, or anonymous type functions. However, these
features can be encoded, as illustrated in Section 3.4.

42 Type Constructor Polymorphism for Scala

3.5.2 Variance

Another facet of the interaction between subtyping and type constructors is
seen in Scala’s support for definition-site variance annotations [EKRY06].
Variance annotations provide the information required to decide subtyping
of types that result from applying the same type constructor to different
types.

As the classical example, consider the definition of the class of im-
mutable lists, class List[+T]. The + before List’s type parameter de-
notes that List[T] is a subtype of List[U] if T is a subtype of U. We say
that + introduces a covariant type parameter, - denotes contravariance (the
subtyping relation between the type arguments is the inverse of the result-
ing relation between the constructed types), and the lack of an annotation
means that these type arguments must be identical.

Variance annotations pose the same kind of challenge to the model of
kinds as did bounded type parameters: kinds must encompass them as they
represent information that should not be glossed over when passing around
type constructors. The same strategy as for including bounds into " can
be applied here, except that variance is a property of type constructors, so
it should be tracked in →, by distinguishing +→ and −→ [Ste98].

Without going in too much detail, we illustrate the need for variance
annotations on higher-order type parameters and how they influence kind
conformance.

Listing 3.15 defines a perfectly valid Seq abstraction, albeit with a con-
trived lift method. Because Seq declares C’s type parameter X to be
covariant, it may use its covariant type parameter A as an argument for C,
so that C[A] <: C[B] when A <: B.

Seq declares the type of its this variable to be C[A] (self: C[A] ⇒
declares self as an alias for this, and gives it an explicit type). Thus, the
lift method may return this, as its type can be subsumed to C[B].

Suppose that a type constructor that is invariant in its first type pa-
rameter could be passed as the argument for a type constructor parameter
that assumes its first type parameter to be covariant. This would foil the
type system’s first-order variance checks: Seq’s definition would be invalid
if C were invariant in its first type parameter.

The remainder of Listing 3.15 sets up a concrete example that would
result in a run-time error if the type application Seq[A, Cell] were not
ruled out statically.

More generally, a type constructor parameter that does not declare any
variance for its parameters does not impose any restrictions on the variance

3.5 Full Scala 43

trait Seq[+A, C[+X]] { self: C[A] ⇒
def lift[B >: A]: C[B] = this

}

class Cell[A] extends Seq[A, Cell] { // only static error
private var cell: A = _
def set(x: A) = cell = x
def get: A = cell

}

class Top
class Ext extends Top {
def bar() = println("bar")

}

val exts: Cell[Ext] = new Cell[Ext]
val tops: Cell[Top] = exts.lift[Top]
tops.set(new Top)
exts.get.bar() // method not found error,

// if the above static error is ignored

Listing 3.15: Example of unsoundness if higher-order variance annotations
are not enforced.

44 Type Constructor Polymorphism for Scala

of the parameters of its type argument. However, when either covariance
or contravariance is assumed, the corresponding parameters of the type
argument must have the same variance.

3.5.3 Refactoring the collections library

Recently, Odersky refactored the Scala collections library leveraging type
constructor polymorphism. More concretely, the core of the library is now
structured as a single hierarchy of classes that implement the core func-
tionality for abstract collections. These higher-level classes are parametric
in the type constructor of the collection that they represent. The abstract
classes are specialised into two symmetric hierarchies of concrete mutable
and immutable collections, instantiating the type constructor parameter to
the concrete type constructor of the collection.

Thus, the functionality that is unrelated to a collection’s mutability
has been pulled up to the abstract hierarchy, whose root models an
abstract collection (IterableTemplate), and includes more specific
collections, such as ordered collections (OrderedIterableTemplate),
indexable collections (SequenceTemplate), O(1)-indexable collec-
tions (VectorTemplate), sets (SetTemplate), and maps (MapTemplate).
As a result, the classes in the mutable and immutable hierarchies – lists,
lazy lists, vectors, sets and maps based on hashing, . . . – simply inherit the
corresponding collection template, instantiate the type constructor to their
concrete type constructor, and implement their truly specific functionality.

This has greatly reduced code duplication, so that, filtering a Vector,
for example, now yields a Vector, even though filter was implemented
at the top of the hierarchy in IterableTemplate. The Builder pattern
plays an important role in pulling up this redundant code, as explained
earlier.

Unfortunately, the change in lines of code due to this refactoring can-
not easily be correlated with our extension’s potential for reducing code
duplication, as the refactoring involved much more than simply reshaping
the existing library to leverage type constructor polymorphism. Old func-
tionality was removed, new methods were added and existing ones were
implemented more elegantly or more efficiently, without necessarily relying
on type constructor polymorphism.

Besides confirming the utility of type constructor polymorphism, the
refactoring also challenged its expressiveness. More specifically, the core im-
plementation classes, such as IterableTemplate, are required in a covari-
ant (for immutable subclasses) and a nonvariant (for mutable subclasses)

3.6 Leveraging Scala’s implicits 45

variety, even though the nonvariant version can be derived from the co-
variant one by simply dropping the appropriate ‘+’ variance annotations.
Currently, this redundancy is avoided by only implementing the nonvariant
version, which is casted to the covariant version using an annotation to
override the compiler’s kind checks.

Again, this motivates kind polymorphism as a more powerful gener-
alisation of type constructor polymorphism. As discussed in Section 3.4,
kinds can be used to abstract more succinctly over the higher-order bounds
of an abstract type constructor. Bounds behave similarly to variance an-
notations with respect to conformance, and both are captured by kinds, so
that kind polymorphism could solve these limitations of type constructor
polymorphism, which were both encountered in realistic applications.

3.6 Leveraging Scala’s implicits

In this section we discuss how the introduction of type constructor poly-
morphism has made Scala’s support for implicit arguments more powerful.
Implicits have been implemented in Scala since version 1.4. They are the
minimal extension to an object-oriented language so that Haskell’s type
classes [WB89] can be encoded [Ode06].

We first show how to improve the example from Section 3.2 using im-
plicits, so that clients of Iterable no longer need to supply the correct
instance of Buildable[C]. Since there generally is only one instance of
Buildable[C] for a particular type constructor C, it becomes quite tedious
to supply it as an argument whenever calling one of Iterable’s methods
that requires it.

Fortunately, Scala’s implicits can be used to shift this burden to the
compiler. It suffices to add the implicit keyword to the parameter list that
contains the b: Buildable[C] parameter, and to the XXXIsBuildable
objects. With this change, which is sketched in Listing 3.16, callers (such as
in the example of Listing 3.9) typically do not need to supply this argument.

In the rest of this section we explain this feature in order to illustrate the
interaction with type constructor polymorphism. With the introduction of
type constructor polymorphism, our encoding of type classes is extended to
constructor classes, such as Monad, as discussed in Section 3.6.3. Moreover,
our encoding exceeds the original because we integrate type constructor
polymorphism with subtyping, so that we can abstract over bounds. This
would correspond to abstracting over type class contexts, which is not sup-
ported in Haskell [Hug99, Jon94, Kid07, CJSS07]. Section 3.6.3 discusses
this in more detail.

46 Type Constructor Polymorphism for Scala

trait Iterable[T] {
def map[U](f: T ⇒ U)

(implicit b: Buildable[Container]): Container[U]
= mapTo[U, Container](f)
// no need to pass b explicitly
// similar for other methods

}

implicit object ListBuildable extends Buildable[List]
{...}

implicit object OptionBuildable extends Buildable[Option]
{...}

// client code (see previous example):
val ages: List[Int] = bdays.flatMapTo[Int, List]{

maybeDate ⇒ maybeDate.map{toYrs(_)}
}

Listing 3.16: Snippet: leveraging implicits in Iterable

3.6.1 Introduction to implicits

The principal idea behind implicit parameters is that arguments for them
can be left out from a method call. If the arguments corresponding to an
implicit parameter section are missing, they are inferred by the compiler.

Listing 3.17 introduces implicits by way of a simple example. It de-
fines an abstract class of monoids and two concrete implementations,
StringMonoid and IntMonoid. The two implementations are marked with
an implicit modifier.

Listing 3.18 implements a sum method, which works over arbitrary
monoids. sum’s second parameter is marked implicit. Note that sum’s
recursive call does not need to pass along the m implicit argument.

The actual arguments that are eligible to be passed to an implicit pa-
rameter include all identifiers that are marked implicit, and that can be
accessed at the point of the method call without a prefix. For instance, the
scope of the Monoids object can be opened up using an import statement,
such as import Monoids._ This makes the two implicit definitions of
stringMonoid and intMonoid eligible to be passed as implicit arguments,
so that one can write:

sum(List("a", "bc", "def"))
sum(List(1, 2, 3))

3.6 Leveraging Scala’s implicits 47

abstract class Monoid[T] {
def add(x: T, y: T): T
def unit: T

}

object Monoids {
implicit object stringMonoid extends Monoid[String] {
def add(x: String, y: String): String = x.concat(y)
def unit: String = ""

}
implicit object intMonoid

extends Monoid[Int] {
def add(x: Int, y: Int): Int = x + y
def unit: Int = 0

}
}

Listing 3.17: Using implicits to model monoids

def sum[T](xs: List[T])(implicit m: Monoid[T]): T
= if(xs.isEmpty) m.unit else m.add(xs.head, sum(xs.tail))

Listing 3.18: Summing lists over arbitrary monoids

48 Type Constructor Polymorphism for Scala

class Ord a where
(<=) :: a → a → Bool

instance Ord Date where
(<=) = ...

max :: Ord a ⇒ a → a → a
max x y = if x <= y then y else x

Listing 3.19: Using type classes to overload <= in Haskell

These applications of sum are equivalent to the following two applica-
tions, where the formerly implicit argument is now given explicitly.

sum(List("a", "bc", "def"))(stringMonoid)
sum(List(1, 2, 3))(intMonoid)

If there are several eligible arguments that match an implicit parame-
ter’s type, a most specific one will be chosen using the standard rules of
Scala’s static overloading resolution. If there is no unique most specific
eligible implicit definition, the call is ambiguous and will result in a static
error.

3.6.2 Encoding Haskell’s type classes with implicits

Haskell’s type classes have grown from a simple mechanism that deals with
overloading [WB89], to an important tool in dealing with the challenges of
modern software engineering. Its success has prompted others to explore
similar features in Java [WLT07].

An example in Haskell

Listing 3.19 defines a simplified version of the well-known Ord type class.
This definition says that if a type a is in the Ord type class, the function
<= with type a → a → Bool is available.

The instance declaration instance Ord Date gives a concrete imple-
mentation of the <= operation on Date’s and thus adds Date as an instance
to the Ord type class. To constrain an abstract type to instances of a type
class, contexts are employed. For example, max’s signature constrains a to
be an instance of Ord using the context Ord a, which is separated from the
function’s type by a ⇒.

Conceptually, a context that constrains a type a, is translated into an
extra parameter that supplies the implementations of the type class’s meth-

3.6 Leveraging Scala’s implicits 49

trait Ord[T] {
def <= (other: T): Boolean

}

import java.util.Date

implicit def dateAsOrd(self: Date)
= new Ord[Date] {
def <= (other: Date) = self.equals(other)

|| self.before(other)
}

def max[T <% Ord[T]](x: T, y: T): T = if(x <= y) y else x

Listing 3.20: Encoding type classes using Scala’s implicits

ods, packaged in a so-called “method dictionary”. An instance declaration
specifies the contents of the method dictionary for this particular type.

Encoding the example in Scala

It is natural to turn a type class into a class, as shown in Listing 3.20.
Thus, an instance of that class corresponds to a method dictionary, as it
supplies the actual implementations of the methods declared in the class.

The instance declaration instance Ord Date is translated into an im-
plicit method that converts a Date into an Ord[Date]. The method dictio-
nary for the instance at Date corresponds to an object of type Ord[Date].

Because of Scala’s object-oriented nature, the creation of method dictio-
naries is driven by member selection. Whereas the Haskell compiler selects
the right method dictionary fully automatically, this process is triggered
by calling missing methods on objects of a type that is an instance (in
the Haskell sense) of a type class that does provide this method. When a
type class method, such as <=, is selected on a type T that does not define
that method, the compiler searches an implicit value that converts a value
of type T into a value that does support this method. In this case, the
implicit method dateAsOrd is selected when T equals Date.

Note that Scala’s scoping rules for implicits differ from Haskell’s.
Briefly, the search for an implicit is performed locally in the scope of the
method call that triggered it, whereas this is a global process in Haskell.

Contexts are another trigger for selecting method dictionaries. The con-
text Ord a of the max method becomes a view bound T <% Ord[T], which

50 Type Constructor Polymorphism for Scala

def max[T](x: T, y: T)
(implicit conv: T ⇒ Ord[T]): T

= if(x <= y) y else x

Listing 3.21: Desugaring view bounds

def max[T](x: T, y: T)(c: T ⇒ Ord[T]): T
= if(c(x).<=(y)) y else x

Listing 3.22: Making implicits explicit

is syntactic sugar for an implicit parameter that converts the bounded type
to its view bound. Thus, when the max method is called, the compiler
must find the appropriate implicit conversion. Listing 3.21 removes this
syntactic sugar, and Listing 3.22 goes even further and makes the implicits
explicit. Clients would then have to supply the implicit conversion explic-
itly: max(dateA, dateB)(dateAsOrd).

Conditional implicits

By defining implicit methods that themselves take implicit parameters,
Haskell’s conditional instance declarations can be encoded:

instance Ord a ⇒ Ord (List a) where
(<=) = ...

This is encoded in Scala as:

implicit def listAsOrd[T](self: List[T])(implicit v: T ⇒ Ord
[T]) =

new Ord[List[T]] {
def <= (other: List[T]) = // compare elements in self and
other

}

Thus, two lists with elements of type T can be compared as long as their
elements are comparable.

Type classes and implicits both provide ad-hoc polymorphism. Like
parametric polymorphism, this allows methods or classes to be applicable to
arbitrary types. However, parametric polymorphism implies that a method
or a class is truly indifferent to the actual argument of its type parameter,
whereas ad-hoc polymorphism maintains this illusion by selecting different
methods or classes for different actual type arguments.

3.6 Leveraging Scala’s implicits 51

class Monad m where
(>>=) :: m a → (a → m b) → m b

data (Ord a) ⇒ Set a = ...

instance Monad Set where
-- (>>=) :: Set a → (a → Set b) → Set b

Listing 3.23: Set cannot be made into a Monad in Haskell

This ad-hoc nature of type classes and implicits can be seen as a retroac-
tive extension mechanism. In OOP, virtual classes [OH92, Ern99] have been
proposed as an alternative that is better suited for retroactive extension.
However, ad-hoc polymorphism also allows types to drive the selection of
functionality as demonstrated by the selection of (implicit) instances of
Buildable[C] in our Iterable example. Buildable clearly could not be
truly polymorphic in its parameter, as that would imply that there could
be one Buildable that knew how to supply a strategy for building any
type of container. Java’s static overloading mechanism is another example
of ad-hoc polymorphism.

3.6.3 Exceeding type classes

Haskell’s Monad abstraction [Wad95] does not apply to type constructors
with a constrained type parameter, such as Set, as explained below. Re-
solving this issue in Haskell is an active research topic [CJSS07, CKJM05,
Hug99]. As discussed in Section 3.4, it is quite possible to extend Iterable
to deal with bounded element types. From the perspective of the type
system, there is little difference between Scala’s Iterable and Haskell’s
Monad, besides spelling.

Listing 3.23 illustrates that the Monad abstraction does not accommo-
date constraints on the type parameter of the m type constructor that it
abstracts over. Since Set is a type constructor that constrains its type
parameter, it is not a valid argument for Monad’s m type parameter: m a is
allowed for any type a, whereas Set a is only allowed if a is an instance of
the Ord type class. Thus, passing Set as m might violate this constraint.

For reference, Listing 3.24 shows a direct encoding of the Monad type
class. Note that the >>= method corresponds to flatMap in Iterable,
whose type member Container has been replaced by Monad’s type parame-
ter M. To solve the problem in Scala, we generalise Monad to BoundedMonad
in Listing 3.25 to deal with bounded type constructors. Finally, the encod-

52 Type Constructor Polymorphism for Scala

trait Monad[A, M[X]] {
def >>= [B](f: A ⇒ M[B]): M[B]

}
Listing 3.24: Monad in Scala

trait BoundedMonad[A <: Bound[A], M[X <: Bound[X]], Bound[X]] {
def >>= [B <: Bound[B]](f: A ⇒ M[B]): M[B]

}

trait Set[T <: Ord[T]]

implicit def SetIsBoundedMonad[T <: Ord[T]](
s: Set[T]): BoundedMonad[T, Set, Ord] = ...

Listing 3.25: Set as a BoundedMonad in Scala

ing from Section 3.6.2 is used to turn a Set into a BoundedMonad.

3.6.4 Aside: implicit arguments versus subtype bounds

As type checking drives the selection of implicit values, the static and dy-
namic realms meet in Scala’s support for implicit arguments. Even though
subtype bounds are a strictly static notion, they can sensibly be compared
to implicits. We explore their differences and similarities, and illustrate how
implicits can be used to approximate, and – in a way – surpass subtype
bounds.

Conceptually, regardless of whether they abstract over types or values,
the parameters of a method constrain how this method may be called. In
Pierce’s exposition of system F [Pie02, Fig. 23-1, p. 343], for example, this
is made explicit in the operational semantics, which includes similar eval-
uation rules for value application (E-App1, E-App2) and type application
(E-TApp). In practice, type application and value application are normally
executed during distinct phases. While type checking, type applications are
performed, and value applications happen at run time.

However, Scala’s implicit arguments blur this distinction. More specifi-
cally, Listing 3.26 defines the method foo using a subtype bound on its type
parameter, as well as using an implicit argument that requires a witness
to the subtype constraint to be supplied at run time. In this context, that
witness is statically known to be the implicit value subtype_witness,
as the implicit method gives rise to a (type-)polymorphic function with
type ∀T <: U, U. T ⇒ U . Thus, any implicit argument of type A ⇒ B can

3.6 Leveraging Scala’s implicits 53

class Bar { def baz = 42 }

def foo[T <: Bar](x: T) = x.baz

// equivalent definition (modulo run-time behaviour, ...):
def foo[T](x: T)(implicit c: T ⇒ Bar) = x.baz

implicit def subtype_witness[T <: U, U](x: T): U = x

Listing 3.26: Comparing bounds and implicits

trait Iterable[T] {
// ...
def flatten[U](implicit b: Buildable[Container], c: T ⇒
Iterable[U]): Container[U]
= flatMapTo[U, Container](c)(b)

}
}

val x: Iterable[Iterable[Int]] = List(List(1), List(2, 3))
val y: Iterable[Int] = x.flatten // = List(1, 2, 3)

Listing 3.27: Iterable with flatten

be satisfied by subtype_witness[A, B] if A <: B.
From the caller’s perspective, there is no syntactic difference between

the two versions of foo. Both can be invoked as, e.g., foo(new Bar). Fur-
thermore, note that no casts are involved. Finally, the compiler could deter-
mine that inlining subtype_witness in foo does not change the method’s
run-time behaviour in any way, so that foo’s implicit argument list can be
eliminated altogether when subtype_witness is selected as the implicit
value.

More interestingly, we use this scheme in Fig. 3.27 to emulate gen-
eralised constraints [EKRY06] in Scala. A well-known example is the
flatten operation, which cannot properly be defined as a member of
Iterable[T] without generalised constraints. Listing 3.5 shows how to
add it to the implementation of Iterable that was discussed in Sec-
tion 3.2.1. The implicit argument c allows the flatten method to con-
strain Iterable’s type parameter T to be a subtype of Iterable[U]. Nor-
mally, a method can only bound its own type parameters.

