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Samenvatting

Consumenten hechten belang aan de beschikbaarheid van verse groenten en

fruit doorheen het gehele jaar. Tuinbouwgewassen zijn echter bederfelijk van

aard. Vandaar dat er diverse methoden zijn ontwikkeld voor het verhogen

van de bewaarbaarheid. Doorgaans wordt bewaring onder een gewijzigde

bewaaratmosfeer (Controlled Atmospheres, CA) toegepast om processen als

ademhaling, ethyleenproductie, afrijping en veroudering tegen te gaan. Hier-

bij wordt de temperatuur verlaagd en de atmosfeersamenstelling aangepast

door het zuurstofniveau te verlagen en het koolstofdioxideniveau te ver-

hogen. Een dergelijke CA bewaring is product specifiek en niet per definitie

succesvol. Het optreden van fysiologische gebreken is dan ook niet altijd te

voorkomen.

Peren van de variëteit ‘Conference’ zijn gevoelig aan het optreden van

bruinverkleuring en holtevorming indien deze niet correct worden bewaard.

Deze bewaarafwijking is vermoedelijk het gevolg van een gebrekkige ademha-

ling die vervolgens een lawine van metabolische processen op gang brengt.

Eerdere studies hebben zich voornamelijk gericht op de rol van gastrans-

portprocessen en het antioxidantmetabolisme bij het induceren van deze

bewaarafwijking, maar hebben daarbij belangrijke biochemische aspecten

grotendeels verwaarloosd. In deze thesis wordt bruinverkleuring en holte-

vorming in Conference peer bestudeerd vanuit een breder perspectief middels

een holistische studie van het proteoom. Het primaire doel van deze docto-

raatsstudie is inzicht te verkrijgen in de fysiologische achtergrond van bruin-

verkleuring en holtevorming gebruik makend van eiwitanalysetechnieken.

Om bruinverkleuring en holtevorming in ‘Conference’ peer te bestu-

deren was het noodzakelijk geschikte technieken voor eiwitextractie, twee-
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dimensionale gelelektroforese (2-DE) en data-analyse te optimaliseren. Ei-

witextractieopbrengst werd geoptimaliseerd door toepassing van extractie-

buffer met hoge zuurtegraad en hoge concentraties aan dithiothreitol. Een

eerste 2-DE studie gericht op het karakteriseren van al dan niet aangetast

weefsel toonde aan dat zowel de ademhaling als ook de eiwitsynthese, het

antioxidantmetabolisme en de ethyleenbiosynthese was aangetast. In bruin

weefsel was celdood aantoonbaar aanwezig.

Een terugkerend probleem bij gelgebaseerde eiwitdata is de aanwezigheid

van ontbrekende waarden. Deze vormen een uitdaging voor een correcte

statistische data-analyse en interpretatie. In deze thesis werd dit probleem

succesvol opgelost door op grond van Bayesiaanse principale component

analyse waarden toe te kennen aan de ontbrekende observaties.

Het lange termijneffect van CA bewaarcondities op het metabolisme van

peer werd bestudeerd. De verschillende combinaties van zuurstof en kool-

stofdioxide induceerde verschillen op het niveau van zowel de ademhaling

als ook de eiwitsynthese, het antioxidantmetabolisme en de ethyleenbiosyn-

these.

Tenslotte werd het korte termijneffect van CA bewaarcondities op het

metabolisme van peer weefselstukjes bestudeerd. Deze resultaten beves-

tigde goeddeels de resultaten verkregen voor het lange termijneffect. Voor

wat betreft het ademhalingsmetabolisme werden slechts subtiele effecten

waargenomen, uitgezonderd de inductie van de pentose-fosfaat-route bij

afwezigheid van zuurstof. Vergelijkbaar aan het lange-termijneffect van

een verlaagd zuurstofgehalte werden diverse allergenen en andere bescher-

mingseiwitten gereguleerd. Er werden echter geen significante verschillen

waargenomen voor de glutathion-ascorbaat-route wat ons doet vermoeden

dat bruinverkleuring pas zichtbaar wordt wanneer deze metabole route wordt

aangetast. Op grond van de proteoomstudie in deze thesis werd het mo-

gelijk een aantal kandidaatbiomerkers te selecteren voor een vroegtijdige

signalering van het optreden van bruinverkleuring en holtevorming tijdens

de bewaring van Conference peer.



Abstract

Consumers demand fresh fruits and vegetables throughout the whole year.

Horticultural crops are very perishable. Thus, strategies to control and

extend their storage life are mandatory. Commonly, controlled atmosphere

(CA) conditions are applied to retard respiration, ethylene production, ripen-

ing and senescence. The temperature is reduced and the air atmosphere

composition is modified by reducing the oxygen content and by increasing

the carbon dioxide composition. This CA strategy is commodity specific;

inappropriate conditions may cause physiological disorders.

When improperly stored, pears of the variety ‘Conference’ are very sus-

ceptible to develop core breakdown which is characterized by flesh browning

and cavities. This disorder is supposed to be the consequence of an impaired

respiration triggering a cascade of metabolic events. Previous studies have

mainly focused on understanding this disorder by gas transport and anti-

oxidant system studies, thereby ignoring many biochemical aspects. In this

dissertation, core breakdown has been studied in a broader perspective by

using a holistic proteomics approach. The main objective of this work was

to understand the physiological background of core breakdown disorder by

using proteomics tools.

To start the study of core breakdown in ‘Conference’ pears it was neces-

sary to fine tune protein extraction, two-dimensional electrophoresis (2-DE)

and data analysis protocols. Subsequently a complete 2-DE study aiming at

characterizing tissue either or not affected by core breakdown revealed im-

pairment of respiration, defense related and ethylene biosynthesis pathways.

Cell death was also evident in brown tissue.

One common problem associated to gel based proteomics data is the
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presence of missing values. Missing values present a challenge not only in

terms of how to deal with them but also in the interpretation of the data. It

was shown that missing values in gel-based proteomics data can be treated

satisfactorily by means of the Bayesian Principal Component imputation

method.

The effect of long term exposure to different CA conditions on the

metabolism of stored pears was studied. Different combinations of oxy-

gen and carbon dioxide concentrations induced differences at the level of

respiration, defense related and ethylene pathways.

Finally, the short term effect of extreme CA conditions on the metabolism

of pear slices was studied. Results partially confirmed the findings for the

long term exposure of pears. Only subtle changes in respiration pathways

were observed except for the pentose phosphate pathway which was acti-

vated under anoxia. Similarly to long term exposure of intact pears to

anoxia, allergens and other defense related enzymes were regulated. No sig-

nificant changes in the glutathione-ascorbate pathway were found leading

us to suspect that browning development appears as soon as this pathway

collapses. This proteomics approach allowed the selection of potential can-

didate markers for the early-stage detection and tracking of core breakdown

during storage of pears.
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Chapter 1

General Introduction

1.1 Rationale

The food industry is committed to deliver high quality, safe and nutritious

products to the consumer. Achievement of this goal is not trivial and needs

to consider the current contrasting world nutritional problems - over con-

sumption and under nourishment (Hall et al., 2008). Fruit and vegetables

are important sources of many essential constituents. Therefore, their con-

sumption is associated with health improvement. Fruits and vegetables are

highly perishable with their postharvest life depending on the rate of stored

food reserve usage and water loss.

Throughout the postharvest handling chain of fruits and vegetables, food

losses can vary in magnitude and can occur at all stages from harvesting,

during transport, handling, storage, processing, and marketing until they

reach the end consumer. Fruits and vegetables are constantly exposed to bi-

otic and abiotic stresses before and after harvesting. During harvesting and

handling, a series of mechanical stresses are imposed which induce different

cellular responses such as increased respiration rate, ethylene production,

increased susceptibility to pathogen attack and wound responses, leading

to a reduction of the quality and storability of the crops (Gomez-Galindo

& Sjiholm, 2007). The perishability of fruits and vegetables after harvest

demands special efforts to avoid rapid deterioration. Controlled atmosphere

storage (CA) is commonly applied to fruits and vegetables to extend their

1



2 1.1 Rationale

shelf life. It involves temperature reduction and modification of the air com-

position (oxygen reduction and carbon dioxide increase) in order to retard

respiration, ethylene production and senescence (Kader, 2002). However,

these CA conditions may impose additional abiotic stresses when the oxy-

gen and carbon dioxide partial pressure are too low or too high, respectively.

Different physiological disorders associated with improper CA management

are chilling injury, failure to ripen, development of off flavors (Kuo & Parkin,

1989; Mohammed & Wickham, 1997) and browning disorders (Franck et al.,

2007).

Pome fruits, apple and pear, are native to most of Europe, the Near East

and Asia. In terms of world production, they are considered among the ma-

jor four fruit classes and the second major fruit in moderate climates (Knee,

1993). Pome fruits are generally prone to internal browning disorders when

improperly stored. The pear variety ‘Conference’ is highly susceptible to

internal browning and to subsequently develop core breakdown during CA

storage. As these disorders have been shown to be related to the gas compo-

sition of the storage atmosphere (Lammertyn et al., 2000), much attention

has been paid to the mechanism of gas transport in the fruit (Lammertyn

et al., 2003b,a; Ho et al., 2006b, 2008) and the microstructure of the inter-

cellular space as the main transport path for metabolic gasses (Verboven

et al., 2008). Core breakdown in ‘Conference’ pears is believed to be the

result of an imbalance between oxidative and reductive processes due to the

formation of gas gradients in the fruit. This induces accumulation of reac-

tive oxygen species leading to membrane damage that finally results in the

enzymatic oxidation of polyphenols to brown colored compounds (Franck

et al., 2007; Pedreschi et al., 2009a). Core breakdown is poorly understood

from a physiological point of view as it is the result of disturbances of several

biochemical processes. Enzymes (proteins) are key players in these biochem-

ical processes. Thus, to improve our understanding, there is a need for a

more holistic approach such as the use of proteomics. Knowledge on how

horticultural crops respond to environmental changes and industrial manip-

ulation is of key importance for quality assurance and process optimization

in the food industry (Gomez-Galindo & Sjiholm, 2007).



General Introduction 3

1.2 Objectives and outline of the thesis

The main objective of this thesis is to understand the physiological implica-

tions of core breakdown disorder in ‘Conference’ pears by using proteomics

tools. In order to achieve this goal, different subobjectives were defined.

• to identify at the proteome level characteristic proteins in brown af-

fected and non-affected tissue,

• to apply proper statistical methods to gel based proteomics data,

• to evaluate at the proteome level the effect of different CA conditions

on pear metabolism,

• to study the effect of short term exposure of pear tissue slices to ex-

treme CA conditions.

The outline of this thesis is as follows. In Chapter 2, the literature on

stress physiology and on core breakdown disorder in Conference pears will

be reviewed as well the state-of-the-art of proteomics research.

Fine tuning of protein extraction and two dimensional electrophoresis

(2-DE) protocols for pear parenchyma tissue will be presented in Chapter 3.

For the first time, a quantitative proteomic analysis will be carried out com-

paring brown affected tissue with non-affected tissue. Proteins associated

to core breakdown will be identified. The results presented in this chapter

were published in Pedreschi et al. (2007).

Chapter 4 deals with the assessment of proper statistical tools to analyze

gel-based proteomics data in a multivariate statistical context. The issue of

how to handle missing data will be discussed. Different approaches to deal

with missing data will be presented and some recommendations provided

in order to draw sound conclusions from gel-based proteomics experiments.

These results were published in Pedreschi et al. (2008b).

In Chapter 5 the optimized protocols and statistical approaches will be

used to evaluate the effect of different CA conditions on the metabolism of



4 1.2 Objectives and outline of the thesis

long term stored pears. The results described in this chapter were described

in Pedreschi et al. (2008a).

In Chapter 6, differential in gel electrophoresis (DIGE) will be used to

study the effect of the short term exposure of pear slices to extreme gas

compositions, thereby eliminating most of the barriers to gas transport. The

results described in this chapter were published in Pedreschi et al. (2009c).

Finally, some general conclusions, on-going work and suggestions for

future work will be formulated in Chapter 7.



Chapter 2

Literature review

2.1 Introduction

For consumers, quality attributes as well as food safety are of high impor-

tance. Postharvest storage of fruits and vegetables aims to preserve quality

and reduce product losses. However, the appearance of storage disorders

can not be completely ruled out. Many physiological disorders do not cause

external symptoms, removal of affected fruit prior to commercialization is

hence difficult. Such fruit, however, are poorly appreciated by consumers

and may have negative consequences with respect to the commercial image

of the product.

To increase the shelf life of the products, ripening as well as biochemical

processes involved in quality deterioration need to be retarded. To achieve

this, besides optimal harvest date, temperature reduction as well as a mod-

ification of the normal gas atmosphere are needed to retard respiration rate

and thus to control the overall metabolic activity. All these interventions

imply applying ‘stresses’. The imposed stresses will disrupt homeostasis and

adjustment of metabolic pathways referred as ‘acclimation’ will take place

(Shulaev et al., 2008). If the fruit or vegetable is not capable of coping with

the series of applied stresses, then physiological disorders may develop.

5



6 2.2 Plant stress physiology

To understand at a physiological level the different implications of the

applied stresses on the alteration of the normal homeostasis, there is a need

for holistic platforms such as genomics, transcriptomics, proteomics and

metabolomics. These approaches generate huge amounts of data which must

be properly processed in order to draw sound biological conclusions.

Pears are native to most of Europe, the Near East and Asia. Economi-

cally, they are considered among the major four fruit classes and the second

major fruit in moderate climates (Knee, 1993). The pear variety ‘Confer-

ence’ is the most popular in Europe as well as in Belgium. ‘Conference’

pears if improperly stored are susceptible to develop core breakdown char-

acterized by flesh browning and cavities at advanced stages (Franck et al.,

2007).

The next sections give a review on plant stresses in relation to posthar-

vest physiology of Conference pears leading to core breakdown. Also, the

state of the art of proteomics research including important aspects of data

analysis will be discussed and have been partially published in Pedreschi

et al. (2009b)1.

2.2 Plant stress physiology

Any alteration in a physiological condition caused by a factor that alters

homeostasis can be defined as ‘stress’ (Gaspar et al., 2002). Acclimation

or adjustment of metabolic pathways is needed to restore homeostasis. Ac-

cording to Gaspar et al. (2002), stress in a physiological context can be

defined as the amount of environmental pressure for change placed on an

organism’s physiology. The environmental stresses can be classified as ei-

ther biotic or abiotic. Biotic stresses can be induced by a wide range of

plant pathogens (bacteria, fungi and viruses) as well as herbivorous animals

(Gaspar et al., 2002). Within the category of abiotic stresses, a sub-division

can be made between physical stresses (drought, temperature, radiation,

1Pedreschi et al. (2009). Proteomics for the food industry: opportunities and chal-

lenges. Critical Reviews in Food Science and Nutrition, accepted.
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flooding, wind, magnetic field, mechanical wounding) and chemical stresses

(air pollution, heavy metals, pesticides, toxins, pH, salinity; Gaspar et al.

2002). For instance, after harvesting and during handling, fruits and vegeta-

bles are constantly exposed to physical stresses that induce different cellular

responses (Gomez-Galindo & Sjiholm, 2007). The temperature reduction as

well as the change in the atmosphere composition applied during storage to

extend the shelf life can be considered as abiotic stresses.

2.3 Postharvest physiology

After harvest, fruits and vegetables need to get adapted to the new con-

ditions. Thus, they will basically utilize their stored resources since their

nutrient supply is cut off the moment they are harvested. The acquisition,

storage and utilization of energy are key processes in central metabolism.

Respiration involves the breakdown of carbohydrates to carbon dioxide and

water in order to release energy. In this process, oxygen acts as the final

electron acceptor. The enzymatic oxidation of carbohydrates takes place

through different processes: glycolysis, Krebs cycle and electron transport

chain.

In the glycolytic pathway, the oxidation of glucose to pyruvate takes

place. Plant glycolysis is very unique in terms of its flexibility (Dennis

et al., 1998; Fernie et al., 2004). Carbon flow in this pathway is not limited

by the absence of ‘an essential enzyme’ such as pyruvate kinase (Gottlob-

McHugh et al., 1992) because the glycolytic pathway is duplicated in dif-

ferent organelles (e.g., cytosol and plastid) and these organelles communi-

cate. In addition, several steps in this pathway can be catalyzed by dif-

ferent enzymes. For instance, the conversion of phosphoenolpyruvate to

pyruvate can be catalyzed by cytosolic pyruvate kinase, plastid pyruvate

kinase, phosphoenolpyruvate phosphatase and the subsequent reactions of

phosphoenolpyruvate carboxylase and malic enzyme (Theodorou & Plax-

ton, 1995; Plaxton, 1996). The interconversion of fructose-6-phosphate and

fructose- 1,6-biphosphate is catalyzed by three enzymes instead of two as
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in most organisms (Dennis et al., 1998). Even though still not totally un-

derstood, it is believed that the glycolytic pathway in plants is regulated at

the level of conversion of fructose-6-phosphate to fructose-1,6-biphosphate

and phosphoenolpyruvate to pyruvate steps (Dennis et al., 1998). In the

tricarboxylic acid cycle (TCA), phosphoenolpyruvate is converted in the cy-

tosol to malate and/or pyruvate. Subsequently, these organic acids enter

the mitochondria to produce energy and reducing power yielding 15 ATP

equivalents per pyruvate molecule (Fernie et al., 2004). The key regulatory

point in this cycle is the reaction catalyzed by the mitochondrial pyruvate

dehydrogenase that converts pyruvate into acetyl-CoA. In the mitochondrial

electron transport chain, the generated reducing equivalents from the TCA

are used for the synthesis of ATP. Interestingly, ascorbate biosynthesis seems

to be coupled to the electron transport chain (Bartoli et al., 2000; Millar

et al., 2003).

In anaerobic conditions, the plant responds by fermentation; decarboxy-

lation of pyruvate to acetaldehyde by pyruvate decarboxylase followed by

the reduction of acetaldehyde to alcohol. Under anaerobic conditions, the

NADH generated by glyceraldehyde 3-phosphate dehydrogenase needs to be

oxidized to NAD+ again. The oxygen concentration at which fermentation

starts is commodity, cultivar, maturity and temperature dependent (Wills

et al., 1998). An alternative respiratory pathway proposed to play a protec-

tive role against oxidative stress is the cyanide-resistant alternative oxidase

(AOX) pathway as opposed to the conventional with cytochrome oxidase

pathway. AOX plays a role in lowering mitochondrial ROS formation.

The oxidative pentose phosphate pathway is closely linked to glycolysis

even though it is usually presented separated from glycolysis. Both path-

ways share common intermediates (glyceraldehyde-3-phosphate, fructose-6-

phosphate and glucose-6-phosphate). The main function of the pathway

is to generate reduced NADPH. Several intermediates are used for other

important pathways like ribose for nucleic acid biosynthesis, erythrose-4-

phosphate for aromatic acid biosynthesis and polyphenols and lignins de-

rived from these aromatic amino acids (Dennis et al., 1998).
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2.3.1 Controlled atmosphere storage

The main aim of controlled atmosphere (CA) storage is to prolong shelf-life

of the different commodities and reduce product losses. In addition, CA

storage plays a key role to avoid the times of glut and to extend the pe-

riods of crop availability during off season production, facilitating overseas

crop transport. The main principles used consist of: temperature reduction,

oxygen reduction and carbon dioxide increase. The combination of high car-

bon dioxide and low oxygen concentrations reduces the respiration rate of

the commodity (Kader, 1986; Ke et al., 1993), reduces ethylene production

(Gorny & Kader, 1996b; Salveit, 2003), delays ripening and prevents low

temperature disorders (Levin et al., 1995; Zhou et al., 2000). A compromise

needs to be established in terms of optimal storage conditions. Thus, tem-

perature should be lowered to retard respiration, ethylene production and

senescence while at the same time avoiding chilling injury disorders. The

same principle is applied to the oxygen and carbon dioxide concentrations.

For each commodity, the tolerance to a specific low level of oxygen and/or

high carbon dioxide level can be evaluated by the onset of fermentation

(Brecht et al., 2003). Pears are susceptible to elevated carbon dioxide con-

centrations but not to freeze damage (Kadam et al., 1995). CA storage has

been succesfully applied to different commodities such as apples (Gorny &

Kader, 1996b), peaches and nectarines (Lurie, 1992; Burmeister & Harman,

1998) and sweet cherries (Mattheis et al., 1997). The CA storage condi-

tions applied to optimize quality parameters can be mutually exclusive. For

instance, high levels of carbon dioxide can control mold, reduce ethylene

effects and reduce chlorophyll loss but promote fermentation. A low oxygen

concentration will reduce respiration, ethylene synthesis and action but it

can stimulate fermentation with the concomitant appearance of off flavors

and possible microbial growth (Salveit, 2003).
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A B C

D E F

Figure 2.1: Browning disorders in ‘Conference’ pears after 4 months in browning

-inducing conditions (no cooling period, 1 % O2, 10 % CO2, −1 ◦C). The symp-

toms are divided in four categories. (A) Radial browning, (B) and (C) unequal or

asymmetric browning, (D) brown and dry spots in between the extension of the

five carpels, and (E) and (F) random cavities. Adapted from Franck et al. (2007).

2.3.2 Postharvest storage disorders: core breakdown

Even though many efforts have been made to optimize CA storage conditions

for different commodities, the appearance of postharvest storage disorders

cannot be disregarded. Disorders associated with improper CA management

include chilling injury, failure to ripen, development of off flavors (Kuo &

Parkin, 1989; Mohammed & Wickham, 1997) and browning disorders (Bau-

chot et al., 1999; Franck et al., 2007; de Castro et al., 2008). The pear variety

Conference is highly susceptible to develop core breakdown when improp-

erly stored. Improper storage involves but it is not limited to late harvested

fruit, non-delayed controlled atmosphere conditions of 21 days and too low

or too high oxygen and carbon dioxide concentrations.

Core breakdown is characterized by internal symptoms invisible from the

outside (Figure 2.1). Still, there is a lack of standardization in the nomen-

clature of browning disorders of pears but basically these disorders can be
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divided in three categories: (i) flesh browning, (ii) cavities and (iii) browning

and cavities (Giraud et al., 2001). It is well known that several pre-harvest

factors favor the incidence of core breakdown. For instance, ‘Conference’

pears grown in cold areas are more susceptible to browning disorders than

pears grown in warm areas (Zerbini et al., 2002) which seems to be related

to the amount of sunlight exposure which is positively correlated with the

ascorbic acid content (Davey et al., 2000). Reduced browning incidence has

been noticed when boron is applied to the soil as the application of boron

affects positively the ascorbic acid content of the fruit (Xuan et al., 2001).

Fruits from the top of the tree are more susceptible to browning (Franck

et al., 2003). Postharvest factors that affect the browning incidence are

picking date, duration of the cooling period, the carbon dioxide and oxygen

partial pressures, the storage temperature and time of storage (Lammer-

tyn et al., 2000). Late picked fruit is more susceptible to browning than

early picked fruit. Delaying CA conditions for 21 days has been proved to

be effective in reducing the incidence of core breakdown (Verlinden et al.,

2002).

