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Voorwoord

In de zomer van 2002 betrad ik voor het eerst sinds mijn promotie als in-
genieursstudent een jaar voordien opnieuw de treden van het Departement
Elektrotechniek. Op een jaar tijd was er in mijn leven veel veranderd. Ik
was (in die volgorde) verhuisd naar Antwerpen om te gaan samenwonen met
mijn vrouw Dorien, had mijn plannen om mijn ingenieursdiploma te verbran-
den en een conservatoriumopleiding te volgen opgeborgen, had mijn haren kort
laten knippen en was vader geworden van onze oudste zoon Aeneas. Na een
klein jaar lesgeven aan de Hogere Zeevaartschool in Antwerpen was ik op zoek
naar een nieuwe broodwinning waarin ik -meer dan in de nochtans gezellige
Zeevaartschool het geval was- mijn creatieve ei zou kwijtraken. Mijn oog was
gevallen op een vacature aan de K.U.Leuven in het kader van een onderzoeks-
project naar spraak- en audioverwerking, een domein waar ik altijd al een
boon voor had. Niet toevallig stond het project onder de supervisie van Marc
Moonen, die een jaar voordien ook het promotorschap van mijn eindwerk had
waargenomen. Ik solliciteerde en kreeg vrijwel onmiddellijk een bericht van
Marc met de vraag of we elkaar eens konden zien. Mijn verbazing was groot
toen Marc me in het daaropvolgende gesprek vroeg “wanneer ik kon beginnen”
en dat het misschien wel een goed idee zou zijn om en passant een doctoraat
te maken. Ik had nochtans het idee dat ik tijdens mijn studentencarrière geen
bijster goeie indruk had gemaakt, noch kon ik een jaar na mijn promotie een
rijk gevuld CV voorleggen, laat staan dat het ooit mijn bedoeling zou geweest
zijn om te doctoreren. Maar dat leken voor Marc geen argumenten te zijn om
er niet voor te gaan: hij geloofde in mijn kwaliteiten en daardoor begon ik daar
zelf ook in te geloven. Het vertrouwen dat ik sindsdien van Marc heb gekregen
is iets waar ik hem altijd dankbaar voor zal zijn. Hij heeft me de tijd gegeven
om mijn doctoraatsproject grondig aan te pakken, heeft me de juiste kansen
op de juiste momenten aangeboden, en heeft altijd veel begrip gehad voor het
feit dat ik niet alleen een doctoraatsstudent was maar ook een vader van drie
jonge kinderen. Oprecht bedankt daarvoor, Marc, en ik hoop dat dit nog maar
het begin is geweest van een vruchtbare samenwerking.

Naast Marc is er nog iemand die in grote mate heeft bijgedragen aan het wel-
slagen van dit project, en dat is mijn goede vriend en ancien collega Geert
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ii Voorwoord

Rombouts. Het mag gezegd worden dat meer dan de helft van de publicaties
in dit proefschrift de vruchten zijn van onze samenwerking. Marc, Geert en ik
hebben in het eerste jaar van mijn doctoraatsproject vele uren gezamenlijk ons
hoofd zitten breken over hoe we dat aartsmoeilijke feedbackprobleem konden
aanpakken. Mocht Geert daar met zijn gezonde Kempense boerenverstand niet
hebben bijgezeten dan waren we er wellicht nooit uitgeraakt.

Verder wil ik oprecht de leden van mijn examencommissie bedanken voor hun
deelname in de evaluatie van mijn werk. Het zijn stuk voor stuk onderzoe-
kers waarvoor ik een grote waardering heb. Prof. Joos Vandewalle wil ik in
de eerste plaats bedanken voor de prachtige onderzoeksomgeving die hij in de
loop der jaren heeft uitgebouwd. Onderzoek zoals het mijne is enkel mogelijk
in een groep als SISTA, waar onderzoekers uit verschillende disciplines elkaar
ontmoeten en in discussie kunnen treden. Ik hoop dat ik hier nog heel wat jaren
zal kunnen verderwerken. Overigens is het ook grotendeels zijn verdienste dat
ik als “proefkonijn” een doctoraat op publicaties heb kunnen maken, waar-
voor dank. Ook Prof. Hugo Van hamme wil ik van harte danken. Ondanks
het feit dat het onderwerp van mijn doctoraat toch wat verder staat van zijn
eigen onderzoek, is hij steeds met veel interesse en een grote kennis van zaken
de discussie omtrent mijn werk aangegaan. Met Prof. Piet Sommen van de
Technische Universiteit Eindhoven heb ik voornamelijk tijdens de eerste jaren
van mijn doctoraatsproject zinvolle technische en minder technische discussies
gehad, en aangezien hij een expert ter zake is ben ik erg blij dat hij deel wil
uitmaken van mijn examencommissie. Hartelijk dank daarvoor. Also, it has
been a pleasure to work together with Prof. Søren Jensen from Aalborg Uni-
versity during the past year, and I hope we can continue to do so. I’m very
pleased to have him in my committee. Tot slot moet ik bekennen dat ik al een
tijdje stiekem hoopte dat de faculteit Prof. Yves Willems als voorzitter van
mijn commissie zou aanstellen, omdat ik me hem uit de lessen die ik destijds bij
hem volgde herinner als een joviale professor en begeesterd lesgever. Van harte
bedankt om het voorzitterschap van mijn commissie te willen waarnemen.

Ik herinner me ook nog dat ik na mijn eerste werkdagen als doctorandus mijn
verbazing uitdrukte aan mijn vrouw Dorien over de bijzondere collega’s in de
onderzoeksgroep van Marc. Ik zal nooit vergeten hoe hartelijk ik destijds als
“jongste telg” in de groep werd opgenomen. Nu, ruim zes jaar later, ben ik zelf
bijna de oudste van de groep. Het kan verkeren. Hoe dan ook ben ik een grote
dankuwel verschuldigd aan al die fijne collega’s: Geert, Simon, Ann, Benôıt,
Gert, Koen, Geert, Hilde, Raphael, Imad, Geert, Olivier, Koen, Geert, TJ,
Narendra, Deepak, Paschalis, Jan, Vincent, Prabin, Romain, Kim, Sylwester,
Bram, Alexander, Pepe, Amir, and Beier. A special thank you to my Italian
friend and colleague Ludo. En aan al wie ik vergeten ben.

Verder moet ik natuurlijk ook mijn broodheren bedanken. Gedurende zes en
een half jaar hebben de K.U.Leuven en het Instituut voor de Aanmoediging
van Innovatie door Wetenschap en Technologie in Vlaanderen (IWT) mij van



iii

voldoende geld voorzien om mijn onderzoek in alle vrijheid te kunnen uitvoeren
en daarnaast een vijfkoppig gezin te onderhouden. Ik kan niet zeggen dat we
in al die jaren iets te kort gekomen zijn.

Ook buiten de universiteit bestaat er nog een universum waar het aange-
naam toeven is. Mijn dolle vrienden van het theatergezelschap KREUTZFELD
Verein, mijn collega-ego’s van het theatercollectief G.A.A.S., de collega-ouders
en de juffen van de Rudolf Steinerschool De Hazelaar, de peters en meters van
onze kinderen, iedereen die mee geholpen heeft om ons huis om te toveren in
een bouwwerf, ... al die mensen hebben mij kunnen entertainen, verstrooien,
vervoeren en motiveren op de momenten dat het nodig was. Mijn oprechte
dank daarvoor.

Er zijn negen mensen aan wie ik dit proefschrift in het bijzonder wil opdra-
gen. Ze kennen elkaar niet, maar ze hebben allemaal iets gemeen: ze hebben
mij op cruciale momenten in mijn leven begeleid, vanuit een onvoorwaardelijk
vertrouwen, en op de één of andere manier beschouw ik hen als mijn belang-
rijkste leermeesters. Frans Steurs, Dag Taeldeman, Kaat Van Bouwel, Stefaan
Dieltjens, Rita De Clercq, Marc Moonen, Liliane Bierinckx, Dirk Beckers, Serge
Ornelis. Dit boek is voor jullie.

Tenslotte komen de meest dierbaren aan bod. Mijn broer Jef en ik hebben
elkaar altijd op de voet gevolgd: samen gespeeld, samen in Leuven gestudeerd,
en op hetzelfde moment kinderen gekregen. Ik hoop van harte dat hij ook
nog een doctoraat zal maken... Voor mijn ouders is het einde van dit project
wellicht ook een keerpunt. Ze hebben altijd van dichtbij meegeleefd, en me hun
onvoorwaardelijke steun en bewondering laten blijken. Dankjewel daarvoor.
Ook mijn schoonouders verdienen een bijzonder woord van dank. Samen met
mijn ouders hebben ze ons gezin immers altijd ondersteund wanneer dat nodig
was, zowel emotioneel als logistiek.

Aeneas, jij bent nu ongeveer even oud als dit boek, en het lijkt alsof je al veel
meer weet dan wat hier in staat. Firas, hoewel jij nu de grootste avonturier bent
die ik ken, heb je uren, dagen en weken bij mij in de draagdoek gezeten terwijl
ik mijn eerste artikel zat te schrijven. Istar, jij bent de beste speelkameraad
die een thuiswerkende papa zich kan inbeelden. Ik hoop dat jullie vooral verder
doen zoals jullie bezig zijn, het is een plezier om jullie vader te zijn.

En Dorien, zonder jou zou ik hier nooit aan begonnen zijn, laat staan dat ik
het ooit zou hebben afgewerkt...

Toon van Waterschoot,
17 maart 2009
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Abstract

This thesis deals with several open problems in acoustic echo cancellation and
acoustic feedback control. Our main goal has been to develop solutions that
provide a high performance and sound quality, and behave in a robust way in
realistic conditions. This can be achieved by departing from the traditional ad-
hoc methods, and instead deriving theoretically well-founded solutions, based
on results from parameter estimation and system identification. In the devel-
opment of these solutions, the computational efficiency has permanently been
taken into account as a design constraint, in that the complexity increase com-
pared to the state-of-the-art solutions should not exceed 50 % of the original
complexity.

In the context of acoustic echo cancellation, we have investigated the prob-
lems of double-talk robustness, acoustic echo path undermodeling, and poor
excitation. The two former problems have been tackled by including adaptive
decorrelation filters in the adaptive filtering algorithm, with the aim of whiten-
ing the near-end signal component and the residual echo component resulting
from undermodeling. These decorrelation filters can be identified concurrently
with the acoustic echo path by using the prediction error method (PEM) for
system identification. As a result, a 30–40 dB misadjustment improvement (in
the double-talk case) and a 20–35 dB variance decrease (in the undermodeling
case) have been obtained, at the cost of a complexity increase of 50 % compared
to the normalized least mean squares (NLMS) algorithm. The poor excitation
problem has been approached from a Bayesian minimum mean square error
(MMSE) point of view. This approach has led to the use of a regularization
matrix different from the traditional scaled identity matrix, which may in-
corporate prior knowledge on the acoustic echo path. It has moreover been
shown that the existing proportionate adaptation algorithms can be viewed as
a special case of the proposed approach to regularization. A misadjustment
improvement up to 10 dB has been obtained with a regularized NLMS-type
algorithm that requires only 25 % more computations than the original NLMS
algorithm.
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vi Abstract

Two approaches to acoustic feedback control have been considered in this the-
sis, namely notch-filter-based howling suppression (NHS) and adaptive feed-
back cancellation (AFC). In the context of NHS, we have developed a novel
parametric frequency estimation method, which is characterized by a compu-
tational complexity that is linear in the data record length. Also, a new design
procedure for biquadratic parametric equalizer filters is proposed, based on a
technique known as pole-zero placement. In the context of AFC, the PEM-
based AFC approach that was proposed earlier for hearing aid AFC has been
generalized to room acoustic and audio applications. The PEM-based approach
relies on the identification of a near-end signal model that can be used in the
design of decorrelating prefilters. These prefilters are aimed at resolving the
AFC closed-loop signal correlation problem and hence providing an unbiased
acoustic feedback path model. We have obtained a misadjustment improve-
ment of 7 dB compared to the hearing aid PEM-based AFC algorithm and of
12 dB compared to the NLMS algorithm, at the cost of a 25–50 % complexity
increase compared to NLMS. In a comparative evaluation with the state-of-
the-art acoustic feedback control methods, the PEM-based AFC approach was
shown to outperform the existing phase-modulating feedback control (PFC)
and NHS methods, as well as the AFC methods that apply a decorrelation in
the closed signal loop, in terms of the achievable maximum stable gain and
sound quality, both for speech and audio signals.



Korte Inhoud

In dit doctoraatsproefschrift worden verscheidene open problemen in akoesti-
sche-echo-onderdrukking en akoestische-feedbackbeheersing behandeld. De al-
gemene doelstelling bestaat in het ontwikkelen van oplossingen die een hoge
performantie en geluidskwaliteit leveren en die een robuust gedrag vertonen in
een realistische omgeving. De voorgestelde aanpak steunt op een solide theo-
retische basis door de toepassing van resultaten uit de systeemidentificatie en
parameterschatting, in tegenstelling tot de ad-hocaanpak die gevolgd wordt in
bestaande oplossingen. De voorgestelde oplossingen werden ontwikkeld met
permanente aandacht voor de vereiste rekenkracht, zodat die maximaal 50 %
hoger ligt dan de nodige rekenkracht voor de bestaande oplossingen.

In het kader van akoestische-echo-onderdrukking worden de problemen van
dubbelspraakrobuustheid, ondermodellering van het akoestische-echopad en
onvoldoende excitatie behandeld. De aanpak van de twee eerste problemen is
gebaseerd op het gebruik van adaptieve decorrelerende prefilters die de spectrale
kleuring in het bronsignaal en in de residuele echocomponent ten gevolge van
ondermodellering moeten reduceren. Die decorrelerende filters kunnen gelijktij-
dig worden gëıdentificeerd met het akoestische-echopad door gebruik te maken
van de predictiefoutmethode (PEM) voor systeemidentificatie. Het resultaat is
een verbetering van de misaanpassing met 30-40 dB (in het geval van dubbel-
spraak) en een verlaging van de variantie met 20-35 dB (in het geval van onder-
modellering), ten koste van een toename in de rekencomplexiteit met 50 % in
vergelijking met het genormaliseerde kleinste-gemiddelde-kwadratenalgoritme
(NLMS). Het probleem van onvoldoende excitatie wordt benaderd vanuit een
Bayesiaans minimale-gemiddelde-kwadratische-fout-perspectief (MMSE). Die
aanpak leidt tot het gebruik van een regularisatiematrix die verschilt van de
traditionele gescaleerde eenheidsmatrix, waarin eventuele a-priorikennis over
het akoestiche-echopad kan worden opgenomen. Bovendien wordt aangetoond
dat de bestaande proportionele-adaptatie-algoritmen genterpreteerd kunnen
worden als een speciaal geval van de voorgestelde regularisatie-aanpak. Een
verbetering van de misaanpassing tot 10 dB blijkt mogelijk te zijn met een
geregulariseerd NLMS-gebaseerd algoritme dat slechts 25 % meer rekenkracht
vraagt dan het originele NLMS-algoritme.

vii



viii Korte Inhoud

Het akoestische-feedbackprobleem wordt in dit proefschrift op twee manieren
benaderd, meer bepaald op basis van inkepingsfiltergebaseerde fluittoononder-
drukking (NHS) en adaptieve feedbackonderdrukking (AFC). In het kader van
NHS wordt een nieuwe parametrische frequentieschattingsmethode ontwikkeld
die gekenmerkt wordt door een rekencomplexiteit die lineair toeneemt met de
lengte van het gebruikte databestand. Daarnaast wordt een nieuwe ontwerp-
procedure voor bikwadratische parametrische-egalisatiefilters voorgesteld die
gebaseerd is op de techniek van pool- en nulplaatsing. In het kader van AFC
wordt de PEM-gebaseerde AFC-aanpak die eerder werd ontwikkeld voor ge-
bruik in hoorapparaten uitgebreid naar kamerakoestische en audiotoepassingen.
De PEM-gebaseerde aanpak steunt op de identificatie van een bronsignaalmodel
dat kan worden gebruikt bij het ontwerp van decorrelerende prefilters. Het
doel van die prefilters bestaat erin het geslotenlussignaalcorrelatieprobleem
eigen aan AFC op te lossen om een foutloos akoestische-feedbackpadmodel
te kunnen bekomen. Het blijkt mogelijk om op die manier de misaanpassing te
verbeteren met 7 dB in vergelijking met het PEM-gebaseerde AFC-algoritme
voor hoorapparaten en met 12 dB vergeleken met het NLMS-algoritme, en
dit ten koste van een verhoging van de rekencomplexiteit met 25-50 % t.o.v.
NLMS. Uit een vergelijkende evaluatie met de state-of-the-artmethodes voor
akoestische-feedbackbeheersing blijkt de PEM-gebaseerde AFC-aanpak zowel
de bestaande fasemodulatiegebaseerde feedbackbeheersingsmethodes (PFC) en
NHS-methodes, als de AFC-methodes die een decorrelatie in de gesloten sig-
naallus uitvoeren, te overtreffen in termen van de haalbare maximale stabiele
versterking en geluidskwaliteit, en dit voor spraak- én muzieksignalen.



Glossary

Mathematical Notation

Independent variables

f frequency variable (Hz)

f̃ warped frequency variable (Hz)
i, j frame index [Ch. 9]
k discrete time shift index

discrete frequency index [Ch. 11]
n LPTV filter frequency response sideband index
t discrete time variable
z complex z-transform variable
z̃ warped/downsampled complex z-transform variable
τ continuous time variable (s) [Ch. 2]

discrete time shift index [Ch. 2]
ω radial frequency variable (rad)
ω̃ warped radial frequency variable (rad)
ωk discrete radial frequency variable (rad)

Signals

d(t), d[t, ·] echo-/feedback-compensated signal, a posteriori residual
D(ω) echo-/feedback-compensated signal frequency spectrum

(time-invariant data window)
D[ω, t, ·] echo-/feedback-compensated signal frequency spectrum

(time-varying data window)
e(t) near-end/source excitation signal [Ch. 3]
e(t), e(t, ·) LP/CPZLP residual signal [Ch. 8, 11]
E(z, ·) LP residual signal z-transform (time-invariant data win-

dow)
E(ejω , ·) LP residual signal spectrum (time-invariant data window)

ix



x Glossary

e near-end/source excitation signal vector (time-invariant
data window)

en(t, ·) CPZLP intermediate residual signal (nth subproblem)
en(·) CPZLP intermediate residual signal vector (nth subprob-

lem)
e′(t) far-end/loudspeaker excitation signal
n(t) noise signal injected for AFC decorrelation [Ch. 2]

undermodeled AEC disturbance signal [Ch. 4]
nb(t) undermodeled AEC disturbance signal component in far-

end/loudspeaker signal column space
nv(t) undermodeled AEC disturbance signal component orthog-

onal to far-end/loudspeaker signal column space
n(t) undermodeled AEC disturbance signal vector
nb(t) undermodeled AEC disturbance signal vector component

in far-end/loudspeaker signal column space
nv(t) undermodeled AEC disturbance signal vector component

orthogonal to far-end/loudspeaker signal column space
r(t) near-end/source excitation signal [Ch. 5]

noise signal in sinusoidal/tonal signal model [Ch. 8, 11]
R(ejω) noise signal frequency spectrum in tonal signal model
r[t, ·] residual echo/feedback signal [Ch. 2]

echo-/feedback-compensated signal after tonal compo-
nents model prediction error filtering [Ch. 12]

r[t, ·] echo-/feedback-compensated signal vector after tonal
components model prediction error filtering [Ch. 12]

R̂[ω, t, ·] residual echo/feedback signal frequency spectrum esti-
mate (time-varying data window)

s(t) far-end echo signal
u(t) far-end/loudspeaker signal
U(ω, t) far-end/loudspeaker signal frequency spectrum (time-

varying data window)
u(t) far-end/loudspeaker signal vector (time-varying data win-

dow)
u1(t) far-end/loudspeaker signal vector related to modeled part

of echo/feedback path impulse response (time-varying
data window)

u2(t) far-end/loudspeaker signal vector related to unmodeled
part of echo/feedback path impulse response (time-
varying data window)



xi

U(t) far-end/loudspeaker signal Hankel matrix (time-varying
data window)

U1(t) far-end/loudspeaker signal Hankel matrix related to mod-
eled part of echo/feedback path impulse response (time-
varying data window)

U2(t) far-end/loudspeaker signal Hankel matrix related to un-
modeled part of echo/feedback path impulse response
(time-varying data window)

UM (t) far-end/loudspeaker signal Hankel matrix (Mth order
affine projection)

U far-end/loudspeaker signal Hankel matrix (time-invariant
data window)

ũ(t), ũ[t, ·] prefiltered far-end/loudspeaker signal
ũ(t), ũ[t, ·] prefiltered far-end/loudspeaker signal vector (time-

varying data window)

ŨM (t) prefiltered far-end/loudspeaker signal Hankel matrix
(Mth order affine projection)

Ũ prefiltered far-end/loudspeaker signal Hankel matrix
(time-invariant data window)

ǔ(t) far-end/loudspeaker signal after noise components model
prediction error filtering

ǔ(t) far-end/loudspeaker signal vector after noise components
model prediction error filtering

ŭ[t, ·] far-end/loudspeaker signal after tonal components model
prediction error filtering

ū(t, 0), . . . , ū(t, nα) two-dimensional warped far-end/loudspeaker signal
u1(t), . . . , uL(t) multi-channel far-end/loudspeaker signals
ū(t) multi-channel far-end/loudspeaker signal vector
v(t) near-end/source signal
V (ω, t) near-end/source signal frequency spectrum (time-varying

data window)
v near-end/source signal vector (time-invariant data win-

dow)
v(t) near-end/source signal vector (time-varying data window)
v1(t), . . . , vS(t) multi-channel near-end/source signals
v̄(t) multi-channel near-end/source signal vector
w(t) local far-end signal [Ch. 1]
w(t), w[t, ·] echo-/feedback-compensated signal after noise compo-

nents model prediction error filtering [Ch. 9, 12]



xii Glossary

w(t), w[t, ·] echo-/feedback-compensated signal vector after noise
components model prediction error filtering

x(t) echo/feedback signal
y(t) microphone signal

observed signal [Ch. 8, 11]
Y (z) microphone signal z-transform (time-invariant data win-

dow)
Y (ω) microphone signal frequency spectrum (time-invariant

data window)
Y (ejω) observed signal frequency spectrum [Ch. 11]
Y (ω, t) microphone signal frequency spectrum (time-varying data

window)
y(t) microphone signal vector (time-varying data window)
yM (t) microphone signal vector (Mth order affine projection)
y microphone signal vector (time-invariant data window)
Y(t) microphone signal discrete frequency spectrum vector

(time-varying data window)
ỹ(t), ỹ[t, ·] prefiltered microphone signal
ỹM (t) prefiltered microphone signal vector (Mth order affine

projection)
ỹ prefiltered microphone signal vector (time-invariant data

window)
y̌(t) microphone signal after noise components model predic-

tion error filtering
y̆[t, ·] microphone signal after tonal components model predic-

tion error filtering
ȳ(t, 0), . . . , ȳ(t, nα) two-dimensional warped microphone signal
y1(t), . . . , yS(t) multi-channel microphone signals
ȳ(t) multi-channel microphone signal vector
y{t} microphone signal (continuous time)
ya{t} analytical microphone signal (continuous time)
ŷ{t} microphone signal Hilbert transform (continuous time)
ŷ(t) microphone signal Hilbert transform [Ch. 2]
ŷ(t), ŷ[t|·] predicted echo/feedback signal

Ŷ [ω, t|·] predicted echo/feedback signal frequency spectrum (time-
varying data window)

z(t) far-end microphone signal
ε(t), ε[t, ·] prediction error, a priori residual
εB(t) background filter prediction error
εM (t), εM [t, ·] a priori residual vector (Mth order affine projection)



xiii

ε prediction error vector (time-invariant data window)
ε̃(t) prefiltered a priori residual
ε̃M (t) prefiltered a priori residual vector (Mth order affine pro-

jection)

System models

A(q, t) near-end/source signal model prediction error filter (time-
varying)
near-end/source signal tonal components model predic-
tion error filter (time-varying) [Ch. 2, 12]
(near-end/source signal tonal components) PZLP model
prediction error filter numerator (time-varying) [Ch. 2,
11, 12]

a1, a2 biquadratic parametric equalizer direct-form denominator
coefficients [Ch. 7]

a0, . . . , a2P CPZLP model direct-form coefficients [Ch. 8]
LP model direct-form denominator coefficients [Ch. 11]

a1(t), . . . , anA(t) near-end/source signal model prediction error filter im-
pulse response coefficients (time-varying)

a
(1)
l (t), a

(2)
l (t) lth second-order section denominator coefficients in bank

of adjustable notch filters (time-varying)
a LP model prediction error filter impulse response vector

(time-invariant) [Ch. 11]
a(t) near-end/source signal model prediction error filter im-

pulse response vector (time-varying)
near-end/source signal tonal components model predic-
tion error filter impulse response vector (time-varying)
[Ch. 12]

A(z) LP model denominator transfer function (time-invariant)
A(ejω) LP model denominator frequency response (time-

invariant)
Al(e

jω) LP model lth second order section denominator frequency
response (time-invariant)

a′
1(t), . . . , a

′
nA

(t) far-end/loudspeaker signal model prediction error filter
impulse response coefficients (time-varying)

a′(t) far-end/loudspeaker signal model prediction error filter
impulse response vector (time-varying)

Â(q, t) near-end/source signal model prediction error filter esti-
mate (time-varying)
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near-end/source signal tonal components model predic-
tion error filter estimate (time-varying) [Ch. 12]

â1(t), . . . , ânA(t) near-end/source signal model prediction error filter esti-
mate impulse response coefficients (time-varying)

â
(1)
i , . . . , â

(nA)
i near-end/source signal model prediction error filter es-

timate impulse response coefficients (piecewise time-
invariant, frame index i) [Ch. 9]

â(t) near-end/source signal model prediction error filter esti-
mate impulse response vector (time-varying)
combined near-end/source signal and far-end/loudspeaker
signal model prediction error filter estimate impulse re-
sponse vector (time-varying) [Ch. 4]
near-end/source signal tonal components model predic-
tion error filter estimate impulse response vector (time-
varying) [Ch. 12]

â1(t), . . . , âM(t) subband near-end/source signal model prediction error fil-
ter estimate impulse response vectors (time-varying, M
subbands)

âi near-end/source signal model prediction error filter esti-
mate impulse response vector (piecewise time-invariant,
frame index i)

B(q, t) (near-end/source signal tonal components) PZLP model
prediction error filter denominator (time-varying) [Ch. 2,
11, 12]
cascade model of echo/feedback path and near-end/source
signal model prediction error filter (two-channel adaptive
filtering) [Ch. 3, 9]

B0(q, t) true near-end/source signal tonal components PZLP
model prediction error filter denominator (time-varying)

b0, b1, b2 biquadratic parametric equalizer direct-form numerator
coefficients [Ch. 7]

b0, . . . , b2Q LP model direct-form numerator coefficients [Ch. 11]
b(t) near-end/source excitation signal amplitude in near-

end/source signal model [Ch. 9]
b0(t), . . . , bnB (t) cascade model impulse response coefficients of

echo/feedback path and near-end/source signal model
prediction error filter (two-channel adaptive filtering)
[Ch. 3]
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b
(0)
l (t), b

(1)
l (t), b

(2)
l (t) lth second-order section numerator coefficients in bank of

adjustable notch filters (time-varying)

b̂(t) cascade model estimate impulse response vector of
echo/feedback path and near-end/source signal model pre-
diction error filter (two-channel adaptive filtering)

B(z) LP model numerator transfer function (time-invariant)
B(ejω) LP model numerator frequency response (time-invariant)
Bl(e

jω) LP model lth second order section numerator frequency
response (time-invariant)

B̂(q, t) cascade model estimate of echo/feedback path and near-
end/source signal model prediction error filter (two-
channel adaptive filtering)

B̄(q, t) delay-compensated near-end/source signal tonal compo-
nents PZLP model prediction error filter denominator
(time-varying)

C(q, t) near-end/source signal noise components model predic-
tion error filter (time-varying)

c(1)(t), . . . , c(nC)(t), near-end/source signal noise components model predic-
c1(t), . . . , cnC (t) tion error filter impulse response coefficients (time-

varying)
c(t) near-end/source signal noise components model predic-

tion error filter impulse response vector (time-varying)

Ĉ(q, t) near-end/source signal noise components model predic-
tion error filter estimate (time-varying)

ĉ(t) near-end/source signal noise components model predic-
tion error filter estimate impulse response vector (time-
varying)

D(q, t) cascade of near-end/source signal noise components model
PEF and tonal components model PEF numerator (time-
varying)

D0(q, t) true cascade of near-end/source signal noise components
model PEF and tonal components model PEF numerator
(time-varying)

D(q, λ) WLP model bilinear all-pass filter (time-invariant)
D0(q, λ) WLP model orthogonalizing lowpass filter (time-

invariant)
D0(z) WLP model orthogonalizing lowpass filter transfer func-

tion (time-invariant)
F (q) echo/feedback path model (time-invariant)
F (q, t) echo/feedback path model (time-varying)
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f0, . . . , fnF echo/feedback path impulse response coefficients (time-
invariant)

f0(t), . . . , fnF (t) echo/feedback path impulse response coefficients (time-
varying)

f echo/feedback path impulse response vector (time-
invariant)

f(t) echo/feedback path impulse response vector (time-
varying)

f1(t) modeled part of echo/feedback path impulse response vec-
tor (time-varying)

f2(t) unmodeled part of echo/feedback path impulse response
vector (time-varying)

F (z) echo/feedback path transfer function (time-invariant)
F (ω) echo/feedback path frequency response (time-invariant)
F (ω, t), F (ejω, t) echo/feedback path frequency response (time-varying)
Fij(q, t) multi-channel echo/feedback path model for loudspeaker-

microphone pair (j, i) (time-varying)

f
(0)
ij (t), . . . , f

(nF )
ij (t) multi-channel echo/feedback path impulse response co-

efficients for loudspeaker-microphone pair (j, i) (time-
varying)

F(q, t) multi-channel echo/feedback path model polynomial ma-
trix (time-varying)

F̂ (q) echo/feedback path estimate (time-invariant)

F̂ (q, t) echo/feedback path estimate (time-varying)

F̂0(q, t) AFC cancellation filter (time-varying)

f̂0, . . . , f̂nF̂
echo/feedback path estimate impulse response coefficients
(time-invariant)

f̂0(t), . . . , f̂nF̂
(t) echo/feedback path estimate impulse response coefficients

(time-varying)

f̂ echo/feedback path estimate impulse response vector
(time-invariant)

f̂(t) echo/feedback path estimate impulse response vector
(time-varying)

f̂0(t) AFC cancellation filter impulse response vector (time-
varying)

f̂1(t) undermodeled echo/feedback path estimate impulse re-
sponse vector (time-varying) [Ch. 4]

f̂1(t), . . . , f̂M(t) subband echo/feedback path estimate impulse response
vectors (time-varying, M subbands) [Ch. 10]



xvii

f̂B(t) echo/feedback path background filter estimate impulse re-
sponse vector (time-varying)

F̂ (z) echo/feedback path estimate transfer function

F̂ (ω) echo/feedback path estimate frequency response (time-
invariant)

F̂ (ω, t), F̂ (ejω , t) echo/feedback path estimate frequency response (time-
varying)

F̂ij(q, t) multi-channel echo/feedback path estimate for
loudspeaker-microphone pair (j, i) (time-varying)

f̂
(0)
ij (t), . . . , f̂

(nF̂ )
ij (t) multi-channel echo/feedback path estimate impulse re-

sponse coefficients for loudspeaker-microphone pair (j, i)
(time-varying)

F̄ (q, t) delay-compensated echo/feedback path model (time-
varying)

f̄0, . . . , f̄nF̄
initial echo/feedback path estimate impulse response co-
efficients (time-invariant)

f̄ initial echo/feedback path estimate impulse response vec-
tor (time-invariant)

ˆ̄F (q, t) delay-compensated echo/feedback path estimate (time-
varying)

G{·} electro-acoustic forward path operator (time-invariant)
G(q) electro-acoustic forward path model (time-invariant)

far-end echo path model (time-invariant) [Ch. 1]
G(q, t) electro-acoustic forward path model (time-varying)

far-end echo path model (time-varying) [Ch. 1]
g0(t), . . . , gnG(t) electro-acoustic forward path impulse response coefficients

(time-varying)
G(z) LP model transfer function (time-invariant)
G(ω) electro-acoustic forward path frequency response (time-

invariant)
G(ω, t), G(ejω , t) electro-acoustic forward path frequency response (time-

varying)
Gji[·, t] multi-channel electro-acoustic forward path operator for

microphone-loudspeaker pair (i, j) (time-varying)
Gji(q, t) multi-channel electro-acoustic forward path model for

microphone-loudspeaker pair (i, j) (time-varying)

g
(0)
ji (t), . . . , g

(nG)
ji (t) multi-channel electro-acoustic forward path impulse re-

sponse coefficients for microphone-loudspeaker pair (i, j)
(time-varying)
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G[·, t] multi-channel electro-acoustic forward path matrix oper-
ator (time-varying)

G(q, t) multi-channel electro-acoustic forward path model poly-
nomial matrix (time-varying)

Gl(ω) closed-loop system loop gain

Ĝ(q, t) far-end echo path estimate (time-varying)
Ḡ(q, t) delay-compensated electro-acoustic forward path model

(time-varying)
H(q, t) bank of adjustable notch filters (time-varying) [Ch. 2]

phase modulation filter (time-varying) [Ch. 2]
near-end/source signal model (time-varying) [Ch. 2, 9,
10]

H1(q, t) near-end/source signal tonal components model (time-
varying) [Ch. 12]

H2(q, t) near-end/source signal noise components model (time-
varying) [Ch. 12]

Hl(q, t) lth second-order section in bank of adjustable notch filters
(time-varying) [Ch. 2]

h(τ, t) phase modulation filter impulse response (time-varying)
H(z) biquadratic parametric equalizer filter transfer function

(time-invariant) [Ch. 7]
LP model prediction error filter transfer function (time-
invariant) [Ch. 11]

H(ejω) biquadratic parametric equalizer filter frequency response
(time-invariant) [Ch. 7]
LP model prediction error filter frequency response (time-
invariant) [Ch. 11]

H(ω, t) phase modulation filter frequency response (time-varying)
[Ch. 2]
AFC postfilter frequency response (time-varying) [Ch. 2]

H̃(ω, t) AFC postfilter frequency response before smoothing
(time-varying)

H(n) phase modulation filter frequency response DFT (time-
varying, frequency-independent)

H(ω, n) phase modulation filter frequency response DFT (time-
varying, frequency-dependent)

H(·, t) nonlinear signal operation for AFC decorrelation

Ĥ(q, t) near-end/source signal model estimate (time-varying)

Ĥ1(q, t) near-end/source signal tonal components model estimate
(time-varying)
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Ĥ2(q, t) near-end/source signal noise components model estimate
(time-varying)

ĥ(t) near-end/source signal model parameter vector estimate
(time-varying)

J(q, t) electro-acoustic forward path model before amplification
(time-varying)

J(ejω , t) electro-acoustic forward path frequency response before
amplification (time-varying)

K(t) electro-acoustic forward path gain (time-varying)
L(q) Hilbert filter
L(q, t) cascade of near-end/source signal noise components model

PEF and tonal components model PEF numerator and
echo/feedback path model (time-varying)

L̄(q, t) delay-compensated cascade of near-end/source signal
noise components model PEF and tonal components
model PEF numerator and echo/feedback path model
(time-varying)

α(−1)(t), α(0)(t), α(1)(t)near-end/source signal tonal components 3-tap PLP
α−1(t), α0(t), α1(t) model prediction error filter coefficients (time-varying)
αj near-end/source signal tonal components 1-tap PLP

model prediction error filter coefficient (piecewise time-
invariant, frame index j) [Ch. 9]

α1(t), . . . , αnA(t) near-end/source signal tonal components WLP/SLP
model prediction error filter coefficients (time-varying)
[Ch. 12]

ϕl(ω) closed-loop system loop phase

Auxiliary variables and signal statistics

a0 true near-end/source signal model prediction error filter
impulse response expected value

An amplitude of nth sinusoidal component in sinusoidal signal
model

A unit upper triangular matrix in inverse near-end/source
signal covariance matrix Cholesky decomposition [Ch. 5]

A unit upper triangular band matrix in inverse autoregres-
sive near-end/source signal covariance matrix Cholesky
decomposition [Ch. 5, 9]

Â estimated unit upper triangular band matrix in inverse
autoregressive near-end/source signal covariance matrix
Cholesky decomposition
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AM (t) unit upper triangular submatrix in inverse near-
end/source signal covariance matrix Cholesky decompo-
sition (Mth order affine projection)

Bk CPZLP BFGS Hessian approximation (kth iteration)
CHl

(t) set of lth second-order section filter coefficients in bank of
adjustable notch filters

DH(t) set of NHS design parameters
Dω̆(t) set of candidate howling component frequencies
f fractional pitch lag phase [Ch. 11]
f0 fundamental frequency in monophonic signal model (Hz)
f0,n fundamental frequency of nth monophonic component in

polyphonic signal model (Hz)
fc biquadratic parametric equalizer filter center frequency

(Hz)
f0 true echo/feedback path impulse response expected value
g1, . . . , gP PZLP model common numerator and denominator coeffi-

cient factors
g0(t), . . . , gnF (t) proportionate adaptation weights [Ch. 5]
ḡ(t) average proportionate adaptation weight
G(t) proportionate adaptation matrix
I(q, ·) linear interpolation filter
IH(t) set of candidate howling component indices for which

howling is detected
K integer pitch lag [Ch. 2, 11, 12]

biquadratic parametric equalizer filter broadband gain
factor [Ch. 7]

Kj integer pitch lag (piecewise time-invariant, frame index j)
l fractional pitch lag phase [Ch. 2, 12]

p(k) CPZLP search direction (kth iteration)
P set of frequencies at which Nyquist phase condition holds

P̂y(t) DFT-based microphone signal power estimate (time-
varying)

Q1 band-diagonal autocorrelation matrix of far-
end/loudspeaker signal vector related to modeled
part of echo/feedback path impulse response

Q2 lower triangular cross-correlation matrix of far-
end/loudspeaker signal vectors related to modeled
and unmodeled part of echo/feedback path impulse
response
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ra(i) LP model direct-form denominator coefficients autocorre-
lation function

rb(i) LP model direct-form numerator coefficients autocorrela-
tion function

rp biquadratic parametric equalizer filter pole radius
rz biquadratic parametric equalizer filter zero radius
R near-end/source signal covariance matrix
R11 autocorrelation matrix of far-end/loudspeaker signal vec-

tor related to modeled part of echo/feedback path impulse
response

R12 cross-correlation matrix of far-end/loudspeaker signal
vectors related to modeled and unmodeled part of
echo/feedback path impulse response

Ra true near-end/source signal model prediction error filter
impulse response covariance matrix

R̂a,s true near-end/source signal model prediction error filter
impulse response covariance matrix estimate (based on
ensemble-averaging of speech models)

Rf true echo/feedback path impulse response covariance ma-
trix

R̂f ,init true echo/feedback path impulse response covariance ma-
trix estimate (based on initial echo/feedback path mea-
surement)

R̂f ,3 true echo/feedback path impulse response covariance ma-
trix estimate (based on 3-parameter echo/feedback path
model)

Rv near-end/source signal covariance matrix
R(t) Hessian approximation (recursive identification)
RA(t) Hessian approximation for near-end/source signal model

identification (recursive identification)
RF (t) Hessian approximation for echo/feedback path identifica-

tion (recursive identification)
sk CPZLP BFGS displacement variable (kth iteration)
Sd(f, t), Sd[ω, t, ·] echo-/feedback-compensated signal power spectral den-

sity (time-varying)
Sr[ω, t, ·] residual echo/feedback signal power spectral density

(time-varying)

Ŝr[ω, t, ·] residual echo/feedback signal power spectral density esti-
mate (time-varying)
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Sv(f, t) near-end/source signal power spectral density (time-
varying)

SHl
(t) set of lth second-order section filter specifications in bank

of adjustable notch filters
t0 speech onset detection time index
T0 pitch period in monophonic signal model (s)
T0,n pitch period of nth monophonic component in polyphonic

signal model (s)
∆ti howling occurence time duration (s)
uk CPZLP BFGS damped change of gradients variable (kth

iteration)
vk CPZLP BFGS change of gradients variable (kth iteration)
w(t) window function
wERB(f) perceptual frequency weighting function
wh(t) Hamming window function
W weighting matrix (echo/feedback path impulse response

estimation)
αn amplitude of nth sinusoidal component in tonal signal

model
αn,m amplitude of mth sinusoidal component in nth mono-

phonic component in polyphonic signal model
α(t) near-end/source signal tonal components model parame-

ter vector (time-varying)
α̂(t) near-end/source signal tonal components model parame-

ter vector estimate (time-varying)
βn amplitude of nth sinusoidal component in sinusoidal signal

model
γ(t) gain sequence (recursive identification)
γ(t) near-end/source signal noise components model parame-

ter vector (time-varying)
γ̂(t) near-end/source signal noise components model parame-

ter vector estimate (time-varying)
ζ(k, t) prediction error criterion inverse weighting factor
ζ1, . . . , ζQ LP model prediction error filter pole angles (time-

invariant, rad)
θ1, . . . , θP CPZLP model pole-zero angles (time-invariant, rad) [Ch.

8]
LP model prediction error filter zero angles (time-
invariant, rad) [Ch. 11]
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θ1(t), . . . , θnA/2(t) PZLP model pole-zero angles (time-varying, rad)
θ parameter vector to be estimated (time-invariant)
θ(t) parameter vector to be estimated (time-varying)

θ̂(t) parameter vector estimate (time-varying)
θn n×1 subvector of parameter vector to be estimated (time-

invariant)

θ̂
(0)
n CPZLP pole-zero angle initial estimate (time-invariant,

nth subproblem, rad)

θ̂
(k)
n CPZLP pole-zero angle iterative estimate (time-invariant,

kth iteration, nth subproblem, rad)

θ̂
(k)

n subvector of CPZLP parameter vector estimate (time-
invariant, kth iteration, nth subproblem)

ν LP model prediction error filter zero radius (time-
invariant) [Ch. 11]

ν1, . . . , νnA/2 PZLP model prediction error filter zero radii (time-
invariant) [Ch. 2]

ν1, . . . , νP LP model prediction error filter zero radii (time-invariant)
[Ch. 11]

ρ LP model prediction error filter pole radius (time-
invariant) [Ch. 11]

ρ1, . . . , ρnA/2 PZLP model prediction error filter pole radii (time-
invariant) [Ch. 2]

ρ1, . . . , ρQ LP model prediction error filter pole radii (time-invariant)
[Ch. 11]

σ2(t) prediction error variance estimate (time-varying)
σ2

A(t) prediction error variance estimate from near-end/source
signal tonal components model parameter estimation
(time-varying)

σ2
C(t) prediction error variance estimate from near-end/source

signal noise components model parameter estimation
(time-varying)

σ2
j near-end/source excitation signal variance (piecewise

time-invariant, frame index j)
σ2

r noise signal variance in tonal signal model (time-invariant)
σ2

r(t) near-end/source excitation signal variance (time-varying)
σ2

t near-end/source excitation signal variance (time-varying)
σ̂2

t near-end/source excitation signal variance estimate (time-
varying)
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σ2
T,ỹ(t) twin filter structure prefiltered microphone signal variance

estimate (time-varying)
σ2

T,ε(t) twin filter structure foreground filter prediction error vari-
ance estimate (time-varying)

σ2
T,εB

(t) twin filter structure background filter prediction error
variance estimate (time-varying)

σ2
v near-end/source signal variance (time-invariant)

σ2
ε(t) prediction error variance estimate from smoothing instan-

taneous prediction error variance (time-varying)
Σ diagonal matrix in inverse near-end/source signal covari-

ance matrix Cholesky decomposition
Σλ exponentially weighted diagonal matrix in inverse near-

end/source signal covariance matrix Cholesky decomposi-
tion

ΣM (t) diagonal submatrix in inverse near-end/source signal
covariance matrix Cholesky decomposition (Mth order
affine projection)

φ(t) phase modulation function
φn phase of nth sinusoidal component in sinusoidal/tonal sig-

nal model (rad)
φn,m phase of mth sinusoidal component in nth monophonic

component in polyphonic signal model (rad)
φk column vector in true echo/feedback path impulse re-

sponse covariance matrix rank-one decomposition
Φ regularization matrix (echo/feedback path impulse re-

sponse estimation)
ξ reference value (echo/feedback path impulse response es-

timation) [Ch. 5]
LP model parameter vector [Ch. 11]

ξ(t) parameter vector to be estimated (time-varying)

ξ̂(t) parameter vector estimate (time-varying)
ψ(t) gradient vector (recursive identification)
ψA(t) gradient vector for near-end/source signal model identifi-

cation (recursive identification)
ψF (t) gradient vector for echo/feedback path identification (re-

cursive identification)
ω0 fundamental frequency in monophonic signal model (rad)
ω0,n fundamental frequency of nth monophonic component in

polyphonic signal model (rad)
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ωc biquadratic parametric equalizer filter center frequency
(rad)

ωc,l lth second-order section center frequency in bank of ad-
justable notch filters (rad)

ωi critical closed-loop system frequency (rad)
ω̆i candidate howling component frequency (rad)
ωn frequency of nth sinusoidal component in sinusoidal/tonal

signal model (rad)

Parameters

A direct path attenuation in 3-parameter echo/feedback
path model

B sound reinforcement system bandwidth [Ch. 2]
biquadratic parametric equalizer filter bandwidth [Ch. 7]

Bl lth second-order section bandwidth in bank of adjustable
notch filters (rad)

c CPZLP Armijo’s sufficient decrease condition scaling fac-
tor [Ch. 8]
speech onset detection threshold [Ch. 10]

d initial delay in 3-parameter echo/feedback path model
[Ch. 5]
electro-acoustic forward path delay [Ch. 6, 9, 10]

d0 AFC filterbank implementation processing delay
d1 electro-acoustic forward path delay
d2 adaptive filter delay
D DM filter interpolation ratio [Ch. 2]

fractional pitch lag interpolation ratio [Ch. 2, 11, 12]
fm LPTV filter modulation frequency (Hz)
fs sampling frequency (Hz)
G0 biquadratic parametric equalizer DC gain
G0,l lth second-order section DC gain in bank of adjustable

notch filters (dB)
Gπ biquadratic parametric equalizer Nyquist gain
Gπ,l lth second-order section Nyquist gain in bank of ad-

justable notch filters (dB)
GB biquadratic parametric equalizer band edge gain
GB,l lth second-order section band edge gain in bank of ad-

justable notch filters (dB)
Gc biquadratic parametric equalizer notch gain
Gc,l lth second-order section notch gain in bank of adjustable

notch filters (dB)
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G
(0)
c,l lth second-order section initial notch gain in bank of ad-

justable notch filters (dB)
∆Gc,l lth second-order section notch gain decrease in bank of

adjustable notch filters (dB)
I half linear interpolation filter impulse response length
K electro-acoustic forward path gain

DM filter integer delay [Ch. 2]
∆K electro-acoustic forward path gain increase (dB)
k0 saturation level (NL-RLS algorithm)
kmax CPZLP maximum number of iterations per subproblem
Kmin minimum integer pitch lag (pitch prediction)
Kmax maximum integer pitch lag (pitch prediction)
l DM filter fractional phase [Ch. 2]
L number of multi-channel far-end/loudspeaker signals [Ch.

2]
electro-acoustic forward path gain [Ch. 6]
observation frame length [Ch. 11]

LF echo/feedback path impulse response length
M frame length

affine projection order [Ch. 2, 5]
AFC filterbank implementation number of subbands [Ch.
10]

MBFGS CPZLP number of multiplications (BFGS method)
MGN CPZLP number of multiplications (GN method)
MLTP long-term prediction frame length
Mn number of relevant harmonics (including fundamental fre-

quency) in nth monophonic component in polyphonic sig-
nal model

MSD CPZLP number of multiplications (SD method)
nA near-end/source signal model order

near-end/source signal tonal components model order
[Ch. 2, 12]
far-end/loudspeaker signal model order [Ch. 4]

nB cascade model order of echo/feedback path and near-
end/source signal model prediction error filter (two-
channel adaptive filtering)

nC near-end/source signal noise components model order
nD cascade model order of near-end/source signal noise com-

ponents model PEF and tonal components model PEF
numerator
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nF echo/feedback path model order
nF̂ echo/feedback path estimate order
nG electro-acoustic forward path model order
nH bank of adjustable notch filters order
nI PLP linear interpolation filter order
nL cascade model order of near-end/source signal noise com-

ponents model PEF and tonal components model PEF
numerator and echo/feedback path model (time-varying)

nS SLP anti-aliasing filter order
nα near-end/source signal tonal components WLP model or-

der
N LPTV filter modulation period [Ch. 2]

effective data window length [Ch. 3]
simulation length [Ch. 3]
observation frame length [Ch. 8]
AFC filterbank implementation downsampling factor [Ch.
10]
number of tonal/monophonic components in mono-
phonic/polyphonic signal model [Ch. 11]
number of sinusoidal components in sinusoidal signal
model [Ch. 12]

NHO number of howling occurences
P frame hop size

number of sinusoidal components in sinusoidal signal
model [Ch. 8]
LP model half denominator order [Ch. 11]

P0 absolute power threshold for PTPR feature calculation
Q biquadratic parametric equalizer filter Q factor [Ch. 7]

LP model half numerator order [Ch. 11]
QF echo/feedback path model stationarity time scale variable
QH1 near-end/source signal tonal components model station-

arity time scale variable
QH2 near-end/source signal noise components model station-

arity time scale variable
QM number of signal frames taken into account for calculating

interframe microphone signal features (IPMP, IMSD)
QP number of spectral peaks to remove from microphone sig-

nal spectrum before estimating microphone signal power
S number of multi-channel near-end/source signals
T simulation length (s)
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T 60, T60 T 60 reverberation time (s)
Ta adaptation treshold
Tm LPTV filter modulation period (s)
Tmax proactive notch filter activation threshold
Tmin proactive notch filter deactivation threshold
TFEP FEP function threshold for howling detection (dB)
TPAPR PAPR feature threshold for howling detection (dB)
TPHPR PHPR feature threshold for howling detection (dB)
TPNPR(m) mth neighbor PNPR feature threshold for howling detec-
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Samenvatting

Ontwerp en evaluatie van digitale signaalverwer-

kingsalgoritmen voor akoestische feedback- en
echo-onderdrukking

Hoofdstuk 1: Inleiding en overzicht

In Paragraaf 1.1 wordt het werk beschreven in dit doctoraatsproefschrift
gekaderd en gemotiveerd. Geluidssignalen vormen een fundamentele schakel
in de menselijke communicatie, en geluidskwaliteit is daarbij van groot belang.
Akoestische galm is n van de verschijnselen die aan de oorsprong ligt van een
mogelijk gebrek aan geluidskwaliteit. Zowel het akoestische-echoprobleem als
het akoestische-feedbackprobleem zijn het resultaat van akoestische galm, zij
het in een verschillende situatie. Wanneer een geluidssignaal wordt weergegeven
door een luidspreker die zich in een gesloten akoestische ruimte bevindt en wan-
neer in die ruimte bovendien een microfoon aanwezig is om een lokaal geluidssig-
naal te registreren, dan bestaat het risico dat het luidsprekersignaal na reflecties
tegen de wanden van de ruimte op de microfoon terechtkomt. Dit probleem
wordt het akoestische-echoprobleem genoemd en doet zich voornamelijk voor in
handenvrije-telefonietoepassingen. Wanneer het luidsprekersignaal bovendien
een versterkte versie is van het microfoonsignaal dat in dezelfde ruimte wordt
geregistreerd dan onstaat een gesloten signaallus die kan leiden tot oscillaties
die worden waargenomen als onaangename fluittonen. Dit probleem staat be-
kend als het akoestiche-feedbackprobleem en doet zich o.a. voor in publieke
omroepsystemen, hoorapparaten en communicatiesystemen in voertuigen.