Note that the b: Buildable[Container] argument can also be inter-

54 Type Constructor Polymorphism for Scala

preted as a generalised constraint, namely on Iterable’s type constructor
member Container. However, here, the witness to the constraint has com-
putational content: it allows us to build a collection of type Container[T],
for any T. Thus, it would not have made sense to use a subtype bound on
Container in the first place, as a bound on an abstract type only serves to
provide more information about values of that type. Since Container is a
type constructor, it does not classify any values, and even though the type
Container[T] does have values, which the bound thus constrains, we do
not have any such value – we are trying to create one!

3.7 Conclusion

Genericity is a proven technique to reduce code duplication in object-
oriented libraries while making them easier to use by clients. The prime
example is a collections library, where clients no longer need to cast the
elements they retrieve from a generic collection.

Unfortunately, though genericity is extremely useful, the first-order vari-
ant is self-defeating in the sense that abstracting over proper types gives
rise to type constructors, which cannot be abstracted over. Thus, by using
genericity to reduce code duplication, other kinds of boilerplate arise. Type
constructor polymorphism allows to further eliminate these redundancies,
as it generalises genericity to type constructors.

As with genericity, most use cases for type constructor polymorphism
arise in library design and implementation, where it provides more control
over the interfaces that are exposed to clients, while reducing code duplica-
tion. Moreover, clients are not exposed to the complexity that is inherent
to these advanced abstraction mechanisms. In fact, clients benefit from the
more precise interfaces that can be expressed with type constructor poly-
morphism, just like genericity reduced the number of casts that clients of
a collections library had to write.

We implemented type constructor polymorphism in Scala 2.5. The
essence of our solution carries over easily to Java, see Altherr et al. for
a proposal [CA08].

Finally, we have only reported on one of several applications that
we have experimented with. Embedded domain specific languages
(DSL’s) [CKcS07, HORM08] are another promising application area of
type constructor polymorphism. We are currently applying these ideas
to our parser combinator library, a DSL for writing EBNF grammars in
Scala [MPO08b]. In part in collaboration with the author of this thesis,
Hofer, Ostermann et al. are investigating similar applications [HORM08],

3.7 Conclusion 55

which critically rely on type constructor polymorphism.

56 Type Constructor Polymorphism for Scala

Chapter 4

Scalina: the Essence of
Abstraction in Scala

This chapter is based on the paper that we presented at FOOL
2008 [MPO08c]. The paper was written by the author of this thesis. We
acknowledge insightful comments, especially from the co-authors and Erik
Ernst, as well as from the anonymous reviewers.

4.1 Introduction

Scalina is a purely object-oriented calculus that provides the formal un-
derpinning for our extension of Scala with type constructor polymor-
phism, which was discussed in the previous chapter. Scalina intro-
duces a number of novelties with respect to earlier object-oriented cal-
culi [IPW01, OCRZ03, CGLO06]. The most notable improvement over the
νObj calculus is that kind checking ensures type applications never “go
wrong”. We dub this property kind soundness.

Traditionally, most object-oriented languages and the underlying for-
malisms use a mix of FP-style and OO-style abstraction. The former style
is based on lambda abstraction and function application, and OO-style
abstractions are built using abstract members and composition (via sub-
classing or mixin composition).

Java, for example, uses functional abstraction for methods and classes,
which may be parametric in types and values. Of course, Java also supports
OO-style abstraction: a class with an abstract method abstracts from the
implementation of that method. A subclass is expected to provide the
concrete implementation.

57

58 Scalina: the Essence of Abstraction in Scala

trait Iterable[A, Container[X]] {
def map[B](f: A ⇒ B): Container[B]

}

trait List[A] extends Iterable[A, List]

Listing 4.1: Expressing Iterable using parameterisation

Like νObj, Scalina is a purely object-oriented calculus: there are no
constructs for parameterisation. Yet, as we will demonstrate, Scalina is
able to express the same abstractions as, for example, system F sub

ω [Car88a,
PS97, CG03], with the same safety guarantees.

Chapter outline The rest of this section elaborates on the problem
statement and gives some initial insight into our solution. Then, we get our
feet wet with Scalina’s syntax and intuitions in Section 4.2, before delving
deeper in the levels of terms (Section 4.3) and types (Section 4.4). The
latter two sections discuss computation and classification at the respective
levels. We briefly motivate Scalina’s design and position it in the design
space in Section 4.5. In Section 4.6 we make the relation between Scalina
and system F sub

ω more precise. We sketch the meta-theory in Section 4.7.
Finally, we briefly discuss related work (Section 4.8) before concluding in
Section 4.9.

4.1.1 Kind soundness

Scala supports two styles of abstraction: the functional style uses parame-
terisation, whereas abstract members represent the object-oriented way. It
is natural to ask whether one style can be used exclusively. We focus on
how the object-oriented style can encode the functional one, since Scala is
object-oriented at its core.

Scala’s abstract type members closely correspond to type parameters,
and abstract type member refinement can be seen as the object-oriented
counterpart of type application. Abstract type member refinement is a re-
stricted form of mixin composition that can be used to override abstract
type members with concrete ones. However, it turns out that this encoding
does not preserve the safety properties that are ensured by parameterisa-
tion.

To make this concrete, Listing 4.1 uses parameterisation to express
the well-known Iterable abstraction in Scala. The Iterable trait (an

4.1 Introduction 59

trait TypeFunction1 { type A }

trait Iterable extends TypeFunction1 {
type Container <: TypeFunction1

def map[B](f: A ⇒ B): Container{type A = B}
}

trait List extends Iterable { type Container = List }
Listing 4.2: Encoding Iterable’s type parameters as members

trait NumericList[A <: Number]
extends Iterable[A, NumericList]

Listing 4.3: NumericList: an illegal subclass of Iterable

abstract class) takes two type parameters: the first one represents the type
of the elements, and the second one abstracts over the type constructor
of the container. To denote that it abstracts over a type constructor, the
Container parameter declares a formal type parameter X.

Listing 4.2 demonstrates the object-oriented style. Here, Iterable
abstracts over the type of its elements and the container using abstract
members. The A type member is inherited from TypeFunction1, and the
Container type constructor parameter is represented as an abstract type
member that is bounded to be a TypeFunction1. map’s result type is ex-
pressed by refining Container’s abstract type member A so that it equals B.

So far, the encoding remained faithful to the original. However, a
discrepancy emerges when we encode an erroneous program. The type
application Iterable[A, NumericList] in Listing 4.3 is not allowed by
the compiler, whereas we will see its encoding is accepted without warn-
ing. If it were not ruled out, map’s result type could apply any type B to
NumericList, while it accepts only subtypes of Number. By ruling out
Iterable[A, NumericList], the compiler prevents this error from ever
happening.

Unfortunately, the encoding does not preserve this property, which we
call “kind soundness”. This is illustrated by Listing 4.4, which is considered
a valid Scala program. The compiler silently accepts this program, even
though we could never complete its implementation (at some point we will
have to instantiate a NumericList for an arbitrary type of elements, and
the compiler will catch our mistake). To relate this to type soundness, the

60 Scalina: the Essence of Abstraction in Scala

trait NumericList extends Iterable {
type A <: Number
type Container = NumericList // Incorrect, but no error
reported!

}
Listing 4.4: The encoding of NumericList eludes the type checker

value-level equivalent of this oversight would be to allow passing a function
of type, e.g., Number ⇒ Any to a function that expects a Any ⇒ Any.

Note that this indulgence does not imply type unsoundness, as these
erroneous types cannot be instantiated. Nonetheless, we regard it as a
shortcoming of the compiler that these vacuous intersection types are al-
lowed to slip by unnoticed. Even though they are prevented from being
instantiated, they could be unmasked earlier.

To motivate this desire for early detection of these inconsistencies, con-
sider the analogy with abstract classes. Suppose classes would be allowed
to be abstract implicitly, so that accidental abstract classes would not be
discovered until a client attempts to instantiate them. However, this situa-
tion is considered undesirable by most languages, so that an abstract class
must be marked as such explicitly. This eliminates the possibility that the
programmer simply forgot to implement a method.

Not detecting erroneous type applications, which manifest themselves
as intersection types that unexpectedly do not have any instances, has the
same effect as allowing any class to be abstract implicitly: the error is
detected eventually, but it could have been signalled earlier. Even though
other uses of intersection types might sensibly result in empty types, we do
not consider this to be one of them.

This kind unsoundness has its roots in the νObj calculus [OCRZ03],
which allows abstract type members to be refined covariantly, thus
NumericList <: TypeFunction1, so that the encoding of the erroneous
type application results in a valid program.

We recover early error detection in Scalina by differentiating covariant
and contravariant members, instead of assuming they all behave covariantly.
This distinction corresponds to the fact that some members abstract over
input, whereas others represent the output of the abstraction. Input mem-
bers should behave contravariantly, like the types of function arguments,
whereas covariance is required for output members, which correspond to
a function’s result type. With this distinction, a purely object-oriented
calculus can encode functional-style abstraction with the same safety guar-

4.1 Introduction 61

trait TypeFunction1 { deferred type A }

trait Iterable extends TypeFunction1 {
type Container <: TypeFunction1

def map[B](f: A ⇒ B): Container%{type A = B}
}

trait List extends Iterable { type Container = List }

trait NumericList extends Iterable {
deferred type A <: Number // error: covariant change not
allowed

type Container = NumericList
}

Listing 4.5: Using un-members to recover kind soundness

antees.
If we look at the problem from the point of view of the clients of an

abstraction, we distinguish external and internal clients. External clients
supply information to an abstraction without knowing exactly which sub-
type of the abstraction they are dealing with. Therefore, the constraints
on these missing pieces of information must only be weakened in subtypes.
Internal clients, which are tightly related by subtyping, should be able to
strengthen the result of the abstraction.

Thus, Scalina complements Scala’s covariant type members with con-
travariant ones, which we shall call “un-members”. Listing 4.5 shows a
pseudo-Scala rendition of the encoding, where un-members are indicated
using the deferred keyword. They are made concrete by external clients
using the ... %{ ... } construct.

Since the A type member is an input to the abstraction, it must be-
have contravariantly, so that NumericList is not allowed to strengthen
the bound on the A un-member that it inherited from Iterable.

4.1.2 Methodology

To summarise the above example, a programmer should use un-members
to model the input to an abstraction. This corresponds to the arguments
of a method or the type parameters of a generic class. Normal members
are used to define the result of the abstraction.

62 Scalina: the Essence of Abstraction in Scala

Note that un-members and abstract members impose an ordering disci-
pline. A type un-member that classifies a value un-member must be refined
before the value can be supplied. This corresponds to a polymorphic value
in functional programming. Furthermore, types may contain abstract mem-
bers, but objects must not. Therefore, an object cannot be created until
the abstract members have been made concrete.

The example in Section 4.2.3 will illustrate these points in more detail.

4.1.3 Contributions

Functional abstraction clearly distinguishes a function’s arguments from its
result. In the object-oriented setting, a similar distinction must be made
for abstract members. We introduce un-members, which safely model the
input to an abstraction, and re-use traditional members to represent the
result of the abstraction. Thus, an object with un-members may be thought
of as a curried function that takes its keyword arguments in any order. The
members of such an object represent its results. Moreover, unlike in the
functional style, the result and the arguments are treated uniformly, so that
the type of the result may refer to the arguments. In our setting, this is
merely a curiosity, but in closely related work this becomes an important
benefit [DR08].

We study purely object-oriented abstraction in a dependently typed,
three-level calculus that uses the same concepts for abstraction and com-
putation on terms and types. As in the νObj calculus, function application
is decomposed into refinement and member selection. Because the level of
types is modelled after the level of terms, a type-level function is modelled
as a type with type un-members.

The distinction between un-members, which behave contravariantly,
and normal, covariant, members, is instrumental in proving soundness on
the level of types and kinds. Due to the symmetric design of our calculus,
the soundness proofs proceed by similar arguments at both levels.

4.2 Scalina: syntax and intuitions

Scalina is a three-level object-oriented calculus: we distinguish terms (ob-
jects), types, and kinds. Terms are for computation, types are used for
classification as well as computation, and the role of kinds is strictly lim-
ited to classification. Computation is performed using two mechanisms:
member selection and member refinement. Classification is more intricate,
ranging from merely structural descriptions of the classified entities over

4.2 Scalina: syntax and intuitions 63

nominal classification, the intersection of classifiers, singletons, and strictly
empty classifiers.

4.2.1 Syntax

Figures 4.1 and 4.2 outline Scalina’s syntax.
The term level consists of member selection, member refinement, and

instantiation. Analogously, a type may be a type selection, a refinement
or a structural type. A structural type binds the self variable x in the
members it includes; if the type of the self variable is not specified, it is
assumed to be the structural type itself. We use the meta-variable R to
refer to a structural type. Additionally, a type may be an intersection type,
a singleton type (that depends on a path), the top or the bottom of the
subtype lattice, or an un-type. Finally, we introduce !T , which stands for
the result of refining all of T ’s un-members with unknown terms and types.
We will discuss this construct in more detail in Section 4.2.2.

Figure 4.2 defines the shape of kinds, paths, values, and the typing con-
text Γ. A path is a chain of member selections that starts with a variable or
an instantiation expression new T, which represents an object. We mainly
restrict the shape of paths to simplify the proofs in the meta-theory.

4.2.2 Core concepts

Before describing the rules that define computation and classification in
Scalina, we build up intuitions about the core concepts that underlie these
mechanisms.

Members and un-members

Members are the liaisons between the different levels: a type describes the
value members that may be selected on the terms it classifies, as well as
the type members that may be selected on the type itself. The description
of a member consists of the label of the member, the classifier of the entity
it stands for and – if the member is concrete – the actual entity it is bound
to (its right-hand side, or RHS). For value members, the classifier is a type
and the RHS is a term, and type members specify the kind that classifies
the type they are bound to.

Scalina’s un-members are a more radical departure from Scala. Un-
members are used to encode parameterisation: they are placeholders for
members that must be provided by the client of the abstraction, much like
the arguments of a function. Un-members are turned into normal members

64 Scalina: the Essence of Abstraction in Scala

t , u ::= term
| x variable
| t . l term selection
| t %{cm} term refinement
| newT new
| (t)
| [x $→ t2] t1 (meta) substitution
| (meta) wildcard
| C [t] (meta) context

TT ::= type (excluding un-type)
| T #L type selection
| T %{cm} type refinement
| {x : T ⇒ mi

i} structural type
| {x ⇒ mi

i} structural type
| T1 &T2 mixin composition
| p . type singleton type
| Any
| Nothing
| !T necessarily T
| (T)
| [x $→ t]T (meta) substitution
| [x $→ T]S (meta) substitution replace x .type by T in S
| (meta) wildcard

T , S ::= type
| TT
| Un [TT]

m ::= member
| val l : T abstract value member
| val l : T = t concrete value member
| typeL : K abstract type member
| typeL : K = T concrete type member
| val l : T (meta) value member (concrete/abstract)
| typeL : K (meta) type member (concrete/abstract)
| [x $→ t]m (meta) substitution
| (meta) wildcard

cm ::= member refinement
| val l = t
| typeL = T
| (meta) wildcard

Figure 4.1: Scalina Syntax (terms and types)

4.2 Scalina: syntax and intuitions 65

using member refinement, which corresponds to passing arguments to a
function. An entity with multiple un-members is the equivalent of a curried
function: refining one of the un-members results in an entity with one less
un-member to be refined. Once all un-members have been refined, the
member representing the function’s result may be selected to complete the
application. This constitutes the essence of computation – on terms as well
as types – in Scalina.

Members and un-members can be seen as the two halves of the contract
specified by a classifier: members are available to the client, whereas it
must supply the un-members. Note that abstract members have different
semantics from un-members: an abstract member is made concrete using
composition within a subtyping hierarchy, while an un-member is to be
supplied by an external client. A type with abstract members cannot be
instantiated. An abstract type can however be constrained (using the kind
Concrete(R)) so that it does not contain any abstract members.

Terms

The canonical form of a term is an object. For syntactic economy, and
since Scalina does not model effects yet, an object is represented by the
instantiation of a type without abstract members. Conceptually, an en-
tity is just a vessel for denoting to which entity each of its members – as
described by the entity’s classifier – is bound. Thus, an object contains
mappings (from a label to a term) for all of the members specified in its
type. Operationally, un-members can be thought of as members that are
simply absent from this mapping.

Types

If, on the term level, parameterising over functions is useful,
doing the same on the level of types sounds like an obvious
thing to do.

Erik Meijer

To generalise Meijer’s motivation for higher-kinded types [Mei07],
rephrasing in our terminology: “If, on the term level, abstracting over
terms that themselves abstract over terms is useful, doing the same on the
level of types sounds like an obvious thing to do.” Scalina manifestly sup-
ports this view by using the same abstraction mechanism on both levels:
entities that abstract over other entities (using un-members) are themselves
first-class entities.

66 Scalina: the Essence of Abstraction in Scala

KK ::= kind (excluding un-kind)
| In (T1 , T2)
| Struct (R)
| Nominal (R)
| Concrete (R)
| (K)
| [x $→ t]K (meta) substitution
| (meta) wildcard

K ::=
| KK
| Un [KK]

p ::= path
| x variable
| p . l selection
| newT new
| (p)
| [x $→ p2] p1 (meta) substitution

v ::=
| newT new

Γ ::=
| ∅
| Γ , x : T

Figure 4.2: Scalina Syntax (kinds, etc.)

4.2 Scalina: syntax and intuitions 67

Types play a dual role: besides computation, their main purpose is clas-
sifying terms. As explained in the introduction, types differ from terms in
that they may contain abstract members for abstraction towards subtyping
clients.

Types classify terms by specifying the labels and the types of the mem-
bers that may be selected on these terms. A structural type classifies all
terms that have the prescribed members. Note that we use kinds to distin-
guish nominal types from structural ones. An intersection type is inhabited
by the terms that inhabit both its constituent types. A singleton type clas-
sifies exactly one object and an un-type does not classify any terms at all.
An un-type is used as the classifier of a value un-member.

Type-level computation uses the same concepts as computation at the
term level. However, because types may contain abstract members, we must
be more careful. For soundness, type member selection is only allowed
on types that (eventually) consist solely of concrete members, although
the exact RHS need not be known. Type selection on a singleton type
is always safe, even if the selected type member’s right-hand side is not
known statically. As long as it is not an un-member, the object that the
singleton type depends on, could not have been created unless that member
was concrete.

In Scala, these abstract type members may only be selected on singleton
types. Scalina generalises this to the notion of concrete types, so that ab-
stract type members may be selected on any type that necessarily contains
only concrete type members, which naturally includes singleton types.

Similarly, it is always safe to assume that the type of the self variable
does not contain any un-members: the self-variable can only be accessed as
a consequence of an external member selection, which in turn is not allowed
on objects with un-members. To exploit this invariant, we introduce the
type !T , which stands for the result of refining all of T ’s un-members. We
shall illustrate this with an example in Section 4.2.3

The canonical form of a type is computed by performing all allowed
member selections. This corresponds to the β-normal form in functional
calculi.

Kinds

Kinds are only used for classifying types: they denote which members may
be selected on the types they classify. An interval kind takes over the role of
the bounds of a Scala-style abstract type member: In(S, T) is inhabited
by types that are subtypes of T and supertypes of S.