The hypothesis behind the appearance of core breakdown starts from

a low energy status that triggers a cascade of events eventually leading to

membrane disruption and the enzymatic oxidation of polyphenols. Thus,

when the CA conditions applied to Conference pears involve a too low oxy-

gen concentration and a too high carbon dioxide concentration, formation of

anoxic zones cannot be excluded. Previous studies have shown that the ex-

ternal CA conditions determine the intracellular oxygen available for main-

taining an aerobic or fermentative metabolism (Figure 2.2) and the oxygen

and carbon dioxide internal concentrations are related to the pear fruit size

and ripening stage as illustrated for oxygen in Figure 2.2 (Ho, 2008). In

general, larger fruit is more susceptible to browning as well as late picked

fruit. As a consequence of this reduced energy status there is not enough

energy produced to maintain cellular reactions such as membrane damage

repair. In addition, the stressful conditions (e.g., temperature reduction and

extreme oxygen and carbon dioxide concentrations) surpass the capacity of

the antioxidant system of the pear, resulting in an overproduction of reactive



12 2.3 Postharvest physiology

(A)

(B)

(C)

Figure 2.2: The intra-cellular O2(µM) in the centre of the fruit as a function

of O2 partial pressure and pear radius. The storage temperature was −1 ◦C. (A)

optimal harvested fruit (B) O2 concentration where it is equal to the Michaelis

Menten constant for cytochrome c oxidase Km,O2 (0.14 µM) and (C) ripened fruit

for 7 days in air at ambient temperature (20 ◦C). Adapted from Ho (2008).

oxygen species. As a result, lipid peroxidation starts, membrane disruption

takes place, polyphenols and the enzyme polyphenol oxidase localized in dif-

ferent cellular compartments come together, and brown colored compounds

are formed (Saquet et al., 2003; Franck et al., 2007). In this concept, core

breakdown is the consequence of a series of biochemical processes. As previ-

ous studies focused on isolated events, there is a need for holistic approaches,

such as proteomics, to better understand this disorder.
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2.4 Plant functional genomics

The transformation of small and large molecules through the action of en-

zymes (proteins) is part of all cellular processes. In order to understand

how plant cells function, it is necessary to elucidate the different performers

involved in these metabolic processes, proteins and metabolites (Fridman

& Pichersky, 2005). The different levels of control of cellular processes are

the genome, the transcriptome, the metabolome and the proteome. The

study of the different levels of cellular processes besides allowing a compre-

hensive and systematic functional analysis of genomes, have the potential

to accelerate the rate of gene function prediction (Holtorf et al., 2002).

The next section is dedicated to proteomics while this section focuses

on the other OMICs platforms such as genomics, transcriptomics and

metabolomics. Proteomics is only tackled in this section in relation to

postharvest physiology.

Genomics is the large scale study of the genome of an organism. The

genome holds the basic information which is the same in each cell. This infor-

mation is independent of time and environmental conditions (Jacobs et al.,

2000). From a given DNA sequence, a potential function can be assigned,

but this potential is not necessarily converted into an actual metabolic role

(Cordwell, 1999). Thus, the information available in the DNA is not enough

to predict if genes will be expressed and when they will do so, in what

amounts the products will be present and how these products might be

activated (Jacobs et al., 2000).

Proteomics is the study of the whole set of proteins encoded by a genome.

Proteomic studies related to postharvest physiology have focused on under-

standing the fruit ripening process at a proteomic level in tomato (Faurobert

et al., 2007) and grape berry (Giribaldi et al., 2007). Such studies allowed the

identification of potential markers for specific horticultural quality aspects

(Lee et al., 2006), for detecting optimum harvest maturity (Abdi et al., 2002)

and for detection of variations among genotypes (Rocco et al., 2006). For a

more extended review on the application of proteomics tools in postharvest
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Figure 2.3: Schematic representation of the transfer of information from the

sequence in the genes to the functioning proteins of the cell with possible control

mechanisms indicated. A gene (DNA) is transcribed (1) to pre-mRNA that might

be edited (2) and then processed (3) to one mRNA or by alternative splicing to

several forms of mRNA. mRNAs are transported (4) out of the nucleus to the

cytosol where they might be degraded (5) or translated (6) into protein. Protein

activity is controlled (7). Proteins might be synthesized as inactive forms or as

active forms that later can be inactivated. Proteins are the operating molecules

producing the physiological effect in a cell (8). Adapted from Honore et al. (2004).

physiology, the reader is referred to Pedreschi et al. (2009b).

Transcriptomics is the study of the whole set of messenger RNA

molecules or transcripts produced in a cell and provides a comprehensive

view of all active genes at a certain time and condition. mRNA based ap-

proaches are high throughput and highly automated for screening thousands

of genes in a massively paralleled manner. However, a transcript is only an

intermediate, and there will be discrepancy between the transcript and the

final protein encoded (Carpentier et al., 2008b). From the presence of a

certain mRNA, it is misleading to directly deduce how much protein will be

present in the cell and if it will be active or not (Jacobs et al., 2000) given
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the poor correlation between mRNA and protein (Figure 2.3). Microarray

analysis, cDNA fragment fingerprinting or serial analysis of gene expression

(SAGE) are different methods used in transcriptomics (Kussmann et al.,

2006; Carpentier et al., 2008a). In postharvest physiology, transcriptomic

studies have been carried out in relation to the characterization of the role

of ethylene during ripening in peaches (Tonutti et al., 2008), to study bi-

otic and abiotic stresses in citrus fruit (Gonzalez-Candelas et al., 2005; Pons

et al., 2005), and to improve the quality of fresh cut produce (Granell et al.,

2007).

Metabolomics focuses on the study of the whole set of metabolites (<

3000 m/z ) present in a cellular system at a particular physiological state

or process (Hollywood et al., 2006). Considering that changes in the levels

of individual proteins do not necessarily reflect the changes at the level of

metabolite concentrations, metabolomics takes the OMICs approach one

step further toward the level at which the changes become perceivable to

the consumers. In postharvest physiology, metabolomic applications have

been applied to discriminate between diseases (Vikram et al., 2004) and to

predict metabolic disorders (Pedreschi et al., 2009a).

Information on proteomics is extensively provided below given that it is

the platform chosen to study core breakdown. The decision on applying pro-

teomics tools to study core breakdown was based on the fact that proteins

go one step further by providing information on gene products, where, when

and under which specific conditions proteins are being expressed and regu-

lated. In addition, proteomics is the only platform that besides delivering

biological markers also delivers targets of intervention. According to Kuss-

mann et al. (2006), the only way to intervene in certain biological condition

and to modulate its outcome is by interfering with the proteins involved.

In addition, previous studies in our group focused on metabolic profiling

and core breakdown disorder. Thus, the results from both approaches can

effectively be combined for further validation of the results. Ideally, the

data from the above mentioned platforms (transcriptomics, proteomics and

metabolomics) should be integrated into a single systems biology approach,

in order to understand the complexity of the disorder and to be able to build
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a metabolic network.

2.5 Proteomics: state of the art

Proteomics is the study of the whole set of proteins encoded by a genome.

It addresses three biological aspects: protein expression, protein structure

and protein function (Kussmann et al., 2006). The study of the whole set

of proteins encoded by a genome at a certain time and under certain condi-

tions encompasses different steps that rely on various technologies. A typical

proteomics workflow consists of: (i) protein extraction (ii) protein or pep-

tide separation and quantification, (iii) protein identification and (iv) data

analysis and integration.

2.5.1 Protein extraction

Protein extraction can be difficult given that many foods are derived from

plant organs largely composed of fibrous cell wall material. In addition, the

watery content of the plant vacuole results in very low protein yields com-

pared to bacteria or animal tissues. Several methods have been reported for

protein extraction from plant materials that are able to cope with the pres-

ence of interfering compounds such as phenolic compounds, carbohydrates,

proteolytic and oxidative enzymes, pigments, etc. A detailed list of pro-

tein extraction protocols for a series of species (banana, pear, apple, potato,

maize, etc) has been given by Carpentier et al. (2008b). The extraction

buffers used for plant tissues are usually characterized by a high pH (8.0 -

8.5) to inactivate proteases. The use of PVPP has been suggested due to its

properties as an efficient proton acceptor able to interfere with the binding

of proteins to polyphenols (Pierpoint, 2004; Laborde et al., 2006). The use

of DTT reduces polyphenols to form thioethers (Loomis & Battaile, 1966).

For bacteria and animal tissues, which have higher protein yields, various

protein solubilization buffers, including the use of chaotrophic agents, de-

tergents, reducing agents, buffers and ampholites are used (Morzel et al.,
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Figure 2.4: Protein separation approaches: (A) gel-based vs (B) gel-free. In a gel-

based approach, proteins are first separated by means of 2-DE and then digested

for further mass spectrometry identification. In a gel free approach, LC-MS/MS is

used to analyze protein digests of either unseparated protein mixtures and accurate

quantification is possible by labeling the peptides with stable isotopes.

2004; Fernandez et al., 2008). Due to the complex chemical nature of pro-

teins and their broad dynamic range, each known technique focuses on a

particular subset of proteins. To circumvent the problem of dynamic range,

prefractionation techniques such as organelle fractionation prior to 2-DE

and LC-MS/MS are currently employed. Typically, these prefractionation

techniques involve differential density ultracentrifugation (Ho et al., 2006a).

2.5.2 Protein separation

Gel based and gel free approaches are complementary since they will focus

on a specific subset of proteins. They differ in the way proteins or peptides

are isolated, separated and detected (Figure 2.4). In a gel-based approach,

proteins are first separated by means of 2-DE and then digested for further

mass spectrometry identification. In a gel free approach, LC-MS/MS is used

to analyze protein digests of unseparated protein mixtures and accurate

quantification is possible by labelling the peptides with stable isotopes.
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2.5.2.1 Gel based approach

The gel based proteomics approach relies on two dimensional electrophore-

sis (2-DE) for the separation of proteins based on two properties: isoelectric

point (pI) and molecular weight (Figure 2.5). This technique was introduced

in the 1970’s by O’Farrell et al. (1977). Briefly, isoelectric focusing (IEF)

separates proteins by their differences in electric charge taking advantage of

the amphoteric character of proteins (the fact that proteins change charge

depending on the pH of the environment). To accomplish the separation, an

electric current is applied to an IPG strip (acrylamide gel matrix copolymer-

ized with a pH gradient; commercially available). When a protein is in a pH

region below its pI, it will be positively charged and it will migrate towards

the cathode. When proteins reach their isoelectric point (pH at which the

protein has no net charge), they stop migrating and are said to be ‘focused’.

For more information on IPG technology and IEF, the reader is referred to

Righetti & Bossi (1997) and Görg et al. (1999, 2000). After completion of the

IEF, the IPG strip with the separated proteins is used as starting point for

the second dimension separation using SDS-PAGE. SDS polyacrylamide gel

electrophoresis (SDS-PAGE) separates proteins based on molecular weight.

Before this second dimension can be carried out, proteins on the IPG strip

need to be equilibrated in an excess of sodium dodecyl sulphate (SDS) to

eliminate the intrinsic charges of the proteins. Due to this, the secondary

and tertiary structure of proteins are eliminated and after reduction of the

disulfide bridges between cysteines, the electrophoretic mobility of proteins

is solely dependent on molecular weight. The acrylamide separating gel is

composed of different particle sizes; thus, smaller molecules will move faster

compared to large molecules which will be slowed down (Figure 2.5).

Once proteins are separated, visualization for further quantitative analy-

sis proceeds. The most commonly used visualization strategies for quantita-

tive analysis of gel separated proteins use colloidal coomassie blue (Neuhoff

et al., 1988), silver staining (Blum et al., 1987), radiolabeling (Patton, 2002)

and fluorescent staining (Chevalier et al., 2004). For detailed information

about the different protein stains the reader is referred to Miller et al. (2006).
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Figure 2.5: Schematic representation of a two dimensional electrophoresis (2-

DE) map. Proteins are first separated based on isoelectric point, pI (A) and then

(B) based on molecular weight, MW. The resulting two dimensional map reveals

proteins separated on the horizontal axis based on pI and on the vertical axis based

on MW.
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The stains described above present certain limitations in terms of detec-

tion limit (e.g., colloidal coomassie blue), dynamic range and reproducibility

(e.g., silver). One of the limitations of comparative 2-DE is the high gel to

gel variation which renders the analysis difficult in terms of distinguishing

biological variation from experimental variation. To overcome this issue, two

dimensional in gel electrophoresis (DIGE) technology was developed (Alban

et al., 2003). In DIGE samples are labeled prior to the electrophoretic sep-

aration with spectrally resolvable dyes (Cy2, Cy3 and Cy5). Subsequently,

samples are mixed prior to IEF and resolved on the same 2-DE gel (Ünlu

et al., 1997). DIGE increases the confidence in terms of detection and quan-

tification of differences in protein abundance and also reduces the number

of gels in an experiment. The primary advantage of multiplexing samples

is that an internal standard (representing an average of all samples in an

experiment) can be included to normalize protein abundance across multiple

gels. Thus, each gel will contain an image with a highly similar spot pat-

tern, improving the confidence of inter-gel spot matching and quantification

(Figure 2.6). Basic or hydrophobic proteins are still difficult to separate

under gel based 2-DE approaches in spite of the introduction of IPG strips

up to pH 14 (Görg et al., 1997). Substitution of the reducing agent DTT

for TBP (tributylphosphine) or HED (hydroxyethyldisulphide, commercially

known as DestreakTM ) (Hoving et al., 2002; Olsson et al., 2002) partially

circumvents the problem of lack of resolution of basic proteins during the

IEF run.

Gel based proteomics is the most powerful option for non-model or-

ganisms (e.g., pears; Carpentier et al. 2008b), where isoforms and post

translational modifications can be studied. But some of the limitations of

this approach are the unequal resolving power of 2-DE including the bias

towards high abundant proteins, hydrophobic or very acidic proteins are

not resolved, co-migration of proteins resulting in spots containing multiple

proteins and the limited dynamic range covered besides the difficulty for

automation.
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Figure 2.6: Differential in gel electrophoresis - DIGE workflow. Prior to 2-DE

separation, proteins are labeled with spectrally resolvable dyes (Cy2, Cy3 and Cy5).

Then, the samples are mixed prior to IEF and resolved in the same 2-DE gel.

2.5.2.2 Gel free approach

Gel free approaches in most of the cases use a bottom up strategy mean-

ing that proteins are first proteolyzed and the obtained peptide mixture is

then separated based on hydrophobicity via reverse-phase chromatography

(Figure 2.4). Subsequently, the eluted peptides are sent to a mass spec-

trometer. All the tandem mass spectra gathered are then used to search

databases and reconstruct the original proteins (Roe & Griffin, 2006). This

approach is successful with simple protein mixtures and sequenced species.

The problem of resolution was circumvented by the introduction of MudPit

(multidimensional protein identification technology; Washburn et al. 2001).

By the introduction of MudPit separation of membrane proteins as well as an

increase in the ability to detect low abundant proteins was achieved (Roe

& Griffin, 2006). The limitation of this approach is the lack of provision

of quantitative information. This has been overcome by the use of stable

isotope labeling and dilution strategies for the relative quantification of pro-
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teins (Gygi et al., 1999; Ross et al., 2004; Roe & Griffin, 2006). Gel free

approaches have the disadvantage that qualitative and quantitative infor-

mation on protein isoforms and differential post-translational modifications

are lost (Carpentier et al., 2008b). Besides that, cross-species identification

for poorly sequenced genomes, as for most crops, is not possible, as it relies

on comparing peptides of the proteins of interest to orthologous proteins

from other well characterized species.

2.5.3 Protein identification

Mass spectrometry is the technology most widely used for protein identifi-

cation. Both with gel based and gel free approaches, proteins need to be

digested before being introduced in a mass spectrometer. The unknown

protein of interest is generally cleaved into smaller peptides by using, in

most of the cases, a trypsin enzyme. This enzyme will specifically cleave

proteins on the carboxy-terminal side of arginine and lysine residues (Steen

& Mann, 2004). A mass spectrometer consists of an ion source (e.g., ESI

or MALDI) to produce ions from the sample, one or more mass analyzers

(e.g., quadrupole, TOF, ion trap, linear ion trap) to separate the ions based

on their m/z ratios, a detector to register the number of ions coming from

the last analyzer, and a computer to process the data and produce the mass

spectra. In addition an inlet device is necessary to introduce the sample into

the ion source (Lane, 2005).

2.5.3.1 Ionization techniques

The introduction of two soft ionization techniques for mass spectrome-

try for the analysis of proteins, matrix assisted laser desorption ionization

(MALDI; Karas & Hillenkamp 1988) and electrospray ionization (ESI; Fenn

et al. 1989) has revolutionized the proteomics platform enabling the high

throughput identification of proteins. By using these soft ionization tech-

niques, there is minimal fragmentation and mostly entire ions are formed.

A schematic representation of the MALDI and ESI ionization processes is
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Figure 2.7: Matrix assisted laser desorption ionization - MALDI. In MALDI, the

analyte is mixed with a large excess of matrix. Both the analyte and the matrix are

irradiated with a laser beam enabling the excess matrix molecules to sublime and

transfer the embedded non-volatile analyte molecules into the gas phase. Mostly

single protonated ions are formed and accelerated by electric potentials into a mass

analyzer (Steen & Mann, 2004).

given in Figure 2.7 and 2.8.

MALDI, relies on a laser beam which is fired at a sample plate contain-

ing a dried mixture of matrix (e.g., α-cyano-4-hydroxycinnamic acid) and

sample to ionize the latter. The matrix will absorb the radiation from the

laser resulting in excitation of the matrix molecules. As a result, a dense

plume containing both matrix and analyte molecules is produced and ana-

lyte molecules interact with hydrogen atoms from the matrix to form mainly

singly charged ions (Andersen & Roepstorff, 1996; Steen & Mann, 2004) en-

tering the mass analyzer. During the ESI process, the sample is dissolved

in a solvent mixture (e.g., acetonitrile-water) and then injected into a cap-

illary held at a potential of 3-4 kV. As a result, a very fine spray of solvent

droplets containing pre-formed ions of the forms (M + nH)n+ (where M :

the peptide molecule, nH : number of protons attached to the molecule and

n+: net charge of the ions) is formed. The multiply charged gas-phase ions
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Figure 2.8: Electrospray ionization - ESI. The sample is dissolved in a solvent

mixture (e.g., acetonitrile-water) and then injected into a capillary held at a high

electrical potential. A very fine spray of solvent droplets containing the pre-formed

ions is obtained. The multiply charged gas-phase ions which are formed as a conse-

quence of the desorption process due to evaporation of the solvent will subsequently

enter the mass analyzer. Adapted from Steen & Mann (2004).

are then formed as a consequence of the desorption process occurring due

to evaporation of the solvent (Andersen & Roepstorff, 1996; Steen & Mann,

2004) and will subsequently enter the mass analyzer.

2.5.3.2 Mass analyzers

The formed ions are then separated according to their mass to charge ratio

(m/z) in a mass analyzer. There are different mass analyzers, each one,

with its strengths and weaknesses. A time of flight (TOF) analyzer uses an

electric field to accelerate the ions at the same potential. Then, the time

needed to reach the detector is measured. For particles with the same charge,

their kinetic energies is the same, thus their velocities is solely dependent

on their masses; lighter ions will reach the detector first (Wollnick, 1993).
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Quadrupole (Q) analyzers use oscillating electrical fields to selectively sta-

bilize or destabilize ions passing through a radio frequency quadrupole field

(Lane, 2005). Ion traps or more specifically quadrupole ion traps, trap ions

in a dynamic electric field and then sequentially eject them into the detec-

tor according to their m/z values (Steen & Mann, 2004). The low accuracy

of the ion trap is its main disadvantage unless coupled to a high accuracy

detection system such as found in Fourier transform and Orbitrap devices;

however, it is robust, sensitive and inexpensive (Lane, 2005). A ‘linear ion

trap’ has increased sensitivity, resolution and mass accuracy. It differs from

a quadrupole ion trap in that it uses a two-dimensional quadrupole field

instead of three.

2.5.3.3 MS vs tandem mass spectrometry (MS/MS)

Peptide mass fingerfrint (PMF) is typically performed by (MALDI-TOF)

MS because a simple profile is produced providing one single peak per pep-

tide (Carpentier et al., 2008b). For PMF, individual proteins are first di-

gested into smaller peptides, then the masses of these peptides are measured

with a mass spectrometer. Independently, in the database search, each pro-

tein sequence is in silico digested. Then, the masses of the generated in

silico peptides of each individual database entry (theoretical) are compared

with the measured mass spectrum. To get a significant hit, only a subset

of all peptides from the protein digest need to match. One of the pitfalls of

PMF is the reduced power to identify proteins from non-model organisms

(with a poorly characterized genome; Mathesius et al. 2002). Tandem mass

spectrometry couples two stages of MS and sequence information about the

proteins is obtained. In MS/MS, a particular peptide is isolated, energy is

imparted by collision with an inert gas (e.g., nitrogen molecules or argon

or helium atoms) and as a consequence this energy causes the peptide to

fragment typically down the peptide bond. Thus, a mass spectrum of the

resulting fragments is generated (Steen & Mann, 2004). The use of LC-

ESI-MS/MS (Wilm & Mann, 1994) is well established as well as MALDI-Q-

TOF (Shevchenko et al., 2001), MALDI-TOF/TOF (Yergey et al., 2002), or
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MALDI- quadrupole ion trap/TOF instruments (Martin & Brancia, 2003).

Reconstruction of an unknown peptide from MS/MS data through peptide

sequencing is possible (referred as de novo peptide sequencing) but still

some challenges exist. Proteins generally are made up of 20 different types

of amino acids which most of them have different masses. Thus, different

peptides will produce different spectra being possible to use the spectrum

of a peptide to determine its sequence. In most of the cases, this is carried

out by searching un-interpreted data using various algorithms such as MAS-

COT, SEQUEST, !XTandem and PHENYX. For non-model organisms, this

approach offers great possibilities (Steen & Mann, 2004; Carpentier et al.,

2008b).

2.5.4 Data analysis

2.5.4.1 The importance of a good experimental design

Given the importance of a good experimental design and sampling to draw

valid conclusions from a study, this section is dedicated to these topics.

Sampling techniques as well as experimental design should be unbiased. A

good experimental design will limit systematic errors, improve precision of

subsequent statistical tests and reduce the number of false positive calls

(Chich et al., 2007).

Sources of variation can be classified into two classes: (i) technical vari-

ation and (ii) biological variation. Thus, technical replicates are repeated

measures from the same biological sample while biological replicates are dif-

ferent replicate samples from the same treatment group (Karp et al., 2005a;

Hollywood et al., 2006). The type of replicate will limit the statistical test

to be used and the conclusions that can be drawn. To anticipate all sources

of unknown variation, randomization is necessary in order to reduce system-

atic errors when treatments are compared and the precision of the results

is estimated (Chich et al., 2007). A good experimental design must follow

and address certain key points: (i) state a null hypothesis (Ho: there is

no difference between the treatments) and the alternative hypothesis (Ha:
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there is a difference between the treatments), (ii) election of the most ap-

propriate statistical test to test the hypothesis, (iii) specify a significance

level and address the multiple testing problem, (iv) determine the sample

size to have a sufficient power and (v) collect the data. A sample size that

controls the risk of false positives is imperative. The power of the test is

the probability that a true call will be detected as such and can be termed

‘sensitivity’ (Horgan, 2007). The power is dependent on the extent of the

difference we are looking for, the random variation and the sample size per

group.

2.5.4.2 Data preprocessing steps

Before data from 2-DE experiments can be statistically analyzed, certain

preprocessing steps need to be carried out. Normalization of the spot vol-

umes to remove effects of differential loading and staining is the first step

(Meleth et al., 2005). Many statistical methods are based on the normal

distribution assumption. To fulfill this assumption, it is sometimes indis-

pensable to apply some type of data transformation (e.g., logarithmic, sinh).

The applied transformation will have a positive effect in stabilizing the vari-

ance (e.g., highly abundant proteins usually have larger variance than low

abundant proteins) so that also the second assumption of parametric statis-

tical methods ‘homocedasticity’ is fulfilled (Chang et al., 2004; Jung et al.,

2005; Urfer et al., 2006; Jung et al., 2006). The presence of missing data

from 2-DE experiments cannot be disregarded and must be handled with

extreme care (Krogh et al., 2007; Pedreschi et al., 2008b).