In Paragraaf 1.2 wordt het concept van akoestische-echo-onderdrukking be-
schreven en worden drie open problemen toegelicht die in het proefschrift aan
bod zullen komen. Het eerste probleem is gerelateerd aan het zogenaamde
dubbelspraakprobleem: wanneer beide sprekers aan weerszijden van het com-
municatiekanaal tegelijk actief zijn, heeft het adaptief echo-onderdrukkingsfilter
de neiging om te divergeren. Aangezien dubbelspraakdetectoren dit probleem
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slechts gedeeltelijk kunnen oplossen is er nood aan dubbelspraakrobuuste adap-
tieve-filteralgoritmen (zie Hoofdstuk 3). Het tweede probleem is gekend
als ondermodellering en doet zich voor wanneer de orde van het akoestische-
echopad groter is dan de orde van het adaptief echo-onderdrukkingsfilter. In
dat geval kan de kwaliteit van de resulterende schatting van het echopad on-
dermaats zijn ten gevolge van een grote fout en variantie, waardoor een andere
aanpak aangewezen lijkt (zie Hoofdstuk 4). Het derde probleem onstaat
wanneer het luidsprekersignaal (afkomstig van de spreker aan de andere kant
van het communicatiekanaal) onvoldoende exciterend is om het echopad te
kunnen identificeren. Het zal mogelijk blijken om de bestaande oplossing, ge-
kend als regularisatie, op een zodanige manier te veralgemenen dat eventuele
a-priorikennis over het akoestische-echopad kan worden gëıntegreerd in het
adaptieve-filteralgoritme (zie Hoofdstuk 5). Bovendien kan met een verge-
lijkbare aanpak een numeriek probleem worden opgelost dat zich voordoet in
enkele van de dubbelspraakrobuuste algoritmen voorgesteld in Hoofdstuk 3
(zie Hoofdstuk 6).

Paragraaf 1.3 handelt over het concept en de open problemen inzake akoesti-
sche-feedbackbeheersing. Eerst en vooral wordt het gebrek aan een vergelij-
kende studie van bestaande oplossingen aangekaart, wat meteen de motivatie
vormt voor het uitgebreide literatuuroverzicht en de vergelijkende evaluatie
die beschreven worden in Hoofdstuk 2. Op het vlak van inkepingsfilterge-
baseerde fluittoononderdrukking wordt de state of the art met betrekking tot
fluittoondetectie en inkepingsfilterontwerp beschreven. De bestaande methodes
voor fluittoondetectie zijn hoofdzakelijk reactief van aard, waardoor fluittonen
kunnen worden waargenomen voordat ze onderdrukt worden. Een proactieve
aanpak kan dit probleem voorkomen en presteert bijgevolg beter op het ge-
bied van geluidskwaliteit (zie Hoofdstuk 10). Verder wordt in Hoofdstuk
8 een nieuwe en goedkope parametrische frequentieschattingsmethode voorge-
steld die kan worden gebruikt voor fluittoondetectie. Voor het ontwerp van
inkepingsfilters wordt meestal een beroep gedaan op een ontwerpprocedure
voor parametrische-egalisatiefilters, die typisch bestaat in het ontwerp van een
analoog egalisatiefilter gevolgd door een bilineaire transformatie. In Hoofd-
stuk 7 wordt een nieuwe ontwerpmethode beschreven waarmee parametrische-
egalisatiefilters (waaronder inkepingsfilters) direct in het digitale domein kun-
nen worden ontworpen. Tenslotte worden enkele open problemen besproken
rond de veelbelovende techniek van adaptieve feedbackonderdrukking. Voor
spraaktoepassingen zijn de geluidskwaliteit en de betrouwbaarheid van be-
staande oplossingen vaak ontoereikend, waardoor de ontwikkeling een nieuwe
aanpak noodzakelijk blijkt (zie Hoofdstuk 9 en 10). Voor audiotoepassin-
gen daarentegen zijn nog geen adaptieve feedbackonderdrukkingsalgoritmen
beschikbaar, en dergelijke algoritmen worden daarom voorgesteld in Hoofd-
stuk 11 en 12.

In Paragraaf 1.4 wordt het inleidende hoofdstuk afgerond met een overzicht
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van de publicaties die deel uitmaken van dit proefschrift.

Hoofdstuk 2: State of the art inzake akoestische-feedback-
beheersing

Het eerste doel van dit hoofdstuk bestaat erin een overzichtelijk beeld te schep-
pen van het onderzoekswerk rond akoestische-feedbackbeheersing dat gedurende
de voorbije 50 jaar werd gerapporteerd in onderzoeksartikels en octrooien. Het
tweede doel is een vergelijkende evaluatie te maken van de meest gebruikte
methodes voor akoestische-feedbackbeheersing, waaronder enkele van de me-
thodes die in dit proefschrift worden voorgesteld. Het derde doel bestaat in
het formuleren van een aantal belangrijke uitdagingen met de bedoeling om de
richting van toekomstig onderzoek uit te stippelen.

In Paragraaf 2.2 wordt het akoestische-feedbackprobleem beschreven in een
discrete-tijd-signaalverwerkingscontext. Het centrale resultaat in deze para-
graaf is de formulering van de Nyquist-stabiliteitsvoorwaarden, op basis waar-
van nagenoeg elke methode voor akoestische-feedbackbeheersing kan worden
afgeleid. Verder worden de eigenschappen van kamerakoestische overdrachts-
functies summier beschreven en wordt de maximale stabiele versterking (MSG)
gedefinieerd als belangrijkste performantiemaat voor feedbackbeheersing.

Het literatuuroverzicht in Paragraaf 2.3 is het resultaat van een uitgebreide
literatuurstudie van een honderdtal onderzoeksartikels en octrooien rond akoes-
tische-feedbackbeheersing die werden gepubliceerd tussen 1958 en 2008. In het
literatuuroverzicht worden de bestaande methodes geclassificeerd in vier cate-
gorieën: fasemodulatiegebaseerde methodes, signaalverzwakkingsmethodes,
ruimtelijke-filteringmethodes en methodes gebaseerd op kamermodellering. In
fasemodulatiegebaseerde methodes wordt de fase van het microfoonsignaal aan-
gepast in het elektroakoestisch voorwaarts pad zodat constructieve interfe-
rentie van het feedbacksignaal met het bronsignaal ter hoogte van de micro-
foon vermeden wordt. Het doel van signaalverzwakkingsmethodes bestaat erin
een frequentie-afhankelijke reductie van de versterking in het elektroakoestisch
voorwaarts pad uit te voeren in kritische frequentiebanden. Bij ruimtelijke-
filteringmethodes wordt een bundelsturing uitgevoerd m.b.v. luidspreker- en/of
microfoonroosters om de directe terugkoppeling tussen de luidsprekers en de
microfoons te reduceren. methodes gebaseerd op kamermodellering beogen de
modellering en identificatie van de kamerakoestiek voor het ontwerp van een
feedbackonderdrukkingsfilter of een egalisatiefilter.

In Paragraaf 2.4 wordt fasemodulatiegebaseerde feedbackbeheersing (PFC) in
detail besproken, d.i. de oudste techniek voor akoestische-feedbackbeheersing
die recent veel belangstelling kreeg bij het ontwerp van galmverbeteringssys-
temen. Het concept van PFC wordt gëıllustreerd a.h.v. de theorie van line-
aire periodiek tijdsvariante filters en er wordt een onderscheid gemaakt tussen
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vier types van fasemodulatie. Verder wordt de realizatie van dergelijke filters
in detail beschreven, worden suggesties gemaakt voor een gepaste keuze van
de parameterwaarden en worden de voor- en nadelen van de PFC-methode
toegelicht.

Paragraaf 2.5 handelt over inkepingsfiltergebaseerde fluittoononderdrukking
(NHS), wat zonder twijfel de meest gebruikte techniek is voor akoestische-
feedbackbeheersing in geluidsversterkingssystemen. De nadruk ligt op tweele-
dige NHS-methodes, waarvan achtereenvolgens het gedeelte voor fluittoonde-
tectie en het gedeelte voor inkepingsfilterontwerp in detail worden besproken.
Deze paragraaf wordt afgesloten met enkele praktische overwegingen voor het
initialiseren van de NHS-methode in een geluidversterkingssysteem en met een
overzicht van de pro’s en contra’s voor deze methode.

In Paragraaf 2.6 wordt een meer recente techniek voor akoestische-feedback-
beheersing besproken, meer bepaald adaptieve feedbackonderdrukking (AFC).
Deze techniek wordt gekaderd in de theorie van geslotenlusidentificatie, van
waaruit de combinatie van het adaptief filter met een decorrelatiemethode
noodzakelijk blijkt. De bestaande decorrelatiemethodes worden in detail be-
schreven, alsook enkele recente technieken om de performantie van de AFC-
methode verder te verbeteren, zoals postfiltering en regularisatie. Tenslotte
worden de sterktes en zwaktes van de AFC-methode toegelicht.

In Paragraaf 2.7 worden de uitvoering en de resultaten besproken van een
vergelijkende evaluatie van de drie methodes die in de voorgaande paragrafen
in detail aan bod kwamen. Voor elk van deze drie methodes worden drie al-
goritmen uit de literatuur geselecteerd die representatief zijn voor de state of
the art. Die negen algoritmen worden vervolgens geëvalueerd op basis van de
haalbare versterking, de geluidskwaliteit en de betrouwbaarheid. Zowel voor
spraak- als audiosignalen blijkt de AFC-methode superieur te zijn inzake haal-
bare versterking en geluidskwaliteit, en biedt deze methode een relatief hoge
betrouwbaarheid. Van de drie geëvalueerde AFC-algoritmen scoort AFC op
basis van prefiltering (AFC-PF) over het algemeen het best, d.i. een algoritme
dat in dit proefschrift wordt ontwikkeld (zie Hoofdstuk 9 en 12).

Tot slot worden in Paragraaf 2.8 de belangrijkste uitdagingen voor toekom-
stig onderzoek in akoestische-feedbackbeheersing op een rijtje gezet. Gezien de
relatief superieure performantie van de AFC-methode, ligt het voor de hand
dat voornamelijk die methode het onderwerp van toekomstig onderzoek zal
uitmaken. De grootste hindernis die de AFC-methode met zich meebrengt
is de hoge rekencomplexiteit. Aansluitend daarbij is de uitbreiding van de
AFC-methode naar meerkanaalssystemen hoegenaamd niet triviaal. Enkele
suggesties om die twee hindernissen in de toekomst te overwinnen worden
aangehaald, waarbij de nadruk ligt op het gebruik van een alternatief model
voor het akoestische-feedbackpad.
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Hoofdstuk 3: Dubbelspraakrobuuste AEC

In dit hoofstuk wordt een nieuwe oplossing aangereikt voor het dubbelspraak-
probleem in akoestische-echo-onderdrukking (AEC). In Paragraaf 3.1 wordt
het dubbelspraakprobleem uiteengezet en wordt een literatuurstudie rond dit
onderwerp gepresenteerd. De meest gebruikte manier om divergentie van het
adaptief filter tegen te gaan tijdens dubbelspraak bestaat in het inschakelen
van een dubbelspraakdetector (DTD) die de adaptatie desgevallend bevriest.
Toch is er nood aan dubbelspraakrobuuste adaptieve-filteralgoritmen om de
tekortkomingen van de DTD op te vangen en om adaptatie tijdens continue
dubbelspraak mogelijk te maken.

In Paragraaf 3.2 wordt een theoretisch kader geschetst van waaruit de voor-
gestelde dubbelspraakrobuuste AEC-algoritmen kunnen worden afgeleid. Het
principe van minimale-variantieschatting suggereert dat het dubbelspraakpro-
bleem groter is wanneer het bronsignaal een grotere spectrale kleuring vertoont.
Bovendien blijkt dat de variantie van de traditionele kleinste-kwadratenschatter
kan worden verlaagd door de karakteristieken van het bronsignaal in rekening
te brengen bij de schatting.

In Paragraaf 3.3 worden enkele algoritmen voor dubbelspraakrobuuste AEC
afgeleid. In de eerste plaats wordt er een verband gelegd tussen de theorie van
minimale-variantieschatting en de predictiefoutmethode (PEM) voor systeemi-
dentificatie. Er wordt een predictiefoutcriterium opgesteld op basis waarvan
een algoritme voor recursieve predictiefoutidentificatie (RPE) van het akoes-
tische echopad en een autoregressief bronsignaalmodel wordt afgeleid. Het
RPE-algoritme blijkt een veralgemening te zijn van drie algoritmen die eerder
werden voorgesteld in het kader van adaptieve feedbackonderdrukking.

Paragraaf 3.4 handelt over de implementatie en complexiteit van de voorge-
stelde algoritmen. Zowel een Gauss-Newton-implementatie als een stochasti-
sche-gradientimplementatie worden besproken, en er worden richtlijnen gegeven
omtrent de keuze van de orde van het bronsignaalmodel. Tenslotte wordt de
complexiteit van de voorgestelde algoritmen vergeleken met de complexiteit
van enkele bestaande adaptieve-filteralgoritmen.

In Paragraaf 3.5 worden simulatieresultaten besproken voor vier verschillende
scenario’s: continue dubbelspraak, abrupte dubbelspraak, echopadwijziging tij-
dens enkelspraak en echopadwijziging tijdens dubbelspraak. De voornaamste
vaststellingen zijn dat het bestaande recursieve kleinste-kwadratenalgoritme
(RLS) goed presteert tijdens continue dubbelspraak maar veel minder robuust
is tegen abrupte dubbelspraak in vergelijking met de voorgestelde algoritmen
(Gauss-Newton-implementatie). In het geval van een stochastische-gradient-
implementatie vertonen de voorgestelde algoritmen een opmerkelijk beter con-
vergentiegedrag dan het bestaande genormaliseerde kleinste-gemiddelde-kwa-
dratenalgoritme (NLMS).
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Hoofdstuk 4: Ondermodellering van het akoestische-echo-
pad

Dit hoofstuk handelt over een nieuwe aanpak voor het probleem van onder-
modellering in akoestische-echo-onderdrukking (AEC). Dit probleem doet zich
voor wanneer de orde van het adaptief filter in AEC aanzienlijk kleiner is dan
de lengte van de impulsresponsie van het akoestische-echopad. In Paragraaf
4.2 wordt het ondermodelleringsprobleem geanalyseerd: het residuele echosig-
naal ten gevolge van ondermodellering blijkt zowel een fout als een variantie
in de schatting van het akoestische-echopad te veroorzaken. Indien echter het
luidsprekersignaal een ongecorreleerd signaal is, dan is de fout op de schatting
gelijk aan nul.

In Paragraaf 4.3 wordt een PEM-gebaseerde aanpak van het ondermodelle-
ringsprobleem voorgesteld. Door in de identificatie van het akoestische-echopad
een prefiltering uit te voeren met het predictiefoutfilter van een autoregressief
model van het echo-gecompenseerde signaal, kan zowel de fout als de variantie
in de resulterende schatting gecontroleerd worden. De variantie kan bijge-
volg worden verlaagd, terwijl de fout kan worden gelokaliseerd in de laatste
coëfficiënten van het adaptief filter.

In Paragraaf 4.4 wordt de performantie van de voorgestelde aanpak geveri-
fieerd op basis van simulatieresultaten. De voornaamste vaststelling is dat bij
een directe identificatie van het akoestische-echopad (zonder prefiltering) de
variantie ten gevolge van ondermodellering ontoelaatbaar hoog is. Met de voor-
gestelde aanpak blijkt het inderdaad mogelijk te zijn om de variantie drastisch
te verlagen. De fout op de schatting blijft -zoals voorspeld- na prefiltering
geconcentreerd in de laatste adaptieve-filtercoëfficiënten en kan bijgevolg wor-
den verwijderd door de impulsresponsie van het adaptief filter af te kappen.

Hoofdstuk 5: Optimale regularisatie voor AEC/AFC

In dit hoofstuk wordt het probleem van onvoloende excitatie in adaptieve-
filtertoepassingen zoals akoestische-echo-onderdrukking (AEC) en adaptieve
feedbackonderdrukking (AFC) behandeld. Dat probleem doet zich vaak voor
in kamerakoestische toepassingen ten gevolge van de lengte van de kamerim-
pulsresponsie (RIR) en de spectrale kleuring van het luidspekersignaal, en kan
leiden tot een trage convergentie en numerieke problemen in het adaptief filter.

In Paragraaf 5.1 wordt het probleem van onvoldoende excitatie voorgesteld,
alsook de manier waarop het probleem doorgaans wordt aangepakt. Bestaande
adaptieve-filteralgoritmen omvatten meestal een ad-hocoplossing voor het ex-
citatieprobleem die bestaat in het optellen van een gescaleerde eenheidsma-
trix bij de autocorrelatiematrix van het luidsprekersignaal voordat die laatste
gëınverteerd wordt. Die zogenaamde regularisatie vinden we in de literatuur
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terug in twee varianten (Tikhonov- en Levenberg-Marquardtregularisatie) die
schijnbaar niet gerelateerd zijn. Het doel van dit hoofstuk bestaat erin om een
theoretisch kader te scheppen waarin beide regularisatievarianten kunnen wor-
den gëınterpreteerd als speciale gevallen van een meer algemene regularisatie-
aanpak, alsook om de optimaliteit van de bestaande technieken te onderzoeken
en te verbeteren.

In Paragraaf 5.2 wordt de regularisatie-aanpak gekaderd binnen de theo-
rie van Bayesiaanse minimale-gemiddelde-kwadratische-foutschatting (MMSE).
Daaruit blijkt dat een optimale benadering van de regularisatie-aanpak mo-
gelijk is door zowel het bronsignaal als de RIR te beschouwen als stochastische
vectorprocessen, en zo mogelijk a-priorikennis over deze processen te integreren
in het schattingsproces. Die benadering leidt tot het gebruik van een regulari-
satiematrix die niet noodzakelijk een gescaleerde eenheidsmatrix is.

In Paragraaf 5.3 wordt gesuggereerd op welke manier a-priorikennis over het
bronsignaal en de RIR kan worden geconstrueerd. De covariantiematrix van
het bronsignaal kan worden herleid tot een bovendriehoeksbandmatrix indien
een autoregressief signaalmodel wordt verondersteld. De coëfficiënten van die
matrix kunnen worden geschat m.b.v. de PEM-gebaseerde aanpak uit Hoofd-
stuk 3. De verwachte waarde van de RIR blijkt een cruciale rol te spelen in de
regularisatie-aanpak: indien de verwachte waarde wordt gelijkgesteld aan nul
bekomt men een Tikhonovregularisatie, en indien de verwachte waarde wordt
gelijkgesteld aan de adaptieve RIR-schatting op het vorige tijdstip bekomt
men een Levenberg-Marquardtregularisatie. De covariantiematrix van de RIR
kan worden geconstrueerd op basis van een initiële RIR-meting of van een 3-
parameter-RIR-model waarin kennis over de akoestische opstelling vervat zit.

In Paragraaf 5.4 wordt de voorgestelde regularisatie-aanpak toegepast op het
exponentieel gewogen recursieve kleinste-kwadratenalgoritme (RLS). De twee
regularisatievarianten (Tikhonov- en Levenberg-Marquardtregularisatie) leiden
tot twee nieuwe RLS-algoritmen waarin a-priorikennis over het bronsignaal en
de RIR kan worden opgenomen. Er worden bovendien twee methodes aange-
haald om een expliciete matrixinversie in de voorgestelde RLS-algoritmen te
omzeilen, waardoor de nodige rekenkracht kan worden gereduceerd.

Vervolgens wordt in Paragraaf 5.5 de voorgestelde regularisatie-aanpak toe-
gepast op zogenaamde ondergedetermineerde RLS-algoritmen, in het bijzon-
der het NLMS-algoritme en het affiene-projectie-algoritme (APA). In dit geval
blijkt de voorgestelde regularisatie-aanpak te resulteren in een algoritme dat
twee bijzondere eigenschappen vertoont: adaptatielek en proportionele adap-
tatie. Aangezien adaptatielek een eerder negatieve invloed lijkt te hebben in
kamerakoestische toepassingen, ligt de nadruk in deze paragraaf op de Leven-
berg-Marquardt-regularisatievariantaangezien daarmee enkel een proportionele
adaptatie wordt bekomen. Dit leidt tot nieuwe NLMS- en APA-algoritmen,
en bovendien tot een nieuwe interpretatie van de bestaande proportionele-
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adaptatie-algoritmen.

Tenslotte wordt in Paragraaf 5.6 de performantie van de voorgestelde geregu-
lariseerde algoritmen vergeleken met state-of-the-art-adaptieve-filteralgoritmen
in drie scenario’s: RLS-gebaseerde AEC in een stationaire akoestische omge-
ving, NLMS-gebaseerde AEC in een niet-stationaire akoestische omgeving en
NLMS-gebaseerde AFC in een stationaire akoestische omgeving. Telkens blijkt
dat hoe meer a-priorikennis over het bronsignaal en de RIR wordt gebruikt,
des te beter het convergentiegedrag van het adaptief algoritme is.

Hoofdstuk 6: Duale regularisatie voor AEC/AFC

Dit hoofstuk handelt over een numeriek probleem dat zich voordoet in het
RPE-algoritme dat werd afgeleid in Hoofdstuk 3. De voorgestelde oplossing
bestaat in een regularisatie van de schatting van het bronsignaalmodel, waarbij
eventueel a-priorikennis over het bronsignaalmodel kan worden gëıntegreerd.

In Paragraaf 6.2 wordt een schalingsambigüıteit in het RPE-algoritme bloot-
gelegd die aan de basis ligt van het geobserveerde numerieke probleem. Als de
hulpvariabelen in het RPE-algoritme worden geschaald met een factor (of een
functie daarvan) die aanzienlijk groter is dan de inverse norm van de impuls-
responsie van het bronsignaalmodelpredictiefoutfilter, dan kan de resulterende
schatting van de kamerimpulsresponsie (RIR) toch identiek zijn aan de schat-
ting in het geval er geen schaling optreedt. De schalingsambigüıteit kan bij-
gevolg pas worden waargenomen in het convergentiegedrag van de adaptieve
RIR-schatting wanneer er numerieke overloop optreedt.

In Paragraaf 6.3 wordt een oplossing voor dit probleem voorgesteld die steunt
op het concept van optimale regularisatie (zie Hoofdstuk 5). Naast de (pri-
male) regularisatieterm waarmee het probleem van onvoldoende excitatie in het
luidsprekersignaal wordt aangepakt, kan een tweede (duale) regularisatieterm
aan het predictiefoutcriterium worden toegevoegd om de ongewenste schaling
van de coëfficiënten van het bronsignaalmodel te voorkomen. Bovendien kan
in die duale regularisatieterm a-priorikennis over het bronsignaalmodel worden
gëıntegreerd.

In Paragraaf 6.4 worden simulatieresultaten voorgesteld waaruit blijkt dat
het numerieke probleem in het RPE-algoritme effectief wordt opgelost wan-
neer de duale regularisatie wordt toegepast. Daarnaast wordt een werkwijze
voorgesteld en geëvalueerd om a-priorikennis over het bronsignaalmodel te con-
strueren indien het bronsignaal een spraaksignaal is.
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Hoofdstuk 7: Bikwadratisch inkepingsfilterontwerp

In dit hoofdstuk wordt een nieuwe ontwerpmethode voor bikwadratische para-
metrische-egalisatiefilters voorgesteld, i.e., tweede-ordefilters met een oneindige
impulsresponsie (IIR) die het signaalspectrum slechts wijzigen in een smalle fre-
quentieband rondom een centrale frequentie. De voorgestelde ontwerpmethode
wordt in Hoofdstuk 2 gebruikt voor het ontwerp van inkepingsfilters voor
akoestische-feedbackbeheersing.

In Paragraaf 7.1 wordt het concept van parametrische-egalisatiefilterontwerp
uiteengezet a.h.v. een literatuurstudie en enkele toepassingen, en worden de
ontwerpdoelstellingen geformuleerd in een stelsel van vijf ontwerpvergelijkin-
gen. Terwijl nagenoeg alle bestaande ontwerpmethodes vertrekken van een
analoog filterontwerp gevolgd door een bilineaire transformatie, werkt de voor-
gestelde methode volledig in het digitale domein.

De nieuwe ontwerpmethode wordt vervolgens ontwikkeld in Paragraaf 7.2,
waar een onderscheid wordt gemaakt tussen inkepingsfilter- en resonantiefilter-
ontwerp. De methode is gebaseerd op de techniek van pool- en nulplaatsing en
wordt afgeleid door gebruik te maken van de grafische methode om de frequen-
tieresponsie van een lineair en tijdsinvariant filter te berekenen. De resulterende
ontwerpvergelijkingen kunnen aanzienlijk vereenvoudigd worden door veronder-
stellingen te maken over de onderlinge ligging van de polen en de nullen, en
over hun ligging ten opzichte van de eenheidscirkel in het complexe vlak.

Tenslotte wordt de performantie van de voorgestelde ontwerpmethode gëıllus-
treerd a.h.v. vijf ontwerpvoorbeelden in Paragraaf 7.3. In de eerste vier
voorbeelden wordt de magnituderesponsie van het resulterend parametrische-
egalisatiefilter uitgezet voor verschillende waarden van de bandbreedte, de re-
sonantieversterking en de centrale frequentie. In het vijfde voorbeeld wordt de
voorgestelde methode vergeleken met drie state-of-the-art-ontwerpmethodes,
waaruit blijkt dat de nieuwe methode even accuraat is als de bestaande metho-
des en tegelijkertijd een meer intüıtief filterontwerp toelaat.

Hoofdstuk 8: Efficiënte parametrische frequentieschatting

In dit hoofstuk wordt een goedkope methode voorgesteld om de frequenties van
een som van sinusöıdale signalen in additieve ruis te schatten. In Paragraaf
8.1 wordt een beknopt overzicht gegeven van de vele oplossingen die in de lite-
ratuur voorhanden zijn voor dit probleem. Een eerste belangrijke vaststelling is
dat de relatief goedkope niet-parametrische frequentieschattingsmethodes een
grote hoeveelheid signaalbemonsteringen nodig hebben om een goede frequen-
tieresolutie te bekomen, waardoor ze uiteindelijk relatief duur uitvallen. Een
tweede vaststelling is dat de parametrische frequentieschattingsmethodes over
het algemeen een hogere nauwkeurigheid leveren ten koste van een hoge reken-
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complexiteit.

In Paragraaf 8.2 wordt de nieuwe methode afgeleid, op basis van het zoge-
naamde beperkte-polen-en-nullensignaalmodel dat in de literatuur werd voorge-
steld in het kader van adaptieve inkepingsfilteralgoritmen (ANF). In de voorge-
stelde beperkte-polen-en-nullen-lineairepredictiemethode (CPZLP) worden de
parameters van dat signaalmodel geschat d.m.v. een numeriek optimalisatie-
algoritme. Door het signaalmodel te ontbinden in een product van bikwadra-
tische deelmodellen kan het optimalisatieprobleem ontkoppeld worden, waar-
door elke sinusöıdale frequentie apart kan worden geschat. In de optimalisatie
wordt een iteratieve lijnzoekmethode gebruikt waarbij de zoekrichting wordt
berekend d.m.v. een steilste-helling-aanpak, een Gauss-Newton-aanpak, of een
quasi-Newton-aanpak.

Paragraaf 8.3 handelt over de rekencomplexiteit van de voorgestelde CPZLP-
methode. Ten gevolge van de ontkoppeling van het optimalisatieprobleem is
de rekencomplexiteit een lineaire functie van het aantal gebruikte signaalbe-
monsteringen en van het aantal sinusöıdale componenten in het geobserveerde
signaal. Omwille van de lage complexiteit kunnen relatief lange signaalseg-
menten worden gebruikt waardoor de ruisgevoeligheid gereduceerd wordt.

Tenslotte worden in Paragraaf 8.4 simulatieresultaten getoond die de nauw-
keurigheid van de CPZLP-methode illustreren. Wanneer een quasi-Newton-
aanpak wordt gevolgd om de zoekrichting te berekenen, blijkt de resulterende
frequentievariantie dicht bij de Cramér-Rao-ondergrens te liggen voor een sig-
naal-ruisverhouding groter dan of gelijk aan 5 dB.

Hoofdstuk 9: AFC voor spraaktoepassingen

Dit hoofdstuk is het eerste van drie hoofdstukken die handelen over adaptieve
feedbackonderdrukking (AFC), een methode voor akoestische-feedbackbeheer-
sing die in eerste instantie voor spraaktoepassingen wordt voorgesteld. In
Paragraaf 9.1 wordt het akoestische-feedbackprobleem besproken, alsook een
overzicht van de voornaamste oplossingen uit de literatuur. In kamertoepassin-
gen wordt voornamelijk gebruik gemaakt van inkepingsfiltergebaseerde fluit-
toononderdrukkingsmethodes(NHS), terwijl in hoorapparaten vaak de AFC-
methode wordt toegepast. Die laatste methode levert doorgaans een hogere
performantie, maar de algoritmen die werden afgeleid voor hoorapparaten kun-
nen niet als dusdanig worden gebruikt in kamertoepassingen.

In Paragraaf 9.2 wordt een recente methode voor AFC in hoorapparaten
besproken, die is gebaseerd op de predictiefoutmethode (PEM) voor gesloten-
lussysteemidentificatie. Die zogenaamde PEM-AF-methode kan een foutloze
schatting van het akoestische-feedbackpad aanleveren door tegelijkertijd een
model van het bronsignaal te schatten. De methode is echter gebaseerd op de
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veronderstelling dat het bronsignaal stationair is gedurende een tijdsinterval
dat even lang is als de impulsresponsie van het akoestische-feedbackpad. Die
veronderstelling is geldig voor de korte akoestische-feedbackpaden in hoorap-
paraten maar niet voor langere feedbackpaden zoals in kamertoepassingen.

In Paragraaf 9.3 wordt een nieuw PEM-gebaseerd AFC-algoritme afgeleid
waarin geen verband wordt verondersteld tussen de stationariteit van het bron-
signaal en de lengte van de akoestische-feedbackpadimpulsresponsie. Het resul-
terende algoritme voert enkel rij-operaties uit op de luidsprekersignaalmatrix
in het predictiefoutcriterium, en wordt daarom aangeduid met de naam PEM-
AFROW.

Een tweede verbetering van het PEM-AFROW-algoritme t.o.v. het PEM-AF-
algoritme wordt voorgesteld in Paragraaf 9.4 en bestaat in het gebruik van
een lange-termijnpredictiefilter om de periodiciteit in het bronsignaal te model-
leren. Het gebruik van een dergelijk filter blijkt noodzakelijk te zijn wanneer de
fundamentale periode van de stemhebbende spraakklanken in het bronsignaal
korter is dan de akoestische-feedbackpadimpulsresponsie, wat doorgaans enkel
het geval is in kamertoepassingen.

Het resulterende algoritme wordt samengevat in Paragraaf 9.5 en de reken-
complexiteit alsook de keuze van de parameterwaarden wordt besproken in
Paragraaf 9.6. Tenslotte worden in Paragraaf 9.7 simulatieresultaten ge-
toond waaruit blijkt dat voor lange akoestische-feedbackpaden een aanzien-
lijke verbetering van de performantie kan worden gerealiseerd met het PEM-
AFROW-algoritme t.o.v. het NLMS- en het PEM-AF-algoritme.

Hoofdstuk 10: Robuuste en efficiënte AFC-implementatie

In dit hoofdstuk komt de praktische implementatie aan bod van het PEM-
AFROW-algoritme dat in Hoofdstuk 9 werd voorgesteld voor AFC in spraak-
toepassingen. In Paragraaf 10.1 worden het akoestische-feedbackprobleem en
de bestaande oplossingen toegelicht, waarna het concept en de werking van het
PEM-AFROW-algoritme wordt uitgelegd. De nadruk ligt daarbij op het proac-
tieve karakter van de AFC-methode in vergelijking met de reactieve werking
van de nochtans populaire NHS-methode.

In Paragraaf 10.2 worden zes technieken voorgesteld om de robuustheid van
het PEM-AFROW-algoritme in een realistische situatie te verbeteren. De
eerste techniek wordt aangeduid als adaptatiecontrole en bestaat in het af-
schakelen van de adaptatie gedurende tijdsintervallen waarin een lage feedback-
tot-bronsignaalvermogenverhouding wordt gedetecteerd (i.e., bij spraakaanzet-
ten in het bronsignaal). In de tweede techniek wordt een regularisatieterm op
basis van a-priorikennis toegevoegd om de initiële convergentie van het adaptief
filter te verbeteren. In de derde techniek wordt een tweelingfilterstructuur toe-
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gepast waarbij het zogenaamde achtergrondfilter sneller wordt geadapteerd dan
het voorgrondfilter, vanuit de bedoeling om een snelle convergentie te verzoenen
met een kleine stationaire adaptatiefout. De vierde techniek vertrekt vanuit de
idee om de voordelen van de AFC-methode en de NHS-methode te combineren
in een hybride aanpak. Concreet worden inkepingsfilters geplaatst rond fre-
quentiewaarden waarop het geslotenlussysteem zich dicht bij de stabiliteits-
grens bevindt, waardoor de robuustheid tegen abrupte veranderingen in het
akoestische-feedbackpad toeneemt. De vijfde techniek bestaat in de toevoeging
van een niet-lineair element in het elektro-akoestisch voorwaarts signaalpad om
te voorkomen dat de luidspreker van het geluidsversterkingssysteem een niet-
lineair gedrag vertoont. In de zesde techniek wordt het microfoonsignaal door
een hoogdoorlaatfilter gestuurd om het verschil in afsnijfrequentie tussen de
luidspreker en de microfoon te compenseren.

Paragraaf 10.3 handelt over subband- en frequentiedomeinimplementaties
van het PEM-AFROW-algoritme. In de subbandimplementatie worden zowel
het microfoonsignaal als het luidsprekersignaal in subbanden gesplitst en wor-
den de feedback-gecompenseerde subbandsignalen opnieuw samengevoegd in
een discrete-Fouriertransformatiegemoduleerde perfectereconstructiefilterbank.
Op die manier kan de adaptatie in het PEM-AFROW-algoritme in smallere fre-
quentiebanden gebeuren, met bijgevolg een lagere adaptieve-filterorde en een
lagere bemonsteringsfrequentie. In de frequentiedomeinimplementatie wordt
gekozen voor een blokgebaseerde adaptatie a.h.v. het bestaande FDAF- of
PBFDAF-algoritme.

Tenslotte worden in Paragraaf 10.4 enkele van de voorgestelde technieken
voor het verhogen van de robuustheid uitgetest d.m.v. computersimulaties
en realistische experimenten. Uit experimenten in reële tijd blijkt dat voor-
namelijk de adaptatiecontrole, de tweelingfilterstructuur en het gebruik van
een hoogdoorlaatfilter een positieve invloed hebben op de robuustheid van het
PEM-AFROW-algoritme. Een toename van de stabiele versterking met 14 dB
blijkt haalbaar te zijn in een sterk tijdsvariante akoestische omgeving.

Hoofdstuk 11: Lineaire predictie van audiosignalen

De PEM-gebaseerde AFC-methode die werd voorgesteld en geëvalueerd in
Hoofdstuk 9 en 10 blijkt niet goed te presteren voor audiotoepassingen om-
dat het autoregressief bronsignaalmodel niet geschikt is voor audiosignalen. In
dit hoofdstuk wordt het resultaat van een onderzoek naar lineaire predictie
(LP) van audiosignalen beschreven, als voorbereiding op de ontwikkeling van
AFC-algoritmen voor audiotoepassingen in Hoofdstuk 12.

In Paragraaf 11.1 wordt de state of the art inzake de modellering en codering
van audiosignalen beschreven, waarbij de nadruk ligt op LP-gebaseerde me-
thodes. In een meer algemene context wordt de literatuur omtrent de invloed
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van ruis op de modellering en identificatie van sinusöıdale signalen bestudeerd.
Tenslotte worden een aantal LP-modellen aangehaald die in het verleden wer-
den voorgesteld als alternatief voor het autoregressief model.

In Paragraaf 11.2 wordt het tonale signaalmodel voorgesteld waarop de ana-
lyse en de voorbeelden in de rest van het hoofdstuk gebaseerd zijn. Dat
model kan zowel voor monofone als voor polyfone signalen gebruikt worden.
Daarnaast wordt het concept van LP uitgelegd, met de nadruk op de inter-
pretatie van LP als een spectrale-schattingsmethode. Er wordt een kleinste-
kwadratencriterium voorgesteld van waaruit de performantie van de verschil-
lende LP-modellen kan worden geanalyseerd.

In Paragraaf 11.3 worden de eigenschappen en meer bepaald de tekortkomin-
gen van het autoregressief LP-model geanalyseerd. De belangrijkste vaststelling
is dat de aanwezigheid van de ruiscomponent in het tonale signaalmodel de posi-
tie van de polen in het geschatte LP-model op twee manieren bëınvloedt. Het
eerste effect van de ruis werd voordien in de literatuur beschreven en bestaat in
een verschuiving van de polen in de richting van de oorsprong van het complexe
vlak, waardoor de magnituderesponsie van het LP-model wordt afgevlakt. Een
tweede effect, dat nog niet eerder werd beschreven, bestaat in een rotatie van
de polen die neigt naar een uniforme polenverdeling rondom de eenheidscirkel.
Het gevolg daarvan is dat het autoregressief LP-model voornamelijk geschikt
is voor de modellering van signalen waarvan de tonale componenten uniform
verdeeld zijn in het Nyquistinterval, wat meestal niet het geval is voor audiosig-
nalen.

Op basis van de voorgaande vaststelling worden in Paragraaf 11.4 een aantal
alternatieve LP-modellen voor audiosignalen voorgesteld waarvan de perfor-
mantie niet of in mindere mate afhangt van de verdeling van de tonale com-
ponenten in het Nyquistinterval. Het beperkte-polen-en-nullenmodel (PZLP)
wordt geanalyseerd en blijkt ongevoelig te zijn voor de aanwezigheid van ruis
in het tonale signaalmodel. Het hoge-orde autoregressief (HOLP) model kan
beschouwd worden als een benadering van het PZLP-model aangezien dat laat-
ste een oneindige impulsresponsie heeft. Het toonhoogtepredictiemodel (PLP)
is enkel geschikt voor monofone signalen en vertoont een kamfiltergedrag waar-
bij de polen per definitie uniform verdeeld zijn rondom de eenheidscirkel. Het
zogenaamde verdraaid LP-model (WLP) wordt bekomen door een bilineaire
transformatie uit te voeren op het autoregressief LP-model en wordt geken-
merkt door een spectrale modellering volgens een niet-uniforme frequentiereso-
lutie. Het selectief LP-model is een autoregressief model dat het geobserveerde
signaal aan een lagere bemonsteringsfrequentie voorstelt waardoor enkel de
laagfrequente tonale componenten worden gemodelleerd.

In Paragraaf 11.5 worden de verschillende LP-modellen vergeleken op ba-
sis van uiteenlopende performantiecriteria en zowel voor synthetische als echte
monofone en polyfone audiosignalen. Over het algemeen wordt de beste per-
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formantie bereikt met het HOLP-model, maar dat model heeft te veel vrije
parameters om in de praktijk zinvol te kunnen worden aangewend. Het PZLP-
model is een mogelijk alternatief voor het HOLP-model, maar de schatting
van de PZLP-modelparameters is niet triviaal, in het bijzonder voor polyfone
signalen. Het PLP-model presteert dan weer bijzonder goed voor monofone
signalen, terwijl het WLP-model eerder voor polyfone signalen geschikt blijkt
te zijn.

Hoofdstuk 12: AFC voor audiotoepassingen

In dit hoofstuk wordt op basis van de PEM-gebaseerde AFC-aanpak van Hoofd-
stuk 9 en de alternatieve LP-modellen van Hoofdstuk 11 een aantal nieuwe
AFC-algoritmen ontwikkeld die in het bijzonder geschikt zijn voor toepassingen
waarin het bronsignaal een audiosignaal is.

In Paragraaf 12.1 wordt een overzicht gegeven van de bestaande methodes
voor akoestische-feedbackbeheersing. De meeste van die methodes blijken niet
geschikt te zijn voor audiotoepassingen, ofwel omdat ze een onvoldoende hoge
geluidskwaliteit garanderen, ofwel omdat ze gebaseerd zijn op een signaalmodel
waarin expliciet een spraaksignaal verondersteld wordt. De meest voor de
hand liggende richting om een akoestische-feedbackbeheersingsmethode voor
audiotoepassingen te ontwikkelen is een AFC-aanpak waarbij de decorrelatie
in het adaptieve-filtercircuit wordt uitgevoerd i.p.v. in de gesloten signaallus.

In Paragraaf 12.2 wordt het akoestische-feedbackprobleem uiteengezet en
wordt het AFC-concept gëıntroduceerd. Vervolgens wordt in Paragraaf 12.3
een PEM-gebaseerde AFC-aanpak voorgesteld waarbij het bronsignaal wordt
voorgesteld d.m.v. een serieschakeling van twee LP-modellen: een alternatief
LP-model voor de tonale componenten en een autoregressief LP-model voor de
ruiscomponenten. Het alternatief LP-model kan een PZLP-, PLP-, WLP- of
SLP-model zijn, overeenkomstig de resultaten van het onderzoek in Hoofdstuk
11.

In Paragraaf 12.4 worden de identificeerbaarheidsvoorwaarden voor gelijktij-
dige identificatie van het akoestische-feedbackpad en de seriegeschakelde bron-
signaalmodellen afgeleid. De identificeerbaarheid kan worden gegarandeerd
op voorwaarde dat er vertragingselementen worden ingevoerd in het elektro-
akoestisch voorwaarts signaalpad en/of in het adaptieve-filtercircuit.

In Paragraaf 12.5 worden de nieuwe AFC-algoritmen in detail voorgesteld.
De volgorde van de verschillende signaalbewerkingen is daarbij van groot be-
lang om te voorkomen dat de rekencomplexiteit de hoogte in gaat. Daarnaast
wordt de keuze van verscheidene cruciale algoritmeparameters besproken en
gemotiveerd. In Paragraaf 12.6 wordt de complexiteit van de voorgestelde
algoritmen vergeleken met die van de NLMS- en PEM-AFROW-algoritmen.
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Bovendien wordt een aantal modelbenaderingen voorgesteld die gebaseerd zijn
op veronderstellingen inzake de stationariteit van het akoestische-feedbackpad
en het bronsignaal, waarmee het surplus in complexiteit t.o.v. het NLMS-
algoritme kan worden beperkt tot 25 à 40 %, afhankelijk van de beoogde
toepassing.

Tenslotte worden de nieuwe algoritmen in Paragraaf 12.7 geëvalueerd voor
zowel kamerakoestische als hoorapparatentoepassingen. De resultaten beves-
tigen enigszins de experimentele vaststellingen die in Hoofdstuk 11 werden
gemaakt. Het PLP-model blijkt vooral goed te scoren in het geval van mono-
fone bronsignalen, terwijl het WLP-model eerder geschikt lijkt voor polyfone
bronsignalen. Zowel voor monofone als voor polyfone signalen blijkt ook het
PZLP-model in een goede AFC-performantie te resulteren. Het effect van de
modelbenaderingen op het gedrag van de algoritmen blijkt overigens in de
meeste gevallen verwaarloosbaar te zijn.

Hoofdstuk 13: Conclusies en suggesties voor toekomstig
onderzoek

In Paragraaf 13.1 worden de voornaamste bijdragen in het doctoraatsproef-
schrift op een rijtje gezet. Een eerste grote bijdrage bestaat in de ontwikke-
ling van PEM-gebaseerde adaptieve-filteralgoritmen en de toepassing daar-
van in verschillende open problemen in akoestische signaalverwerking. Een
tweede grote bijdrage is de verwezenlijking van een ruim theoretisch kader
waarin de techniek van regularisatie in lineaire adaptieve filtering kan wor-
den gëınterpreteerd en verbeterd. Een derde grote bijdrage ligt in de be-
schrijving van een uitgebreid overzicht en een vergelijkende evaluatie van de
state of the art in akoestische-feedbackbeheersing, aangezien rond dit onder-
werp tot op heden geen overzichtsliteratuur of vergelijkende studie beschikbaar
is. Naast die drie grote bijdragen bevat dit proefschrit nog drie kleinere bij-
dragen, meer bepaald met betrekking tot parametrische-egalisatiefilterontwerp,
efficiënte parametrische frequentieschatting en lineaire predictie van audiosig-
nalen.

Tenslotte worden in Paragraaf 13.2 enkele suggesties voor toekomstig on-
derzoek besproken. De twee belangrijkste uitdagingen, die bovendien nauw
met elkaar verbonden zijn, bestaan in de reductie van de nodige rekenkracht
voor akoestische-echo-onderdrukking en adaptieve feedback-onderdrukking en
in de uitbreiding van die twee methodes naar meerkanaalssystemen. De sleutel
om die uitdagingen aan te pakken ligt vermoedelijk in het gebruik van andere
modellen dan de impulsresponsie om de kamerakoestiek voor te stellen.
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Chapter 1

Introduction and Overview

This thesis addresses two topics in signal processing dealing with the enhance-
ment of sound signals in room acoustics, namely acoustic echo cancellation and
acoustic feedback control. In this introduction, we briefly set forth the concept
of room acoustic signal enhancement, and subsequently provide an overview of
open problems in the areas of acoustic echo cancellation and acoustic feedback
control. In this overview, we concisely review the state of the art, referring to
the publications collected in this thesis for a more thorough literature review
of each of the topics covered. More specifically, a literature review on acoustic
echo cancellation can be found in Chapter 3, while an extensive description
of the state of the art in acoustic feedback control is provided in Chapter 2.
In the introductory overview, we also explain how the work presented in the
thesis fits into the state of the art, and point out the main contributions. The
introduction ends with an overview of the publications included in the different
chapters.

1.1 Room Acoustic Signal Enhancement

The importance of sound signals in human communication and interaction can
hardly be overrated. Speech can be viewed as one of the fundamental commu-
nication tools between human beings, carrying not only a linguistic message
but also an emotional expression [1]. Music has become a daily source of em-
pathy and entertainment for many people, either through sound recordings or
live performances. Furthermore, we are surrounded by other kinds of –more
or less informative– sound signals, such as traffic noise, alarm signals, weather
sounds, etc.

3
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Sound quality is of major importance for being able to properly perceive and
interpret sound signals. However, sound signals are often distorted on their way
from the source (e.g., the speaker) to the receiver (e.g., the listener). We may
think of car noise interfering with a speech conversation between car passen-
gers, low-fidelity loudspeakers distorting audio reproduction in portable music
players, speech echoes disrupting a mobile telephone conversation, etc. One
particular source of distortion is due to room acoustics. When a sound is pro-
duced in a closed acoustic environment, it is partially reflected by the physical
boundaries of the environment, i.e., by the walls, floor, and ceiling of the room.
As a result, not only the source signal is received (denoted as the “direct”
sound component), but also a multitude of delayed and attenuated replicas of
the source signal (denoted as the “indirect” sound component). This effect is
known as reverberation, and depending on the particular application, this is
viewed either as a desired or undesired effect. In fact, both the artificial en-
hancement of the reverberation effect (e.g., for improving concert hall acoustics
[2]-[4]) as well as the elimination of reverberation (i.e., dereverberation, e.g.,
for improving speech intelligibility [5]-[8]) have been active research topics in
signal processing for many years. The aim of dereverberation is to retain the
direct sound component while eliminating the indirect sound component. In
a typical dereverberation scenario, the source signal is captured using one or
more microphones that are positioned relatively far from the source. In this
case, the source signal is not separately accessible as a reference signal, hence
most dereverberation algorithms perform a blind identification of the room
acoustics, operating only on the available microphone signals.

A related problem occurs when loudspeakers are used to reproduce speech or
music signals in an acoustic environment, while at the same time microphones
are present in the same environment to capture local sound signals. In such
a scenario, it is usually undesired yet unavoidable that the loudspeaker sound
is captured by the microphones, in addition to the local sound signals. This
problem is known as the acoustic echo problem, and it differs from the derever-
beration problem in two ways. First of all, both the direct and indirect sound
component of the echo signal have to be eliminated from the microphone sig-
nals. Second, the loudspeaker signal is typically available as a reference signal,
such that the room acoustics can be identified using non-blind system iden-
tification techniques. The acoustic echo problem becomes more complicated
when the loudspeakers are used to reproduce the local sound signals captured
by the microphones. Since in this case the echo signals are highly correlated
with the local sound signals, constructive interference of these signals at the
microphones may lead to oscillations that are perceived as ringing and howl-
ing effects. This problem is known as the acoustic feedback problem, and can
be considered to be one of the most long-standing problems in acoustic signal
processing. The acoustic echo and feedback problems have several implications
on sound quality. While acoustic echoes may severely degrade speech intelligi-
bility and disturb the normal course of speech conversations, acoustic feedback
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may distort speech and audio signals through howling, ringing, echoes, and
excessive reverberation.

A number of applications in which the acoustic echo and feedback problems
are encountered, are the following [9],

• Hands-free telephony is probably the most exemplary application of
acoustic echo control, in which a telephone conversation is performed
with freestanding loudspeakers and microphones instead of the tradi-
tional handheld telephone devices. A similar yet more advanced applica-
tion is the so-called teleconferencing application, which usually involves
multiple microphones and loudspeakers and in which more than two par-
ticipants may take part.

• In-vehicle communications is an emerging application for acoustic signal
processing, that receives a lot of interest from the automotive industry.
The aim is to improve the comfort of speech conversations as well as the
quality of audio playback within the vehicle, despite the high levels of,
e.g., road, wind, and traffic noise. Since an in-vehicle communications
system includes loudspeakers that reproduce the sound signals captured
by nearby microphones, acoustic feedback is usually unavoidable. In ad-
dition, acoustic echoes may result from audio playback being picked up
by the microphones. Some example applications are in-car communica-
tions systems, cockpit communications systems in aircrafts, and on-board
passenger information systems in trains.

• Public address systems represent a very challenging application of acous-
tic feedback control. Since extremely high model orders are required for
modeling the acoustics of large venues, acoustic feedback control in public
address applications is often restricted to howling suppression (without
modeling the room acoustics). Sound reinforcement systems for public
address are used in many different areas, e.g., sound reinforcement in
concert halls and auditoria, information broadcasting in airports, train
stations, and other public environments, and conference systems for large-
scale meetings.

• Hearing aids have been one of the most widely studied applications of
acoustic feedback control. Due to the closeness of hearing aid micro-
phones and loudspeakers, these devices have been found to be very prone
to acoustic feedback and howling. The success of acoustic feedback can-
cellation in hearing aids has paved the way for this technique being ex-
trapolated to other applications, particularly room acoustic applications.
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Figure 1.1: Acoustic echo cancellation in a hands-free telephony application.