68 Scalina: the Essence of Abstraction in Scala

Struct(R) is inhabited by types that have at least the members spec-
ified in R. These members must be well-formed under the assumption
that the self variable has the declared self type. Nominal(R) is similar
to Struct(R), except that it serves as a marker for concrete type bindings
that represent classes: normalisation should not replace a type selection of
this kind with its right-hand side.

Finally, T has kind Concrete(R) if it has at least the members specified
in R, and none of these are abstract. Furthermore, !T must be a subtype
of the self type declared in R, so that such a type may be instantiated (if it
is not a singleton type) or be used as the target of type member selection.

4.2.3 Example: polymorphic lists

Listing 4.6 implements polymorphic lists with map to illustrate Scalina’s
support for parametric polymorphism and higher-order functions.

First, we introduce a little syntactic sugar.

The kind " should be expanded to Struct({x ⇒ }),

the type p.L is shorthand for p.type#L,

the following type members are easily expanded:

– type L = R becomes type L : Struct(R) = R,

– type L ≺ T means type L : Nominal(R) = T, where R is the
expansion of T to its least structural supertype (by the ≺≺ rela-
tion defined in Fig. 4.7).

Since type members must always be nested in other types, our program
is a term that instantiates the structural type that represents our “universe”
(hence the u as the self variable). The type u.type#Fun1, or using syntactic
sugar, u.Fun1, corresponds to a top-level class in Scala.

The first abstraction is a polymorphic unary function. Fun1 is a nominal
type that expands to a structural type with self variable self, whose type
is assumed to be the nominal type itself, with all its un-members refined.
This special self type is crucial: without it, the body of the function could
not access its arguments, as these would be considered un-members. In
this example, !u.Fun1 expands to the structural type {x ⇒ type T1: "

; type T2: "; val v: x.T1; val apply: x.T2}
Fun1 takes two type arguments: the type of its value argument (T1)

and the type of its result (T2). It also requires one value argument (v).
These arguments are un-members, which must be provided by the caller of

4.2 Scalina: syntax and intuitions 69

new { u ⇒
type Fun1 ≺ {self : ! u.Fun1 ⇒
type T1 : Un["] ; type T2 : Un["]
val v : Un[self.T1] ; val apply : self.T2

}
type List ≺ {self : ! u.List ⇒
type Element : Un["]
type map = { selfMap : ! self.map ⇒
type Tgt : Un["]
val fun: Un[u.Fun1%{type T1=self.Element}

%{type T2=selfMap.Tgt}]

val apply: u.List%{type Element=selfMap.Tgt}
}

val map: self.map
}
type Nil ≺ u.List & {self : ! u.Nil ⇒
val map : self.map =
new self.map & { s : ! self.map ⇒
val apply: u.List%{type Element = s.Tgt}
= new (u.Nil %{type Element = s.Tgt})

}
}
type Cons ≺ u.List & {self : ! u.Cons ⇒
val hd: self.Element
val tl: u.List%{type Element=self.Element}

val map : self.map =
new self.map & { s : ! self.map ⇒
val apply: u.List%{type Element=s.Tgt}
= new u.Cons%{type Element=s.Tgt} & {sc ⇒

val hd: s.Tgt
= (fun%{val v=self.hd}).apply

val tl: u.List%{type Element=s.Tgt}
= (self.tl.map

%{type Tgt=s.Tgt}
%{val fun=s.fun}).apply

}
}

}
}

Listing 4.6: Polymorphic List in Scalina

70 Scalina: the Essence of Abstraction in Scala

abstract class List[Element] {
def map[Tgt](fun: Element ⇒ Tgt): List[Tgt]

}

class Nil[Element] extends List[Element] {
def map[Tgt](fun: Element ⇒ Tgt) = new Nil[Tgt]

}

abstract class Cons[Element] extends
List[Element] { self ⇒

val hd: Element
val tl: List[Element]

def map[Tgt](fun: Element ⇒ Tgt) = new Cons[Tgt]{
val hd: Tgt = fun(self.hd)
val tl: List[Tgt] = self.tl.map[Tgt](fun)

}
}

Listing 4.7: Parametric List in Scala

the function. The abstract apply member models the function’s body. It
must be made concrete before an actual function value can be created.

List abstracts over the type of its elements (Element) and declares one
abstract method, map. We define a structural type, map, and an abstract
value member with the same name. This way, it becomes more convenient
to make this member concrete, subclasses of List may simply use an in-
stance of the composition of map with another type that makes the apply
method concrete.

The implementation of the map “method” in Nil simply returns a new
instance of Nil with the appropriate element-type. In Cons, the result is
another cons cell that applies the supplied function to the head of the list
and that recurses on the tail.

Note that hd and tl model constructor arguments: since they are re-
quired for an object of this type to be created, we use abstract members
and not un-members.

Listing 4.7 shows a Scala rendition of the example that stays as close
as possible to the Scalina version, using an idiomatic mix of functional and
object-oriented abstractions.

Together, Listings 4.6 and 4.7 exemplify the essence of encoding Scala
into Scalina. Section 4.6 specifies this encoding more generally for sys-
tem F sub

ω , but it easily carries over to Scala. The only subtlety arises from

4.3 Terms 71

the discrepancy between the position-based nature of parameters, whereas
members only have a name. Fortunately, this is solved by codifying a pa-
rameter with position i as a member with name argi, and by using the
equivalent of anonymous type functions to resolve ordering conflicts, such
as in the following example.

type Foo[A, B] = Bar[B, A]

This Scala type member is encoded in Scalina as follows.

type Foo = {x ⇒ type arg1: Un["]; type arg2: Un["];
type apply=Bar%{type arg1=x.arg2;

type arg2=x.arg1}#apply}

4.3 Terms

4.3.1 Computation

Before we turn to the evaluation rules, we briefly consider how members
are looked up at run time. For now, type members are statically bound and
the role of types during evaluation is strictly limited to mapping the labels
of the members of an object to terms. However, we anticipate support for
virtual classes, which requires run-time lookup of types. Currently, our
approach to lookup is equivalent to statically expanding types to mappings
of labels to terms, with the corresponding trivial run-time lookup function.

To look up a member at run time, we use the unfold relation (≺) defined
in Fig. 4.3, which relies on the following helper relations: T ' ll $→ e \\ x
denotes that T expands to a structural type that contains a member with
label ll and right-hand side e in which the self variable x is bound. ll stands
for either a term- or a type-label, and e is a term or a type. Similarly,
T 'un ll is derivable if T has an un-member with the specified label: it
expects this un-member to be refined.

Furthermore, we factor out what it means to refine a single member:
refineIf(m ′, cm) can be seen as a function that returns the refinement
of the un-member m ′ with the cm’s RHS if their respective labels are the
same, otherwise it simply returns m ′. Similarly, m = refines(m ′, cm) holds
if m ′ and cm have the same label and m is the result of refining m ′ with
cm. Finally, intersecting structural types corresponds to taking the union
(() of the corresponding sets of members, with concrete members in the
right type overriding corresponding members in the left one.

The actual lookup proceeds by expanding a type to the corresponding
structural type, after which looking up the required label is easy. The

72 Scalina: the Essence of Abstraction in Scala

T ≺ R T expands to R at run time

T ' L $→ S \\ x
[x $→ T]S ≺ R

T #L ≺ R
lu sel

T ≺ {x : S ⇒ m1 ..mn}
∀i ∈ 1..n. m ′

i = refineIf(mi , cm)
T %{cm} ≺ {x : S ⇒ m ′

1 ..m ′
n}

lu rfn

R ≺ R
lu refl

T ≺ {x ⇒ m1 ..mn}
T ≺ {x : {x ⇒ m1 ..mn} ⇒ m1 ..mn}

lu selfX

T1 ≺ {x : S1 ⇒ mi
i}

T2 ≺ {x : S2 ⇒ m ′
j

j}
m ′′

k

k
= mi

i (m ′
j

j

T1 &T2 ≺ {x : S2 ⇒ m ′′
k

k}
lu mix

T ≺ R
(newT) . type ≺ R

lu sing

p . type ' l $→ p′ \\ x
([x $→ p] p′) . type ≺ R

p . l . type ≺ R
lu singX

Figure 4.3: Type Expansion for Run-time Lookup

4.3 Terms 73

t ⇒ t ′ t evaluates to t ′ in a single step

T ' l $→ p \\ x
newT . l ⇒ [x $→ newT] p

E sel

l ≡ label cm
T 'un l

(newT) %{cm} ⇒ new (T %{cm})
E rfn

T ' l $→ t \\ x
[x $→ newT] t ⇒ t ′

U ≡ (newT) . l . type
newT ⇒ new (T & { ⇒ val l : U = t ′})

E ctxMem

t ⇒ u
t ′ %{val l = t} ⇒ t ′ %{val l = u}

E ctxRfnRhs

t ⇒ u
t %{cm} ⇒ u %{cm}

E ctxRfnTgt

t ⇒ u
t . l ⇒ u . l

E ctxSelTgt

Figure 4.4: Term Evaluation

74 Scalina: the Essence of Abstraction in Scala

only tricky rule in the definition of the expansion relation ≺ is lu singX.
During evaluation, all types are of the shape (new T).l1.ln.type.
To reduce a selection p.l to the base case, which is handled by lu sing, we
must lookup l in p.type and inductively expand the resulting singleton type.
To avoid extra complexity in the meta-theory, we factor in the evaluation
rule for value selection instead of using evaluation directly.

The small-step evaluation relation that defines Scalina’s operational se-
mantics [WF94], is shown in Fig. 4.4. It consists of two evaluation rules and
four congruence rules. The first evaluation rule, E sel, rewrites a member
selection on an object to the RHS of that member after replacing the self
variable by the object that was the target of the selection. The hypothesis
that the label must be present in the object is represented as a lookup on
the type. The side-condition that the member’s RHS must be a path is
crucial for proving type preservation: a path may only be replaced by a
path. For now, all terms are paths in Scalina. However, in anticipation of
adding effects to the calculus, we already distinguish paths and arbitrary
terms.

E rfn deals with refinement: it checks that the refined member was
indeed an un-member (it was missing from the object), and then adds it
to the object by refining the type that is used to track its members. The
side-condition that l was an un-member is not necessary for proving type
soundness, as the typing rules ensure that a well-typed term always meets
it. We include it so that we can prove that un-members are never refined
more than once by seeing that a program gets stuck if it violates that rule.
However, by progress, well-typed terms never get stuck.

The only non-trivial congruence rule, E ctxMem, performs evaluation
under member bindings, which can be thought of as running the construc-
tor. This congruence rule is necessary to fulfil the side-condition of the rule
for member selection. The shape of the type U is a technicality required
by the proof of type preservation. It can be seen as an artefact of our
using full-blown types for simply tracking the members of an object. The
remaining congruence rules are standard.

4.3.2 Classification

Figure 4.5 defines the shape of well-typed terms. When check-
ing a value member selection, we treat the case where the tar-
get of the selection is a path (T selpath) differently from when
it is not (T sel). Suppose we treated both cases equally. Con-
sider e.g., t: {x ⇒ val a: x.b.type = x.b; val b: Any}, so that

4.3 Terms 75

Γ + t : T t has type T

Γ + p : {x ⇒ val l : T}
T not an un-type
Γ + p . l : [x $→ p]T

T selpath

Γ + t : {x ⇒ val l : T}
x /∈ FV(T)
T not an un-type

Γ + t . l : T
T sel

Γ + t : T
T ≡ {x : S ⇒ m1 ..mn}
∃i ∈ 1..n. m ′ = refines(mi , cm)
Γ , x : S + m ′ WF
x /∈ FV(cm)

Γ + t %{cm} : T %{cm}
T rfn

Γ + T ≺≺ R
Γ + R : Concrete (R)
T not a singleton type
T not of shape !T ′

Γ + newT : T
T new

Γ + p : R
Γ + p : p . type

T sing

Γ + t : T
Γ + T <:S
Γ + t : S

T subsume

Figure 4.5: Term Classification

76 Scalina: the Essence of Abstraction in Scala

t.a : t.b.type. Now, for the singleton type t.b.type to be well-formed,
t must be a path. Therefore, the selection is not allowed if this is not the
case. If the declared type of the member does not rely on the self variable,
the target need not be a path.

Note that the rules for member selection rely on subsumption to discard
all other members in the type of the target (as well as the selected member’s
RHS). This is not just a matter of cosmetics: this formulation ensures
that the type of the target does not contain any other un-members, as
they cannot be forgotten by subsumption. In terms of function types,
the underlying intuition is that subsumption cannot change the number of
arguments that a function takes. We will discuss this in more detail in the
section on subtyping.

T rfn classifies member refinement – in a sense, the dual of member
selection. Essentially, this corresponds to checking the type of the argument
while typing function application. This check is performed by requiring that
there is a member with the same label as cm, and that the result of refining
this member is well-formed.

We cannot use subsumption in this rule as the target that is being
refined, may have several un-members. The type of refining a term is a
refinement of the type of the term that is refined. Note that this type
refinement could not be replaced by an intersection type. For such a type
T&S to be well-kinded, S’s members must conform to T ’s, but here, T
contains an un-member whereas S does not, and subtyping can never relate
un-members to regular members.

According to T new, new T is well-typed with type T if T statically
expands to the structural type R (by ≺≺, defined in Fig. 4.7), where R
is of kind Concrete(R). The remaining side conditions rule out degener-
ate cases. It is necessary to expand T to R and then check R has kind
Concrete(R) because just checking that T : Concrete(R), implies that a
subset R of T is safe to be instantiated, but not necessarily T itself.

Finally, a path has the corresponding singleton type if it is well-typed
using the other rules (we assume finite derivations). Subsumption gives a
well-typed term a less precise type.

4.4 Types and kinds

4.4.1 Computation

Type normalisation, as shown in Fig. 4.6, is the “operational semantics”
of the type level. To compute the normal form of a type, all allowed type

4.4 Types and kinds 77

Γ + T " T ′ T normalises to T ′

Γ + T ' typeL : K = S \\ x
K not nominal
Γ + [x $→ T]S " S ′

Γ + T #L " S ′ N sel

Γ + T " {x : S ⇒ m1 ..mn}
∀i ∈ 1..n. m ′

i = refineIf(mi , cm)
Γ + T %{cm} " {x : S ⇒ m ′

1 ..m ′
n}

N rfn

Γ + T " {x ⇒ m1 ..mn}
Γ + T " {x : {x ⇒ m1 ..mn} ⇒ m1 ..mn}

N selfX

Γ + T1 " {x : S1 ⇒ mi
i}

Γ + T2 " {x : S2 ⇒ m ′
j

j}
m ′′

k

k
= mi

i (m ′
j

j

Γ + T1 &T2 " {x : S2 ⇒ m ′′
k

k}
N mix

Γ + p : q . type
Γ + p . type " q . type

N sng

Figure 4.6: Type Normalisation

78 Scalina: the Essence of Abstraction in Scala

member selections are performed, refinements and compositions of struc-
tural types are normalised to the corresponding structural type, and paths
are safely rewritten if they are statically known to refer to the same object.

The selection of a type member with declared kind Nominal(R) is in
normal form: these bindings must not be crossed. Hence the side-condition
in N sel. If this condition were omitted, normalisation would no longer be
kind-preserving, as a type of kind Nominal(R) would be replaced by a type
of kind Struct(R), which is not a subkind of Nominal(R). By analogy
to the term level, normalisation checks only the minimal side conditions, a
separate theorem proves that it is kind-preserving.

Type expansion includes type normalisation, but is more aggressive: it
replaces a nominal type binding with its (structural) right-hand side and
widens singleton types. This is needed when calculating all the members
in a type. Since type expansion must yield the least structural supertype
of a type, we cannot use typing in the rules X sing*, as this may invoke
subsumption.

X singVar expands a singleton type that depends on a variable, that
must therefore be in Γ. X singNew handles the other bases case, similar
to run-time expansion of types. Finally, X singSel peels one layer of
member selection from the path by approximating the outermost selection
by its declared type.

X ncsry expands !T to the expansion of T , after essentially stripping
all the Un[...]’s from the declared types and kinds of its members. It
achieves this by “pretending” to refine every un-member with an unknown
right-hand side, so that un-members essentially become abstract members.

4.4.2 Subtyping

Subtyping, as defined in Fig. 4.8, is mostly standard; the main novelties re-
sult from the interaction with un-members. Un-types introduce contravari-
ance (by ST un), thus deviating from the norm of covariance. Since mem-
ber subtyping is covariant, an un-member with declared type Un[T] may
only be overridden by an un-member with a declared type that is a sub-
type of Un[T], thus it has the shape Un[T ′] with T <: T ′. This means
the overriding member weakens the restriction on the term that must be
supplied by the client.

If a type S expands to a type T , then surely it is a subtype of that
type T . Expanding S can be thought of as computing a least structural
supertype of S, following type selections, crossing nominal type bindings
and widening singleton types. Similarly, type equality (∼=) – the least re-

4.4 Types and kinds 79

Γ + T ≺≺ R T expands to the structural type R

Γ + T ' typeL : K = S \\ x
Γ + [x $→ T]S ≺≺ R

Γ + T #L ≺≺ R
X sel

Γ + T ≺≺ {x : S ⇒ m1 ..mn}
∀i ∈ 1..n. m ′

i = refineIf(mi , cm)
Γ + T %{cm} ≺≺ {x : S ⇒ m ′

1 ..m ′
n}

X rfn

Γ + R ≺≺ R
X refl

Γ + T ≺≺ {x ⇒ m1 ..mn}
Γ + T ≺≺ {x : {x ⇒ m1 ..mn} ⇒ m1 ..mn}

X selfX

Γ + T1 ≺≺ {x : S1 ⇒ mi
i}

Γ + T2 ≺≺ {x : S2 ⇒ m ′
j

j}
m ′′

k

k
= mi

i (m ′
j

j

Γ + T1 &T2 ≺≺ {x : S2 ⇒ m ′′
k

k}
X mix

x : T ∈ Γ
Γ + T ≺≺ R

Γ + x . type ≺≺ R
X singVar

Γ + T ≺≺ R
Γ + (newT) . type ≺≺ R

X singNew

Γ + p . type ' val l : T \\ x
Γ + [x $→ p]T ≺≺ R

Γ + p . l . type ≺≺ R
X singSel

Γ + T ≺≺ {x : S ⇒ m1 ..mh}
∀i ∈ 1..n. m ′

i = refineIf(mi ,)
Γ + !T ≺≺ {x : S ⇒ m ′

1 ..m ′
n}

X ncsry

Γ + T ' m \\ x

Γ + T ≺≺ {x : ⇒ m1 ..mn}
∃i ∈ 1..n. mi ≡ m

Γ + T ' m \\ x
X lu

Figure 4.7: Type Expansion

80 Scalina: the Essence of Abstraction in Scala

Γ + T <:T ′ T is a subtype of T ′

Γ + S <:T
Γ + T : K
Γ + T <:T ′

Γ + S <:T ′ ST trans

Γ + S : K
Γ + S ≺≺ R
Γ + S <:R

ST exp

Γ + S : K
Γ + T : K
Γ + S ∼= T
Γ + S <:T

ST eq

Γ + T ' typeL : K \\ x
Γ + K <: In (, S)

Γ + T #L<:S
ST abs upper

Γ + T ' typeL : K \\ x
Γ + K <: In (S ,)

Γ + S <:T #L
ST abs lower

Γ + T1 <:T2

Γ + T1 %{typeL = U}<:T2 %{typeL = U}
ST invar

Γ + S <:S2

∀j ∈ 1..k . ∃i ∈ 1..n. (mi
label≡ m ′

j ∧ Γ + mi <:m ′
j)

∀i ∈ 1..n. (mi deferred ⇒ ∃j ∈ 1..k . mi
label≡ m ′

j)
Γ + {x : S ⇒ m1 ..mn}<: {x : S2 ⇒ m ′

1 ..m ′
k}

ST R

Γ + T1 ≺≺ {x : ⇒ m1 ..mn}
Γ + T2 ≺≺ {x : ⇒ m ′

1 ..m ′
k}

∀i ∈ 1..k . (m ′
i deferred ⇒ ∃j ∈ 1..n. m ′

i
label≡ mj)

Γ + T1 &T2 <:T1
ST IelimR

Γ + T1 ≺≺ {x : ⇒ m1 ..mn}
Γ + T2 ≺≺ {x : ⇒ m ′

1 ..m ′
k}

∀i ∈ 1..n. (mi deferred ⇒ ∃j ∈ 1..k . mi
label≡ m ′

j)
Γ + T1 &T2 <:T2

ST IelimL

Figure 4.8: Subtyping (1/2)

4.4 Types and kinds 81

Γ + T <:T ′ T is a subtype of T ′

Γ + T <:T1

Γ + T <:T2

Γ + T <:T1 &T2
ST Iintro

Γ + T : K
T not an un-type
Γ + T <:Any

ST any

Γ + T : K
Γ + Nothing <:T

ST nothing

Γ + T <:S
Γ + Un [S]<:Un [T]

ST un

Figure 4.8: Subtyping (2/2)

flexive, symmetric, and transitive relation that includes normalisation – is
included (by ST eq).