2.5.4.3 Univariate data analysis

The most typical case in 2-DE studies is the comparison of a treatment

group (e.g., diseased condition) vs a control group (e.g., healthy condition).

There can be thousands of proteins to be compared. Thus, univariate statis-

tical methods will compare protein by protein looking for significant changes

in expression between the treatment and control group. The statistical ap-
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proach includes a significance test for each protein to determine if the protein

is differentially expressed or not. A significance level α is chosen and if the

p value of the test is higher than the α value, then the null hypothesis is

accepted.

The use of parametric univariate tests such as the t-test (to compare two

treatments) and Analysis of Variance - ANOVA (to compare k treatments)

and post-hoc tests (e.g., Duncan test, Tukey test) are powerful but require

the above mentioned assumptions to be fulfilled. Given the number of pro-

teins to be tested, the multiple testing issue should be tackled otherwise

it can lead to a large number of false positive calls. Thus, it is important

to control the number of false positive calls but still be able to detect true

differences (power). In order to determine an appropiate sample size, the

power of the statistical test needs to be specified on before hand. The power

is also dependent on the variance of the data, on the significance level α, on

the magnitude of the expression change to detect and on the type of test

procedure (Urfer et al., 2006). The false discovery rate and q-value method-

ology have been applied together with a proper experimental design and

correct use of the statistical test to account for the number of false positive

calls (Karp et al., 2007). The q value is an adjusted p value for each test.

It controls the number of false positives in those tests that were significant.

It is less conservative than the Bonferroni approach and has greater ability

to find truly significant results.

Instead of parametric tests, non-parametric tests do not assume any dis-

tribution of the data but have less power (Siegel, 1988). Still, they must

fulfill certain assumptions such as independent sampling and continous or-

dinal data. The Kolmogorov-Smirnov test is the equivalent to the t-test (to

compare two treatments or groups) and the Kruskal Wallis test is the equiv-

alent to ANOVA (to compare k treatments). It is important to emphasize

that mixing replicates can lead to an increased number of false positive calls

if the statistical test chosen for analysis does not account for differentiation

in the type of variability. When there is a mix of technical and biological

replicates, a nested ANOVA is an alternative test. A nested ANOVA as-

sesses whether the variance due to treatment is greater than the variance
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among biological replicates within a treatment (Karp et al., 2007).

For time course data in which not only the effect of treatment is assessed

but also the effect of time and the time/treatment interactions, a two-way

analysis of variance can be utilized (Jung et al., 2005, 2006). The same

approach can be utilized when more factors are to be studied (e.g., cultivar,

storage time, disease type).

2.5.4.4 Multivariate data analysis

The 2-DE data is complex and high dimensional. Thus, multivariate statisti-

cal tools are useful in extracting as much information as possible in terms of

similarities and correlations. These multivariate statistical techniques will

consider the variables (proteins) as a group of correlated variables rather

than focusing on one variable or protein at a time as in univariate statistics

(Karp et al., 2005b). When proteins are part of the same pathway or a com-

plex interrelation of pathways, correlation among proteins will exist which

can be extracted using multivariate techniques such as PCA and PLS.

Principal component analysis (PCA) is an unsupervised technique that

forms new variables (principal components) that are linear combinations of

the original variables thus capturing the essential data patterns of the origi-

nal data in a reduced form. PCA is useful to examine datasets with multiple

collinearity (e.g., proteins that act in concert with other proteins) and to get

insight into certain patterns or trends (Wold et al., 1987; Karp et al., 2005b).

The score plots obtained show the distribution of the objects (gels) and their

distribution allowing the identification of outliers through the Hotelling T2

ellipse. The loading plots obtained show the distribution between the dif-

ferent variables and their distribution. The further the variable from the

origin, the more influential is the variable for explaining relationships in

the dataset. The distances along the first components are more important

because the first principal components explain more of the variation in the

dataset. The superimposition of both score and loading plots result in a

biplot in which directly the discrimination between the treatments and rel-
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evant proteins involved in such discrimination can be assessed.

Partial least squares discriminant analysis (PLS-DA) is a supervised bi-

linear regression model to create prediction models of one or several re-

sponses from a set of factors (Wold et al., 1987). PLS-DA will construct

latent variables (LV) in such a way that a maximum separation is obtained

among them. PLS-DA can be useful in addition to PCA to correlate varia-

tion in a dataset with class membership (Karp et al., 2005b) and to select

important variables involved in class distinction. As in PCA, score and load-

ing plots are obtained and can be interpreted in the same way as in PCA

(Figure 2.9). In addition, plots for variable importance (VIP), model coeffi-

cients, residuals, distances to model plots and validation plots are obtained

(Danvind, 2002).

The VIP procedure identifies those proteins that are important for ex-

plaining the variance in the model response (Karp et al., 2005b). The VIP

coefficient of a protein is calculated as a weighed sum of the squared cor-

relations between the PLS-DA components and the original variable. The

weights correspond to the percentage variation explained by the PLS-DA

component in the model. The number of terms in the sum depends on the

number of PLS-DA components found to be significant in distinguishing the

classes. Care must be taken when excluding variables from the model. If

many important variables are excluded, important explanatory information

may be lost as well (Danvind, 2002). For a detailed description about PLS

and VIP the reader is referred to Norden et al. (2005).

Proteomics generates huge amounts of data and demands the integration

of different research fields (e.g., biochemistry, bioinformatics, cell biology,

etc). The following chapters, address different challenges encountered when

analyzing gel based proteomics data as to draw sound biological conclusions

to study core breakdown disorder.
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Figure 2.9: Partial least squares discriminat analysis (PLS-DA) biplot of samples

representing three different treatments (A, B and C). Clear discrimination among

the treatments (Y-variables) can be observed. Sample scores (represented by circles,

triangles and squares), X-loadings (represented by small black dots) and Y-loadings

(represented by arrows) are superimposed. The percentage explained X and Y

variation is presented on the axis. The analysis is based on the correlation matrix.

LV stands for latent variable. The scores, representing each one a sample, already

indicate, in this particular case, a very good separation among the treatments.

Having determined that there is a clear pattern in the data, then the proteins that

are important for separating the various treatments are characterized by having

large loadings which describe the weighing coefficients for each protein. The further

the protein (small black dots) from the origin, the more influential that particular

protein is in the separation of the treatments. The closer the X-loadings to a specific

Y-loading (arrow end point) indicates a high positive correlation to that specific

treatment. The total explained X-variance with two LV components equals to 33

% and the total Y-variance with two LV components equals to 93 %.





Chapter 3

Proteomic analysis of core

breakdown

3.1 Introduction

To extend their storage life, apples and pears are generally stored under

controlled atmosphere conditions. In such conditions, the oxygen partial

pressure is reduced and the carbon dioxide partial pressure is increased in

order to retard the respiratory metabolism and quality degradation reac-

tions. However, if the oxygen partial pressure is too low or the carbon

dioxide partial pressure too high, the metabolism may change from aerobic

to anaerobic and this may cause fermentation related physiological disor-

ders like core browning and accumulation of fermentation volatiles. Pears

(Pyrus communis L.) of the cultivar ‘Conference’ are particularly susceptible

to a physiological disorder called ‘core breakdown’ of which the symptoms

are flesh browning and the formation of internal cavities during controlled

atmosphere storage (Lammertyn et al., 2000; Franck et al., 2003; Veltman

et al., 2003). Additional factors that favor the incidence of core breakdown

are pre-harvest factors such as harvest date (late harvested fruit is more sus-

ceptible to browning), orchard characteristics (tree and soil characteristics

including but not limited to application of agro-chemicals, irrigation and

33
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geographical position), seasonal variation which include fruit set, position

of the fruit on the tree (fruit from the top of the tree is more susceptible to

browning), weather conditions (pears grown in cold growing areas are more

susceptible to browning), fruit size (large fruit is more susceptible to brown-

ing) and ascorbic acid content (Franck et al., 2007). Since ‘Conference’ is

commercially the most important cultivar in Europe, core breakdown may

cause considerable economic losses when sub-optimally stored. As men-

tioned in Chapter 2, browning seems to start from the center of the fruit

and it is highly correlated to the limited oxygen content available to carry

out aerobic metabolism.

The biochemical mechanisms behind this physiological disorder are not

fully understood. Flesh browning is the result of the enzymatic oxidation

of diphenols by polyphenol oxidases, yielding quinones which may be fur-

ther polymerized into brown colored substances which are called melanines.

This reaction can only happen after membrane disintegration and cellular

decompartmentalization since diphenols are localized in the vacuole and the

enzyme polyphenol oxidase is localized in the plastids, chloroplast and cyto-

plasm. This enzyme has been characterized and compared across Rosaceae

species including Pyrus communis L. (Haruta et al., 1999). Generally, mem-

brane disruption takes place because of an overproduction of reactive oxygen

species (ROS) under stress conditions, which cannot be scavenged by the

antioxidant system of the pear (Veltman et al., 2000; Larrigaudiere et al.,

2001; Franck et al., 2003). Furthermore, the oxygen and carbon dioxide

gradients across the pear during controlled atmosphere conditions cause an

impaired respiration (Lammertyn et al., 2003b,a) which cannot provide suf-

ficient energy generation for cell maintenance processes such as repair of

membrane damage.

Two-dimensional polyacrylamide gel electrophoresis (2-DE), an impor-

tant tool in proteomics, is widely used because it offers a comprehensive

approach to study biochemical systems (Kjaersgard et al., 2006). It is being

extensively applied to unravel underlying physiological mechanisms of differ-

ent diseases for instance by comparing protein maps of healthy and diseased

subgroups (Marengo et al., 2006; Casado-Vela et al., 2005, 2006). In the
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last years, the interest in plant proteomics focused on studying different as-

pects in fruits and vegetables has significantly increased (Rocco et al., 2006;

Hjern et al., 2006). The classical way of finding differences in expression

levels of proteins between groups of samples/treatments is by a univariate

statistical approach like a Student’s t-test or a Kolmogorov-Smirnov test

(Salekdeh et al., 2002; Shen et al., 2003). However, the one by one compar-

ison of individual protein spot volumes has its limitations when extraction

of meaningful information from complex data is the objective (Jessen et al.,

2002). Multivariate statistical tools have the advantage of reducing the

number of false positives and moreover allow for the identification of spots

that are significantly altered in terms of correlated expression and not only

in terms of absolute expression values (Marengo et al., 2006). The use of

multivariate statistical tools like principal component analysis (PCA), par-

tial least squares regression (PLSR) and discriminant analysis (PLS-DA) to

analyze proteomics data, hence, is strongly recommended (Marengo et al.,

2004; Karp et al., 2005b; Kjaersgard et al., 2006). Since, the pear proteome

is poorly characterized, gel-based proteomics was employed as platform in-

stead of a gel-free approach.

The objective of this chapter is to understand core breakdown by means

of a holistic proteomics approach combined with univariate and multivariate

statistics. To accomplish this objective, five main points will be covered: (i)

to obtain suitable protein extraction and two-dimensional gel electrophoresis

protocols for pear parenchyma tissue, (ii) to identify up-regulated proteins

in brown tissue (iii) to assess for differentially expressed proteins between

healthy and disordered pears using univariate and multivariate statistical

tools, (iv) to identify the main differentially expressed proteins and (v) to

interpret the results in terms of changes in the pear metabolism due to

oxidative stress. The results of this chapter were published in Pedreschi

et al. (2007)2.
2Pedreschi et al. (2007). Proteomic analysis of core breakdown disorder in Conference

pears (Pyrus communis L.). Proteomics, 7, 2083-2099.
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3.2 Materials and methods

3.2.1 Plant material

Pears (Pyrus communis cv. Conference) were harvested in the orchard of the

Centre for Fruit Culture in Rillaar (Belgium). All homogeneous size pears to

be stored under optimal controlled atmosphere (CA) conditions were picked

at the commercial harvest date on 8/9/2004 as determined by the Flanders

Centre of Postharvest Technology (Belgium). These fruits were submitted

to pre-cooling in air at −1 ◦C for three weeks before applying controlled

atmosphere conditions of 2.5 % O2 and 0.7 % CO2 according to commercial

protocols. To induce core breakdown, pears were picked on 22/9/2004, two

weeks after the commercial harvest date. Pears were immediately stored

under 1.0 % O2 and 10 % CO2 with no pre-cooling period at −1 ◦C. After

six months of CA storage, pears from both conditions were sampled. Pears

were cut perpendicularly to the stem-calyx axis at 5 cm from the bottom of

a pear. Tissue samples were taken from the equatorial region excluding the

skin and core, immediately frozen in liquid nitrogen and kept at −80 ◦C until

further analysis. Tissue from optimally stored pears is referred to as healthy

tissue and is composed of tissue coming from the inner and outer cortex to

compensate for cell variation due to spatial position. Tissue from disordered

or sub-optimally stored pears was divided in brown tissue (coming from

the brown or affected area) and sound tissue (coming from the apparently

healthy or not affected area; Figure 3.1).

Two biological replicates of tissue samples were prepared based on pooled

tissue coming from 6 pears each. Each of the two pooled tissue samples was

used to prepare two technical replicate protein extracts. In addition, the two

tissue samples were pooled to create a third synthetic master sample. From

this synthetic sample two technical replicate protein extracts were prepared

as well. This resulted in a total of 6 replicate samples per tissue type that

were used for the subsequent 2-DE gel analyses.
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H
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Figure 3.1: Cross section of pears without (left) and with (right) core breakdown.

(H) healthy tissue, (S) sound tissue and (B) brown tissue of sub-optimally stored

pears.
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3.2.2 Protein extraction

Three different variants of the extensively applied phenol extraction, methanol

ammonium acetate precipitation protocol for plant tissues were used (Sar-

avanan & Rose, 2004; Carpentier et al., 2005). Two hundred milligrams of

powdered frozen pear tissue were homogenized in 500 µL of cold protein

extraction buffer (PEB) for 30 min at 4 ◦C. The PEB consisted of 0.7 M

sucrose, 100 mM KCl, 1 mM PMSF, 500 mM EDTA, Tris-HCl, DTT, and

PVPP (insoluble polyvinylpolypyrrolidone) whose concentrations were var-

ied as follows. Variant I contained 0.385 % DTT, 50 mM Tris-HCl (pH 7.2)

and 1 % PVPP resulting in a final pH of 7.0. Variant II contained 50 mM

Tris-HCl (pH 8.5) with a final pH of 8.0 and 1 % DTT and finally variant

III contained 50 mM Tris-HCl (pH 7.2) and 1 % DTT with a final pH of

the PEB of 7.0. Five hundred microliters of ice-cold Tris buffered phenol

(pH 8.0) was added and the sample was vortexed (MS2, IKA Works Inc,

Wilington, NC, USA) thoroughly for 5 min at 4 ◦C. After centrifugation

(Sanyo Hawk 15/05, UK) of the sample at 7000 x g for 10 min at 4 ◦C, the

phenol phase was collected and re-extracted with an equal volume of protein

extraction buffer and an extra 50 µL of ice-cold Tris buffered phenol. The

water phase containing the cellular debris was re-extracted with an equal

volume of ice-cold Tris buffered phenol. Both phases were thoroughly vor-

texed and shaken for 5 min at 4 ◦C. After centrifugation at 7000 x g for

10 min at 4 ◦C, both phenol phases were joined and 900 µL of PEB and

an extra 100 µL of ice-cold Tris buffered phenol were added. The mixture

was vortexed for 5 min at −1 ◦C, and after centrifugation at 7000 x g for

10 min at 4 ◦C, the phenol phase was recovered and precipitated overnight

with five volumes of 100 mM ammonium acetate in methanol at −20 ◦C.

After centrifugation at 21 900 x g for 30 min, the supernatant was removed

and the protein pellet washed two times with methanol and two times with

acetone containing 0.1 % DTT. After washing, the pellet was allowed to dry

in air until the remaining acetone was evaporated and stored at −80 ◦C until

used.
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3.2.3 Two dimensional electrophoresis - 2DE

Protein pellets were redissolved in rehydration buffer (7 M urea, 2 M thiourea,

4 % CHAPS, 0.2 % IPG buffer, 75 mM DTT and 0.002 % bromophenol blue)

for 1 h and quantified by using a modified Bradford dye-binding procedure

(Bradford, 1976). Thirty five, 70 and 100 µg protein sample for silver stain-

ing at pH 5-8, 3-6 and 7-10, respectively, or 350, 700 and 1000 µg protein

sample for Coomassie blue staining at pH 3-5, 3-6 and 7-10, respectively

were rehydrated in either 150 or 200 µL (silver or Coomassie blue stain-

ing) and applied via anodic cup loading. Strips of 24 cm of pH 3-6, 5-8

and 7-10 (Bio-Rad, Nazareth, Belgium) were rehydrated for at least 8 h in

460 µL rehydration buffer. Proteins were isoelectrically (IEF) focused in

an IPGphorII System (Amersham Biosciences, Uppsala, Sweden) at 20 ◦C

and with a 50 µA per strip limit. IEF was carried out in four steps. The

first three steps were kept the same in all cases: 3 h at 300 V, 6 h at 1000

V, 3 h at 8000 V. The fourth step was varied depending on the pH range

of the strip used and on the amount of protein loaded. Thus, in the case

of silver staining, 32 000, 24 000 and 32 000 Vh at 8000 V were used for

pH 3-6, 5-8 and 7-10 respectively. For Coomassie staining, 40 000, 32 000

and 40 000 Vh at 8000 V were used for pH 3-6, 5-8 and 7-10, respectively.

DeStreakTM (Amersham Biosciences, Uppsala, Sweden) was added when 7-

10 pH strips were focused. After IEF completion, strips were equilibrated

individually for 15 min in 8 mL equilibration buffer (6 M urea, 30 % glycerol,

2 % SDS, 0.002 % bromophenol blue, 50 mM Tris-HCl pH 8.8) containing 2

% (w/v) DTT, and subsequently for 15 min in 8 mL equilibration buffer con-

taining 2.5 % iodoacetamide. Second dimension separation was performed

in an Ettan DALT System (Amersham Biosciences) with lab cast 1.5 mm

SDS polyacrylamide gels (12.5 %) for 45 min at 12 W and subsequently for

5 h at 100 W. Five or 6 replicate gels were run for every sample category.
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3.2.4 Protein visualization and image analysis

Proteins were visualized by silver staining (Blum et al., 1987) or by colloidal

Coomassie Brilliant Blue (CBB) G-250 (Neuhoff et al., 1988). For silver

staining, gels were fixed overnight in 40 % ethanol and 10 % acetic acid,

then washed for 20 min in 30 % ethanol, 20 min in 20 % ethanol and finally

20 min in Milli-Q water. Following washing, gels were sensitized in 0.02 %

Na2S2O3 for 1 min and incubated in silver stain (0.2 % AgNO3 and 0.02 %

formaldehyde) for 20 min. Gels were developed in 3 % Na2CO3 and 0.0005 %

Na2S2O3 for 3 min and immediately blocked in 11 % glycine. For colloidal

CBB staining, gels were fixed for 1 h in a solution containing 1.3 % o-

phosphoric acid and 20 % methanol and then stained overnight in a solution

containing 20 % methanol, 0.1 % w/v CBB G-250, 1.6 % o-phosphoric acid

and 8 % w/v ammonium sulphate. After staining, gels were neutralized

with 0.1 M Tris-base titrated to pH 6.5 with o-phosphoric acid for 3 min

and then washed in 25 % methanol for 1 min. Stained gels were scanned and

calibrated with Labscan 5 software (Amersham Biosciences). Image analysis

was performed with the Image Master 2-D platinum software 6.0 (GE). Spots

were detected without spot editing and quantified as percentage volume.

Silver stained gels were used as analytical gels and Coomassie stained gels

as preparative gels for further MS protein identification.

3.2.5 Data analysis

The two-dimensional gel electrophoresis data, calculated as spot volume per-

centage, were analyzed statistically both with univariate and multivariate

techniques to test for significant differences in protein expression profiles

between the different tissue types. For both statistical approaches the anal-

ysis were repeated using two different reference gels. Switching to another

reference is good practice to cross verify the results even though one must

be aware that through transferring all the tissue specific spots to a synthetic

master gel would have done the trick and would have limited the statistical

analysis to one dataset and also reduced the number of spots sent for iden-
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tification. First, the protein expression profile of healthy tissue was used as

a reference and compared to the expression profiles of sound and brown tis-

sue. Second, the analysis was repeated with the expression profile of sound

tissue as a reference. For the characterization of brown tissue up-regulated

proteins, brown tissue was used as reference gel and compared to sound and

healthy tissue.

For the univariate statistical data analysis, the non-parametric two-

sample Kolmogorov-Smirnov test was used, since the assumption of normal-

ity underlying a classical ANOVA was not fullfilled. Kolmogorov-Smirnov

test allows pairwise comparison of the expression level of individual pro-

teins, but is not suited to compare whole expression profiles as it ignores

the correlation structure of the data. Proteins with a p value below 0.05

were considered to be significantly different. The univariate statistical anal-

yses were performed with Image Master 2-D platinum software (Amersham

Biosciences, Uppsala, Sweden).

For the multivariate data analysis, gels were matched to the reference

gel and percentage spot volumes were calculated. The data were prepro-

cessed by mean-centering, and all variables were weighed by their standard

deviation to give them equal (unity) variance. A PCA analysis was carried

out for first data exploration and outlier detection, but no significantly out-

lying gels were detected as defined by 95 % Hotelling’s T 2 limit (Johnson

& Wichern, 1998). A PLS-DA analysis was performed to cluster the indi-

vidual gels according to similar protein expression profiles (Norden et al.,

2005). It is a partial least squares regression of a set of binary variables,

describing the categories of the categorical variables (tissue type), on a set of

predictor variables (percentage spot volume of different proteins). The vari-

able importance plot (VIP) was used as a formal tool (Karp et al., 2005b),

based on the correlation loadings, to identify the most important proteins

describing the difference in protein expression profiles. The most important

proteins were identified through an iterative procedure. The proteins were

sorted according to VIP coefficient and the PLS-DA was rerun on the 50

most important proteins. This was repeated twice selecting the 30 and 20

most important proteins, respectively. The final cutoff value in the VIP
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selection is in a way arbitrary in where to set the limit, and related to the

total cost of the proteins that need to be identified. This iterative process al-

lowed selecting the 20 key proteins responsible for the clustering and, hence,

for further identification by LC-ESI-MS/MS. PCA and PLS-DA must also

hold the underlying normality assumption. Ninety five percent of the spots

were normally disctributed. Cross-validation was applied to test the perfor-

mance of the models since the number of observations is relatively small it

is impossible to validate the models on an independent test set. The PCA

and PLS-DA analyses were performed using The Unscrambler Version 9.0

(CAMO A/S, Trondheim, Norway).

3.2.6 Protein identification

Since the number of Pyrus communis sequences in the public databases

is very limited, MS/MS data analysis and cross species ID were applied

for protein identification. Selected spots were manually excised with a 1.5

mm diameter pipette tip and trypsin-digested according to the method-

ology described by Shevchenko et al. (1996). Protein identification was

performed by LC-ESI-MS/MS on an LCQ classic (Thermo Electron) with

search paramaters as described by Dumont et al. (2004). All MS/MS spec-

tra were first searched using SEQUEST (Thermo Electron) against a cus-

tomized protein database containing all Pyrus, Malus and Prunus GenBank

protein sequences (3683 entries), and MASCOT (Matrix Sciences, London,

UK) against the GenBank non-redundant Viridiplantae-specified protein se-

quences. In a second identification round, a Mascot search was performed

against the Malus x domestica EST sequences from the UniGene database

of 25 August 2006 (182.378 entries). Proteins assigned on the basis of two or

more significantly scored, non-redundant peptides were considered as con-

fidently identified. Protein identification was carried out in collaboration

with the Biomedical Research Institute, Hasselt University and School of

Life Sciences, Transnationale Universiteit Limburg, Diepenbeek, Belgium.
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3.3 Results

As a first step in the study of core breakdown in ‘Conference’ pears, suitable

protein extraction and two-dimensional electrophoresis protocols were estab-

lished, since until now no such protocols have been reported in literature.