1.2 Acoustic Echo Cancellation

1.2.1 Concept

A conceptual example of the acoustic echo cancellation (AEC) approach in
a hands-free telephony application is shown in Fig. 1.1. We focus on the
right-hand part of the figure, denoted as the “near-end room”. In this room,
a microphone is present for capturing the speech signal v(t) of the so-called
“near-end speaker”, which is to be sent over a transmission channel to the
receiver in the far-end room. Similarly, the far-end speech is transmitted from
the far-end room to the near-end room, and is reproduced by the loudspeaker
in the near-end room. Due to the acoustic coupling between the loudspeaker
and microphone in the near-end room, an echo x(t) of the far-end signal is
also captured by the microphone, in addition to the near-end speech signal
v(t). The echo is not just a single delayed version of the far-end signal u(t),
but instead consists of a multitude of delayed and attenuated replicas of the
far-end signal. This effect is due to the room reverberation, and substantially
increases the complexity of the acoustic echo problem.

The AEC approach consists in modeling and identifying the acoustic feedback
path F , subsequently filtering the far-end signal u(t) with the echo path esti-
mate F̂ , and finally subtracting the predicted echo signal from the microphone
signal y(t). The echo-compensated signal d(t) obtained after the subtraction is
then sent over the transmission channel to the far-end room. Since the acoustic
echo path may vary with time, e.g., due to people moving around the room or
changes in the microphone and loudspeaker positions, the echo path estimate F̂
should be regularly updated. For this reason, the identification of the acoustic
echo path is preferably carried out using an adaptive filtering algorithm, which
updates the previous echo path estimate according to the most recent far-end
and microphone data. A similar process concurrently takes place at the far-end
side to compensate for the acoustic echo path in the far-end room, see Fig. 1.1.

Despite the fact that the AEC approach is conceptually simple and that an
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astonishing number of research results on AEC has been published (see [10]-
[13] and references therein), several issues still remain unsolved. Three of these
open issues are treated in this thesis and will be introduced below, i.e., double-
talk robustness, acoustic echo path undermodeling, and poor excitation.

1.2.2 Double-Talk Robustness

It is well known that least-squares(LS)-based adaptive filtering algorithms
which are traditionally used in AEC, behave in a non-robust way in a double-
talk situation. Double-talk is defined as the situation in which the near-end
speaker and the far-end speaker are concurrently active, and has been shown
to occur during approximately 20 % of the time in a normal telephone con-
versation [14]. It has been observed that during double-talk, the convergence
speed of the recursive least squares (RLS) adaptive filtering algorithm is dras-
tically reduced, while underdetermined RLS algorithms such as the normalized
least mean squares (NLMS) and affine projection algorithm (APA) may even
diverge. For this reason, the state-of-the-art acoustic echo canceller is usually
equipped with a double-talk detector (DTD) that freezes the adaptation during
double-talk periods. However, there are several reasons why the use of a DTD
is discouraged. First, due to the detection lag and other DTD imperfections,
the adaptive filter coefficients are often seen to diverge even before the DTD
freezes the adaptation. Second, the AEC is not able to track echo path changes
that occur during double-talk, hence a large residual echo may result from such
a situation. Finally, if the AEC is applied in a noisy environment, there is a
continuous near-end activity so that the use of a DTD becomes futile. For
these reasons, there is a trend towards the development of double-talk-robust
adaptive filtering algorithms, that can either cope with an imperfect DTD be-
havior or even operate without a DTD. Referring to Chapter 3 for a detailed
literature review, we should mention that the most widely accepted double-
talk-robust AEC solution consists in introducing a scaled nonlinearity in the
AEC criterion [11, Ch. 6],[15]. This solution still requires the use of a DTD,
and results in an improved robustness at the onset of double-talk periods, at
the expense of a decreased convergence rate during single-talk periods (i.e.,
when the near-end speaker is not active).

Our contribution to the double-talk robustness problem consists in the devel-
opment of a family of double-talk-robust adaptive filtering algorithms that are
designed to operate without a DTD, and deliver a convergence improvement
during double-talk without sacrificing convergence speed during single-talk pe-
riods, see Chapter 3. This result is obtained by searching for the optimal
AEC solution in a minimum-variance linear estimation framework, rather than
in a tradional LS framework. It can be understood that the variance of the LS
echo path estimate during double-talk increases with the degree of coloration
in the near-end signal. The minimum-variance echo path estimate (also known
as the “best linear unbiased estimate”) thus depends on the near-end signal
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characteristics, which are in practice unknown and time-varying. The proposed
algorithms aim to whiten the near-end signal component in the microphone sig-
nal by using adaptive decorrelation filters that are estimated concurrently with
the acoustic echo path using a prediction-error-method(PEM)-based approach
[16, Ch. 3],[17, Ch. 7]. It appears that, particularly in the underdetermined
case, the adaptive filter convergence can be significantly improved at the cost
of a moderate increase in computational complexity.

1.2.3 Acoustic Echo Path Undermodeling

While the acoustic echo path effectively has an infinite impulse response (IIR),
it is usually modeled as a finite impulse response (FIR) filter, since adaptive
FIR filtering techniques are generally recommended over adaptive IIR filter-
ing techniques due to their guaranteed stability and global convergence. As a
consequence, the adaptive filter undermodels the acoustic echo path, hence the
echo path estimate may be biased and have a high variance. The undermod-
eling issue is often bypassed in the AEC literature by performing computer
simulations using a truncated acoustic echo path together with a sufficient-
order adaptive filter. Only a few methods have been proposed that attempt to
improve the adaptive filter behavior in the undermodeled AEC situation, which
are based on appropriately updating the NLMS step size parameter [18],[19].

Our contribution to the problem of undermodeled acoustic echo path estima-
tion is described in Chapter 4. Due to the echo path undermodeling, part of
the echo signal captured by the microphone cannot be predicted by the AEC.
This unpredictable echo signal can be decomposed into two components: a
component that lies in the column space of the far-end signal Hankel matrix,
and a component that is orthogonal to this column space. The former com-
ponent results in a bias in the resulting echo path estimate, while the latter
component increases the variance of the echo path estimate. Similarly to the
double-talk-robust AEC algorithms proposed in Chapter 3, adaptive decor-
relation filters can be used to (partially) whiten the unpredictable echo signal.
The resulting effect is that the variance of the echo path estimate is heavily
reduced, while the bias is concentrated in only a few adaptive filter taps which
can easily be discarded from the echo path estimate. This approach is imple-
mented using one of the PEM-based algorithms described in Chapter 3, which
does not require significantly more computations than the traditional adaptive
filtering algorithms.

1.2.4 Poor Excitation and Regularization

An important result in system identification states that the identifiability of
the acoustic echo path using an echo path model of order nF is guaranteed
only if the far-end signal is persistently exciting of order nF [17, Ch. 14]. This
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essentially means that the nF ×nF far-end signal autocorrelation matrix should
be nonsingular. Since nF may be very large in room acoustic applications, this
condition is not always satisfied, and if it is, the far-end signal autocorrelation
matrix often turns out to be ill-conditioned. This may lead to a high variance of
the echo path estimate, and moreover, numerical problems may further reduce
the AEC performance. The poor excitation problem is traditionally approached
in a pragmatic way, by either freezing the adaptation if the far-end signal
power decreases below a certain treshold or by adding a scaled identity matrix
to the far-end signal autocorrelation matrix before it is inverted in the LS
estimation. The latter approach is known as regularization, and is generally
considered to offer a powerful solution to the poor excitation problem. In AEC,
the regularization parameter (i.e., the identity matrix scaling factor) is usually
chosen to be an a priori estimate of the long-term near-end signal power, as
suggested in [20].

A first contribution in the context of poor excitation and regularization is de-
scribed in Chapter 5. Instead of applying regularization as an ad hoc method
for improving the conditioning of the far-end signal autocorrelation matrix, we
attempt at finding an optimal approach to regularization in which we also al-
low the regularization matrix to be different from the identity matrix. This is
possible by estimating the echo path parameters in a Bayesian minimum mean
square error (MMSE) framework instead of in an LS framework, hence creating
the opportunity to take into account prior knowledge that may be available on
the echo path parameters. This approach leads to a general framework for
regularization in linear adaptive filtering, in which the existing scaled-identity-
matrix-based Tikhonov and Levenberg-Marquardt regularization methods ap-
pear to be special cases that do not fully exploit the available prior knowledge.
Interestingly enough, the optimally regularized APA and NLMS algorithms ex-
hibit features known as leakage and proportionate adaptation, which have not
previously been related to regularization. In particular, the proposed regular-
ization framework has led to a new interpretation of the proportionate APA
[21] and proportionate NLMS [22],[23] algorithms that have recently gained a
lot of interest.

A second contribution relating to regularization is described in Chapter 6,
and consists in the development of a so-called “dual regularization” approach
that is aimed at improving the numerical properties of the double-talk-robust
PEM-based AEC algorithms proposed in Chapter 3. It has been found that
some of the PEM-based algorithms are prone to numerical problems due to a
scaling ambiguity that is inherent in the PEM-based approach. The proposed
solution is based on the extension of the Bayesian MMSE criterion obtained
in Chapter 5 with an additional term that regularizes the estimation of the
adaptive decorrelation filters in the PEM-based algorithms. This dual regular-
ization term may additionally be used to incorporate prior knowledge on the
near-end signal, e.g., using a model of long-term speech characteristics.
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Figure 1.2: The acoustic feedback problem in a sound reinforcement system.

1.3 Acoustic Feedback Control

1.3.1 Concept

The acoustic feedback problem is depicted in Fig. 1.2 for a sound reinforcement
system having one microphone and one loudspeaker. The similarity between
the acoustic feedback problem and the acoustic echo problem is apparent from
comparing Figs. 1.1 and 1.2. However, the crucial difference is that the tran-
mission channel and far-end side have been replaced with a control room, in
which the microphone signal is processed (e.g., equalized and amplified) before
being reproduced by the loudspeaker in the near-end room. The sound rein-
forcement system in Fig. 1.2 thus comprises a closed signal loop, which may
result in an unstable behavior that is observed through audible ringing and
howling effects.

Similarly to the acoustic echo problem, the acoustic feedback problem has
been the subject of extensive research in acoustic signal processing. However,
the available research results have hardly been compared and the different
approaches to acoustic feedback control have not yet been synthesized in a
unifying framework (which contrasts with the availability of survey literature
on acoustic echo control [10]-[13]). Consequently, while the AEC approach is
generally accepted to be the prototype solution to the acoustic echo problem,
there is no such consensus on how the acoustic feedback problem should be
tackled. A first contribution of this thesis in the framework of acoustic feed-
back control, consists in providing a survey report that covers the relevant
literature produced during the past five decades, see Chapter 2. In this re-
port, we unambiguously define the acoustic feedback problem and provide a
comprehensive literature review of existing acoustic feedback control methods
(as proposed in research reports and patents), with an emphasis on public
address and hands-free communication applications. Moreover, an in-depth
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treatment of the three most widely used acoustic feedback control methods,
i.e., phase-modulating feedback control (PFC), notch-filter-based howling sup-
pression (NHS), and adaptive feedback cancellation (AFC), is given, thereby
discussing conceptual as well as realization issues. Finally, a comparative eval-
uation of these three methods is performed and a number of future challenges
in acoustic feedback control research are formulated.

Additionally, several contributions to the improvement of NHS and AFC meth-
ods for acoustic feedback control are described in this thesis, which are briefly
outlined below.

1.3.2 Notch-Filter-Based Howling Suppression

Notch-filter-based howling suppression (NHS) is a widely used technique for
acoustic feedback control, that is aimed at removing the ringing and howl-
ing artifacts resulting from acoustic feedback, thereby stabilizing the sound
reinforcement system. A prototype NHS method essentially consists of the
combination of a howling detection method and a notch filter design method.
Howling detection and notch filter design can either be performed jointly or
separately, resulting in one-stage and two-stage NHS methods, respectively.

Howling Detection

The NHS notch filters are activated only when an unstable behavior or a ten-
dency towards instability is detected in the sound reinforcement system. Most
of the available NHS howling detection methods are reactive, in the sense that
howling can usually be perceived before being detected. In these methods,
howling detection is typically based on a combined spectral and temporal anal-
ysis of the microphone signal. In one-stage NHS methods, the spectral analysis
is achieved by identifying a suitably parametrized adaptive notch filter (ANF),
which is subsequently used for howling suppression. In two-stage NHS methods,
the spectral analysis is most often performed using a non-parametric estimate
of the microphone signal spectrum, such as the short-time discrete Fourier
transform (DFT), from which the appropriate howling detection features are
then identified.

Our first contribution to NHS howling detection consists in the development of
a so-called “proactive” howling detection technique for two-stage NHS methods,
see Chapter 10. In contrast to the state-of-the-art howling detection methods,
the proactive method identifies critical frequencies of the sound reinforcement
system (i.e., frequencies at which the system is close to instability) before howl-
ing effectively occurs. The system can hence be stabilized by activating notch
filters at the identified critical frequencies, thereby avoiding ringing and howl-
ing artifacts and hence retaining sound quality. This method is based on an
estimate of the acoustic feedback path frequency response, which is regularly
updated using an AFC algorithm.
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A second contribution is related to one-stage NHS methods and is described in
Chapter 8. Both FIR and IIR notch filters have been used in state-of-the-art
one-stage NHS methods, the parameters of which are typically identified using
an ANF algorithm. While the IIR-ANF approach has the advantage of being
capable of producing extremely narrowband notch filters, its main difficulty
lies in the fact that the LS criterion associated with the IIR-ANF frequency
estimation problem can be highly non-convex. As a consequence, the perfor-
mance of most IIR-ANF algorithms relies heavily on the initial conditions, and
finding the global IIR-ANF solution appears to be hard to achieve. In Chap-
ter 8, we propose a novel parametric frequency estimation algorithm that is
based on a constrained IIR model similar to the model used in many IIR-ANF
algorithms [24]. In contrast to the ANF approach, the proposed constrained
pole-zero linear prediction (CPZLP) method is non-adaptive, but instead op-
erates on a batch of available data. A key difference between the CPZLP
and ANF approaches, is that the gradient information used in the CPZLP ap-
proach is recalculated using the entire data record in each iteration, thereby
reducing the sensitivity to initial conditions and hence increasing the proba-
bility of global convergence. Unlike other non-adaptive parametric frequency
estimation methods (e.g., maximum-likelihood [25] or subspace methods [26]),
the CPZLP method has a computational complexity that depends only linearly
on the size of the data record.

Notch Filter Design

In two-stage NHS methods, biquadratic (i.e., second-order IIR) notch filters are
typically used for howling suppression. These filters are usually designed using
a procedure for the design of biquadratic parametric equalizer filters, of which
the biquadratic notch filter is a special case. Nearly all existing design proce-
dures start from the design of an analog parametric equalizer filter, followed
by a bilinear transform that maps the analog frequency axis onto the digital
frequency axis, see, e.g., [27]. To this end, the digital design variables should
be “prewarped” to analog variables, which can however not be done in an ex-
act way. Alternatively, biquadratic parametric equalizer filters can be designed
directly in the digital domain, either by bilinearly transforming a π/2-centered
filter into an arbitrarily centered filter [28], or by a design procedure known as
pole-zero placement.

Our contribution to notch filter design consists in the development of a pole-
zero placement technique for designing biquadratic parametric equalizer filters,
see Chapter 7. The main strength of the pole-zero placement technique is
its intuitiveness. However, existing pole-zero placement design procedures are
based on certain approximations for which a quantitative foundation is lacking.
In Chapter 7, we provide a quantitative treatment of the pole-zero placement
design procedure, resulting in a set of novel design equations that are directly
applicable to the NHS notch filter design problem.
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1.3.3 Adaptive Feedback Cancellation

Adaptive feedback cancellation (AFC) is a promising approach to acoustic feed-
back control, which is conceptually similar to the AEC approach for acoustic
echo control. However, state-of-the-art AEC algorithms cannot be applied as
such for acoustic feedback control due to the existence of a closed signal loop.
A first difficulty arising from the closed-loop situation, is that the system con-
tinuously operates in a double-talk situation. A second and more fundamental
problem is that the closed signal loop results in a considerable correlation be-
tween the loudspeaker and near-end signals, and as a consequence, traditional
LS-based adaptive filtering algorithms converge to a biased estimate of the
acoustic feedback path. While the double-talk problem has been disregarded
in most state-of-the-art AFC solutions, the correlation problem has been par-
tially solved by inserting a decorrelating signal operation in the closed signal
loop, e.g., a noise injection [29] or frequency shifting [30]. However, these
decorrelation techniques provide a bias reduction rather than a complete bias
removal, and moreover result in a considerable distortion of the loudspeaker
signal. As a consequence, the sound quality provided by these state-of-the-art
AFC solutions is relatively poor.

A first contribution in the context of AFC consists in the development of a novel
AFC algorithm for speech applications, see Chapter 9. Inspired by recent AFC
research in hearing aid applications [31],[32], we propose a PEM-based AFC
approach in which both the double-talk problem and the correlation problem
are tackled. The resulting AFC algorithm is similar to the double-talk-robust
AEC algorithms proposed in Chapter 3, and does not require the insertion
of a decorrelating signal operation in the closed signal loop. Decorrelation is
instead performed in the adaptive filtering circuit, using adaptive decorrelation
filters that whiten both the formant and pitch components in the near-end
speech signal. The so-called “PEM-AFROW” algorithm differs from the PEM-
based AFC algorithms proposed for hearing aids [32], in that no modeling
approximations are applied when calculating the output signals of the adaptive
decorrelation filters, which appears to be an essential condition in room acoustic
speech applications.

A second contribution covers several issues related to the practical implemen-
tation of AFC algorithms, see Chapter 10. The motivation for this work has
been to facilitate a real-time implementation of the PEM-AFROW algorithm
that can be used for acoustic feedback control in real-life speech applications.
To this end, the robustness and efficiency of the PEM-AFROW algorithm as
proposed in Chapter 9 are considerably improved. In terms of robustness,
we propose the following improvements: an adaptation control strategy for
dealing with convergence problems at near-end speech onsets, the use of a fore-
ground/background twin adaptive filter structure (known from AEC [33]) for
further improving the double-talk robustness, the insertion of a limiter in the



14 Chapter 1. Introduction and Overview

closed signal loop for modeling the nonlinear amplifier and loudspeaker behav-
ior, and a regularization technique incorporating prior knowledge on the acous-
tic feedback path (similar to the regularization approach described in Chapter
5). Additionally, we propose a hybrid approach to acoustic feedback control
by combining the use of the PEM-AFROW algorithm with an NHS method
that features a proactive howling detection method. Finally, in terms of effi-
ciency, subband and frequency domain implementations of the PEM-AFROW
algorithm are proposed with the aim of achieving a real-time operation.

A final contribution consists in the development of AFC algorithms for audio
applications, see Chapter 11 and 12. The PEM-AFROW algorithm developed
in Chapter 9 is particularly suited for speech applications, as it relies on the
efficient all-pole modeling of speech signals. However, the use of all-pole models
for audio signal modeling is not widespread. This is somewhat surprising,
as it is well known that a signal consisting of a sum of N sinusoids can be
perfectly modeled using a 2Nth order all-pole model [34]. In Chapter 11, we
point out that the main cause for all-pole models to perform poorly in audio
applications is related to the fact that the dominating tonal components in an
audio signal lie in a frequency range that is much smaller than the Nyquist
interval. We also review some alternative linear prediction models that do not
suffer from the aforementioned problem, namely pole-zero models, high-order
all-pole models, pitch prediction models, frequency-warped all-pole models, and
selective all-pole models. These models are subsequently used to derive a set
of PEM-based AFC algorithms in Chapter 12, which are better suited for
AFC in audio applications. It appears that in particular the use of a pole-
zero model or pitch prediction model, cascaded with a conventional all-pole
model, is beneficial to the AFC performance. The estimation of the pole-zero
model coefficients in the PEM-based AFC algorithm can be performed using
the CPZLP algorithm proposed in Chapter 8. By introducing some useful
model approximations related to the stationarity of the acoustic feedback path
and the near-end signal, the computational overhead of the PEM-based AFC
algorithms can be reduced to 25% of the NLMS complexity without significantly
influencing the AFC performance.

1.4 Chapters and Publications Overview

The following publications are included in this thesis:

Part I: Introduction

Chapter 2: State of the Art in Acoustic Feedback Control
T. van Waterschoot and M. Moonen, “50 years of acoustic feedback control:
state of the art and future challenges,” submitted for publication in Proc.
IEEE, Feb. 2009.
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Part II: Acoustic Echo Cancellation

Chapter 3: Double-Talk-Robust AEC
T. van Waterschoot, G. Rombouts, P. Verhoeve, and M. Moonen, “Double-
talk-robust prediction error identification algorithms for acoustic echo can-
cellation,” IEEE Trans. Signal Process., vol. 55, no. 3, pp. 846–858, Mar.
2007.

Chapter 4: Acoustic Echo Path Undermodeling
G. Rombouts, T. van Waterschoot, K. Struyve, P. Verhoeve, and M. Moonen,
“Identification of undermodeled room impulse responses,” in Proc. 2005
Int. Workshop Acoustic Echo Noise Control (IWAENC ’05), Eindhoven,
The Netherlands, Sep. 2005, pp. 153–156.

Chapter 5: Optimal Regularization for AEC/AFC
T. van Waterschoot, G. Rombouts, and M. Moonen, “Optimally regularized
adaptive filtering algorithms for room acoustic signal enhancement,” Signal
Processing, vol. 88, no. 3, pp. 594–611, Mar. 2008.

Chapter 6: Dual Regularization for AEC/AFC
T. van Waterschoot, G. Rombouts, and M. Moonen, “Dually regularized
recursive prediction error identification for acoustic feedback and echo can-
cellation,” in Proc. 15th European Signal Process. Conf. (EUSIPCO ’07),
Poznań, Poland, Sep. 2007, pp. 1610–1614.

Part III: Acoustic Feedback Control

Chapter 7: Biquadratic Notch Filter Design
T. van Waterschoot and M. Moonen, “A pole-zero placement technique for
designing second-order IIR parametric equalizer filters,” IEEE Trans. Audio
Speech Lang. Process., vol. 15, no. 8, pp. 2561–2565, Nov. 2007.

Chapter 8: Efficient Parametric Frequency Estimation
T. van Waterschoot and M. Moonen, “Constrained pole-zero linear predic-
tion: an efficient and near-optimal method for multi-tone frequency esti-
mation,” in Proc. 16th European Signal Process. Conf. (EUSIPCO ’08),
Lausanne, Switzerland, Aug. 2008.

Chapter 9: AFC for Speech Applications
G. Rombouts, T. van Waterschoot, K. Struyve, and M. Moonen, “Acoustic
feedback suppression for long acoustic paths using a nonstationary source
model,” IEEE Trans. Signal Process., vol. 54, no. 9, pp. 3426–3434, Sep.
2006.
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Chapter 10: Robust and Efficient AFC Implementation
G. Rombouts, T. van Waterschoot, and M. Moonen, “Robust and efficient
implementation of the PEM-AFROW algorithm for acoustic feedback can-
cellation,” J. Audio Eng. Soc., vol. 55, no. 11, pp. 955–966, Nov. 2007.

Chapter 11: Linear Prediction of Audio Signals
T. van Waterschoot and M. Moonen, “Comparison of linear prediction mod-
els for audio signals,” EURASIP J. Audio, Speech, Music Process., vol. 2008,
Article ID 706935, 24 pages, 2008. doi:10.1155/2008/706935

Chapter 12: AFC for Audio Applications
T. van Waterschoot and M. Moonen, “Adaptive feedback cancellation for
audio applications,” conditionally accepted for publication in Signal Pro-
cessing, Mar. 2009.
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Abstract

The acoustic feedback problem has intrigued researchers over the past five
decades, and a multitude of solutions has been proposed. In this survey paper,
we aim to provide an overview of the state of the art in acoustic feedback
control, to report results of a comparative evaluation with a selection of existing
methods, and to cast a glance at the challenges for future research.

2.1 Introduction

Ever since sound reinforcement and public address (PA) systems have been in
use, their performance has been troubled by the problem of acoustic feedback.
Whenever a microphone captures a desired sound signal which is then processed
(e.g., amplified) and played back by a loudspeaker in the same environment,
as it is the case in a PA system, the loudspeaker signal is unavoidably fed
back into the microphone. In this way, a closed signal loop is created which
affects the system performance, deteriorating the sound quality and limiting
the achievable amplification. Among the different artifacts that are produced
by this acoustic coupling between loudspeaker and microphone, the howling
effect is without any doubt the most characteristic one.

Historically, some ambiguity has arisen in the terminology associated with the
acoustic feedback problem. The term acoustic feedback has been used to refer
to the undesired acoustic coupling between a loudspeaker and a microphone
as well as to the howling effect that results from the coupling. We will use
the term acoustic feedback in the first sense. Both the acoustic coupling and
the howling effect are sometimes also referred to as the Larsen effect, after
the Danish physicist Søren Larsen, who is said to have been one of the first
researchers to investigate the acoustic feedback problem [1].

Acoustic feedback control refers to the process of attempting to solve the acous-
tic feedback problem either completely (i.e., to remove the acoustic coupling)
or partially (e.g., to remove the howling artifacts from the loudspeaker signal).
This paper only deals with automatic methods for acoustic feedback control,
i.e., methods that do not require the interaction of an operator. Moreover,
the emphasis will be on discrete-time methods that can be implemented on a
digital signal processor. Surprisingly enough, despite 50 years of research on
automatic acoustic feedback control, many PA system technicians still prefer to
prosecute manual control of acoustic feedback. The main reason for this is the
lack of reliability in the available automatic acoustic feedback control solutions,
i.e., howling may still occur and may even take more time to be eliminated than
in case of manual control.

The goal of this paper is threefold. First of all, we aim to provide an overview
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of the state of the art in acoustic feedback control, by reviewing relevant sci-
entific papers and patents that have been published over the past five decades.
The focus of the literature review is on acoustic feedback control for room
acoustic sound reinforcement systems, a PA system being the most examplary
application. We should point out, however, that during the past two decades a
considerable amount of research results has been published related to feedback
control in hearing aids (HA), where the feedback is due to a combined acoustic
and mechanical coupling. Some of these publications will also be referenced
here as they have provided solutions that have successfully been extrapolated
to room acoustic applications. Our second goal is to report results of a compar-
ative evaluation of the three most widely used methods for acoustic feedback
control, namely phase-modulating feedback control (PFC), notch-filter-based
howling suppression (NHS), and adaptive feedback cancellation (AFC). Such a
comparative evaluation has to our knowledge not been reported earlier. This
is presumably due to the fact that these three methods in fact attempt to solve
different problems (i.e., smoothing the system loop gain vs. howling suppres-
sion vs. removal of the acoustic loudspeaker-microphone coupling) and hence
different measures have previously been used to quantify the performance of
each of these methods individually. We observe, however, that even though the
PFC, NHS, and AFC problem formulations are different, the ultimate objec-
tives of these methods are the same: to improve sound quality, to increase the
amount of achievable amplification, and to operate in a reliable way. Hence
the reported comparative evaluation is carried out with these three objectives
in mind. Finally, out third goal is to formulate the challenges that we believe
are most prevalent to steer future research in acoustic feedback control towards
the development of reliable and affordable solutions.

The paper is organized as follows. In Section 2.2, the acoustic feedback problem
is formulated in a formal way, where the key result is the Nyquist stability
criterion, based on which all the acoustic feedback control methods can be
derived. Section 2.3 deals with the state of the art in acoustic feedback control:
the existing feedback control solutions are divided into four categories (phase
modulation methods, gain reduction methods, spatial filtering methods, and
room modeling methods), and a detailed literature review of each category is
given. In the next Sections, the three most popular acoustic feedback control
methods are outlined in more detail: Section 2.4 deals with the PFC method,
Section 2.5 with the NHS method, and Section 2.6 with the AFC method. In
Section 2.7, these three methods are then evaluated in terms of the resulting
sound quality, the achievable amplification, as well as their reliability. The
evaluation is based on computer simulation results using realistic room acoustic
models and for both speech and audio signals. Finally, in the concluding Section
2.8 we summarize the results obtained with the state-of-the-art methods and
formulate future research challenges in acoustic feedback control.
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STAGE

MIXER AUDIENCE

L loudspeaker signals

S microphone signals

Figure 2.1: A typical public address (PA) system scenario, featuring 7 micro-
phones, 4 on-stage loudspeakers, 4 loudspeakers directed towards the audience,
and a mixing/signal processing/amplification console.

2.2 The Acoustic Feedback Problem

A typical PA system scenario is shown in Fig. 2.1: a number of microphones are
positioned such as to pick up the sound of possibly multiple sound sources that
are of interest. The microphone signals are then routed to the mixing console
and may be subject to additional processing, such as dynamic range processing,
artificial reverberation, etc., which is usually performed in the digital domain.
The mixed signals are then amplified and sent to the loudspeakers, which are
often arranged in a group-wise fashion (i.e., all the loudspeakers in the same
loudspeaker group broadcast the same signal). Usually, the microphones and
loudspeakers are positioned in such a way that, taking into account their di-
rectivity, the loudspeaker sound does not directly hit the microphones, i.e.,
no direct acoustic coupling between the loudspeakers and microphones exists.
However, in nearly every sound reinforcement application it is unavoidable that
the loudspeaker sound is reflected by the boundaries (walls, floor, and ceiling)
of the acoustic environment (denoted as the “room”) and by subjects and ob-
jects within the environment. These reflections constitute an indirect acoustic
coupling between the loudspeakers and microphones of the system.

The PA scenario can be modeled in a discrete-time context as shown in Fig.
2.2. All continuous-time signals involved are assumed to be bandlimited in
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Figure 2.2: Discrete-time model of a PA system with S microphones and L
loudspeakers.

such a way that they can be sampled at a standard sampling frequency (e.g.,
fs = 16 kHz in speech applications, fs = 44.1 kHz in audio applications)
and represented by their discrete-time counterparts1. If we represent the S
source signals by vi(t), i = 1, . . . , S, the corresponding S microphone signals
as yi(t), i = 1, . . . , S, and the L loudspeaker signals as uj(t), j = 1, . . . , L,
then the discrete-time closed-loop system model in Fig. 2.2 can be described
by the following relations:

ȳ(t) = F(q, t)ū(t) + v̄(t) (2.1)

ū(t) = G
[
ȳ(t), t

]
. (2.2)

Here, the source signal, microphone signal, and loudspeaker signal vectors are
defined as

v̄(t) =
[
v1(t) . . . vS(t)

]T
(2.3)

ȳ(t) =
[
y1(t) . . . yS(t)

]T
(2.4)

ū(t) =
[
u1(t) . . . uL(t)

]T
(2.5)

and the multi-channel acoustic feedback path F(q, t) and electro-acoustic for-
ward path characteristics G[·, t] are defined below.

Between each loudspeaker-microphone pair (j, i), j = 1, . . . , L, i = 1, . . . , S
there exists an acoustic coupling, which can be modeled by the acoustic feed-

1In our notation, we discriminate between continuous-time and discrete-time signals by us-
ing curly brackets for the former and round brackets for the latter. E.g., x{τ} is a continuous-
time signal and x(t) is the corresponding discrete-time signal. The discrete time index t is
related to the continuous time index τ as t = τ/Ts with the sampling interval defined as
Ts = 1/fs.
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back path transfer function

Fij(q, t) = f
(0)
ij (t) + f

(1)
ij (t)q−1 + . . . + f

(nF )
ij (t)q−nF (2.6)

where q denotes the discrete-time shift operator, i.e., q−kuj(t) = uj(t − k).
The multi-channel feedback path matrix in (2.1) is then defined as an S × L
polynomial matrix

F(q, t) =






F11(q, t) . . . F1L(q, t)
...

. . .
...

FS1(q, t) . . . FSL(q, t)




 . (2.7)

The acoustic feedback path model is linear, time-varying, and of finite order2

nF . The linearity assumption is generally considered to be a reasonable one,
since the effects of sound propagation and reflections in the acoustic environ-
ment (i.e., signal attenuations and time delays) are quasi level-independent.
The finite-order assumption, which contrasts with the infinite impulse response
(IIR) nature of room acoustics, can be justified by the observation that a typi-
cal room impulse response (RIR) has an exponentially decaying envelope such
that it can be truncated to have nF + 1 < ∞ coefficients.

An example RIR, which was measured at fs = 44.1 kHz and truncated at a
length of nF + 1 = 4410 coefficients (corresponding to 100 ms), is shown in
Fig. 2.3. The frequency response of this RIR is displayed in Fig. 2.4. It
can be seen that the magnitude response has an overall lowpass behavior as
well as many local magnitude peaks and dips. This irregular behavior was
explained and quantified by Schroeder in [2], under the assumption that the
acoustic coupling is mainly due to reflections and not due to a direct acoustic
path between the loudspeaker and microphone. The average frequency distance
between two magnitude peaks is then about 10 Hz, and the peak magnitude
can be up to 10 dB larger than the average magnitude in the frequency response
[2].

In the electro-acoustic forward path, the S microphone signals are mixed and
amplified to obtain L loudspeaker signals, and moreover, some additional sig-
nal processing is performed. Since usually nonlinear dynamics processing (e.g.,
compression, limiting, etc.) is involved here, the forward path mapping Gji[·, t]
between the (i, j)th microphone-loudspeaker pair should be modeled as a non-
linear, time-varying filter. However, to be able to perform a stability analysis
of the closed-loop system, we will mostly assume that the forward path can be
modeled by a linear, time-varying transfer function, ∀i, j,

Gji[·, t] = Gji(q, t) = g
(0)
ji (t) + g

(1)
ji (t)q−1 + . . . + g

(nG)
ji (t)q−nG (2.8)

2For ease of notation, we assume that all the acoustic feedback path transfer functions
Fij(q, t), i = 1, . . . , S, j = 1, . . . , L have the same order nF . This is also reasonable from
a physical point of view, since the reverberation time in a room does not depend on the
loudspeaker and microphone positions. We will make the same assumption further on for the
electro-acoustic forward path transfer functions Gji(q, t).
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Figure 2.3: A typical room impulse response, measured at fs = 44.1 kHz and
truncated at a length of nF + 1 = 4410 coefficients.

and

G[·, t] = G(q, t) =






G11(q, t) . . . G1S(q, t)
...

. . .
...

GL1(q, t) . . . GLS(q, t)




 . (2.9)

If the forward path includes IIR components, such as IIR equalization filters, we
have that nG = ∞. We further assume that the sound sources have sufficient
directivity and are close enough to the respective microphones, such that the
acoustic transfer function matrix from the sources to the microphones is an
identity matrix. These assumptions can be justified since these do not relate
directly to the feedback problem.

While many sound reinforcement systems comprise multiple loudspeakers and
microphones, most acoustic feedback control methods have been proposed in a
single-channel context (i.e., for one loudspeaker and one microphone), without a
framework for an extension to multi-channel systems being explicitly provided.
For this reason, we will analyze the acoustic feedback problem and explain the
acoustic feedback control methods in a single-channel context, and drop the
subscripts i and j. We will however comment on the implications of extending
a particular method to a multi-channel system whenever appropriate.

In a single-channel sound reinforcement system, the closed-loop frequency re-
sponse from the source signal to the loudspeaker signal can be expressed as
follows:

U(ω, t)

V (ω, t)
=

G(ω, t)

1 − G(ω, t)F (ω, t)
. (2.10)
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Figure 2.4: Frequency response of the RIR shown in Fig. 2.3: (a) Magnitude
response, (b) Phase response.

Here, ω ∈ [0, 2π] represents the radial frequency variable, U(ω, t) and V (ω, t)
denote the short-term frequency spectra of the loudspeaker and source signal,
and G(ω, t) and F (ω, t) are the short-term frequency responses of the for-
ward and feedback path, which can be calculated using the short-time discrete
Fourier transform (DFT). The frequency function G(ω, t)F (ω, t) appearing in
the denominator of (2.10) is often referred to as the “loop response” of the
system, and plays a crucial role in acoustic feedback control (the correspond-
ing magnitude response |G(ω, t)F (ω, t)| is then referred to as the “loop gain”
and the phase response ∠G(ω, t)F (ω, t) as the “loop phase”). It is well known
that a closed-loop system can exhibit instability, which may lead to oscillations
that, in an acoustic system, are perceived as howling. Stability analysis of lin-
ear closed-loop systems is by now a well-understood topic in control systems
theory, which originated from early studies on feedback amplifiers. The current
approach to closed-loop system stability analysis is based on a classical paper
by Nyquist [3]. The Nyquist stability criterion can be formulated as follows3:
if there exists a radial frequency ω = 2π(f/fs) for which

|G(ω, t)F (ω, t)| ≥ 1 (2.11)
{

∠G(ω, t)F (ω, t) = n2π, n ∈ Z (2.12)

then the closed-loop system is unstable. If the unstable system is moreover
excited at the critical frequency f , i.e., if the source signal contains a non-zero
frequency component at f , then an oscillation at this frequency will occur. The

3We should note that the Nyquist stability criterion is defined in [3] for linear time-
invariant systems. The stability of linear time-varying systems should be analyzed by the
so-called circle criterion instead [4, Ch. 5]. However, to achieve consistency with the literature
on acoustic feedback control, we will still define stability using the Nyquist criterion, under
the assumption that the electro-acoustic forward path and the feedback path characteristics
are slowly time-varying.
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criterion in (2.11)-(2.12) is essential in the remainder of this paper, since any
acoustic feedback control method effectively attempts at preventing either one
or both of these conditions from being met.

With the aim of quantifying the achievable amplification in a sound reinforce-
ment system with and without acoustic feedback control, it is customary to
define a broadband gain factor K(t) as the average magnitude of the forward
path frequency response G(ω, t) and extract it from the forward path transfer
function G(q, t), i.e.,

G(q, t) = K(t)J(q, t) (2.13)

with

K(t) =
1

2π

∫ 2π

0

|G(ω, t)|dω. (2.14)

Assuming now that J(q, t) is given, and that K(t) can be varied, the maximum
stable gain (MSG) can be defined as follows:

MSG(t) [dB] , 20 log10 K(t) such that max
ω∈P

|G(ω, t)F (ω, t)| = 1 (2.15)

= −20 log10

[

max
ω∈P

|J(ω, t)F (ω, t)|
]

(2.16)

where P denotes the set of frequencies at which the phase condition (2.12) is
fulfilled, i.e.,

P = {ω|∠G(ω, t)F (ω, t) = n2π}. (2.17)

From a statistical analysis of room acoustics, Schroeder concluded that in a
sound reinforcement system without feedback control and having a reverbera-
tion time of T60 s and a bandwidth of B Hz, the average MSG can be calculated
as [2]

MSG(t) [dB] = −10 log10

[
log10(BT60/22)

]
− 3.8. (2.18)

The gain margin is defined as the difference between the MSG and the actual
gain of the system. From a sound quality point of view, a gain margin of 2 to
3 dB is recommended to avoid audible ringing effects [2],[5].

2.3 State of the Art in Acoustic Feedback Con-
trol

As already mentioned, we will only deal with automatic methods for acoustic
feedback control. A review of manual feedback control methods is given in [6].
These methods are based on a proper microphone and loudspeaker selection
and positioning, suppression of discrete room modes using notch filters, and
equalization of the entire room response using 1/3 octave graphic equalizer
filters, and may result in an MSG increase of 5 to 8 dB [6].
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Automatic feedback control methods may be categorized into four classes:
phase modulation methods, gain reduction methods, spatial filtering methods,
and room modeling methods.

2.3.1 Phase Modulation Methods

One of the earliest approaches to acoustic feedback control consists in frequency
shifting (FS) the microphone signals before these are amplified and sent to the
loudspeakers. The FS approach can largely be attributed to Schroeder, who
published a number of papers on this topic in the early 1960s [2],[7]-[9]. By
applying FS, the loop gain can be smoothed, such that ideally, the MSG is
determined by the average magnitude response rather than the peak magnitude
response [9]. Since the average frequency distance between two magnitude
peaks in a room response was found to be around 10 Hz, the optimal FS value
is expected to be around 5 Hz [2]. An MSG increase up to 14 dB was reported
[7], however, the subjectively acceptable MSG increase is limited to 6 dB if
audible beating effects due to the FS operation are to be avoided [2],[9]. It is
claimed in [9] that a frequency shift of 5 Hz is inaudible both for speech and
music signals. The earliest FS implementations were based on analog single-
sideband modulation [10] or phase modulation [11]. More recently, a digital FS
implementation using a truncated FIR Hilbert filter has been proposed [12]. A
drawback of the FS approach is that it does not preserve the harmonic relations
between tonal components in voiced speech and music signals. It was shown in
[13] that a bandwidth compression does preserve harmonic relations and results
in a feedback stability improvement similar to the FS approach.

Another early feedback control method employs phase modulation (PM) in the
electro-acoustic forward path, with the aim of bypassing the phase condition
(2.12) in the Nyquist criterion. In 1958, Mishin [14] described a sinusoidal PM
approach in which the choice of the modulation parameter relates to the zeros
of Bessel functions of the first kind. In a 1968 paper by Nishinomiya [15], an
MSG increase up to 7 dB is reported using sinusoidal frequency modulation
(FM), which is conceptually equivalent to sinusoidal PM. Guelke and Broad-
hurst [5] applied the sinusoidal PM technique in the context of reverberation
enhancement (RE) systems, using a very low modulation frequency (∼ 1 Hz),
and resulting in a 4 dB MSG increase. The apparent suitability of PM, FM,
and other periodic modulations for feedback control in digital RE systems re-
sulted in a renewed interest in these methods in the 1990s. Svensson [16] and
Nielsen and Svensson [17] provided a unifying approach to phase-modulating
feedback control (PFC) in which the modulators, including sinusoidal PM, FM,
amplitude modulation (AM), and delay modulation (DM), are viewed as linear
periodically time-varying filters. Moreover, they showed that the FS approach
also fits into this framework, hence labeling FS-based feedback control as a spe-
cial case of PFC. Svensson [16] reported an average 4 dB MSG increase with
a synthetic acoustic feedback path, while Nielsen and Svensson [17] obtained
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MSG increases up to 8 dB in real room acoustic feedback scenarios. Poletti
[18] was the first to study the performance of PFC (in particular using a FS
approach) in multi-channel sound systems. His somewhat discouraging conclu-
sion was that the stability improvement due to FS reduces as the number of
channels increases. Finally, while the impact of the PFC approach on sound
quality may be considerable, to our knowledge a perceptual evaluation has not
yet been reported on.

In Section 2.4, a more extensive treatment of the PFC approach is provided.

2.3.2 Gain Reduction Methods

The most straightforward approach to acoustic feedback control, is to automate
the actions that a human operator would undertake for preventing or eliminat-
ing howling in a sound reinforcement system. These actions usually consist in
reducing the electro-acoustic forward path gain, such that the system moves
away from magnitude condition (2.11) in the Nyquist criterion. Depending on
the width of the frequency band in which the gain is actually reduced, we can
discriminate between three gain reduction methods:

1. in automatic gain control (AGC) methods [19]-[21], the gain is reduced
equally in the entire frequency range by decreasing the broadband gain
factor K(t) defined in (2.14),

2. in automatic equalization (AEQ) [21]-[29], the gain reduction is applied
in critical subbands of the entire frequency range, namely those sub-
bands in which the loop gain is close to unity,

3. in notch-filter-based howling suppression (NHS) [30]-[55], the gain is re-
duced in narrow frequency bands around critical frequencies, i.e., fre-
quencies at which the loop gain is close to unity.

Every gain reduction method has to be activated in some way, when a closed-
loop instability or a tendency towards instability is detected. Only a few gain
reduction methods have been proposed which are based on a proactive instabil-
ity detection: these are either based on an online measurement of the feedback
path magnitude response [50],[56] or on an early detection of the spectral ac-
cumulation effect that can be observed at critical frequency components in the
microphone signal [27]-[29],[57],[58]. Most gain reduction methods are reac-
tive, in the sense that howling can usually be perceived before it is actually
detected. In these methods, howling detection is typically based on a combined
spectral and temporal analysis of the microphone signal. Due to the sinusoidal
nature of howling, the microphone signal frequency components having the
largest magnitude are considered to be candidate howling components. The
true howling components within this set of candidates can then be discrimi-
nated from the source signal tonal components (originating from voiced speech
or musical tones) using several criteria. Spectral criteria for discriminating be-
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tween howling and tonal components are based on one or more of the following
features: the power ratio of the candidate howling component and the entire
spectrum [24]-[26],[34]-[36],[42],[43],[47]-[49],[53], the power ratio of the can-
didate howling component and its (sub-)harmonics [31],[33]-[35],[41], and the
power ratio of the candidate howling component and its neighboring frequency
components [21],[27]-[29]. On the other hand, temporal criteria for howling
detection rely on the observation that howling components typically persist
for a longer time than tonal components [19],[20],[30],[31],[33],[36],[41]-[43],[47]
and exhibit an exponentially increasing magnitude until the sound reinforce-
ment system saturates [27]-[29]. A comparative evaluation of these spectral
and temporal howling detection criteria is reported in [59].

The AGC method is the earliest gain reduction method, which was proposed
by Patronis in 1978 [19],[20]. If howling is detected, the broadband gain is
immediately reduced, and after a specified time interval the gain is restored to
the initial value. Candidate howling frequencies are discriminated from tonal
source signal components by assuming that howling components persist for
several seconds. A subband implementation of this method was proposed by
Ando [21], featuring a spectral approach to howling detection by evaluating
power ratios between adjacent subbands. Obviously, AGC methods do not
increase the MSG since the spectral shape of the loop gain is not altered. The
main strength of AGC methods is their reliability: if the gain is sufficiently
reduced, an unstable system is guaranteed to be stabilized. Therefore, many
other acoustic feedback control methods include an AGC method as a “rescue
procedure” that is activated if all else fails, see, e.g., [21],[34],[35],[53],[60].

The AEQ method follows directly from the subband approach to AGC, as pro-
posed by Ando [21]. If howling detection is performed in frequency subbands,
then the gain reduction can be limited to those subbands in which howling
is detected. Hanajima et al. [24],[25] further improved the subband howling
detection, by first performing a howling detection in relatively wide subbands,
and subsequently dividing the most critical subband in narrower subbands in
which the howling detection is then repeated. They use 10 logarithmically
spaced wide subbands in the 10–10000 Hz range, which are then divided into
10 linearly spaced narrower subbands to obtain a more accurate howling de-
tection. An even more advanced howling detection can be found in the AEQ
method of Osmanovic et al. [27]-[29]. The detection criterion consists of a
linear combination of two features that are calculated for all candidate howling
components: the “slopeness” is a temporal feature that models the exponential
buildup of a howling component, while the “peakness” is a spectral feature that
estimates the power ratio of a candidate howling component and its neighboring
frequency components. For the equalization, Osmanovic et al. use 14 logarith-
mically spaced 8th order IIR bandstop filters in the speech range 300–6000 Hz
[27]-[29].
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The NHS methods can be divided into two categories, i.e., one-stage and two-
stage NHS methods, depending on whether the howling detection and notch
filtering are performed jointly or separately. The earliest NHS methods are
one-stage methods, which are usually implemented using adaptive notch filters
(ANF). In 1989, Foley proposed the adaptive periodic noise canceller [30] for
speech applications, which is an FIR-ANF that is able to track and cancel a
narrowband component in the microphone signal. Since the FIR-ANF in [30] is
adapted using the least mean squares (LMS) algorithm, it is expected to be too
slow to cancel tonal speech components, which vary more quickly in time than
howling components. Also, the FIR-ANF is preceded by a delay of 8 samples
such that it cannot cancel the short-term-correlated speech formants. Foley’s
FIR-ANF was shown to be H∞-robust for a first-order feedback path (i.e., nF =
1), provided that the LMS stepsize is properly chosen [39],[45]. Staudacher [38]
proposed an extension to Foley’s FIR-ANF, by using a variable LMS stepsize
that increases as the FIR-ANF input signal power increases, such that the
convergence is accelerated when howling occurs. To reduce the impact of the
ANF on sound quality, the notch filter bandwidth should be as small as possible.
A disadvantage of the FIR-ANF implementation is that a large filter order
is required to obtain a narrowband notch characteristic, e.g., Foley [30] and
Staudacher [38] use 32nd order filters to cancel a single narrowband component.
If multiple howling components are to be cancelled, the required FIR-ANF filter
order may become unpractically large. Following this observation, several IIR-
ANF implementations have been proposed, which only require a biquadratic
(i.e., second-order) filter structure to cancel one narrowband component. The
main difficulty with IIR-ANF implementations is that the least squares (LS)
cost function associated with the howling component frequency estimation is
typically non-convex. Kuo and Chen [32] proposed a constrained biquadratic
IIR-ANF in which the global minimum of the LS cost function can be found
with high probability by increasing the notch bandwidth during the howling
detection process. Once howling has been detected, the notch filter is activated
in the electro-acoustic forward path with a reduced bandwidth, to avoid a loss of
sound quality. Another approach to bypass local minima in the LS cost function
associated with the IIR-ANF implementation, is to only adapt the FIR part of
the filter, and subsequently copy the numerator coefficients to the denominator
[41], perhaps after including some scaling factor [37],[52]. A biquadratic IIR-
ANF implementation featuring an advanced howling detection method was
proposed by Porayath and Mapes-Riordan [41]: a howling frequency is detected
when it has a power that is 30 dB larger than its first harmonic and when this
power difference persists for at least 50–100 ms. Since the power spectral
density is however hard to estimate when using the ANF approach, a different
howling detection method was recently proposed by Gil-Cacho et al. [55], which
is based on running multiple regularized biquadratic IIR-ANFs in parallel with
different regularization factors. Yet another second-order ANF implementation
was proposed by Wei et al. [46], in which the input samples to the ANF consist
of phase-shifted instead of time-shifted microphone signal samples.
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The two-stage NHS method, which is by now probably the most popular gain
reduction method for acoustic feedback control, originates from the work of
Lewis et al. [31],[33] and Er et al. [34],[35] in the early 1990s. A non-parametric
frequency analysis of the microphone signal is computed using a fast Fourier
transform (FFT) algorithm, from which the candidate howling components are
determined using a peak picking algorithm. The power of the candidate howling
components is then compared to an absolute power threshold [34],[35], to the
average signal power [34],[35], and to the (sub-)harmonics power [31],[33]-[35] to
determine if howling occurs. This spectral criterion is combined with a tempo-
ral criterion for howling detection by Lewis et al. [31],[33]. Whenever howling
is detected, biquadratic notch filters are inserted in the electro-acoustic forward
path. Several improvements to the methods by Lewis et al. and Er et al. have
been reported. Kawamura et al. [36],[42] propose an online modification of the
thresholds used in the spectral and temporal howling detection criteria, steered
by estimates of the background noise spectrum, the source signal spectrum, the
reverberation time, and the acoustic feedback path response. Lane et al. [40]
apply a parametric frequency analysis instead of the non-parametric analysis
proposed earlier, using a set of adjustable bandpass filters having relatively
wide passbands as compared to the stopbands of the notch filters. An alterna-
tive way of determining the set of candidate howling components was proposed
by Williams [43]: instead of executing a peak picking algorithm on the FFT
magnitude spectrum estimate, a so-called “ballistics procedure” is applied to
model the temporal build-up of narrowband components such that components
with an increasing power can be identified. Rocha and Ferreira [47] and Börsch
[48],[49] replace the FFT algorithm in the non-parametric frequency analysis by
an odd FFT algorithm and a frequency-warped FFT algorithm, respectively.
Moreover, the frequency analysis described by Börsch [48],[49] is the only non-
parametric method which includes a compensation for the estimation errors due
to the limited FFT resolution. In [50], Rombouts et al. propose a proactive
howling detection method applied to NHS, based on the estimation of critical
closed-loop system frequencies from an adaptive estimate of the feedback path
response. Abe [51] was the first to consider NHS in a multi-channel sound rein-
forcement system, and succeeded in reducing the computational and memory
requirements by frequency-analyzing the individual microphone signals with a
low-resolution FFT algorithm and the mixed signal with a high-resolution FFT
algorithm. Finally, Somasundaram [53] proposes an advanced spectral howling
detection criterion, in which the power of the candidate howling component is
compared to a threshold that is calculated using the mean and standard devia-
tion of the entire FFT spectrum estimate. Furthermore, the notch filters used
in [53] are gradually enabled and disabled using a so-called leaky integrator, to
avoid artifacts in the loudspeaker signal.