The rules ST abs upper and ST abs lower incorporate the declared
kinds of abstract type members into the subtyping relation.

For simplicity, the current version of Scalina does not model variance
for type constructors, which explains why ST invar considers type un-
members to be invariant.

Besides the usual width- and depth-subtyping, subtyping of structural
types must take extra care to never forget any un-members during subsump-
tion. Intuitively, subsumption allows a client to weaken its expectations of
a type, but it should not relax the client’s own obligations.

Subtyping of members is defined in Fig. 4.9. Value members always
behave covariantly; a type member becomes invariant as soon as it is made
concrete. This is related to the fact that Scalina does not admit late-binding
for type members.

To relate this to subtyping of function types in system F sub
ω , a type of

the shape S → T can only be a subtype of a type with the same shape, i.e.,
a function of the same arity. In our system, the number of un-members
denotes the “arity” and types can only be subtypes if they have the same
un-members. Any constitutes the only safe exception to this rule. It is
safe for a structural type with un-members to be a subtype of Any, as no
members can be selected on a term that is only known to have type Any.

Similarly, if subtyping forgets either constituent of an intersection type,

82 Scalina: the Essence of Abstraction in Scala

Γ + m <:m ′ m is a submember of m ′

Γ + T <:T ′

Γ + val l : T <:val l : T ′ SM val

Γ + K <:K ′

Γ + typeL : K <: typeL : K ′ SM typeA

Γ + typeL : K = <: typeL : K =
SM typeC

Figure 4.9: Subtyping for members

any un-members in the forgotten type must still be present in the remaining
one. For example, suppose we have a term of type {x: S ⇒ val a: Un[
T]; val b: T=x.a} & {x : S ⇒ val b : T}, with S = {x ⇒ val a
: T; val b: T}. If we were allowed to subsume the term’s type to {x :
S ⇒ val b : T}, we could access b before a had been refined.

For brevity, we use m deferred to check that m’s classifier is of the
shape Un[T] or Un[K].

4.4.3 Classification

For the constructs that are shared by terms and types, classification is
largely analogous, as shown in Fig. 4.10. The main difference is that we
have to be careful to only select types that will eventually become concrete.
For objects, this is always the case, but types with abstract type members
are still types. Whereas a term with type T is known to contain concrete
versions of all members (not including un-members) in T , a type with kind
Struct(R) may contain abstract members. Therefore, we introduce the
kind Concrete(R) that classifies only types with only concrete members.

The kind of a structural type reflects the type members that may be
selected on that type. To be well-kinded according to K R, the members
of a structural type must be well-formed under the assumption that the
self variable has the declared self type. The well-formedness judgement for
members is defined in Fig. 4.11.

The intersection of two structural types is classified by the kind that
tracks the union of their members. Note that the self type of the overriding
type (the right-most constituent) must be a subtype1 of the type containing

1This is a slight simplification of νObj, where S1 need not be a subtype of S2. νObj’s
composition operator requires the self type for the composition to be specified explicitly.

4.4 Types and kinds 83

Γ + T : K T has kind K

R ≡ {x : S ⇒ m1 ..mn}
∀i ∈ 1..n. Γ , x : S + mi WF
m1 ..mn noDuplicates

Γ + R : Struct (R)
K R

Γ + {x : {x ⇒ m1 ..mn} ⇒ m1 ..mn} : K
Γ + {x ⇒ m1 ..mn} : K

K RX

Γ + T1 : Struct ({x : S1 ⇒ mi
i})

Γ + T2 : Struct ({x : S2 ⇒ m ′
j

j})

∀i ∈ 1..n. ∀j ∈ 1..k . (mi
label≡ m ′

j ⇒ Γ + m ′
j <:mi)

m ′′
k

k
= mi

i (m ′
j

j

Γ + S2 <:S1

Γ + T1 &T2 : Struct ({x : S2 ⇒ m ′′
k

k})
K mix

Γ + T : Struct ({x : S ⇒ m1 ..mn})
Γ + !T <:S
∀i ∈ 1..n. mi nonAbstract

Γ + T : Concrete ({x : S ⇒ m1 ..mn})
K concrete

Γ + p : T
Γ + T : Struct ({x : S ⇒ m1 ..mn})

Γ + p . type : Concrete ({x : S ⇒ m1 ..mn})
K sing

Γ + p . type : Concrete ({x ⇒ typeL : K})
Γ + p . type#L : [x $→ p]K

K selpath

Γ + T : Concrete ({x ⇒ typeL : K})
x /∈ FV(K)

Γ + T #L : K
K sel

Γ + T : Struct ({x : S ⇒ m1 ..mn})
∃i ∈ 1..n. m ′ = refines(mi , cm)
Γ , x : S + m ′ WF
m ′′

1 ..m ′′
n = m1 ..mn (m ′

x /∈ FV(cm)
Γ + T %{cm} : Struct ({x : S ⇒ m ′′

1 ..m ′′
n})

K rfn

Figure 4.10: Classifying Types (1/2)

84 Scalina: the Essence of Abstraction in Scala

Γ + T : K T has kind K

Γ + T : K1

Γ + K1 <:K2

Γ + T : K2
K subsume

Γ + Any : Struct ({x ⇒ })
K any

Γ + R : Struct (R)
Γ + Nothing : Struct (R)

K nothing

Γ + T : K
Γ + Un [T] : Struct ({x ⇒ })

K un

Figure 4.10: Classifying Types (2/2)

Γ + m WF m is well-formed

Γ + t : T
Γ + val l : T = t WF

M valC

Γ + T : Struct (R)
Γ + typeL : Nominal (R) = T WF

M typeNom

Γ + T : K
Γ + typeL : K = T WF

M typeC

Γ + T : K
Γ + val l : T WF

M valA

Γ + K WF
Γ + typeL : K WF

M typeA

Figure 4.11: Well-formedness of members

4.4 Types and kinds 85

the overridden members. Each overriding member must be a submember
of the corresponding member in T1.

There are two ways for deriving that a set of members of a type are
concrete. The easy way is if that type is a singleton type. Otherwise,
for a type T to be classified as having a certain set of concrete members
m1..mn, it must have a structural kind with declared self-type S and !T <:
S. Naturally, this structural kind must denote the m1..mn as concrete.
However, due to subsumption, this set of members may be a subset of the
actual members of T . Nonetheless, any type member in R may safely be
selected: it will eventually become concrete.

Given the notion of types with concrete members – which was not nec-
essary at the lower level since terms may not contain abstract members –
type member selection is classified analogously to value member selection.
Type refinement is almost literally the same as at the term level, as is
subsumption.

Finally, the top and the bottom of the subtype lattice must be classified,
as well as un-types. Any, and certainly Nothing, are not essential to the
type system. However, Any is needed to be able to select a member on the
universe (the top-level object): that member must have a type that does
not depend on the universe’s self variable, but all user-defined types are
(indirectly) selected on the universe’s self type. Since Any exists outside of
the user-defined universe, it can serve this purpose. An alternative would
be to introduce another variable binding construct, such as let. Nothing
is used as the default lower bound of the interval kind. It may be given the
same kind as any well-kinded structural type.

4.4.4 Subkinding

Subkinding (Fig. 4.12) introduces contravariance for un-kinds (SK un),
so that type un-members conform contravariantly. Other than that, the
relation defines a simple lattice, with the interval kind at the top.

A nominal type can be subsumed to a structural one (SK nom) – but
not vice versa! A concrete type is also a structural one (SK CONC). A
structural type that includes all the members in R, is thus in the interval
(Nothing, R) (SK struct).

Interval inclusion gives rise to subkinding (SK ctx in). The kinds
that classify structural types and concrete types have similar subsumption
properties based on subtyping (SK ctx conc, SK ctx struct).

This new self type must be a subtype of the Si.

86 Scalina: the Essence of Abstraction in Scala

Γ + K <:K ′ K is a subkind of K ′

Γ + K2 <:K1

Γ + Un [K1]<:Un [K2]
SK un

Γ + Nominal (R) <:Struct (R)
SK nom

Γ + Concrete (R) <:Struct (R)
SK conc

Γ + Struct (R) <: In (Nothing , R)
SK struct

Γ + R1 <:R2

Γ + Concrete (R1) <:Concrete (R2)
SK ctx conc

Γ + R1 <:R2

Γ + Struct (R1) <:Struct (R2)
SK ctx struct

Γ + T2 <:S2

Γ + S1 <:T1

Γ + In (T1 , T2) <: In (S1 , S2)
SK ctx in

Figure 4.12: Subkinding

4.5 Design space 87

4.5 Design space

After introducing Scalina in detail, we look at the bigger picture by briefly
positioning its abstraction mechanisms in the design space. Scalina’s main
goal is to provide the essential features to model an object-oriented language
– such as objects with named members, mutual recursion through the self
variable, and mixin composition – while also allowing functional concepts
to be encoded with the same safety guarantees as in functional calculi.

For an expedient exploration of the design space of abstraction mecha-
nisms, we shall restrict ourselves to investigating the instantiations of the
following question: “Is a term/type that abstracts from a term/type using
a parameter/an abstract member a first-class term/type?” We will answer
these questions for Java, Scala, system F sub

ω , and Scalina.
Note that we use ‘term’ to denote anything that resides at the ‘base’

level, such as an object in OO, or a function in FP. We do not imply
any connection to syntactic terms. A ‘type’ is something that classifies
terms, and thus resides at the next level. We use ‘entity’ to mean either a
term or a type, when it only matters that the denoted entity can perform
computation. Finally, a ‘classifier’ classifies an entity: a type classifies a
term, and a kind classifies a type.

Table 4.1 gives an overview of the analysis discussed below. The row of
an entry determines what is abstracted from, and the column denotes the
level of the abstraction. When the constructs in a part of the table are not
all first-class constructs, (+) and (-) are used to make the distinction. We
consider a construct “first-class” if it can be abstracted over. ‘/’ means ‘not
supported’. The superscripts in parentheses are intended to aid the reader
in correlating the schematic representation in table 4.1 and the following
discussion.

In Java, a term may only abstract from a term1 or a type2 using pa-
rameterisation (functional abstraction): as already mentioned, a method
abstracts from the concrete values of its arguments, but a method is not a
first-class term in Java. Similarly, a polymorphic method may have type
parameters, but again, such a method is not a first-class entity. Terms
cannot have abstract members3 , 4 .

At the type level, still in Java, a constructor argument5 can be con-
sidered as parameterising a type in a value (a constructor, like a method,
is not a first-class term). Since Java 5.0, a class (a type) may take type
parameters6 , but a parameterised type is not a first-class type unless it is
fully applied. Finally, a class with an abstract method7 is a first-class type
that abstracts from a term. When deciding whether a type is first-class,

88 Scalina: the Essence of Abstraction in Scala

Construct . . . in term (1st class?) . . . in type (1st class?)
Java

Parameter (FP)
Term method (-) 1 constructor (-) 5

Type method (-) 2 generic class (-) 6

Abs. mem. (OO)
Term / 3 class w/abs. method (+) 7

Type / 4 /
Scala

Parameter (FP)
Term method (-) constructor (-)

anon. function (+) 8

Type method (-) generic class (+) 9

Abs. mem. (OO)
Term / 15 abs. val/def (+)
Type / 16 abs. type member (+) 10

System F sub
ω

Term λx : T.t 11 /14

Type λX <: T.t 12 λX :: K.T 13

Scalina
Term (ext.) obj. w/value un-member 17 type w/value un-member 18

Term (int.) / 19 type w/value abs. mem. 21

Type (ext.) obj. w/type un-member 23 type w/type un-member 24

Type (int.) / 20 type w/type abs. mem. 22

Table 4.1: Abstraction mechanisms: overview
(The superscripts link the entries in the table to the relevant part of the discussion.)

we do not take into account whether it may be instantiated.
Scala introduces several improvements over Java. Firstly, λ-

abstraction8 is directly supported, thus a term abstracting from a term
is a value. Secondly, we recently implemented direct support for type con-
structor polymorphism in Scala 2.5, so that a parameterised type9 is con-
sidered a first-class (higher-kinded) type [MPO07]. Finally, a class may
have abstract type members10 .

System F sub
ω is a purely functional calculus. Naturally, we only consider

its support for abstraction using parameterisation. A term that abstracts
from a term is written as λx : T.t11 . A term may also be parametric in
a type: λX : K.t12 . A type abstracts from a type as λX : K.T 13 . To
abstract from terms at the level of types14 , we must turn to dependently
typed versions of the calculus.

The overview in table 4.1 contains a striking void in the quadrant of

4.6 Encoding system F sub
ω 89

terms with abstract members3,4,15 , 16 .
Nevertheless, Self, one of the earliest OO languages, represents a method

as an object with “argument slots” [US87]. In other words, a method is
a first-class term (i.e., an object) that uses abstract members to abstract
from other terms.

Finally, Scalina’s object-oriented abstraction mechanisms are split out
with respect to the clients they cater to. An object can abstract over
an object that is to be supplied by an external client using a value un-
member17 . A type may abstract over a value in the same way 18 . Since
objects are not allowed to have abstract members, they cannot abstract
over terms19 or types20 for internal clients. Types, on the other hand,
may contain abstract value21 or type22 members. Finally, an object23 or
a type24 type can abstract over a type using a type un-member.

Thus, our brief survey has shown that Scalina supports all variations of
abstraction mechanisms that are used in practice, without admitting too
many features that do not appear in a full language. We designed Scalina
so that it includes the main concepts of object-oriented languages, such as
objects with named members and mutual recursion through a self variable,
mixin composition, subtyping, and lightweight dependent types. Further-
more, although Scalina does not contain any mechanisms for parameterisa-
tion, it can safely and straightforwardly encode functional-style abstraction
as well. Others have studied the advantages of OO-style abstraction over
the functional style, and vice versa [BOW98, TT99, Ern01, Ern06].

4.6 Encoding system F sub
ω

Table 4.2 shows how terms, types and kinds from system F sub
ω [Pie02, Ch.

31] can be encoded in Scalina. Using Pierce’s terminology, an abstraction is
modelled as an object with an un-member a that represents the argument,
and a member apply that encodes the body of the abstraction. Note that
we have to infer the type T’. Application is decomposed into refining the
a un-member with the encoding of the actual argument, and selecting the
apply member.

The encoding of a polymorphic value re-uses the pattern we used for
term abstraction, except that the argument is now a type un-member in-
stead of a term-level one. We use an interval kind to model type bounds:
‘<: T ’ becomes ‘: In(Nothing, !T")’. Type application does not present
new challenges.

At the level of types, function types and universal types become the ob-
vious structural types, which we established when encoding (polymorphic)

90 Scalina: the Essence of Abstraction in Scala

function values. Similarly, we simply hoist our term-level abstraction and
application to the type level to replace operator abstraction and applica-
tion. The kind-level is easily derived from the type that encodes operator
abstraction.

The evaluation of the encoding of a value application proceeds by E rfn
pushing the refinement of the object to the object’s type, so that E sel can
look up the apply member in the type that now has a concrete value for it.
Evaluating a type application also uses E rfn to push the concrete type
information into the type of the value, which tracks the value’s members.
However, this binding is never used during later evaluation steps, as the
only types that interact with evaluation, are those that can be used to
instantiate a new object. These types must statically expand to a structural
type, which is not possible for type un-members.

Finally, we note that the contravariant rule for un-member conformance
means that Scalina can encode full system F sub

ω , and that the undecidability
of the latter should thus carry over to Scalina.

4.7 Meta-theory

The traditional term-level safety proofs show that it suffices to type check
a program once in order to guarantee certain properties for every possible
evaluation trace. In Scalina, we ensure that member lookup never fails to
find the required label with the corresponding right-hand side, and that an
un-member is at most refined once on the same object.

The type-level guarantees are similar, though more subtle. Since type
selection is only well-kinded if the target of the selection is known to become
a concrete type during type checking, we ensure that selection can always
proceed on types of kind Concrete(R). Note that we consider certain
other type selections, such as selecting a nominal type, to be in canonical
form, so that this kind of selection is not expected to proceed.

The complexity of the calculus warrants mechanising the meta-theoretic
proofs. Although we have worked out the essential theorems on paper, and
mechanised the meta-theory of a small subset of the calculus, more work
is needed to adequately demonstrate full correctness. However, we intend
to first simplify Scalina and experiment with level polymorphism before we
invest in a fully mechanised meta-theory.

4.7 Meta-theory 91

!t
"t′

≡
re

pl
ac

e
th

e
fr

ee
va

ri
ab

le
in

th
e

en
co

di
ng

of
t

w
it

h
t′

!λ
x

:T
.t
"

≡
ne

w
{s
e
l
f
⇒

va
l

a
:

Un
[
!T

"]
;

va
l

a
p
p
l
y
:

T
’

=
!t

"s
e
l
f
.
a
}

!t
t′
"

≡
(
!t

"
%{
va

l
a

=
!t
’
"}
)
.
a
p
p
l
y

!λ
X

<
:T

.t
"

≡
ne

w
{s
e
l
f
⇒

ty
pe

a
:

Un
[
In

(
No

th
in

g,
!T

")
]
;

va
l

a
p
p
l
y
:

T
’

=
!t

"s
e
l
f
.
a
}

!t
[T

]"
≡

(
!t

"
%{
ty

pe
a

=
!T

"}
)
.
a
p
p
l
y

!T
op

"
≡

An
y

!T
→

T
′ "

≡
{v
al

a
:

Un
[
!T

"]
;

va
l

a
p
p
l
y
:

!T
’
"}

!∀
X

<
:T

.T
′ "

≡
{t
yp

e
a
:

Un
[
In

(
No

th
in

g,
!T

")
]
;

va
l

a
p
p
l
y
:

!T
’
"s
e
l
f
.
a
}

!λ
X

::
K

.T
"

≡
{t
yp

e
a
:

Un
[
!K

"]
;

ty
pe

a
p
p
l
y

:
K
’

=
!T

"s
e
lf

.a
}

!T
T
′ "

≡
(
!T

"
%{
ty

pe
a

=
!T
’
"}
)
#
a
p
p
l
y

!∗
"

≡
St

ru
ct

(
{x

⇒
})

!K
⇒

K
′ "

≡
St

ru
ct

(
{s
e
l
f
⇒

ty
pe

a
:

!K
";

ty
pe

a
p
p
l
y
:

!K
’
"}
)

T
ab

le
4.