Pears have been reported to contain significant amounts of phenolic com-

pounds, oxidative enzymes and other interfering substances (Espin et al.,

1998; Cui et al., 2005) which can combine with proteins by hydrogen bond-

ing or irreversibly by oxidation followed by covalent binding. The presented

protocols, pay special attention to the removal of these contaminants and,

hence, avoid formation of streaks in two-dimensional gels which complicate

the 2-DE analysis.

3.3.1 Protein extraction

Three variants of the phenol extraction, methanol ammonium acetate pre-

cipitation protein extraction method were evaluated for pear tissue. This

method has already been successfully employed in the extraction of proteins

from different plant tissues such as banana, tomato, apple, orange, grape

berries and olive leaves (Abdi et al., 2002; Wang et al., 2003; Saravanan &

Rose, 2004; Carpentier et al., 2005; Vincent et al., 2006). In general, protein

yields for ‘Conference’ pears were very low. In order to get higher yields for

subsequent 2-DE analysis, the amount of DTT, the pH of the protein ex-

traction buffer (PEB) and the use of PVPP were altered. Variant I and III

resulted in much lower yields compared to variant II (Table 1). Variant II

showed to be significantly different from variant I and III (p < 0.05) giving

more than double the yield of variant I and 1.6 times the yield of variant III.

The higher pH of 8.0 of the PEB of variant II with a higher amount of DTT

resulted in higher yields. PVPP in the protein extraction buffer has been

reported in previous studies as an efficient proton acceptor able to interfere

with the binding of proteins to polyphenols (Pierpoint, 2004; Laborde et al.,

2006). However, at the pH in our buffer (variant II), polyphenols are in an

ionized form which explains why the use of PVPP did not improve protein
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Table 3.1: Protein yields obtained from pear tissue by three different variants of

the phenol extraction/methanol ammonium acetate precipitation method. Percent-

age yield was calculated as (g protein/g fresh pear weight)*100. Results are mean

of six replicates. Different letters stand for statistical differences in sample means

(p < 0.05) as determined by a Tukey test.

Variant Component of Average SD

the PEB varied protein yield (%)

I 0.328 % DTT, final pH 7.0 0.025a 0.004

and 1 % insoluble PVPP

II 1 % DTT, final pH 8.0 0.053b 0.005

III 1 % DTT, final pH 7.0 0.033a 0.006

yields (Carpentier et al., 2005). Moreover, when using the PEB with PVPP,

two-dimensional maps showed streaking (data not shown), probably due to

the fact that PVPP can not be completely washed away and is still present

in the protein pellet. A high pH 8.0 of the PEB was kept in order to inacti-

vate proteases. DTT is a powerful reducing agent that reduces polyphenols

to form thioethers (Loomis & Battaile, 1966) and helped to obtain higher

protein yields. In general, both variants II and III resulted in clean 2-DE

maps. Because of the higher protein yields and clean 2-DE maps variant II

was chosen for further experiments.

3.3.2 2-DE

The 2-DE maps for all the pH ranges analyzed are shown in Figure 3.2. It

was observed that at 5-8 pH range the number of proteins in brown tissue

was smaller than for healthy and sound tissue which had approximately

the same amount of protein spots, as demonstrated with a 2 way ANOVA

test (p < 0.05). For the other pH ranges, no significant differences in the

number of protein spots between the three tissue classes were observed in

Figure 3.3. Protein quantification in the different tissue types showed that

brown tissue presented 78.2 ± 7.5 µg protein/200 mg fresh tissue; sound

tissue 93 ± 9.1 µg protein/200 mg fresh tissue and healthy tissue 106.4

± 10.9 µg protein/200 mg fresh tissue. The results can be interpreted by
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reduced protein synthesis and/or protein degradation. We therefore decided

to characterize only the most important up-regulated proteins in brown

tissue by performing a multivariate PLS-DA analysis (Figure 3.4) for the 5-8

pH range. The following detailed analysis is restricted to sound and healthy

tissue, as they might indicate how the core breakdown disorder is actually

triggered. A better comprehension of the mechanisms behind the onset of

core breakdown might lead to improved commercial controlled atmosphere

storage.
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Figure 3.2: 2-DE maps for healthy (H), sound (S) and brown (B) pear tissues

in the 3-6, 5-8 and 7-10 pH ranges. Gels were silver stained. Seventy, 35 and 100

µg protein was loaded for the 3-6, 5-8 and 7-10 pH ranges, respectively. Thick line

squares refer to the same protein pairs in the different 3-6 and 5-8 pH ranges. Thin

line squares refer to the same protein pairs within the 5-8 pH range.
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Figure 3.3: Spot numbers for brown, sound and healthy tissue classes for the 3-6,

5-8 and 7-10 pH ranges. A two-way ANOVA was performed (p < 0.05). Tissue type

and pH range were considered as factors. The response variable is the number of

spots. The error bars indicate the standard deviation of the observations. Similar

letters on top of the bars indicate no significant differences (p < 0.05).
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Figure 3.4: PLS-DA analysis for the 2-DE data derived from the 5-8 pH range

using brown tissue as reference gel. (A) Biplot showing the scores and correlation

loadings for the three tissue classes before the VIP procedure and (B) biplot showing

the scores and correlation loadings for the three tissue classes after the third VIP

procedure. Triangles represent brown tissue, circles represent healthy tissue and

squares represent sound tissue. The 20 selected spots were characteristic of brown

tissue and correspond to the following spot numbers: 158, 160, 161, 163, 165, 167,

223, 252, 255, 334, 358, 366, 367, 369, 418, 421, 432, 447, 475 and 476.
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3.3.2.1 Differentially expressed selected proteins by univariate

statistical analysis

The classical approach of analyzing differences in protein expression levels is

the use of univariate statistical tools which focus specifically on a pairwise

comparison between types of tissue of individual protein spots (Salekdeh

et al., 2002; Shen et al., 2003). Before performing the statistical analysis,

gels were matched to a reference gel. A sound and a healthy reference gel

were used interchangeably in order not to miss spots which are not present

in the reference gel but obviously present in the other gels. When a sound

gel was considered as reference gel, the Kolmogorov-Smirnov statistical test

(p < 0.05) revealed the presence of 12 (pH 3-6), 28 (pH 5-8) and 5 (pH 7-10)

differentially expressed spots when compared to a healthy gel. The number

of differentially expressed proteins when a healthy gel was set as reference

gel equalled 25 (pH 3-6), 17 (pH 5-8) and 3 (pH 7-10) spots when compared

to a sound gel (Table 3.2). Differentially expressed spots are shown in Figure

3.5 for the 5-8 pH range and those identified spots are also shown in Figure

3.2 for all the pH ranges. There are many criticisms with respect to the

use of univariate statistics to study protein differential expression (Karp

et al., 2005b; Marengo et al., 2006). Univariate statistics are powerful for

the analysis of individual proteins but do not allow comparing 2-DE gels as

a whole. Given the complexity and high dimensionality of 2-DE gel based

data, multivariate statistics offer more possibilities.

3.3.2.2 Differences in protein expression - multivariate statistical

tools

As in the case of the univariate analysis described above, a sound and a

healthy gel were used interchangeably as reference gels for this purpose. As

mentioned earlier brown tissue was only used as reference gel for character-

izing up-regulated brown tissue proteins. The identified up-regulated brown

tissue characteristic proteins are presented in Table 3.2. PCA and PLS-DA

were conducted for the 3-6, 5-8 and 7-10 pH ranges as to have a broad pic-

ture of proteins present in pear tissue. The complete analysis for the 5-8 pH
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Figure 3.5: Differentially expressed spots obtained by using a univariate

(Kolmogorov-Smirnov test, p < 0.05) statistical approach. (H) Healthy tissue 2-

DE map taken as reference gel and (S) Sound tissue 2-DE map taken as reference

gel for the 5-8 pH range. White arrows indicate LC-ESI-MS/MS identified spots

while black arrows refer to non-identified spots. Gels were silver stained and 35 µg

protein was loaded.
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range data is presented below as more proteins were present in this range.

For the 3-6 and 7-10 pH ranges only a brief description is given.

When 5-8 pH data were matched to a sound reference gel, an exploratory

PCA analysis revealed a good clustering of the classes brown, sound and

healthy along the PC1 axis. Thirty three percent of the variation in the

samples was explained along PC1 and PC2. Similar or even lower values of

explained variation were found for other proteomic data analyzed by PCA

(Jessen et al., 2002; Kjaersgard et al., 2006). No significant outliers were

detected on the PCA score plots. A PLS-DA with the purpose of discrimi-

nation of tissue types was then conducted. The score plot shows three sepa-

rated clusters (Figure 3.6). The healthy gels were separated from the brown

and sound gels along the LV2 axis and brown and sound gels were separated

from each other along the LV1 (Figure 3.6). Proteins with a high positive or

negative correlation with LV1 explain the discrimination and clustering of

the brown tissue versus the non-brown tissue (healthy and sound). Similarly,

proteins with a high correlation with LV2 are important in discriminating

sound from healthy and brown tissue. After the VIP procedure, 19 of the 20

spots selected (Figure 3.6) were found characteristic of healthy and sound

tissue and only one (spot 876) characteristic of brown tissue. The fewer

spots that were detected in brown compared to sound and healthy tissue is

also reflected in the correlation loading plot (Figure 3.6), where the number

of proteins characteristic of brown tissue is much lower than that of sound

tissue. This might be an indication of extensive proteolysis in brown tis-

sue. This is in agreement with the significantly smaller amount of protein

quantification in the different tissue types which also confirmed the pres-

ence of significantly lower amounts of protein in brown tissue. Therefore

it was decided to continue the analysis focusing only on sound and healthy

gels. Important selected spots obtained after performing the univariate and

multivariate statistical analysis were sent for LC-ESI-MS/MS identification.

PCA and PLS-DA analysis considering sound (reference gel) and healthy

gels were performed in order to directly compare the results with the ones ob-

tained by the univariate statistical approach. PCA showed a good separation

explaining with PC1 and PC2 40 % of the total variance. Both classes were
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Figure 3.6: PLS-DA analysis on 2-DE data for the 5-8 pH range with a sound

gel taken as reference. (A) PLS-DA biplot before the VIP procedure showing the

scores and loadings for the three tissue classes before the VIP procedure, (B) PLS-

DA biplot after the third VIP procedure showing the scores and loadings for the

three tissue classes after the VIP procedure. From the 20 spots selected, spot 876

was characteristic for brown tissue, spot 1060 was characteristic for healthy tissue

and spots 358, 426, 521, 577, 914, 1109, and 1151 for sound tissue. The remaining

spots 242, 367, 531, 604, 751, 792, 793, 799, 958, 1036 and 1060 were located

between healthy and sound tissue and they were negatively correlated to brown

tissue. Triangles represent (brown), circles (healthy) and squares (sound) tissues.



54 3.3 Results

mainly separated along PC1. The corresponding PLS-DA shows two nicely

separated clusters along the LV1 axis (Figure 3.7). Twenty and fourteen

percent of the total variance was explained by the first two LV components

respectively. To identify the important protein spots involved in discrimi-

nating both groups, the analysis was focused on the correlation loading plot

which represents the correlation between protein spots and class member-

ship for all samples. The most important protein spots for classification

were assessed by using the variance importance plot (VIP) iteratively. After

the first VIP procedure where only the 50 most important proteins were

kept, a better reconstructed model was obtained in which 70 % of the total

variance was explained by LV1 and 9 % by LV2. A second VIP procedure

which kept only 30 spots improved our model in such a way that 80 % and 3

% of the total variance was explained by LV1 and LV2, respectively. A third

VIP procedure which kept the most important twenty spots resulted in a

total variance of 86 % and 3 % being explained by LV1 and LV2 respectively

(Figure 3.7). From these twenty spots, four of them (spots 1206, 1175, 1060

and 910) were characteristic for the healthy class while the remaining spots

were characteristic for the sound class. From these twenty spots, sixteen

were also found by using a univariate approach (Table 3.3).

The same analysis shown above with the three tissue types was used to

analyze the data matched to a healthy reference gel. PCA analysis revealed

a medium good separation among the classes: brown, sound and healthy.

The total variance explained accounted for 36 %. PLS-DA analysis of the

data explained 31 % of the X-explained variance with LV1 and LV2, obtain-

ing nice clustering of the three different groups. In the following presented

analysis brown tissue was kept out of the analysis for the reason mentioned

above. PCA analysis explained 42 % of the total variance and did not reveal

any outlier. However, PLS-DA revealed a good separation between healthy

and sound gels along LV1. Eighteen and thirteen percent of the X-variance

was explained by LV1 and LV2 respectively. In the correlation loading plot,

the most important protein spots involved in class membership are located

close to the respective classes. Finally, after the third VIP procedure when

the most important 20 spots were kept, the model resulted in a good sepa-
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Figure 3.7: PLS-DA analysis on 2-DE data for the 5-8 pH range with a sound

gel taken as reference. (A) PLS-DA biplot before the VIP procedure showing the

scores and loadings for only two tissue classes: healthy and sound before the VIP

procedure and (B) PLS-DA biplot after the third VIP procedure showing the scores

and loadings for only two classes: healthy and sound after the third VIP procedure.

From the 20 selected spots, spots 910, 1060, 1175 and 1206 were characteristic for

healthy tissue and the remaining spots 358, 521, 534, 685, 768, 775, 924, 940, 1017,

1032, 1097, 1137, 1151, 1152 and 1207 were characteristic for sound tissue. Circles

represent (healthy) and squares (sound) tissues.
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ration of the two groups along LV1. Seventy nine and eleven percent of the

X variance was explained by LV1 and LV2 respectively. Among these 20

protein spots, six were characteristic for the healthy class (spots 590, 584,

326, 660, 649, 655) and the remaining spots of the sound class. Nine out

of the twenty spots selected were also obtained with the univariate analysis

(Table 3.3). The univariate analysis revealed the presence of 17 significant

spots. Several different spot IDs in different pH ranges (3-6 and 5-8) gels

represent the same protein. For instance, the following pairs 1265 and 591,

1267 and 590, 1278 and 603 and 1392 and 659, represent the same protein

as confirmed by protein identification. Within the 5-8 pH range, other con-

firmed pairs are 768 and 441, 1206 and 660, 1207 and 663, and 603 and

1060.

PLS-DA analysis of the 3-6 pH range data after the third VIP when only

the 20 most important protein spots were kept showed an X-explained vari-

ance of 80 and 7 % with LV1 and LV2 respectively when data was matched to

a sound gel and 80 and 13 % when data was matched to a healthy gel. The

univariate statistical test revealed the presence of 12 and 25 significantly

different spots when data matched to a sound or healthy gels of which 0

and 7 corresponded to the ones found by the multivariate statistical anal-

ysis (Table 3.3). This is in accordance with previous reports where also a

higher number of differentially expressed spots were found when performing

multivariate analysis as compared to univariate analysis (Karp et al., 2005b;

Marengo et al., 2006). PLS-DA analysis of the 7-10 pH range data after the

third VIP procedure, with 20 spots kept showed an X-explained variance of

27 and 44 % and 10 % and 75 % with LV1 and LV2, respectively when data

matched to a sound or healthy gel respectively. The univariate statistical

analysis revealed the presence of 5 and 3 significantly different spots when

data matched to a sound or healthy gel of which four and one were also

selected with the multivariate statistical analysis (Table 3.3).



Proteomic analysis of core breakdown 57

3.3.3 Identification of relevant proteins

The statistically different spots obtained by the univariate and multivariate

approaches were analyzed by LC-ESI-MS/MS. Thirty nine out of 90 spots

(43 %) yielded a confident match with a pear or cross-species protein se-

quence from GenBank. An additional Mascot search against the apple EST

database confirmed most of these identifications and additionally revealed

15 spots, increasing the identification rate to 60 %. This proved that Malus

ESTs are a valuable data source for investigation of the poorly documented

pear proteome. Confidently identified protein spots are listed in Table 3.3.
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3.4 Discussion

Core breakdown disorder in Conference pears appears as a consequence of

an altered metabolism due to stressing storage conditions. The change in

expression of certain proteins in response to different abiotic stresses (ozone,

heat, metals, hypoxia, wounding, drought, salinity and cold) has been ex-

tensively reported in plant tissues (Salekdeh et al., 2002; Shen et al., 2003;

Cui et al., 2005; Yan et al., 2005; Hajheidari et al., 2005; Askari et al., 2006;

Mittler, 2006). As a result of abiotic stresses, enzyme activities are altered

which can lead to a disturbance of basic metabolism. In order to maintain

homeostasis under stress conditions, plants need to fortify resistance mech-

anisms such as ion transport, reactive oxygen species (ROS) scavenging and

osmolyte synthesis which are characteristic events during plant stress (Ma-

joul et al., 2003). In order to identify the cellular processes involved in

core breakdown disorder, proteins and enzymes identified in this study have

been grouped and will be discussed according to their function or metabolic

pathway. All comparisons refer to healthy conditions.

3.4.1 Core breakdown is associated with an altered energy

metabolism

This first group comprises enzymes involved in energy metabolism such as

triosephosphate isomerase (spot 1152), cytoplasmatic malate dehydrogenase

(spot 1032), fumarase (spot 775) and mitochondrial malate dehydrogenase

(spot 447). Triosephosphate isomerase plays an important role in several

metabolic pathways and is essential for efficient energy production. Its defi-

ciency has been pointed out as the most severe disorder of glycolysis (Mande

et al., 1994). It was up-regulated in gels from sound tissue. It was almost

absent in gels from healthy tissue and totally absent in gels from brown tis-

sue. In rice roots exposed to salt-stress, triosephosphate isomerase has been

reported to be up-regulated (Yan et al., 2005). It has also been pointed out

that when a plant is submitted to a stress, the resistance mechanisms that

need to be activated in order to respond to stress require an extra energy
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supply. The up-regulation of cytoplasmatic malate dehydrogenase in sound

tissue might be related to the increased glycolysis as evidenced through up-

regulation of triosephosphate isomerase as a way to translocate electrons

into the mitochondria so that ATP can be synthesized. Fumarase (spot

775) is an enzyme involved in the hydration of fumarate to form L-malate.

This enzyme was up-regulated in sound tissue. Fumarate has been shown

to act as an activator of malate dehydrogenase (Grisson et al., 1983). A

much higher malic acid content has been reported in sound tissue than in

brown (Pedreschi et al., 2009a) and seems to be related to an up-regulation

of fumarase in sound tissue. Degradation of fumarase in Arabidopsis cell

cultures submitted to induced oxidative stress has been reported (Sweet-

love et al., 2002). Brown tissue showed complete disappereance of fumarase.

The metabolic role of malate dehydrogenase has been reported to be consis-

tent with the cooperative behaviour of its subtrate malate and the allosteric

regulation of fumarate as an activator (Yang et al., 2000). Induction of ex-

pression of a malate dehydrogenase gene in pea plant exposed to a Cd2+

stress has been reported (Savenstrand & Strid, 2004).

Five isoforms of malic enzymes (spots 160, 161, 163, 165 and 167) were

up-regulated in brown tissue. This enzyme catalyzes the oxidative decar-

boxilation of L-malate to produce pyruvate, CO2 and NADPH. This enzyme

is considered to act as a housekeeping enzyme because it is involved in many

functions in plants: fruit ripening, anabolic functions to provide NADPH

and pyruvate for biosynthesis, catabolic functions to provide NADPH and

pyruvate for energy production by respiration and the maintenance of intra-

cellular pH (Edwards & Andreo, 1992). An increase in the level of NADP

malic enzyme has been suggested to be related to defense plant mechanisms

through providing building blocks and also energy for the biosynthesis of

defense compounds (Casati et al., 1999). For instance, when this enzyme

was assayed in healthy and disordered infected cotyledons of marrow plants

(Cucurbita pepo L.), the activity within the lesion was much higher com-

pared to the activity outside the lesion increasing about 2 fold compared

to the healthy tissue. The results were associated with the fact that in-

fected tissues needed to increase biosynthetic capacity (Tecsi et al., 1996).
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It seems that malic enzyme in stressed tissues increases activity due to de

novo synthesis and that the reducing power and pyruvate generated by this

enzyme can be used not only for respiration in cellular repair processes but

as substrates for fatty acid synthesis in order to repair membranes (Casati

et al., 1999). This might be the case for brown tissue. A possible role of this

enzyme in the TCA cycle flux control under specific stresses is not discarded

(Jenner et al., 2001).

Two ATP synthase beta subunit isoforms (spots 252 and 253) were also

found to be up-regulated in brown tissue. ATP synthases in general can syn-

thesize adenosine triphosphate (ATP) from adenosine diphosphate (ADP)

and inorganic phosphate. In rice leaves exposed to cold stress at differ-

ent temperatures, up-regulation of ATP synthase subunits was revealed

(Cui et al., 2005). From the results obtained, it seems that more energy

is needed as to try to cope with the applied stress. Nucleoside diphosphate

kinase (spot 476) was also up-regulated in brown tissue. This enzyme partic-

ipates in the exchange of phosphate groups between the different nucleoside

diphosphates. An enhanced expression of a gene encoding for nucleoside

diphosphate kinase in rice plants exposed to bacterial pathogen infections

has been reported (Cho et al., 2004).

3.4.2 Defense related proteins involved in core breakdown

A second group of identified differentially expressed proteins is involved in

defense mechanisms. The major allergen Pyrc1 (spots 659 and 660) was

down-regulated in sound tissue and almost absent in brown tissue. In gen-

eral, pathogenesis related (PR) proteins are considered to be involved in con-

ferring some kind of protection to the plant during periods of stress (Abdi

et al., 2002). The polygalacturonase-inhibiting protein (spot 768/441) is

a plant cell wall protein that protects plants basically from fungi invasion.

They interact with endopolygalacturonases secreted by fungi and inhibit

their enzyme activity favoring the accumulation of galacturonides which

activate plant defense responses (Wayne, 2005). It has been observed in

cantaloupes that as the fruit matured, the levels of this enzyme decreased
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in the fruit (Hunt et al., 2004). Polygalacturonase-inhibiting protein was

up-regulated in sound and brown tissue compared to healthy tissue. The

reason remains unknown.

The adenosine kinase isoform 2 protein is involved in catalyzing the

transfer of a phosphate group from ATP to NAD to form NADP (Zorb

et al., 2004; Kwade et al., 2005). Adenosine kinases are well characterized

in plants for their requirement for the calcium binding protein calmodulin,

thus its regulation is linked to stress-induced intracellular calcium release

(Kwade et al., 2005). This protein (spot 976) was up-regulated in sound tis-

sue. A potential role of adenosine kinases in stress signaling has been high-

lighted (Kwade et al., 2005). Evidence from several plant species revealed

that adenosine kinase activity is increased in response to abiotic stress condi-

tions (Delumeau et al., 2000; Kwade et al., 2005). As an example, adenosine

kinase activity levels were higher in the salt tolerant tomato species Lycop-

ersicon pimpinellifolium than in the salt sensitive one (Delumeau et al.,

2000). A possible role of adenosine kinases in the regulation of reactive oxy-

gen species (ROS) removal has been postulated (Kwade et al., 2005). Given

that the only way of synthesizing new NADPH is through the reduction of

NAD+ synthesized by NAD kinases or through the action of a NADH ki-

nase, the activation of adenosine kinases might be regarded as an important

first step towards ROS synthesis.