Since the majority of the available gain reduction methods are described in
patents, not many experimental results are available and no MSG increase
values have been reported. However, from Schroeder’s statistical analysis of a
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feedback path frequency response [2] it can be expected that if the loop gain
could be perfectly smoothed using an AEQ or NHS approach, a maximal MSG
increase of about 10 dB may be achieved. The two-stage NHS method, being
the most popular of all gain reduction methods, will be described in more detail
in Section 2.5.

2.3.3 Spatial Filtering Methods

Spatial filtering methods for acoustic feedback control aim at altering the loop
response G(ω, t)F (ω, t) of the closed-loop system by using microphone and/or
loudspeaker arrays of which the received/transmitted signals are processed by
beamforming filters. The general objective is then to design a microphone ar-
ray beamformer that has its main lobe (i.e., its maximal spatial response) in
the direction of the source while having a null (i.e., zero spatial response) in the
direction of the loudspeaker, and/or a loudspeaker array with the main lobe
directed towards the audience and a null in the direction of the microphone.
The first spatial filtering approach to acoustic feedback control was proposed by
Duong et al. in 1984 for hands-free telephony applications [61], focusing on the
combined use of a microphone and loudspeaker array for a single-channel sce-
nario with fixed microphone and loudspeaker positions. The stringent spatial
constraints (i.e., the microphone and loudspeaker array are to have the same
center and lie orthogonal to each other) make this method rather impractical
for many sound reinforcement applications. A more flexible approach, which
allows for scenarios with arbitrary microphone and loudspeaker array positions,
consists in adapting the beamformer coefficients based on the available sound
signals. Obviously, an adaptive microphone array is more straightforward to
implement than an adaptive loudspeaker array, since the latter does not col-
lect any information on the acoustic environment. A fundamental problem
that occurs when computing the coefficients of an adaptive microphone array
beamformer in a closed-loop system, is the fact that the source signal is corre-
lated with the loudspeaker signal (i.e., the loudspeaker signal can be calculated
by filtering the source signal with the closed-loop response, see (2.10)). Due
to this correlation, a conventional adaptive beamforming algorithm will not
converge to the desired solution, and consequently, part of the source signal
will eventually be attenuated while part of the feedback signal will still appear
in the output of the microphone array. Several solutions to this correlation
problem have been proposed. Janse and Belt [62] propose the combined use
of an adaptive feedback canceller (AFC) and a microphone array beamformer.
By feeding the feedback-compensated signal from the AFC to the microphone
array, the influence of the feedback signal on the beamforming algorithm can be
decreased. In this case, however, it is not possible to create a beamformer null
directed towards the loudspeaker, since the feedback-compensated signal (ide-
ally) does not provide any information on the loudspeaker position. Another
solution was proposed by Kobayashi et al. [63],[64], in which the coefficients
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of an adaptive microphone array beamformer outside the closed signal loop
are computed by cancelling the source signal using a null beamformer (NBF)
and inserting an artificial source signal. The adaptive beamformer coefficients
are then copied to a microphone array beamformer in the closed signal loop,
resulting in an MSG increase up to 15 dB [63],[64]. Due to the source signal
cancellation, the adaptive beamformer can unambiguously identify the loud-
speaker direction, however, the direction of the source w.r.t. the microphone
array needs to be known a priori [63] or estimated by an adaptive NBF [64].
The artificial source signal, of which the design is not specified in [63],[64],
serves to constrain the adaptive beamformer response to unity in the source
direction. A more recent solution to the correlation problem in adaptive mi-
crophone array beamforming was proposed by Rombouts et al. [65],[66], and
consists in prewhitening the source signal component in the adaptive beam-
former desired signal using an adaptive decorrelation filter that is estimated
concurrently with the beamformer coefficients. This approach was shown to
result in an MSG increase between 7 and 14 dB (depending on the reverber-
ation time of the room), while it does not require a priori information on the
source position and is considerably cheaper than the approach in which an
AFC is also used. Finally, a fundamentally different approach to spatial filter-
ing for acoustic feedback control was proposed by Goodwin and Elko [67],[68].
In the so-called “beam dithering” approach, a loudspeaker array is steered by
a beamformer of which the coefficients are varied periodically with time, by
time-stepping through a discrete sequence of approximate Chebyshev coeffi-
cients. In this way, a spatial modulation is obtained that provides a smoothing
of the loop gain, comparable to the smoothing effect obtained with the phase
modulation methods for acoustic feedback control. An MSG increase up to 6
dB has been obtained [68], however, the spatial constraints of the beam dither-
ing approach are rather stringent (in that the audience should always be in the
main beamformer lobe, while the microphones should be in the sidelobes) and
a perceptual calibration of the system is required [67].

2.3.4 Room Modeling Methods

In room modeling methods for acoustic feedback control, a model of the acous-
tic feedback path is identified either off-line (during the initialization of the
sound reinforcement system) or on-line (during the operation of the sound
reinforcement system). We can distinguish between two room modeling meth-
ods, depending on how the model is subsequently applied for acoustic feedback
control. In adaptive feedback cancellation (AFC), the acoustic feedback path
model is used to predict the feedback signal component in the microphone signal
(i.e., the part of the microphone signal that stems from the loudspeaker sig-
nal through the acoustic coupling). The predicted feedback signal is then sub-
tracted from the microphone signal, hence resulting in a feedback-compensated
signal, which is in fact an estimate of the source signal component in the mi-
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crophone signal. If an accurate model of the acoustic feedback path can be
identified, then the AFC method achieves a nearly complete elimination of the
acoustic coupling (i.e., the loop gain comes close to zero for all frequencies),
and consequently very large MSG increases may be obtained. Alternatively,
the inverse of the acoustic feedback path can be modeled and identified, and
this inverse model can then be inserted in the closed signal loop to optimally
equalize the microphone signal. This approach is referred to as adaptive inverse
filtering (AIF), and ideally results in a perfect smoothing of the loop gain, for
which the MSG increase can be expected to be around 10 dB [2].

The AIF approach has received only little attention in the context of acoustic
feedback control. In 1994, Ushiyama et al. [69] proposed an inverse filtering
approach in which an inverse model of the minimum-phase components in the
acoustic feedback path is identified off-line. It is observed that a smoothing
of the inverse model frequency response increases the robustness of the (time-
invariant) inverse model w.r.t. time variations in the acoustic feedback path
response. Another off-line approach to inverse filtering was proposed by Na-
gata et al. [22],[23], and consists in automatically adjusting a large number
of equalizers in the electro-acoustic forward path, based on an off-line mea-
surement of the acoustic feedback path response using a noise probe signal.
Finally, a hybrid AIF-AFC approach was proposed by Janse and Belt [62] and
Schmidt and Haulick [70], in which the inverse model coefficients are adjusted
based on the acoustic feedback model that is identified in the AFC algorithm.
More results on the AIF approach can be found in the literature on acoustic
dereverberation and equalization, see, e.g., [71]-[74].

In the AFC approach, which is conceptually similar to the well-known acoustic
echo cancellation (AEC) approach, an adaptive filter is used to model, identify,
and track the impulse response of the acoustic feedback path. Analogously
to the correlation problem found in adaptive microphone array beamforming
(see Section 2.3.3), the fundamental problem encountered in AFC lies in the
fact that, unlike in the AEC case, the adaptive filter’s input signal (i.e., the
loudspeaker signal) and disturbance signal (i.e., the source signal) are now
correlated, see (2.10). Applying a standard adaptive filtering algorithm to the
AFC problem hence results in a biased estimate of the acoustic feedback path
impulse response [75]-[77], and consequently, the source signal component in
the microphone signal ends up being partially cancelled. For this reason, a
decorrelation method is generally incorporated in the AFC scheme which is
either included in the closed signal loop or in the adaptive filtering circuit [77],
see [78] for an overview and comparative evaluation.

Decorrelation in the closed signal loop can be accomplished by injecting a noise
signal, by including a nonlinear or time-varying signal operation, or by insert-
ing a processing delay in the electro-acoustic forward path. The earliest AFC
reference appears to be a 1988 patent by Ibaraki et al. [79], in which a white
noise signal is injected in the closed signal loop non-continuously (e.g., dur-
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ing source signal pauses) to identify the low-frequency response of the acoustic
feedback path. Goertz [80] proposes to inject a white noise signal continuously
and reports a 5 dB MSG increase in a severely undermodeled AFC scenario
(i.e., the adaptive filter length being only 1/15 of the feedback path length).
Decorrelation by continuous white noise injection was also applied by Stott and
Wells [60], van Waterschoot [81], and Schmidt and Haulick [70]. With the aim
of reducing the sound quality deterioration due to noise injection, several at-
tempts have been made to shape the spectrum of the injected noise signal such
that it becomes less perceptible. Goertz [80] proposes to use A-weighted noise
instead of white noise, while van Waterschoot [81] and Janse and Tchang [82]
apply a time-varying noise shaping based on a psychoacoustic model. However,
to obtain an AFC performance comparable to the methods using white noise
injection, the psychoacoustically shaped noise has to be amplified to a level at
which it is found to be even more disturbing than white noise [81]. Decorrela-
tion in the closed signal loop can also be achieved by including a nonlinear or
time-varying signal operation in the electro-acoustic forward path. Janse et al.
[83]-[85] propose to use a frequency shifter or a periodic phase or delay mod-
ulator. The AFC robustness can then be increased since these decorrelating
operations also have a stabilizing effect on the closed-loop system (see Section
2.3.1). Another nonlinear decorrelation technique, which was adopted from
the stereo AEC literature [86] by van Waterschoot et al. [87] and Schmidt and
Haulick [70], consists in adding a half-wave rectified version of the loudspeaker
signal to the original loudspeaker signal, yet was found to improve the AFC
performance only marginally [87]. Finally, in the context of hearing aid AFC
applications, inserting a processing delay in the electro-acoustic forward path
has been proposed for reducing the correlation between the source and loud-
speaker signals [75],[88]. The motivation for this approach is that the source
and loudspeaker signal cross-correlation function is expected to decrease for
increasing time lags, which is particularly the case for voiceless speech signals.

While most of the above decorrelation techniques are rather effective when
applied in the closed signal loop, their effect on the sound quality may be
detrimental. For this reason, there has been an increased interest in the appli-
cation of decorrelating signal operations in the adaptive filtering circuit, such
that the closed loop signals remain unaffected. A first approach, that was pro-
posed by Ortega et al. [89],[90], consists in having the adaptive filter preceded
by a processing delay. The resulting decorrelation effect is similar to when a
processing delay is inserted in the electro-acoustic forward path. However, the
delay length in the adaptive filtering circuit should not exceed the initial delay
(i.e., the “dead time”) in the acoustic feedback path impulse response (e.g.,
with the acoustic feedback path impulse response shown in Fig. 2.3, the max-
imum allowable processing delay would be 405 samples). A second approach
consists in the use of decorrelating prefilters, that are designed to whiten the
source signal component in the microphone signal. This approach was adopted
from hearing aid AFC research [76],[91],[92], and was applied to PA systems by
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van Waterschoot et al. [77], [87] and to in-car communication systems by Or-
tega et al. [93]. A fundamental difficulty lies in the concurrent identification of
the optimal prefilter and the acoustic feedback path model from the closed-loop
signals. This identification problem was tackled following a prediction-error-
method(PEM)-based approach [94, Ch. 3],[95, Ch. 7] by Rombouts et al.
[96]-[101]. The PEM-based AFC approach developed in [96]-[98] is based on a
nonstationary all-pole source signal model, the inverse of which is then used as
a time-varying FIR decorrelating prefilter in the AFC scheme. The robustness
of the PEM-based AFC approach was further improved in [99] by including
some additional features such as adaptation control and the joint use of a fore-
ground and background adaptive filter. Also, efficient subband and frequency
domain implementations of the PEM-based AFC method were proposed in
[99]. It was shown by van Waterschoot et al. [100],[101] how the convergence
of the PEM-based AFC scheme can be improved even further by incorporating
prior knowledge on the source signal and the acoustic feedback path through
regularization.

In recent years, several remaining issues concerning the AFC approach have
been analyzed and further improvements have been reported. The overall per-
formance of the AFC approach may be improved by combining AFC with other
acoustic feedback control methods and signal enhancement techniques, leading
to so-called hybrid AFC methods. Ortega et al. [89],[90] propose the combi-
nation of AFC with a residual feedback and noise suppression postfilter, and
this hybrid AFC scheme was further expanded by Janse and Belt [62] with
an adaptive microphone array beamformer and an AIF. The combination of
AFC with an NHS method is of particular interest due to the robustness of
the NHS methods to system instability: Schmidt et al. [70],[102] use an ANF
that operates on the AFC feedback-compensated signal, while Rombouts et al.
[50],[99] apply a two-stage NHS method in which the howling detection is based
on a frequency analysis of the AFC feedback path estimate. The considerable
computational complexity of the AFC approach in room acoustic applications
is another issue that has recently been addressed. An interesting approach to-
wards AFC complexity reduction was proposed by Okumura and Fujita [103]
and consists in applying two or more parallel adaptive filters, preceded by a
processing delay in the adaptive filtering circuit, to model a single acoustic
feedback path. The first filter (which can be understood to model the late
reverberation in the acoustic feedback path impulse response) has many coeffi-
cients that are adapted not very frequently using a transform domain approach,
while the second filter (which then models the early reflections) is a short filter
that is adapted at each time instant using a time domain adaptive filtering
algorithm. A final issue is related to AFC in audio applications: none of the
above-mentioned AFC methods has been designed to operate in a high-fidelity
audio environment. When applying decorrelation in the closed signal loop,
introducing signal distortion is unavoidable, while decorrelation techniques in
the adaptive filtering circuit are typically based on the assumption that the
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Figure 2.5: Phase-modulating feedback control (PFC) by inserting a phase
modulation filter in the electro-acoustic forward path.

source signal is a speech signal. Van Waterschoot and Moonen [104],[105] have
recently proposed a novel PEM-based AFC method that is designed particu-
larly for audio signals, but performs equally well in speech applications. The
method is based on a cascade of two source signal models, where one models
the tonal components in the source signal and the other one models the source
signal noise components.

2.4 Phase-Modulating Feedback Control

2.4.1 Concept

The goal of PFC is to control the phase of the microphone signal in such a
way that every frequency component in the feedback signal has a different
phase each time it arrives at the microphone after having traveled one cycle
around the closed signal loop [17]. In this way, the phase condition in the
Nyquist criterion (2.12) can be guaranteed not to hold for the same frequency
at two successive time instants, hence the closed-loop system stability can be
improved, regardless of the magnitude condition (2.11). The PFC goal can
be achieved by inserting a phase modulation (PM) filter in the electro-acoustic
forward path, which operates directly on the microphone signal y(t) and delivers
an output signal d(t) to the forward path processing unit G(q, t), see Fig. 2.5.

The behavior of a PM filter can be analyzed elegantly using the theory of
linear time-varying (LTV) filters [16],[17]. A discrete-time4 LTV filter can be

4Note that in [16],[17], the theory of LTV filters is described for the continuous-time case.
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described in the time domain using the input-output relationship [106]

d(t) =

∞∑

τ=−∞
h(τ, t)y(t − τ) (2.19)

with h(τ, t) the LTV filter’s impulse response, which depends on both the ob-
servation time instant t and the time difference τ between excitation and ob-
servation. If the LTV filter is moreover periodically time-varying (LPTV) with
a period Tm that correponds to an integer number of sampling periods, i.e.,
Tm = NTs, then the periodic LTV frequency response

H(ω, t) =
∞∑

τ=−∞
h(τ, t)e−jωτ (2.20)

admits an N -point discrete Fourier transform (DFT) representation with coef-
ficients

H(ω, n) =

N−1∑

t=0

H(ω, t)e−jn(2π/N)t (2.21)

and the input-output relationship in (2.19) can be written in the frequency
domain as follows [106],

D(ω) =
1

N

N−1∑

n=0

H(ω − nωm, n)Y (ω − nωm) (2.22)

with ωm = 2π/N the LPTV filter fundamental frequency. In other words, the
LPTV filter output spectrum is a sum of N frequency-weighted and frequency-
shifted versions of the input spectrum. The LPTV filter frequency response
DFT coefficients H(ω, n) are usually referred to as the carrier response (for
n = 0) and the sideband responses (for n 6= 0).

It can be seen from (2.22) that the output spectrum also contains a non-
frequency-shifted version of the input spectrum (for n = 0), which is unde-
sirable in view of the acoustic feedback control performance [17]. The contri-
bution of the non-frequency-shifted version of the input spectrum to the total
output spectrum is quantified using the so-called carrier suppression5 [17],

CS [dB] = −10 log10

[∫ 2π

0

|H(ω, 0)|2dω

]

(2.23)

and it has been hypothesized that the CS corresponds to an upper bound
for the increase in MSG that can be obtained using the PFC approach [17].

5Note that our definition of the carrier suppression as given in (2.23) is somewhat more
general than the definition in [17], because we do not restrict the sideband responses H(ω, n)
to be independent of ω.
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Another hypothesis stated in [17] is that a modulation scheme having a larger
number of sideband responses with a relatively large power |H(ω, n)|2 provides
a better acoustic feedback control performance, since in this case, more input
signal energy is shifted away from the original (carrier) frequency. However,
this hypothesis is based on a continuous-time analysis and may not hold in a
discrete-time context, since aliasing will fold all the input signal energy that
has been shifted above the Nyquist frequency back to lower frequencies.

The following four PM techniques have been studied in the context of acoustic
feedback control [17]:

1. Sinusoidal PM [5],[14],[16],[17]: A sinusoidal PM filter has a frequency
response

H(ω, t) = ejβ sin ωmt (2.24)

which is characterized by frequency-independent carrier and sideband
responses H(n) that correspond to the Bessel functions of the first kind
and order n,

H(n) = Jn(β), n = 0, . . . , N − 1. (2.25)

These functions are plotted as a function of the so-called modulation
index β in Fig. 2.6.

2. Sinusoidal frequency modulation (FM) [15],[17]: The effect of a sinu-
soidal FM filter with a modulation frequency fm = ωm(fs/2π) and
a modulation depth ∆f can be shown to be identical to the effect of
a sinusoidal PM filter with the same modulation frequency fm and a
modulation index β = ∆f/fm [17].

3. Frequency shifting (FS) [2],[7],[11],[12],[17],[18]: An FS device can either
be viewed as a nonlinear time-invariant system or as an LPTV system.
From the latter interpretation, it can be shown that an FS operation with
a frequency shift of fm = ωm(fs/2π) Hz corresponds to a PM operation
with a phase function that increases linearly with time [11],[17], i.e.,

H(ω, t) = ejωmt (2.26)

and, as a consequence,

H(n)

{
= 1, n = 1 (2.27)

= 0, n = 0, 2, . . . , N − 1. (2.28)

In other words, an FS device can be described as an LPTV filter with
zero carrier response (i.e., CS = ∞) and only one non-zero sideband
response (for n = 1).

4. Sinusoidal delay modulation (DM) [14],[16],[17]: A sinusoidal DM filter
varies the input signal’s time delay sinusoidally around a time delay
offset τ0 with a maximum time delay deviation ∆τ and a modulation
frequency ωm, as can be seen in its frequency response

H(ω, t) = e−jω(τ0+∆τ sin ωmt). (2.29)
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Figure 2.6: Bessel functions of the first kind for different orders n = 0, . . . , 5.

This can be interpreted as a sinusoidal PM filter with the same modula-
tion frequency ωm and a modulation index β = ω∆τ that is proportional
to the original (carrier) frequency ω. As a consequence, the correspond-
ing carrier and sideband responses are frequency-selective (as opposed
to the frequency-independent PM, FM, and FS responses),

H(ω, n) = Jn(ω∆τ ), n = 0, . . . , N − 1. (2.30)

From the above expression, it can be understood that a sinusoidal DM
filter performs poorly in the low frequency range since in this case, the
carrier response has a much larger magnitude than the sideband re-
sponses (see Fig. 2.6).

2.4.2 Realization

The sinusoidal PM, sinusoidal FM, and FS filters are usually realized by oper-
ating on the so-called analytical representation of the microphone signal y(t).
In continuous time, the analytical signal ya{τ} is defined as follows [107],

ya{τ} = y{τ} + jŷ{τ} (2.31)

where ŷ{τ} represents the Hilbert transform of y{τ}. The corresponding
discrete-time analytical signal ya(t) can be calculated in several ways. A first
approach is to design an FIR filter L(q) approximating the Hilbert transform
such that an approximation to ŷ(t) can be calculated as L(q)y(t) [108], and then
the discrete-time analytical signal can be obtained as ya(t) = y(t) + jL(q)y(t).
Since the so-called Hilbert filter L(q) is non-causal, a processing delay of half
the filter length of L(q) has to be introduced in the signal path [12]. Another
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drawback is that this approach does not preserve the orthogonality between y(t)
and ŷ(t) which can be obtained in the continuous-time case [109]. A second
approach is to design two complex FIR filters, so-called dual quadrature FIR
filters, that produce orthogonal approximations to y(t) and ŷ(t), respectively,
which are then added according to (2.31) [110]. Unfortunately, this approach
does not preserve the original data since the real part of the discrete-time an-
alytical signal is not exactly equal to y(t) [109]. In a third approach, which
combines the desirable properties of original data preservation in the real part
and orthogonality between the real and imaginary part of the discrete-time an-
alytical signal, ya(t) is approximated as the inverse DFT of a one-sided discrete
spectrum (with zero negative frequency content) that is calculated using the
DFT of the original signal y(t) [109]. This approach is frame-based, hence a
processing delay equal to the frame size minus the frame overlap is required.
We will use this latter approach for the PFC evaluation in Section 2.7.

Given the discrete-time analytical signal ya(t) = y(t)+ jŷ(t), the output signal
of the PM, FM, and FS filters can be calculated by modulating ya(t) with the
LPTV frequency response H(ω, t), and then taking the real part (denoted with
Re{·}) [18], i.e.,

d(t) = Re{ya(t)H(ω, t)}. (2.32)

Using (2.24) and (2.26), this leads to

d(t) = y(t) cosφ(t) − ŷ(t) sin φ(t) (2.33)

with

φ(t) =







β sin ωmt for sinusoidal PM (2.34)

∆f

fm
sin ωmt for sinusoidal FM (2.35)

ωmt for FS. (2.36)

A sinusoidal DM filter can be realized by directly operating on the microphone
signal y(t), which is then fed to a variable-length delay line. Such delay lines
have also been used for realizing DM-based digital audio effects such as vibrato,
flanging, and chorus, see, e.g., [111]-[113]. The sinusoidal DM variable-length
delay line has an LPTV transfer function that can be approximated as the
cascade of an integer delay of K samples and a fractional delay of l/D samples
[111]-[113], where D is denoted as the interpolation ratio and l = 0, . . . , D − 1
is the fractional phase,

H(q, t) = q−(τ0+∆τ sin ωmt) (2.37)

≈ q−Kq−l/D. (2.38)

The fractional part of the transfer function in (2.38) can be realized using any
of the available methods for fractional delay filter design [114], e.g., using linear
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[111]-[113], all-pass [111]-[113], or spline [112],[113] interpolation filters. We will
use a linear FIR interpolation filter that is a Hamming-windowed, truncated
(length-2I) approximation of the ideal sinc-like interpolation filter [114],

H(q, t) = q−K
I−1∑

i=−I

wh(i + l/D)sinc(i + l/D)qi (2.39)

where wh(t) denotes the Hamming window, centered at t = 0, and the integer
delay and fractional phase are chosen as K = ⌊τ0 + ∆τ sin ωmt⌋ and l = [(τ0 +
∆τ sinωmt − K)/D], with ⌊·⌋ the floor function and [·] the nearest integer
function, respectively. Note that τ0, ∆τ , and I should be chosen such that
τ0 − ∆τ ≥ I − 1 to guarantee causality of the sinusoidal DM filter.

2.4.3 Discussion

The main strength of the PFC approach is its simplicity, both conceptually and
computationally. The design of a PFC system requires little effort, since only
the modulation technique (PM, FM, FS, or DM) and a few parameter values
have to be decided on. The main computational load lies in the calculation
of the analytical microphone signal (for PM, FM, and FS) and the fractional
delay interpolation filtering (for DM), which should not be a barrier for real-
time implementation. Moreover, the PFC approach does not involve any form
of learning or adaptivity, such that it behaves in a completely deterministic
way, which is beneficial in terms of robustness.

The choice of the modulation technique depends on the envisaged application.
The FS technique is known to generally deliver a larger MSG increase than
the other modulation techniques, but is perceptually inappropriate for music
applications [18],[82]. The MSG increase obtained with modulation techniques
that have a larger number of sideband responses (PM, FM, and DM, with a
sufficiently large β) appears to be more or less independent of the modulation
frequency ωm, such that these techniques can operate at a lower value of ωm

as compared to FS, which is perceptually advantageous [17]. DM is known
to perform poorly at low signal frequencies, such that it should preferably
be combined with another modulation technique or even with a non-phase-
modulation-based acoustic feedback control method [16].

For a given modulation technique, the main parameters determining the PFC
performance are the modulation frequency ωm and the modulation index β. It
has been theoretically shown and experimentally verified that in the case of FS,
an optimal value of the frequency shift fm = ωm(fs/2π) is around 4/T60 Hz,
with T60 the room reverberation time in seconds [2]. The optimal value for fm

is less related to the reverberation time in the case of PM, FM, and DM, and
values as low as 0.5 Hz may provide a satisfactory MSG increase, especially at
high modulation index values [17]. The influence of the modulation index β
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in the case of PM, FM, and DM is governed by two effects [17]: as the value
of β approaches the zeros of J0(β) (e.g., see Fig. 2.6), the CS and hence the
maximum achievable MSG increase become larger, and on the other hand, a
larger value of β leads to a larger number of influential sideband responses which
(at least in the continuous-time case) can be expected to improve the acoustic
feedback control performance [17]. The former effect provides an explanation
for the value of β = 2.4 having been suggested as an optimal choice in early
studies on PFC using sinudoidal PM [5],[14].

Finally, the PFC method has three major drawbacks. First of all, the achievable
MSG increase is limited. An MSG increase of 12 dB has been found to be the
theoretical maximum using FS in a typical room acoustic sound reinforcement
system, and moreover, to avoid the FS effect to be clearly audible, a system
equipped with a FS filter should operate 6 dB below the MSG, reducing the
practically realizable MSG increase to 6 dB [2]. Similar MSG increase values
(around 6 dB) were found in experiments using the other modulation techniques
(PM, FM, and DM), as reported in several studies [14]-[17],[115]. A second
drawback is that inserting a PM filter in the electro-acoustic forward path
unavoidably leads to signal distortion, the perceptual consequences of which
have not been objectively quantified in any of the reports dealing with PFC.
A third disadvantage is the fact that in multi-channel systems, the stability
improvement obtained with PFC has been shown to decrease as the number
of channels increases [18], hence the practical use of PFC in large-scale sound
reinforcement systems (e.g., PA or RE systems) is expected to be limited.

2.5 Notch-Filter-Based Howling Suppression

2.5.1 Concept

The objective of the NHS method can be either to prevent the closed-loop
system from becoming unstable by reducing the loop gain |G(ω, t)F (ω, t)| in
the neighborhood of critical frequencies, or to stabilize the system and suppress
howling after oscillations have occurred. The former objective requires a proac-
tive approach to instability detection, while the latter approach is reactive in
the sense that notch filters are activated only after the detection of howling.
We will mainly focus on the reactive approach to NHS, which is much more
widespread than the proactive approach. Also, the emphasis is on two-stage
NHS methods, since these are much more popular as compared to the ANF-
based one-stage NHS methods. In a two-stage NHS method, the microphone
signal y(t) is first processed by a howling detection algorithm, which forwards
a set of design parameters DH(t) to a bank of adjustable notch filters H(q, t)
that is inserted in the electro-acoustic forward path, see Fig. 2.7.

The howling detection algorithm is the most cricital part of the two-stage NHS
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Figure 2.7: Two-stage notch-filter-based howling suppression (NHS) by feeding
the microphone signal to a howling detection algorithm, which forwards a set
of design parameters DH(t) to a bank of adjustable notch filters H(q, t) that is
inserted in the electro-acoustic forward path.

method. Since howling is known to consist of sinusoidal signal components,
the detection of howling is based on a frequency analysis of the microphone
signal. It can be understood that howling components can be recognized as
signal components having a large magnitude in the frequency domain. However,
voiced speech components and tonal music components also have this property,
hence it is crucial to discrimate howling components from tonal source signal
components. We will use an example to illustrate the signal attributes that can
be used to discrimate between howling and tonal components. Let us consider a
single-channel closed-loop system defined by the acoustic feedback path shown
in Figs. 2.3-2.4, and an electro-acoustic forward path consisting of a cascade of
a unit delay and a broadband gain factor K = 5.53 dB. The loop gain of this
system is shown in Fig. 2.8(a) for f ∈ [0, 3] kHz. It can be observed that the
Nyquist magnitude condition (2.11) is fulfilled for a frequency value just above
500 Hz, such that an oscillation at this frequency can be expected. When an
audio signal fragment, more specifically a 10 s excerpt from the Partita No. 2 in
D minor (Allemande) for solo violin by J. S. Bach, is applied as a source signal in
the closed-loop system, the corresponding microphone signal has a spectrogram
as shown in Fig. 2.8(b) (zooming in on the frequency region f ∈ [0, 3] kHz). The
build-up of a howling component at a frequency sligthly above 500 Hz is clearly
visible from the spectrogram. Moreover, it can be observed that the howling
component has some distinct features that may be used to discriminate it from
the tonal source signal components. Spectral features include the fact that the
howling component has a relatively large magnitude, and does not have any
harmonic or subharmonic frequency components. Temporal features typical to
the howling component are its long duration and its increasing magnitude with
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Figure 2.8: Example to recognize discriminating features between howling and
tonal components (zooming in on the frequency region f ∈ [0, 3] kHz): (a) Loop
gain of the unstable closed-loop system defined by the acoustic feedback path
response shown in Fig. 2.4 and a flat electro-acoustic forward path response
with gain factor K = 5.53 dB, (b) Microphone signal spectrogram after feeding
an audio source signal to the unstable closed-loop system.

time.

Apart from detecting howling components in the microphone signal spectrum,
the howling detection algorithm in the two-stage NHS method shown in Fig.
2.7 also calculates some features of the detected howling components that are
subsequently used to design appropriate notch filters. The set of design param-
eters DH(t) typically includes the howling components’ frequency and magni-
tude values. The notch filters are then designed to have center frequencies
corresponding to the howling component frequencies and notch depth values
depending on the howling component magnitude values. The notch filters’ 3
dB bandwidth is usually fixed to a value in the range of 1/10–1/60 octave. A
more narrowband notch filter has the advantage of removing less of the desired
source signal components, but requires a more accurate howling component
frequency estimation.

2.5.2 Realization

Howling Detection

We assume that the howling detection algorithm operates in a frame-based
manner, on microphone signal frames with a frame length of M samples and
a frame hop size of P samples (i.e., a frame overlap of M − P samples). At
time t, the data in the microphone signal frame can then be represented by the
vector (which is not to be confused with the multi-channel microphone signal
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vector ȳ(t) defined in (2.4))

y(t) =
[
y(t + P − M) . . . y(t + P − 1)

]T
(2.40)

and the short-term microphone signal spectrum can be obtained as the DFT
of the data in y(t), i.e.,

Y (ωk, t) =
M−1∑

n=0

w(tn)y(tn)e−jωktn , k = 0, . . . , M − 1 (2.41)

with ωk , 2πk/M and tn , t + P − M + n. The microphone signal DFT in
(2.41) is generally calculated using the FFT algorithm, and includes a window
function w(tn) to reduce the spectral leakage [116] (e.g., a Blackman window
has succesfully been applied to audio signal processing [117]6). Alternatively,
a parametric frequency estimation method may be applied instead of the non-
parametric (DFT-based) approach to obtain a good frequency resolution with
relatively short signal frames [40]. Also, a frequency-warped DFT [118] may be
used to improve the frequency resolution in the low-frequency region [48],[49].
The choice of the signal framing parameters M and P has a rather profound
influence on the performance of the howling detection. Small values for the
frame length M have been proposed to allow for very quick howling detection
(e.g., M = 128, corresponding to 4 ms at fs = 32 kHz [27]-[29]), such that
howling may potentially be detected before it is actually perceived [27]-[29].
On the other hand, larger values for M provide a better frequency resolution in
the microphone signal DFT spectrum estimate (e.g., M = 4096, corresponding
to 92.9 ms at fs = 44.1 kHz [31],[33] or to 85.3 ms at fs = 48 kHz [43]), which
is necessary when working with very narrowband notch filters such as the 1/60
octave filters used in [48],[49]. A large frame hop size P may result in a large
time lag between howling detection and notch filtering, unless a P -sample delay
is inserted in the electro-acoustic forward path. On the other hand, a small
value for P leads to an increase in computational complexity since the howling
detection algorithm is then executed more often. Generally, a 25–50 % frame
overlap (P = 3M/4, . . . , M/2) is found to be a good compromise.

Based on the DFT-based microphone signal spectrum estimation, a pre-defined
number N of spectral peaks is identified from the spectrum estimate, with N
typically chosen in the range 1–10. These N frequency components are termed
“candidate howling components” and their radial frequency values are collected
in the set Dω̆(t) = {ω̆i}N

i=1. A spectral peak picking algorithm is usually ap-
plied to find the candidate howling components. A more advanced approach
consists in selecting frequency components that have a consistently increasing
magnitude in successive signal frames. This is possible by applying a so-called
“ballistics” procedure [43] before executing the peak picking algorithm. The
following spectral and temporal features of the microphone signal have been

6http://ccrma.stanford.edu/~jos/mdft/Use Blackman Window.html
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proposed to determine whether a candidate howling component indeed corre-
sponds to a howling component or rather to a source signal tonal component:

• The Peak-to-Threshold Power Ratio (PTPR) [34],[35],[43] is a spectral
feature that determines the ratio of the candidate howling component
power |Y (ω̆i, t)|2 and a fixed absolute power threshold P0, i.e.,

PTPR(ω̆i, t) [dB] = 10 log10

|Y (ω̆i, t)|2
P0

. (2.42)

Howling is detected at the frequency ω̆i if PTPR(ω̆i, t) ≥ 0 dB. The
rationale behind using the PTPR for howling detection is that howling
should only be suppressed when it appears with a minimum loudness
[43]. The absolute power threshold P0 depends on the particular sound
reinforcement scenario at hand, e.g., a value of 10 log10 P0 = 85 dB SPL
was suggested in [43] for a loudspeaker-microphone distance of 1 m.

• The Peak-to-Average Power Ratio (PAPR) [24],[25],[34]-[36],[42],[43],[47]-
[49],[53] is a spectral feature that determines the ratio of the candidate
howling component power |Y (ω̆i, t)|2 and the average microphone signal
power P̂y(t), i.e.,

PAPR(ω̆i, t) [dB] = 10 log10

|Y (ω̆i, t)|2

P̂y(t)
(2.43)

with

P̂y(t) =
1

M

M−1∑

k=0

|Y (ωk, t)|2. (2.44)

The ith candidate howling component is identified as a howling compo-
nent if the PAPR exceeds a predetermined threshold, i.e., PAPR(ω̆i, t) ≥
TPAPR. The PAPR feature is probably the most widely used feature for
howling detection, and different values for the threshold have been pro-
posed, e.g., TPAPR = 6 dB [24],[25], TPAPR = 10 log10(M/150)2 dB [43],
and TPAPR = 10 dB [47]. Kawamura et al. [36],[42] propose the use
of a variable threshold TPAPR(t) that is adapted online, based on esti-
mates of the background noise spectrum, the source signal spectrum, the
reverberation time, and the acoustic feedback path response. It is also
suggested in [36],[42] to remove the QP largest frequency components
from the spectrum Y (ωk, t) before estimating the average signal power
P̂y(t) in (2.44), the value of QP depending on the bandwidth of the fre-
quency analysis. Yet another way of estimating the average microphone
signal power P̂y(t) was suggested in [53], i.e.,
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P̂y(t) = 10 log10






(
1

M

M−1∑

k=0

|Y (ωk, t)|2
)

(2.45)

+ 2

√
√
√
√ 1

M

M−1∑

k=0

(

|Y (ωk, t)|2 − 1

M

M−1∑

m=0

|Y (ωm, t)|2
)2






which should be particularly useful when the source signal has a Gaussian
probability density function (PDF).

• The Peak-to-Harmonic Power Ratio (PHPR)[31],[33]-[35] is a spectral
feature that determines the ratio of the candidate howling component
power |Y (ω̆i, t)|2 and its mth (sub-)harmonic component power
|Y (mω̆i, t)|2, i.e.,

PHPR(ω̆i, t, m) [dB] = 10 log10

|Y (ω̆i, t)|2
|Y (mω̆i, t)|2

. (2.46)

In [31],[33], howling is detected at the frequency ω̆i if the PHPR exceeds
a predetermined threshold for the 2nd, 3rd, and 4th harmonics and the
0.5th and 1.5th subharmonics, i.e., if

⋂

m∈{0.5,1.5,2,3,4}

[
PHPR(ω̆i, t, m) ≥ TPHPR

]
= 1 (2.47)

with TPHPR = 33 dB. In [34],[35], a simpler howling detection criterion
PHPR(ω̆i, t, 2) ≥ TPHPR is used.

• The Peak-to-Neighboring Power Ratio (PNPR) [21],[27]-[29] is a spectral
feature that determines the ratio of the candidate howling component
power |Y (ω̆i, t)|2 and its mth neighboring frequency component power
|Y (ω̆i + 2πm/M, t)|2, i.e.,

PNPR(ω̆i, t, m) [dB] = 10 log10

|Y (ω̆i, t)|2
|Y (ω̆i + 2πm/M, t)|2 . (2.48)

In [21], ω̆i is determined to be a howling frequency if the PNPR in two
adjacent frequency bins on either side of the candidate howling compo-
nent is consistently above two predetermined thresholds and the PTPR
is above 0 dB, i.e., if
{
[
PTPR(ω̆i, t) ≥ 0dB

]
∧

⋂

m∈{±1,±2}

[
PNPR(ω̆i, t, m) ≥ TPNPR(|m|)

]
}

= 1.

(2.49)
In [27]-[29], howling is detected based on a so-called “peakness” feature,
which reflects the time-averaged probability (over 8 signal frames) that
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the PNPR, averaged over 6 neighboring frequency bins on either side
of ω̆i (excluding the closest neighbor on either side), exceeds a 15 dB
threshold, i.e.,

peakness(ω̆i, t) =

7∑

j=0

1

16

{[

1

6

7∑

m=2

PNPR(ω̆i, t − jP, m) ≥ 15 dB

]

(2.50)

+

[

1

6

−2∑

m=−7

PNPR(ω̆i, t − jP, m) ≥ 15 dB

]}

.

• The Interframe Peak Magnitude Persistence (IPMP) [19],[20],[31],[33],
[36],[42],[47] is a temporal feature based on counting in how many frames
out of QM past signal frames the frequency ω̆i is in the set of candidate
howling frequencies, i.e.,

IPMP(ω̆i, t) =

∑QM−1
j=0

[
ω̆i ∈ Dω̆(t − jP )

]

QM
. (2.51)

Howling is usually detected if IPMP(ω̆i, t) = 1 [19],[20],[36],[42],[47],
with, e.g., QM = 3 [47]. In [31],[33], a howling detection criterion
IPMP(ω̆i, t) ≥ 3/5 is proposed with QM = 5.

• The Interframe Magnitude Slope Deviation (IMSD) [27]-[29] is a temporal
feature that determines the deviation (over QM successive signal frames)
of the slope, which is defined by averaging magnitude difference values of
a candidate howling component, where the differentiation is carried out
between an old signal frame and more recent signal frames, i.e.,

IMSD(ω̆i, t) =
1

QM − 1

QM−1
∑

m=1

(2.52)

[

1

QM

QM−1
∑

j=0

1

QM − j

(
20 log10 |Y (ω̆i, t − jP )| − 20 log10 |Y (ω̆i, t − QMP )|

)

− 1

m

m−1∑

j=0

1

m − j

(
20 log10 |Y (ω̆i, t − jP )| − 20 log10 |Y (ω̆i, t − mP )|

)

]

.

Small values for the IMSD are characteristic of howling components since
these exhibit a nearly linear (dB-scale) magnitude increase in time, hence
a nearly constant slope can be expected. A detection threshold of 0.05 has
been proposed in [29], such that howling is detected when |IMSD(ω̆i, t)| ≤
0.05, with QM = 7.

The complete howling detection algorithm is summarized in Fig. 2.9. Obvi-
ously, any combination of the above spectral and temporal features may be
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Figure 2.9: Howling detection algorithm for two-stage NHS method: from
the microphone signal y(t), a set of notch filter design parameters DH(t) is
calculated.

used to discriminate between howling and tonal components. In most of the
existing NHS methods, at least one spectral and one temporal feature are taken
into account for detecting howling.

Notch Filtering

When howling has been detected, a notch filter has to be activated to sup-
press the howling component and stabilize the closed-loop system. The most
commonly used notch filter structure in NHS is the second-order IIR (i.e., bi-
quadratic) filter structure,

Hl(q, t) =
b
(0)
l (t) + b

(1)
l (t)q−1 + b

(2)
l (t)q−2

1 + a
(1)
l (t)q−1 + a

(2)
l (t)q−2

. (2.53)

The bank of adjustable notch filters that is inserted in the electro-acoustic
forward path, as shown in Fig. 2.7, then consists of a cascade of nH/2 such
filters, i.e.,

H(q, t) =

nH/2
∏

l=1

Hl(q, t) (2.54)

with nH the resulting order of the cascade filter.

The notch filter design procedure consists of two parts: first the set of de-
sign parameters DH(t) delivered by the howling detection algorithm has to be
mapped to a set of filter specifications, which are then translated into filter
coefficient values. A biquadratic notch filter has five coefficients, which depend
on a set of six filter specifications [119]: the (radial) center frequency ωc,l, the
(radial) bandwidth Bl, the notch gain Gc,l, the gain at the band edges GB,l,
the gain at DC G0,l, and the gain at the Nyquist frequency Gπ,l. If we fix the
latter two variables to G0,l = Gπ,l = 0 dB and the gain at the band edges to
GB,l = Gc,l +3 dB in case Gc,l ≤ −6 dB, or to GB,l = Gc,l/2 in case Gc,l ≥ −6
dB (thereby adopting Moorers bandwidth definition [120]), then only the first
three filter specifications remain.

The set of design parameters DH(t) should always contain the radial frequencies
{ω̆i}i∈IH(t) of the howling components that have been identified in the howling



2.5. Notch-Filter-Based Howling Suppression 55

detection algorithm, where IH(t) ⊆ {1, . . . , N} denotes the set of indices for
which howling has been detected. For each howling component, a notch filter
should be activated, with a center frequency corresponding to the howling
frequency. It is desirable to compensate for the limited frequency resolution
of the microphone signal DFT by linearly interpolating the notch filter center
frequency, using the DFT information from frequency bins adjacent to the
identified howling component [43], e.g.,

ωc,l = ω̆i +
2π

M

( |Y (ω̆i + 2π/M)| − |Y (ω̆i − 2π/M)|
|Y (ω̆i − 2π/M)| + |Y (ω̆i)| + |Y (ω̆i + 2π/M)|

)

. (2.55)

In this case, the DFT magnitude values |Y (ω̆i − 2π/M)|, |Y (ω̆i)|, and |Y (ω̆i +
2π/M)| should also appear in the set of design parameters DH(t). The DFT
magnitude information may also be used to determine the notch gain Gc,l,
however, it is common practice to work with fixed notch gain values that are
independent of the howling component magnitude. Typically, when a new
howling component has been detected (i.e., a howling component at a frequency

that has not occured before), the notch gain is set to an initial value G
(0)
c,l , e.g.,

G
(0)
c,l = −3 dB [31],[33] or G

(0)
c,l = −6 dB [43]. If howling persists or reoccurs at

a frequency close to a previously identified howling frequency, then the gain is
decreased with ∆Gc,l dB, e.g., ∆Gc,l = −3 dB [31],[33] or ∆Gc,l = −6 dB [43].
Finally, the radial notch filter bandwidth Bl is usually chosen proportional to
the center frequency, such that the filter has a constant Q factor. The octave
bandwidth is then also constant and is typically chosen in the range 1/10–1/60
octave, e.g., 1/10 octave [31],[33],[50],[99], 1/20 octave [50],[99], or 1/60 octave
[48],[49].

Finally, the filter specifications SHl
(t) = {ωc,l, Bl, Gc,l} have to be translated

to a set of filter coefficients CHl
(t) = {b(0)

l (t), b
(1)
l (t), b

(2)
l (t), a

(1)
l (t), a

(2)
l (t)}.

Most notch filter design methods are based on a bilinear transform of either an
analog notch filter transfer function [121]-[127], or a digital notch filter transfer
function centered at ωc = π/2 [120]. A novel design procedure for biquadratic
notch filters was recently proposed, that operates directly in the digital domain
using a technique known as pole-zero placement [119]. This design procedure,
which is equally accurate yet more intuitive than the bilinear-transform-based
design methods, will be applied in the evaluation of the NHS method in Section
2.7. The complete notch filter design procedure for the two-stage NHS method
is shown schematically in Fig. 2.10.

2.5.3 Initialization

In the PFC method for acoustic feedback control, the optimal values for the
algorithm parameters (i.e., the modulation frequency ωm and modulation in-
dex β) were found to be independent of the specific acoustic feedback path
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Figure 2.10: Notch filter algorithm for two-stage NHS method: the microphone
signal y(t) is filtered in a bank of adjustable notch filters, designed using the
design parameters in DH(t), resulting in the howling-compensated signal d(t).

characteristics. The optimal notch filter coefficients in the NHS method, how-
ever, depend heavily on the spectral properties of the acoustic feedback path.
It has long been known that some of the spectral peaks in the acoustic feed-
back path magnitude response |F (ω, t)| originate from reflections depending
on the room boundaries only and are hence independent of the position of
loudspeakers, microphones, and other objects in the room7. For this reason,
manual equalization and notch filtering is largely performed during initializa-
tion (e.g., “ringing out” a PA system during sound check [129]) and fixed filters
are applied to compensate for the major room resonances.

Similarly, a number of notch filters in the NHS method may be fixed to the so-
called “eigenfrequencies” of the room, while the remaining notch filters can be
adjusted to suppress variable-frequency howling components, which are due to,
e.g., microphone movements [31],[33],[40]. The fixed notch filter design param-
eters should then be determined during the initialization of the sound reinforce-
ment system, which is usually accomplished by feeding a white noise signal to
the loudspeakers at a relatively high amplifier gain and subsequently identifying
persisting spectral components in the microphone signal [22],[23],[31],[33].

The variable notch filters differ from the fixed notch filters in that they can
be activated and de-activated during normal operation of the sound reinforce-
ment system. While an extensive part of the NHS literature is devoted to
strategies for the activation of these notch filters (i.e., after howling detection),
hardly any research results are available dealing with the criteria for notch
filter de-activation. One such de-activation criterion was proposed by Terada
and Murase [26] in the context of AEQ for HA applications, and consists in

7This concept has been formalized in the so-called common acoustical pole and zero
(CAPZ) model for room transfer functions [128].
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de-activating the equalization filters after a time period that is inversely propor-
tional to the time period between two successive occurences of howling. Finally,
we should note that the activation of a notch filter in the electro-acoustic for-
ward path leads to transient components in the loudspeaker signal, which may
be perceived as short-lived ringing artifacts [34],[35]. This effect can be avoided
by gradually activating and de-activating the notch filters, e.g., using a leaky
integrator [53].

2.5.4 Discussion

The NHS approach has many strengths, the most important one being its
robustness. Unlike other acoustic feedback control methods, NHS methods
have the powerful property of being able to stabilize an unstable system without
having to reduce the broadband gain. For this reason, it is advisable that a
sound reinforcement system that is operated with a different acoustic feedback
control method (e.g., PFC or AFC) be supplemented with an NHS method,
which should then be activated when the system stability cannot be restored
using the PFC or AFC method. As for computational requirements, the NHS
approach has a moderate complexity, in between the cheap PFC approach and
the expensive AFC approach. The main computational load is in the frequency
analysis and can be governed by properly choosing the frame length M and hop
size P . Another attractive property is that the extension of the NHS approach
to multi-channel systems is relatively straightforward. In the multi-channel
case, it is usually more efficient to have the howling detection and notch filtering
algorithms operate on the mixed signals instead of on the microphone signals,
since the number of channels is usually reduced after mixing. Alternatively,
both the mixed signals and the individual microphone signals can be used
for howling detection, where the latter may be analyzed at a lower frequency
resolution [51].

A difficulty that arises when applying an NHS method for acoustic feedback
control, is the multitude of algorithm parameters that have to be set, namely
the frame length and hop size, the number of candidate howling components
selected in each signal frame, the combination of discriminating features, the
thresholds for howling detection, the number of fixed/variable notch filters to
use, ... Unfortunately, few guidelines are available for setting these algorithm
parameters. As many NHS methods are described in patents, very few exper-
imental results and no true comparisons between different NHS methods are
available. A comparison of three NHS methods with particular choices for the
algorithm parameters will be provided in Section 2.7, but obviously, many more
combinations are possible.

The major shortcoming of the NHS approach is that it cannot deliver an MSG
increase that is substantially larger than the MSG increase obtained with the
PFC approach. At most, i.e., when all the spectral peaks in the loop gain
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could be removed, an MSG increase of 10 dB could be expected based on
the statistical analysis by Schroeder [2]. In practice, this maximum value will
never be attained since it is nearly impossible to completely flatten the loop
gain and still retain an acceptable degree of sound quality. As an example, if
we would increase the gain in the single-channel system associated with the
acoustic feedback path shown in Fig. 2.4(a) to a value that is 10 dB above
the MSG without acoustic feedback control, then over 20 frequencies would
satisfy the magnitude condition (2.11) in the Nyquist criterion, most of these
lying in the 100–1500 Hz frequency region. Applying the NHS approach would
then lead to a broadband attenuation in the 100–1500 Hz band, which would
be detrimental for the sound quality (e.g., speech intelligibility). The limited
achievable increase in MSG is also observed in manual notch filtering methods,
where values of 5 to 8 dB have been obtained [6]. Finally, in terms of sound
quality, the signal distortion due to notch filtering is reasonable if the number of
filters that are applied concurrently is small and if the notch filter bandwidths
are small. In fact, the main decrease in sound quality is due to the reactive
nature of most NHS methods, i.e., howling can usually be perceived before it
can be suppressed. From this point of view, proactive NHS methods can be
viewed as promising acoustic feedback control solutions (see, e.g., [50],[56]),
however, their current applicability is limited due to their high computational
complexity, comparable to the AFC complexity.