2:
In

fo
rm

al
en

co
di

ng
of

sy
st

em
F

su
b

ω
-s

yn
ta

x
in

Sc
al

in
a

92 Scalina: the Essence of Abstraction in Scala

4.8 Related work

4.8.1 Modelling OO

Given the wealth of research on extensions of the λ calculus, it is only
natural that studies of the essence of object-oriented languages build on
these ideas. Even though encoding objects requires a lot of extra machinery,
such as records, subtyping, and recursive types, this complexity is probably
inherent. However, modelling OO using a combination of FP and OO
seems to fail Occam’s razor. Nonetheless, a lot of object calculi fall in this
category [IPW01, FKF98, CGLO06].

The other side of the spectrum – using a purely object-oriented calculus
without FP concepts – can be traced back to Abadi and Cardelli’s seminal
work [AC95, AC96]. However, in their first-order system, “an object type
is invariant in its component types”. Thus, object types cannot encode
function types in the presence of subtyping, as the latter require a mix
of contravariance and covariance. To solve this, they introduce universal
and existential quantification in their second-order system. Universal quan-
tification, like un-members, behaves contravariantly. Similarly, existential
quantification introduces covariance, which we allow for normal members.
A similarity of interest is Cardelli’s notion of power type [Car88a], which
corresponds to Scalina’s In(S, T) kind.

In other respects, Abadi and Cardelli’s first-order system is more power-
ful than Scalina: our refinement operator does not allow recursion through
the self variable. However, this limitation simplifies the calculus without
ruling out refinement’s primary use, which is similar to function applica-
tion: supplying a value to a function does not rely on the values supplied
earlier.

To further the similarity with application, refinements do not require
type or kind annotations for the supplied entities. Nonetheless, it is pos-
sible to have type un-members that classify value un-members: the type
un-members must then be refined before the value un-members, because the
supplied types determine the acceptable values for the value un-members.
Note that we use first-class types, which do have a self variable, for over-
riding.

Scalina was directly inspired by the νObj calculus [OCRZ03]. The main
difference is that Scalina introduces un-members and refinement at the term
and type level. νObj uses class templates for term-level abstraction, and
only provides covariant abstract type members for type-level abstraction.
The latter implies that well-formed type-level applications may surprise the
type function with unexpected arguments. It is important to note that this

4.8 Related work 93

does not have any impact on the run-time behaviour of such programs. It
does however fail to provide the type-level equivalent of the guarantees that
term-level abstraction builders have come to rely on.

4.8.2 Kind soundness

The νObj calculus [OCRZ03] does not possess the kind soundness property
that was discussed in Section 3.3.5. Type parameters are encoded as ab-
stract type members, which behave covariantly. There is no way to enforce
contravariance for these type members. Thus, type-level functions cannot
be encoded faithfully, as their arguments must adhere to a contravariant
regime.

Related work seems to deviate from νObj’s design, although making a
precise comparison is complicated by the differences in features supported
by the various approaches. In the notation of Cardelli [Car88b], the types
from the example in Listing 4.3 are classified as follows:

NumericList : ALL[A::POWER[Number]] TYPE
Container : ALL[X::TYPE] TYPE

Cardelli does not define subkinding for these kinds, but does define
subtyping for polymorphic functions (“All [X::K] B <: All [X::K′] B′ if
K′<::K (where <:: denotes a subkind relation[, . . .]), and B<:B′ under the
assumption that X::K′”). It seems reasonable to lift this rule (which deals
with functions that take a type to yield a value) to the level of kinds, which
results in our rule that deals with functions that take a type to yield a type.

Similarly, in the notation of Compagnoni and Goguen [CG03]:

NumericList : Pi A <: Number : ". "
Container : Pi X <: T" : ". "

Although the authors require these bounds to be equal for the kinds to
be comparable (their treatment does not include subkinding), we generalise
based on the same observation as the previous paragraph, but using a slight
different source of inspiration. Namely, Full System F<:’s [CMMS94] rule
that deals with bounded quantification at the value level (Sub Forall) also
requires contravariance for the bounds of the quantifier.

We recover early error detection in Scalina by differentiating covariant
and contravariant members, instead of assuming they all behave covari-
antly. This distinction corresponds to the fact that some members abstract
over input, whereas others represent the output of the abstraction. Input
members should behave contravariantly, like the types of a method’s param-
eters, whereas covariance is required for output members, which correspond

94 Scalina: the Essence of Abstraction in Scala

to a method’s result type. With this distinction, a purely object-oriented
calculus can encode functional-style abstraction with the same safety guar-
antees.

Moreover, in some ways, the object-oriented approach is more powerful
than the functional one. In their work on the MixML calculus [DR08],
Dreyer and Rossberg present a novel module system for ML, inspired by
Scala, and they point out that the uniform treatment of a module’s imports
and exports is an important benefit of the OO style of abstraction over ML’s
functors. A functor’s exports (the result, a member) may depend on its
imports (its arguments, un-members in Scalina), but not the other way
around. As in MixML, this arbitrary restriction is not present in Scalina,
and an un-member’s type may depend on a member, which corresponds to
the import specifications of a functor referring to type components in its
exports.

4.9 Conclusion

While developing the theoretical aspect of extending Scala with type con-
structor polymorphism, we discovered that existing Scala calculi, such as
the νObj calculus, could not fully encode our extension. Thus, we set out
to design Scalina, which improves the νObj calculus in order to provide
better support for safe type-level abstraction. More specifically, Scalina
is kind sound, which means that type-level computation (or abstraction)
does not go wrong. To achieve this, we distinguish “input” and “output”
members. Given the covariant nature of Scala’s abstract type members,
they should only be used for output.

Thus, Scalina introduces un-members to deal with input. Even though
un-members are a fairly simple construct, they make the calculus signifi-
cantly more expressive, as illustrated in the previous section by the relation
to the MixML calculus. Additionally, we suspect them to be useful in mod-
elling safe object initialisation, and plan to investigate this in future work.

Beyond this original motivation, Scalina has evolved into a research
vehicle for experimenting with language constructs in support of a scalable
type system. From the outset, our design has emphasised uniformity, as
witnessed primarily by the similarity of the abstraction mechanisms at the
level of terms and types. While working on the calculus as well as with
applications of type constructor polymorphism, our striving for uniformity
in abstraction mechanisms across levels has been confirmed, as discussed
in the previous chapters.

The following chapter motivates our plans for further evolving and sim-

4.9 Conclusion 95

plifying Scalina from a broader perspective. Briefly, more technically, these
include introducing level polymorphism, which is a promising core construct
of a scalable type system. Essentially, the idea is to collapse the different
levels (of terms, types, kinds, . . .) into a single level of level-indexed en-
tities, so that, in the extreme, the same abstraction mechanism caters to
a diverse audience of application programmers, expert library developers,
as well as designers of type system modules. Moreover, with the idea of
expressing specifications as types, this abstraction mechanism also plays a
role in modularising software specification.

Because Scalina’s theory is still changing, we have not yet invested in
fully mechanising its meta-theory. Nonetheless, we have proof sketches for
the important theorems for the full calculus, as well as a Coq development
of progress and preservation for a small subset of the calculus. We will
continue this formal development in tandem with the ongoing refinement
of the theory.

96 Scalina: the Essence of Abstraction in Scala

Chapter 5

Conclusion and Future
Research Direction

5.1 Summary of contributions

5.1.1 Type constructor polymorphism

The high-level goal of our research is to improve the type system’s abil-
ity to assist the programmer in efficiently producing correct software. Our
contributions bring this goal closer by providing the Scala library designer
with higher-order genericity, or type constructor polymorphism. Addition-
ally, we have designed Scalina as a new model for the essence of Scala’s
type system, including our extension, and we plan to refine it further as
part of our ongoing research on a scalable type system.

Haskell has supported higher-order parametric polymorphism since its
inception, and the first-order fragment is now common in object-oriented
languages. We have shown that the higher-order generalisation of “generic-
ity” is equally useful in object-oriented programming, and that it integrates
soundly into the type system of a modern object-oriented language, such
as Scala. Moreover, it was implemented in the full Scala compiler with
reasonable effort, and has since been put to good use in refactoring Scala’s
collection library, as well as by other researchers in their work on polymor-
phically embedding domain-specific languages [HORM08].

The integration of type constructor polymorphism into Scala gave rise
to a rich level of kinds, including the type-dependent interval kind that
captures lower and upper bounds, and the polarised type-function kind
constructor that deals with definition-site variance annotations. Fortu-
nately, the compiler can fully infer these kinds so that the programmer

97

98 Conclusion and Future Research Direction

does not have to deal with them. In fact, they are not expressible in the
surface syntax. Furthermore, the combination with subtyping and Scala’s
support for implicit arguments subsumes and even exceeds Haskell’s type
class construct.

As a concise illustration of the power of higher-order genericity, we pre-
sented a novel implementation of the Builder pattern, which makes essential
use of type constructor polymorphism. It can be seen as the dual of the
Iterator pattern, in the sense that it encapsulates the piecemeal construc-
tion of a collection (specified by a type constructor, such as List), whereas
Iterator captures the consumption of a collection.

5.1.2 The essence of abstraction in Scala

In Chapter 4, we described Scalina, our calculus that takes a first step to-
wards unifying the abstraction mechanisms across different levels. Scalina
was originally focussed on proving soundness of type constructor polymor-
phism. When working on the theoretical underpinnings for type constructor
polymorphism, we first experimented with encoding our extension in the
νObj calculus [OCRZ03]. However, it turned out that a faithful encoding
was just out of reach. Thus, we developed Scalina and incorporated un-
members as a fix for the issue that we discovered with the νObj calculus.

Scalina has since evolved to an interesting calculus in its own right due
to its uniform treatment of abstraction. The same style of abstraction
allows values and types to abstract over values and types, in any combina-
tion. Moreover, the functional abstraction mechanisms of system F sub

ω can
be encoded faithfully.

In fact, Scalina’s approach to abstraction is strictly more powerful than
functional abstraction in the sense that the input of an abstraction may
refer to its result. This may seem like a curiosity, but independently, Dreyer
and Rossberg included a similar construct in their MixML calculus, which
models a powerful, novel module system for ML [DR08]. In this context it
makes perfect sense for a module’s imports (the input of the abstraction,
its un-members) to refer to its exports (the result of the abstraction, its
members). Finally, we suspect un-members to be useful in modelling safe
object initialisation, and plan to investigate this in future work.

5.2 Future work

Odersky used the Builder pattern extensively in the refactoring of the collec-
tions library. The revised library contains significantly less redundant code,

5.2 Future work 99

while providing the client of the library with a more consistent interface.
This experience strengthens our faith in type constructor polymorphism as
an important tool for the library designer. However, it has also shown that
there is still room for improvement. Using the library has not become more
complicated, but designing it was quite challenging.

More concretely, two opportunities for improvement arose from our
work on the collections library. First, even in the fragment of the library
that was included in Chapter 3, it was clear that BoundedIterable re-
quired quite a bit of foresight in order to accommodate collections that
require the type of their elements to be bounded.

Second, since variance annotations behave similarly to bounds with
respect to kind checking, it is not surprising that they posed a similar chal-
lenge in the full library. More specifically, the core implementation classes,
such as IterableTemplate, (conceptually) exist in a covariant and a non-
variant variety, even though the nonvariant version can be derived from
the covariant one by simply dropping the appropriate ‘+’ variance annota-
tions. Thus, to remove this redundancy it should be possible to abstract
over variance annotations, similar to how BoundedIterable abstracts over
the bounds on the type of its elements.

Fortunately, as discussed in Chapter 3, both bounds and variance are
captured by kinds, so that we could abstract over both of them by simply
abstracting over the kind of the type of the elements. Thus, kind polymor-
phism emerges as a more powerful abstraction mechanism.

However, it seems that we keep discovering the need for abstracting
over things that we formerly did not consider. First, methods allowed
abstracting over values (their arguments), then, genericity was introduced,
and types (parameterised classes) as well as values (polymorphic methods)
could abstract over types. With type constructor polymorphism, types can
abstract over type constructors, and kind polymorphism subjects kinds to
abstraction. Can we skip another incremental improvement and achieve an
increase by an order of magnitude?

Scalina lays the foundations for this exploration by aligning the levels
of values and types as closely as possible. Although we can abstract over
values and types in much the same way, the abstraction mechanisms are
modelled by different relations, with subtly different properties.

Instead of incrementally introducing mechanisms that abstract over
entities at increasingly high levels of abstraction, we conjecture that the
core of the next generation of type systems should be based on a single
abstraction mechanism that works at any level. We see level polymor-
phism as an important source of inspiration. Sheard is investigating it in

100 Conclusion and Future Research Direction

Ωmega [She08], a Haskell-like language with type-level computation and
user-definable kinds. In the context of the calculus of constructions, this
is called “universe polymorphism” [HP89]. The remainder of this section
discusses our plans for combining these features into a scalable type system.

5.2.1 A scalable type system

The type system must be able to grow so that it can succinctly specify
the correctness of the implementation. The same type system must not
interfere during prototyping, gently ramping up its verification power while
the implementation matures and thus requires more quality assurance. The
required level of quality not only evolves over time, it also varies across the
modules that make up a program, as some are less mission-critical than
others. Nevertheless, the invariants of each constituent module must be
maintained, even when an unverified module in the prototyping phase uses
one of the highly verified core modules.

Thus, the type system must scale in its potential for detecting bugs –
its expressiveness – as well as in how strictly it enforces correctness – its
flexibility.

Flexibility

A type system’s flexibility can be further decomposed into how strictly
types are checked and when these checks are performed, how much missing
or erroneous type information can be reconstructed, and whether the type
system influences program execution. Another consideration is whether
features that improve flexibility are part of the language. More concretely,
a compiler that can be configured to treat type errors as warnings is an
extra-lingual feature that improves type system flexibility.

Untyped and traditional statically typed languages form the extremes
of type checking strictness, as they either perform no type checks at all,
or insist on full type checking. Anderson and Drossopoulou introduce a
permissive type [AD03] that may be used instead of more precise type
information when more lenient type checking is preferred. Recently, Siek
and Taha refined this idea and coined the term “gradual typing” [ST07].
An optional type system, such as Strongtalk’s [BG93], can be seen as a
binary version of a gradual type system, as it can be turned on and off, but
types do not scale in precision.

Flexibility in when types are checked has recently been explored by
Flanagan [Fla06], and he calls it “hybrid type checking”. Soft typing [CF91]
is a related technique, which turns static type errors into dynamic casts,

5.2 Future work 101

thus deferring type checking to run time when necessary. In a limited sense,
Eclipse’s so-called “quickfix” feature makes it easier for the programmer
to emulate soft typing for Java by automatically fixing static errors so
that the program can be compiled. However, this gives a false impression
of increasing programmer productivity, as the programmer is responsible
for keeping track of these temporary fixes so that they can eventually be
implemented properly.

A flexible type system should have an extra-lingual way of determining
how type errors are handled, so that this policy can easily be adjusted to the
required level of quality assurance for a certain module. Additionally, the
language itself must incorporate types that correspond to varying degrees
of strictness. Languages with subtyping already provide this to a certain
extent, but Siek et al. point out that it does not suffice [ST07].

Clearly, type inference provides another important source of flexibility,
which is closely related to type checking, especially when recovery from
type errors is required. Full type inference is not realistic, or even desirable,
except perhaps for experimentation, scripting, and prototyping. Types are
an important form of documentation, and inference cannot be trusted to
recover programmer intent. While local type inference is invaluable in
lowering the burden of type annotation, full type inference undermines the
verification power of the type system, as fully inferred specifications almost
trivially correspond to the implementation.

The type system’s guiding role is not limited to documentation, as pre-
cise types guide the implementation effort. In fact, types can be lever-
aged to generate missing implementation code in certain cases. Con-
crete examples can be found in the work on data-type generic program-
ming [HJ03, HL06, MPJ06, Hin06], where code follows the shape of types.
Ad-hoc polymorphism, whether it be in the guise of static overloading in
Java, implicit arguments in Scala, or type classes in Haskell, is a more
common example of the type system influencing program behaviour.

A more advanced application of reversing the direction of inference, so
that values are derived from types, is found in many dependently-typed
languages, but also in Djinn, a tool that generates a Haskell implementa-
tion for certain kinds of types. By the Curry-Howard isomorphism, this
corresponds to automated theorem proving in the logic that corresponds to
the type system.

As noted by Bracha [Bra04], a program’s execution should not depend
on the type system. More concretely, whether the program is allowed to
execute, and what this execution comprises, should not depend on the
type system. Otherwise, optional typing would not be feasible. It also

102 Conclusion and Future Research Direction

implies that changing the type inference algorithm could change program
behaviour, which would certainly surprise the programmer.

This stance should be nuanced somewhat, since the interaction between
types and values also has several useful applications, as already discussed. A
compromise could be achieved by interpreting type checking as an optimisa-
tion phase that turns dynamic type checks into static ones, discharging the
proof obligations that correspond to these run-time test. In this interpre-
tation, turning the type checker off only has an impact on the performance
of the program, not its result.

Finally, an important open problem is how to deal with hybrid composi-
tions of modules that have been type checked independently under different
typing regimes. For example, while experimenting, some code that is not
type checked at all may call into a core module that expresses its specifi-
cations as part of the types in its interface. How will these invariants be
guaranteed? Clearly, the run-time system must mediate in a scenario like
this. Recently, Wadler and Findler’s have shown that “well-typed programs
can’t be blamed” [WF09], and Gray has shown how classes that are defined
in a dynamically typed and a statically typed language can safely extend
each other [Gra08].

Expressiveness

A type system such as Scala’s is at the frontier of what is currently accepted
by programmers in OO languages. It is very expressive, but its notion of
dependent types is too weak to express specifications such as in JML or
Spec#. Nonetheless, there exist programming languages whose type sys-
tems rival the expressiveness of these specification languages. For example,
Epigram [McB04] has a dependent type system that closely corresponds
to constructive type theory, which is also at the core of the Coq proof
assistant [BC04].

Chen’s work on ATS [CX05], and Sheard’s Ωmega [She08] are some of
the first indications that theorem proving is (slowly) entering the realm of
practical programming languages. Recently, Nanevski et al. have taken
another important step in improving the type system’s expressiveness by
integrating Hoare-style specifications [NMB08].

Fundamentally, a type system can only be truly expressive if it can
“grow” [Ste99]. It should be possible to express and encapsulate new ab-
straction in the type system, as it will never be possible to develop one fixed
type system that suits every application or application domain. Thus, the
same principles for value-level language design should be applied to the

5.2 Future work 103

type system.
The subtle difference between the value-level language and the pro-

grams written in it becomes even more important at the level of types. For
example, Java’s equals method can be seen as a hook into the language
semantics, as it influences a core aspect of the language. Similarly, being
able to “rewire” equality at the type level would have far-reaching conse-
quences. Nonetheless, it is essential for the development of type system
modules. For example, such an extension could enforce the consistent use
of units of measurement [Ken94], which involves extending the notion of
type equality to include the laws of the abelian group formed by units and
the operations on them (e.g., N ∗m is the same unit as m ∗N).