Another enzyme involved in the plant antioxidant system is ascorbate

peroxidase. Cytosolic ascorbate peroxidase, APX (spot 1103 and 1156) uti-

lizes ascorbic acid and its specific electron donor to reduce hydrogen peroxide

to water with the generation of dehydroascorbate which is spontaneously

disproportionated into ascorbic acid and dehydroascorbate. Monodehy-

droascorbate is directly reduced to ascorbic acid by NAD(P)H-dependent

monodehydroascorbate reductase. Dehydroascorbate reductase utilizes glu-

tathione for reducing dehydroascorbate into ascorbic acid. The oxidized

glutathione is regenerated by glutathione reductase utilizing the reducing

equivalents from NAD(P)H (Davletova et al., 2005). In this way, APX

together with the ascorbate-glutathione cycle works as a mechanism to pre-

vent the accumulation of toxic levels of hydrogen peroxide in plants. It has
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been pointed out in previous studies that in absence of cytosolic ascorbate

peroxidase, the entire antioxidant system of the plant collapses. As an ex-

ample, Davletova et al. (2005) found that when this enzyme was absent,

the entire hydrogen peroxide scavenging system collapsed having as conse-

quences high levels of hydrogen peroxide and protein oxidation in Arabidop-

sis thaliana. The induction of protective antioxidant enzymes when abiotic

stresses are applied to plants have been widely reported (Granier et al., 2000;

Van Breusegem et al., 2001). Our results showed that APX was induced in

sound tissue. In brown tissue, spot 1156 appeared but in significant smaller

amounts compared to sound gels. This might be the result of cell death

and protein degradation already taking place in brown tissue whereas sound

tissue is still capable of withstanding the high ROS burst. The reduction

or stop of plant growth under environmental stress conditions has been de-

scribed before (Van Breusegem et al., 2001). Under several stress conditions,

a decrease in the number of cells, cell division rates has been observed in

previous studies in leaves and roots (Granier et al., 2000; Alscher, 1989).

In a proteomic study of the disorder called ‘blossom-end rot’ in tomato

fruits, Casado-Vela et al. (2005) found that antioxidant enzymes where up-

regulated in the apparently healthy part of a disordered tomato. They also

found that in the necrotized or affected part of the tomato fruit the number

of spots detected was clearly lower than in the healthy half part or in the

healthy tissue, thus indicating extensive degradation of proteins. The much

lower number of spots found in brown tissue in our study might be the result

of the same degradation process. Glutathione-S-transferase (spot 1137) ap-

peared only in sound tissue and this enzyme has been pointed out as a key

enzyme in protection against free radicals (Moran et al., 1994). The level of

this enzyme has also been pointed out to increase under various oxidative

stress conditions (Moran et al., 1994). Monodehydroascorbate reductase

(spot 358) was also found to be up-regulated in brown tissue. Monodehy-

droascorbate reductase is the component in the ascorbate-glutathione cycle

in charge of regenerating reduced ascorbate. In Pisum sativum exposed to

drought a decreased activity of this enzyme was found which resulted in ad-

equate hydrogen peroxide removal in such a way that it did not accumulate

in the drought stressed leaves (Kumar Yadav et al., 2005).
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Glyoxalase (spot 432) was up-regulated in brown tissue. It showed to be

present in higher amounts in brown followed by sound and healthy tissue.

It has been shown in a previous study on transgenic tobacco plants that

overexpression of this enzyme leads to an increased salt tolerance (Sommer

et al., 2001). The Glyoxalase system is in charge of the enzymatic desin-

toxication of glyoxal, methylglyoxal and other α-oxoaldehydes formed by

lipid peroxidation, glycation and degradation of glycolytic intermediates.

Its overexpression at elevated levels of oxidative stress has been reported

(Fodoroff, 2006). Superoxide dismutase (spot 663/1207), another important

antioxidant enzyme, catalyzes the dismutation of superoxide into oxygen

and hydrogen peroxide, was significantly up-regulated in sound tissue. An-

other isoform of this enzyme appeared up-regulated in brown tissue (spot

664). This enzyme is involved in the detoxification of ROS through the

ascorbate-glutathione cycle. Up-regulation of this enzyme in areas affected

with blossom-end rot in tomato fruits has been reported (Casado-Vela et al.,

2005).

Chaperones including protein disulfide isomerase PDI (spot 985) and

heat shock protein HSP (spot 1008) both down regulated in sound and

brown tissue, are involved in the process of protein biosynthesis and correct

folding as well as in the transfer of proteins between organelles. In plants,

there is evidence of clear linkage with stress responses (Fodoroff, 2006).

3.4.3 Proteins involved in ethylene biosynthesis

A third group of identified proteins can be classified as proteins involved in

ethylene biosynthesis. The hormone ethylene is a modulator of plant growth

and development. It is involved in many aspects of plant life cycle including

seed germination, root hair development, senescence, abscission and fruit

ripening (Capitani et al., 1999). Ethylene is tightly regulated by internal

signals during development and in response to biotic (e.g., pathogen attack)

and abiotic stresses such as wounding, hypoxia, ozone, chilling, and freez-

ing (Lougheed, 1987). Low oxygen and high carbon dioxide concentrations

have been reported as controllers of ethylene biosynthesis and its action
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(Lougheed, 1987; Gorny & Kader, 1996a; Capitani et al., 1999). Three

isoforms of the 1-aminocyclopropane-1-carboxylate (ACC) oxidase enzyme

(spots 584, 590/1267 and 591/1265) were found to be down-regulated in

sound and brown tissue. ACC oxidase catalyses the final step in the biosyn-

thesis of ethylene. Brown and sound tissues were stored at very low oxygen

levels and very high carbon dioxide levels. Gorny & Kader (1996a) showed

for ‘Golden delicious’ apples that reduced oxygen and elevated carbon diox-

ide concentrations impeded ethylene biosynthesis, directly by reducing ACC

oxidase catalytic activity to convert ACC to ethylene, and indirectly by

blocking regulation of the genes encoding ACC oxidase. The abundance

of active ACC oxidase was reduced. ACC oxidase needs oxygen as co-

substrate and ascorbate acts as co-factor. Inactivation of this enzyme has

been related to high amounts of hydrogen peroxide (Vranova et al., 2002).

In our case, we observed a decrease in the expression level of the enzyme in

sound and brown tissue, which might be correlated to a certain point with

the described finding of inactivation and decreased activity. High hydrogen

peroxide concentrations could be present in disordered pears and result in

ethylene biosynthesis inactivation. It has also been suggested in previous

studies that the way plant growth and metabolism are affected by stress

conditions is through the interference of ROS with other signaling pathways

or molecules. There is evidence that plant hormones are influenced by ROS

signals (Burssens et al., 2000; Vranova et al., 2002).

3.4.4 Proteasomes involved in core breakdown

Three different proteasome subunit proteins were found to be up-regulated

in sound and brown tissues: α type 2 (1151), α type 5 (1381), and β

type 3 (1395). Proteasomes are involved in ATP/ubiquitin-dependent non-

lysosomal proteolysis of poorly folded and damaged proteins. They play

a key role in regulated proteolysis throughout the life cycle of plants (Sul-

livan et al., 2003). Proteasomes have been shown in previous studies to

play a key role in programmed cell death in plants but still more clear evi-

dence is needed (Kim et al., 2003; Tsunezuka et al., 2005). An increase in



68 3.5 Conclusions

proteasome abundance has been reported by Dawson et al. (1995) in inter-

segmental muscle cells undergoing programmed cell death. The cell death

mechanism involved in core breakdown disorder is something that should be

further investigated.

3.5 Conclusions

In this work a novel approach to study the physiological disorder core break-

down, that can affect Conference pears during CA storage, was employed.

Core breakdown can be considered as a model system for controlled at-

mosphere related physiological disorders. Proteins extracted from tissue

from healthy and disordered pears were subjected to a proteomic analy-

sis employing two-dimensional electrophoresis and protein identification via

LC-ESI-MS/MS. As a first step suitable protein extraction/precipitation

and 2-DE protocols were developed. A variant of the classical phenol ex-

traction/methanol ammonium acetate precipitation, with a pH of 8.0, 1 %

DTT and no PVPP added, proved to be the best. Optimal 2-DE protocols

for pH 3-6, 5-8 and 7-10 and different sample loads were also established.

Univariate and multivariate statistical techniques to analyze protein differ-

ences among the different tissue classes involved in core breakdown disor-

der (sound, brown, healthy) showed to be effective and consequent in the

results. It is suggested that both approaches should be used together to

account for the proteins that are really differentially expressed and not the

result of mere false positives. Spots recognized to be significantly different

by both approaches should receive strong attention. In general, multivari-

ate statistical tools such as PCA and PLS-DA are recommended when a

great amount of data is generated. This proteomic approach combined with

univariate and multivariate tools and LC-ESI-MS/MS identification of some

differentially expressed proteins was effective in giving a general snapshot

of the biochemical mechanisms involved in core breakdown. Proteins in-

volved in energy metabolism and antioxidant system were clearly involved

in the causes of the disorder, as well as ethylene biosynthesis. This study, for

the first time, provides a general overview of the biochemical mechanisms
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involved in core breakdown disorder in ‘Conference’ pears.





Chapter 4

Treatment of missing data

for multivariate statistical

analysis of gel-based

proteomics data

4.1 Introduction

Two dimensional electrophoresis (2-DE) requires proper data analysis tech-

niques to avoid misleading conclusions. The use of post run protein stains

for quantitative analysis is currently being questioned due to its limited

power in terms of dynamic range, sensitivity and variability (Miller et al.,

2006). The improved power of the DIGE approach arises from the use of

an internal standard (Tonge et al., 2001) which is used to calculate a stan-

dardized abundance of each spot and to match the spots across the gels.

The classical post run dyes are however still useful as long as the technical

variance is kept low and the number of replicates is high enough. The use

of appropriate statistical tools to interpret the data is a must, either with

classical dyes or with DIGE. The simplest statistical analysis commonly in-

volves pairwise comparison using parametric or non parametric tests while

71
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more complicated statistical analysis involves the use of multivariate statis-

tics and multiple comparison tests (Fuji et al., 2005; Tuomainen et al., 2006;

Pedreschi et al., 2007). Before applying a statistical test, its assumptions

need to be fulfilled and some data pre-processing might be required depend-

ing on the experimental data. If a parametric test is used, for every protein,

normality and homoscedasticity should be tested. For a small number of

replicates (3-6 in most proteomics studies), the Shapiro-Wilk test is the

most reliable test for normality (Shapiro & Wilk, 1965). It has been shown

that low intensity spots exhibit a smaller variance between replicate gels as

compared to high intensity spots (Grove et al., 2006). As the data should

be homoscedastic (show equal variances), some form of data transformation

(log, asinh, square root) is required (Karp et al., 2005b). Another important

issue is that samples should be independent to prevent false positives (Karp

et al., 2007).

Proteomics data always contain missing values; being a spot detected in

the reference or master gel but not in the sample gel. The main causes for

the occurrence of missing values are (i) spots below a threshold or detection

limit; (ii) mismatches caused by distortions in the protein pattern (iii) absent

spots due to bad transfer from the first to the second dimension or (iv) truly

absent spots from the samples. Two-dimensional data can have around 50

% missing values (Wood et al., 2004; Jung et al., 2005; Krogh et al., 2007).

However, there are no straightforward rules how to deal with missing values.

It has been demonstrated that the deletion of variables containing missing

values assumes that the number of missing values is relatively small and

completely at random (Little & Rubin, 1987). But, in gel-based proteomics,

the number of missing data is often considerable and not at random but for

instance correlated to the staining procedure or the mean volume percent

of the matched spots (Grove et al., 2006). If variables with missing values

are just discarded or ignored, a substantial bias can be introduced because

information is simply lost. One other possibility is filling the missing values

with zeroes or some lower threshold value. When a missing value is the re-

sult of a spot being below the detection limit, a threshold or zero value can

be justifiable. However, whenever a value is missing due to mismatching,



Treatment of missing data for multivariate statistical analysis 73

this would lead to wrong interpretation of the results (Little & Rubin, 1987;

Wood et al., 2004). Several methods have been suggested to impute missing

values such as: the row average method, k -nearest neighbor (KNN), singu-

lar value decomposition (SVD) impute algorithm (Troyanskaya et al., 2001;

Jung et al., 2006), Bayesian Principal Component Analysis (BPCA) missing

value estimation method (Oba et al., 2003) and the Maximum Likelihood

algorithm (Krogh et al., 2007).

Multivariate statistical packages such as Unscrambler (CAMO, Trond-

heim, Norway), Decyder EDA (GE Healthcare, Upsula, Sweden) and SIMCA-

P (Unimetrics AB, Sweden) can deal with missing values during multivariate

analysis (PCA, PLS-DA) avoiding the need to impute them. They rely on

the NIPALS algorithm to set the residuals for the missing values to zero dur-

ing the calculations of the principal components or latent variables. This

flexibility for the user to perform the analysis when missing data is present

can represent a serious problem if the amount of missing data is substantial.

Moreover, the amount of missing data that is considered to be substantial

to distort the results is debatable. Currently, the all gels against all gels

matching approach introduced by some image analysis packages (e.g., Pro-

genesis Same Spots), theoretically generates complete datasets suitable for

multivariate statistical analysis after proper data standardization. However,

technical issues intrinsically associated with 2-DE and image analysis such

as: gel distortions, missing spots due to bad transfer from first to second

dimension, incorrect spot merging or splitting, are ignored introducing mis-

leading values that generate a bias (Karp et al., 2008). Considering all the

possibilities available we believe it is crucial to be aware of the importance

of how missing values are faced. Whatever approach is taken in the end, one

must consider the structure of the data and a compromise should be found

between a sound statistical and biological interpretation of the data.

Multivariate statistics have a key role to play in ‘systems biology’ be-

cause much more information can be extracted than by a simple univariate

test. Therefore there is an urgent need to handle missing values in an ac-

curate way to draw realistic conclusions. When univariate statistical tests

are performed (e.g., t-test) it might be argued that missing values can be
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ignored analyzing only the available data. The reduced number of replicates

due to missing values would result in a reduced power and possibly also in

wrong conclusions. In both univariate and multivariate statistical analysis,

missing values represent a problem. The univariate statistical analysis in

presence of missing data is out of the scope of this study.

The main objective of this chapter is to focus attention on different tech-

niques to handle missing values for multivariate statistical analysis and the

subsequent possible impact on the interpretation of the results. Datasets

generated with classical stained dyes as well as DIGE will be utilized to

draw the recurring problem of missing data in gel-based proteomics data.

Different methods to handle missing values will be evaluated and their influ-

ence on the selection of important proteins through multivariate techniques

will be discussed. The results of this chapter were published in Pedreschi

et al. (2008b)3.

4.2 Materials and Methods

4.2.1 Proteomics data

Proteomics datasets from pear and banana were used as case studies. Tech-

nical details for pear and banana proteomics can be found in respectively

Pedreschi et al. (2008a) and Carpentier et al. (2007). For this reason the

experimental background of these datasets is only described in brief. The

pear dataset contains data from six independent biological replicate samples

for each of four treatments (different storage gas conditions). Proteins were

visualized by silver staining (Blum et al., 1987). Image analysis was per-

formed with the Image Master 2-D Platinum software 6.0 (GE Healthcare).

Spots were detected without spot editing and quantified as percentage vol-

ume. The banana data set contains data from three replicate gels for each

of four treatments (different sample dates; 2, 4, 8 and 14 days). Samples
3Pedreschi et al. (2008). Treatment of missing values for multivariate statistical anal-

ysis of gel-based proteomics data. Proteomics, 8, 1371-1383.
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were labeled using the fluorescent Cyanine dyes developed for DIGE (GE

Healthcare) according to the manufacturer’s recommendations. In order to

anticipate any dye specific effect, the samples were labeled at random with

Cy3 and Cy5 and randomized over the gels. The internal standard was a

mixture of all analyzed samples and was labeled with Cy2. Labeled proteins

were visualized using a TyphoonTM imager (GE Healthcare) and the gels

were analyzed using the Decyder EDA software. The data pre-processing

with DIGE occurs automatically in the DECYDERTM software: the data is

normalized using a ratiometric approach and a log10 transformation is used

on the standard abundance to stabilize the variance.

4.2.2 Handling of missing values

Three methods to handle missing values were tested which consisted of

two imputation techniques preceding the multivariate analysis (KNN and

BPCA) and simply dealing with the missing values during the multivariate

analysis (referred to as ‘NIPALS’).

4.2.2.1 k-Nearest neighbor (KNN)

The KNN method assumes a relationship between spot volume patterns of

groups of proteins. The KNN method selects spots showing spot volume

patterns similar to the spot of interest for which to impute missing values

(Jung et al., 2006). A weighted average of values from the k most similar

spots is used as an estimate for the missing value under concern. The contri-

bution of each spot is weighted by its similarity determined as the Euclidean

distance. The optimum number of k -neighbors has to be determined empir-

ically. The KNN imputation procedure was implemented in Matlab (The

MathWorks, Inc., Natick, MA, USA) by Jorsten et al. (2005) and applied

in this chapter using k=20. KNN has no theoretical criteria for selecting

the best k values. This number has to be empirically determined. In this

chapter a k=20 value was chosen because previous studies showed to be the

optimal number (Oba et al., 2003; Brock et al., 2008).
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4.2.2.2 Bayesian Principal Component Analysis (BPCA)

In BPCA the missing values are estimated from the known spot volumes

using principal component regression (PCR). The principal components are

estimated simultaneously with the regression coefficients of the PCR model

using a variational Bayes algorithm. After convergence of the algorithm

missing values are imputed. The BPCA imputation procedure was imple-

mented in Matlab (The MathWorks, Inc., Natick, MA, USA) by Oba et al.

(2003). BPCA consists of three processes as described above: (i) princi-

pal component regression, (ii) Bayesian estimation and (iii) Expectation-

maximization (EM) like repetitive algorithm. For a detailed explanation

the reader is referred to Oba et al. (2003). BPCA does not require parame-

ter optimization, since the parameter settings are predetermined on before

hand (Brock et al., 2008). BPCA depends on the number of principal axes

or eigenvectors. In BPCA the number of samples minus 1 is chosen as the

number of principal axes (Yoon et al., 2007). In this approach, the algorithm

automatically screens for those axes that are the most relevant. Scores and

loadings obtained with BPCA are slightly different from those obtained with

conventional PCA because BPCA has been specially developed for missing

value estimation.

4.2.2.3 Nonlinear Estimation by Iterative Partial Least Squares

(NIPALS)

Both Unscrambler and Decyder EDA softwares are able to perform multi-

variate analysis in the presence of missing data using the NIPALS algorithm.

In every iteration, during calculation of the principal components or latent

variables, the residuals for the missing elements in the least square function

are set to zero or the missing values are replaced by their minimum distance

projections onto the current estimate of the loading and score vector (Nelson

et al., 1996). This method is generally used in chemometrics and proteomics

(Grung & Manne, 1998) and is tolerant to small amounts of missing data

(up to 5-20 %).
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4.2.3 Performance of handling missing values

The performance of handling missing values was tested on a subset of the

DIGE dataset referred to as ‘complete DIGE’ dataset containing 542 pro-

teins matched across all the gels without missing values. The experimental

set-up is described in Figure 4.1. From this ‘complete DIGE’ dataset thirty

percent of the data was randomly removed. Using this dataset with arti-

ficially induced missing values, the various methods for handling missing

values described above were tested. Since the underlying normality and

equal variance assumptions are supposed to be met with DIGE data after

Decyder analysis (Karp & Lilley, 2005), transformation of the data was not

required. Outliers were detected using the 95 % Hotelling’s T 2 limit (John-

son & Wichern, 1998). The multivariate data analysis involved PLS-DA

analysis to discriminate the individual gels according to similar protein ex-

pression profiles. Cross-validation was applied to test the performance of

the models since the number of observations is too small to validate the

models on an independent test set. The VIP procedure was used to identify

the 50 most important proteins describing the difference in protein expres-

sion profiles. These selected proteins were compared between the different

approaches of handling missing values using the ‘complete DIGE’ dataset as

a reference. This procedure, starting from the induction of random missing

values, was repeated 10 times to evaluate its consistency. A method is con-

sidered to be ‘consistent’ if by repeating several times (10 in this particular

case), the obtained proteins are the same as the ‘real ones’ (obtained when

no missing values are present). PLS-DA and VIP analyses were performed

using The Unscrambler Version 9.1 (CAMO A/S, Trondheim, Norway).

4.2.4 Impact of missing values handling techniques on VIP

selection using incomplete DIGE data

To test the impact of different missing values handling techniques on the

final VIP selection, the original incomplete DIGE data (covering 1462 pro-

teins, containing missing values) was used. As the normality and equal
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Figure 4.1: Flow chart detailing the procedure followed for (A) testing the per-

formance of handling missing values using the ‘complete dataset’ composed of 542

totally matched proteins, ten times (10x) and (B) testing the impact of missing

values handling techniques on VIP selection using ‘incomplete datasets’: DIGE

and classical dyes. The asterisk indicates that missing values were not imputed

during pre-processing but were handled during the multivariate analysis through

the NIPALS algorithm.
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variance assumptions were assumed to be met, transformation of the data

was not required. Missing values were handled either during the multivari-

ate analysis (NIPALS) or by imputing them on beforehand using either the

KNN or BPCA method. PLS-DA and the VIP procedure were used to build

models able to explain the variance in the dataset. The followed procedure

is described in Figure 4.1.

4.2.5 Impact of missing values handling techniques on VIP

selection using classical dyes data

Normality was checked with the Shapiro and Wilk test. To meet the equal

variance assumption, different transformations were tested: no transforma-

tion, a logarithmic (log), inverse hyperbolic sine (asinh) and square root

transformation. Handling missing values during the multivariate analysis

(NIPALS) was compared to imputing them on beforehand using either the

KNN or BPCA method. If for a particular protein in one of the treat-

ments all replicates presented missing values but were clearly present in the

other treatments, they were treated as threshold values. Before performing

PLS-DA and the VIP procedure to select the fifty most important proteins

involved in class distinction, PCA outlier detection through the Hotelling

T 2 ellipse was performed.

4.3 Results

4.3.1 Matching of the data and estimation of missing values

The percentage of missing values in either the DIGE or classical dyes datasets

was 24 % and 29 % respectively (Tables 4.1 and 4.2). Despite the use of

an internal standard and the co-detection algorithm with the DIGE, the

individual gels still need to be matched resulting in substantial amounts of

missing values (Table 4.1). The total number of spots fully matched across

all samples of the DIGE dataset was 542.
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Table 4.1: Matching results for the incomplete DIGE dataset.

Gel (treatments: Detected spots % Spots matched to

Cy3, Cy5, Cy2) master gel 3

Gel 1 1601 75

Gel 2 1532 67

Gel 3 1692 100

Gel 4 1412 67

Gel 5 1548 78

Gel 6 1256 69

Table 4.2: Matching results for classical dyes dataset.

Treatments: Average detected % Spots matched to

spots (n = 6) reference gel

Condition 1 733 63

Condition 2 520 64

Condition 3 622 69

Condition 4 609 63

4.3.2 Performance of handling missing values

The ‘complete DIGE’ dataset (542 proteins) was used to evaluate the perfor-

mance of different methods to handle missing values after random removal

of 30 % of the data (Figure 4.2). Based on the score plots, none of the

methods clearly outperformed the others in terms of quality of the separa-

tion (Figure 4.3). The score plots are a useful visualization tool to inspect

if the real variance from the ‘complete dataset’ is being masked or not by

the tested methods to handle missing values in the derived datasets with

artificially induced missing values. Particularly, since we have the ‘complete

dataset’ a direct comparison can be made. However, looking at the proteins

involved in the classification, quantitative differences are observed. Depend-

ing on how missing values were handled, in average only 34 % to 63 % of the

selected proteins were identical to the fifty selected proteins obtained from

the ‘complete DIGE’ dataset (Figure 4.4). The number of imputed missing

values in these fifty selected proteins for all the methods tested did not dif-
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Figure 4.2: Distribution of missing values/protein for (a) random removal in

complete DIGE dataset (test dataset containing 542 proteins matched across all

gels) and (b) incomplete DIGE dataset (containing 1462 proteins).

fer extensively. In addition, the BPCA imputed data seems to be closer to

the original data (Figure 4.5) as compared to the KNN imputed data. The

calculated correlation coefficients for the real data vs BPCA imputed data

and real data vs KNN imputed data were 0.85 and 0.65, respectively. These

coefficients clearly show that BPCA provides more accurate estimates of the

missing values than KNN. The selection of proteins for the KNN also varied

extensively during the ten simulations (34 % ± 17 %; Figure 4.5). From

these results, BPCA showed to be the most consistent method in terms of

selecting those proteins that would have been selected if there would have

been no missing values in the dataset.
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Figure 4.3: PLS-DA score plots for the (a) complete DIGE dataset (542 proteins

matched across all gels), (b) after random removal of 30% of the data and treated

with Unscrambler (NIPALS algorithm), or imputed with (c) BPCA or (d) KNN.
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Figure 4.4: Number of proteins selected through VIP50*, coinciding with the 50

proteins selected on the original complete DIGE dataset. Artificial datasets were

created by randomly removing 30 % of the data from the ‘complete DIGE dataset’.