2.6 Adaptive Feedback Cancellation

2.6.1 Concept

In a sound reinforcement system, the microphone signal y(t) consists of a source
signal component v(t) and a feedback signal component x(t), the latter denoting
the entire signal that is fed back from the loudspeaker to the microphone. The
AFC approach to acoustic feedback control is aimed at predicting the feedback
signal component and then subtracting this prediction from the microphone
signal. The predicted feedback signal, denoted as ŷ[t|̂f(t)], is obtained by fil-
tering the loudspeaker signal u(t) with a model F̂ (q, t) of the acoustic feedback
path, see Fig. 2.11. This model is calculated using an adaptive filter, that
is designed to identify the feedback path impulse response f(t) and track its
changes. The feedback path and adaptive filter impulse responses are defined
at time t as

f(t) =
[
f (0)(t) f (1)(t) . . . f (nF )(t)

]
(2.56)

f̂ (t) =
[

f̂ (0)(t) f̂ (1)(t) . . . f̂ (nF̂ )(t)
]

(2.57)

respectively.

The closed-loop frequency response of the system shown in Fig. 2.11, employing
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ŷ[t|̂f(t)]

G

u(t)

F̂

y(t) v(t)

x(t)

Figure 2.11: Adaptive feedback cancellation (AFC) by predicting the feedback
signal component x(t) in the microphone signal, and hence subtracting the
prediction ŷ[t|̂f (t)] from the microphone signal y(t). The prediction is obtained
by filtering the loudspeaker signal with a model F̂ (q, t) of the acoustic feedback
path, which is calculated using an adaptive filter.

an AFC method, is given by

U(ω, t)

V (ω, t)
=

G(ω, t)

1 − G(ω, t)[F (ω, t) − F̂ (ω, t)]
(2.58)

and, as a consequence, the Nyquist stability criterion can be rewritten as fol-
lows,

|G(ω, t)[F (ω, t) − F̂ (ω, t)]| ≥ 1 (2.59)
{

∠G(ω, t)[F (ω, t) − F̂ (ω, t)] = n2π, n ∈ Z (2.60)

which leads to the following expression for the MSG (see also (2.16)),

MSG(t) [dB] = −20 log10

[

max
ω∈P

|J(ω, t)[F (ω, t) − F̂ (ω, t)]|
]

. (2.61)

From (2.61), it immediately follows that the better the fit between the esti-
mated and actual feedback path frequency response, particularly at critical
frequencies of the closed-loop system, the larger the achievable MSG increase.
Theoretically, if F̂ (q, t) ≡ F (q, t), the system would no longer exhibit a closed
signal loop and hence the MSG would be infinitely large.

While the concept of AFC is relatively simple and similar to the well-known
acoustic echo cancellation (AEC) approach, its realization is not straightfor-
ward. In the identification of the acoustic feedback path model F̂ (q, t), a fun-
damental problem appears which is due to the closed-loop nature of the system.
The least-squares (LS) estimate f̂(t) of the acoustic feedback path impulse re-
sponse f(t) can straightforwardly be calculated as

f̂ (t) = (UT U)−1UT y (2.62)
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where the data vectors and matrices are defined as follows (and where the
loudspeaker signal vector u(t) is not to be confused with the multi-channel
loudspeaker signal vector ū(t) defined in (2.5)),

y =
[
y(t) y(t − 1) . . . y(1)

]T
(2.63)

U =
[
u(t) u(t − 1) . . . u(1)

]T
(2.64)

u(t) =
[
u(t) u(t − 1) . . . u(t − nF̂ )

]T
(2.65)

The LS estimate may be characterized by its bias and variance [130, Ch. 8].
The bias corresponds to the difference between the expected value of the LS
estimate and the true feedback path impulse response, i.e.,

bias{f̂(t)} =

[
E
{
f̂(t)

}

0(nF −nF̂ )×1

]

− f(t) (2.66)

where E{·} denotes the expectation operator. Under a sufficient order assump-
tion (i.e., nF̂ = nF ), the expected value of the LS estimate can be shown to
correspond to [77]

E
{
f̂ (t)

}
= f(t) + E

{
(UT U)−1UT v

}
. (2.67)

The rightmost term in (2.67) can be understood to be generally non-zero due
to the closed-loop nature of the system, which induces a correlation between
the source signal and the loudspeaker signal, and hence

bias{f̂(t)} = E
{
(UT U)−1UT v

}
6= 0. (2.68)

The resulting effect in AFC is that the adaptive filter does not only predict and
cancel the feedback component in the microphone signal, but also (part of) the
source signal component. As a consequence, the feedback-compensated signal
d[t, f̂(t)] is a distorted estimate of the source signal v(t). On the other hand,
the variance of the LS estimate can be obtained by considering its covariance
matrix8, which is calculated as [131]

cov{f̂(t)} = E{(̂f(t) − f(t))(̂f (t) − f(t))T } (2.69)

=
[

E
{
UT Rv

−1U
}]−1

(2.70)

where the source signal covariance matrix Rv is defined as

Rv = E{vvT } (2.71)

8Note that the covariance matrix of the estimate f̂(t) is in fact defined as cov{f̂(t)} =

E{(̂f(t)−E{f̂ (t)})(̂f (t)−E{f̂ (t)})T }, which corresponds to cov{f̂(t)} = E{(̂f(t)−f(t))(̂f (t)−

f(t))T } if E{f̂(t)} = f(t), i.e., if the estimate is unbiased. However, in the analysis of closed-
loop identification methods it has been found more meaningful to work directly with the
covariance expression cov{f̂(t)} = E{(̂f(t) − f(t))(̂f (t) − f(t))T } even if E{f̂(t)} 6= f(t), see,
e.g., [131].
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with
v =

[
v(t) v(t − 1) . . . v(1)

]T
. (2.72)

The interpretation of (2.70) can be related to the double-talk problem occuring
in AEC [132]. In AEC, when the loudspeaker signal is active while the source
signal is not, the covariance matrix of the acoustic echo path LS estimate is
relatively small, since Rv ≈ 0. However, when both signals are active at the
same time (i.e., in a double-talk situation), the covariance matrix may become
large, which may be observed in the adaptive filter performance as a decrease in
convergence speed, or even a divergence. This problem becomes more severe as
the source signal has a larger degree of coloration, since then the source signal
covariance matrix Rv exhibits a denser structure [132]. In AFC, the closed
signal loop results in a continuous double-talk situation, and then this is made
even worse by the correlation between the source and loudspeaker signal.

To prevent the adaptive filter from converging to a biased solution, and to
increase its convergence speed despite the inevitable continuous double-talk
situation, a decorrelation procedure is typically included in the AFC approach,
with the aim of reducing the correlation between the source and loudspeaker
signal. We can distinguish between two types of decorrelation [77], namely
decorrelation in the closed signal loop and decorrelation in the adaptive filtering
circuit. The former approach has the disadvantage of distorting the loudspeaker
signal, while the latter approach requires somewhat more computations.

2.6.2 Realization

Adaptive Filtering

The adaptive calculation of the LS estimate (2.62) of the acoustic feedback path
impulse response, and the subsequent calculation of the feedback-compensated
signal can be performed as follows,

ε[t, f̂(t − 1)] = y(t) − uT (t)̂f(t − 1) (2.73)

R(t) = λR(t − 1) + u(t)uT (t) (2.74)

f̂(t) = f̂(t − 1) + R−1(t)u(t)ε[t, f̂ (t − 1)] (2.75)

d[t, f̂(t)] = y(t) − uT (t)̂f(t) (2.76)

The algorithm in (2.73)-(2.75) is known as the recursive least squares (RLS)
algorithm [133, Ch. 13], with an exponential forgetting factor λ. Note that
the (a priori) RLS residual ε[t, f̂(t− 1)] in (2.73) differs from the (a posteriori)
feedback-compensated signal d[t, f̂ (t)], which is subsequently processed in the
electro-acoustic forward path, in that the former depends on the previous esti-
mate f̂ (t−1). Through the application of the so-called matrix inversion lemma
(MIL), the explicit inversion of the loudspeaker signal correlation matrix R(t)
in (2.75) can be avoided, and hence the RLS algorithm requires O(n2

F̂
) multi-

plications per time update [133, Ch. 13]. Fast RLS algorithms, requiring only
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O(nF̂ ) multiplications per time update, have also been derived [134],[135] and
successfully applied to, e.g., AEC [136]-[138, Ch. 6]. These fast RLS algo-
rithms, however, are based on the shift invariance property of the loudspeaker
signal vector defined in (2.65), i.e., the difference between u(t−1) and u(t) con-
sists in discarding the oldest sample value u(t−1−nF̂ ), shifting the remaining
sample values, and inserting the most recent sample value u(t) in the first posi-
tion. This shift invariance property will generally not hold in the AFC context
due to the decorrelation that is applied, either in the closed signal loop or in
the adaptive filtering circuit, which often involves a nonlinear or time-varying
filtering of the loudspeaker signal (see Section 2.6.2, “Decorrelation”).

Alternatively, a computationally cheaper adaptive algorithm can be found in
the underdetermined recursive least squares (URLS) family [139]. The affine
projection algorithm (APA) provides an estimate of the acoustic feedback path
impulse response by using only the M most recent microphone signal samples
and loudspeaker signal vectors, i.e.,

εM [t, f̂(t − 1)] = yM (t) − UT
M (t)̂f (t − 1) (2.77)

f̂(t) = f̂ (t − 1) + µUM (t)[UT
M (t)UM (t) + αIM ]−1εM [t, f̂ (t − 1)]

d[t, f̂(t)] = y(t) − uT (t)̂f(t) (2.78)

where µ represents the step size, αIM is an M × M identity regularization
matrix scaled with the regularization parameter α, and

yM (t) =
[
y(t) . . . y(t − M + 1)

]T
(2.79)

UM (t) =
[
u(t) . . . u(t − M + 1)

]
(2.80)

The APA requires O(MnF̂ ) multiplications per time update, which is obviously
much less than the RLS algorithm if the APA projection order M ≪ nF̂ .
Since the APA can be shown to decorrelate input signals that admit an Mth
order all-pole representation [140], relatively small values for the projection
order have been successfully used in AEC applications with speech signals
(e.g., M ∈ {2, . . . , 50} [141], M = 8 [142], M = 10 [143]). Fast versions of the
APA, requiring only O(nF̂ )+O(M) multiplications per time update, have also
been derived [141]-[143], but again these algorithms rely on the shift invariance
property of the loudspeaker signal vector, which need not be fulfilled in the
AFC context.

Since the required adaptive filter order in room acoustic applications may be
very high, a computational load of O(MnF̂ ) multiplications per time update
may still be too heavy to allow for a real-time application. For this reason, in
most of the existing AFC schemes a projection order M = 1 is applied, which
leads to the well-known normalized least mean squares (NLMS) algorithm,
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ε[t, f̂(t − 1)] = y(t) − uT (t)̂f(t − 1) (2.81)

f̂(t) = f̂(t − 1) + µ
u(t)ε(t)

uT (t)u(t) + α
(2.82)

d[t, f̂(t)] = y(t) − uT (t)̂f(t) (2.83)

The required number of multiplications per time update is O(nF̂ ), more specif-
ically 4nF̂ + 6 (if the calculation of the feedback-compensated signal in (2.83)
is also taken into account). The choice of the NLMS step size µ is crucial to
obtain a good compromise between a stable and fast convergence. In our own
experience, step size values in the range µ = 0.01 − 0.05 are best suited for
speech applications [97],[99],[101], while values around µ = 0.005 are recom-
mended when working with audio signals [105].

Finally, the choice of the adaptive filter order nF̂ is obviously extremely impor-
tant, regardless of which adaptive filtering algorithm is used. It is clear that the
choice of nF̂ has a profound influence on the computational requirements of the
AFC approach. One could argue that it may be sufficient to choose nF̂ such
that the largest components in the acoustic feedback path impulse response
(originating from the early reflections) can be modeled. Unfortunately, such
an approach would be inefficient for two reasons: firstly, large impulse response
components do not necessarily correspond to large frequency response compo-
nents and hence stability may not be improved by only cancelling the early
reflections. Secondly, if the impulse response is undermodeled (i.e., nF̂ < nF )
then an additional bias component will appear in the LS estimate (in addition
to the bias due to the source and loudspeaker signal correlation) and moreover
its variance will increase [144]. The best compromise between computational
complexity and feedback control performance probably consists in choosing nF̂

just large enough to obtain a satisfying MSG increase, and applying a tech-
nique for reducing the bias and variance due to undermodeling [144]-[146]. We
should point out that the technique proposed by Rombouts et al. [144] for
consistently identifying undermodeled room impulse responses is particularly
interesting in the context of AFC, since it additionally provides a decorrelation
in the adaptive filtering circuit.

We should emphasize that the above adaptive algorithms are often not imple-
mented as such, since both the robustness and the efficiency of these algorithms
can be further improved [99]. A robust adaptive filter implementation for AFC
may include the following features: an adaptation control that freezes the adap-
tive filter coefficients during source signal onsets [99], a foreground/background
adaptive filter implementation to combine good tracking properties with a small
steady-state error [99], and a regularization method that compensates for the
coloration of the loudspeaker signal [99],[101]. Moreover, the AFC efficiency in
terms of computational load and convergence speed can be improved by con-
sidering a subband or frequency domain adaptive filter implementation rather
than the time domain implementations shown here [99].
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Decorrelation

Decorrelation of the source and loudspeaker signals in the closed signal loop
can be achieved by inserting a decorrelating signal operation in the electro-
acoustic forward path, see Fig. 2.12. We can distinguish between the following
approaches,

• Noise injection [60],[70],[79]-[82]: A white noise signal n(t) is added to
the feedback-compensated signal after the electro-acoustic forward path
processing (but usually before the forward path amplification), see Fig.
2.12(a), i.e.,

u(t) = K
[

J(q, t)d[t, f̂ (t)] + n(t)
]

. (2.84)

The acoustic feedback path identification can then proceed in two ways:
if the loudspeaker signal u(t) (including the noise signal n(t)) is used
as the input signal to the adaptive filter, then the effect of the noise
injection is that the source and loudspeaker signal cross-correlation is
decreased, hence the bias will be reduced but not completely eliminated.
A second possibility is to use the noise signal n(t) as the adaptive filter
input signal, which leads to an unbiased estimate since the source signal
and the noise signal are uncorrelated. In this case, however, the adaptive
filter convergence will be rather slow since not only the source signal,
but also the source signal component in the feedback signal acts as a
disturbance towards the feedback path identification. With the aim of
reducing the influence of the noise injection on sound quality, the noise
spectrum can be shaped such as to render the noise less perceptible, e.g.,
by A-weighting [80] or psychoacoustic noise shaping [81],[82]. Unfortu-
nately, noise shaping decreases the decorrelation effect, making the noise
injection less effective in removing the bias.

• Time-varying processing [70],[83]-[85]: Each of the LPTV filters described
in Section 2.4 can be used as a decorrelating filter in the electro-acoustic
forward path, see Fig. 2.12(b),

u(t) = G(q, t)
[

H(q, t)d[t, f̂ (t)]
]

. (2.85)

An FS decorrelating filter has an LPTV frequency response as given by
(2.26) and has succesfully been applied to AFC for speech applications
[83]-[85]. While the perceptible signal distortion introduced by the FS
operation appears to be acceptable for speech signals [85], the FS decor-
relation technique was found to be perceptually inadequate for audio
applications [82]. The sinusoidal PM and DM filters, of which the LPTV
frequency response is given in (2.24) and (2.29) respectively, have also
been applied as decorrelation filters in AFC [70],[83],[84]. Note that a
beneficial side effect of using LPTV decorrelation filters is that these fil-
ters also stabilize the closed-loop system by smoothing the loop gain (see
Section 2.4).
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• Nonlinear processing [70],[87]: In the context of stereo AEC, the cor-
relation between the stereo channels, which leads to an identifiability
problem of the acoustic echo path models [147], has been reduced by ap-
plying nonlinear decorrelating operations to the loudspeaker signals [86].
These nonlinear operations can also be used to reduce the correlation
between the source and loudspeaker signals in an AFC application. In
particular, half-wave rectification has been successfully applied to AFC
decorrelation [70],[87], see Fig. 2.12(b), i.e.,

u(t) = G(q, t)
[

H
(
d[t, f̂(t)], t

)]

(2.86)

= G(q, t)

[

d[t, f̂ (t)] + α

(
d[t, f̂ (t)] + |d[t, f̂(t)]|

2

)]

(2.87)

The parameter α can be tuned to obtain the best compromise between
decorrelation and perceptible signal distortion.

• Forward path delay: in hearing aid AFC applications, inserting a pro-
cessing delay of d1 samples in the electro-acoustic forward path has been
proposed to decorrelate the source and loudspeaker signals [75],[88], see
Fig. 2.12(b), i.e.,

u(t) = G(q, t)d[t − d1, f̂(t − d1)]. (2.88)

This approach is particularly useful for source signals that have an au-
tocorrelation function that decays rapidly, e.g., voiceless speech signals,
provided that the delay value d1 is chosen accordingly.

Note that when applying decorrelation in the closed signal loop, a trade-off
between bias reduction and sound quality should always be sought by properly
tuning the decorrelation parameters. Usually, a perceptible signal distortion is
unavoidable, either because of the decorrelating signal operation itself (when
strong decorrelation is applied), or because of the bias in the acoustic feedback
path estimate (when weak decorrelation is applied) [77].

Decorrelation in the adaptive filtering circuit does not require the above trade-
off and generally, the stronger the decorrelation, the better will be the attained
sound quality. Two such approaches have been proposed,

• Adaptive filter delay [89],[90]: Due to the time needed for the loudspeaker
sound to propagate through a direct coupling to the microphone, the
acoustic feedback path impulse response typically exhibits an initial delay
(sometimes referred to as the “dead time”, see Fig. 2.3), the value of
which is proportional to the loudspeaker-microphone distance. If this
initial delay (or a lower bound for it) is known a priori and corresponds
to d2Ts s, then the first d2 coefficients in the acoustic feedback path model
can be forced to zero, i.e.,

F̂ (q, t) = f̂ (d2)(t)q−d2 + f̂ (d2+1)(t)q−(d2+1) + . . . + f̂ (nF̂ )q−nF̂ (2.89)
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Figure 2.12: AFC with decorrelation in the closed signal loop. (a) Decorrelation
by noise injection: the adaptive filter input signal can be either the loudspeaker
signal u(t) or the noise signal n(t). (b) Decorrelation in the electro-acoustic
forward path: the decorrelation device corresponds to an LPTV filter H(q, t),
a nonlinear mapping H(·, t), or a processing delay q−d1 .

As a consequence, the first d2 rows in the expression (2.62) for the LS
estimate of the acoustic feedback path impulse response need not be
considered, and likewise for the bias vector in (2.68). If we now assume
that the source and loudspeaker signal cross-correlation function is small
for time lags larger than d2 samples, then the remaining bias can be
considered negligible.

• Decorrelating prefilters: [77],[87],[93]: From a system identification point
of view, the bias in the LS estimate of the acoustic feedback path model
can be eliminated by using an appropriate noise model in the identifi-
cation [131], i.e., a model of the signal that disturbs the identification,
more specifically the source signal in the AFC context. If we assume a
(time-varying) parametric source signal model H(q, t),

v(t) = H(q, t)e(t) (2.90)

and that an estimate Ĥ(q, t) of H(q, t) is available, then the unbiased
identification approach consists in prefiltering the loudspeaker and mi-
crophone signals with the inverse source signal model estimate before
feeding these signals to the adaptive filtering algorithm. Note that the
source signal excitation signal e(t) in (2.90) is assumed to be an uncor-
related signal (i.e., white noise or a Dirac impulse). This approach is
depicted in Fig. 2.13(a), where the prefiltered loudspeaker and micro-
phone signals are calculated as

ỹ[t, ĥ(t)] = Ĥ−1(q, t)y(t) (2.91)

ũ[t, ĥ(t)] = Ĥ−1(q, t)u(t) (2.92)

and ĥ(t) contains the estimated source signal model parameters. This ap-
proach was originally developed for hearing aid AFC applications [76],[91],
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[92] and later on extended to room acoustic applications [77],[87],[93].

Both approaches to decorrelation in the adaptive filtering circuit rely on addi-
tional information that is not necessarily available a priori and may moreover
be time-varying, i.e., the initial delay of the acoustic feedback path and the
source signal model. The problem of how to concurrently estimate the initial
delay and the model coefficients of the acoustic feedback path impulse response,
has not yet been treated in the literature. On the other hand, the concurrent
estimation of the source signal model and the acoustic feedback path model has
been studied extensively by Rombouts et al. [96]-[98] for speech applications
and by van Waterschoot and Moonen [104],[105] for audio applications. For
speech source signals, the parametric source signal model preferably consists of
a cascade of two all-pole models [96],[97],

H(q, t) =
1

A(q, t)

1

C(q, t)
(2.93)

with

A(q, t) = 1 −
1∑

i=−1

α(i)(t)q−K−(l/D)−i (2.94)

C(q, t) = 1 +

nC∑

i=1

c(i)(t)q−i (2.95)

The 3-tap fractional pitch prediction model 1/A(q, t) is used to model the
periodic speech components that stem from the vibration of the vocal chords.
Here, K + l/D represents the fractional pitch lag, with K the integer pitch lag,
D the interpolation ratio, and l ∈ {0, . . . , D − 1} the fractional phase [148].
The all-pole model 1/C(q, t) represents the vocal tract response that produces
the formant speech components [149]. The cascade model in (2.93)-(2.95) can
also be used for monophonic audio signals, while for polyphonic audio signals
a cascade of a constrained pole-zero model with an all-pole model appears to
be better suited [105],[150], i.e.,

H(q, t) =
B(q, t)

A(q, t)

1

C(q, t)
(2.96)

with

A(q, t)

B(q, t)
=

nA/2
∏

i=1

1 − 2νi cos θi(t)q
−1 + ν2

i q−2

1 − 2ρi cos θi(t)q−1 + ρ2
i q

−2
. (2.97)

The constrained pole-zero model B(q, t)/A(q, t) then models the tonal compo-
nents in the audio signal, while the all-pole model 1/C(q, t) models the “noise-
like” components. The constrained pole-zero model is usually parametrized
using a second-order sections structure, as shown in (2.97), where the θi(t)
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ũ[t, ĥ(t)]
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ŷ[t|̂f(t)]

F̂

u(t)

F

x(t)

v(t)y(t)

G

(a)
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Figure 2.13: (a) AFC with decorrelating prefilters in the adaptive filtering cir-
cuit: a linear parametric source signal model H(q, t) is estimated, and subse-
quently the microphone and loudspeaker signals are prefiltered with the inverse
source signal model before being fed to the adaptive filter. (b) AFC with post-
filtering: the postfilter H(q, t) can either be a spectral subtraction filter for
residual feedback suppression, or a bank of notch filters to avoid closed-loop
instability.

correspond to the pole-zero angles, and νi and ρi are the zero and pole radii,
i = 1, . . . , nA/2.

The concurrent estimation of the source signal models and the acoustic feedback
path model can be performed using a prediction error identification approach
[94, Ch. 3],[95, Ch. 7], which then leads to the so-called prediction-error-
method(PEM)-based AFC algorithms proposed in [96]-[99],[104],[105].

Postfiltering

Mainly owing to undermodeling and steady-state as well as tracking errors,
a misadjustment between the AFC adaptive filter coefficients and the acous-
tic feedback path impulse response will unavoidably exist. As a result, the
feedback signal x(t) will typically not be completely cancelled from the mi-
crophone signal, and so the feedback-compensated signal contains a residual
feedback signal component r[t, f̂ (t)],

d[t, f̂(t)] = v(t) +
[
F (q, t) − F̂ (q, t)

]
u(t)

︸ ︷︷ ︸

,r[t,̂f(t)]

. (2.98)
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A similar problem was previously encountered in AEC, and residual echo sup-
pression postfilters have succesfully been applied in this area [151]-[153]. These
postfilters operate on the echo-compensated signal and attempt to suppress
the residual echo component using a spectral subtraction approach. Several
attempts have been made to apply the AEC postfiltering approach to the AFC
scenario [62],[90], resulting in the AFC scheme shown in Fig. 2.13(b). We
should emphasize that, again, the correlation between the loudspeaker and
source signal makes the residual feedback suppression problem much harder in
the AFC case as compared to the AEC case. Since the postfiltering approach
is based on spectral subtraction, the postfilter is usually designed directly in
the frequency domain.

Janse and Belt [62] propose the following procedure to determine the postfilter
magnitude response,

|H̃(ωk, t)| = max

{

|Y (ωk, t)| − γ
(
|Ŷ [ωk, t|̂f (t)]| + |R̂[ωk, t, f̂(t)]|

)

|D[ωk, t, f̂(t)]|
, 0

}

(2.99)

|H(ωk, t)| = λ|H(ωk, t − 1)| + (1 − λ)|H̃(ωk, t)| (2.100)

where |Y (ωk, t)|, |Ŷ [ωk, t|̂f(t)]|, and |D[ωk, t, f̂(t)]| denote the short-term DFT
magnitude spectra of the microphone signal, the feedback signal estimate, and
the feedback-compensated signal, respectively, which are defined similarly to
(2.41). Ideally, the filter in (2.99) should behave as follows: when the source
signal component dominates in the short-term magnitude spectrum of the mi-
crophone signal, the amount of spectral subtraction should be small, while if
the feedback signal component dominates, the amount of subtraction should
be large [62]. The subtraction factor γ is chosen larger than one in case
the estimated maximum loop gain maxω |G(ω, t)F̂ (ω, t)| ≥ 1, while γ < 1
if maxω |G(ω, t)F̂ (ω, t)| < 1. The first-order low-pass filtering operation in
(2.100) is performed to obtain a smoothly time-varying postfilter behavior.
Unfortunately, the postfilter response in (2.99) also depends on an estimate of
the short-term residual feedback signal spectrum |R̂[ωk, t, f̂(t)]|, yet no details
are provided in [62] on how to obtain this estimate.

An alternative postfilter design procedure for residual feedback suppression
was proposed by Ortega et al. [90], which is based on the observation that
an optimal expression for the postfilter (in the sense of forcing the closed-loop
frequency response in (2.10) to be exactly equal to the electro-acoustic forward
path response G(ω, t)) is given by

H(ω, t) =
1

1 + G(ω, t)[F (ω, t) − F̂ (ω, t)]
(2.101)

= 1 −
√

Sr[ω, t, f̂(t)]

Sd[ω, t, f̂(t)]
(2.102)

where Sr[ω, t, f̂(t)] and Sd[ω, t, f̂(t)] denote the short-term power spectral den-
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sity (PSD) of the residual feedback signal and feedback-compensated signal,
respectively. Here, Sd[ω, t, f̂(t)] is estimated from the feedback-compensated
signal d[t, f̂(t)] using the periodogram followed by a Mel-scale-based frequency
smoothing. Finally, Sr[ω, t, f̂(t)] is estimated recursively,

Ŝr[ω, t, f̂(t − 1)] = [δ + 2λ(1 − λ)]Ŝr [ω, t − 1, f̂(t − 2)] (2.103)

+(1 − δ)λ2Ŝd[ω, t − 1, f̂(t − 1)] + (1 − δ)(1 − λ)2
S2

r [ω, t − 1, f̂(t − 2)]

Sd[ω, t − 1, f̂(t − 1)]

where the parameters λ and δ are chosen to be around 0.3 and 0.8, respectively
[90]. Consequently, the first term on the right hand side of (2.103) dominates
the other terms, and hence it can be understood that the initialization of the
residual feedback signal PSD estimate at t = 0 has a crucial effect on the
quality of the estimate in (2.103).

It should be noted that a postfilter may also be used in the AFC scheme with
the aim of preventing closed-loop system instability rather than suppressing
the residual feedback signal. In this case, the postfilter should behave as a
bank of notch filters, operating at the critical frequencies of the closed-loop
system. Schmidt et al. [70],[102] propose an ANF postfilter that does not di-
rectly use any information from the AFC adaptive filter, and hence does not
behave differently from the ANF that operates without an AFC (see Section
2.3.2). Rombouts et al. [50],[99] propose a postfilter based on a two-stage NHS
method, in which the NHS howling detection is replaced by a proactive detec-
tion of critical frequencies by inspecting the estimated loop gain |G(ω, t)F̂ (ω, t)|
using the most recent AFC acoustic feedback path estimate F̂ (q, t).

2.6.3 Initialization

Similarly to the NHS method, an initialization procedure that is performed
during the startup of the sound reinforcement system is useful to improve the
performance of the AFC method. The room acoustics information that is gath-
ered during the initialization can be elegantly incorporated in the AFC adaptive
filtering algorithm using a technique known as regularization [101],[154]. The
most straightforward approach to regularization consists in calculating an off-
line estimate of the acoustic feedback path impulse response, and subsequently
using this estimate as the initial parameter vector f̂(0) in any of the adaptive
algorithms discussed in Section 2.6.2. While this approach may lead to a consid-
erable improvement of the adaptive filter’s convergence speed, it is non-robust
to changes in the acoustic feedback path impulse response. More particularly,
the impulse response may be considerably different during initialization and
during operation of the system, e.g., due to the presence of an audience on the
room acoustics.

A more advanced approach to regularization consists in identifying the acous-
tic feedback path model in a Bayesian minimum mean square error (MMSE)



2.6. Adaptive Feedback Cancellation 71

framework instead of in an LS framework [101]. The acoustic feedback path
impulse response f(t) is then viewed as a stochastic quantity on which some
prior knowlegde may be available, e.g., the mean E{f(t)} = f0 and covari-
ance matrix cov{f(t)} = Rf . In the Bayesian MMSE framework, the optimal
impulse response estimate is then given by [101]

f̂(t) = f0 + (UT Rv
−1U + Rf

−1)−1UT Rv
−1(y − Uf0) (2.104)

which, in contrast to the LS estimate in (2.62), depends both on the acoustic
feedback path statistics through f0 and Rf , and on the source signal statistics
through Rv defined in (2.71). In the context of adaptive filtering, the mean of
the acoustic feedback path impulse response is usually chosen either as f0 = 0
or as f0 = f̂(t−1), which results in two well-known types of regularization, more
specifically, Tikhonov regularization (TR) and Levenberg-Marquardt regular-
ization (LMR), respectively [101]. On the other hand, the covariance matrix
Rf is constructed using an initial impulse response measurement or using the
available room acoustic parameters such as the reverberation time and the
loudspeaker-microphone distance [101]. The resulting adaptive filtering algo-
rithms, known as TR-RLS, LMR-RLS, LMR-APA, and LMR-NLMS, do not
require significantly more computations as compared to the original RLS, APA,
and NLMS algorithms, if the covariance matrix Rf is constructed to be a di-
agonal matrix [101],[154].

2.6.4 Discussion

The AFC approach is widely considered to be the most promising solution to
the acoustic feedback problem. Its most attractive property lies in the fact
that the effect of acoustic feedback can be completely cancelled, provided that
the AFC algorithm converges to the desired solution, and hence the MSG
can be increased considerably. Experiments have shown that MSG increases
of 15–20 dB are practically achievable [85],[99], which is two to three times
more than the MSG increases obtained with the PFC and NHS approaches
(see Sections 2.4.3 and 2.5.4). As a consequence, a sound reinforcement system
equipped with an AFC method can generally operate at a reasonably large gain
margin and hence howling, ringing, and reverberation artifacts can be avoided,
resulting in a high sound quality. We should note, however, that in terms of
sound quality, the choice of the decorrelation method is of crucial importance.
In particular, when applying decorrelation in the closed signal loop, signal
distortion appears to be unavoidable, either because the decorrelation itself
is perceptible, or because the source signal is partially cancelled when the
decorrelation is insufficient [77]. From this point of view, it is highly desirable to
perform the decorrelation in the adaptive filtering circuit instead of in the closed
signal loop. In terms of robustness, the AFC approach has benefited much
from recent improvements such as postfiltering [62],[89],[90], notch filtering
[70],[99],[102], adaptation control [99], and regularization [99],[101],[154].



72 Chapter 2. State of the Art in Acoustic Feedback Control

The main disadvantage of the AFC approach is its computational complexity,
which is typically much higher than the PFC and NHS complexity. Even when
the cheapest adaptive filtering algorithm is applied, i.e., the NLMS algorithm
which requires O(nF̂ ) multiplications per time update, the AFC complexity
may still exclude a real-time implementation. The reason for this is twofold:
first of all, since the acoustic feedback path is modeled by its impulse response,
a very high adaptive filter order is typically required. Secondly, since a suf-
ficiently high sampling rate should be used to obtain a good sound quality
(especially for audio applications), the impulse response is densely sampled
hence requiring many coefficients, and moreover, a large number of adaptive
filter iterations has to be performed per second. Nevertheless, several real-time
AFC implementations for single-channel systems have been reported: Goertz
has tested a real-time AFC setup with a 2646-tap adaptive filter (i.e., model-
ing the first 60 ms of the acoustic feedback path impulse response at fs = 44.1
kHz) in a room with T60 = 1.2 s, thereby achieving a 5 dB MSG increase [80].
Rombouts et al. have reported MSG increases up to 14 dB in a real-time AFC
experiment with a frequency domain adaptive filter of order 2048, operating at
a sampling frequency of 16 kHz in a room with T60 = 120 ms [99].

The high complexity also puts a limit on the generalization of the AFC approach
to multi-channel systems. Since no results are available on how to exploit the
fact that the different acoustic feedback path impulse responses of a multi-
channel system share some underlying room acoustic properties, the state of
the art in multi-channel AFC consists in applying S · L single-channel AFC
algorithms in a system having S microphones and L loudspeakers, hence the
resulting complexity also increases with a factor S · L.

2.7 Evaluation

2.7.1 Evaluated Algorithms

From the above exposition, it is clear that a multitude of acoustic feedback
control methods has been proposed. An experimental evaluation of all the
existing methods and realizations is beyond the scope of this paper. We will
however provide an evaluation of a selection of methods and realizations that
we consider representative for the state of the art. The evaluation is based on
computer simulations rather than real-time experiments, to make sure the sim-
ulation scenario is exactly reproducible for the different algorithms. From each
of the three presented categories of feedback control methods (i.e., PFC, NHS,
and AFC methods), we will select three different state-of-the-art algorithms.

As for PFC, we evaluate three of the PM techniques described in Section 2.4.1:
sinusoidal PM, FS, and sinusoidal DM. The corresponding PFC algorithms are
denoted as PFC-PM, PFC-FS, and PFC-DM, respectively. The PFC-PM
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and PFC-FS algorithms are realized as shown in (2.34) and (2.36), respectively,
where the discrete-time Hilbert transform ŷ(t) is estimated using the method
proposed in [109]. For the PFC-DM algorithm, we use a Hamming-windowed
and truncated linear interpolation filter as given in (2.39), with an interpolation
ratio D = 8 and a filter length of 2I = 32 taps. The PFC parameters are tuned
to provide a firm trade-off between the resulting MSG and signal distortion, and
also taking into account the parameter values suggested in the PFC literature.
In the PFC-FS algorithm, following [2], the modulation frequency is set to fm =
5 Hz. In the PFC-PM and PFC-DM algorithms, however, a lower value should
be used to avoid excessive signal distortion, hence for these two approaches we
set fm = 1 Hz. In the PFC-PM algorithm, a modulation index β = 3.8 was
found to produce better results than β = 2.4, while the PFC-DM algorithm is
implemented with a modulation depth of ∆τ = 32 samples and a delay offset
of τ0 = ∆τ + 2I = 64 samples.

In the NHS approach, many different howling detection criteria can be designed
by combining the spectral and temporal microphone signal features defined in
Section 2.5.2. An elaborate evaluation of each of these features, both in terms
of howling detection accuracy and NHS feedback control performance, can be
found in [59]. Here, we will only consider the following three approaches. In
the first algorithm (denoted as NHS-1), the howling detection is performed
as suggested in [31],[33], using a combination of the PHPR and IPMP features
defined in (2.46) and (2.51), respectively. Howling is then detected if for a
certain frequency, both (2.47) is fulfilled (with TPHPR = 30 dB) and IPMP≥ 3/5
with QM = 5. The second algorithm (denoted as NHS-2) uses the PAPR
feature (2.43) for howling detection, following, e.g., [48],[49]. It was found that
the PAPR threshold should preferably have a different value in speech and

audio applications [59], e.g., T
(speech)
PAPR = 33 dB and T

(audio)
PAPR = 55 dB. Choosing

T
(audio)
PAPR > T

(speech)
PAPR is recommended since the tonal components in an audio

signal are much more easily misclassified as howling components. Finally, in the
third algorithm (denoted as NHS-3), we apply the howling detection criterion
proposed in [27]-[29], which combines the PNPR and IMSD features, defined
in (2.48) and (2.52), respectively. According to [27]-[29], the PNPR and IMSD
features are used to calculate two secondary features, namely the “peakness”
and “slopeness”, which are subsequently combined into a so-called feedback
existence probability (FEP) function as follows:

FEP(ω̆i, t) = 0.7 · slopeness(ω̆i, t) + 0.3 · peakness(ω̆i, t). (2.105)

The relation between the PNPR and peakness features is given in (2.50), while
the calculation of the slopeness from the IMSD is performed using a nonlinear
mapping (which is not explicitly given in [27]-[29]) that is chosen to be

slopeness(ω̆i, t) = e−|IMSD(ω̆i,t)|. (2.106)

Again, we found that a different value of the FEP threshold should be used in

speech and audio applications, e.g., T
(speech)
FEP = 0.7 (as suggested in [27]-[29])
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and T
(audio)
FEP = 0.9 (with howling being detected if FEP(ω̆i, t) ≥ TFEP). Since

the howling detection in the NHS-1 and NHS-3 algorithms is more advanced
as compared to the NHS-2 algorithm, we can expect a larger false alarm prob-
ability when using the latter algorithm [48],[49],[59]. To compensate for this
effect, the notch filters applied in the NHS-2 algorithm are given a very small
bandwidth, i.e., 1/60 octave, as suggested in [48],[49]. The NHS-1 and NHS-
3 algorithms work with 1/10 octave notch filters, following [31],[33],[50],[99].
Also, the maximum number of cascaded notch filters as defined in (2.54) is
set to nH/2 = 12 in the NHS-1 and NHS-3 algorithms, and to nH/2 = 48
in the NHS-2 algorithm. Finally, we should mention that all three NHS algo-
rithms under consideration apply a DFT-based frequency analysis as in (2.41),
with M = 2048 at fs = 16 kHz, or M = 4096 at fs = 44.1 kHz, and with
P = M/2, from which N = 3 candidate howling components are identified by
peak picking.

The AFC approach will be evaluated using three different decorrelation meth-
ods, see Section 2.6.2. We refer to [78] for an evaluation of the decorrelation
methods that are not covered here. The first AFC algorithm (denoted as AFC-
NI) includes a decorrelation by noise injection, in which a white noise signal
is added to the feedback-compensated signal before amplification, as suggested
in [60],[70],[79]-[81]. The loudspeaker signal is chosen as the input signal to the
adaptive filter (i.e., the switch in Fig. 2.12(a) is set to its vertical position).
The injected noise power is adjusted to be 10 dB below the long-term feedback-
compensated signal power, which results in an adaptive filter convergence speed
that is comparable to the other AFC algorithms under consideration. The sec-
ond algorithm (denoted as AFC-FS) features a decorrelation by a time-varying
processing, more specifically by frequency shifting, following [70],[83]-[85]. The
FS operation is realized as in the PFC-FS algorithm, and the same modu-
lation frequency fm = 5 Hz will be used. The third algorithm (denoted as
AFC-PF) is based on decorrelating prefilters, as proposed in [77],[87],[93].
We will use a cascade source signal model that consists of a pitch prediction
model and an all-pole model, as defined in (2.93)-(2.95), which are estimated
concurrently with the acoustic feedback path model using the PEM-AFROW
algorithm [96],[97],[99]. For this algorithm to be applicable for both speech
and audio source signals, the search range for the pitch lag K should be chosen
large enough, e.g., K ∈ {[fs/1000], . . . , [fs/100]} [105]. The fractional delay
in the pitch prediction model (2.94) is approximated by a linear interpolation
filter similar to the interpolation filter in the PFC-DM algorithm. The all-pole
model order is set to nC = 20, and both source signal models are estimated
using 50 % overlapping data windows of length M = 320 at fs = 16 kHz in
case of speech source signals [96],[97], and of length M = 2048 at fs = 44.1
kHz for audio source signals [105]. Moreover, a processing delay of half the
data window length is inserted in the electro-acoustic forward path, as sug-
gested in [96],[97],[105]. In all three AFC algorithms, the acoustic feedback
path model order is equal to the length of the feedback path impulse response,



2.7. Evaluation 75

0 5 10 15 20 25 30
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

t (s)

v
(t

)

(a)

0 10 20 30 40 50 60
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

t (s)

v
(t

)

(b)

Figure 2.14: Source signals used in the evaluation of acoustic feedback control
methods: (a) speech source signal (fs = 16 kHz), (b) music source signal
(fs = 44.1 kHz).

i.e., nF̂ = nF , and the NLMS algorithm (2.81)-(2.83) is used to update the
adaptive filter coefficients. The NLMS step size is chosen to be µ = 0.02 for
speech source signals and µ = 0.005 for audio source signals, while the regular-
ization parameter is set to α = 10−6.

2.7.2 Evaluation Procedure

We will evaluate the performance of each of the nine algorithms described
above in two simulation scenarios: a 30 s simulation at fs = 16 kHz with a
speech source signal, and a 60 s simulation at fs = 44.1 kHz with an audio
source signal. The speech signal is plotted in Fig. 2.14(a) and is taken from an
interview with two male Dutch-speaking subjects that was digitally broadcasted
by the Flemish Radio and Television Network (VRT), resampled to fs = 16
kHz. The audio signal is an excerpt from a CD recording of the Partita No. 2 in
D minor (Allemande) for solo violin by J. S. Bach, and is shown in Fig. 2.14(b).
These signals were scaled to have an RMS value of -55 dBV, which corresponds
to the output voltage of a typical microphone used in sound reinforcement
applications.

Each simulation consists of four equally long phases, as shown in Fig. 2.15.
In the first phase, the electro-acoustic forward path broadband gain factor
K(t), defined in (2.14), is set to a value K1 that would result in a 3 dB gain
margin if no acoustic feedback control were performed. In particular, this
first phase should allow the AFC algorithms to partially converge before the
gain is increased beyond the point of instability. In the second phase, the gain
20 log10 K(t) is then linearly increased up to a value 20 log10 K2 = 20 log10 K1+
∆K beyond the point of instability (where ∆K is defined on a dB-scale for ease
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acoustic feedback path change
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20 log10 K(t) (dB)

t (s)

T3

4
T1

2
T1

4
T

Figure 2.15: Electro-acoustic forward path gain 20 log10 K(t) vs. time for the
acoustic feedback control simulations.

of notation). Since the different acoustic feedback control methods stabilize
the closed-loop system to a different degree, the maximum gain increase ∆K
that can be allowed while maintaining a stable operation (which should not be
confused with the MSG defined in (2.16)), differs depending on which method is
being used. More specifically, we have found that the maximum gain increase
is around ∆K = 3 dB for the PFC algorithms, ∆K = 5 dB for the NHS
algorithms, and ∆K = 10 dB for the AFC algorithms. In the third and the
fourth phase of the simulation, the gain factor is fixed to K2, and at the end of
the third phase, an acoustic feedback path change is simulated. The acoustic
feedback path used in the first three simulation phases corresponds to the RIR
shown in Fig. 2.3, while the feedback path in the fourth phase is equal to a
RIR measured in the same room as the first RIR, after a 1 m displacement of
the microphone.

Our goal is to evaluate the acoustic feedback control methods based on three
general objectives: the achievable amplification, the sound quality, and the
reliability. These objectives can be quantified by a number of performance
measures, which are calculated during the third and fourth simulation phases,
since these phases correspond to the preferential mode of operation for the
sound reinforcement system. The achievable amplification is measured by the
MSG and the MSG increase, which by using (2.16) are defined as

MSG(t) [dB] = −20 log10

[

max
ω∈P

|H(ω, t)J(ω, t)F (ω, t)|
]

(2.107)

∆MSG(t) [dB] = −20 log10

[

maxω∈P |H(ω, t)J(ω, t)F (ω, t)|
maxω∈P |J(ω, t)F (ω, t)|

]

(2.108)
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for the PFC and NHS methods, where H(ω, t) represents the frequency response
of the PM filter or the bank of adjustable notch filters, respectively. In case of
the AFC method, these measures are defined using (2.16) and (2.61) as follows,

MSG(t) [dB] = −20 log10

[

max
ω∈P

|J(ω, t)[F (ω, t) − F̂ (ω, t)]|
]

(2.109)

∆MSG(t) [dB] = −20 log10

[

maxω∈P |J(ω, t)[F (ω, t) − F̂ (ω, t)]|
maxω∈P |J(ω, t)F (ω, t)|

]

.(2.110)

We will use the instantaneous value of the MSG(t), as well as the mean and
maximum value of the ∆MSG(t), as a performance measure in the evaluation.

An objective measure for quantifying the sound quality resulting from acoustic
feedback control was proposed in the context of hearing aid AFC in [155]. This
measure, known as the frequency-weighted log-spectral signal distortion (SD),
is defined as9

SD(t) =

√
∫ fs/2

0

wERB(f)

(

10 log10

Sd(f, t)

Sv(f, t)

)2

df (2.111)

where Sd(f, t) and Sv(f, t) denote the short-term PSD of the feedback-compen-
sated signal and source signal, respectively, and wERB(f) is a weighting function
that gives equal weight to each auditory critical band in the Nyquist interval,
following Table II of the ANSI S3.5-1997 standard [156]. The short-term PSD is
estimated as the squared magnitude of the short-term DFT, which is calculated
using 50 % overlapping data windows of length M = 2048 at fs = 16 kHz, or
M = 4096 at fs = 44.1 kHz. The integration in (2.111) is then approximated
by a summation over the DFT frequency bins. Both the mean and maximum
value of the SD measure will be used in the evaluation.

Finally, the reliability is quantified using two performance measures: the howl-
ing occurence probability (HOP) and the time to recover from instability (TRI).
These measures rely on an estimate of the time intervals during which howling
occurs in the simulation. Howling occurences are manually identified using the
following procedure:

1. a rough estimate of the howling time intervals is obtained by listening
to the feedback-compensated signal,

2. a spectrogram of the feedback-compensated signal is plotted for each of
the time intervals identified in the first step, and the frequency bin(s) in
which howling occurs are visually identified from the spectrogram,

9Note that in a real-time experiment, the source signal is not available, hence its PSD
Sv(ω, t) cannot be calculated. The SD measure can then be calculated by comparing the
loudspeaker signal PSD with the PSD of a reference signal that is obtained in a secondary
experiment, in the absence of acoustic feedback [155].
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3. a time-varying PAPR feature is calculated for each of the time intervals
identified in the first step, where the peak PSD is estimated by averaging
the power in the howling frequency bins identified in the second step,

4. the time interval during which howling occurs is then defined by the
time points on either side of the PAPR maximum value, at which the
PAPR has decreased to a value that is 3 dB below the maximum value.

From the time points identified in the last step of the above procedure, we can
estimate the time duration ∆ti (s) of each howling occurence, i = 1, . . . , NHO,
with NHO the number of howling occurences estimated in the first step of the
above procedure. The HOP and TRI measures are then defined as follows,

HOP (%) =

∑NHO

i=1 ∆ti
T

(2.112)

TRI (s) =

∑NHO

i=1 ∆ti
NHO

(2.113)

where T (s) denotes the length of the simulation.

2.7.3 Simulation Results

The instantaneous value of the MSG(t) measure versus time is displayed in
Fig. 2.16 (where the left column contains the results obtained with the speech
source signal, and the right column gives the results for the audio source signal).
These MSG(t) curves have been smoothed with a one-pole low-pass filter to im-
prove the clarity of the figures. The instantaneous value of the electro-acoustic
forward path gain 20 log10 K(t) and the MSG values obtained without acous-
tic feedback control are also shown (where “MSG F1(q)” and “MSG F2(q)”
denote the MSG before and after the acoustic feedback path change, respec-
tively). In the PFC simulation results shown in Figs. 2.16(a)-(b), the periodic
behaviour of the PM filters is clearly visible from the MSG curves. It can also
be observed that these algorithms behave in a deterministic way, in the sense
that their performance is independent of the instantaneous source signal and
electro-acoustic forward path gain values. The PFC-DM algorithm generally
performs somewhat worse compared to the other two PFC algorithms, while
the PFC-PM algorithm performance can be seen to slightly improve at a higher
sampling frequency. From the NHS simulation results shown in Figs. 2.16(c)-
(d), the howling detection performance of the different NHS algorithms can also
be judged. An instantaneous increase in the MSG curves indeed corresponds
to the activation of a new notch filter (or the adjustment of an existing notch
filter), while an MSG decrease occurs at the acoustic feedback path change.
Ideally, no notch filters should be activated before the gain value 20 log10 K(t)
exceeds the instantaneous MSG curves. However, this ideal behavior is exhib-
ited only by the NHS-1 algorithm in the speech simulation. In all other cases,
some notch filters are activated earlier, which indicates that some tonal source
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signal components are wrongly identified as howling components. The behavior
of the different NHS algorithms in terms of the MSG(t) measure is comparable
for speech source signals, while the NHS-1 and NHS-2 algorithms behave quite
differently from the NHS-3 algorithm in the audio simulation. We should stress
that the high MSG values obtained with the NHS-1 and NHS-2 algorithms in
the audio simulation are in fact caused by an excessive amount of notch fil-
tering that is due to the poor howling detection performance and leads to a
broadband attenuation of the microphone signal. Hence the resulting sound
quality obtained with these methods is extremely poor for audio applications
(see the discussion on the results in Table 2.2 below). Finally, the simulation
results obtained with the AFC algorithms are shown in Figs. 2.16(e)-(f). In
the speech simulation, the MSG performance of the AFC-NI and AFC-PF algo-
rithms appears to be better compared to the AFC-FS algorithm. In the audio
simulation, the AFC-NI algorithm initially outperforms the other algorithms,
however, the AFC-PF algorithm eventually provides the highest MSG value.
All three AFC algorithms appear to react in a relatively robust way to the
acoustic feedback path change in the fourth phase of the simulation, except for
the AFC-NI algorithm in the audio simulation.

The performance measures calculated during the third and fourth simulation
phases, are shown in Tables 2.1 and 2.2 for the speech and audio simulations, re-
spectively. Some general observations can be made concerning the performance
of the different acoustic feedback control methods. The achievable amplifica-
tion in terms of the MSG increase is relatively low for the PFC algorithms, and
highest for the AFC algorithms, which is consistent with the MSG increase
values reported in the literature. It can also be observed that, for the NHS and
AFC algorithms, the MSG increase is larger when the electro-acoustic forward
path gain is raised to a higher value. This effect can be explained by noting
that more notch filters are activated as the gain is increased, while the AFC
convergence is known to benefit from a gain increase since the power ratio of
the feedback signal and source signal then also increases [99],[105]. In terms
of sound quality, the SD performance measure reveals that the perceptual sig-
nal distortion is worse for the PFC algorithms and for the AFC-NI algorithm.
The other AFC algorithms provide a much higher sound quality, and gener-
ally perform somewhat better than the NHS algorithms. As mentioned earlier,
the NHS-1 and NHS-2 algorithms result in an extremely poor sound quality
in audio applications, which is due to the poor howling detection performance.
The reliability of the evaluated algorithms is seen to be slightly worse in the
audio simulation as compared to the speech simulation, especially for the PFC
algorithms.