Chameleon [WSSR05, SS08] is an important example of a language
with an extensible type system, at the value level it is a Haskell-like func-
tional programming language, and the type system can be programmed
using constraint handling rules [Frü94]. More recently, Schrijvers et al
have proposed an approach in which functional programming is used at
both levels [SJCS08]. We are not aware of a language in which object-
oriented programming is similarly employed, even though subtyping and
encapsulation could provide interesting benefits.

An important open problem in this area is how to modularly prove
soundness of a language with an extensible type system. Another chal-
lenge is how to bring the ideal notions of theorems and proofs to the real
world, that includes effects, from the seemingly innocuous problem of non-
termination over the age-old printf and malloc, and subtle issues such as
initialisation and variable binding, to more complex I/O such as network
connections and database transactions. An interesting combination of the
idea of a pluggable type system and the desire to tame effects using the
type system can be found in recent work on representing uniqueness anno-
tations as types of a kind that is distinct from the kind of types of classical
expressions [dVPA07]. Even though the notion of a pluggable type system
is only present in spirit in their approach, it would serve as an excellent,
though truly ambitious, benchmark to challenge the power of an extensible
type system.

Finally, we observe that flexibility and expressiveness are two sides of
the same of coin in more than one way. On one hand, a type system can
only be scalable if it has both properties; on the other hand, though, an
interesting research topic is whether they can be realised in the same way.
For example, could flexibility arise from varying how many type system
modules are enabled, or whether the strict or lenient variant of a module
is used?

104 Conclusion and Future Research Direction

5.3 Conclusion

Genericity is a proven technique to reduce code duplication in object-
oriented libraries while making them easier to use by clients. The prime
example is a collections library, where clients no longer need to cast the
elements they retrieve from a generic collection.

Unfortunately, though genericity is extremely useful, the first-order vari-
ant is self-defeating in the sense that abstracting over proper types gives
rise to type constructors, which cannot be abstracted over. Thus, by us-
ing genericity to reduce code duplication, other kinds of boilerplate arise.
Type constructor polymorphism allows to further eliminate these redun-
dancies, as it generalises genericity to type constructors. We implemented
type constructor polymorphism in Scala 2.5.

As with genericity, most use cases for type constructor polymorphism
arise in library design and implementation, where it provides more control
over the interfaces that are exposed to clients, while reducing code duplica-
tion. Moreover, clients are not exposed to the complexity that is inherent
to these advanced abstraction mechanisms. In fact, clients benefit, similarly
to how genericity reduced the number of casts that clients of a collections
library had to write.

Beside the collection libraries, the poster child for genericity, we have
experimented with several other applications, such as embedded domain
specific languages (DSL’s) [CKcS07, HORM08]. Our parser combinator
library [MPO08b] is essentially a DSL for writing EBNF grammars in Scala.
Datatype-generic programming [Hin06] is another technique that benefits
from Scala’s support for type constructor polymorphism [MPJ06, Moo07].

While developing the theoretical aspect of type constructor polymor-
phism, we discovered that existing Scala calculi could not fully encode
our extension. Thus, we set out to design Scalina, which provides better
support for safe type-level abstraction. More specifically, Scalina is kind
sound, which means that type-level computation (or abstraction) does not
go wrong. To achieve this, we distinguish “input” and “output” members.

Beyond this original motivation, Scalina has evolved into a research ve-
hicle for experimenting with language constructs in support of a scalable
type system. From the outset, we strove for uniformity in the abstraction
mechanisms at the level of terms and types. We now consider this unifor-
mity a key ingredient for a scalable type system. Furthermore, uniformity in
abstraction mechanisms across levels subsumes kind polymorphism, which
our practical experience with type constructor polymorphism has shown to
be useful. Thus, we plan to continue our research in this direction.

Bibliography

[AC95] Mart́ın Abadi and Luca Cardelli. A theory of primitive objects:
Second-order systems. Sci. Comput. Program., 25(2-3):81–116,
1995.

[AC96] Mart́ın Abadi and Luca Cardelli. A theory of primitive objects:
Untyped and first-order systems. Inf. Comput., 125(2):78–102,
1996.

[AC01] David Aspinall and Adriana B. Compagnoni. Subtyping de-
pendent types. Theor. Comput. Sci., 266(1-2):273–309, 2001.

[AD03] Christopher Anderson and Sophia Drossopoulou. BabyJ: from
object based to class based programming via types. Electr.
Notes Theor. Comput. Sci., 82(7), 2003.

[AMM05] Thorsten Altenkirch, Conor McBride, and James McKinna.
Why dependent types matter. Manuscript, available online,
April 2005.

[Bar91] Henk Barendregt. Introduction to generalized type systems. J.
Funct. Program., 1(2):125–154, 1991.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving
and Program Development. Coq’Art: The Calculus of Induc-
tive Constructions. Texts in Theoretical Computer Science.
Springer Verlag, 2004.

[BG93] Gilad Bracha and David Griswold. Strongtalk: typechecking
Smalltalk in a production environment. In OOPSLA ’93: Pro-
ceedings of the eighth annual conference on Object-oriented pro-
gramming systems, languages, and applications, pages 215–230,
New York, NY, USA, 1993. ACM Press.

105

106 BIBLIOGRAPHY

[BGP06] Colin Blundell, Dimitra Giannakopoulou, and Corina S.
Pasareanu. Assume-guarantee testing. ACM SIGSOFT Soft-
ware Engineering Notes, 31(2), 2006.

[BLS05] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The
Spec# programming system: An overview. In Construction
and Analysis of Safe, Secure, and Interoperable Smart Devices,
pages 49–69. Springer Berlin / Heidelberg, January 2005.

[BMM90] Kim B. Bruce, Albert R. Meyer, and John C. Mitchell. The
semantics of second-order lambda calculus. Inf. Comput.,
85(1):76–134, 1990.

[BMS05] Gavin M. Bierman, Erik Meijer, and Wolfram Schulte. The
essence of data access in Cω. In Andrew P. Black, editor,
ECOOP, volume 3586 of Lecture Notes in Computer Science,
pages 287–311. Springer, 2005.

[BOW98] Kim B. Bruce, Martin Odersky, and Philip Wadler. A statically
safe alternative to virtual types. In Eric Jul, editor, ECOOP,
volume 1445 of Lecture Notes in Computer Science, pages 523–
549. Springer, 1998.

[Bra04] Gilad Bracha. Pluggable type systems. In OOPSLA Workshop
on Revival of Dynamic Languages, 2004.

[Bra07] Gilad Bracha. Executable grammars in Newspeak. Electron.
Notes Theor. Comput. Sci., 193:3–18, 2007.

[BSvG95] Kim B. Bruce, Angela Schuett, and Robert van Gent. Poly-
TOIL: A type-safe polymorphic object-oriented language. In
Walter G. Olthoff, editor, ECOOP, volume 952 of Lecture Notes
in Computer Science, pages 27–51. Springer, 1995.

[CA08] Vincent Cremet and Philippe Altherr. Adding
type constructor parameterization to Java. Jour-
nal of Object Technology, 7(5):25–65, June 2008.
Special Issue: Workshop on FTfJP, ECOOP 07.
http://www.jot.fm/issues/issue 2008 06/article2/.

[Car88a] Luca Cardelli. Structural subtyping and the notion of power
type. In POPL, pages 70–79, 1988.

BIBLIOGRAPHY 107

[Car88b] Luca Cardelli. Types for data-oriented languages. In
Joachim W. Schmidt, Stefano Ceri, and Michele Missikoff, edi-
tors, EDBT, volume 303 of Lecture Notes in Computer Science,
pages 1–15. Springer, 1988.

[CCH+89] Peter S. Canning, William R. Cook, Walter L. Hill, Walter G.
Olthoff, and John C. Mitchell. F-bounded polymorphism for
object-oriented programming. In FPCA, pages 273–280, 1989.

[CF91] Robert Cartwright and Mike Fagan. Soft typing. In PLDI,
pages 278–292, 1991.

[CG03] Adriana B. Compagnoni and Healfdene Goguen. Typed op-
erational semantics for higher-order subtyping. Inf. Comput.,
184(2):242–297, 2003.

[CGLO06] Vincent Cremet, François Garillot, Serguëı Lenglet, and Martin
Odersky. A core calculus for Scala type checking. In Rastislav
Kralovic and Pawel Urzyczyn, editors, MFCS, volume 4162 of
Lecture Notes in Computer Science, pages 1–23. Springer, 2006.

[CH00] Koen Claessen and John Hughes. QuickCheck: a lightweight
tool for random testing of Haskell programs. In ICFP, pages
268–279, 2000.

[Chu40] Alonzo Church. A formulation of the simple theory of types.
Journal of Symbolic Logic, 5:56–68, 1940.

[CJSS07] Manuel Chakravarty, Simon L. Peyton Jones, Martin Sulz-
mann, and Tom Schrijvers. Class families, 2007. On
the GHC Developer wiki, http://hackage.haskell.org/
trac/ghc/wiki/TypeFunctions/ClassFamilies.

[CKcS07] Jacques Carette, Oleg Kiselyov, and Chung chieh Shan. Finally
tagless, partially evaluated. In Zhong Shao, editor, APLAS,
volume 4807 of Lecture Notes in Computer Science, pages 222–
238. Springer, 2007.

[CKJM05] Manuel M. T. Chakravarty, Gabriele Keller, Simon L. Peyton
Jones, and Simon Marlow. Associated types with class. In Jens
Palsberg and Mart́ın Abadi, editors, POPL, pages 1–13. ACM,
2005.

http://hackage.haskell.org/trac/ghc/wiki/TypeFunctions/ClassFamilies
http://hackage.haskell.org/trac/ghc/wiki/TypeFunctions/ClassFamilies

108 BIBLIOGRAPHY

[CMMS94] Luca Cardelli, Simone Martini, John C. Mitchell, and Andre
Scedrov. An extension of System F with subtyping. Inf. Com-
put., 109(1/2):4–56, 1994.

[CW85] Luca Cardelli and Peter Wegner. On understanding types,
data abstraction, and polymorphism. ACM Computing Sur-
veys, 17(4):471–522, 1985.

[CX05] Chiyan Chen and Hongwei Xi. Combining programming with
theorem proving. In Olivier Danvy and Benjamin C. Pierce,
editors, ICFP, pages 66–77. ACM, 2005.

[DR08] Derek Dreyer and Andreas Rossberg. Mixin’ up the ML module
system. In Hook and Thiemann [HT08], pages 307–320.

[dVPA07] Edsko de Vries, Rinus Plasmeijer, and David M. Abrahamson.
Uniqueness typing simplified. In Olaf Chitil, Zoltán Horváth,
and Viktória Zsók, editors, IFL, volume 5083 of Lecture Notes
in Computer Science, pages 201–218. Springer, 2007.

[EKRY06] Burak Emir, Andrew Kennedy, Claudio V. Russo, and Dachuan
Yu. Variance and generalized constraints for C# generics. In
Dave Thomas, editor, ECOOP, volume 4067 of Lecture Notes
in Computer Science, pages 279–303. Springer, 2006.

[Ern99] Erik Ernst. gbeta – a Language with Virtual Attributes, Block
Structure, and Propagating, Dynamic Inheritance. PhD thesis,
Department of Computer Science, University of Aarhus, Århus,
Denmark, 1999.

[Ern01] Erik Ernst. Family polymorphism. In Jørgen Lindskov Knud-
sen, editor, ECOOP, volume 2072 of Lecture Notes in Computer
Science, pages 303–326. Springer, 2001.

[Ern06] Erik Ernst. Reconciling virtual classes with genericity. In
David E. Lightfoot and Clemens A. Szyperski, editors, JMLC,
volume 4228 of Lecture Notes in Computer Science, pages 57–
72. Springer, 2006.

[Ern07] Erik Ernst, editor. ECOOP 2007 - Object-Oriented Program-
ming, 21st European Conference, Berlin, Germany, July 30 -
August 3, 2007, Proceedings, volume 4609 of Lecture Notes in
Computer Science. Springer, 2007.

BIBLIOGRAPHY 109

[FKF98] Matthew Flatt, Shriram Krishnamurthi, and Matthias
Felleisen. Classes and mixins. In POPL, pages 171–183, 1998.

[Fla06] Cormac Flanagan. Hybrid type checking. In J. Gregory Mor-
risett and Simon L. Peyton Jones, editors, POPL, pages 245–
256. ACM, 2006.

[Frü94] Thom W. Frühwirth. Constraint handling rules. In Andreas
Podelski, editor, Constraint Programming, volume 910 of Lec-
ture Notes in Computer Science, pages 90–107. Springer, 1994.

[Gir72] J.Y. Girard. Interpretation fonctionelle et elimination des
coupures de l’arithmetique d’ordre superieur. These d’Etat,
Paris VII, 1972.

[GJ98] Jeremy Gibbons and Geraint Jones. The under-appreciated
unfold. In ICFP, pages 273–279, 1998.

[GJS+06] Douglas Gregor, Jaakko Järvi, Jeremy G. Siek, Bjarne Strous-
trup, Gabriel Dos Reis, and Andrew Lumsdaine. Concepts:
linguistic support for generic programming in C++. In Peri L.
Tarr and William R. Cook, editors, OOPSLA, pages 291–310.
ACM, 2006.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.
Java(TM) Language Specification, The (3rd Edition) (Java
(Addison-Wesley)). Addison-Wesley Professional, 2005.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart:
directed automated random testing. In Vivek Sarkar and
Mary W. Hall, editors, PLDI, pages 213–223. ACM, 2005.

[Gra08] Kathryn E. Gray. Safe cross-language inheritance. In Jan
Vitek, editor, ECOOP, volume 5142 of Lecture Notes in Com-
puter Science, pages 52–75. Springer, 2008.

[HHJW07] Paul Hudak, John Hughes, Simon L. Peyton Jones, and Philip
Wadler. A history of Haskell: being lazy with class. In Bar-
bara G. Ryder and Brent Hailpern, editors, HOPL, pages 1–55.
ACM, 2007.

[Hin06] Ralf Hinze. Generics for the masses. J. Funct. Program., 16(4-
5):451–483, 2006.

110 BIBLIOGRAPHY

[HJ03] Ralf Hinze and Johan Jeuring. Generic Haskell: Practice and
theory. In Roland Carl Backhouse and Jeremy Gibbons, edi-
tors, Generic Programming, volume 2793 of Lecture Notes in
Computer Science, pages 1–56. Springer, 2003.

[HJW+92] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, Brian
Boutel, Jon Fairbairn, Joseph H. Fasel, Maŕıa M. Guzmán,
Kevin Hammond, John Hughes, Thomas Johnsson, Richard B.
Kieburtz, Rishiyur S. Nikhil, Will Partain, and John Peter-
son. Report on the programming language Haskell, a non-strict,
purely functional language. SIGPLAN Notices, 27(5):R1–R164,
1992.

[HL06] Ralf Hinze and Andres Löh. “scrap your boilerplate” revolu-
tions. In Tarmo Uustalu, editor, MPC, volume 4014 of Lecture
Notes in Computer Science, pages 180–208. Springer, 2006.

[HM96] Graham Hutton and Erik Meijer. Monadic Parser Combinators.
Technical Report NOTTCS-TR-96-4, Department of Computer
Science, University of Nottingham, 1996.

[Hoa83] C. A. R. Hoare. An axiomatic basis for computer programming
(reprint). Commun. ACM, 26(1):53–56, 1983.

[HORM08] Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adri-
aan Moors. Polymorphic embedding of dsls. In Yannis Smarag-
dakis and Jeremy G. Siek, editors, GPCE, pages 137–148.
ACM, 2008.

[How69] W.A. Howard. To H.B. Curry: The formulae-as-types notion
of construction. In J. Hindley and J. Seldin, editors, Essays
on Combinatory Logic, Lambda Calculus, and Formalism. Aca-
demic Press, 1969.

[HP89] Robert Harper and Robert Pollack. Type checking, universe
polymorphism, and typical ambiguity in the calculus of con-
structions (draft). In Josep Dı́az and Fernando Orejas, editors,
TAPSOFT, Vol.2, volume 352 of Lecture Notes in Computer
Science, pages 241–256. Springer, 1989.

[HT08] James Hook and Peter Thiemann, editors. Proceeding of the
13th ACM SIGPLAN international conference on Functional
programming, ICFP 2008, Victoria, BC, Canada, September
20-28, 2008. ACM, 2008.

BIBLIOGRAPHY 111

[Hug99] John Hughes. Restricted datatypes in Haskell. Technical Re-
port UU-CS-1999-28, Department of Information and Comput-
ing Sciences, Utrecht University, 1999.

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler.
Featherweight Java: a minimal core calculus for Java and GJ.
ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.

[Jon94] Mark P. Jones. constructor classes & “set” monad?,
1994. http://groups.google.com/group/comp.lang.
functional/msg/e10290b2511c65f0.

[Jon95] Mark P. Jones. A system of constructor classes: Overloading
and implicit higher-order polymorphism. J. Funct. Program.,
5(1):1–35, 1995.

[Ken94] Andrew Kennedy. Dimension types. In Donald Sannella, editor,
ESOP, volume 788 of Lecture Notes in Computer Science, pages
348–362. Springer, 1994.

[Kid07] Eric Kidd. How to make data.set a monad, 2007.
http://www.randomhacks.net/articles/2007/
03/15/data-set-monad-haskell-macros.

[KT92] A. J. Kfoury and Jerzy Tiuryn. Type reconstruction in finite
rank fragments of the second-order lambda-calculus. Inf. Com-
put., 98(2):228–257, 1992.

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Prelim-
inary design of JML: a behavioral interface specification lan-
guage for Java. ACM SIGSOFT Software Engineering Notes,
31(3):1–38, 2006.

[LDG+07] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy,
and Jérôme Vouillon. The Objective Caml system, 2007. release
3.10.

[LM01] Daan Leijen and Erik Meijer. Parsec: Direct style monadic
parser combinators for the real world. Technical Report UU-
CS-2001-27, Department of Computer Science, Universiteit
Utrecht, 2001.

http://www.randomhacks.net/articles/2007/03/15/data-set-monad-haskell-macros
http://www.randomhacks.net/articles/2007/03/15/data-set-monad-haskell-macros
http://groups.google.com/group/comp.lang.functional/msg/e10290b2511c65f0
http://groups.google.com/group/comp.lang.functional/msg/e10290b2511c65f0

112 BIBLIOGRAPHY

[McB04] Conor McBride. Epigram: Practical programming with depen-
dent types. In Varmo Vene and Tarmo Uustalu, editors, Ad-
vanced Functional Programming, volume 3622 of Lecture Notes
in Computer Science, pages 130–170. Springer, 2004.

[Mei06] Erik Meijer. There is no impedance mismatch: (language inte-
grated query in Visual Basic 9). In Peri L. Tarr and William R.
Cook, editors, OOPSLA Companion, pages 710–711. ACM,
2006.

[Mei07] Erik Meijer. Confessions of a used programming language sales-
man. In Richard P. Gabriel, David F. Bacon, Cristina Videira
Lopes, and Guy L. Steele Jr., editors, OOPSLA, pages 677–694.
ACM, 2007.

[Moo07] Adriaan Moors. Code-follows-type programming in Scala.
Manuscript available from http://www.cs.kuleuven.be/
∼adriaan/?q=cft intro, 2007.

[MPJ06] Adriaan Moors, Frank Piessens, and Wouter Joosen. An object-
oriented approach to datatype-generic programming. In Ralf
Hinze, editor, ICFP-WGP, pages 96–106. ACM, 2006.