Subsequently, these missing values were handled using NIPALS, BPCA or KNN.

The procedure was repeated 10 times.
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Figure 4.5: Complete DIGE dataset versus imputed data with BPCA and KNN.

4.3.3 Impact of missing values handling techniques on VIP

selection using incomplete DIGE data

Depending on how missing values were handled different selections of 50 pro-

teins were obtained for the original incomplete DIGE data (covering 1462

proteins, containing 24 % missing values). Between KNN and BPCA 30

out of the 50 selected proteins were the same. When the missing data was

handled during the multivariate analysis (NIPALS), only one out of the

fifty proteins was the same when compared to the BPCA method which in

the previous section was shown to perform best (Figure 4.6). Most of the

proteins selected based on the BPCA imputed data contained no missing

values while the proteins selected when missing values were handled dur-

ing the multivariate analysis (NIPALS) contained large numbers of missing

values (Figure 4.7). The score plots and explained variances do not differ sig-

nificantly for the BPCA and KNN methods (Figure 4.8). But when missing

data was handled during the multivariate analysis (NIPALS), the variance

within each group seems to be artificially reduced (Figure 4.8) which was
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Figure 4.6: Venn diagram showing the overlap of the selected proteins through

PLS-DA and VIP50* for the incomplete DIGE dataset. VIP50* is defined as the

50 most important proteins selected by PLS-DA and VIP analysis.

not observed with the ‘complete DIGE’ dataset (Figure 4.3). By handling

missing data during the multivariate analysis or prior application of BPCA

and KNN, PLS-DA was able to explain 83 %, 86 % and 84 % of the total

variance when only the 50 most important proteins were kept although the

final selection of these proteins clearly differed (Figure 4.6).

4.3.4 Impact of missing values handling techniques on VIP

selection using classical dyes data

According to the Shapiro and Wilk test, approximately 5 % of the spots

failed normality. Applying different transformations did not reduce this

percentage but mainly stabilized the variances (data not shown). The log

transformation improved homoscedasticity since the standard deviation was

no longer correlated with the mean percentage spot volume. Thus, the

log transformation was applied for further processing. On average the fifty
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Figure 4.7: Percentage proteins from the VIP50* of the original incomplete DIGE

dataset containing 0-8 missing values depending on the missing value handling

technique applied. VIP50* is defined as the 50 most important proteins selected by

PLS-DA and VIP analysis. The maximum number of missing values in this dataset

would be 10 out of 12 because of the DIGE set-up (three dye approach).
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Figure 4.8: Score plots (PLS) after the VIP50* procedure for the incomplete

dataset (a) missing values handled during the calculations NIPALS, (b) BPCA

imputed, and (c) KNN imputed. VIP50* is defined as the 50 most important

proteins selected by PLS-DA and VIP analysis.



88 4.4 Discussion

10

BPCA
6

11

KNN

4

12

Nipals

5

29

NIPALS

Figure 4.9: Venn diagram showing the overlap of the selected proteins through

PLS-DA and VIP50* when using the different missing value handling techniques for

the incomplete classical dyes dataset. VIP50* is defined as the 50 most important

proteins selected by PLS-DA and VIP analysis.

selected proteins obtained by handling the missing values during the mul-

tivariate analysis (NIPALS) contained on average 8 missing values out of

24 values while after prior application of BPCA and KNN the fifty selected

proteins contained only 6 missing values (Figure 4.10). In addition, the score

plots obtained after the treatment of missing values and the final selection of

the 50 most important proteins according to the VIP procedure and amount

of explained variance are shown in Figure 4.11.

4.4 Discussion

Missing values are often present in classical stained and DIGE gels and must

be treated appropriately. In general, less intense spots are more susceptible

to be missing; nonetheless, these proteins might represent an important class

responsible for regulation and signaling (Wood et al., 2004; Krogh et al.,
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Figure 4.10: Percentage proteins from the VIP50* containing 0 to more than

12 missing values depending on the missing value handling strategy applied for

the incomplete classical dyes dataset. VIP50* is defined as the 50 most important

proteins selected by PLS-DA and VIP analysis. The maximum number of missing

values in this dataset would be 23 out of 24.
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Figure 4.11: Score plots (PLS-DA) after the VIP50* procedure for the classical

dyes dataset (563 proteins containing 29 % missing values) (a) missing values ig-

nored during the calculations, (b) BPCA imputed and (c) KNN imputed. VIP50*

is defined as the 50 most important proteins selected by PLS-DA and VIP analysis.
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2007). The introduction of more and more sensitive mass spectrometric

techniques, allow the identification of this low abundant class of proteins. In

addition, currently many diagnostic studies rely on data mining techniques

to assign samples to a certain group, thus the low abundant fraction proteins

is essential (Karp et al., 2008). Discarding such proteins would result in

enormous loss of valuable biological information. The BPCA method showed

to be the most consistent in terms of selecting most of the proteins that

would have been selected if there were no missing values in the data while

KNN tended to distort the structure of the original data (Figure 4.5). This

was confirmed by the calculated correlation coefficients.

When evaluating the three methods to handle missing values on the

original DIGE dataset (1462 variables, 24 % missing values), the fifty most

important proteins selected with PLS-DA by handling the missing values

during multivariate analysis was completely different from the results ob-

tained after imputation by BPCA or KNN (Figure 4.6). An explanation for

this is that missing values for proteomics data are not just the result of com-

pletely random events. This can be clearly seen in Figure 4.2 in which the

distribution of missing values is plotted for the artificial dataset based on the

‘complete DIGE’ dataset and for the original incomplete DIGE dataset. By

just discarding the missing dimensions, Eisen et al. (1998) found cluster of

genes with many missing values when carrying out a cluster analysis on gene

expression profiles. This finding was caused by ignoring the missing values

which is similar to assume that the expression levels are the same within

an experimental group. The presence of missing data in the multivariate

analysis thus caused a bias towards the selection of proteins containing 60

% missing values (Figure 4.7). It has been shown that NIPALS tends to

cause loss of robustness as the amount of missing values increases to 20%

(Grung & Manne, 1998) compared to other algorithms such as BPCA (Oba

et al., 2003) or Multiple imputation (MI; Allison 2000). It is worth to men-

tion here that not only the total amount of missing data in the dataset (24

%) is important but how it is distributed among the different proteins. For

instance, in the ‘incomplete DIGE’ dataset, 27 % of the total number of

proteins containing missing values showed to have missing values equal or
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higher than 50 %.

From the original datasets false positives or negatives cannot be rec-

ognized, but imputation of missing values by BPCA is more appropriate

than just handling them during the multivariate analysis. In contrast to the

BPCA method that includes maximum likelihood estimation, the other two

methods do not take into account the uncertainty associated with the pre-

diction of the missing values. In addition the maximum likelihood algorithm

does not assume the existence of missing values completely at random across

all the observations but only at random within one or more subgroups (e.g.,

missing more among low abundant proteins than high abundant proteins,

but within this low abundant category they are missing at random) which is

an advantage. However, the total uncertainty associated with the prediction

is not included and some other features such as the dependency of missing

values on the characteristics (e.g., abundance, hydrophobicity, etc) of the

proteins might be disregarded.

For the classical dyes dataset, the normality and equal variance assump-

tions were tested before performing the statistical analysis. The use of dif-

ferent transformations to stabilize the variance has been described before

for proteomics data (Jung et al., 2005; Hunt et al., 2005; Tuomainen et al.,

2006; Grove et al., 2006). For the classical dyes dataset it was shown that

applying a log transformation is only needed to stabilize the variance but

not to turn the data normal as 95 % of the data was already normally dis-

tributed regardless the transformation applied. For the different ways to

handle missing data in the classical dyes dataset, 60 % homology in terms

of the same selected 50 most important proteins remains (Figure 4.9). It

has been shown in a previous study with gene expression data by Bras and

Menezes (Bras & Menezes, 2006) that PLS based imputation methods per-

formed better when the correlation structure of the data is weak (e.g., non

time series experiments), as this experiment. However, with all the datasets

tested (time series, non-time series and mixed experiments) BPCA in most

of the cases outperformed the PLS based estimation methods. The fact

that the three of them yielded more or less the same results is encouraging

in terms of robustness for a biological interpretation of the data, given that
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a choice has to be taken. Some examples of how the imputation methods

are affecting the inclusion of particular proteins in the final VIP selection

for the ‘pear dataset’ are given in Figure 4.12. All these proteins were vi-

sually inspected and confirmed as real spots. The figure shows both the

imputed and original non-missing observations. In case of BPCA and KNN

imputed data the VIP selection is based on the combination of the original

non-missing observations with the respective imputed values. In case of the

NIPALS dataset, the VIP selection is based on the original non-missing ob-

servations only. A typical protein included in all final VIP selections after

each of the three methods used to deal with missing data (Figure 4.12 (A))

showed imputed values similar to the original non-missing spot volumes,

suggesting accurate imputations. The protein selected by the three meth-

ods showed to be involved in a physiological disorder in pears which confirms

what was found in our previous study (Pedreschi et al., 2007). Whenever

a protein was not selected after one missing values handling method but

was selected by the remaining two missing values handling methods (Figure

4.12 (B-D)) this was due to the fact that the imputed values were clearly

different from each other and the original non-missing values. However,

one needs to be careful in interpreting data of individual proteins (an im-

plicit univariate approach) as the selected proteins were identified within

their original multivariate context. One possible argument, for the disagree-

ment in performance of the NIPALS algorithm between this dataset and the

‘incomplete DIGE dataset’ might be related to the total percentage of indi-

vidual proteins containing huge amounts of missing data. Even when this

classical dyes dataset presents a higher total amount of missing values (29

%) than the ‘incomplete DIGE’ dataset (24 %), the classical dyes dataset

only presented 13 % of the total proteins containing missing values with

50 % or more missing values. This feature leads to a better performance

of the NIPALS algorithm for this particular dataset. It might be argued

that a ‘preliminary filtering’ of proteins, in terms of the maximum amount

of missing values allowed within each protein would be good practice but

would still be subjective in where to set the maximum.
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Figure 4.12: Observed and imputed spot volume values for 4 selected proteins

(plot A-D) from the ‘classical dyes dataset’. Treatments (1-4) stand for the differ-

ent storage conditions used. The open symbols represent the imputed values us-

ing either BPCA (diamonds) or KNN (triangles) imputation. The closed symbols

(circles) represent the original non-missing observations making up the NIPALS

dataset. Plot A, ‘None differs’ shows data for a protein (439) that was included

in the VIP selection for all three missing values handling methods (either imputed

during preprocessing, by BPCA or KNN imputation, or handled during the mul-

tivariate analysis through the NIPALS algorithm). The other plots (B-D) show

data for proteins (respectively 401, 589 and 348) that were NOT selected after the

missing values handling method referred to in the heading of the plot, but were

selected by the other two missing values handling methods.
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4.5 Conclusions

Data pre-processing steps have a large impact on the final selection of the

most important proteins when using multivariate statistical tools such as

PLS and VIP and heavily rely on how missing values are treated. There is

no absolute truth in terms of which is the most appropriate way to deal with

missing data, however, from the ones studied, BPCA gave the best result.

We recommend: (1) not to discard proteins containing missing values from

the start, (2) estimate the amount of missing values in the dataset and within

each individual protein, (3) based on the amount of missing values make a

choice to impute missing values with an appropriate available method (we

recommend BPCA in our case), (4) go back to the gels to check whether

those selected proteins are real spots and not just artifacts or threshold

values.





Chapter 5

Physiological implications of

controlled atmosphere

storage

5.1 Introduction

Fruits are often stored under controlled atmosphere (CA) conditions to ex-

tend their storage shelf life. For any given commodity, optimal oxygen and

carbon dioxide concentrations must be determined in order to reduce respi-

ration, ethylene production rates and action, delay ripening and senescence

as well as to reduce the growth of pathogens (Kader, 2002). However, even

when the applied external gas concentrations are relatively high, the oxy-

gen concentration across plant tissues may fall because of the large diffusion

gradients that are required to direct oxygen across the tissue at a rate fast

enough to maintain the rate of oxygen consumption (Geigenberger, 2003;

Ho et al., 2006b, 2008). The oxygen level plays a key role in cellular func-

tion and metabolism. Low levels of oxygen, for instance, can trigger cellular

damage leading to cell injury and death. There should be sufficient oxy-

gen to maintain mitochondrial activity in order to provide enough ATP and

essential substances for normal metabolism (Grinberg et al., 1998).

97
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The hypothesis on the formation of anoxic zones when Conference pears

are stored under reduced oxygen concentrations has been extensively ex-

plained in a diffusion context (Lammertyn et al., 2003b,a; Ho et al., 2006b).

Depending on the size of the fruit and ripening stage, toward the center

of the fruit, local anaerobic conditions may exist (Ho, 2008) given certain

CA conditions. But the physiological interpretation and consequences have

so far been largely ignored. The use of proteomic approaches in the area

of fruit and vegetable physiology has been increasing over the last years

(Hjern et al., 2006; Rocco et al., 2006). However, in the area of postharvest

physiology, proteomics is a fairly new approach. Research conducted on

other commodities and physiological disorders has been limited to isolated

assays trying to find explanations for the disorders under study (Burmeis-

ter & Dilley, 1995; Alferez et al., 2005; Lurie & Crisosto, 2005; Sala et al.,

2005). Only a limited number of comprehensive studies aiming at under-

standing the physiology behind postharvest disorders have been reported so

far (Casado-Vela et al., 2005; Pedreschi et al., 2007, 2009a).

In Chapter 3, focus was given to the characterization of browning related

proteins (Pedreschi et al., 2007) in stored pears. However, a specific focus

on the controlled atmosphere conditions applied at an early stage, before

browning is evident has not been conducted so far. In addition, as shown in

Chapter 4, the gel-based proteomics approach demands extensive data pre-

processing in order to apply correctly statistical tests and be able to draw

sound biological conclusions. Thus, the objective of this Chapter is to study

the effects of four different controlled atmosphere conditions on the protein

levels to better understand the physiological effects of controlled atmosphere

storage on Conference pears applying all data pre-processing steps discussed

in Chapter 4. The results of this chapter were published in Pedreschi et al.

(2008a)4.
4Pedreschi et al. (2008). Physiological implications of controlled atmosphere storage

of Conference pears (Pyrus communis L.): a proteomic approach. Postharvest Biology

and Technology, 50, 110-116.
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5.2 Materials and Methods

5.2.1 Fruit material

Pears (Pyrus communis L cv. Conference) were harvested in the orchard

of the Centre for Fruit Culture in Rillaar (Belgium). The trees in this

orchard are planted along the north-south axis and hence, with exception

of the corner trees, have a west and east side. Homogeneous size pears

were picked randomly from the east side at a height of 2 m. One batch of

pears was picked at their commercial harvest date (September 8th, 2004) as

determined by the Flanders Centre of Postharvest Technology (Belgium).

These fruit were submitted to pre-cooling in air at −1 ◦C for three weeks

before applying controlled atmosphere conditions of either 2.5 % O2 and 0.7

% CO2 (commercial condition), 15 % O2 and 0.6 % CO2 (high O2 condition)

and 2.5 % O2 and 10 % CO2 (high CO2 condition). Pears from these CA

conditions did not present any visual symptom of disorder. A second batch

of pears was picked two weeks after the commercial harvest date (September

22nd, 2004) from the same trees and immediately stored under 1.0 % O2

and 10 % CO2 at −1 ◦C with no pre-cooling period to induce the browning

disorder. After six months of CA storage, pears from the different conditions

were sampled. Pears were cut perpendicularly to the stem-calyx axis at 5 cm

from the bottom of a pear. Tissue samples were taken from the equatorial

region excluding the skin and core. From all pears only sound (non-brown)

tissue was sampled. Samples were immediately frozen in liquid nitrogen and

kept at −80 ◦C until further analysis. Six independent biological replicates

of tissue samples were prepared based on pooled tissue coming from 6 pears

each. Harvest time and pre-cooling regime were not used as real independent

treatment factors but were just part of the standard protocol to induce

browning disorder in Conference pears. The aim was to use pears from the

browning inducing conditions (that would definitely develop browning) as a

reference for those fruit stored under the three other CA conditions where no

visible browning was induced but where protein changes would be triggered

to various degrees.
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5.2.2 Protein extraction

Proteins were extracted with a modified phenol extraction, methanol ammo-

nium acetate precipitation method optimized for pear tissue by Pedreschi

et al. (2007) and detailed in Material and Methods of Chapter 3.

5.2.3 2-DE

The same protocol described in Material and Methods of Chapter 3 was

used for protein separation. IPG strips of a 5-8 pH range were used.

5.2.4 Protein visualization and image analysis

Proteins were visualized by silver staining (Blum et al., 1987) or by colloidal

Coomassie Brilliant Blue (CBB) G-250 (Neuhoff et al., 1988). Image analy-

sis was performed with the Image Master 2-D platinum software 6.0 (Amer-

sham Biosciences). Spots were detected without spot editing and quantified

as percentage volume. Silver stained gels were used as analytical gels and

Coomassie stained gels as preparative gels for further LC-ESI-MS/MS pro-

tein identification.

5.2.5 Statistical data analysis

The 2-DE data calculated as spot percentage volume were pre-processed

before multivariate statistical analysis. Gels were matched to a reference

gel composed of equal amount of samples from all the different treatments.

Missing values were imputed with the BPCA (Bayesian Principal Compo-

nent Analysis) method described by Oba et al. (2003) as detailed in Chap-

ter 4. Data was log transformed to stabilize variance and outlying gels

were removed with the 95 % Hotelling’s T 2 limit (Johnson & Wichern,

1998). Data was also mean-centered and variables weighed to give them

equal (unity) variance. Partial least square discriminant analysis (PLS-DA)

was performed to cluster the individual gels according to similar protein
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expression profiles. The correlation loading plots were used to identify the

proteins which significantly contributed to class discrimination. The vari-

able important plot (VIP) was used as a formal tool (Karp et al., 2005b)

based on the correlation loadings to identify the most important proteins de-

scribing the differences in protein expression profiles among the treatments.

After selection of 100 proteins with PLS-DA and VIP procedure, these pro-

teins were checked for downstream processing. Only successfully identified

proteins were used to re-build a PLS-DA model. The details of the mul-

tivariate statistical procedure can be found in Chapter 3 (Pedreschi et al.,

2007). The final selected proteins were submitted to a confirmatory one-way

ANOVA (p < 0.05) and treatment differences were assessed by a Tukey test

(p < 0.05). Missing value imputation and log transformation was imple-

mented in Matlab 7.0 (The Mathworks, Inc. 2007). PLS-DA was performed

using The Unscrambler Version 9.0 (CAMO A/S, Trondheim, Norway) and

the univariate statistical analysis using SPSS version 16.0 (Illinois, USA).

5.2.6 Protein identification

Proteins were first trypsin digested. The generated peptides were separated

and identified through LC-ESI-MS/MS. The detailed approach described in

Materials and Methods of Chapter 3 was used. Protein identification was

carried out in collaboration with the Biomedical Research Institute, Hasselt

University and School of Life Sciences, Transnationale Universiteit Limburg,

Diepenbeek, Belgium.

5.3 Results

The 2-DE images for the different treatments can be observed in Figure

5.1. PCA analysis was first carried out to explore for a possible discrimi-

nation among the different treatments (Figure 5.2(a)) and it showed that

the different conditions applied do have an influence on the protein levels of

stored Conference pears. Since the applied treatments are known, PLS-DA

analysis was carried out to enhance the discrimination among the different
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Figure 5.1: 2-DE images for the different CA conditions: (a) commercial con-

dition, (b) browning inducing condition, (c) high CO2 condition and (d) high O2

condition. Separation of proteins was realized on a 24 cm strip, 5-8 pI.

treatments (Figure 5.2(b)) and to correlate the different proteins with the

applied treatments. The commercial CA condition was well separated from

the high O2 and high CO2 CA conditions along LV1 and from the brown-

ing inducing condition along LV2. The total percentage explained variation

corresponded to 17 % and 13 %, respectively. The oxygen concentration

seems to be critical and might be favored also by an elevated carbon dioxide

concentration.

In order to select the most important proteins involved in class discrim-

ination, PLS-DA was rerun with only the 100 proteins selected through the

VIP procedure. A better model was obtained in which 48 % and 24 %

of the total X variance was explained by LV1 and LV2 respectively (data

not shown). These 100 proteins were checked as being real spots and also

for downstream processing (LC-ESI/MS-MS identification). Only 17 pro-

teins remained and were successfully identified. With these proteins, a new

PLS-DA model was obtained that explained 47 % and 22 % of the total
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Figure 5.2: PCA (a) and PLS-DA (b) score plots to assess for treatment differences

considering all proteins.
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Figure 5.3: Biplot obtained after filtering and keeping the successfully identified

proteins. Seventeen proteins were kept and the model was re-built. Squares stand

for the commercial condition, circles stand for the browning inducing condition,

triangles stand for the high CO2 condition and diamonds stand for the high O2

condition. The percentage explained X and Y variance for the first two latent

variables (LV1 and LV2) are shown on the axes.

X variance and 31 % and 28 % of the Y variance with the first two latent

variables (Figure 5.3). The commercial CA condition was clearly separated

from the browning inducing condition and the high O2 and high CO2 condi-

tions. One-way ANOVA confirmed that all seventeen selected proteins were

significantly different between the treatments at a p < 0.05.