Within each acoustic feedback control method, the relative performance of the
different algorithms can be compared using the measures in Tables 2.1 and
2.2. Amongst the PFC algorithms, the PFC-PM algorithm should generally be
preferred since it performs best in terms of nearly all performance measures.
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Figure 2.16: Instantaneous MSG vs. time for simulations with speech (left
column) and audio (right column) source signals: (a)-(b) PFC methods (∆K =
3 dB), (c)-(d) NHS methods (∆K = 5 dB), (e)-(f) AFC methods (∆K = 10
dB). Note the scale difference on the vertical axis between (a)-(b), (c)-(d), and
(e)-(f).
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Amongst the NHS algorithms, the NHS-3 algorithm is the only algorithm that
is suited for audio applications, and moreover, in terms of achievable amplifica-
tion and sound quality, this algorithm outperforms the NHS-1 and NHS-2 algo-
rithms for speech applications also. We should note, however, that the NHS-3
howling detection method is computationally more demanding compared to
the other NHS howling detection methods. Amongst the AFC algorithms, the
AFC-NI algorithm yields the highest MSG increase in the speech simulation,
which however comes at the cost of a poor sound quality. The AFC-PF algo-
rithm provides the best sound quality and still allows for a relatively high MSG
increase. In the audio simulation, the performance of the AFC-NI and AFC-FS
algorithms is highly fluctuating, which can be observed from the discrepancy
between the mean and maximum MSG values. The AFC-PF algorithm, on the
other hand, produces a more steady MSG behavior in the audio simulation.
The superior sound quality of the AFC-PF algorithm compared to all other
evaluated algorithms results from the fact that the decorrelation is applied in
the adaptive filtering circuit instead of in the closed signal loop. Note that
the reliability of the AFC algorithms can be further improved by including ad-
ditional features such as adaptation control, foreground/background adaptive
filtering, regularization, and postfiltering, see [99] for an overview.

The feedback-compensated signals obtained in the different simulations are all
available for download10, such that the sound quality can be assessed subjec-
tively by the reader. Also, the source signals and acoustic feedback path im-
pulse responses used in the simulations can be downloaded for benchmarking
purposes.

2.8 Conclusion and Future Challenges

In this paper, we have attempted to provide a comprehensive overview of five
decades of research in acoustic feedback control. The available literature has
been reviewed following a classification of the state-of-the-art solutions into
four categories: phase modulation methods, gain reduction methods, spatial
filtering methods, and room modeling methods. We have also provided an
in-depth treatment of three widely used acoustic feedback control methods,
namely phase-modulating feedback control (PFC), notch-filter-based howling
suppression (NHS), and adaptive feedback cancellation (AFC), thereby dis-
cussing conceptual as well as realization issues. Finally, several different real-
izations of these three methods have been evaluated and compared, in terms
of their achievable amplification, sound quality, and reliability.

From the simulation results presented in this paper, we can conclude that the
AFC method is superior to the PFC and NHS methods in terms of achievable

10ftp://ftp.esat.kuleuven.be/pub/sista/vanwaterschoot/abstracts/08-13.html
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Table 2.1: Performance measures for comparative PFC, NHS, and AFC simulations: speech source signal

PFC NHS AFC

PFC-PM PFC-FS PFC-DM NHS-1 NHS-2 NHS-3 AFC-NI AFC-FS AFC-PF

a
ch

ie
v
a
b
le

a
m

p
li
fi
c
a
ti

o
n ∆K = 3 1.4 1.1 0.6 3.4 4.1 4.1 6.8 1.3 4.5

mean(∆MSG) ∆K = 5 4.3 4.1 4.6 7.8 3.1 6.9

∆K = 10 9.8 6.6 9.6

∆K = 3 4.1 4.1 4.7 5.0 4.7 5.1 9.1 8.6 8.1

max(∆MSG) ∆K = 5 5.3 4.7 5.3 10.5 9.5 9.3

∆K = 10 13.7 11.1 12.8

so
u
n
d

q
u
a
li
ty

∆K = 3 6.2 7.1 7.9 3.3 3.6 3.1 13.8 5.6 2.4

mean(SD) ∆K = 5 4.3 4.5 3.8 14.0 5.6 2.6

∆K = 10 15.1 6.0 3.9

∆K = 3 10.7 11.6 16.2 7.0 7.2 5.5 30.4 8.3 6.6

max(SD) ∆K = 5 20.7 8.2 6.5 30.1 8.4 6.5

∆K = 10 31.7 10.6 16.2

re
li
a
b
il
it
y

∆K = 3 0 0 0 3.6 0 0 0 0 0

HOP (%) ∆K = 5 8.5 0 1.5 0 0 0

∆K = 10 1.3 0 2.6

∆K = 3 N/A N/A N/A 1.09 N/A N/A N/A N/A N/A

TRI (s) ∆K = 5 0.85 N/A 0.22 N/A N/A N/A

∆K = 10 0.19 N/A 0.77
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Table 2.2: Performance measures for comparative PFC, NHS, and AFC simulations: audio source signal

PFC NHS AFC

PFC-PM PFC-FS PFC-DM NHS-1 NHS-2 NHS-3 AFC-NI AFC-FS AFC-PF

a
ch

ie
v
a
b
le

a
m

p
li
fi
c
a
ti

o
n ∆K = 3 1.6 1.0 1.1 6.6 8.1 2.5 -3.2 0.1 3.0

mean(∆MSG) ∆K = 5 6.7 8.1 4.7 -2.7 1.8 4.6

∆K = 10 6.3 5.4 9.0

∆K = 3 3.9 3.9 4.6 8.7 8.7 3.9 15.0 6.1 4.5

max(∆MSG) ∆K = 5 8.8 8.7 6.2 16.0 6.8 6.5

∆K = 10 17.2 8.6 11.3
so

u
n
d

q
u
a
li
ty

∆K = 3 8.9 52.1 9.2 17.9 35.3 3.6 19.0 6.4 3.7

mean(SD) ∆K = 5 17.6 35.3 4.4 19.2 6.5 4.0

∆K = 10 19.9 7.1 5.3

∆K = 3 23.9 72.7 25.4 43.1 45.2 6.3 27.3 10.8 6.1

max(SD) ∆K = 5 42.9 44.8 10.6 27.7 11.1 7.1

∆K = 10 28.2 14.7 19.6

re
li
a
b
il
it
y

∆K = 3 11.1 52.0 19.3 0 0 0 0 2.2 0.5

HOP (%) ∆K = 5 0 0 2.2 0 2.2 0.5

∆K = 10 0.4 4.7 7.2

∆K = 3 0.23 ∞ 0.27 N/A N/A N/A N/A 0.67 0.33

TRI (s) ∆K = 5 N/A N/A 0.67 N/A 0.67 0.33

∆K = 10 0.23 0.46 1.44
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amplification and sound quality, while its reliability is comparable to the reli-
ability of the PFC and NHS methods. The AFC method should preferably be
combined with a decorrelation approach that operates in the adaptive filter-
ing circuit, e.g., using decorrelating prefilters (AFC-PF), since this approach
appears to be beneficial w.r.t. the achievable amplification and sound quality.
We have found the AFC-PF approach to be capable of providing an average
MSG increase of approximately 9 dB, and a maximum MSG increase around
12 dB.

Looking into future research challenges in acousic feedback control, it appears
that there is little room for improvement in the PFC and NHS methods. Since
these methods aim at smoothing the loop gain, a theoretical upper bound for
the achievable MSG increase is given by the ratio of the peak and average
magnitude response of the acoustic feedback path, which was found to be typ-
ically around 10 dB [2]. In practice, however, this upper bound is generally
not achieved since the allowable values of the PFC modulation frequency and
modulation depth are bounded by constraints on the signal distortion, while
the number of active notch filters in the NHS method should be limited to
avoid a broadband attenuation that ultimately affects sound quality. From our
comparative simulation results, we may conclude that the best PFC solution
consists in the use of a sinusoidal PM at low modulation frequency, while the
preferable NHS solution is based on combining the howling detection method
proposed by Osmanovic et al. [27]-[29] with a state-of-the-art biquadratic notch
filter design method, e.g., the pole-zero placement technique recently proposed
in [119].

On the other hand, we believe that since the AFC method appears to produce
promising results, the main challenges for future research in acoustic feedback
control lie in further increasing the AFC reliability and reducing its computa-
tional complexity. In terms of reliability, recent research has pointed out that
so-called hybrid AFC methods, in which AFC is combined with other methods
for acoustic feedback control, are far more robust compared to the traditional
AFC approach. However, we believe that in the existing hybrid AFC methods,
the cooperation between the different methods is still suboptimal. For exam-
ple, in the combined AFC and postfiltering methods proposed in [62],[89],[90],
the postfilter design is solely based on the feedback-compensated signal spec-
trum, while it is known from AEC that the joint design of a cancellation filter
and a postfilter generally results in a better performance [152],[153]. A related
issue is the combination of AFC with a gain reduction method: in [70],[102],
the AFC and ANF filters are adapted independently, while in the combined
AFC and AEQ approach proposed in [62] and in the combined AFC and NHS
approach proposed in [99], the AEQ/NHS design is based on the most recent
AFC estimate. Similarly to the joint AFC and postfilter design, it can be
expected that a joint estimation of the AFC and gain reduction filter coeffi-
cients is to be preferred over a decoupled estimation. Finally, a similar remark
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can be made on the joint design of an AFC and a spatial filtering method,
which would probably outperform the state-of-the-art approach of AFC com-
bined with a fixed beamformer [70] or an adaptive beamformer steered by the
feedback-compensated signal [62].

The greatest challenge in AFC, however, consists in reducing the computa-
tional complexity. Since typically an already cheap NLMS-type algorithm is
used, a significant complexity reduction in the AFC adaptive filtering algorithm
cannot be expected. The fundamental problem lies in the fact that in AFC,
the acoustic feedback path is traditionally modeled using its impulse response,
which typically has a large number of coefficients. This is especially so when a
high sampling frequency is applied (e.g., in audio applications). The impulse
response is then more densely sampled and in addition more adaptive filter
updates have to be performed per second. However, from a stability point
of view, it may suffice to only model the peaks in the acoustic feedback path
magnitude response instead of the complete impulse response. This may be
achieved with frequency domain adaptive filtering (FDAF). However, since the
frequency domain models currently used in FDAF have a fixed and uniform
frequency resolution, the required FDAF filter order should still be high to
guarantee that the magnitude peaks are modeled with sufficient accuracy, see,
e.g., the FDAF experimental results in [99]. Another possibility for reducing
the acoustic feedback path model complexity consists in using a time domain
model different from the FIR model. Since the peaks in the acoustic feedback
path magnitude response can be modeled as narrowband resonances, an IIR (or
pole-zero) model seems to be an appropriate choice. The use of such models in
room acoustics has both been recommended [128],[157],[158] and discouraged
[159],[160], however, no results on the use of IIR models in AFC are available.
The appeal of using such models in room acoustic applications is related to the
conjecture that the IIR model denominator coefficients can in fact be assumed
time-invariant in a certain acoustic environment, regardless of the loudspeaker
and microphone positions [128]. A related model, which also exploits the as-
sumption of time-invariant room acoustic resonance frequencies, is based on the
use of orthogonal basis functions such as the discrete-time Laguerre or Kautz
functions, which have been evaluated in an AEC context in [161],[162].

Another great challenge in acoustic feedback control, and in AFC in particu-
lar, is to generalize the methods proposed in a single-channel context to multi-
channel systems. Since the number of acoustic feedback paths in a multi-
channel system equals the number of loudspeakers times the number of micro-
phones, the AFC computational complexity can be expected to increase very
quickly in a multi-channel context. Again, the use of IIR models or models
based on orthogonal basis functions may bring some relief, since, following the
arguments in [128],[162], these models could then share a common denominator.
Another problem arising in multi-channel AFC is related to the identifiability
of the acoustic feedback path models in case the loudspeaker signals are corre-
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lated. A similar problem occurs in multi-channel AEC, and has received quite
some attention in the literature, see, e.g., [147],[163].
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Abstract

The performance of an acoustic echo canceller may be severely degraded by
the presence of a near-end signal. In such a double-talk situation, the variance
of the echo path estimate typically increases, resulting in slow convergence
or even divergence of the adaptive filter. This problem is usually tackled by
equipping the echo canceller with a double-talk detector that freezes adapta-
tion during near-end activity. Nevertheless there is a need for more robust
adaptive algorithms since the adaptive filter’s convergence may be affected
considerably in the time interval needed to detect double-talk. Moreover, in
some applications, near-end noise may be continuously present and then the
use of a double-talk detector becomes futile. Robustness to double-talk may
be established by taking into account the near-end signal characteristics, which
are however unknown and time-varying. In this paper we show how concurrent
estimation of the echo path and an autoregressive near-end signal model can
be performed using prediction error identification techniques. We develop a
general recursive prediction error identification algorithm and compare it to
three existing algorithms from adaptive feedback cancellation. The potential
benefit of the algorithms in a double-talk situation is illustrated by means of
computer simulations. It appears that especially in the stochastic gradient case
a huge improvement in convergence behaviour can be obtained.

3.1 Introduction

Acoustic echo cancellation (AEC) has been a popular research topic in acoustic
signal processing, motivated mainly by the increasing demand for hands-free
speech communication. A general AEC scenario is shown in Fig. 3.1. A
speech signal u(t) from the far-end side is broadcast in an acoustic enclosure
(the “room”) by means of a loudspeaker. A microphone is present in the
room for recording a local signal v(t) (the “near-end signal”) which is to be
transmitted back to the far-end side. An acoustic echo path exists between
the loudspeaker and the microphone such that the recorded microphone signal
y(t) = x(t)+v(t) contains an undesired echo component x(t) in addition to the
near-end signal component v(t). If the echo path transfer function is modelled
as a finite impulse response (FIR) filter F (q, t), then the echo component can
be considered as a filtered version of the loudspeaker signal: x(t) = F (q, t)u(t).
Here q denotes the time shift operator, e.g., q−ku(t) = u(t − k). The main
objective in AEC is to identify the unknown room impulse response (RIR)
F (q, t) and hence to subtract an estimate of the echo component from the
microphone signal. In this way, an echo-compensated signal d(t) = y(t) −
F̂ (q, t)u(t) is sent to the far-end side, with F̂ (q, t) an estimate of F (q, t).

Since F (q, t) may be time-varying (e.g., due to people moving around the room),
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Figure 3.1: AEC scenario with autoregressive modelling of the near-end signal.

an adaptive algorithm is usually applied for the estimation of the RIR. It is
well known that the convergence speed and hence the tracking capabilities of
standard adaptive algorithms [like recursive least squares (RLS), normalized
least mean squares (NLMS), and the affine projection algorithm (APA)] may
decrease severely when a near-end signal is present (“double-talk” periods).
Therefore, efficient double-talk detectors (DTDs) have been developed, which
are used to slow down or switch off the adaptation during double-talk periods.
Typically, in a DTD, some decision statistic is calculated using the available
signals and signal estimates, and compared to a treshold for deciding whether
or not a double-talk situation occurs. Since the popular Geigel DTD, which
was originally developed for line echo cancellation (LEC) [1], does not always
perform satisfactorily in an AEC application, several alternative DTD algo-
rithms have been proposed [2]-[5]. Probably the most widespread DTD for
AEC is based on the cross-correlation method described in [2],[3]. Recently
also some DTD algorithms have been developed that are specifically suited for
subband [6] and stereo AEC [7]. It has been noted however that at the onset
of a double-talk period, the adaptive algorithm may diverge considerably be-
fore double-talk is detected. Hence it is desirable to improve the robustness
of the adaptive algorithm to compensate for the detection lag as well as for
other DTD imperfections. In [8] the robustness of several adaptive algorithms
w.r.t. so-called near-end noise bursts in LEC is improved by introducing a
scaled nonlinearity in the LEC cost function. This method, inspired by the
theory of robust statistics [9], is parametrized by a scale factor that governs
the trade-off between robustness and convergence rate. When combined with a
cross-correlation-based DTD, the method shows improved performance also in
AEC double-talk situations, as compared to the standard adaptive algorithms
combined with the same DTD [10, Ch. 6], [11]. Recently, the robust statis-
tics approach has also proven successful in adaptive beamforming applications
[12]. However, the increase in robustness comes at the expense of a decreased
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convergence rate when no double-talk is present. Moreover the quality of the
scale factor estimate depends heavily on the DTD performance.

In a normal telephone conversation, a double-talk situation will occur during
approximately 20% of the time [13]. However, in some AEC scenarios, near-end
noise will be continuously present and then the use of a DTD becomes futile.
This may be the case for example in a noisy teleconferencing application, in an
automatic gain adjustment system equipped with an echo canceller, or in adap-
tive feedback cancellation (AFC) [14],[15]. These applications have motivated
the design of robust adaptive algorithms that allow for continuous adaptation
during double-talk. A first class of these double-talk-robust algorithms is based
on the interplay between the echo canceller and a postfilter that is added to
suppress the residual echo which remains after cancellation [16]. Such a joint
echo canceller and postfilter system may be extended even further with a micro-
phone array [17] or a blind signal separation algorithm [18]. A second approach
to double-talk-robust adaptation is to switch to a different adaptation strategy
during double-talk. In [19] a so-called maximum-length correlation estimate
replaces the stochastic gradient RIR estimate whenever a double-talk situation
occurs. In [20],[21] an adaptive cross-spectral technique is applied instead of a
standard adaptive algorithm, and it is claimed to be insensitive to double-talk.
Finally, a third method to obtain double-talk robustness is to remove some
correlation in the microphone signal or echo-compensated signal. In [22] an
attempt is made to extract the pitch of the residual echo componenent in the
echo-compensated signal, whereas in [23] the microphone signal is processed by
an adaptive prediction filter to remove the near-end signal correlation during
double-talk.

In this paper we aim at developing a recursive identification algorithm that be-
haves in a robust way in a continuous double-talk situation (without a DTD)
as well as in a bursting double-talk scenario (with, or even without a DTD). In
contrast to the method described in [10, Ch. 6], we investigate how robustness
may be improved by linear modifications to the standard adaptive algorithms.
In our classification of continuously adapting double-talk-robust algorithms,
the proposed algorithm fits in the third class described above, since it involves
prediction of the near-end signal component in the microphone signal. From
linear estimation theory [24], we know that the best (i.e., minimum-variance)
linear unbiased estimator (BLUE) for an unknown system depends on the char-
acteristics of the noise acting upon the system. In the AEC context, it is the
near-end signal that acts as a noise signal to the RIR identification. Therefore
we expect that by using knowledge of the near-end signal characteristics, the
convergence properties of the RIR identification algorithm can be improved.
Moreover, in contrast to many existing double-talk-robust algorithms, the in-
crease in robustness using the proposed method does not come at the expense
of slower convergence in a single-talk situation. However, the near-end signal
characteristics are typically unknown and time-varying. Therefore they have
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to be estimated concurrently with the unknown RIR. Inspired by prediction
error identification theory [25], we propose a new recursive prediction error
(RPE) identification algorithm for concurrent estimation of the RIR and of an
autoregressive model of the near-end signal.

The problem of concurrently estimating the RIR and the near-end signal char-
acteristics has also been studied in the context of adaptive feedback cancellation
(AFC) [14],[15],[26]. It appears that several algorithms proposed for AFC can
actually be derived starting from the proposed RPE algorithm. We will explore
three algorithms developed for AFC, namely the two-channel adaptive filtering
(2ch-AF) algorithm and the prediction-error-method-based adaptive filtering
(PEM-AF) algorithm, both developed for hearing aid applications [14], and
finally the so-called PEM-AFROW algorithm, proposed in [15] as a PEM-AF
variant with only row operations on the loudspeaker data matrix. In contrast
to the RPE algorithm, the first two algorithms both rely on the assumption
that the near-end signal characteristics do not change significantly on a time
scale comparable to the echo path length. As pointed out in [26] this assump-
tion does not hold for room acoustic applications, where the RIR length may
be several orders of magnitude larger than the period over which a typical
audio signal can be considered stationary. To tackle this particular problem,
the PEM-AF algorithm has been modified, resulting in the PEM-AFROW al-
gorithm [15] for room acoustic applications. Whereas in the RPE algorithm
the autoregressive near-end signal model is identified recursively, the near-end
signal model identification is performed non-recursively and in a frame-based
manner in the PEM-AFROW algorithm. The frame-based representation is
well suited for speech signals, but less appropriate for near-end signals that do
not exhibit short-term stationary behaviour such as music or babble noise.

The outline of the paper is as follows. We start by defining the data model and
reviewing some results from linear estimation theory in Section 3.2, which have
motivated the work described in the rest of the paper. In Section 3.3 we de-
scribe four prediction error identification algorithms for concurrent estimation
of a RIR and an autoregressive near-end signal model: the new RPE algorithm
and the PEM-AF, PEM-AFROW, and 2ch-AF algorithms from adaptive feed-
back cancellation. Section 3.4 deals with some implementation issues and we
compare the computational complexity of the prediction error identification
algorithms with RLS and NLMS complexity. In Section 3.5, simulation results
are shown in which the convergence properties of the proposed algorithms are
compared with those of the standard RLS and NLMS algorithms, as well as
the double-talk-robust algorithm described in [10, Ch. 6]. Finally, Section 3.6
concludes the paper.
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3.2 Linear Estimation Background

We first review some results from linear estimation theory [24] to indicate how
the variance of a RIR estimator can be decreased. Let us assume that a data
record {u(k), y(k)}t

k=1 of microphone and loudspeaker samples is available,
as well as initial conditions {u(k)}0

k=1−nF −nA
and {y(k)}0

k=1−nA
(with model

orders nF and nA to be defined later on). For now we also assume that F (q, t) is
time-invariant over the observed time interval so no data windowing is applied
(we will consider time-varying RIR’s when we derive a recursive estimation
procedure in Section 3.3). The data model can then be written as

y = Uf + v, (3.1)

where the data matrices are defined as follows:

U =








u(t) u(t − 1) . . . u(t − nF )
u(t − 1) u(t − 2) . . . u(t − nF − 1)

...
...

. . .
...

u(1) u(0) . . . u(1 − nF )








, (3.2)

y =
[
y(t) y(t − 1) . . . y(1)

]T
, (3.3)

v =
[
v(t) v(t − 1) . . . v(1)

]T
, (3.4)

and

f =
[
f0 f1 . . . fnF

]T
(3.5)

is the (nF +1)×1 parameter vector containing the true coefficients of F (q, t) that
have to be estimated. The loudspeaker signal Hankel matrix U is considered
to be deterministic, whereas the near-end signal vector v and hence also the
microphone signal vector y are random vectors. Note that no additional term
is added for representing possible background noise, since we assume that all
near-end disturbances are represented together with the useful near-end signal
in v.

Typically in AEC, an estimator for the RIR F (q, t) is based on an ordinary
least squares (LS) criterion

min
f̂

VLS(t, f̂) = min
f̂

(y − Uf̂ )T (y − Uf̂) (3.6)

which leads to the well-known estimator

f̂LS = (UT U)−1UT y. (3.7)

The LS estimator f̂LS is unbiased, i.e., E{f̂LS} = f (with E the expectation
operator), if the near-end signal v(t) is uncorrelated with the loudspeaker signal
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u(t), i.e., if

E{UTv} = 0(nF +1)×1. (3.8)

In AEC, this means that the signal d(t) sent to the far-end side is not reflected
back to the near-end side due to an acoustic echo path in the far-end room. In
the sequel we will assume (3.8) to hold. Except when the near-end signal v(t)
is a white noise signal, the least squares estimator (3.7) is suboptimal. Indeed,
a linear unbiased estimator with a smaller variance can be obtained by taking
into account the characteristics of the near-end signal.

Minimizing the variance E(̂f −E{f̂})(̂f −E{f̂})T of a linear estimator f̂ under
an unbiasedness constraint yields the best linear unbiased estimator (BLUE),

f̂BLUE = (UT R−1U)−1UT R−1y, (3.9)

which depends on the near-end signal covariance matrix R, defined as

R , E
{
(v − E{v})(v − E{v})T

}
= E{vvT }, (3.10)

which is usually unknown. Nevertheless, this estimator will be of great impor-
tance in the sequel since in Section 3.3.2 we will derive a recursive algorithm
with which the RIR and the near-end signal characteristics can be estimated
concurrently.

3.3 Prediction Error Identification Algorithms

Obviously, the BLUE as presented in Section 3.2 is unrealizable in an AEC
scenario because the near-end signal characteristics (and hence R−1) are un-
known. Moreover the estimators from the previous section are non-recursive
and do not allow for tracking of time-varying RIRs. In this section, we will de-
rive a recursive algorithm, which incorporates a RIR estimator that approaches
the BLUE, by concurrently estimating the near-end signal characteristics.

We will start this section by establishing a formal link between the BLUE and
the prediction error (PE) estimate of the RIR F (q, t). We will then propose a
new recursive prediction error (RPE) identification algorithm for concurrent es-
timation of the RIR and an autoregressive model of the near-end signal. Finally,
we will review three prediction error identification algorithms (the PEM-AF,
PEM-AFROW, and 2ch-AF algorithms), that were proposed in an adaptive
feedback cancellation (AFC) framework, and show how they can be applied to
the AEC problem.
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3.3.1 Prediction Error Criterion

Throughout this article, we will employ a particular model structure to the
system under study:

y(t) = F (q, t)u(t) +
1

A(q, t)
e(t) (3.11)

with F (q, t) and A(q, t) representing finite-order polynomials in q with possibly
time-varying coefficients:

F (q, t) = f0(t) + f1(t)q
−1 + . . . + fnF (t)q−nF (3.12)

A(q, t) = 1 + a1(t)q
−1 + . . . + anA(t)q−nA . (3.13)

The above choice of model structure will allow us to derive a truly recursive
prediction error identification algorithm, which would not have been possible
if either the room model were an infinite impulse response (IIR) filter or the
near-end signal model would contain a moving average (MA) part (see Section
3.3.3). The signal e(t) represents the excitation signal generating the near-
end signal, and is assumed to be a white noise signal with a time-dependent
variance σ2

t :

E{e(t)e(t − k)} = σ2
t δ(k). (3.14)

The best one-step-ahead predictor for y(t) is given by [27, Ch. 7]

ŷ[t|θ(t)] = [1 − A(q, t)]y(t) + A(q, t)F (q, t)u(t), (3.15)

which depends on the unknown coefficients of the polynomials F (q, t) and
A(q, t) that are collected in the (nF + nA + 1) × 1 parameter vector θ(t),
defined as

θ(t) ,

[
f(t)
a(t)

]

(3.16)

with

f(t) ,
[
f0(t) f1(t) . . . fnF (t)

]T
, (3.17)

a(t) ,
[
a1(t) a2(t) . . . anA(t)

]T
. (3.18)

The prediction error, defined as

ε[t,θ(t)] , y(t) − ŷ[t|θ(t)], (3.19)

can be calculated with (3.15) as

ε[t,θ(t)] = A(q, t)y(t) − A(q, t)F (q, t)u(t) (3.20)

= A(q, t)[y(t) − F (q, t)u(t)]. (3.21)
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Hence a prediction error criterion for estimating θ(t) is given by [27, Ch. 7]

min
θ̂(t)

VPE[t, θ̂(t)] = min
θ̂(t)

1

2
E
{
ε2[t, θ̂(t)]

}
, (3.22)

with θ̂(t) denoting an estimate of θ(t). When the expectation is replaced by
a summation over the entire time interval on which data are available and
appropriate weighting is included, the criterion can be rewritten, using (3.21),
as

min
θ̂(t)

1

2N

t∑

k=1

λt−k

σ̂2
k

{
Â(q, t)[y(k) − F̂ (q, t)u(k)]

}2
, (3.23)

where Â(q, t) and F̂ (q, t) represent estimates of A(q, t) and F (q, t), respectively,
and the weighting factors σ̂−2

k and λt−k are defined as follows. The weighting
with the inverse of the estimated prediction error variance σ̂2

k accounts for
energy variations in the near-end excitation signal e(k). On the other hand, an
exponential forgetting profile with forgetting factor λ is included to discount
old data and hence to allow for tracking of F (q, t) and A(q, t). The effective
window length N = 1/(1 − λ) is then determined by the forgetting factor λ.
The rest of this section will be devoted to the recursive minimization of the
prediction error criterion (3.23).

A formal relationship between the BLUE and the PE estimate of the room im-
pulse response F (q, t) can be derived only if the near-end signal characteristics
are assumed to be known. In [28] it was shown that minimization of the predic-
tion error criterion (3.23) with respect to f̂(t) only, and with λ = 1, yields the
best (minimum-variance) linear unbiased estimate of f(t) if the near-end signal
v(k) can at each time instant k ∈ [1, t] be modeled as an AR process of order
nA, if the prefilter Â(q, k) contains at each time instant the true AR coefficients
ai(k), i = 1, . . . , nA, and if the weight σ̂−2

k is at each time instant equal to the
inverse variance of the near-end excitation signal e(k), i.e., σ̂2

k = σ2
k.

3.3.2 Recursive Prediction Error (RPE) Identification Al-
gorithm

We now derive a recursive prediction error (RPE) identification algorithm for
estimating the parameter vector θ(t) defined in (3.16), which contains the co-
efficients of F (q, t) and A(q, t). A general update equation for recursive mini-
mization of the prediction error criterion in (3.22) with respect to θ(t) is given
by [25, Ch. 3]

θ̂(t) = θ̂(t − 1) +
N

σ̂2
t

γ(t)R−1(t)ψ[t, θ̂(t − 1)]ε[t, θ̂(t − 1)], (3.24)

where the terms are defined as follows. In the update term on the right hand
side of (3.24), R(t) should approximate the Hessian ∂2/∂θ2(t)VPE[t,θ(t)] of the
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criterion (3.22), evaluated in θ(t) = θ̂(t − 1). The (nF + nA + 1) × 1 gradient
vector ψ[t,θ(t)] is defined as

ψ[t,θ(t)] , − ∂

∂θ(t)
ε[t,θ(t)] =

∂

∂θ(t)
ŷ[t|θ(t)], (3.25)

where the second equality is obtained by use of (3.19), in which the term
y(t) is independent of θ(t). The gain sequence γ(t) depends on the type of
data windowing that is applied. In the sequel, we will choose γ(t) = 1/N to
compensate for the factor N in (3.24), consistent with the definition of R(t) in
(3.32) below.

As pointed out in [26], it is highly desirable to identify F (q, t) and A(q, t) on
data windows of different sizes. The RIR F (q, t) will typically be a high-order
polynomial requiring a large data window for accurate estimation. On the other
hand, the near-end signal AR polynomial A(q, t) may be highly time-varying,
hence a small data window is desirable for estimation of the AR coefficients. It
will be shown below that such a decoupling of the data windows for estimating
F (q, t) and A(q, t) can be achieved by block-diagonalizing the matrix R(t).
First however we explore the calculation of the gradient vector ψ[t,θ(t)].

Calculation of Gradient Vector ψ[t,θ(t)]

The gradient vector ψ[t, θ̂(t− 1)], as it appears in (3.24), can be calculated by
differentiating the one-step-ahead predictor (3.15) with respect to the coeffi-
cients of F (q, t) and A(q, t), and replacing A(q, t) and F (q, t) by their estimates
Â(q, t − 1) and F̂ (q, t − 1) at time t − 1, i.e.,

ψ[t, θ̂(t − 1)] =














Â(q, t − 1)u(t)
...

Â(q, t − 1)u(t − nF )

F̂ (q, t − 1)u(t − 1) − y(t − 1)
...

F̂ (q, t − 1)u(t − nA) − y(t − nA)














, (3.26)

or, in partitioned matrix notation,

ψ[t, θ̂(t − 1)] ,

[
ψF [t, â(t − 1)]

ψA[t, f̂(t − 1)]

]

(3.27)

=

[
0(nF +1)×(nF +1) U(t)

UT (t) 0nA×nA

] [

f̂ (t − 1)
â(t − 1)

]

+

[
u(t)
−y(t)

]

(3.28)

with

y(t) ,
[
y(t − 1) . . . y(t − nA)

]T

nA×1
, (3.29)
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u(t) ,
[
u(t) . . . u(t − nF )

]T

(nF +1)×1
, (3.30)

U(t) ,






u(t − 1) . . . u(t − nA)
...

. . .
...

u(t − nF − 1) . . . u(t − nF − nA)






(nF +1)×nA

(3.31)

and f̂(t − 1) and â(t − 1) denoting the most recent estimates of parameter
vectors f(t) and a(t) defined in (3.17) and (3.18), respectively.

Block-Diagonal Approximate Gauss-Newton Update of R(t)

The matrix R(t) determines the search direction of the recursive identification
algorithm (3.24). It should be chosen positive definite and ideally, i.e., to
obtain a Newton update direction, equal to the Hessian of the prediction error
criterion (3.22), evaluated at the most recent parameter vector estimate. A
common approximation is to retain only the term made up of gradient vector
outer products in the calculation of the Hessian, which results in a Gauss-
Newton update instead of a Newton update [25, Ch. 3]. Defining

R(t) , N

{
∂2

∂θ2(t)
VPE[t,θ(t)]

}∣
∣
∣
∣
θ(t)=θ̂(t−1)

, (3.32)

a Gauss-Newton update equation for R(t) can be obtained:

R(t) = λR(t − 1) +

{
1

σ̂2
t

ψ[t,θ(t)]ψT [t,θ(t)]

}∣
∣
∣
∣
θ(t)=θ̂(t−1)

. (3.33)

As suggested in [14], decoupling of the data windows on which f(t) and a(t) are
estimated can be achieved by forcing the off-diagonal blocks of R(t) to zero and
introducing two different exponential forgetting factors λF and λA, resulting
in
[

RF (t) 0(nF +1)×nA

0nA×(nF +1) RA(t)

]

=

[
λF RF (t − 1) 0(nF +1)×nA

0nA×(nF +1) λARA(t − 1)

]

+
1

σ̂2
t

[
ψF [t, â(t − 1)]ψT

F [t, â(t − 1)] 0(nF +1)×nA

0nA×(nF +1) ψA[t, f̂(t − 1)]ψT
A[t, f̂(t − 1)]

]

. (3.34)

When applied to the update equation (3.24), this block-diagonalization of R(t)
results in an approximate Gauss-Newton update direction for θ̂(t). The block-
diagonalization was also suggested earlier for the recursive generalized least
squares (RGLS) algorithm described in [29] and [30], which is a recursive im-
plementation of the GLS estimator proposed in [31]. Setting the off-diagonal
blocks to zero may also be justified by noting that if f̂ (t− 1) and â(t− 1) have
converged to their true values f(t) and a(t), respectively, then

E
{

ψF [t, a(t)]ψT
A[t, f(t)]

}

= E

{

ψF [t, a(t)]
[
v(t − 1) . . . v(t − nA)

]
}



3.3. Prediction Error Identification Algorithms 115

= 0(nF +1)×nA
, (3.35)

since ψF [t, a(t)] depends only on the loudspeaker signal u(t), which was as-
sumed to be uncorrelated with the near-end signal v(t) in (3.8), and

E
{

ε[t,θ(t)]U(t)
}

= E
{

e(t)U(t)
}

= 0(nF +1)×nA
, (3.36)

since e(t) is a white noise signal uncorrelated with the loudspeaker signal u(t).

Finally, note that the block-diagonal approximation (3.34) of R(t) is positive
semi-definite by construction and will hence always lead to a recursive estimator
θ̂(t) that converges to a local minimum of the prediction error criterion (3.23),
but not necessarily to the global minimum. The proposed recursive prediction
error (RPE) identification algorithm is summarized in Table 3.1, making use
of (3.21), (3.24), (3.28), and (3.34), and explicitly decoupling all expressions
for estimation of f(t) and a(t). Note that the prediction error variance σ̂2

t is
estimated by means of a single update equation and on the same data win-
dow as the AR polynomial A(q, t), since both depend on the near-end signal
characteristics.

3.3.3 Prediction Error Identification Algorithms from
AFC

Prediction-Error-Method-Based Adaptive Filtering (PEM-AF) Al-
gorithm

A common approximation in recursive system identification [25, Ch. 3] consists
of replacing the estimates Â(q, t − 1) and F̂ (q, t − 1) in (3.26) by previously
obtained estimates, e.g.,

ψ(t) =














Â(q, t − 1)u(t)
...

Â(q, t − 1 − nF )u(t − nF )

F̂ (q, t − 2)u(t − 1) − y(t − 1)
...

F̂ (q, t − 1 − nA)u(t − nA) − y(t − nA)














. (3.37)

The motivation behind this approximation is that in a generic recursive identi-
fication scenario, the system model is an IIR filter and the noise model contains
a moving average (MA) part:

y(t) =
F (q, t)

D(q, t)
u(t) +

C(q, t)

A(q, t)
e(t). (3.38)

If either one of the polynomials D(q, t) and C(q, t) is included in the model
structure, the one-step-ahead predictor ŷ[t|θ(t)] and hence the gradient vector
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Table 3.1: Summary of the RPE algorithm

RPE - Recursive prediction error identification algorithm

f̂(t) = f̂(t − 1) +
1

σ̂2
t

R−1
F (t)ψF [t, â(t − 1)]ε[t, θ̂(t − 1)]

â(t) = â(t − 1) +
1

σ̂2
t

R−1
A (t)ψA[t, f̂(t − 1)]ε[t, θ̂(t − 1)]

ε[t, θ̂(t − 1)] =
[

1 âT (t − 1)
]
([

y(t)

y(t)

]

−
[

uT (t)

UT (t)

]

f̂ (t − 1)

)

σ̂2
t = λAσ̂2

t−1 + (1 − λA)ε2[t, θ̂(t − 1)]

ψF [t, â(t − 1)] =
[

u(t) U(t)
]
[

1

â(t − 1)

]

ψA[t, f̂ (t − 1)] = UT (t)̂f(t − 1) − y(t)

RF (t) = λF RF (t − 1) +
1

σ̂2
t

ψF [t, â(t − 1)]ψT
F [t, â(t − 1)]

RA(t) = λARA(t − 1) +
1

σ̂2
t

ψA[t, f̂(t − 1)]ψT
A[t, f̂ (t − 1)]

Refer to (3.16), (3.17), (3.18), (3.29), (3.30), and (3.31) for definitions of
the parameter vectors and data matrices.
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ψ[t,θ(t)] will be made up of data filtered by IIR filters. An exact calculation
of ψ[t, θ̂(t− 1)] as in (3.26) would then require the complete data record to be
filtered with the most recent estimates D̂(q, t−1) and/or Ĉ(q, t−1), and hence
would not allow for a truly recursive identification algorithm. However, this
problem does not occur for the model structure (3.11) under study, as pointed
out earlier in [32].

Nevertheless, even with the model structure (3.11), the approximation in (3.37)
is appealing from a complexity point of view. As pointed out in [14], using
(3.37) instead of (3.26) saves nF + nA − 1 filtering operations in each recur-
sion step, leading to a cheaper, so-called PEM-AF algorithm. However, this
approximation is fully justified only when

Â(q, t − 1) = Â(q, t − 1 − i), i ∈ [0, nF ], (3.39)
{

F̂ (q, t − 1) = F̂ (q, t − 1 − j), j ∈ [1, nA]. (3.40)

As mentioned before, in an AEC scenario, F (q, t) will typically be of very high
order and so A(q, t) may be highly time-varying over a data window of length
nF . Hence the assumption in (3.39) will not hold for the current application,
in contrast to the hearing aid AFC application considered in [14]. Also, in the
case of a time-varying RIR, the assumption in (3.40) may not hold.

Prediction-Error-Method-Based Adaptive Filtering Algorithm with
Row Operations (PEM-AFROW)

Instead of identifying the near-end signal AR coefficients recursively, as in
the RPE and PEM-AF algorithms described above, the AR model can also be
identified non-recursively on a batch of loudspeaker and microphone data. This
may be interesting from a computational point of view if the near-end signal
exhibits short-term stationary behaviour, because then the AR model does not
have to be recalculated at each time instant. This is the idea behind the PEM-
AFROW algorithm, which was originally developed in an AFC framework [15]
and applied to a continuous double-talk AEC scenario in [28]. This algorithm,
like the RPE algorithm, performs only row operations on the loudspeaker data
matrix, hence the name PEM-AFROW. The PEM-AFROW algorithm is best
suited for applications involving a near-end speech signal, since speech exhibits
short-term stationary behaviour.

Two-Channel Adaptive Filtering (2ch-AF) Algorithm

All three prediction error identification algorithms described above aim at di-
rect minimization of the criterion in (3.23), which is non-linear in the coeffi-
cients of F (q, t) and A(q, t); hence they may suffer from convergence to local
minima. In the two-channel adaptive filtering (2ch-AF) algorithm proposed in
[14], it is noted that expression (3.20) for the prediction error can be written
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as

ε[t,θ2ch(t)] = A(q, t)y(t) + B(q, t)u(t) (3.41)

with

B(q, t) , −A(q, t)F (q, t) (3.42)

and

θ2ch(t) ,
[
b0(t) . . . bnB(t) a1(t) . . . anA(t)

]T
, (3.43)

with nB = nA +nF . This interpretation leads to a criterion that is quadratic in
the parameter vector θ2ch(t), so that an ordinary recursive least squares (RLS)
algorithm can be applied.

The main drawback of the 2ch-AF algorithm is that the coefficients of A(q, t)
and F (q, t), which are combined into B(q, t), are estimated on the same data
window. As pointed out in [26] for the AFC case, this makes the algorithm,
which was originally derived for hearing aid applications, unsuitable when deal-
ing with room acoustics. Another drawback is that F (q, t) can only be obtained
by deconvolution of A(q, t) and B(q, t), which adds a complexity of O(n2

F ) to
the algorithm. Finally, we note that the interpretation of the prediction error
as in (3.41)-(3.42) was made earlier in [33] as an alternative to the generalized
least squares (GLS) algorithm proposed in [31].

3.4 Implementation and Complexity

3.4.1 Implementation Issues

The RPE, PEM-AF, and PEM-AFROW algorithms described in Section 3.3
are implemented both with a Gauss-Newton update and a cheaper stochastic
gradient update of the RIR estimate f̂(t). The same is done for the update of
the coefficients of B(q, t) in the 2ch-AF algorithm. The estimate â(t) is always
updated according to the Gauss-Newton method in the RPE, PEM-AF, and
2ch-AF algorithms. In the PEM-AFROW algorithm, â(t) and σ̂2

t are calculated
using the Levinson-Durbin recursion [34, Ch. 6].

Gauss-Newton Algorithms

For computational efficiency, all Gauss-Newton updates are performed by using
the Kalman gain vectors and applying the matrix inversion lemma [34, Ch.
13]. Typically, the inverse correlation matrix will be initialized as R−1

F (0) =

106 · InF +1 and the RIR estimate as f̂(0) = 0(nF +1)×1.
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Stochastic Gradient Algorithms

The stochastic gradient implementation of the algorithms features a normal-
ization with estimates of both the loudspeaker signal variance (as in the NLMS
algorithm) and the near-end signal variance (as in the algorithms described
in Section 3.3). Simulations have shown that the sum method proposed in
[35] for combining these two normalization factors yields the best convergence
behaviour. As an example, a stochastic gradient implementation of the RPE
update equations in Table 3.1 can be formulated as

f̂ (t) = f̂(t − 1)

+µF
ψF [t, â(t − 1)]ε[t, θ̂(t − 1)]

δF + (nF + 1)σ̂2
t +ψT

F [t, â(t − 1)]ψF [t, â(t − 1)]
(3.44)

where µF denotes the step size and δF the regularization parameter. Note
that the weighted sum method proposed in [35] was applied in [36] to improve
double-talk-robustness in an acoustic echo canceller.

Choice of Near-End Model Order

Simulations have shown that the choice of the near-end model order nA has
a profound influence on the performance of the prediction error identification
algorithms described in Section 3.3. The algorithms were derived under a
sufficient-order assumption, yet in practice this assumption will not be ful-
filled. Due to the non-stationary nature of speech and audio signals, the true
model order is not well-defined, let alone that it would be known to the user.
Moreover, the larger nA is chosen, the larger the number of local minima in
the prediction error cost function (3.23).

We have evaluated four different choices of nA by computer simulations at
fs = 8 kHz: a high-order model (nA = 55) to capture all near-end signal
dynamics, a low-order model (nA = 12) as used for formant prediction in speech
coding, a low-order model (nA = 12) cascaded with a 3-tap pitch predictor as
used in speech coding [37], and a very-low-order model (nA = 1) as used in
the AFC algorithm proposed in [38]. It appears that the very-low-order model
(nA = 1) yields the best performance in all scenarios that were tested. In other
words, even if the near-end signal component v(t) contained in the microphone
signal y(t) is undermodeled, convergence speed is gained due to the more convex
shape of the prediction error cost function when nA is small.

3.4.2 Computational Complexity

To compare the computational complexity of the prediction error identification
algorithms described in Section 3.3 with the complexity of standard RLS and
NLMS adaptive algorithms, we show the number of floating point operations
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Table 3.2: Complexity Comparison by Number of FLOPS per Recursion

Algorithm Number of FLOPS per recursion

Gauss-Newton algorithms

RLS 5L2
F + 5LF 5005000

RPE 5L2
F + (4nA + 5)LF + 5n2

A + 5nA + 6 5009016

PEM-AF 5L2
F + 5LF + 5n2

A + 7nA + 6 5005018

PEM-AFROW 5L2
F +

(

5 +
2M + 2nA + 1

P

)

LF +
1

P
n2

A +
(

4 +
2M + 2

P

)

nA +
2M

P
+

P − 1

P
+ 2 5007000

2ch-AF 6L2
F + (20nA + 4)LF + 20n2

A + 10nA + 5 6024035

Stochastic gradient algorithms

NLMS 6LF + 2 6002

RPE (4nA + 6)LF + 5n2
A + 5nA + 10 10020

PEM-AF 6LF + 5n2
A + 7nA + 10 6022

PEM-AFROW
(

6 +
2M + 2nA + 1

P

)

LF +
1

P
n2

A +
(

4 +
2M + 2

P

)

nA +
2M

P
+

P − 1

P
+ 6 8046

2ch-AF L2
F + 5LF + 5n2

A + 11nA + 10 1005026
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(FLOPS) per recursion step in Table 3.2. The complexity equations in Table
3.2 are evaluated with the values of the parameters used in the simulations
described in Section 3.5: LF = nF + 1 = 1000, nA = 1, P = 160 and M =
P + nA = 161.

Note that the Gauss-Newton algorithms are of comparable complexity if nA

is small, except for the 2ch-AF algorithm, which requires additional compu-
tations for the deconvolution of the filters A(q, t) and B(q, t). The stochastic
gradient PEM-AF algorithm has a complexity comparable to the NLMS al-
gorithm, whereas the RPE and PEM-AFROW algorithms require somewhat
more computations due to the exact calculation of the prediction error and
gradient vectors (in contrast to the approximate calculation in the PEM-AF
algorithm). The stochastic gradient 2ch-AF algorithm is computationally not
interesting due to the deconvolution with complexity O(L2

F ). Since no assump-
tions on the short-term stationarity of the near-end signal are made in the RPE
algorithm, its complexity rises somewhat faster than that of the PEM-AF and
PEM-AFROW algorithms as nA is increased.

3.5 Simulation Results

Matlab simulations were performed to compare the convergence behaviour of
the four prediction error algorithms described in Section 3.3 with some refer-
ence algorithms in different scenarios. The Gauss-Newton reference algorithms
are the standard RLS algorithm and the double-talk-robust non-linear recur-
sive least squares (NL-RLS) algorithm proposed in [10, Ch. 6]. The stochastic
gradient reference algorithms are the standard NLMS algorithm and a stochas-
tic gradient implementation of the NL-RLS algorithm. It should be noted that
the NL-RLS algorithm was designed to be used in combination with a DTD,
in contrast to the prediction error identification algorithms. To focus on the
double-talk-robustness of the adaptive algorithms, we have chosen not to in-
clude a DTD in any of the simulations because the results would then depend
heavily on the DTD quality.

All simulations are performed at a sampling rate fs = 8 kHz. The room impulse
response F (q, t) of length LF = nF + 1 = 1000 (corresponding to 125 ms) was
measured in a typical office, and is plotted in Fig. 3.2. The microphone and
loudspeaker are assumed to be linear devices with a flat frequency response.
In all simulations, some low-level (−50 dB) Gaussian white noise is added to
the near-end signal to account for background noise, which is present in any
realistic setup. The near-end signal model order is set to nA = 1 in most of the
experiments, as motivated in Section 3.4.1. The exponential forgetting factors
for estimation of f(t) in the Gauss-Newton RPE, PEM-AF, and PEM-AFROW
algorithms, and of θ2ch(t) in the 2ch-AF algorithm, are chosen such that the
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effective data window length is 3 times the parameter vector length, i.e., λF =
λ2ch = 0.9997. The exponential forgetting factor for recursive estimation of
a(t) in the RPE, PEM-AF, and stochastic gradient 2ch-AF algorithms, and of
σ2

t in the RPE, PEM-AF, and 2ch-AF algorithms is λA = 0.9938, such that
the effective data window length is 160 samples or 20 ms (which is the average
window length in which a speech signal can be considered stationary). The
PEM-AFROW window hop size is set to P = 160 samples and the window
length to M = P + nA, as suggested in [15]. The step size for all stochastic
gradient algorithms is equal to µF = 0.5 (which was found to give the best
convergence behaviour on average) and the regularization parameter is δF =
10−6. In all the different scenarios, the near-end signal is scaled such that the
echo-to-near-end ratio (ENR) equals 10 dB:

ENR , 10 log10

N∑

k=1

|x(k)|2

N∑

k=1

|v(k)|2
= 10 dB, (3.45)

with N the number of data points used. The simulation length N varies for
different simulations, and will typically be much smaller for the Gauss-Newton
simulations than for the stochastic gradient simulations. The parameters of the
NL-RLS algorithm are chosen as suggested in [10, Ch. 6]: the saturation level
is k0 = 1.5 and the exponential forgetting factor for estimation of the scale
factor is λs = 0.9975. All algorithms, impulse responses, and sound signals are
available for download [39].