[MPO07] Adriaan Moors, Frank Piessens, and Martin Odersky. To-
wards equal rights for higher-kinded types. Accepted for the
6th International Workshop on Multiparadigm Programming
with Object-Oriented Languages at the European Conference
on Object-Oriented Programming (ECOOP), 2007.

[MPO08a] Adriaan Moors, Frank Piessens, and Martin Odersky. Generics
of a higher kind. In Gail E. Harris, editor, OOPSLA, pages
423–438. ACM, 2008.

[MPO08b] Adriaan Moors, Frank Piessens, and Martin Oder-
sky. Parser combinators in Scala. Technical Report
CW491, Department of Computer Science, K.U. Leuven,
2008. http://www.cs.kuleuven.be/publicaties/
rapporten/cw/CW491.abs.html.

[MPO08c] Adriaan Moors, Frank Piessens, and Martin Odersky. Safe
type-level abstraction in Scala. In Proc. FOOL ’08, January
2008. http://fool08.kuis.kyoto-u.ac.jp/.

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW491.abs.html
http://fool08.kuis.kyoto-u.ac.jp/
http://www.cs.kuleuven.be/~adriaan/?q=cft_intro
http://www.cs.kuleuven.be/~adriaan/?q=cft_intro
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW491.abs.html

BIBLIOGRAPHY 113

[NMB08] Aleksandar Nanevski, J. Gregory Morrisett, and Lars Birkedal.
Hoare type theory, polymorphism and separation. J. Funct.
Program., 18(5-6):865–911, 2008.

[OAC+06] Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dra-
gos, Gilles Dubochet, Burak Emir, Sean McDirmid, Stéphane
Micheloud, Nikolay Mihaylov, Michel Schinz, Lex Spoon, Erik
Stenman, and Matthias Zenger. An Overview of the Scala Pro-
gramming Language (2. edition). Technical report, 2006.

[OCRZ03] Martin Odersky, Vincent Cremet, Christine Röckl, and
Matthias Zenger. A nominal theory of objects with depen-
dent types. In Luca Cardelli, editor, ECOOP, volume 2743 of
Lecture Notes in Computer Science, pages 201–224. Springer,
2003.

[Ode06] Martin Odersky. Poor man’s type classes, July 2006. Talk at
IFIP WG 2.8, Boston.

[Ode07] Martin Odersky. The Scala Language Specification, Version
2.6. EPFL, November 2007. http://www.scala-lang.
org/docu/files/ScalaReference.pdf.

[OH92] Harold Ossher and William H. Harrison. Combination of in-
heritance hierarchies. In OOPSLA, pages 25–40, 1992.

[OSV08] Martin Odersky, Lex Spoon, and Bill Venners. Programming
in Scala. Artima, 2008.

[OZ05] Martin Odersky and Matthias Zenger. Scalable component ab-
stractions. In Ralph Johnson and Richard P. Gabriel, editors,
OOPSLA, pages 41–57. ACM, 2005.

[OZZ01] Martin Odersky, Christoph Zenger, and Matthias Zenger. Col-
ored local type inference. In POPL, pages 41–53, 2001.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT
Press, 2002.

[PS97] Benjamin C. Pierce and Martin Steffen. Higher-order subtyp-
ing. Theor. Comput. Sci., 176(1-2):235–282, 1997.

[PT00] Benjamin C. Pierce and David N. Turner. Local type inference.
ACM Trans. Program. Lang. Syst., 22(1):1–44, 2000.

http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf

114 BIBLIOGRAPHY

[Rey74] John C. Reynolds. Towards a theory of type structure. In
Bernard Robinet, editor, Symposium on Programming, vol-
ume 19 of Lecture Notes in Computer Science, pages 408–423.
Springer, 1974.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable
data structures. In LICS, pages 55–74. IEEE Computer Society,
2002.

[She07] Tim Sheard. Type-level computation using narrowing in
Ωmega. Electr. Notes Theor. Comput. Sci., 174(7):105–128,
2007.

[She08] Tim Sheard. Ωmega Users’ Guide. Portland State Uni-
versity, 2008. http://web.cecs.pdx.edu/∼sheard/
Omega/index.html.

[SJCS08] Tom Schrijvers, Simon L. Peyton Jones, Manuel M. T.
Chakravarty, and Martin Sulzmann. Type checking with open
type functions. In Hook and Thiemann [HT08], pages 51–62.

[SS08] Martin Sulzmann and Peter J. Stuckey. HM(X) type inference
is CLP(X) solving. J. Funct. Program., 18(2):251–283, 2008.

[SSW03a] Peter J. Stuckey, Martin Sulzmann, and Jeremy Wazny.
The chameleon type debugger (tool demonstration). CoRR,
cs.PL/0311023, 2003.

[SSW03b] Peter J. Stuckey, Martin Sulzmann, and Jeremy Wazny. Inter-
active type debugging in haskell. In Haskell ’03: Proceedings of
the 2003 ACM SIGPLAN workshop on Haskell, pages 72–83,
New York, NY, USA, 2003. ACM.

[ST07] Jeremy Siek and Walid Taha. Gradual typing for objects. In
Ernst [Ern07], pages 2–27.

[Ste98] Martin Steffen. Polarized Higher-Order Subtyping. PhD thesis,
Universität Erlangen-Nürnberg, 1998.

[Ste99] Guy L. Steele Jr. Growing a language. Higher-Order and Sym-
bolic Computation, 12(3):221–236, 1999.

[Str67] Christopher Strachey. Fundamental concepts in programming
languages. Lecture Notes, International Summer School in

http://web.cecs.pdx.edu/~sheard/Omega/index.html
http://web.cecs.pdx.edu/~sheard/Omega/index.html

BIBLIOGRAPHY 115

Computer Programming, Copenhagen, August 1967. Reprinted
in Higher-Order and Symbolic Computation, 13(1/2), pp. 1–49,
2000.

[TS06] Nikolai Tillmann and Wolfram Schulte. Unit tests reloaded:
Parameterized unit testing with symbolic execution. IEEE
Software, 23(4):38–47, 2006.

[TT99] Kresten Krab Thorup and Mads Torgersen. Unifying genericity
- combining the benefits of virtual types and parameterized
classes. In Rachid Guerraoui, editor, ECOOP, volume 1628 of
Lecture Notes in Computer Science, pages 186–204. Springer,
1999.

[US87] David Ungar and Randall B. Smith. Self: The power of sim-
plicity. In OOPSLA, pages 227–242, 1987.

[Wad92] Philip Wadler. Comprehending monads. Mathematical Struc-
tures in Computer Science, 2(4):461–493, 1992.

[Wad95] Philip Wadler. Monads for functional programming. In Jo-
han Jeuring and Erik Meijer, editors, Advanced Functional Pro-
gramming, volume 925 of Lecture Notes in Computer Science,
pages 24–52. Springer, 1995.

[WB89] Philip Wadler and Stephen Blott. How to make ad-hoc poly-
morphism less ad-hoc. In POPL, pages 60–76, 1989.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic ap-
proach to type soundness. Inf. Comput., 115(1):38–94, 1994.

[WF09] Philip Wadler and Robert Bruce Findler. Well-typed programs
can’t be blamed. In ESOP, Lecture Notes in Computer Science.
Springer, 2009. To appear.

[WLT07] Stefan Wehr, Ralf Lämmel, and Peter Thiemann. JavaGI :
Generalized interfaces for Java. In Ernst [Ern07], pages 347–
372.

[WSSR05] Jeremy Wazny, Martin Sulzmann, Peter J. Stuckey, and An-
dreas Rossberg. The Chameleon home page, 2005.

116 BIBLIOGRAPHY

List of Publications

Conference Papers

[1] Adriaan Moors, Frank Piessens, and Martin Odersky. Generics of a
higher kind. In OOPSLA, pages 423–438, 2008.

[2] Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan
Moors. Polymorphic embedding of DSLs. In GPCE, pages 137–148,
2008.

Refereed Workshop Papers

[3] Adriaan Moors, Frank Piessens, and Martin Odersky. Safe type-level
abstraction in Scala. In Proc. FOOL ’08, January 2008. http://
fool08.kuis.kyoto-u.ac.jp/.

[4] Adriaan Moors, Frank Piessens, and Martin Odersky. Towards equal
rights for higher-kinded types. Accepted for the 6th International
Workshop on Multiparadigm Programming with Object-Oriented Lan-
guages at the European Conference on Object-Oriented Programming
(ECOOP), 2007.

[5] Adriaan Moors, Frank Piessens, and Wouter Joosen. An object-oriented
approach to datatype-generic programming. In ICFP-WGP, pages 96–
106, 2006.

[6] Adriaan Moors, Jan Smans, Eddy Truyen, Frank Piessens, and Wouter
Joosen. Safe language support for feature composition through feature-
based dispatch, October 2005. In the informal proceedings of the OOP-
SLA workshop on Managing Variabilities Consistently in Design and
Code.

117

http://fool08.kuis.kyoto-u.ac.jp/
http://fool08.kuis.kyoto-u.ac.jp/

118
OTHER MANUSCRIPTS

Other Manuscripts

[7] Adriaan Moors, Frank Piessens, and Martin Odersky. Parser com-
binators in Scala. Technical Report CW491, Department of Com-
puter Science, K.U. Leuven, 2008. http://www.cs.kuleuven.be/
publicaties/rapporten/cw/CW491.abs.html.

[8] Adriaan Moors. Code-follows-type programming in Scala. Manuscript
available from http://www.cs.kuleuven.be/∼adriaan/?q=
cft intro, 2007.

[9] Adriaan Moors. Development of an Object Oriented Language that In-
tegrates several State of the Art Concepts. Master’s thesis, KU Leuven,
2004. In Dutch.

http://www.cs.kuleuven.be/~adriaan/?q=cft_intro
http://www.cs.kuleuven.be/~adriaan/?q=cft_intro
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW491.abs.html
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW491.abs.html

Biography

2008 Internship with Don Syme at Microsoft Research, Cambridge (3
months). Internship in the F# team. Among other things, imple-
mented a meta-model for LINQ to allow seamless persistence of F#
data structures.

2008 Served on the program committee of the Workshop on Generic Pro-
gramming 2008

2008 Visited Klaus Ostermann at Aarhus University (2 weeks). Co-
authored “Polymorphic Embedding of DSLs”.

2007 Internship with Martin Odersky at EPFL (3 months). Implemented
support for higher-kinded types and higher-order subtyping in the
Scala compiler. Included in the distribution as of version 2.5.

2006 Reviewer for the JFP special issue for MSFP 2006 (since then, sub-
reviewed for AOSD, ICFP, and OOPSLA)

2006 – 2009 Personal 4-year research grant from the Institute for the pro-
motion of Innovation by Science and Technology in Flanders (IWT-
Flanders)

2004 – 2006 K.U.Leuven doctoral scholarship (15 months).

1999 – 2004 B.Sc.E & M.Sc.E. in Computer Science (Magna Cum Laude),
K.U.Leuven.

1981 Crashed space ship on planet Earth. Oops.

119

120 BIOGRAPHY

Type constructor
polymorfisme voor Scala:
theorie en praktijk

A.1 Samenvatting

Een statisch type systeem is een belangrijk hulpmiddel bij het efficiënt ont-
wikkelen van correcte software. De recente invoering van “genericity” in
object-gerichte programmeertalen heeft hun type systeem een stuk krach-
tiger gemaakt. Genericity, ook wel “parametrisch polymorfisme” genoemd,
is zeer nuttig, omdat het bijvoorbeeld de definitie van polymorfe lijsten mo-
gelijk maakt, waarbij een type parameter gebruikt wordt om abstractie te
maken van het type van de elementen. Aangezien genericity echter beperkt
is tot eerste orde, kunnen we niet opnieuw abstractie maken van het type
van deze geparametriseerde lijsten.

We veralgemeenden Scala’s ondersteuning voor parametrisch polymor-
fisme tot de hogere orde, aangezien dit van praktisch nut blijkt te zijn.
We noemen het resultaat “type constructor polymorfisme”, aangezien Sca-
la programmeurs nu veilig abstractie kunnen maken van type constructors,
zoals het type van polymorfe lijsten. We beschrijven de theoretische onder-
bouw en de praktische kant van onze uitbreiding van Scala’s type systeem.

Onze veralgemening, versterkt door de synergie met Scala’s bestaan-
de concepten, zoals implicits, vormt een belangrijke troef voor de library-
ontwerper, terwijl de gebruiker van deze abstracties zich geen zorgen hoeft
te maken over hun interne werking. De theoretische kant van het verhaal
richt zich op de lacunes in de bestaande Scala formalismes, en presenteert
Scalina, onze calculus die deze oplost. Ten slotte gaan we kort in op onze
visie voor toekomstige verbeteringen van het type systeem, op basis van
onze ervaring met Scalina en type constructor polymorfisme.

i

A.2 Type constructor polymorfisme

A.2.1 Inleiding

Eerste-orde parametrisch polymorfisme wordt ondertussen ondersteund
door de meeste statisch getypeerde programmeertalen. Het concept vond
zijn oorsprong in system F [Gir72, Rey74] en werd voor het eerst in de
praktijk toegepast in functionele programmeertalen. Meer recent werd het
gëıntegreerd in object-gerichte talen zoals Java, C#, en vele andere. In
de context van deze talen noemt men eerste-orde parametrisch polymor-
fisme doorgaans generics. Abadi en Cardelli [AC96, AC95], Igarashi et
al. [IPW01], en vele anderen hebben deze concepten ten gronde bestudeerd.

Collecties zijn een standaard toepassing van generics. Het type List[
A], bijvoorbeeld, stelt lijsten voor met elementen van het type A, dat vrij
gekozen kan worden. In deze zin kunnen generics gezien worden als de ver-
algemening van het type van arrays, dat in Java altijd al geparameteriseerd
is geweest in het type van zijn elementen.

Eerste orde parametrisch polymorfisme heeft echter een aantal beper-
kingen. Hoewel het toelaat om abstractie te maken van types, wat leidt tot
type constructors zoals List, werkt het abstractie mechanisme niet meer
voor deze type constructors. Hierdoor kan men een type constructor niet
doorgeven als een type argument aan een andere type constructor. Ab-
stracties vereisen dit echter vaak, zelfs in object-gericht programmeren, en
deze beperking leidt dus tot onnodige code duplicatie.

De veralgemening van eerste orde polymorpfisme tot het hogere-orde
systeem was een natuurlijke stap in de lambda calculus [Gir72, Rey74,
BMM90]. Deze theoretische vooruitgang is sindsdien opgenomen in functie-
gerichte programmeertalen. De programmeertaal Haskell [HJW+92] onder-
steunt type constructor polymorfisme, dat ook gëıntegreerd is met het “type
class” concept [Jon95]. Deze veralgemening naar types die abstractie ma-
ken van types die abstractie maken van types (“higher-kinded types”) heeft
vele praktische toepassing, zoals comprehensions [Wad92], parser combina-
tors [HM96, LM01], en meer recent werk rond embedded Domain Specific
Languages (DSL’s) [CKcS07, HORM08].

Dezelfde noden en toepassingen bestaan in object-gericht programme-
ren. LINQ bracht rechtstreekse ondersteuning voor for comprehensions
naar het .NET platform [BMS05, Mei07], Scala [OAC+06] heeft altijd een
dergelijke constructie ondersteund, en Java 5 introduceerde een lichtgewicht
versie [GJSB05, Sec. 14.14.2]. Parser combinators zijn eveneens meer po-
pulair aan worden: Bracha gebruikt hen als de onderliggende technologie
voor zijn Executable Grammars [Bra07], en de Scala distributie bevat a li-

Why Type Constructor Polymorphism Matters 3

trait Iterable[T] {
def filter(p: T ⇒ Boolean): Iterable[T]
def remove(p: T ⇒ Boolean): Iterable[T] = filter (x ⇒ !p(x))

}

trait List[T] extends Iterable[T] {
def filter(p: T ⇒ Boolean): List[T]
override def remove(p: T ⇒ Boolean): List[T]
= filter (x ⇒ !p(x))

}

Listing 1. Limitations of Genericity

trait Iterable[T, Container[X]] {
def filter(p: T ⇒ Boolean): Container[T]
def remove(p: T ⇒ Boolean): Container[T] = filter (x ⇒ !p(x))

}

trait List[T] extends Iterable[T, List]

Listing 2. Removing Code Duplication

have the same result type, but the only way to achieve this is by overriding it
as well. The resulting code duplication is a clear indicator of a limitation of
the type system: both methods in List are redundant, but the type system
is not powerful enough to express them at the required level of abstraction in
Iterable.

Our solution, depicted in Listing 2, is to abstract over the type constructor
that represents the container of the result of filter and remove. Our improved
Iterable now takes two type parameters: the first one, T, stands for the type
of its elements, and the second one, Container, represents the type constructor
that determines part of the result type of the filter and remove methods.

Now, to denote that applying filter or remove to a List[T] returns a
List[T], List simply instantiates Iterable’s type parameter to the List type
constructor.

In this simple example, we could also have used a construct like Bruce’s
MyType [9]. However, this scheme breaks down in more complex cases, as we will
demonstrate in Section 2.2. First, we introduce type constructor polymorphism
in more detail.

2.1 Type constructors and kinds

A type that abstracts over another type, such as List in our previous exam-
ple, is called a “type constructor”. Genericity does not give type constructors
the same status as the types which they abstract over. As far as eligibility for

copy/pastelegend:

redundant code

Listing A.1: De beperkingen van genericity

brary [MPO08b] die een embedded DSL voor parsing implementeert, zodat
gebruikers parsers rechtstreeks in Scala uit kunnen drukken, in een notatie
die dicht bij EBNF aanleunt. Type constructor polymorfisme is essentieel
voor het definiëren van een gemeenschappelijk parser interface dat door
verschillende back-ends gëımplementeerd wordt.

A.2.2 Code duplicatie verminderen met type constructor
polymorfisme

Deze paragraaf illustreert de voordelen van het veralgemenen van genericity
tot type constructor polymorfisme aan de hand van de gekende Iterable
abstractie. Het eerste voorbeeld, gesuggereerd door Lex Spoon, illustreert
de essentie van het problem. Paragraaf 3.2.1 breidt het uit tot realistischere
proporties.

Listing A.1 toont een Scala implementatie van de Iterable[T] trait,
die bestaat uit een abstracte filter methode en een concrete remove
methode. Subklassen horen filter te implementeren zodat het een nieuwe
collectie afleidt van de huidige door enkel de elementen te behouden die
voldoen aan een gegeven predicaat p. Dit predicaat wordt voorgesteld als
een functie die een element van de collectie neemt, van het type T, en
die een Boolean teruggeeft. Aangezien remove enkel de betekenis van
dit predicaat inverteert, is deze methode gëımplementeerd in termen van
filter.

Als men een lijst filtert, verwacht men vanzelfsprekend opnieuw een lijst.
Vandaar overschrijft List de filter methode en verfijnt hij covariant het
type van het resultaat. remove hoort uiteraard hetzelfde type resultaat
te hebben, maar de enige manier om dit te bekomen is om de volledige

iii

Why Type Constructor Polymorphism Matters 3

trait Iterable[T] {
def filter(p: T ⇒ Boolean): Iterable[T]
def remove(p: T ⇒ Boolean): Iterable[T] = filter (x ⇒ !p(x))

}

trait List[T] extends Iterable[T] {
def filter(p: T ⇒ Boolean): List[T]
override def remove(p: T ⇒ Boolean): List[T]
= filter (x ⇒ !p(x))

}

Listing 1. Limitations of Genericity

trait Iterable[T, Container[X]] {
def filter(p: T ⇒ Boolean): Container[T]
def remove(p: T ⇒ Boolean): Container[T] = filter (x ⇒ !p(x))

}

trait List[T] extends Iterable[T, List]

Listing 2. Removing Code Duplication

have the same result type, but the only way to achieve this is by overriding it
as well. The resulting code duplication is a clear indicator of a limitation of
the type system: both methods in List are redundant, but the type system
is not powerful enough to express them at the required level of abstraction in
Iterable.