Energy metabolism related proteins were clearly important in distin-

guishing among the four treatments (Table 5.1). The glycolytic enzyme

triosephosphate isomerase was up-regulated in all treatments as compared to

the commercial condition. NAD dependent malate dehydrogenase (spot 583)

was down-regulated for all the treatments as compared to the commercial

treatment (Table 5.1). In addition, adenosine kinase was up-regulated in all

treatments as compared to the commercial condition. Cobalamine indepen-

dent methionine synthase isoforms were up-regulated for the high CO2 and

high O2 conditions as compared to the commercial and browning inducing
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conditions. However, the specific role of the oxygen and carbon dioxide con-

centration was not evident. The cell division protein 48 remained unchanged

except for the high O2 conditions, presumably as a direct response to the

elevated oxygen concentration as compared to the other conditions. Defense

related enzymes, such as the molecular chaperone HSP70 was mainly down-

regulated under the browning inducing condition compared to the rest of

the evaluated conditions. Selenium binding protein was also up-regulated in

all conditions as compared to the commercial condition. 40S ribosomal SA

protein seems to be affected by the carbon dioxide concentration. Thus, it

was statistically similar for the browning inducing condition and high CO2

condition compared to the remaining conditions characterized by a low car-

bon dioxide concentration. The polygalacturonase inhibiting protein was up

regulated for all conditions except the optimal commercial condition. The

major allergen Pyrc 1 was clearly down regulated in the conditions of low

oxygen and high carbon dioxide (Table 5.1). Ethylene biosynthesis related

proteins were clearly dependent on the oxygen and carbon dioxide concen-

trations. Thus, ACC oxidase was down regulated under very low oxygen

and high carbon dioxide concentrations such is the case of the browning

inducing condition.
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5.4 Discussion

Our results show that profound responses are imposed on primary metabolic

pathways such as respiration during CA storage of Conference pears. Cells

respond to the storage conditions by implementing survival strategies to

adapt to the stress conditions. In this context, we could clearly show that

under browning inducing conditions and high O2 and high CO2 conditions,

there was an up-regulation of the key enzyme: triosephosphate isomerase

as compared to the commercial condition. Since triosephosphate isomerase

is at the crossroads of glycolysis, gluconeogenesis and the oxidative and re-

ductive pentose phosphate pathways (Dennis et al., 1998), it plays a critical

role in metabolic flexibility towards anaplerotic pathways. These pathways

provide molecules needed to carry on basic metabolism as well as defensive

mechanisms against stresses. This is the case for NADPH which is not only

needed for biosynthetic processes such as membrane repair damage but is

also indispensable for the ascorbate glutathione antioxidant system. In a

previous metabolomic study on core breakdown in ‘Conference’ pears (Pe-

dreschi et al., 2009a), some indication of pentose phosphate pathway activa-

tion was found as an alternative source for obtaining reducing equivalents.

Our results indicate that respiratory pathways at least at the level of gly-

colysis and TCA cycle are clearly being affected by the conditions applied.

Previous studies on pear cells, showed that exposure to for instance ele-

vated carbon dioxide concentrations results in down regulation of glycolytic

enzymes such as phosphofructokinase and pyrophosphate fructokinase with

little change in other glycolytic enzymes (Kerbel et al., 1990). The fact that

adenosine kinase was also up regulated in all conditions as compared to the

commercial condition might be related to the increased energy demand to

surpass the stressful storage conditions (Dobrota, 2006).

Respiratory pathways provide carbon skeletons for aminoacid synthesis

which are the building blocks of proteins. From the obtained proteomics

data in this study, no clear effects about global protein synthesis alteration

are observed. The activation of the two isoforms of cobalamine independent

methionine synthase that were up-regulated for the high CO2 and high O2
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conditions as compared to the commercial and browning inducing condi-

tions seems to be related to the activation of methionine related pathways

for polyamine production and ethylene biosynthesis. Methionine, as men-

tioned previously, can be further converted into polyamines. Polyamines, in

turn are involved in maintaining ion balance, in chromatin protection, and

in decreasing the generation of reactive oxygen species. An increase in the

polyamine putrescine was observed on pears submitted to browning inducing

conditions (Pedreschi et al., 2009a) even though this brown tissue is expected

to be the result of a collapsed antioxidant system and an over production of

ROS. In addition to putrescine increase, several different defense mechanisms

exist to scavenge ROS such as the ascorbate-glutathione cycle, tocopherols,

polyphenols, among others. Thus, the higher increase of putrescine in brown

tissue compared to sound tissue reveals that several defense mechanisms are

simultaneously taking place and that putrescine alone is not enough to fight

against the high ROS generation. In a previous study on banana meristems,

increased levels were observed and positively correlated with the survival

rate after cryopreservation (Ramon et al., 2002). Increased levels of me-

thionine synthase have also been reported in barley leaves submitted to salt

stress (Narita et al., 2004). Due to the storage stress, several defense related

proteins were affected. For instance, the chaperone molecule HSP70 essen-

tial for maintenance and restoration of protein homeostasis during stress

(Baniwal et al., 2004) was down-regulated as the oxygen concentration di-

minished. This might be due to the ATP depletion as low oxygen levels

generally results in a decrease in the pool of chaperones as these are highly

dependent on the levels of phosphorylation (Martinus et al., 1995). The 40S

ribosomal protein SA has been speculated to be involved in the formation

of the translation initiation complex essential for protein synthesis. During

yeast fission, this protein was shown to be essential for cell viability and its

genetic depletion caused a complete inhibition of the 40S ribosomal subunit

production (Perreault et al., 2008). For Conference pears, the 40S ribosomal

protein SA was down-regulated under elevated CO2 conditions.

Finally, the major allergen Pyrc 1 was clearly down-regulated by a high

carbon dioxide content and very low oxygen concentration. In a previous
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study with different cultivars of apples, controlled atmosphere storage (3 ◦C,

2.5 % O2, 1 % CO2) was shown to reduce the allergenicity by 15 % compared

with storage in air at 2 ◦C (Bolhaar et al., 2005). At least in apples, a

decrease of allergenicity has been related to an oxidative reaction. Formation

of o-quinones formed by oxidation of polyphenols by the enzyme polyphenol

oxidase (PPO) was suggested to modify the tertiary structure of allergens

and participate in the cross linking of proteins, thus reducing allergenicity

(Bolhaar et al., 2005; Garcia et al., 2007). Our results showed that controlled

atmosphere storage conditions with elevated carbon dioxide concentrations

reduce the presence of the allergen which is involved in defense mechanisms

and shows sequence homology with the ones found in apple.

Figure 5.4 summarizes under browning inducing conditions a postulated

series of events occurring during storage. Further studies should focus on

studying the direct effect of gas conditions on protein level changes. Under

browning inducing conditions, the respiration pathway is impaired involving

up regulation of triosephosphate isomerase suggesting activation of pathways

like the pentose phosphate to maximize the production of reducing molecules

needed for membrane damage repair and antioxidant system. TCA enzymes

were also regulated. The synthesis of enzymes involved in methionine related

pathways needed for the synthesis of ethylene related proteins are reduced.

As a consequence of the alteration of primary metabolism pathways, defen-

sive mechanisms are induced as well.

5.5 Conclusions

The influence of storage conditions on the protein profiles was demonstrated.

Sub-optimal storage conditions impaired respiration pathways and activated

defensive mechanisms in order to surpass the stressful conditions. Proteins

clearly down regulated by too low oxygen or too high carbon dioxide con-

centration are ACC oxidase and the major allergen Pyrc 1 which in turn is

related to defensive mechanisms. It should be remarked that even though

proteins are not statistically significant in terms of abundance change (an
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Figure 5.4: A postulated overview of the different metabolic pathways and pro-

cesses affected by browning inducing conditions (1 % O2, 10 % CO2, no-precooling

and fruit from late harvest). *NADPH can be further utilized by the ascorbate-

glutathione cycle. TPI: triosephosphate isomerase, MDH: malate dehydrogenase,

MS: cobalamine independent methionine synthase. The ‘+’, ‘-’ and ‘0’ synmbols
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mercial condition.
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implied univariate approach), small changes all added up might become

important. These small changes are in fact accounted when using a mul-

tivariate statistical approach. In addition the presence of certain amount

of protein might not be correlated to the activity of the protein. We be-

lieve, this proteomics approach is not only powerful in terms of providing

an overview of what is happening at a fundamental level but in terms of

selecting for example appropriate biomarkers (proteins) as to be able to de-

tect metabolic disorders at an early stage thus reducing economical losses.

Further studies should focus on isolating the effects of the different factors

such as gas concentrations, harvest time, pre-cooling effect and other pre-

harvest factors known to be involved in metabolic disturbances. In addition,

more simplified experimental systems in which for instance the barrier to

gas transport is reduced and the short term effect is evaluated should be

used (See Chapter 6).





Chapter 6

Short term changes of

protein profile in pear tissue

during storage

6.1 Introduction

Pre-harvest and post-harvest factors (Franck et al., 2007) influence the ap-

pearance of core breakdown disorder in ‘Conference’ pears. However, it is

widely accepted that the CA composition triggers the onset of the disorder.

The critical factor is the internal concentration of oxygen within the cells

and not really the environmental concentration of oxygen. This internal

concentration is affected by the crop resistance to oxygen diffusion, rate of

utilization and the differential partial pressure between the crop exterior and

interior (Kays, 1991). Kays (1991) classifies low oxygen stress in three cat-

egories: (i) severe stress when anaerobic conditions exist, significant losses

are observed and can eventually end up in cell death, (ii) moderate stress

when the oxygen availability is above that leading to anaerobiosis, (iii) mild

oxygen stress that does not result in injury and can be used to extend shelf

life and maintain quality of the products (Kays, 1991). Depending on the

duration of the stress, the plant will be capable of recycling the metabolites

113
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formed such as ethanol and pyruvate because these reactions are reversible

when returning to aerobic conditions. Undesirable changes are manifested in

the aroma and flavor profiles. The way the product will respond to carbon

dioxide is dependent on the nature of the product, duration of the expo-

sure, concentrations within the tissue and the internal oxygen concentration

(Kays, 1991). High carbon dioxide levels favor the incidence of internal and

external physiological disorders in different commodities.

The use of gel-based proteomics requires a huge time investment in pro-

tocol optimization and data processing. We have shown in the previous

chapters the evolution followed in terms of understanding core breakdown

by using proteomics means together with improving the approach followed

to analyze the data. As we proceed, other challenges appear. The use of

classical dyes used in the previous chapters, even though still valid if the

number of replicates is high enough, have the problem of high technical

variation. Differential in gel electrophoresis (DIGE) reduces the gel to gel

variation allowing the multiplexing of samples and the introduction of an

internal standard.

With the introduction of more sensitive MS equipment, spot overlap

becomes evident in 2-DE protein separation (Campostrini et al., 2005; Hun-

sucker & Duncan, 2006). Within a spot with several protein identifications,

the one involved in the regulation could be incorrectly assigned. More fre-

quently the information is discarded, as it is unclear which protein species

has the highlighted fold change or even whether the fold change is a com-

posite for different proteins each with differing relative expression levels.

Different approaches to counteract the problem involve the use of narrow

range IPG strips, sample fractionation methods, different sample prepara-

tion conditions and modification of conditions during 2-DE (Hunsucker &

Duncan, 2006). The use of spectral counts can partially circumvent this

problem. Spectral counting consists of counting the total number of spec-

tra representing identified peptides for a certain protein (Liu et al., 2004;

Deutsch et al., 2008) and has been shown to correlate closely with protein

concentration (Liu et al., 2004).
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This chapter aims to understand the effect of the CA composition on

the metabolism of ‘Conference’ pear, regardless of storage time and actual

browning development. Thus, the current chapter focuses on protein ex-

pression changes in thin pear slices submitted to extreme gas compositions

using 2-DE DIGE combined with a rigorous statistical analysis of the data

preceding LC-ESI MS/MS identification of the relevant proteins. The chal-

lenge of spot overlapping described before will also be faced and tackled.

The results of this chapter have been published in Pedreschi et al. (2009c)5.

6.2 Materials and methods

6.2.1 Plant Material

Pears (Pyrus communis cv. Conference) were harvested in the orchard of

the Centre for Fruit Culture in Rillaar (Belgium). All pears were stored

under optimal controlled atmosphere (CA) conditions. Pears were picked at

the commercial harvest date on 16/9/2006 as determined by the Flanders

Centre of Postharvest Technology (Belgium). The fruit were submitted to

pre-cooling in air at −1 ◦C for three weeks before applying optimal controlled

atmosphere conditions of 2.5 % O2 and 0.7 % CO2 following commercial

protocols. Pears were stored for 8 months under these commercial storage

conditions.

6.2.2 Sample preparation

Pears taken from the commercial storage conditions were cut perpendicu-

larly to the stem-calyx axis at 5 cm from the calyx. Thin slices of tissue

samples (1.5 mm tick and 2.5 cm diameter) were taken from the equatorial

region excluding the skin and core. For each condition, 1.5 L respiration

jars were filled with 150 g of pear tissue slices evenly distributed in layers.

The 1.5 L jars were connected in series. CA conditions of 20 % O2 and 80
5Pedreschi et al. (2009). Proteomics-gel based approach to study metabolic changes

in pear tissue during storage. Journal of Agricultural and Food Chemistry, submitted.
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% N2 (air) and 10 % CO2 and 90 % N2 (anoxia) were generated to flush the

jars at 10 L/h. Before entering the jars, the CA mixtures were humidified.

Gas composition was monitored using a PBI Dansensor, Model Chekmate

O2 (Zr) CO2-100 % (Denmark). The control consisted of pear slices com-

ing directly from the commercial storage and they were immediately frozen

in liquid nitrogen until further analysis. Jars were incubated at 1 ◦C for 5

days. In all cases four independent biological replicates composed of slices

from ten sampled pears were obtained for each condition (control, air and

anoxia).

6.2.3 Protein extraction and CyDye labelling

Proteins were extracted with the phenol extraction following by precipi-

tation in 100 mM ammonium acetate in methanol as detailed in Chapter

3. The obtained protein pellets were stored at −80 ◦C until analysis. Total

protein concentrations were determined using the Bio-Rad DC protein assay

following the manufacturer’s guidelines (Bio-Rad, UK). The protein pellets

were rehydrated in DIGE buffer (7 M urea, 2 M thiourea, 4 % CHAPS, 5

mM magnesium acetate, 10 mM Tris pH 8.0). The pH was adjusted to 8.5

as required using 50 mM NaOH. Proteins were labeled using the fluores-

cent Cyanine dyes developed for DIGE (GE Healthcare, USA) following the

manufacturer’s guidelines. Thus, 50 µg of proteins were labeled with 400

pmol of amine reactive Cyanine dyes dissolved in fresh anhydrous dimethyl

formamide. The two-dye approach recommended by Karp et al. (2007) was

used. Four biological replicates per treatment (control, air, anoxia) were

independently labeled with Cye 3. Cye 5 was used to label the internal

standard composed of equal amounts of all samples. The labeling reaction

was incubated in the dark for 30 min and quenched with 10 nmol lysine. An

equal volume of 2x sample buffer (7 M urea, 2 M thiourea, 4 % CHAPS, 20

mg/mL DTT, and 2 % Pharmalites 3-10) was added to each of the labeled

samples. Rehydration buffer (7 M urea, 2 M thiourea, 4 % CHAPS, 10

mg/mL and 1 % Pharmalites 3-10) was added to make up a final volume of

450 µL prior to IEF. Both the internal standard labeled with Cye 5 and the
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sample labeled with Cye 3 were mixed and run together in the same strip.

6.2.4 2-DE

Linear IPG strips (24 cm long) of pH 4-7 (GE Healthcare, USA) were re-

hydrated with the CyeDye labeled samples for 10 h at 20 ◦C at 20 V using

the IPGphor II apparatus (GE Healthcare, USA). The following steps of

the IEF included: 1 h at 500 V, 1 h at 1000 V followed by 8.2 h at 8000 V.

The last step consisted of 24000 Vh at 8000 V. After IEF completion, strips

were equilibrated individually for 15 min in 10 mL equilibration buffer (8 M

urea, 30 % glycerol, 1 % SDS, 100 mM Tris-HCl pH 6.8) containing 2 % w/v

DTT and subsequently for 15 min in 10 mL equilibration buffer containing

2.5 % iodoacetamide. Second dimension separation was performed in an

Ettan DALT Twelve system (GE Healthcare, USA) with lab cast 1.0 mm

SDS polyacrylamide gels (12.5 %). Gels were run overnight at 1.5 W/gel.

6.2.5 Protein visualization

Labeled proteins were visualized in a TyphoonTM 9410 imager (GE Health-

care, USA). Cye 3 images were scanned using a 532 nm laser and 580 nm

band pass (BP) emission filter. Cye 5 images were scanned using a 633

nm laser and a 670 nm BP30 emission filter. Gels were scanned at a 100

µm resolution. The PMT was set to ensure maximum pixel intensity be-

tween 40000 and 60000 pixels. Gel analysis was performed using Progenesis

SameSpots (Nonlinear Dynamics, UK), a 2-DE analysis software package.

6.2.6 Data analysis

A complete statistical analysis was carried out using both univariate and

multivariate statistics on the log standardized abundance where the log

standardized abundance is the Cye 3 sample spot volume divided by the

Cye 5 standard sample spot volume after ratiometric normalization. By us-

ing both approaches independently, not only absolute changes in terms of
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protein expression but also correlations and concerted changes in expression

can be assessed.

6.2.6.1 Univariate statistics

One-way analysis of variance (ANOVA) was carried out at p < 0.01 and

p < 0.05 respectively in order to assess for absolute protein changes among

the different treatments. The false discovery rate (FDR) was assessed by cal-

culating q-values using the p-values (Storey & Tibshirani, 2003) consequently

both a p-value and a q-value are calculated for each spot. The q-value is a

measure of significance in terms of FDR. Since the q-value approach relies on

the use of the correct statistical test for the experimental design (Karp et al.,

2007), the two-dye DIGE scheme was used. By calculating the q-values, the

user has control over the FDR as differing p-value thresholds can be chosen

for differing levels of false call rates. The FDR estimates how many from

the spots declared to be significant, are expected not to be significant at

all. Differentially expressed proteins were manually checked as being proper

spots before submitting them for protein identification. Pair-wise compar-

isons were carried out by using a Tukey test (p < 0.05) in SPSS version 15

(Chicago, Illinois, USA) only on those proteins declared to be significant by

one-way ANOVA. A Tukey test was chosen as post-hoc test to find which

treatment mean significantly differed from one another after the ANOVA

model was significant. This test is very conservative and corrects for the

multiple testing problem being more suitable for multiple comparisons than

carrying out several independent t-tests.

6.2.6.2 Multivariate statistics

Data pre-processing steps included mean centering and standardizing the

variance. Principal component analysis (PCA), an unsupervised technique

was carried out as a first exploration of the data and to identify possible

outlying gels through the 95 % Hotelling’s T 2 limit (Johnson & Wichern,

1998). Partial least squares discriminant analysis (PLS-DA) analysis, a su-
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pervised technique, was carried out to sharpen the discrimination among

the treatments according to similar protein expression profiles as detailed in

Pedreschi et al. (2008b). No data imputation was used because the image

analysis software utilized generates complete datasets. The variable impor-

tance plot (VIP) was used as formal tool based on the correlation loadings

to identify the most relevant proteins involved in class distinction. Further

details can be found in Pedreschi et al. (2007, 2008b). The VIP procedure

was first run to select the 120 most important proteins. Selected proteins

were manually checked as being real spots. After checking for real spots, the

VIP procedure was run again on the remaining proteins. Only proteins suc-

cessfully identified by LC-ESI MS/MS identified which were independently

selected from the univariate (p < 0.05 and q < 0.1) and multivariate statis-

tical analysis were used to build the final PLS-DA model. Because of the

small number of observations, cross-validation was applied to test the per-

formance of the models. PCA and PLS-DA analysis were performed using

Unscrambler 9.6 (CAMO A/S, Trondheim, Norway).

6.2.7 Protein identification

Mass spectrometry experiments were performed using LTQ linear ion trap

instrument fitted with a nanospray ion source (ThermoFisher, Waltham,

MA) as detailed in Coulthurst et al. (2008). Since the number of Pyrus com-

munis sequences in the public databases is very limited, MS/MS data anal-

ysis and cross species ID were applied for protein identification. Data were

submitted to the Mascot search algorithm (Matrix Science, London UK) and

searched against the GenBank non-redundant Viridiplantae-specific protein

sequence database, using a fixed modification of carbamidomethyl and a

variable modification of oxidation (M). In a second identification round, a

Mascot search was performed against the Malus domestica EST sequences

from Unigene database of December 8th, 2007. Proteins assigned on the ba-

sis of two or more peptides were considered as confidently identified. When

more than one protein was assigned within a spot, spectral counting was

used as a rough estimate of protein abundance (Liu et al., 2004). Protein
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A

B

C

Figure 6.1: 2-DE DIGE maps for the different applied treatments. Row A: control

(2.5 % O2, 0.7 % CO2), Row B: high oxygen or air (20 % O2) and Row C: high

carbon dioxide or anoxia (10 % CO2). Proteins were separated on a 24 cm strip,

4-7 pI.

identification was carried out in collaboration with the Cambridge Centre

for Proteomics, University of Cambridge, United Kingdom and Prometa at

Katholieke Universiteit Leuven.

6.3 Results

Even though extreme conditions were applied in terms of gas composition,

the effect of the different treatments, did not trigger large changes in protein

expression that could be visually seen (Figure 6.1) for the two conditions

tested (air or anoxia) with respect to the control (commercial CA storage).

Quantitatively it was found that the observed fold changes in protein ex-

pression levels were limited to a maximum of 4.
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6.3.1 Spots selected through univariate statistics

The one-way ANOVA revealed 105 significant spots at a p < 0.01 value

from which 56 were confirmed as real spots and suitable for identification.

By applying the false discovery rate approach with a q-value threshold of

0.05, six out of the 56 were estimated to be false positives.

6.3.2 Spots selected through multivariate statistics

The PCA model generated with all variables included, revealed already a

good discrimination among the different treatments (PC1 and PC2 were

able to explain 22 % and 14 % of the total variance; data not shown).

No-outlying gels were found. A PLS-DA model as a supervised technique

sharpened the discrimination among the treatments and further analysis

focuses on this multivariate technique. The PLS-DA model with all spot

data revealed good discrimination among the different gas conditions being

able to explain 93 % of the observed variation between the treatments based

on the first two latent variables. In order to narrow down the number of

proteins selected for further work, a new PLS-DA model was built based

only on the 120 most important spots selected through the VIP procedure.

This reduced model was still able to explain 86 % of the variation between

the treatments with the first two latent variables.

6.3.3 Bringing both approaches together

From the 105 spots selected through one way ANOVA (p < 0.01), 75 were

also selected through PLS-DA and VIP 120 procedure. Of the 120 spots cho-

sen by the VIP procedure 112 spots had a p < 0.05 value. Spots that were

identified as significant by either the univariate or the multivariate method

were sent for MS identification after confirming they were real spots. Thus,

63 spots were submitted for identification out of which 43 spots were selected

by both approaches and a new PLS-DA model based on these proteins was

built (Figure 6.2A). The remaining spots were excluded from the analysis.
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Focusing the multivariate technique on the spots that provide the discrimi-

nation allows a clear visualization as to which proteins species contribute to

the separation in the multivariate space. The explained variance between

the treatments was 93 % accounted for the two first latent variables when

the 63 spots were included. The remaining variation was still very well ex-

plained by the remaining real 43 proteins obtaining a good discrimination

between the treatments (Figure 6.2(B)).

6.3.4 LC-ESI-MS/MS identification of selected spots and cor-

relation patterns

The statistically relevant spots selected through univariate and multivariate

tools were analyzed by LC-ESI MS/MS. Fifty three out of 63 spots (84 %)

yielded a confident match with pear or protein sequences from GenBank.

The additional Mascot search against the apple EST database confirmed

most of these identifications and increased the identification rate to 94 %

(59 out of 63 proteins). The use of Malus ESTs is a valuable source data for

the investigation of the poorly documented pear proteome. The presence of

multiple proteins within a spot was clearly evident from the identifications

(Figure 6.3). Thus, spectral counts were used as a rough estimate of protein

abundance. Within a spot with multiple protein identifications, if the total

number of spectral counts was significantly higher for a certain identification

(> 70%), it was considered as a singlet. A previous study showed that the

top hit proteins are the most abundant on average contributing to 75 %

of the spot intensities (Yang et al., 2007). Thus, assigning the change in

fluorescence or staining intensity to the most abundant or top hit protein is

quite reasonable because the impact of the low abundance proteins appears

limited. The PLS-DA model built with singlets is shown in Figure 6.2(B).
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Figure 6.2: PLS-DA biplot built with the (A) 63 proteins selected through uni-

variate and multivariate statistics and sent for LC-ESI-MS/MS identification and

(B) 43 identified proteins considered as singlets. Sample scores and loadings (pro-

teins, small black dots) are superimposed. The Y-loadings are represented by the

length of the arrows. The percentage explained variances are indicated on the axes.