The performance measure for evaluating the convergence behaviour is the mis-
alignment, defined as the logarithmic normalized Euclidian distance between
the true and estimated impulse response at each time instant:

misalignment (dB) = 20 log10

‖f̂(t) − f(t)‖
‖f(t)‖ . (3.46)

In a first scenario, double-talk is continuously present. The far-end signal is a
male speech signal plotted in Figs. 3.3(a) and 3.4(a) for the Gauss-Newton and
stochastic gradient experiments, respectively. Note that the signals are drawn
from the same speech fragment, but on different time scales. With the contin-
uous double-talk applications described in Section 3.1 in mind, the near-end
signal is a babble noise signal plotted in Figs. 3.3(b) and 3.4(b). Continuous
double-talk simulations with a near-end speech signal are described in [28] and
[40]. The Gauss-Newton and stochastic gradient convergence curves are drawn
in Figs. 3.3(c) and 3.4(c), respectively, for a low-order near-end signal model
(nA = 12) and in Figs. 3.3(d) and 3.4(d), respectively, for a very-low-order
near-end signal model (nA = 1). A first, somewhat surprising, observation
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Figure 3.2: Room impulse response measured in a typical office.

is that the standard RLS algorithm performs in a relatively robust way in a
continuous double-talk situation: the RLS algorithm outperforms all other al-
gorithms. The standard NLMS algorithm on the other hand appears to be
extremely sensitive to double-talk for µ = 0.5, in contrast to the stochastic
gradient RPE, PEM-AF, and PEM-AFROW algorithms. All prediction error
identification algorithms exhibit improved convergence and more stable be-
haviour with the very-low-order near-end signal model (nA = 1). Finally, in
all simulations, the NL-RLS algorithms stalls at an estimate far from the true
impulse response. This is because the NL-RLS scale factor converges to zero
during double-talk, thereby slowing down and eventually freezing the adapta-
tion. This effect can be overcome by limiting the scale factor to a minimum
value during double-talk, which is however impossible when no DTD is applied.

In a second scenario, double-talk only occurs after the adaptive algorithms
have initially converged to some extent. The same male far-end speech signals
as in the first scenario are used, whereas the near-end signal is now a short
female speech signal, occuring in the middle of the experiment, as shown in
Figs. 3.5(a) and 3.6(a). In this scenario we only use a very-low-order near-end
signal model (nA = 1), which yields the convergence curves in Figs. 3.5(b) and
3.6(b). The Gauss-Newton RPE, PEM-AFROW, and 2ch-AF algorithms show
approximately the same initial convergence during single-talk as the standard
RLS algorithm, while the Gauss-Newton PEM-AF and NL-RLS algorithms
perform worse. At the onset of double-talk (around t/Ts = 3000 samples)
the 2ch-AF and standard RLS algorithms diverge considerably. The PEM-
AFROW and RPE algorithms behave remarkably robust, although they show
some divergence when the near-end signal power increases. The standard RLS



124 Chapter 3. Double-Talk-Robust AEC

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−1

−0.5

0

0.5

1

t/T
s
 (samples)

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−1

−0.5

0

0.5

1

t/T
s
 (samples)

(b)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−20

−10

0

10

20

30

40

50

t/T
s
 (samples)

M
is

al
ig

nm
en

t (
dB

)

 

 

RLS
NL−RLS
2ch−AF
PEM−AF
PEM−AFROW
RPE

(c)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−20

−10

0

10

20

30

40

50

t/T
s
 (samples)

M
is

al
ig

nm
en

t (
dB

)

 

 

RLS
NL−RLS
2ch−AF
PEM−AF
PEM−AFROW
RPE

(d)

Figure 3.3: Continuous double-talk
scenario: Gauss-Newton simulations.
(a) Far-end speech signal. (b) Near-
end babble noise signal. (c) Conver-
gence curves for nA = 12. (d) Con-
vergence curves for nA = 1.
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Figure 3.4: Continuous double-talk
scenario: stochastic gradient simu-
lations. (a) Far-end speech signal.
(b) Near-end babble noise signal. (c)
Convergence curves for nA = 12. (d)
Convergence curves for nA = 1.
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Figure 3.5: Bursting double-talk sce-
nario: Gauss-Newton simulations.
(a) Near-end speech signal. (b) Con-
vergence curves for nA = 1.
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Figure 3.6: Bursting double-talk sce-
nario: stochastic gradient simula-
tions. (a) Near-end speech signal.
(b) Convergence curves for nA = 1.

algorithm clearly reacts in a less robust way to a sudden near-end signal onset
than to the continuous double-talk situation in the first scenario. None of
the Gauss-Newton algorithms returns to its initial convergence speed after the
double-talk situation has passed, which could however be solved by resetting the
adaptive filter memory at the end of such a double-talk period. The stochastic
gradient RPE, PEM-AFROW, and PEM-AF algorithms clearly outperform all
other stochastic gradient algorithms, and they do not even diverge at the onset
of double-talk (around t/Ts = 27000 samples).

In a third and fourth scenario, we investigate the behaviour of the algorithms
when an echo path change occurs. In the middle of the experiment, the echo
path gain is decreased by 6 dB, i.e., all RIR coefficients are halved. The far-
end signals are the same as before. In the third scenario the echo path change
occurs during single-talk. The convergence curves with nA = 1 are shown in
Figs. 3.7 and 3.8. The Gauss-Newton algorithms are obviously non-robust to
echo path changes. Memory resetting after an echo path change is necessary,
and hence these algorithms should be equipped with an echo path change de-
tector (as proposed, e.g., in [5], [41]-[43]). On the other hand, the stochastic
gradient algorithms converge after an echo path change as fast as in the initial
convergence phase. In the fourth scenario, the echo path change occurs during
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Figure 3.7: Echo path change in
single-talk: Gauss-Newton simula-
tions. Convergence curves for nA =
1.
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Figure 3.8: Echo path change in
single-talk: stochastic gradient simu-
lations. Convergence curves for nA =
1.

double-talk (a worst-case scenario). The near-end signals are the same as in the
bursting double-talk scenario. The convergence curves with nA = 1 are drawn
in Figs. 3.9 and 3.10. The behaviour of the Gauss-Newton algorithms after the
echo path change is comparable to the third scenario. However, the stochastic
gradient RPE, PEM-AF, and PEM-AFROW algorithms converge remarkably
faster after the echo path change than the other stochastic gradient algorithms.

3.6 Conclusions

We have proposed a new approach to improve double-talk-robustness in adap-
tive algorithms for acoustic echo cancellation. Minimization of a prediction
error criterion that includes a model of the near-end signal leads to a minimum-
variance type, fast-converging recursive echo path estimate. We have applied a
new recursive prediction error (RPE) identification algorithm and three predic-
tion error identification algorithms from adaptive feedback cancellation (PEM-
AF, PEM-AFROW, and 2ch-AF) to different double-talk scenarios that may
occur in echo cancellation. Especially in the stochastic gradient case, the pre-
diction error identification algorithms outperform the standard NLMS algo-
rithm, which is highly sensitive to double-talk. In most double-talk scenarios,
the RPE and PEM-AFROW algorithms tend to show the fastest convergence
behaviour with only a few additional computations and without sacrificing con-
vergence speed during single-talk.
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Figure 3.9: Echo path change in
double-talk: Gauss-Newton simula-
tions. Convergence curves for nA =
1.
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Addendum

In the last paragraph of Section 3.4.1, the term “more convex shape of the
prediction error cost function” might be somewhat misleading and requires
some more explanation. With the term “more convex shape”, we aim to denote
that the number of local minima in the cost function is smaller. Generally, the
prediction error cost function is non-convex and has multiple local minima, yet
the number of local minima has been found to decrease as the near-end signal
model order nA is decreased. As a result, the probability of finding the global
minimum using the prediction error identification approach increases as nA is
decreased, and hence convergence speed is gained.
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Abstract

In several scenarios it is desired to obtain an estimate of only the first part of
the room impulse response, e.g., due to computing power restrictions. Room
impulse response estimation is also often required in continuous double-talk
situations. In this paper we show that the PEM-AFROW algorithm which has
recently been proposed for acoustic feedback cancellation, can be used in these
situations to provide a low-variance estimate with only a small bias.

4.1 Introduction

In this paper, we will focus on scenarios in which it is desired to provide an
estimate of the first part (undermodeling) of a room impulse response (RIR),
while continuous double-talk is present. An example is an acoustic echo can-
celler followed by a postprocessor which can remove the residual echo due to
the last part of the RIR (typically less energy).

Standard adaptive filtering algorithms will provide a biased and large-variance
estimate of such a truncated impulse response. In this paper we will show
that the most important of both is the large variance, and that by using the
PEM-AFROW algorithm [1],[2] which was derived in the context of acoustic
feedback cancellation, bias and variance can be reduced. In Section 4.2 a prob-
lem statement is given, and in Section 4.3 the PEM-AFROW-based approach
is introduced. Section 4.4 provides the simulation results.

4.2 Undermodeled Room Impulse Response

Fig. 4.1 shows a RIR identification scheme. We assume that the RIR f(t) ∈
R

nF +1 varies slowly compared to the statistics of the signals. We assume
that the signals involved will be speech signals, and it is known that they
can be modeled as time-varying AR processes (TVAR). On the other hand,
especially in undermodeling scenarios, speech segments which are stationary
for a longer period than the length of the modeled part of the impulse response
may occur. Hence in the simulations, we use both stationary and time-variant
AR models. The near-end signal v(t) and the far-end signal u(t) are assumed
to be independent.

In order to describe the undermodeling case, we define

f(t) =

[
f1(t)
f2(t)

]

(4.1)
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Figure 4.1: A traditional room impulse response identification scheme fails in
the undermodeling case.

and we constrain

f̂(t) =

[

f̂1(t)
0

]

(4.2)

with f1(t), f̂1(t) ∈ R
nF̂ +1. The MMSE criterion which is solved in a traditional

echo canceller can then be specified as

min E

{[

uT (t)

([
f1(t)
f2(t)

]

−
[

f̂1(t)
0

])

+ v(t)
]2
}

= min E
{[

u1
T (t)f1(t) + u2

T (t)f2(t) − u1
T (t)̂f1(t) + v(t)

]2
}

(4.3)

with u1(t) a vector containing the first nF̂ + 1 elements of u(t), and u2(t) the
last nF − nF̂ . Define the Hankel matrices

Ui(t) =
[
ui(t)

T . . . ui(1)T
]T

, i = 1, 2 (4.4)

The microphone signal consists of the signal U1(t)f1(t), and what could be
described as “noise” n(t) for the identification process. The noise consists of
the signal U2(t)f2(t) which has a component nb(t) in the column space of
U1(t), and a component orthogonal to the column space of U1(t). The sum
of the latter signal and the near-end signal v(t) will be called nv(t), and it will
lead to variance on the estimate f̂1(t) of f1(t), while nb(t) will lead to a bias on
the estimate,

n(t) =
[
U2(t)f2(t)

]//

︸ ︷︷ ︸

nb(t):Leads to bias

+
[
U2(t)f2(t)

]⊥
+ v(t)

︸ ︷︷ ︸

nv(t):Leads to variance

. (4.5)

The bias can be expressed by setting the derivative to f̂1(t) of (4.3) to zero:

−2E{u1(t)u1
T (t)f1(t)+u1(t)u2

T (t)f2(t)−u1(t)u1
T (t)̂f1(t)}+E{u1(t)v(t)

︸ ︷︷ ︸

=0

} = 0.

(4.6)
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Figure 4.2: PEM-AFROW applied for identification of an undermodeled room
impulse response.

Now define R11 = E{u1(t)uT
1 (t)} and R12 = E{u1(t)uT

2 (t)}. We then have
for the bias

f̂1(t) − f1(t) = R11
−1R12f2(t). (4.7)

Note that the bias is zero when u(t) is white noise.

4.3 PEM-AFROW-Based Approach

In Fig. 4.2, the PEM-AFROW scheme applied to undermodeled RIR identifi-
cation is shown. The PEM-AFROW scheme [1],[2] is a prediction error method
[3], specifically applied to nonstationary TVAR signals under the assumption
that the plant (the RIR) changes slower than the statistics of the signals. It
can be used both in open loop [4],[5] and in closed loop [1],[2].

For the simulations which we will perform in this paper, we assume a near-end
noise signal

v(t) = −a1(t)v(t − 1) − ... − anA(t)v(t − nA) + e(t), (4.8)

with e(t) a white noise sequence, and similarly, a far-end signal

u(t) = −a′
1(t)u(t − 1) − ... − a′

nA
(t)u(t − nA) + e′(t). (4.9)

Define
a(t) =

[
1 a1(t) . . . anA(t)

]T
(4.10)
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and a′(t) similarly. The coefficients a(t) and a′(t) will either be fixed, or chang-
ing every 20 ms.

The PEM-AFROW algorithm is based on an MSE cost function given as

min
â(t),̂f1(t)

E

{[

âT (t)
(
U1(t)[f1(t) − f̂1(t)] + U2(t)f2(t) + v(t)

)]2
}

. (4.11)

In this criterion, â(t) and f̂1(t) are estimated in an alternating fashion, and on a
frame-by-frame basis. In a first step, f̂1(t) is assumed “correct” and kept fixed,
and â(t) will be estimated by linear prediction such that the residual energy
is minimized for a frame of data, in which the signals can be assumed to be
stationary (20 ms for speech). This means that linear prediction is performed on
the combination n(t) of the AR process v(t) and the ARMA process U2(t)f2(t).
In a second step, for the same frame of data, the far-end and the microphone
signal are prefiltered by the linear prediction error filter â(t), and from these
prefiltered signals, the estimate f̂1(t) is updated.

It should be noted that in case of a white far-end signal u(t), in which a
conventional echo canceller in an undermodeling setup would perform bias-
free, inserting the prediction error filter â(t) of order nA, would lead to a
bias Q1

−1Q2f2(t), where Q1 is a band-diagonal matrix with 2nA − 1 non-zero
diagonals, and Q2 a matrix with only non-zero elements on a triangle in the first
nA columns and on the last nA rows. If the AR models used are stable, Q1

−1

can be approximated as a band-diagonal matrix too, and the bias will mainly
occur in the last nA elements of f̂1(t). Since nA is usually small compared to
nF̂ , these nA elements can be discarded. On the other hand, the structure of
the scheme in Fig. 4.2 allows for â(t) to form an inverse model for the AR
process generating the far-end signal, and hence it can also reduce the bias. In
this setup, â(t) will minimize the linear prediction error energy of n(t), and its
effect will depend on the relative energies of the different components of n(t).

The PEM-AFROW-based method will –as we will show in Section 4.4 below–
effectively reduce the variance on the estimate f̂1(t), since the energy of the
orthogonal part nv(t) of n(t) is reduced after prefiltering in Step 2.

4.4 Simulations

In the simulations, we use an artificial RIR with 800 taps (as shown in Fig.
4.3), and in each of the experiments, only the first 250 taps of this impulse re-
sponse will be modeled. From the figure it is clear that a significant amount of
energy resides in tap 251 to 800, and (as will become clear in the simulations)
without precautions, estimates will be useless. All experiments were performed
with least squares identification (batch solution of a least squares system), and
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Figure 4.3: The room impulse response (800 taps) of which only 250 taps are
modeled in the experiments.

not with stochastic gradient algorithms (NLMS). In NLMS-type algorithms
the variance on the estimate would seem larger because of the excess mismatch
which occurs in these algorithms due to the presence of near-end signals. This
effectively means that the proposed technique even provides a larger improve-
ment on NLMS-type algorithms than on the LS solutions in the simulations.
For the simulations, 500 trials were run, and then the bias and variance of the
estimate of the modeled part of the RIR was calculated. Instead of the vari-
ance, we plot the square root of the variance (the standard deviation), because
this can directly be compared to the amplitude of the RIR.

We first consider a stationary AR far-end signal. While speech is of course
nonstationary, this scenario is relevant in case of strong undermodeling (less
than 20 ms of the impulse response). Fig. 4.4 shows a simulation where no
near-end signal is present. In the upper figure the square root of the variance
(standard deviation) and the bias on the estimate of the first 250 taps are shown
when direct identification (DI) is applied by solving a least squares system,
and in the lower figure the result is shown when PEM-AFROW is applied.
Without PEM-AFROW the standard deviation is about 0.5, to be compared
to the amplitude of the RIR, which peaks to only 0.3, see Fig. 4.3. The bias
is concentrated in the last taps of the modeled part of the RIR, because due
to the (stable) AR process for the far-end signal, the unmodeled part is less
correlated with the new process samples than with the (older) process samples
which correspond to the last taps of the modeled part. When PEM-AFROW



140 Bibliography

is applied (lower part of the figure), the standard deviation drops spectacularly
to 0.01, and the bias is lowered, but still concentrated in the last taps. This is
an interesting result, since these last taps can easily be discarded.

In Fig. 4.5, a stationary near-end signal is added. The energy of the stimulus of
this signal, e(t) is chosen from a uniform random distribution between -5dB and
0 dB compared to the energy of the stimulus e′(t) of the far-end signal. Similar
results are obtained: the bias is (both with and without application of PEM-
AFROW) negligible compared to the variance, and concentrated around the
last taps of the modeled part. The variance drops because the linear prediction
error filter reduces the energy in the uncorrelated part of the microphone signal.

In Fig. 4.6, the simulation is repeated for a time-variant AR (TVAR) signal
for the far-end. The AR coefficients are chosen randomly with a pole radius of
0.83, and kept stationary for about 20 ms (as in speech). In this experiment, no
near-end signal is added, and only the undermodeling performance is evaluated.

In Fig. 4.7, the approach is validated on a real speech signal, with a real-time
implementation using NLMS adaptive filters. The impulse response was mea-
sured independently in silence in order to have a reference. The first 1000 taps
of the 5000 taps impulse response are modeled and shown, together with their
estimate performed by an NLMS adaptive filter (upper plot) and by PEM-
AFROW with NLMS as its adaptive filter (lower plot; contrarily to the ex-
periments above, the plots only show one realization). The estimate by the
PEM-AFROW with NLMS algorithm is observed to be much better than the
estimate provided by NLMS (direct identification). This is most easily observed
in the first 500 taps where the impulse response is zero.

4.5 Conclusion

We have experimentally shown that the PEM-AFROW algorithm can be used
to provide estimates of an undermodeled room impulse response with both a
low variance and a bias which is concentrated in a few filter taps, which can
easily be discarded.
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Figure 4.7: Upper: undermodeled (1000 out of 5000 taps) identification with
NLMS. Lower: with PEM-AFROW.
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Abstract

In many room acoustic signal processing applications, a room impulse response
identification is needed to eliminate undesired effects such as echo, feedback, or
reverberation. This is typically done using an adaptive filter driven by a speech
or audio input signal. However, such signals exhibit poor excitation properties,
which cause standard adaptive filtering algorithms to be very sensitive to dis-
turbing signals, especially in the underdetermined case. A popular remedy is
regularization, which is usually implemented with a scaled identity regulariza-
tion matrix. This type of regularization is governed by a single regularization
parameter, the value of which is often chosen in an arbitrary way. We propose
to regularize the adaptive filter using a non-identity regularization matrix, in
which prior knowledge on the unknown room impulse response may be incorpo-
rated. When knowledge of the disturbing signal is also used to add prefiltering
and weighting in the adaptation, a new family of regularized adaptive filtering
algorithms is obtained, which is shown to be optimal in a mean square error
sense. Existing regularized algorithms can then be obtained as special cases,
assuming limited or no prior knowledge is available. When combined with a re-
cently proposed method of extracting prior knowledge from the acoustic setup,
our algorithms exhibit superior convergence behavior compared to existing al-
gorithms in different simulation scenarios, while the additional computational
cost is small.

5.1 Introduction

Several room acoustic signal processing applications require the identification of
a room impulse response (RIR). The most well-known application is probably
acoustic echo cancellation (AEC) [1], in which a RIR estimate is needed for
the prediction of an echo component that is present in a microphone signal.
Other applications include adaptive feedback cancellation [2], which is similar
to AEC but involves a closed signal loop, and active noise control [3], where
both the so-called primary and secondary signal path have to be identified.

We will focus on the AEC scenario for illustrating the general RIR identification
problem, see Fig. 5.1. We assume that the true RIR coefficients of the echo path
between the loudspeaker and the microphone are collected in the parameter
vector

f ,
[
f0 f1 . . . fnF

]T
, (5.1)

of known length nF +1. The loudspeaker produces a signal u(t) (often referred
to as the “far-end” signal), which generates an echo signal x(t) = uT (t)f at the
microphone position, with the loudspeaker signal vector defined as

u(t) ,
[
u(t) u(t − 1) . . . u(t − nF )

]T
. (5.2)
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Figure 5.1: Room impulse response identification in an AEC scenario. F (z)
and F̂ (z) represent the transfer functions associated with the filter coefficients
in f and f̂(t), respectively.

The echo signal x(t) is picked up by the microphone in addition to a local
signal v(t), which is defined as the source signal (often referred to as the “near-
end” signal), hence the microphone signal can be written as y(t) = x(t) +
v(t). It is important to note that the source signal is in most applications the
signal of interest, however, from a system identification point of view, v(t) is a
disturbance to the estimation of the RIR. If at time t a RIR estimate f̂(t) is
available, then an echo-compensated signal can be calculated as d(t) = y(t) −
uT (t)̂f (t), which approximates the source signal v(t). Note that, throughout
this paper, we assume that the true RIR order nF is known, and equal to the
adaptive filter order. Methods for dealing with the insufficient-order case can
be found in, e.g., [4],[5].

Nearly all linear adaptive filtering algorithms are related to the well-known
least squares (LS) estimate of the RIR, given by

f̂(t) = (UT U)−1UT y, (5.3)

with the data model for the discrete time range [1, t] defined as

y = Uf + v, (5.4)

and

U ,
[
u(t) u(t − 1) . . . u(1)

]T
, (5.5)

y ,
[
y(t) y(t − 1) . . . y(1)

]T
, (5.6)

v ,
[
v(t) v(t − 1) . . . v(1)

]T
. (5.7)
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A common problem in room acoustic applications is that the matrix UT U,
which is inverted in the LS estimate (5.3), is ill-conditioned or even singular due
to poor excitation. Indeed, the identifiability of the RIR f is only guaranteed if
the loudspeaker signal u(t) is persistently exciting of order nF [6]. However, the
dynamics of a typical RIR can often only be captured with several thousands
of coefficients. On the other hand, the loudspeaker signal is usually a speech
or audio signal, and may exhibit a nearly harmonic spectrum, such that its
excitation order is far below nF . If such an ill-conditioned situation occurs,
there will typically be a large variance on the resulting RIR estimate when the
source signal v(t) is non-zero, as can be seen from the LS estimate covariance
matrix:

cov{f̂(t)} = (UT U)−1UT RvU(UT U)−1, (5.8)

with the (zero-mean) source signal covariance matrix defined as

Rv = E{vvT }, (5.9)

and with E{·} and cov{·} the expectation and covariance operators, respec-
tively.

Regularization is a standard technique to turn such an ill-posed problem into a
well-posed one, namely by improving the condition of the matrix UT U in the
LS estimate (5.3). The regularization method that is most often adopted in LS
estimation is the one proposed by Tikhonov et al. [7] (and reformulated in a
linear algebra setting by Neumaier [8]). The Tikhonov regularization method
applied to the LS estimate, consists in adding a scaled identity matrix to the
matrix UT U, i.e.,

f̂ (t) = (UT U + αI)−1UT y, (5.10)

where α denotes the regularization parameter. This is in fact the minimizing
estimate of a modified LS criterion in which the squared Euclidian norm of the
RIR estimate is added to the sum of squared errors, and weighted with the
regularization parameter α:

min
f̂(t)

{

[y − Uf̂(t)]T [y − Uf̂ (t)] + α‖f̂(t)‖2
2

}

. (5.11)

From this criterion, it can be seen that a large RIR estimate is penalized
by the regularization term, leading to an estimate that is biased towards zero.
However, allowing this bias in particular results in a reduction of the estimation
variance.

The Tikhonov regularized LS estimate in (5.10) may be calculated recursively
by initializing the adaptive filter input correlation matrix as R(0) = αI, and
applying the standard recursive least squares (RLS) algorithm:

f̂(t) = f̂(t − 1) + R−1(t)u(t)ε(t), (5.12)

R(t) = R(t − 1) + u(t)uT (t), (5.13)
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ε(t) = y(t) − uT (t)̂f(t − 1). (5.14)

Note that the a priori residual ε(t) in (5.14) differs from the a posteriori residual
d(t), which is sent to the far-end side, in that it depends on the previous RIR
estimate f̂(t − 1). If, for tracking purposes, an exponential window is applied
in the above RLS algorithm, then the regularization matrix αI will be expo-
nentially weighted, along with older data (which results in a technique known
as soft-constrained initialization [9]). If we wish to maintain the regularization
throughout the complete time range [1, t], an additional term should be added
to the correlation matrix update in order to compensate for the weighting of
the regularization matrix. Moreover, with this modification, the RLS algorithm
would not converge to the (exponentially weighted) LS estimate, unless a cor-
rection term is also subtracted from the RIR weight update. The Tikhonov
regularized RLS algorithm with exponential weighting factor λ is then given
by:

f̂(t) = f̂(t − 1) + R−1(t)
[
u(t)ε(t) − (1 − λ)αf̂ (t − 1)

]
, (5.15)

R(t) = λR(t − 1) + u(t)uT (t) + (1 − λ)αI, (5.16)

ε(t) = y(t) − uT (t)̂f(t − 1). (5.17)

This algorithm was proposed by Horita et al. [10], and was called the Leaky
RLS algorithm because of its similarity with the Leaky Least Mean Squares
(LMS) algorithm [11] if the RIR weight update in (5.15) is rewritten as

f̂(t) =
[
I− (1 − λ)αR−1(t)

]
f̂(t − 1) + R−1(t)u(t)ε(t). (5.18)

A different regularization technique, which is more often applied to RLS adap-
tive filtering algorithms, is known as Levenberg-Marquardt regularization [12].
This method is very similar to Tikhonov regularization, however no correction
term is subtracted from the RIR weight update. The Levenberg-Marquardt
regularized RLS algorithm is given by:

f̂(t) = f̂ (t − 1) + R−1(t)u(t)ε(t), (5.19)

R(t) = λR(t − 1) + u(t)uT (t) + (1 − λ)αI, (5.20)

ε(t) = y(t) − uT (t)̂f (t − 1). (5.21)

The Levenberg-Marquardt method was initially developed by Levenberg [13]
and Marquardt [14] as a hybrid technique for nonlinear optimization. To
achieve an optimal trade-off between convergence speed and robustness, the
Gauss-Newton method [with update term u(t)uT (t)] was combined with the
steepest descent method [with update term (1 − λ)I] in the correlation ma-
trix update (5.20), by means of a steering factor α. The interpretation of the
Levenberg-Marquardt method as a regularization technique was first given by
Ljung and Söderström [12], and found its way into acoustic signal processing
through the work of Gay [15] and Benesty et al. [1], among others. However,
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as already mentioned, due to the absence of the correction term in the RIR
weight update [compare (5.19) to (5.15)], the Levenberg-Marquardt regularized
RLS algorithm does not converge to the Tikhonov regularized LS estimate in
(5.10).

In room acoustic applications, the underdetermined recursive least squares
(URLS) family [16], of which the normalized least mean squares (NLMS) al-
gorithm and the affine projection algorithm (APA) are the most well-known
members, is much more appealing from a computational point of view. How-
ever, due to their underdetermined nature, these algorithms are even more
susceptible to convergence problems resulting from poor excitation. Therefore,
regularization is also included in nearly every algorithm from the URLS family.
The regularized APA is similar to the Levenberg-Marquardt regularized RLS
algorithm, in that a scaled identity matrix is added to the adaptive filter input
correlation matrix before inversion:

f̂ (t) = f̂(t − 1) + µUM (t)[UT
M (t)UM (t) + αI]−1εM (t), (5.22)

εM (t) = yM (t) − UT
M (t)̂f (t − 1), (5.23)

where now the identity matrix is of dimension M ×M , with M the projection
order, µ represents the step size, and

UM (t) ,
[
u(t) . . . u(t − M + 1)

]
, (5.24)

yM (t) ,
[
y(t) . . . y(t − M + 1)

]T
. (5.25)

The well-known NLMS algorithm can then be obtained from the APA by setting
M = 1:

f̂(t) = f̂(t − 1) + µ
u(t)ε(t)

uT (t)u(t) + α
, (5.26)

ε(t) = y(t) − uT (t)̂f (t − 1). (5.27)

The aim of this paper is twofold. First of all, we will show how the different
regularized algorithms fit into a common framework, and point out the rela-
tionship between regularization and some other concepts in adaptive filtering
such as leakage and proportionate adaptation. Second, we raise the question
whether these existing regularization techniques are optimal in some sense, and
to which extent they may be improved by using more than just one regulariza-
tion parameter. Many choices for the regularization parameter α in the above
algorithms have been proposed, ranging from any small number [1],[16]-[23], to
a parameter incorporating prior knowledge on the near-end signal [8],[15],[24]-
[26], or on both the near-end signal and the unknown RIR [27],[28]. In many
acoustic signal enhancement applications, the regularization parameter is an a
priori estimate of the long-term source signal power, as suggested in [15]. Also,
some algorithms have been proposed in which the regularization parameter can
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be estimated online [29]-[31]. The use of multiple regularization parameters has
previously been proposed for frequency domain and subband adaptive filtering,
by assigning a different regularization parameter to each frequency band, see,
e.g., [32]. Also, in neural networks [33, Ch. 5], it is customary to increase the
number of regularization parameters by adding a more general penalty term
α‖Lf̂ (t)‖2

2 instead of α‖f̂(t)‖2
2 in the Tikhonov regularized LS criterion (5.11),

as suggested in [34],[35], with L typically chosen as a discrete approximation
to some derivative operator for imposing smoothness on the RIR estimate.

In this paper, the main motivation for using more than one regularization
parameter is related to the availability of prior knowledge. There exists a well-
known equivalence between Tikhonov regularization and Bayesian maximum
a posteriori (MAP) or minimum mean square error (MMSE) estimation. In
a Bayesian framework, prior knowledge on the unknown RIR parameters can
be incorporated in a non-identity regularization matrix. This approach is most
often pointed to as “Bayesian regularization” (e.g., in the neural networks liter-
ature [36],[37]), or also as “Generalized Tikhonov regularization” (in the inverse
problems literature [38]). In this paper, these concepts are extrapolated to lin-
ear adaptive filter theory, and applied to room acoustic problems. Recently,
the RIR estimation problem was also tackled using Bayesian regularization in
[39], where an iterative optimization algorithm was applied using both nonneg-
ativity constraints and L1-norm sparsity regularization. As a consequence, this
method relies on nonnegativity and sparseness of the RIR coefficients, which
may be valid assumptions for synthetic RIRs generated using the image source
method [40] (as used in the simulations in [39]), but not for realistic RIRs.

In Section 5.2, we review some results from Bayesian linear minimum mean
square error estimation [41], which are essential for deriving the proposed adap-
tive filtering algorithms. We will formulate a non-recursive RIR estimate that
is optimal in the sense of minimizing the mean square deviation of the RIR
estimate from the true RIR in a Bayesian framework. This linear minimum
mean square error (LMMSE) RIR estimate depends on the statistical assump-
tions on the source signal v(t), as well as on the true RIR f , and can also be
obtained as the minimizing estimate of a weighted and regularized LS crite-
rion. This observation has then motivated us to derive from the latter criterion
a set of regularized adaptive filtering algorithms, which contains the existing
regularized algorithms as special cases.

The MSE optimally regularized algorithms rely on knowledge of the source
signal and true RIR statistics, which are unknown in most applications. In a
previous paper, we have proposed adaptive filtering algorithms based on the
prediction error method [12], with which the source signal statistics can be
estimated concurrently with the unknown RIR (both for acoustic echo cancel-
lation [42],[43] and for adaptive feedback cancellation [2],[44]). Also, we have
proposed a method for constructing the true RIR statistics from prior knowl-
edge on the acoustic setup [45]. In Section 5.3, these techniques are briefly
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reviewed, and we comment on how they can provide the necessary statistical
information for the algorithms proposed in Sections 5.4 and 5.5.

In Section 5.4, we focus on MSE optimal regularization of recursive least squares
(RLS) algorithms. We will propose both a Tikhonov regularized (TR-RLS) al-
gorithm and a Levenberg-Marquardt regularized (LMR-RLS) algorithm, with
a regularization matrix which may contain prior knowledge on the true RIR.
It is shown that the TR-RLS and LMR-RLS algorithms may in fact be ob-
tained by minimization of the same criterion, and only differ in the statistical
assumptions on the true RIR. Furthermore, we point out the increase in com-
putational complexity that is inherent in regularizing the RLS algorithm, as
because of the regularization, the matrix inversion lemma cannot be applied
anymore to the adaptive filter input correlation matrix update [which can also
be seen from the update equations (5.16) and (5.20)]. We discuss two methods
for avoiding the explicit inversion of the RLS input correlation matrix, and
hence reducing the complexity from O(n3

F ) to O(n2
F ) computations per iter-

ation, in particular by: 1) approximating the regularization matrix by a sum
of rank-one matrices [12] (also known as dynamic regularization [18]), and 2)
applying a rectangular instead of an exponential data window [46]. Another
technique for obtaining O(n2

F ) complexity, namely by indirect updating of the
input correlation matrix through its eigenvalue decomposition [10],[29], is only
feasible if the regularization matrix is a scaled identity matrix.

Regularization of underdetermined recursive least squares algorithms is tackled
in Section 5.5, where in particular we discuss the regularized NLMS and APA
algorithms. Minimization of the weighted and regularized LS criterion that led
to the TR-RLS and LMR-RLS algorithms, yields in the underdetermined case
an algorithm that exhibits features known as leakage and proportionate adapta-
tion. However, from extensive simulations, we have learned that leakage (even
in the simple case of the leaky LMS algorithm [11]) may significantly deterio-
rate the adaptive filter performance in room acoustic applications. Adopting
the same statistical assumptions on the true RIR that led to the LMR-RLS
algorithm, now leads to a set of regularized NLMS and APA algorithms, with-
out leakage. Moreover, the proposed LMR-NLMS and LMR-APA algorithms
are formally equivalent to the proportionate NLMS (PNLMS) [23],[47] and
proportionate APA (PAPA) [21] algorithms. This equivalence leads to a new
interpretation of the proportionate adaptation concept, and hence to an MSE
optimal choice of the proportionate adaptation parameters.

The proposed regularized adaptive filtering algorithms have been tested by
means of computer simulations of different scenarios and applications. Simu-
lation results are discussed in Section 5.6. Finally, Section 5.7 concludes the
paper.
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5.2 MSE Optimal Weighting and Regulariza-
tion

As discussed in Section 5.1, most regularized linear adaptive filtering algorithms
described earlier, are based on the Tikhonov regularized LS estimate in (5.10)
and are tuned by a single regularization parameter α. A more general approach
towards regularization is to replace the scaled Euclidian norm α‖f̂ (t)‖2

2 in the
Tikhonov regularized LS criterion in (5.11) by the weighted Euclidian norm of
the deviation [̂f(t) − ξ] of the RIR estimate f̂ (t) from some reference value ξ,
with an (nF + 1) × (nF + 1) weighting matrix Φ. We will also include a t × t
weighting matrix W in the LS term, which will be useful further on:

min
f̂(t)

{

[y − Uf̂(t)]T W[y − Uf̂ (t)] + [̂f(t) − ξ]TΦ[̂f (t) − ξ]
}

. (5.28)

Minimizing the above criterion leads to a weighted LS estimate that features
a general regularization matrix Φ, not necessarily equal to a scaled identity
matrix:

f̂(t) = ξ + (UT WU + Φ)−1UT W(y − Uξ). (5.29)

The properties of the above estimate will depend on the choice of the weighting
matrices W and Φ, and of the reference value ξ. Note that by choosing W =
σI and Φ = νI such that σ−1ν = α, and ξ = 0, we obtain the traditional
Tikhonov regularized LS estimate, given in (5.10). A desirable property of
a linear estimate is that it has minimum variance [41]. However, for biased
estimates, such as the estimate in (5.29), both the bias and the variance should
be minimized. A straightforward choice is to minimize the mean square error
(MSE) between the estimated and true RIR, i.e., with tr{·} the trace operator,

min
f̂(t)

E
{

[̂f(t) − f ]T [̂f(t) − f ]
}

= min
f̂(t)

E
{

tr
{
[̂f(t) − f ][̂f (t) − f ]T

}}

, (5.30)

since then the variance and the squared bias are weighted equally [41]. Mini-
mization of the above criterion in a deterministic framework leads to an esti-
mate that depends on the unknown RIR f . It is more useful to minimize (5.30)
in a Bayesian framework, where not only the source signal vector v, but also
the true RIR f is viewed as one particular realization of a stochastic vector
process. If we assume a Gaussian prior for both vector processes, with first
and second order moments given by

E{v} = 0, (5.31)
{

cov{v} = E
{
vvT

}
= Rv, (5.32)

and

E{f} = f0, (5.33)
{

cov{f} = E
{
(f − f0)(f − f0)T

}
= Rf , (5.34)
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then the minimizing estimate of the MSE criterion in (5.30) is given by (see,
e.g., [41], [48, Ch. 4])

f̂ (t) = f0 + (UT Rv
−1U + Rf

−1)−1UT Rv
−1(y − Uf0). (5.35)

Comparing this estimate with the weighted and regularized LS estimate in
(5.29), we conclude that the MSE optimal choice for the weighting matrices W
and Φ, and for the reference value ξ, is

W = Rv
−1, (5.36)

Φ = Rf
−1, (5.37)

ξ = f0. (5.38)

Hence the criterion for deriving MSE optimally weighted and regularized LS-
based adaptive filtering algorithms can be formulated as (see, e.g., [49, Ch.
5]

min
f̂(t)

{

[y − Uf̂ (t)]T Rv
−1[y − Uf̂ (t)] + [̂f(t) − f0]T Rf

−1 [̂f(t) − f0]
}

. (5.39)

If no prior knowledge on the true RIR is available (i.e., ‖Rf‖F → ∞, with
‖ · ‖F the Frobenius norm), then effectively no regularization is applied. Also,
when the source signal power is small, then the data will be more reliable and
the impact of the regularization term will decrease. On the other hand, if the
source signal power increases, the signal-to-noise ratio (SNR) decreases, and
then regularization starts playing a more important role.

5.3 Source Signal and True RIR Statistics

The approach of Section 5.2 is only useful when reliable information on the
source signal and on the true RIR is available through the mean f0 and covari-
ance matrices Rv and Rf . In Section 5.4, it will become clear that two partic-
ular choices for f0 are of special interest: choosing f0 = 0 leads to a Tikhonov
type of regularization, whereas choosing f0 = f̂(t − 1) yields a Levenberg-
Marquardt type of regularization. The choice of the covariance matrices Rv

and Rf is discussed below.

5.3.1 Source Signal Covariance Matrix Rv

In room acoustic applications, the source signal will typically be a speech or
audio signal. This is then a nonstationary signal, i.e., having time-varying char-
acteristics, and hence it may be desirable to choose Rv realization-dependent.
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To this end, we factorize the inverse covariance matrix Rv
−1 as follows [6, App.

II]:
Rv

−1 = ATΣ−1A, (5.40)

with A a unit upper triangular matrix, i.e.,

A ,








1 a12 a13 . . . a1t

0 1 a23 . . . a2t

...
...

...
. . .

...
0 0 0 . . . 1








, (5.41)

and Σ a diagonal matrix. It is now convenient, both from a physical point of
view, as well as for computational reasons, to model the source signal v(t) as
an autoregressive (AR) process of order nA, with time-varying AR coefficients
ai(t), and residual signal r(t) [43], i.e.,

v(t) = −
nA∑

i=1

ai(t)v(t − i) + r(t). (5.42)

The matrices A and Σ can then be rewritten as

A =








1 a1(t) a2(t) . . . anA(t) 0 . . . 0
0 1 a1(t − 1) . . . anA−1(t − 1) anA(t − 1) . . . 0
...

...
...

. . .
...

...
. . .

...
0 0 0 . . . 0 0 . . . 1








, (5.43)

and

Σ = diag
{
σ2

r (t), . . . , σ2
r (1)

}
, E












r(t)
...

r(1)






[
r(t) . . . r(1)

]







. (5.44)

Now, with (5.40), (5.43), and (5.44), the criterion in (5.39) can be rewritten by
shifting the prefiltering matrix A into the data term [y − Uf̂ (t)] as follows,

min
f̂ (t)

{

[ỹ − Ũf̂(t)]T Σ−1[ỹ − Ũf̂(t)] + [̂f (t) − f0]TRf
−1 [̂f(t) − f0]

}

, (5.45)

with the prefiltered loudspeaker and microphone signals defined as

Ũ =
[
ũ(t) ũ(t − 1) . . . ũ(1)

]T
, AU, (5.46)

ỹ =
[
ỹ(t) ỹ(t − 1) . . . ỹ(1)

]T
, Ay. (5.47)

The AR coefficients ai(t) and the residual signal variances σ2
r (t) can be esti-

mated using any of the prediction error identification algorithms described in
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[43], e.g., the prediction-error-method-based adaptive filtering algorithm with
row operations (PEM-AFROW), which is used in the computer simulations
described in Section 5.6. In any case, this estimation procedure, as well as the
prefiltering of the loudspeaker and microphone signals as in (5.46) and (5.47),
can be entirely decoupled from the RIR identification algorithm, and can be
appended to the unregularized algorithms described in [43], as well as to the
regularized algorithms proposed in this paper. Therefore, in the sequel, we
make use of the prefiltered loudspeaker and microphone signals and the resid-
ual signal variance, making abstraction of how these quantities are calculated.

5.3.2 True RIR Covariance Matrix Rf

Taking into account that, in the sequel, we will focus on two particular choices
of the mean [f0 = 0 and f0 = f̂ (t− 1)], we should also consider two expressions
for the true RIR covariance matrix:

Rf = E
{
f fT

}
, (5.48)

and

Rf = E
{

[f − f̂(t − 1)][f − f̂(t − 1)]T
}

. (5.49)

Starting from the expression in (5.48), we will suggest two methods for con-
structing a diagonal estimate of the true RIR covariance matrix Rf . The first
method is based on an initial RIR measurement, and the second method on the
3-parameter RIR model proposed in [45]. The motivation for restricting the
estimates to be diagonal matrices is twofold. First of all, with a diagonal esti-
mate for Rf , the regularization is governed by nF +1 parameters, which seems
to be a fair compromise between the existing regularization techniques (using
one regularization parameter) and the general case of using a non-diagonal es-
timate for Rf [with (nF + 1)2 regularization parameters]. The second reason
is that the matrix-vector products involving Rf and Rf

−1, as they appear in
the algorithms proposed in Sections 5.4 and 5.5, can be computed with O(nF )
operations if diagonal estimates are used, in contrast to the O(n2

F ) operations
that are needed in the non-diagonal case.

Initial RIR Measurement

If the application at hand allows so, probably the most reliable way of construct-
ing prior knowledge on the true RIR, is to perform a batch RIR identification
during the initialization of the signal enhancement system. Suppose that in
this way an initial RIR estimate

f̄ =
[
f̄0 f̄1 . . . f̄nF

]T
(5.50)
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is obtained, then a diagonal estimate of the true RIR covariance matrix may
be constructed as follows:

R̂f ,init = diag
{
f̄2
0 , f̄2

1 , . . . , f̄2
nF

}
. (5.51)

The main disadvantage of this method is that it is non-robust to RIR changes,
since the estimate of Rf is based on one particular measurement. Alternatively,
several initial measurements under different conditions (e.g., different micro-
phone or loudspeaker positions) could be averaged before constructing R̂f ,init,
or, if permitted by the application, the initial measurement could be updated
once in a while.

3-parameter RIR Model

In [45], we have proposed a very simple RIR model, based on the observation
that RIRs have a typical form, which may be characterized by three parameters,
as illustrated in Fig. 5.2:

• the initial delay d, which corresponds to the time needed for the loud-
speaker sound wave to reach the microphone through a direct path (i.e.,
without reflections),

• the direct path attenuation A, which determines the peak response in the
RIR, and

• the exponential decay time constant τ , which models the envelope of the
reverberant tail of the RIR.

These three parameters may be estimated from the acoustic setup (distance
between loudspeaker and microphone, acoustic absorption of the walls, room
volume, etc.), e.g., using Sabine’s reverberation formulas [50]. Hence they
can be considered as prior knowledge. If these three parameters are taken
into account, a diagonal estimate of the true RIR covariance matrix may be
constructed as

R̂f ,3 = A · diag
{

β, . . . , β
︸ ︷︷ ︸

d

, 1, e−
2
τ , . . . , e−2

nF −d

τ

︸ ︷︷ ︸

nF −d

}

, (5.52)

where β is a small number. As an example, the RIR in Fig. 5.2 may be approx-
imated by choosing d = 38, A = 0.9, τ = 100 and β = 10−6. The advantage
of this method is that the parameter τ is invariant to RIR changes due to
an arbitrary microphone or loudspeaker movement. Moreover, the other two
parameters, d and A, are invariant to microphone or loudspeaker movements
as long as the distance between the loudspeaker and the microphone remains
constant. Hence the 3-parameter model is found to be more robust to RIR
changes than the model based on an initial RIR measurement.
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Figure 5.2: Room impulse response characterized by three parameters.
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5.4 Regularized RLS Algorithms

An MSE optimally weighted and regularized RLS algorithm with an exponen-
tial weighting factor λ can be derived from criterion (5.45), namely,

min
f̂ (t)

{

[ỹ − Ũf̂(t)]T Σ−1
λ [ỹ − Ũf̂(t)] + [̂f (t) − f0]TRf

−1 [̂f(t) − f0]
}

, (5.53)

where the exponential data weighting is combined with the MSE optimal
weighting in the diagonal matrix Σ−1

λ :

Σ−1
λ , diag

{

1

σ2
r (t)

,
λ

σ2
r (t − 1)

, . . . ,
λt−1

σ2
r(1)

}

. (5.54)

The derivation of the RLS algorithm corresponding to (5.53)-(5.54) is omitted
here, since it is quite similar to deriving the standard RLS algorithm (see, e.g.,
[9]) or the leaky RLS algorithm [10]. The resulting algorithm is given by

f̂ (t) = f0 + [I − (1−λ)R−1(t)Rf
−1][̂f (t−1)− f0] +

1

σ2
r(t)

R−1(t)ũ(t)ε̃(t),(5.55)

R(t) = λR(t − 1) +
1

σ2
r (t)

ũ(t)ũT (t) + (1 − λ)Rf
−1, (5.56)

ε̃(t) = ỹ(t) − ũT (t)̂f (t − 1), (5.57)

where ũ(t), ỹ(t), and ε̃(t) represent the loudspeaker signal vector, microphone
signal, and a priori residual signal, respectively, after prefiltering with the pre-
diction error filter in the top row of A in (5.43), and σ2

r (t) represents the
residual signal variance from the source signal linear prediction (see Section
5.3.1 and [43]).

To point out the relationship of the above algorithm with the existing regular-
ized RLS algorithms, described in Section 5.1, we will focus on two particular
choices for the mean f0 of the true RIR distribution. Choosing f0 = 0, leads to
the MSE optimal Tikhonov regularized RLS (TR-RLS) algorithm, shown in the
upper part of Table 5.1, which is a generalization of the traditional Tikhonov
regularized RLS algorithm (or leaky RLS algorithm) in (5.15)-(5.17). In Sec-
tion 5.1, the traditional Levenberg-Marquardt regularized RLS algorithm was
considered as an approximation to the traditional Tikhonov regularized RLS
algorithm by omitting the correction term in the RIR weight update. How-
ever, we now observe that an MSE optimal Levenberg-Marquardt regularized
RLS (LMR-RLS) algorithm can also be obtained from the algorithm in (5.55)-
(5.57) by setting f0 = f̂(t − 1). The resulting LMR-RLS algorithm is shown in
the lower part of Table 5.1.

A severe drawback of all the regularized RLS algorithms, either with the tra-
ditional scaled identity matrix, or with a regularization matrix incorporating
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Table 5.1: MSE Optimally Regularized RLS Algorithms

TR-RLS - Tikhonov Regularized Recursive Least Squares

f̂(t) = f̂ (t − 1) + R−1(t)
[ 1

σ2
r (t)

ũ(t)ε̃(t) − (1 − λ)Rf
−1f̂(t − 1)

]

,

R(t) = λR(t − 1) +
1

σ2
r(t)

ũ(t)ũT (t) + (1 − λ)Rf
−1,

ε̃(t) = ỹ(t) − ũT (t)̂f (t − 1).

LMR-RLS - Levenberg-Marquardt Regularized Recursive Least
Squares

f̂ (t) = f̂(t − 1) +
1

σ2
r (t)

R−1(t)ũ(t)ε̃(t),

R(t) = λR(t − 1) +
1

σ2
r(t)

ũ(t)ũT (t) + (1 − λ)Rf
−1,

ε̃(t) = ỹ(t) − ũT (t)̂f (t − 1).
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prior knowlegde, is that the inversion of the regularized correlation matrix R(t)
cannot be performed cheaply, i.e., in O(n2

F ) operations, based on the matrix
inversion lemma (MIL). While in the standard RLS algorithm the correlation
matrix is updated with a rank-one matrix in each iteration, in the regularized
algorithms a full-rank regularization matrix is added in each iteration. Never-
theless, some procedures have been proposed to reduce the complexity of RLS
algorithms regularized with a scaled identity matrix, to O(n2

F ) operations per
iteration. We illustrate how two such procedures can also be applied in the case
of an MSE optimal regularization matrix Rf

−1 that is not necessarily a scaled
identity matrix. In fact, these procedures can be applied to arbitrary, non-
diagonal regularization matrices, and obviously also to the diagonal matrices
R̂f ,init and R̂f ,3 described in Section 5.3.

• A first procedure starts from the decomposition of the (nF +1)×(nF +1)
regularization matrix in a sum of nF + 1 rank-one matrices, or more
specifically, a sum of nF + 1 outer vector products. This decomposition
is easily constructed for a diagonal regularization matrix, e.g., for the
inverse of the matrix R̂f ,init proposed in (5.51):

R̂−1
f ,init =

nF∑

k=0

φkφ
T
k , (5.58)

with
φT

k ,
[
0 . . . 0 f̄−1

k 0 . . . 0
]
. (5.59)

The regularized RLS correlation matrix update can then be approximated
by adding each outer product φkφ

T
k with appropriate scaling only once in

nF +1 iteration steps, instead of adding the full rank matrix (1−λ)Rf
−1

in each iteration step:

R(t) = λR(t − 1) +
1

σ2
r(t)

ũ(t)ũT (t) + (1 − λ)(nF + 1)φkφ
T
k , (5.60)

k = mod(t, nF + 1).

Since this approximate update involves two rank-one matrix updates,
applying the MIL to (5.60) yields an inverse correlation matrix update
which requires the inversion of a 2×2 matrix, and can hence be computed
in O(n2

F ) operations. This method was first proposed in [12] and adapted
later on to the so-called dynamic regularization method for acoustic echo
cancellation [18].

• A second procedure was proposed in the context of regularization of fast
recursive least squares algorithms [46], and consists in replacing the ex-
ponential data window with a rectangular window. If the adaptive filter
input correlation matrix is initialized to the regularization matrix, i.e.,
R(0) = Rf

−1, then no restoration of the regularization matrix needs to
be performed during the operation of the algorithm, if a sliding window
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approach is followed. Hence the correlation matrix update consists of
two rank-one matrix updates:

R(t) = R(t − 1) (5.61)

+
1

σ2
r(t)

ũ(t)ũT (t) − 1

σ2
r(t − nF − 1)

ũ(t − nF − 1)ũT (t − nF − 1),

and applying the MIL leads to an O(n2
F ) update of the inverse correlation

matrix, which involves the inversion of a 2 × 2 matrix. However, this
method is not very appealing from a numerical point of view, since a
sliding rectangular data window approach suffers from linear round-off
error build-up.