Our solution, depicted in Listing 2, is to abstract over the type constructor
that represents the container of the result of filter and remove. Our improved
Iterable now takes two type parameters: the first one, T, stands for the type
of its elements, and the second one, Container, represents the type constructor
that determines part of the result type of the filter and remove methods.

Now, to denote that applying filter or remove to a List[T] returns a
List[T], List simply instantiates Iterable’s type parameter to the List type
constructor.

In this simple example, we could also have used a construct like Bruce’s
MyType [9]. However, this scheme breaks down in more complex cases, as we will
demonstrate in Section 2.2. First, we introduce type constructor polymorphism
in more detail.

2.1 Type constructors and kinds

A type that abstracts over another type, such as List in our previous exam-
ple, is called a “type constructor”. Genericity does not give type constructors
the same status as the types which they abstract over. As far as eligibility for

abstractionlegend:

instantiation

Listing A.2: Code duplicatie verwijderen

methode te hernemen. De code duplicatie die hieruit volgt is een duidelijke
aanwijzing van een beperking van het type systeem: beide methodes zijn
redundant in List, maar het type systeem is niet krachtig genoeg om deze
abstractie uit te drukken.

De oplossing die we voorstellen in Listing A.2 is om abstractie te ma-
ken van de type constructor die de container voorstelt van het resultaat van
filter en remove. De verbeterde Iterable neemt nu twee type parame-
ters: de eerste, T, staat voor het type van zijn elementen, en de tweede,
Container, staat voor de type constructor van de container van het resul-
taat van filter en remove. Container is een type parameter die zelf een
type parameter verwacht. Hoewel de naam van deze hogere-orde type para-
meter (X) hier niet gebruikt wordt, zullen meer gesofisticeerde voorbeelden
het nut van expliciete naamgeving aantonen.

Nu, om aan te geven dat het toepassen van filter of remove op een
List[T] een List[T] teruggeeft, instantieert List Iterable’s type con-
structor parameter als de List type constructor.

In dit eenvoudige voorbeeld had men ook gebruik kunnen maken van
een constructie als Bruce’s MyType [BSvG95]. Dit veralgemeent echter niet
naar meer ingewikkelde gevallen.

A.2.3 Kinds

Hoewel gewone types en type constructors op gelijke voet geplaatst wor-
den wat betreft parametrisch polymorfisme, moeten ze toch onderscheiden
worden. Een type parameter die staat voor een gewoon type kan geen ar-
gumenten ontvangen, terwijl een type constructor parameter op zich dan
weer geen waardes kan classificeren. Enkel wanneer een dergelijke type pa-
rameter de nodige type argumenten heeft ontvangen, en dus een gewoon
type is geworden, kan er gesproken worden van instanties van dit type.

We gebruiken “kinds” om een type parameter die staat voor een ge-

!

"

#

$

%

&

'

(

)

%

*

+

,

-

)

%

+./

".0 ,1203".04

5 3567684

,120

!"9"!!

:56"7;

(<1=3".06"".04

!"9"!"9"!

(<1=

>

>

>

>

?@<221A1?<01B.

2CD0/E1.F

@GFG.HI

Why Type Constructor Polymorphism Matters 5

trait Iterable[T] {
type Container[X]

def filter(p: T ⇒ Boolean): Container[T]
}

Listing 1. Iterable with an abstract type constructor member

is the kind of the type that results from applying the type constructor to an
argument.

For example, class List[T] gives rise to a type constructor List that is
classified by the kind * → *, as applying List to a proper type yields a proper
type. Note that, since kinds are structural, given e.g., class Animal[FoodType
], Animal has the exact same kind as List.

Our initial model of the level of kinds can be described using the following
grammar3:

K ::= ∗ | K → K

The rules that define the well-formedness of types in a language without
type constructor polymorphism, correspond to the rules that assign a kind * to
a type. Our extensions generalises this to the notion of kind checking, which is
to types as type checking is to values and expressions.

A class, or an unbounded type parameter or abstract type member receives
the kind K’ → * if it has one type parameter with kind K’. For bounded type
parameters or abstract members, the kind K’ → K is assigned, where K corre-
sponds to the bound. We use currying to generalise this scheme to deal with
multiple type parameters. The type application T[T’] has the kind K if T has
kind K’ → K, and T’ is classified by the kind K’.

Finally, the syntactical impact of extending Scala with type constructor poly-
morphism is minor. Before, only classes and type aliases could declare formal
type parameters, whereas this has now been extended to include type parameters
and abstract type members. Listing 2 already introduced the notation for type
constructor parameters, and Listing 1 completes the picture with an alternative
formulation of our running example using an abstract type constructor member.

The next section elaborates on the example of this section. More concretely,
we introduce an implementation of Iterable that crucially relies on type con-
structor polymorphism to make its signatures more accurate, while further re-
ducing code duplication. Section 2.3 discusses Scala’s implicits and shows how
they can be leveraged in Iterable. This approach is then generalised into an
encoding of Haskell’s type classes, which – thanks to type constructor polymor-
phism – applies to constructor classes as well.

3 In Section 3, we will extend this model with support for bounds, and Section 5
describes the impact of variance on the level of kinds.

E=BEG="0/EG2

0/EG"?B.20=C?0B=2

Figuur A.1: Diagram van levels

woon type, zoals List[Int], te onderscheiden van een type parameter die
abstractie maakt van een type constructor, zoals List. Het diagram in
Fig. A.1 illustreert een eerste, simplistische, kind systeem, dat we verder
zullen verfijnen. De figuur toont de drie “levels” van classificatie, waar en-
titeiten in lagere levels geclassificeerd worden door entiteiten in de laag er
net boven.

Kinds bevinden zich in de bovenste laag. Het kind " classificeert types
die waarden classificeren, en de→ kind constructor wordt gebruikt om kinds
te construeren die type constructors classificeren. Merk op dat de compiler
deze kinds infereert: de programmeur wordt hier volledig van afgeschermd.

We verfijnen het kind van type constructors tot een dependent function
kind, aangezien hogere-orde type parameters in hun bounds mogen voor-
komen, of in de bounds van de omsluitende type parameter. Het kind dat
gewone types classificeert wordt veralgemeend tot het kind "(T, U), dat
het subtyping interval aangeeft van de types die het classificeert: het omvat
alle types die een subtype zijn van U en een supertype van T. Ten slotte
moet het function kind verder uitgebreid worden om correct om te gaan
met variance annotaties. We gaan hier in deze samenvatting niet verder op
in.

v

A.3 Veilige abstracties op het niveau van types

A.3.1 Inleiding

Scalina is a strikt object-gerichte calculus die onze uitbreiding van Scala
met type constructor polymorfisme formeel onderbouwt. Scalina intro-
duceert een aantal nieuwigheden ten opzichte van eerdere object-gerichte
calculi [IPW01, OCRZ03, CGLO06]. De belangrijkste verbetering tov. de
νObj calculus is dat kind checking er voor zorgt dat type applicatie nooit
mis loopt: we noemen deze eigenschap kind soundness.

Traditioneel gebruikt de formele onderbouw van object-gerichte talen
een combinatie van functionele (FP) en object-gerichte (OO) abstractie
mechanismes. De FP stijl is gebaseerd op lambda abstractie and func-
tie applicatie, en OO stijl abstracties worden uitgedrukt mbv. abstracte
members en compositie (via subclassing of mixin composition).

Java, bijvoorbeeld, gebruikt FP abstractie voor methodes en polymorfe
klassen, die parametrisch kunnen zijn in types en waarden. Java onder-
steunt natuurlijk ook OO stijl abstractie: een klasse met een abstracte
methode maakt abstractie van de implementatie van deze methode. Een
subklasse wordt geacht om de concrete implementatie te voorzien.

Net als νObj maakt Scalina enkel gebruik van OO abstractie: er zijn
geen constructies voor parameterisatie. Niettemin zullen we aantonen dat
Scalina dezelfde abstracties als, bijvoorbeeld, system F sub

ω [Car88a, PS97,
CG03], uit te drukken, met dezelfde garanties.

A.3.2 Kind soundness

Scala ondersteunt twee soorten abstractie mechanismen: de FP stijl ge-
bruikt parameterisatie, terwijl abstracte members de OO manier mogelijk
maken. Een voor de hand liggende vraag is of een enkele stijl volstaat.
Aangezien Scala intrinsiek object-gericht is, zullen we ons concentreren op
de OO stijl, en hoe die de FP stijl kan encoderen.

Scala’s abstract type members closely correspond to type parameters,
and abstract type member refinement can be seen as het object-gerichte
counterpart of type application. Abstract type member refinement is a re-
stricted form of mixin composition that can be used to override abstract
type members with concrete ones. However, it turns out that this encoding
does not preserve het safety properties that are ensured by parameterisati-
on.

Om dit meer concreet te maken, gebruikt Listing 4.1 parameterisatie
om de gekende Iterable abstractie uit te drukken in Scala. De Iterable

trait Iterable[A, Container[X]] {
def map[B](f: A ⇒ B): Container[B]

}

trait List[A] extends Iterable[A, List]

Listing A.3: Iterable uitgedrukt mbv. type parameters

trait TypeFunction1 { type A }

trait Iterable extends TypeFunction1 {
type Container <: TypeFunction1

def map[B](f: A ⇒ B): Container{type A = B}
}

trait List extends Iterable { type Container = List }
Listing A.4: Iterable’s type parameters encoderen als members

trait (een abstract klasse) neemt twee type parameters: de eerste stelt
het type van elementen voor, en de tweede maakt abstractie van de type
constructor van de container.

Listing 4.2 illustreert de object-gerichte aanpak. Iterable abstraheert
van het type van zijn elementen en de container ahv. abstracte members.
De A type member wordt geërfd van TypeFunction1, en de Container
type constructor parameter wordt een abstracte type member die begrensd
is tot een subtype van TypeFunction1. map’s resultaat wordt uitgedrukt
door Container’s abstracte type member A te verfijnen tot B.

Voorlopig bleef de encodering getrouw aan het origineel. Er treedt ech-
ter een discrepantie op wanneer we een ongeldig programma encoderen.
De type applicatie Iterable[A, NumericList] van Listing 4.3 wordt —
terecht — verboden door de compiler, terwijl zal blijken dat de encodering
zonder waarschuwing wordt aanvaard. Hierdoor wordt het echter moge-
lijk om later in map’s resultaat type gelijk welk type B door te geven aan

trait NumericList[A <: Number]
extends Iterable[A, NumericList]

Listing A.5: NumericList: een ongeldige subklasse van Iterable

vii

trait NumericList extends Iterable {
type A <: Number
type Container = NumericList // Incorrect, maar geen
foutmelding!

}
Listing A.6: De foutieve encoding van NumericList ontsnapt de type
checker

NumericList, terwijl het enkel subtypes van Number aanvaardt. Door
Iterable[A, NumericList] te verbieden zorgen we ervoor dat deze fout
nooit kan optreden.

Deze vroege foutopsporing gaat verloren in de vertaling. De encodering
verliest de “kind soundness” eigenschap. Dit wordt gëıllustreerd door Lis-
ting 4.4, wat een geldig Scala programma is. De compiler aanvaardt dit
programma, hoewel we de implementatie nooit zullen kunnen vervolledi-
gen (uiteindelijk zullen we een NumericList moeten instantiëren voor een
arbitrair type van elementen, waarop de compiler onze vergissing alsnog
zal detecteren). Ter vergelijking met type soundness, het equivalent op
het niveau van waardes van deze vergetelheid zou zijn om toe te laten om
een functie van het type, e.g., Number ⇒ Any door te geven wanneer een
Any ⇒ Any wordt verwacht.

Deze kind unsoundness vindt zijn oorsprong in de νObj calcu-
lus [OCRZ03], die toelaat om abstracte type members covariant te over-
schrijven, waardoor NumericList <: TypeFunction1, zodat de encode-
ring van de ongeldige type toepassing resulteert in een geldig programma.

We maken vroege foutopsporing mogelijk in Scalina door covariante en
contravariante members te onderscheiden, in plaats van te veronderstellen
dat ze zich all covariant gedragen. Dit komt overeen met de observatie dat
sommige members abstractie maken van invoer, terwijl andere de uitvoer,
het resultaat, van de abstractie voorstellen. Invoer hoort zich contravariant
te gedragen, zoals het type van de argumenten van een functie, terwijl
covariantie gepast is voor uitvoer, wat overeenkomt met het resultaattype
van een functie. Dankzij dit onderscheid kan een strikt object-gerichte
calculus de FP stijl van abstractie encoderen met dezelfde garanties.

Vanuit het standpunt van de gebruikers van een abstractie, onderschei-
den we externe en interne klanten. Externe klanten bieden informatie aan
aan een abstractie zonder te weten met welke subtype van deze abstrac-
tie ze te maken hebben. De beperkingen op deze ontbrekende informatie
mogen dus enkel verzwakt worden in de subtypes die de abstractie imple-

trait TypeFunction1 { deferred type A }

trait Iterable extends TypeFunction1 {
type Container <: TypeFunction1

def map[B](f: A ⇒ B): Container%{type A = B}
}

trait List extends Iterable { type Container = List }

trait NumericList extends Iterable {
deferred type A <: Number // ongeldig: covariante
verandering niet toegestaan

type Container = NumericList
}

Listing A.7: Kind soundness herstellen via un-members

menteren. Interne klanten, die het exacte type kennen van de abstractie die
ze verfijnen, kunnen zich permitteren om de beperkingen op het resultaat
te verstrengen.

Scalina vervolledigt Scala’s covariante type members met een contrava-
riant versie, die we “un-members” noemen. Listing 4.5 geeft een pseudo-
Scala voorstelling van de encodering weer, waar un-members aangegeven
worden met het deferred keyword. Ze worden concreet gemaakt door
externe gebruikers met de ... %{ ... } constructie.

Aangezien de A type member invoer is, moet het zich contravariant
gedragen, zodat het NumericList niet toegestaan is om de bound op de A
un-member die het erfde van Iterable, te verstrengen.

A.4 Conclusie

Genericity is een bewezen techniek om code duplicatie in object-gerichte bi-
bliotheken tegen te gaan, en ze tegelijkertijd gebruiksvriendelijker te maken.
Het belangrijkste voorbeeld is een library van collecties, waar gebruikers de
elementen die zij uit een generische collectie halen, niet meer hoeven te
casten, zoals wel het geval is voor niet-generische collecties.

Helaas, hoewel genericity uiterst nuttig is, is de eerste orde variant te
beperkt, in de zin dat abstraheren over gewone types leidt tot type con-
structors, waarvan geen abstractie gemaakt kan worden. Door gebruik te
maken van genericity om code duplicatie te verminderen, ontstaan zo an-

ix

dere soorten redundantie. Type constructor polymorfisme laat toe om deze
verder te elimineren, omdat zij genericity veralgemeent tot type construc-
tors. We implementeerden type constructor polymorfisme in Scala 2.5.

Zoals met genericity, is type constructor polymorfisme vooral nuttig
voor het ontwerpen en implementeren van libraries. De ontwerper kan
rijkere abstracties definiëren en zo code duplicatie vermijden. Bovendien
worden gebruikers niet blootgesteld aan de complexiteit die inherent is aan
deze geavanceerde abstractie mechanismen. In tegendeel, type constructor
polymorfisme maakt libraries meer gebruiksvriendelijk, net als genericity
ervoor zorgde dat gebruikers van een collectie library minder casts moesten
schrijven.

Naast libraries van collecties, hebben we geëxperimenteerd met ver-
schillende andere toepassingen, zoals embedded domein specifieke talen
(DSL’s) [CKcS07, HORM08]. Onze parser combinator library [MPO08b]
is een concreet voorbeeld van een DSL voor het schrijven van EBNF gram-
matica’s in Scala. Datatype-generisch programmeren [Hin06] is een andere
techniek die afhangt van Scala’s ondersteuning voor type constructor poly-
morfisme [MPJ06, Moo07].

Tijdens de ontwikkeling van de theoretische onderbouw van type con-
structor polymorfisme, ontdekten we dat de bestaande Scala calculi zich
niet leenden tot het encoderen van onze extensie. Daarom ontwierpen we
Scalina, die betere ondersteuning biedt voor veilige type-niveau abstractie.
Meer specifiek, is Scalina kind sound, wat betekent dat type-niveau com-
putatie niet mis kan gaan. Om dit te bereiken voerden we, we onderscheid
in tussen “invoer” en “uitvoer” members.

Afgezien van deze oorspronkelijke motivatie, heeft Scalina zich ontwik-
keld tot een onderzoeksvehikel voor het experimenteren met taalconstruc-
ties ter ondersteuning van een schaalbaar type systeem. Vanaf het begin
hebben we gestreefd naar uniformiteit in de abstractie mechanismen op
het niveau van waarden en types. We beschouwen deze uniformiteit als
een belangrijk ingrediënt van een schaalbaar type systeem. Bovendien kan
kind polymorfisme, wat uit onze praktijkervaring met type constructor po-
lymorfisme zeer wenselijk blijkt te zijn, gezien worden als een specialisatie
van een uniform abstractie mechanisme over alle niveaus. Uit deze obser-
vaties concluderen we dat het zinvol is om ons onderzoek naar een uniform
abstractie mechanisme verder te zetten.

	Introduction
	Contributions
	Other work
	Structure of the thesis

	Background and State of the Art
	Efficiently producing correct software
	Testing
	Formal verification
	Type systems

	Higher-kinded types
	Functional programming languages
	Object-oriented programming languages

	Scala
	Outline of the syntax
	Classes, traits, and objects
	Functions
	Types
	Encoding higher-kinded types

	Conclusion

	Type Constructor Polymorphism for Scala
	Introduction
	Reducing code duplication
	Improving Iterable
	Example: using Iterable
	Members versus parameters

	Of types and kinds
	Surface syntax for types
	Kinds
	Subkinding
	Example: why kinds track bounds
	Kind soundness
	Conclusion

	Bounded Iterable
	Full Scala
	Implementation
	Variance
	Refactoring the collections library

	Leveraging Scala's implicits
	Introduction to implicits
	Encoding Haskell's type classes with implicits
	Exceeding type classes
	Aside: implicit arguments versus subtype bounds

	Conclusion

	Scalina: the Essence of Abstraction in Scala
	Introduction
	Kind soundness
	Methodology
	Contributions

	Scalina: syntax and intuitions
	Syntax
	Core concepts
	Example: polymorphic lists

	Terms
	Computation
	Classification

	Types and kinds
	Computation
	Subtyping
	Classification
	Subkinding

	Design space
	Encoding system Fsub
	Meta-theory
	Related work
	Modelling OO
	Kind soundness

	Conclusion

	Conclusion and Future Research Direction
	Summary of contributions
	Type constructor polymorphism
	The essence of abstraction in Scala

	Future work
	A scalable type system

	Conclusion

	List of Publications
	Biography
	Samenvatting
	Type constructor polymorfisme
	Inleiding
	Code duplicatie verminderen met type constructor polymorfisme
	Kinds

	Veilige abstracties op het niveau van types
	Inleiding
	Kind soundness

	Conclusie