The analysis was based on the correlation matrix. Open small circles represent the

different proteins. Squares represent control (2.5 % O2, 0.7 % CO2) conditions,

circles represent high oxygen or air (20 % O2) conditions and triangles represent

high carbon dioxide or anoxic (10 % CO2) conditions.
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6.4 Discussion

6.4.1 Statistical analysis

The high level of overlap of species identified as significant between the uni-

variate and multivariate technique demonstrates the robustness of the tech-

nique and give confidence that highly significant changes are being identified.

The unsupervised PCA technique revealed a good discrimination among

the different treatments validating that the model was correct. The use

of the supervised PLS-DA technique sharpened the discrimination among

the treatments. The biplots (Figure 6.2) picture the marked discrimination

among the treatments. The latent variable 1 (LV1) of the PLS-DA model is

able to explain the variation between the control and oxygen while the la-

tent variable 2 (LV2) explains the variation between the control and anoxia.

Based on the marked discrimination of the treatments, it can be clearly

observed that certain proteins are highly correlated to a specific treatment.

6.4.2 Spot overlap deserves special attention

With the introduction of more sensitive MS equipment, spot overlap has

become more evident in 2-DE protein separation (Lu et al., 2007; Xia et al.,

2007). This issue represents a serious problem in terms of relative quan-

tification for further biological interpretation of the data. The presence of

several proteins within a spot arises as in practice more than one protein

can migrate to the same location on a 2-DE gel due to the large dynamic

range of proteins within a cell. Additionally, unresolved proteins might be

accompanied by contaminants. Different approaches to counteract the prob-

lem involve the use of narrow range IPG strips, sample fractionation meth-

ods, different sample preparation conditions and modification of conditions

during 2-DE (Hunsucker & Duncan, 2006). As pear proteome is poorly

characterized, the use of gel-free approaches is not a feasible alternative,

since cross-species identification is the sole option for a poorly characterized

genome. However, even when spot overlap exists, meaningful data can still
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Figure 6.3: Representation of the number of singlets, doublets, triplets, quadru-

plets and quintuplets found after LC-ESI-MS/MS identification and applying spec-

tral counts as a rough indicative of protein abundance.

be extracted. In this study, we used spectral counts to assign major proteins

with mixed spectra. Spectral counting involves counting the total number

of spectra representing identified peptides for a certain protein (Liu et al.,

2004; Deutsch et al., 2008). Almost 80 % of the analyzed 63 proteins con-

tained multiple proteins. By applying spectral counts as rough estimate of

protein abundance, 43 of the 59 successfully identified proteins were identi-

fied as singlets (Figure 6.3). To be considered as singlet, the top hit ranked

protein represented at least 70 % of the total spectral counts.

Spectral counts correlate excellent with protein concentration, in con-

trast to peptide counts that correlate poorly (Liu et al., 2004). However,

there are certain shortcomings that must be mentioned such as the fact that

the approximation of abundance from the repeat peptide observations per

protein totally ignores the size of the protein; large proteins contribute with

more peptides than small ones, resulting in an overestimation if the data are

not normalized (Lu et al., 2007; Xia et al., 2007). The data should also be

normalized for the expected number of tryptic peptides (Nesvizhskii et al.,
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2007). Additionally, depending on the instrumental setup for data acquisi-

tion, some peptides will be detected more easily than others and others will

never be detected even if they are abundant in the sample (Colinge et al.,

2005; Deutsch et al., 2008). Recently, Yang et al. (2007) has successfully

applied an exponentially modified protein abundance index (emPAI) to de-

termine the abundance of the individual proteins comprised within a spot

containing multiple proteins. Although spectral counts correlate very well

to protein abundance, they might not necessarily correlate very well to spot

volume (e.g., minor protein components in terms of abundance might be

more effectively labeled and thus account for most of the fluorescent signal).

6.4.3 Biological role of selected proteins

From the 43 identified singlets by spectral counts, a sub-selection of proteins

for biological interpretation (Table 6.1) has been based on Tukey pair-wise

comparisons (p < 0.05) following two main criteria: at least one of the

treatments should differ from the control and there should be statistical

differences between the treatments. The selected proteins have been classi-

fied based on their function and discussed accordingly. All comparisons are

referred to control conditions.

6.4.3.1 The central metabolism

Within the glycolytic pathway, two enolase isoforms (24 and 33) were up-

regulated in air as compared to the control. Previous studies on maize

and other crops showed up-regulation of some isoforms of enolase under

anoxia (Das & Uchimiya, 2002). Malate dehydrogenase (spot 46) was down-

regulated in air conditions. Malic enzyme (spot 233) isoforms can be induced

under stressful conditions to counteract the dependence on glycolysis and

to produce extra energy by instead using the reserves of malic acid already

present in the tissue.

It is expected that under anoxic conditions, glycolysis will be enhanced

as a route to produce energy with a fermentative metabolism. Activation of
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the pentose phosphate could be evidenced under anoxic conditions (trans-

ketolase, spot 125) and this finding provides further evidence to a previous

metabolomics study in which there was pentose phosphate pathway activa-

tion under anoxic conditions (Pedreschi et al., 2009a). The oxidative part of

the pentose phosphate pathway is a major source of NADPH which is used

for the synthesis of fatty acids and is important for the maintenance of the

redox potential to protect against oxidative stress (Kruger & von Schaewen,

2003). In potato disc tubers under anoxia, enolase, aldolase, lactate de-

hydrogenase and alcohol dehydrogenase were up-regulated (Geigenberger

et al., 2000). However, we found no regulation of enolase under anoxia com-

pared to the control but up-regulation of this enzyme under air conditions

(Table 6.1). Previous works with whole pears and browning inducing condi-

tions (Pedreschi et al., 2007, 2008a) revealed that respiration pathways were

at least partially involved in the appearance of core breakdown disorder in

Conference pears. These results provide extra evidence of the response of

respiration involved enzymes to the short term exposure to the currently

tested gas conditions possibly leading to the appearance of core breakdown

disorder. Acetyl CoA acetyltransferase (spot 27) certainly responds to air

conditions being up-regulated compared to the control. This enzyme is in-

volved in the mevalonate pathway that serves as a base for cell membrane

maintenance. These results are consistent with the up-regulation of the

pentose phosphate pathway given that mevalonate production is NADPH

requiring. At a certain point, core breakdown results from membrane dis-

ruption. In summary, central metabolism pathways are subtly altered in the

short term exposure of pear slices to the tested gas conditions.
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6.4.3.2 Allergens

The most pronounced changes in expression of proteins due to air or anoxic

conditions were found with a series of allergen isoforms. They were con-

sistently up-regulated in air conditions during the 5-day exposure of pear

slices (Table 6.1) and highly correlated to most of the respiration involved en-

zymes (Figure 6.4). Previous studies conducted by our group on whole pears

stored for long periods (6-8 months) under controlled atmosphere storage

showed the same behavior (Pedreschi et al., 2007, 2009a). A complete down

regulation of these allergenic proteins was observed in browning inducing

conditions of pear. These allergenic proteins show a high degree of sequence

homology to the Mal d1 type allergens and Bet v 1, the major allergen of

birch pollen (Karamloo et al., 2001; Garcia et al., 2007). People suffering the

birch pollen allergy syndrome due to consumption of fruits and vegetables

could benefit by consuming controlled atmosphere stored pears rather than

air stored pears. A decrease in allergenicity has also been related to the ac-

tion of the enzyme polyphenol oxidase (PPO) in apples (Garcia et al., 2007).

Both in the current and in previous studies on whole pears under browning

inducing conditions, allergens were regulated (Pedreschi et al., 2007). In

brown pears (sub-optimally stored) the action of the enzyme PPO prob-

ably contributed to the total down regulation of these allergenic proteins

compared to the sound tissue (sub-optimal conditions) which did not show

a complete down regulation of these allergenic proteins. Thus, we suspect

that total down regulation of these allergenic proteins during CA storage

of pears might be correlated to the appearance of core breakdown. A par-

tial down regulation is the consequence of the reduced oxygen concentration

or high carbon dioxide concentration. Focus on the study of the role of

these allergenic proteins and CA storage deserves further attention. Thus,

elucidation of the sequence and behavior under different conditions of the

different isoforms will be performed in future studies.
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Figure 6.4: Correlation map for the 43 proteins identified as singlets by means of

LC-ESI MS/MS. Numbers represent the spot number of the proteins of Table 6.1.

The color scale on the left goes from black ‘1’ indicative of positive correlation to

blue ‘-1’ indicative of negative correlation.

6.4.3.3 Protein synthesis related

Protein synthesis is an ATP dependent process. It has been previously re-

ported in freshly cut potato tuber slices that as the oxygen concentration

increases, protein synthesis increases as well (Geigenberger et al., 2000). In

this study, only two proteins involved in the synthesis of proteins (eukary-

otic translation initiation factor eIF-4A, spots 146 and 73) were up-regulated

under air conditions. Under anoxic conditions, the synthesis of anoxic en-

zymes is required. Thus, eIF-5A-2 (spot 16) was evidently up-regulated un-

der anoxia (Table 6.1). Recently, it has been shown that eIF-5A-2 regulates

programmed cell death caused by infection (Thompson, 2008). It might be

possible after all that protein synthesis is mostly switched off except for cer-

tain anaerobic enzymes and that apoptosis is being induced. In a previous

study with whole pears and long term exposure (Chapter 3), proteasomes

believed to be involved in programmed cell death were up-regulated in tissue

with visible symptoms of core breakdown (Pedreschi et al., 2007).
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6.4.3.4 Other stress related proteins

Contrary to previous studies on whole pears and long term exposure (Chap-

ter 3), we found no differential expression of proteins involved the glutathione-

ascorbate antioxidant system. ACC oxidase (spot 47) showed an opposite

behavior compared to a previous study based on long term exposure of pears

to different gas concentrations (Pedreschi et al., 2007, 2009a). In this study,

ACC oxidase was down-regulated in air. Polygalacturonase inhibiting pro-

tein (spot 165) was up-regulated under anoxic conditions. These results

are in agreement to what we previously found in the long term exposure of

whole pears to different gas concentrations (Chapter 3). Still, the reason

for this behavior remains unknown but certainly deserves further attention

specially because this enzyme is related to cell wall stress response and the

final browning outcome is the result of membrane disruption (Franck et al.,

2007).

6.4.3.5 Proteins involved in regulatory processes

The 14-3-3 family protein (spot 205) was up-regulated under anoxia. This

family protein has been reported to have roles in cell signaling, cell divi-

sion, transcription and metabolism. In addition, it is also suspected that

due to the existence of up to 13 genes in Arabidopsis thaliana, that particu-

lar isoforms have distinct biological functions (Roberts & Bruxelles, 2002).

The specific response of this protein to gas concentrations deserves further

research.

6.5 Conclusions

The current 2-DE DIGE approach confirmed previous studies on whole pears

in terms of regulation of proteins involved in respiration, protein synthesis,

ethylene responses and defense mechanisms in response to gas concentra-

tions. In addition, anoxic conditions on pear slices revealed up-regulation
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of a pentose phosphate pathway enzyme as an alternative route for produc-

tion of reducing equivalents for further defense mechanisms and to skip ATP

consuming steps. The role of allergenic proteins, as well as the polygalactur-

onase inhibiting protein deserves further attention. They responded clearly

to the extreme gas concentrations applied and were previously found to be

relevant in the appearance of the physiological core breakdown disorder after

long term exposure of pears to sub-optimal storage conditions.





Chapter 7

General conclusions and

future work

7.1 General conclusions

In order to study core breakdown in ‘Conference’ pears, it was first neces-

sary to fine tune protein extraction, 2-DE and data analysis protocols. The

highest protein yields were obtained when an extraction buffer of high pH

containing high amounts of the reducing agent DTT was used. In order

to draw strong conclusions from a gel-based proteomics study, it is highly

recommended to begin with a good experimental design in which the bio-

logical variance is appropriately dealt with. Parametric statistical tests are

more powerful, but in the univariate context the false positive rate must

be controlled. Multivariate statistical analysis demands complete datasets,

thus, missing values have to be dealt with appropriately. We showed that

for our datasets, BPCA was superior in dealing with missing data. The use

of univariate and multivariate analysis independently is a powerful approach

and increases the confidence for a valid biological interpretation of the data.

Core breakdown is the consequence of a disturbance of the metabolism

leading to the loss of homeostasis. Even though several pre and post harvest

135
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pears

sub-optimal storage x long periods

Formation of anoxic zones

Impairment of respiration pathways

ROS over -

production

antioxidant system alteration

Lipid peroxidation and 

membrane disruption

Ethylene biosynthesis

impaired

Actual browning

Cell death

Ascorbate-glutathione collapsed

Allergenic proteins down-

regulated

PGIP induced

Figure 7.1: Schematic overview of the series of events for browning development

in pears.

factors influence the incidence of the disorder, it is believed that extreme

CA conditions trigger the disorder. A schematic overview of the series of

events that are believed to lead to browning development is shown in Figure

7.1.

Pears stored for long periods under browning inducing conditions (low

oxygen concentration and high carbon dioxide concentration) form anoxic

zones due to gas gradients across the pear tissue (Lammertyn et al., 2003b,a;

Ho et al., 2006c, 2008). Toward the center of the fruit, the oxygen concentra-

tion drops significantly. On the other hand, the carbon dioxide concentration

increases toward the center of the fruit. As a consequence the metabolism

responds to the spatial distribution of the atmosphere composition (aerobic

closer to the peel; hypoxic and anoxic in the center) leading to differences

in energy requirements. The effect of gas gradients across the tissue and
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the corresponding different energy requirements could be evidenced by dis-

turbance and/or impairment of respiration pathways to different degrees in

brown, sound and healthy tissues respectively (Figure 7.2 and 7.3). The

dependence of production of energy on glycolysis under stressful conditions

(anoxia, brown tissue) was partially circumvented by the induction of malic

enzyme isoforms which use the reserves of malic acid already present in the

tissue (Figure 7.2). Methionine related pathways for polyamine and ethy-

lene biosynthesis seemed to be activated (Figure 7.2 and 7.3).

Loss of homeostasis favors an over production of reactive oxygen species

(ROS) that the pear antioxidant system can not cope with leading to a

permanent state of oxidative stress (Figure 7.1). The main antioxidant sys-

tem, glutathione-ascorbate, collapsed in brown tissue as evidenced by the

total down regulation of several enzymes pertaining to this pathway (Figure

7.2). This antioxidant system is dependent on NADPH molecules provided

by either the malic enzyme reaction and the pentose phosphate pathway

(Figure 7.2 and 7.3). PR isoforms referred as allergens were repressed in

brown tissue while PGIP was induced. The role of these enzymes in patho-

genesis is well documented but not much is known about their role in anoxia.

Under a collapsed antioxidant system, lipid peroxidation was triggered

leading to membrane disruption and furthermore to cell death (Figure 7.1).

The mechanism of cell death in brown tissue seems to be programmed cell

death. Different proteasome subunits were up-regulated and cell death was

obvious from the lower total protein content of brown tissue (Figure 7.2).

The short term storage of pear slices under stressful conditions confirmed

some changes also observed in the long term storage of whole pears. Some

differences were also observed. Understanding the direct effect of the CA

composition on the metabolism of pears on the short term independent of

browning and gas gradient formation confirmed some previous findings. Sub-

tle changes in respiration involved enzymes were observed. Major changes of
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Figure 7.2: Metabolic changes implicated in brown tissue under browning induc-

ing conditions (1.0 % O2, 10.0 % CO2; no-pre cooling and fruit from late harvest).

Black: no statistical change, red: down-regulation, blue: not analyzed, green: up-

regulation. Up-down or no regulation is expressed relative to commercial conditions

(2.5 % O2, 0.7 % CO2). UDP-GP: UDP-glucose phosphorylase, TPI: triosephos-

phate isomerase, ME: malic enzyme, APX: ascorbate peroxidase, MDAR: monode-

hydroascorbate reductase, DHAR: dehydroascorbate reductase, GR: glutathione

reductase, MDH: malate dehydrogenase, Fum: fumarase, Aco: aconitase, MS: me-

thionine synthase, ACC Ox: ACC oxidase, PGIP, polygalacturonase inhibiting

protein, Eno: enolase, CoAT: acetyl CoA transferase, TK: transketolase.
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Figure 7.3: Metabolic changes implicated in sound tissue under browning induc-

ing conditions (1.0 % O2, 10.0 % CO2; no-pre cooling and fruit from late harvest).

Black: no statistical change, red: down-regulation, blue: not analyzed, green: up-

regulation. Up-down or no regulation is expressed relative to commercial conditions

(2.5 % O2, 0.7 % CO2). UDP-GP: UDP-glucose phosphorylase, TPI: triosephos-

phate isomerase, ME: malic enzyme, APX: ascorbate peroxidase, MDAR: monode-

hydroascorbate reductase, DHAR: dehydroascorbate reductase, GR: glutathione

reductase, MDH: malate dehydrogenase, Fum: fumarase, Aco: aconitase, MS: me-

thionine synthase, ACC Ox: ACC oxidase, PGIP, polygalacturonase inhibiting

protein, Eno: enolase, CoAT: acetyl CoA transferase, TK: transketolase.
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regulation were observed at the malic enzyme and pentose phosphate path-

way (Figure 7.4). These results support our hypothesis about the need of

activation of pathways providing reducing equivalents needed for membrane

protection and defensive mechanisms (Figure 7.4).

Non significant changes were observed in the ascorbate-glutathione cycle

but the allergenic and PGIP proteins involved in defense related mechanisms

changes were observed. Browning development seems to start as soon as the

ascorbate-glutathione antioxidant system collapses which is highly depen-

dent on the redox status of the tissue. These allergenic proteins as well as

PGIP are potential candidate markers to detect at an early stage and track

core breakdown in ‘Conference’ pears.

7.2 Future work

In future work continuing from this thesis, the following aspects could be

addressed:

• We have shown that respiration pathways play a key role in core break-

down development. One of the limitations of 2-DE, is the bias towards

highly abundant proteins requiring prefractionation techniques in or-

der to study the low abundant fraction. Many of the enzymes involved

in respiration pathways might belong to this low abundant fraction.

Thus organelle isolation is of key interest. The amount of mitochon-

dria in pear tissue is very low. In order to increase mitochondria

yields, protoplasts were isolated by enzymatic means (cellulose plus

pectinase). This isolation process due to the temperature of extrac-

tion and long exposure time induced different cellular responses that

would mask any treatment effect. Therefore, protoplast isolation as

an intermediate step for mitochondria isolation does not seem to be a

reasonable step.
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Figure 7.4: Metabolic changes implicated in pear slices under anoxic conditions

(0.0 % O2, 10.0 % CO2). Black: no statistical change, red: down-regulation, blue:

not analyzed, green: up-regulation. Up-down or no regulation is expressed relative

to commercial conditions (2.5 % O2, 0.7 % CO2). UDP-GP: UDP-glucose phospho-

rylase, TPI: triosephosphate isomerase, ME: malic enzyme, APX: ascorbate per-

oxidase, MDAR: monodehydroascorbate reductase, DHAR: dehydroascorbate re-

ductase, GR: glutathione reductase, MDH: malate dehydrogenase, Fum: fumarase,

Aco: aconitase, MS: methionine synthase, ACC Ox: ACC oxidase, PGIP, poly-

galacturonase inhibiting protein, Eno: enolase, CoAT: acetyl CoA transferase, TK:

transketolase.
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• The isolation of mitochondria, so far has not been successfully carried

out starting from either fruit tissue or leaves and using either mechani-

cal disruption or enzymatic means. Isolation was carried out by means

of differential centrifugation on a Percoll gradient. In the Percoll gra-

dient, it was impossible to obtain the different layers indicating the

different organelles even though several combinations of centrifugation

force and time and Percoll percentages were tried. Thus, additional

work is needed. This is an exhausting task because it demands trial

and error work. The use of sucrose instead of Percoll gradients might

be an option. To assess for purity of mitochondria, the activity of the

marker enzyme cytochrome c oxidase was tracked in the different frac-

tions. We were able to optimize this assay to assess for mitochondria

purity.

• Several isoforms of the major allergen Pyrc 1, identified as Mal d1,

were observed to respond differently to the treatments. The role of

these proteins have been studied mainly in relation to pathogenesis.

Since these proteins might have a role in defense responses due to

gas concentrations, there is a need for further studies. The first step

might be the sequence identification of these different isoforms. These

proteins seem to respond clearly to the oxygen and carbon dioxide

concentrations applied and might be interesting markers to track core

breakdown. Multiple Response Monitoring (MRM) should be explored

as a suitable MS approach to determine isoform abundances. (Fusaro

et al., 2009).

• The polygalacturonase inhibiting protein also popped up as candidate

marker in the different experiments. Apparently it was always induced

under anoxic conditions. The role of this protein has been studied in a

pathogen context but not specifically under oxygen deprivation stress.

There is need to direct efforts toward understanding the role of this

enzyme in relation to oxygen deprivation.

• Core breakdown develops with time. There is need for proteomic stud-

ies that include time as a variable besides the effect of the gas compo-
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sition. In addition, the pre-harvest factors play an important role in

determining the incidence of core breakdown. Therefore, these factors

should be included in future studies.

• Membrane disruption is a key event in core breakdown. Thus, fu-

ture studies should focus on the membrane proteome which represents

one third of the total proteome. Membrane proteins have roles in

signaling, trafficking, transport, cell structure. As an example, the

mitochondrial inner membrane is made up of protein complexes of

the respiratory chain and proteins involved in triggering programmed

cell death. These proteins are challenging to work with due to their

hydrophobic nature, low abundance and heterogeneity. Membrane

proteins are under-represented in 2-DE gels. Alternative proteomic

platforms such as blue native PAGE, clear native PAGE, SDS/SDS

PAGE and LC based approaches such as free flow electrophoresis and

multidimensional protein identification technology should be further

explored (Tan et al., 2008). In addition, the sub-cellular localization

of membrane proteins is essential for determining function. Localiza-

tion of organelle proteins by isotope tagging (Sadowski et al., 2008)

should be further explored.

• Validation of the proteomics approach utilized through another low

throughput technique for instance would be appropriate (e.g., mea-

surement of enzymatic activity for some of the enzymes found to be

differentially regulated).

• This thesis represents a first global attempt to understand a complex

metabolic disorder. In addition, there is need to uplift this approach

to a systems biology approach integrating data from different ‘omics’

platforms into an overall metabolic network model. Such model should

allow for the integration of knowledge on the different mechanisms

underlying homeostasis and help to identify the complex interplay of

the various processes leading to the storage disorder. For instance,

a better understanding of the metabolite synthesis and its regulation

under specific conditions would be a great contribution.
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• Instead of just measuring metabolite concentrations through a

metabolomic approach, emphasis should be put toward sophisticated

time lapse experiments measuring actual metabolite fluxes based on

which a kinetics metabolic network model can be developed that can

be coupled with our existing models in the area of gas transfer.
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M. W., & Nikoläı, B. M. 2003. Ascorbic acid mapping to study core

breakdown development in Conference pears. Postharvest Biology and

Technology, 30(2), 133–142.

Franck, C., Lammertyn, J., Ho, Q.T., Verboven, P., Verlinden,
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Proteomics for the food industry: opportunities and challenges. Critical

Reviews in Food Science and Nutrition, accepted.



BIBLIOGRAPHY 165

Pedreschi, R., Hertog, M., Robben, J., Lilley, K. S., Karp,

N., Baggerman, G., Vanderleyden, J., & Nicoläı, B. A. 2009c.
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man, G., Vanderleyden, J., Nicoläı, B. M. 2009. Proteomics-gel based

approach to study metabolic changes in pear tissue during storage

Journal of Agricultural and Food Chemistry, submitted.

Pedreschi, R., Hertog, M., Lilley, K., Nicoläı, B. M. 2009. Proteomics
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