5.5 Regularized APA and NLMS Algorithms

Considering the affine projection algorithm (APA) and the normalized least
mean squares (NLMS) algorithm as underdetermined recursive least squares
(URLS) algorithms [16], it seems straightforward to derive regularized APA
and NLMS algorithms from the same criterion that led to the MSE optimally
weighted and regularized RLS algorithms in Section 5.4, and to exploit the
underdetermined nature of the algorithms to reduce the dimension of the input
correlation matrix that has to be inverted. Rewriting the criterion in (5.45) for
the underdetermined case, leads to

min
f̂(t)

{

[ỹM (t) − ŨT
M (t)̂f (t)]T Σ−1

M (t)[ỹM (t) − ŨT
M (t)̂f (t)]

+[̂f(t) − f0]T Rf
−1 [̂f(t) − f0]

}

, (5.62)

with M the projection order, as defined earlier. Consistent with the notation
in (5.22)-(5.23), we define the prefiltered data matrices ŨM (t) and ỹM (t) as

ŨM (t) ,
[
ũ(t) ũ(t − 1) . . . ũ(t − M + 1)

]
(5.63)

=
[
u(t) u(t − 1) . . . u(t − M − nA + 1)

]
AT

M (t), (5.64)

ỹM (t) ,
[
ỹ(t) ỹ(t − 1) . . . ỹ(t − M + 1)

]T
(5.65)

= AM (t)
[
y(t) y(t − 1) . . . y(t − M − nA + 1)

]T
, (5.66)

where AM (t) is defined as the M × (M +nA) top left submatrix of A in (5.43).
The diagonal weighting matrix ΣM (t) appearing in (5.62) is defined as

ΣM (t) , diag
{

σ2
r (t), . . . , σ2

r (t − M + 1)
}

. (5.67)

Minimizing the criterion in (5.62), and subsequently applying the MIL to reduce
the dimension of the (nF + 1)× (nF + 1) inverse correlation matrix to M ×M ,
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leads to the following underdetermined estimate:

f̂(t) = f0 + RfŨM (t)[ŨT
M (t)RfŨM (t) + ΣM (t)]−1[ỹM (t) − ŨT

M (t)f0]. (5.68)

Note that this estimate is non-recursive, i.e., it does not depend on the previous
estimate f̂(t− 1). A recursive algorithm can be obtained by explicitly bringing
in the dependency on f̂(t − 1), as follows:

f̂(t) = f0 + RfŨM (t)[ŨT
M (t)RfŨM (t) + ΣM (t)]−1 (5.69)

[ỹM (t) − ŨT
M (t)̂f (t − 1) + ŨT

M (t)̂f (t − 1) − ŨT
M (t)f0)],

= f0 + RfŨM (t)[ŨT
M (t)RfŨM (t) + ΣM (t)]−1UT

M (t)[̂f (t − 1) − f0] (5.70)

+RfŨM (t)[ŨT
M (t)Rf ŨM (t) + ΣM (t)]−1[ỹM (t) − ŨT

M (t)̂f (t − 1)].

Finally, by again applying the MIL to the second term on the right hand side,
we rewrite the estimate in (5.70) into an expression which is computationally
less interesting, but more convenient to understand the estimator’s properties:

f̂ (t) = f0 +
{
I− [ŨM (t)Σ−1

M (t)UT
M (t) + Rf

−1]−1Rf
−1
}
[̂f(t − 1) − f0] (5.71)

+RfŨM (t)[ŨT
M (t)Rf ŨM (t) + ΣM (t)]−1[ỹM (t) − ŨT

M (t)̂f (t − 1)].

From (5.71), it can be seen that the minimizing estimate of the underdeter-
mined criterion in (5.62), consists of three terms: the mean value f0 of the true
RIR distribution, a leakage term depending on the deviation [̂f(t−1)−f0] of the
previous estimate from the mean value, and a proportionate adaptation term.
However, from extensive simulations, we have concluded that leakage (even
in the simple case of the leaky LMS algorithm [11]) does not have a beneficial
effect on the convergence behaviour of URLS algorithms in room acoustic appli-
cations. We will therefore not consider Tikhonov regularized URLS algorithms
here (even though their update formulae are readily derived with f0 = 0). The
leakage term in (5.71) disappears by choosing f0 = f̂(t − 1), and hence we end
up with a Levenberg-Marquardt type of regularization. If we finally introduce a
relaxation factor µ, then the resulting algorithms are the Levenberg-Marquardt
regularized affine projection algorithm (LMR-APA) and, when the projection
order is set to M = 1, the Levenberg-Marquardt regularized normalized least
mean squares (LMR-NLMS) algorithm, which are shown in Table 5.2. Note
that the traditionally regularized APA and NLMS algorithms, described in
Section 5.1, can be obtained as special cases of these algorithms, by omitting
the prefiltering step, and by choosing ΣM (t) = σI and Rf = νI such that
σν−1 = α.

The LMR-APA and LMR-NLMS algorithms are closely related to the propor-
tionate APA (PAPA) [21] and proportionate NLMS (PNLMS) [47] algorithms.
In the PNLMS RIR weight update,

f̂ (t) = f̂(t − 1) + µ
G(t)u(t)ε(t)

uT (t)G(t)u(t) + α
, (5.72)
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Table 5.2: MSE Optimally Regularized Underdetermined RLS Algorithms

LMR-APA - Levenberg-Marquardt Regularized APA

f̂(t) = f̂ (t − 1) + µRfŨM (t)[ŨT
M (t)Rf ŨM (t) + ΣM (t)]−1ε̃M (t),

ε̃M (t) = ỹM (t) − ŨT
M (t)̂f(t − 1).

LMR-NLMS - Levenberg-Marquardt Regularized NLMS

f̂(t) = f̂ (t − 1) + µ
Rf ũ(t)ε̃(t)

ũT (t)Rf ũ(t) + σ2
r(t)

,

ε̃(t) = ỹ(t) − ũT (t)̂f (t − 1).

the diagonal matrix G(t) is constructed as follows:

G(t) =
1

ḡ(t)
diag

{
g0(t), . . . , gnF (t)

}
, (5.73)

with, for k = 0, . . . , nF ,

gk(t) , max
{

ρ · max
{
δ, |f̂0(t − 1)|, . . . , |f̂nF (t − 1)|

}
, |f̂k(t − 1)|

}

, (5.74)

ḡ(t) ,
1

nF + 1

nF∑

k=0

gk(t), (5.75)

where ρ and δ are small positive parameters. This choice of G(t) was made
somewhat intuitively by Duttweiler [47], with the aim of allocating a larger
portion of the available adaptation energy to larger adaptive filter weights, and
hence to speed up the convergence. Later on, Chen et al. [23] provided an
interpretation of the above choice of G(t) in terms of Bayesian priors. Suppose
that some prior knowledge is available on the true RIR through its probability
density function (PDF) p(f), then it is advantageous to choose the PNLMS
parameters gk(t) proportional to the negative logarithm of the prior distribution
[23], i.e.,

gk(t) ∝ − ln[p(fk)], k = 0, . . . , nF . (5.76)
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It can be shown that, slightly deviating from the treatment in [23],1

− ln[p(fk)] ∼ |fk − f0,k| for a Laplacian prior, (5.77)

∼ (fk − f0,k)2 for a Gaussian prior, (5.78)

where fk and f0,k represent the (k + 1)-th elements of the vectors f and f0,
respectively. In the PNLMS algorithm, the negative logarithm of a Laplacian
prior on the true RIR is approximated using a smoothed estimate of |fk|, given

in (5.74), which is obtained by taking the L∞-norm of |f̂k(t − 1)|, ρ|̂f(t − 1)|
and ρδ, hence implicitly assuming that the mean f0 = 0. In other words, the
prior knowledge on the true RIR is extracted from the previous RIR estimate
f̂(t − 1). Obviously, the prior knowledge could also be constructed using a
Gaussian prior, in which case the matrix G(t) is in fact a (normalized) estimate
of the true RIR covariance matrix Rf in (5.49). Also, the smoothed estimate
could be calculated using an L2-norm instead of an L∞-norm, which appears
to have a beneficial effect on the PNLMS convergence.

From this point of view, the LMR-NLMS algorithm provides a new choice for
the matrix G(t) in the PNLMS algorithm, which is optimal in the sense of mini-
mizing the underdetermined MSE optimally weighted and regularized criterion
in (5.62). The above comparison of LMR-NLMS with PNLMS can be done
similarly for the LMR-APA and PAPA algorithms. An important difference
with the existing proportionate adaptation algorithms is that in the proposed
LMR-APA and LMR-NLMS algorithms the regularization matrix Rf is fixed.
As a consequence, the proposed algorithms may respond somewhat slower to
a RIR change, but on the other hand they are much less computationally de-
manding than the PAPA and PNLMS algorithms, in which G(t) is recalculated
with (5.74) and (5.75) in each iteration of the adaptive filter.

5.6 Simulation Results

We present the results of five computer simulations, in which a comparison of
the proposed and existing adaptive filtering algorithms is made in a variety
of RIR identification scenarios. The performance measure for comparing the
different algorithms is the misadjustment, which is defined as the normalized
Euclidian distance between the estimated and true RIR on a logarithmic scale:

misadjustment (dB) = 20 log10

‖f̂(t) − f‖
‖f‖ . (5.79)

1Similarity between two scalar functions ζ(fk) and η(fk) is denoted with the ∼ symbol,
and defined as follows: ζ(fk) ∼ η(fk) ⇔ d(ζ(f1

k ), ζ(f2
k )) = rd(η(f1

k ), η(f2
k )), where f1

k and
f2

k represent different realizations of the stochastic variable fk, r is a scaling factor, and the
distance operator d(x, y) is defined as the Minkowski or p-norm distance, which reduces to
|x − y| in the scalar case, for any p ∈ N.
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In all simulations, the sampling frequency fs = 8 kHz.

5.6.1 Regularized RLS and PEM-AFROW Algorithms for
Acoustic Echo Cancellation in a Stationary Envi-
ronment

In these two simulations, acoustic echo cancellation is performed using regular-
ized RLS and PEM-AFROW algorithms in a stationary echo path situation.
The PEM-AFROW algorithm is a recursive prediction error identification algo-
rithm, in which an AR model of the near-end signal is estimated for prefiltering
the loudspeaker and microphone signals as in (5.46) and (5.47), see [2],[42],[43].
The echo path is equal to the RIR plotted in Fig. 5.2, which is of known length
nF + 1 = 1000 and is taken from the measured RIR database in [51]. An
exponential data window is applied with an effective length of three times the
RIR length, i.e., λ = 0.9997. The far-end signal is a 1.23 s male speech sig-
nal (equivalent to N = 9831 samples), whereas the near-end signal is either a
stationary Gaussian white noise (GWN) signal or a male speech signal, both
with variance σ2

v = 10−3. This results in a signal-to-noise ratio of 18 dB at the
microphone, i.e.,

SNRmic , 10 log10

N∑

t=1

|x(t)|2

N∑

t=1

|v(t)|2
= 18 dB. (5.80)

As reference algorithms, we consider the standard RLS algorithm and the tra-
ditional Tikhonov and Levenberg-Marquardt regularized RLS algorithms with
a scaled identity regularization matrix and α = σ2

v, which we will further call
the TR-RLS αI and LMR-RLS αI algorithms.

In a first simulation, with a near-end GWN signal, these reference algorithms
are compared to the proposed TR-RLS R̂f ,3 and LMR-RLS R̂f ,3 algorithms,
in which the 3-parameter model given in (5.52) is used for constructing a non-
identity regularization matrix with d = 38, A = 0.9, τ = 100 and β = 10−6.
Finally, also the TR-RLS R̂f ,true and LMR-RLS R̂f ,true algorithms are simu-
lated, in which regularization is performed using a diagonal matrix as in (5.51)
with f̄ equal to the true RIR f . The latter algorithms illustrate the “best-
case” performance that can be obtained with the proposed regularized RLS
algorithms in a stationary environment, which could be realized only if an ex-
act initial measurement of the unknown RIR were available. In all regularized
algorithms, we assume exact knowledge of the near-end GWN signal variance
σ2

v . Since the near-end signal is a white noise signal, no prefiltering is applied
to the loudspeaker and microphone signals.
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Figure 5.3: Convergence curves of regularized RLS algorithms for an AEC
application with a near-end GWN signal in a stationary environment.

The convergence curves of the different RLS algorithms are shown in Fig. 5.3.
The main observation is that, as expected, using more prior knowledge on
the unknown RIR leads to faster convergence and to a smaller steady-state
misadjustment. The initial divergence of the algorithms is due to the lack
of excitation in the first 1000 recursion steps (the loudspeaker signal vector
u(t) contains nF + 1 − t zeros if t < nF + 1). This effect is less pronounced
for the regularized algorithms, which moreover recover faster when more prior
knowledge is available. After the initial divergence effect has disappeared, it
can be seen that the αI regularized algorithms do not perform better than the
standard RLS algorithm. Finally, we note that the difference between Tikhonov
and Levenberg-Marquardt regularization appears to be negligible.

In a second simulation, a near-end speech signal is applied, such that pre-
filtering of the loudspeaker and microphone signals with the inverse near-end
signal model is desirable. The regularized PEM-AFROW algorithms are im-
plemented with a Gauss-Newton update, to allow for fair comparison with the
regularized RLS algorithms, and the AR model order is set to 12. Since the
difference between Tikhonov and Levenberg-Marquardt regularization is small,
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Figure 5.4: Convergence curves of regularized RLS and PEM-AFROW algo-
rithms for an AEC application with a near-end speech signal in a stationary
environment.

we have plotted in Fig. 5.4 only the convergence curves of the Levenberg-
Marquardt regularized algorithms. A first observation is that the unregular-
ized RLS algorithm shows a slightly better convergence than the unregularized
PEM-AFROW algorithm, except in the time interval t/Ts ∈ [5250, 7250], where
a high-frequency artifact in the near-end signal causes divergence of the RLS
algorithm, without affecting the double-talk-robust PEM-AFROW algorithm.
Another issue that can be remarked from Fig. 5.4 is that the R̂f ,3 regular-
ized algorithms show better initial convergence than the unregularized and αI
regularized ones, but afterwards tend to converge to a biased solution.

5.6.2 Regularized NLMS and PEM-AFROW Algorithms
for Acoustic Echo Cancellation in a Nonstationary
Environment

In the next two simulations, the performance of regularized NLMS and PEM-
AFROW algorithms is compared for acoustic echo cancellation in a nonstation-
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ary environment. We switch between three different room impulse responses
of known length nF + 1 = 1000, that were measured in our acoustic lab. The
first RIR change occurs at t/Ts = 1.2 · 105 samples, and consists in a change
of 75 cm in the microphone position, in such a way that the distance between
the loudspeaker and the microphone remains constant. After the second RIR
change, occuring at t/Ts = 2.5 · 105 samples, the loudspeaker and microphone
positions remain unchanged, but the room is made more reverberant by de-
creasing the absorption coefficients of the walls and ceiling (the T 60 reverber-
ation times of the first two RIRs and of the third RIR were roughly estimated
as T 601,2 = 0.225 s and T 603 = 0.3 s, respectively). In this simulation, the
far-end signal is a 46 s male speech signal (equivalent to N = 368320 samples),
and the near-end signal is either a stationary GWN signal, or a male speech
signal, both with variance σ2

v = 3 · 10−5, resulting in SNRmic = 16 dB.

The reference algorithms are now the (unregularized) standard NLMS algo-
rithm, the proportionate NLMS algorithm with ρ = 5/(nF +1) and δ = 0.01 as
suggested in [47], and the traditionally regularized NLMS algorithm as given in
(5.26)-(5.27) with α = σ2

v , which is further called LMR-NLMS αI. In the first
simulation, with a near-end GWN signal, these algorithms are compared to the
LMR-NLMS R̂f ,3 and LMR-NLMS R̂f ,true algorithms in which the regular-
ization matrix is based on the 3-parameter model (with d = 75, A = 0.1022,
τ = 70 and β = 10−6), and on exact knowledge of the first RIR, respectively.
The regularization matrix is not altered after the two RIR changes, such that
the robustness of the different regularized algorithms w.r.t. RIR changes can
be evaluated. The step size µ is individually tuned for each of the algorithms
such that the excess MSE in a stationary environment would approximately be
the same for all algorithms. Again, in this case, no prefiltering is applied since
the near-end signal is white noise.

The convergence curves and step sizes are shown in Fig. 5.5. First of all, we
observe that the improvement in convergence speed of the existing PNLMS
and LMR-NLMS αI algorithms, as compared to the standard NLMS algo-
rithm, is small. A significantly better convergence behaviour is obtained with
the proposed LMR-NLMS R̂f ,3 and LMR-NLMS R̂f ,true algorithms in the time
interval t/Ts = [0, 1.2 ·105] samples, where the regularization matrix of the pro-
posed algorithms is based on the “correct” RIR. After the first RIR change, the
LMR-NLMS R̂f ,true algorithm’s performance decreases dramatically, whereas

the LMR-NLMS R̂f ,3 algorithm converges equally fast as in the first time in-

terval. This is not much of a surprise, since the regularization matrix R̂f ,true

based on the true first RIR will be a bad model for the second RIR covariance
matrix, whereas the 3-parameter model regularization matrix R̂f ,3 of the first
RIR will still be valid for the second RIR. Indeed, the microphone reposition-
ing does not alter any of the three parameters on which R̂f ,3 is based, since
the distance between the loudspeaker and the microphone remains constant.
However, after the second RIR change the parameter τ in R̂f ,3 will have an in-
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Figure 5.6: Convergence curves of regularized NLMS and PEM-AFROW al-
gorithms for an AEC application with a near-end speech signal and two echo
path changes.

accurate value, since the room reverberation has increased. This clearly affects
the LMR-NLMS R̂f ,3 convergence speed, but still this algorithm outperforms
all other algorithms.

In the case of a near-end speech signal, the above algorithms are in addi-
tion compared to the LMR-PEM-AFROW αI, LMR-PEM-AFROW R̂f ,3, and

LMR-PEM-AFROW R̂f ,true. The PEM-AFROW algorithm again employs an
AR(12) model for the near-end signal linear prediction, but now a stochastic
gradient update is used for adapting the RIR estimate. The convergence curves
shown in Fig. 5.6 reveil more or less the same issues as in the white noise case.
In addition, we observe that the LMR-PEM-AFROW algorithms perform sig-
nificantly better than their LMR-NLMS counterparts, for the same choice of
the regularization matrix.



5.7. Conclusion 175

5.6.3 Regularized PEM-AFROW Algorithms for Adap-
tive Feedback Cancellation in a Stationary Envi-
ronment

In this final simulation, the proposed LMR-PEM-AFROW algorithm is applied
in a closed-loop scenario for performing adaptive feedback cancellation. The
source signal v(t), equal to the same male speech signal as in the previous
simulation, is added to the feedback signal before being amplified and delayed
in the forward path. The resulting signal is sent to the loudspeaker, after
which it is filtered in the feedback path to yield the feedback signal. As in the
AEC simulations with near-end speech, we should also take into account the
source signal characteristics in this scenario. We again apply the LMR-PEM-
AFROW algorithm with stochastic gradient update, featuring an AR(12) linear
prediction of the source signal. In this simulation, the feedback path is equal
to the RIR used in the first simulation. The forward path delay is set equal
to the PEM-AFROW linear prediction window length L = 160 samples, as
suggested in [2], and the forward path gain is set to K = −19 dB, resulting in
a closed-loop gain margin of 3 dB. These settings lead to SNRmic = −11 dB.

The LMR-PEM-AFROW algorithm is compared for different choices of the
regularization matrix with the (unregularized) standard NLMS algorithm in
Fig. 5.7. It is clear that the LMR-PEM-AFROW algorithm is better suited to
the closed-loop estimation problem than the NLMS algorithm. We further note
that initially, the LMR-PEM-AFROW R̂f ,3 and LMR-PEM-AFROW R̂f ,true

algorithms converge considerably faster than the LMR-PEM-AFROW αI algo-
rithm, yet after some time the misadjustment of these three algorithms evolves
to approximately the same level.

5.7 Conclusion

In this paper, we have developed a framework for understanding and opti-
mizing the technique of regularization in adaptive filtering algorithms, with
application to room acoustic signal enhancement. The traditional Tikhonov
regularized and Levenberg-Marquardt regularized RLS algorithms, as well as
the regularized APA and NLMS algorithms fit into this framework as special
cases, but are found to be suboptimal in many scenarios. An MSE optimal ap-
proach towards regularization has been applied to RIR identification, in which
prior knowledge on the unknown RIR and on the source signal may be incorpo-
rated in a more general regularization matrix, and in an appropriate prefiltering
and weighting procedure. This approach results in a new family of optimally
regularized adaptive filtering algorithms, which are not only linked to the exist-
ing regularized algorithms, but also to other adaptive filtering concepts such as
leakage and proportionate adaptation. From simulation results, it is clear that



176 Chapter 5. Optimal Regularization for AEC/AFC

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

−12

−10

−8

−6

−4

−2

0

2

4

t/T
s
 (samples)

m
is

ad
ju

st
m

en
t (

dB
)

 

 
NLMS (µ = 0.01)
LMR-PEM-AFROW αI (µ = 0.02)

LMR-PEM-AFROW R̂f ,3 (µ = 0.03)

LMR-PEM-AFROW R̂f ,true (µ = 0.1)

Figure 5.7: Convergence curves of regularized PEM-AFROW algorithms for an
AFC application in a stationary environment.



BIBLIOGRAPHY 177

exploiting prior knowledge may considerably increase the adaptive filter con-
vergence speed. In addition, using a method for constructing a regularization
matrix based on a 3-parameter RIR model, a significant increase in robustness
with respect to RIR changes can be achieved.
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Abstract

Recursive prediction error (RPE) identification algorithms are attractive al-
ternatives to the traditional least-squares-based adaptive filtering algorithms
for, e.g., room impulse response identification, in such applications as acoustic
feedback and echo cancellation. It has however been observed that a recently
proposed RPE algorithm suffers from numerical problems due to a scaling am-
biguity in the calculation of the auxiliary variables. This problem is tackled by
regularizing the identification of some of the auxiliary variables, which is called
“dual regularization”. This leads to a class of Dually Regularized Recursive
Prediction Error (DR-RPE) identification algorithms, with different choices
of regularization methods (Tikhonov or Levenberg-Marquardt) and matrices
(possibly incorporating prior knowledge). Simulation results confirm that the
DR-RPE algorithms do not exhibit numerical problems, and as a consequence
produce more accurate estimates of the room impulse response and of the aux-
iliary variables.

6.1 Introduction

Recently, recursive prediction error (RPE) identification algorithms have been
proposed as robust and efficient solutions to such problems as adaptive feedback
cancellation (AFC) [1], [2] and acoustic echo cancellation (AEC) [3]. In these
applications, the cancellation of interfering feedback or echo signals is based
on the identification of an unknown room impulse response (RIR), see Fig.
6.1. Since both the AFC and AEC problems can be described by a linear data
model,

y(t) = F (q, t)u(t) + v(t), (6.1)

with the finite-order and possibly time-varying RIR defined as

F (q, t) = f0(t) + f1(t)q
−1 + . . . + fnF (t)q−nF (6.2)

and q denoting the time shift operator, i.e., q−ku(t) = u(t − k), they have
traditionally been solved using least-squares(LS)-based adaptive filtering al-
gorithms such as the recursive least squares (RLS), normalized least mean
squares (NLMS), and affine projection algorithm (APA). However, due to the
non-whiteness of the near-end signal v(t), which is a disturbing signal w.r.t.
the RIR identification, the LS-based algorithms are suboptimal and perform
poorly, especially in the stochastic gradient (NLMS) case [3]. In the AFC ap-
plication, the non-whiteness of v(t) moreover produces a bias in the solution
of LS-based identification algorithms, which is due to the correlation between
the signals u(t) and v(t) in the closed-loop system [1].

This is where recursive prediction error (RPE) identification algorithms outper-
form the traditional adaptive filtering algorithms. By including a time-varying
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Figure 6.1: The black part of the figure depicts a typical acoustic echo cancella-
tion (AEC) scenario. Taking also into account the red part of the figure, turns
the AEC problem into an adaptive feedback cancellation (AFC) problem.

autoregressive (TVAR) model for the near-end signal in the linear data model
of (6.1),

y(t) = F (q, t)u(t) +
1

A(q, t)
e(t), (6.3)

with
A(q, t) = 1 + a1(t)q

−1 + . . . + anA(t)q−nA , (6.4)

one can obtain a transformed problem [by multiplying both sides of (6.3) with
A(q, t), and subsequently changing the order of the filters A(q, t) and F (q, t) in
the cascade A(q, t)F (q, t)]

A(q, t)y(t) = F (q, t)A(q, t)u(t) + e(t), (6.5)

which has a white disturbance signal e(t) and transformed (i.e., prefiltered)
input and output signals A(q, t)u(t) and A(q, t)y(t), respectively. Due to the
whiteness of the disturbance, a LS-based algorithm applied to the transformed
problem in (6.5) can yield an unbiased and optimal (mimimum-variance) RIR
estimate [4]. It should however be pointed out that the TVAR polynomial
A(q, t) is also unknown and time-varying. The concept of RPE identification
lies in the joint identification of the RIR and of the TVAR near-end signal
model by recursively minimizing the sum of squared prediction errors,

min
f̂(t),â(t)

1

2N

t∑

k=1

λt−k

σ̂2
k

{
Â(q, t)[y(k) − F̂ (q, t)u(k)]

}2
, (6.6)

where Â(q, t) and F̂ (q, t) represent estimates of A(q, t) and F (q, t), respectively,
and weighting is performed using the inverse prediction error power σ̂−2

k to
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account for energy variations in the disturbance e(t) in the transformed data
model (6.5), and using λt−k to discount old data with an exponential forgetting
profile. The effective window length N = 1/(1 − λ) is then determined by the
forgetting factor λ.

It has been observed that the RPE identification algorithm proposed in [3]
performs very well in AFC and AEC computer simulations, yet sometimes
runs into numerical problems. In this paper, we will reveal the origin of this
numerical shortcoming and propose a theoretically well-founded solution. In
Section 6.2, we will show that the RPE algorithm exhibits a so-called scaling
ambiguity, in that it may theoretically produce the correct RIR estimate, even
when the TVAR coefficients and some of the other auxiliary variables are scaled
with an arbitrary scaling factor (that is significantly larger than the inverse of
the norm of the estimated TVAR coefficients). Since the auxiliary variables
are not of direct interest to the user, this should not be a problem, unless the
scaling becomes so large that numerical overflow occurs. In some simulation
scenarios such numerical overflow has indeed been observed.

Hence, even if the TVAR coefficients are not of direct interest, we may ben-
efit by improving their identification, since then numerical problems will be
avoided and the resulting RIR estimate will have a higher numerical accuracy.
In Section 6.3, we will indicate how the accuracy of the estimated TVAR co-
efficients can be increased using regularization. To distinguish between the
regularization of the estimated TVAR coefficients and the regularization of the
estimated RIR coefficients, we will use the term “dual regularization” to denote
the former, and “primal regularization” for the latter. We will apply both the
Tikhonov and Levenberg-Marquardt regularization methods to the dual reg-
ularization problem, with a regularization matrix that may incorporate prior
knowledge on the true TVAR coefficients [5]. We will see how such prior knowl-
edge can be constructed for near-end speech signals. The performance of the
Dually Regularized RPE (DR-RPE) algorithms is then illustrated using results
from computer simulations in Section 6.4, and finally Section 6.5 concludes the
paper.

6.2 Scaling Ambiguity in the RPE Algorithm

For convenience, the RPE algorithm with stochastic gradient RIR weight up-
date as proposed in [3], is reproduced in Table 6.1. The parameter vectors and
data matrices are defined as:

θ(t) ,

[
f(t)
a(t)

]

(nF +nA+1)×1

, (6.7)

f(t) ,
[
f0(t) f1(t) . . . fnF (t)

]T

(nF +1)×1
, (6.8)



188 Chapter 6. Dual Regularization for AEC/AFC

a(t) ,
[
a1(t) a2(t) . . . anA(t)

]T

nA×1
, (6.9)

y(t) ,
[
y(t − 1) . . . y(t − nA)

]T

nA×1
, (6.10)

u(t) ,
[
u(t) . . . u(t − nF )

]T

(nF +1)×1
, (6.11)

U(t) ,






u(t − 1) . . . u(t − nA)
...

. . .
...

u(t − nF − 1) . . . u(t − nF − nA)






(nF +1)×nA

(6.12)

The TVAR coefficient vector a(t) and the prediction error variance σ2
t are esti-

mated on an exponential data window with a forgetting factor λA, chosen such
that the effective data window length equals approximately 20 ms (which is the
average time interval on which a speech signal can be considered stationary).
The stochastic gradient RIR weight update features a step size µF .

The scaling ambiguity is explained as follows: if the auxiliary variables â(t),
â(t−1), σ̂2

t , σ̂2
t−1, ψF [t, â(t−1)], ε[t, θ̂(t−1)], RA(t), and RA(t−1), are replaced

by their scaled counterparts Kâ(t), Kâ(t−1), K2σ̂2
t , K2σ̂2

t−1, KψF [t, â(t−1)],

Kε[t, θ̂(t − 1)], K−2RA(t), and K−2RA(t − 1), respectively, then the RPE al-
gorithm will produce the same solution f̂(t) as in the case without scaling, pro-
vided that K ≫ ‖â(t−1)‖−1

2 . For such large scaling factors, the unit coefficient
preceding the estimated TVAR coefficients in the calculation of ε[t, θ̂(t − 1)]
and ψF [t, â(t − 1)] becomes negligible as compared to Kâ(t − 1), and as a
consequence, the prediction error filter Â(q, t− 1) approximately has a zero at
infinity,

Â(q, t − 1) = 1 + Kâ1(t − 1)q−1 + . . . + KânA(t − 1)q−nA , (6.13)

≈ Kq−1[â1(t − 1) + . . . + ânA(t − 1)q−nA+1]. (6.14)

In computer simulations using the RPE algorithm, it appears that starting at
some iteration, and without any outliers occuring in the data, the aforemen-
tioned auxiliary variables undergo an exponentially increasing scaling. This is
illustrated in Fig. 6.2, where the norm of the TVAR coefficients 20 log10 ‖â(t)‖2

and the prediction error power 10 log10 σ̂2
t are drawn on a dB-scale, as a func-

tion of the number of RPE iterations. In some simulations, the numerical
divergence of the auxiliary variables is hardly visible in the convergence curves
of the RIR estimate until overflow occurs (see, e.g., [3, Fig. 4(c)]), yet in other
simulations, it is clear that even before numerical overflow occurs, the accuracy
of the RIR estimate is already severely affected by the numerical problems in
the auxiliary variable estimation (see Fig. 6.4).
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Table 6.1: Stochastic gradient RPE algorithm [3]

Prediction error:

ε[t, θ̂(t − 1)] =
[
1 âT (t − 1)

]

([
y(t)
y(t)

]

−
[
uT (t)
UT (t)

]

f̂(t − 1)

)

Prediction error variance:

σ̂2
t = λAσ̂2

t−1 + (1 − λA)ε2[t, θ̂(t − 1)]

Regression vectors:

ψF [t, â(t − 1)] =
[
u(t) U(t)

]
[

1
â(t − 1)

]

ψA[t, f̂(t − 1)] = UT (t)̂f (t − 1) − y(t)

TVAR regression vector correlation matrix update:

RA(t) = λARA(t − 1) +
1

σ̂2
t

ψA[t, f̂ (t − 1)]ψT
A[t, f̂(t − 1)]

TVAR and RIR weight updates:

â(t) = â(t − 1) +
1

σ̂2
t

R−1
A (t)ψA[t, f̂(t − 1)]ε[t, θ̂(t − 1)]

f̂(t) = f̂(t − 1) + µF
ψF [t, â(t − 1)]ε[t, θ̂(t − 1)]

ψT
F [t, â(t − 1)]ψF [t, â(t − 1)] + σ̂2

t
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Figure 6.2: RPE scaling problem: from t ≈ 6000 iterations, the auxiliary
variables start growing at an exponential rate.
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6.3 Dual Regularization

A simple and intuitive solution to prevent the TVAR coefficients from diverging
as in the above example, is to include a minimum-norm constraint into the
prediction error criterion (6.6), i.e.,

min
f̂(t),â(t)

1

2N

t∑

k=1

λt−k

σ̂2
k

{
Â(q, t)[y(k) − F̂ (q, t)u(k)]

}2
+ β‖â(t)‖2

2,

which corresponds to performing a Tikhonov regularization with regulariza-
tion parameter β. We will denote the TVAR coefficients’ regularization as
“dual regularization”, for pointing out the difference with the (“primal”) RIR
coefficients’ regularization. A more thorough regularization approach would
be to perform a “generalized” type of regularization, by considering the true
TVAR coefficient vectors a(k), k = 1, . . . , t as different realizations of the same
stochastic variable a on which some prior knowlegde may be available through
its mean and covariance matrix, i.e.,

E{a} , a0, (6.15)
{

cov{a} = E
{
(a − a0)(a − a0)T

}
, Ra. (6.16)

An optimal approach to the dual regularization problem can then be suggested
in accordance with the optimal primal regularization approach in [5], and con-
sists in minimizing

min
f̂(t),â(t)

1

2N

{ t∑

k=1

λt−k

σ̂2
k

{
Â(q, t)[y(k)−F̂ (q, t)u(k)]

}2
(6.17)

+[â(t) − a0]TRa
−1[â(t) − a0]

}

.

Finally, also adding a primal regularization term results in

min
f̂(t),â(t)

1

2N

{ t∑

k=1

λt−k

σ̂2
k

{
Â(q, t)[y(k) − F̂ (q, t)u(k)]

}2
(6.18)

+[̂f(t) − f0]TRf
−1 [̂f(t) − f0] + [â(t) − a0]TRa

−1[â(t) − a0]

}

,

where the true RIR f(t) is considered to be a realization of the stochastic
variable f , with mean and covariance matrix

E{f} , f0, (6.19)
{

cov{f} = E
{
(f − f0)(f − f0)T

}
, Rf . (6.20)

Minimizing (6.18) w.r.t. f̂(t) and â(t) results in the so-called Dually Regu-
larized Recursive Prediction Error (DR-RPE) identification algorithm, shown
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in Table 6.2. It should be noted that the user has the choice of using either
the Tikhonov regularized TVAR weight update (corresponding to a0 = 0),
or the Levenberg-Marquardt regularized TVAR weight update (corresponding
to a0 = â(t − 1)). As for the stochastic gradient RIR weight update, the
Levenberg-Marquardt regularization (corresponding to f0 = f̂(t − 1)) is the
only relevant choice [5].

6.4 Simulation Results

Computer simulations were carried out to compare the performance of the
unregularized RPE algorithm with the performance of the proposed DR-RPE
algorithm for different choices of the regularization matrix Ra, and for both
Tikhonov (TR) and Levenberg-Marquardt (LMR) regularization methods. As
the focus of this paper is on the dual regularization, the primal regularization
matrix is set to Rf = I. A first choice for the dual regularization matrix is
Ra = I, which yields a traditional (identity matrix) Tikhonov or Levenberg-
Marquardt regularization. A second choice for Ra allows for incorporating prior
knowledge on speech signal characteristics. To this end, we have identified a
TVAR model on 310929 different 20 ms speech frames read from the TIMIT
database [6], and ensemble-averaged the TVAR coefficient vector outer product
to obtain

R̂a,s = E{âiâ
T
i }, i = 1, . . . , 310929. (6.21)

A 3D surface plot of the resulting regularization matrix R̂a,s is shown in Fig.
6.3.

The algorithms were tested in an adaptive feedback cancellation (AFC) scenario
at a sampling frequency of 16 kHz. Referring to Fig. 6.1, the amplifier is
modeled as a broadband gain L cascaded with a saturation function, and the
equalizer is a pure time delay, i.e., G(q) = q−d, needed for identifiability of f(t)
and a(t) [1]. The closed-loop system is kept at an average gain margin of 3 dB,
by setting L = −9 dB and d = 320 samples. The near-end signal is a 4 s male
speech signal (not from the TIMIT database), while the true RIR is measured
in a typical recording studio and is of known order nF = 2000. The TVAR
model order is chosen as nA = 24, the forgetting factor for estimating the
TVAR coefficients and the prediction error variance is set to λA = 0.9971, and
the step size is optimized for each of the algorithms, resulting in µF = 10−3 for
the unregularized RPE algorithm and µF = 10−2 for the DR-RPE algorithms.

The convergence of the RIR estimate is depicted in Fig. 6.4 by plotting the
so-called RIR misadjustment, defined as

RIR misadjustment (dB) = 20 log10

‖f̂(t) − f‖2

‖f‖2
. (6.22)
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Table 6.2: Dually Regularized RPE (DR-RPE) algorithm

Prediction error:

ε[t, θ̂(t − 1)] =
[
1 âT (t − 1)

]

([
y(t)
y(t)

]

−
[
uT (t)
UT (t)

]

f̂(t − 1)

)

Prediction error variance:

σ̂2
t = λAσ̂2

t−1 + (1 − λA)ε2[t, θ̂(t − 1)]

Regression vectors:

ψF [t, â(t − 1)] =
[
u(t) U(t)

]
[

1
â(t − 1)

]

ψA[t, f̂(t − 1)] = UT (t)̂f (t − 1) − y(t)

Regularized TVAR regression vector correlation matrix update
[dual]:

RA(t) = λARA(t − 1)+
1

σ̂2
t

ψA[t, f̂(t − 1)]ψT
A[t, f̂(t − 1)]

+(1 − λA)Ra
−1

Tikhonov Regularized TVAR weight update [dual]:

â(t) = â(t − 1) + R−1
A (t)

×
{ 1

σ̂2
t

ψA[t, f̂(t − 1)]ε[t, θ̂(t − 1)] − (1 − λA)Ra
−1â(t − 1)

}

Levenberg-Marquardt Regularized TVAR weight update [dual]:

â(t) = â(t − 1) +
1

σ̂2
t

R−1
A (t)ψA[t, f̂(t − 1)]ε[t, θ̂(t − 1)]

Levenberg-Marquardt Regularized RIR weight update [primal]:

f̂(t) = f̂(t − 1) + µF
RfψF [t, â(t − 1)]ε[t, θ̂(t − 1)]

ψT
F [t, â(t − 1)]RfψF [t, â(t − 1)] + σ̂2

t



194 Chapter 6. Dual Regularization for AEC/AFC

0
5

10
15

20
25

0

5

10

15

20

25
−1

−0.5

0

0.5

1

1.5

2

row index icolumn index j

R̂
a
,s

[i
,j

]

Figure 6.3: 3D surface plot of regularization matrix R̂a,s.
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It can be seen that the accuracy of the RIR estimate is indeed improved by
adding a dual regularization to the RPE algorithm. The impact of the differ-
ent choices for the regularization matrices and methods on the RIR estimate
convergence seems to be negligible. The norm 20 log10 ‖â(t)‖2 of the estimated
TVAR coefficients and the estimated prediction error power 10 log10 σ̂2

t are plot-
ted in Figs. 6.5 and 6.6, respectively. It is clear that these auxiliary variables
do not diverge in the DR-RPE algorithms, as they do in the unregularized
RPE algorithm. Moreover, it can be seen from Fig. 6.5 that the norm of the
estimated TVAR coefficients is somewhat smaller in case Ra = R̂a,s, especially
using the Tikhonov regularization method.

In a final simulation, the accuracy of the estimated TVAR coefficients is com-
pared for the different DR-RPE regularization matrices and methods. To this
end, the near-end signal is a 60 s synthetic TVAR sequence, generated by pass-
ing a Gaussian white noise signal through a time-varying all-pole filter of order
nA = 24. The coefficients of this filter change every 20 ms and were computed
by linear prediction of 20 ms true speech frames. The quality of the estimated
TVAR coefficients can be compared by evaluating the time-averaged TVAR
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Table 6.3: Time-averaged TVAR misadjustment for synthetic speech simulation
of DR-RPE algorithms

Regularization method Ra TVAR misadjustment
Levenberg-Marquardt I -1.5322 dB

Levenberg-Marquardt R̂a,s -1.9629 dB
Tikhonov I -1.9814 dB

Tikhonov R̂a,s -3.5738 dB

misadjustment, defined as

TVAR misadjustment (dB) = 20 log10

(
1

M

M∑

k=1

‖â(k) − a(k)‖2

‖a(k)‖2

)

, (6.23)

with M = 960 · 103 and a(k) the corresponding all-pole filter coefficients used
to generate the synthetic TVAR sequence. The time-averaged TVAR misad-
justment is compared for the four different DR-RPE algorithms in Table 6.3. It
can be seen that it is advantageous to use the Tikhonov regularization instead
of the Levenberg-Marquardt regularization, and to use a regularization matrix
incorporating prior knowledge, such as the proposed matrix R̂a,s.

6.5 Conclusion

In this paper, we have highlighted a numerical problem in a recently proposed
RPE identification algorithm, which seems to be due to an inherent scaling
ambiguity. We have proposed to solve the problem using a so-called “dual
regularization” approach, which may be combined with a primal regularization
method to obtain a class of Dually Regularized Recursive Prediction Error
(DR-RPE) identification algorithms. User’s choices within the DR-RPE class
include the regularization method used (Tikhonov or Levenberg-Marquardt)
and the type of regularization matrix used. A first observation from computer
simulations is that using the dual regularization, the aforementioned numeri-
cal problem does not occur anymore. As a consequence, a more accurate RIR
estimate may be obtained. A second observation is that using a regularization
matrix that incorporates prior knowlegde on the TVAR coefficients, results in
a more accurate TVAR coefficient estimate. Moreover, the Tikhonov regular-
ization method is preferred over the Levenberg-Marquardt method.
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Abstract

A new procedure is presented for designing second-order parametric equalizer
filters. In contrast to the traditional approach, in which the design is based
on a bilinear transform of an analog filter, the presented procedure allows for
designing the filter directly in the digital domain. A rather intuitive technique
known as pole-zero placement, is treated here in a quantitative way. It is
shown that by making some meaningful approximations, a set of relatively
simple design equations can be obtained. Design examples of both notch and
resonance filters are included to illustrate the performance of the proposed
method, and to compare with state-of-the-art solutions.

7.1 Introduction

Many signal processing applications involve enhancing or attenuating only a
small portion of a signal’s frequency spectrum, while leaving the remainder of
the spectrum unaffected. This effect is obtained by using bandpass or bandstop
filters, that have a frequency response which is characterized by a gain increase
or decrease around a specified center frequency fc. In digital audio equalization,
any desired frequency response may be realized by cascading such bandpass/-
stop filters with different center frequencies, which are then often referred to as
parametric equalizer filters or presence filters. Such a cascade may moreover
include high-pass and low-pass filters, also known as shelving filters, which are
in fact special (degenerate) cases of the bandpass/-stop filter, having one real
pole-zero pair instead of two complex conjugate pole-zero pairs.

Apart from the center frequency, a parametric equalizer filter is also character-
ized by its bandwidth (which we will define later on). Filters having a small
bandwidth B relative to their center frequency (i.e., having a high Q-factor,
defined as Q = fc/B), are better known as notch and resonance (or peak-
ing) filters. Notch filters appear in numerous applications where a (nearly)
sinusoidal interference has to be cancelled from a broadband signal, e.g., sup-
pressing a 50/60 Hz AC interference in a low-voltage measurement signal, or
cancelling acoustic feedback oscillations in audio amplification systems. Res-
onance filters are typically used to recover sinusoids buried in noise (so-called
line enhancement), e.g., in communications and sonar applications.

It is well-known that a bandpass or bandstop characteristic around a specified
center frequency can be realized efficiently using a second-order infinite impulse
response (IIR) filter [1]-[11], also known as a biquadratic filter, with transfer
function

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
. (7.1)
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Traditionally, the five filter coefficients are calculated so as to satisfy a set of
five design equations [7]:

|H(ej0)| = G0 (gain at DC) (7.2a)

|H(ejπ)| = Gπ (gain at Nyquist frequency) (7.2b)
( ∂

∂ω
|H(ejω)|

)∣
∣
∣
ω=ωc

= 0 (center frequency) (7.2c)

|H(ejωc)| = Gc (gain at resonance) (7.2d)

|H(ej(ωc±B/2))| = GB (bandwidth) (7.2e)

where ω = 2πf represents radial frequency. These design equations incorporate
the following design variables: (radial) center frequency ωc, (radial) bandwidth
B, gain at band edges GB , gain at resonance Gc, gain at DC G0, and gain at
Nyquist frequency Gπ. Typically, the DC and Nyquist gain are chosen to be
equal (except in [10], with the aim of digitally emulating an analog equalizer)
and are set to 0 dB, i.e., G0 = Gπ = 1, which facilitates the cascading of
several parametric equalizer filters. Unfortunately, there is little agreement in
the literature on how to appropriately define bandwidth [7]. We will adopt
Moorer’s bandwidth definition [2], which is found to be mathematically the
most consistent one [7]. If the resonance gain relative to the gain at DC,
i.e., Gc/G0 (called the “boost” in a resonance filter and the “cut” in a notch
filter), exceeds 6 dB in absolute value, then the band edges are defined as
the frequencies at which the gain is 3dB below/above the peak/notch. For a
boost/cut less than 6dB in absolute value, the band edges are found at the
so-called midpoint gain, which is defined as the geometric mean

√

Gc/G0, i.e.,
1/2(Gc,dB − G0,dB) dB below/above the peak/notch.

Nearly all existing design procedures start from the design of an analog para-
metric equalizer filter, followed by a bilinear transform that maps the analog
frequency axis [0,∞) onto the digital frequency axis [0, fs/2], with fs the sam-
pling frequency [1],[3]-[7],[10]. To this end, the digital design variables ωc and B
should be “prewarped” to analog variables, which can however not be done in
an exact way for the bandwidth [5],[7]. As an alternative, the parametric equal-
izer filter can also be designed directly in the digital domain. A first approach
was suggested in [2] and starts by designing a digital parametric equalizer filter
with center frequency ωc = π/2 (which is the only digital center frequency
that allows for a truly symmetric frequency response, leading to b1 = a1 = 0).
The filter centered at π/2 is then transformed to an arbitrarily centered filter
using an appropriate bilinear transform. A second approach is more intuitive
and based on a technique known as pole-zero placement. It was shown earlier
how a resonance filter with a specified center frequency and bandwidth can be
designed in the z-plane by placing two complex conjugate poles (inside, but
close to the unit circle) on the radial lines from the origin to e±jωc , and two
zeros at the origin [8, Ch. 6],[9, Ch. 6],[11, Ch. 11]. For this design procedure,
several approximate relations between the bandwidth and the so-called pole ra-
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dius (i.e., the distance from the origin to the pole) have been suggested [8, Ch.
6],[11, Ch. 11]. Also, it was noted in [9, Ch. 6] that by moving the zeros from
the origin towards the poles, and even beyond, the resonance characteristic can
be converted into a notch characteristic.

The aim of this correspondence is to present a more quantitative treatment of
the pole-zero placement approach. We will derive exact relations between the
pole and zero positions on the one hand, and the design variables on the other
hand. These relations will however appear to be impractical for implemen-
tation, and hence we will suggest some useful approximations. The pole-zero
placement design procedure is outlined in Section 7.2, where we will make a dis-
tinction between notch filter and resonance filter design. Some design examples
are given in Section 7.3, and finally, Section 7.4 concludes the correspondence.

7.2 Design Procedure

The pole-zero placement design procedure is based on a radial representation of
the biquadratic filter transfer function, in which poles and zeros are constrained
to lie on the radial lines from the origin to e±jωc [9, Ch. 6],[11, Ch. 11],[12],
i.e.,

H(z) = K
(1 − rze

jωcz−1)(1 − rze
−jωcz−1)

(1 − rpejωcz−1)(1 − rpe−jωcz−1)
, (7.3)

which can equivalently be written in direct form as

H(z) = K
1 − 2rz cosωcz

−1 + r2
zz−2

1 − 2rp cosωcz−1 + r2
pz−2

. (7.4)

The zero radius rz ∈ [0, 1] is defined as the distance from the origin to each of
the complex conjugate zeros, and likewise the pole radius rp ∈ [0, 1) is defined
as the distance from the origin to the poles. A broadband gain factor K is also
included.

In contrast to the original biquadratic filter transfer function in (7.1), the radial
representation contains only four distinct parameters and, as a consequence,
only four design equations can be fulfilled. Therefore, the design equations
(7.2a) and (7.2b) may be replaced by only one equation that specifies the
filter response at an arbitrary frequency. For convenience, however, we will
just omit equation (7.2b) and retain equation (7.2a). Furthermore, since the
center frequency can be specified directly in the radial representation in (7.3)
or (7.4), design equation (7.2c) can also be omitted. Note that equation (7.2c)
would however only be exactly fulfilled for a desired center frequency at ωc =
{0, π/2, π}, since the maximum/minimum in the frequency response of the
constrained resonance/notch filter in (7.3) does not generally appear at the
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resonance frequency, which is due to the influence of the complex conjugate
pole-zero pair [11, Ch. 11]. This effect decreases as the poles approach the unit
circle.

We will now derive exact and approximate relations between the remaining
three filter parameters {rz, rp, K} and the design variables {ωc, B, G0, Gc}, by
evaluating the remaining design equations (7.2a), (7.2d), and (7.2e). We will
generally assume that the poles are close to the unit circle, i.e., 0 ≪ rp <
1, resulting in narrowband parametric equalizer filters. To obtain a broader
bandpass/bandstop characteristic, a cascade of shelving filters should be used
instead. Below, the design of notch and resonance filters is treated separately,
since different assumptions can be made in either case.

7.2.1 Notch Filters

To obtain a notch characteristic, the zeros should be placed between the poles
and the unit circle, i.e., 0 ≪ rp < rz ≤ 1. The gain at resonance can be
calculated by using the so-called graphical method for evaluating a frequency
response [8, Ch. 4],[11, Ch. 9], see Fig. 7.1,

|H(ejωc)| = K
|Z1R||Z2R|
|P1R||P2R| . (7.5)

Note that the notation | · | is used in two different ways: |XY | denotes the
distance between two points X and Y in the complex plane, whereas |H(ejω)|
stands for the frequency magnitude response of the biquadratic filter.

Since the poles are close to the unit circle, and hence close to the zeros (in
practice even much closer than in Fig. 7.1), we can assume the distances from
the complex conjugate pole and zero to ejωc to be nearly equal, i.e. |Z2R| ≈
|P2R|, as compared to the distances |Z1R| and |P1R|. With this approximation,
(7.5) can be rewritten as

|H(ejωc)| = K
(1 − rz)

(1 − rp)
. (7.6)

The gain at DC can be evaluated by using the same approach, i.e.,

|H(ej0)| = K
|Z1A||Z2A|
|P1A||P2A| . (7.7)

Because the distance between the pole at P1 and the zero at Z1 is much smaller
than the distance of P1 and Z1 to the point ej0, we may state that |Z1A| ≈
|P1A| (this may appear to be a bad approximation for ωc → 0, however in that
case a highpass characteristic will be obtained, unless rp, rz → 1, which still
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Figure 7.1: Pole-zero plot for notch filter (x = poles, o = zeros).
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Figure 7.2: Bandwidth calculation for notch filter.



210 Chapter 7. Biquadratic Notch Filter Design

leads to |Z1A| ≈ |P1A|). The same reasoning results in |Z2A| ≈ |P2A| for the
complex conjugate pole-zero pair, such that (7.7) can be rewritten as

|H(ej0)| = K. (7.8)

Dividing (7.6) and (7.8), and applying design equations (7.2a) and (7.2d), leads
to

Gc

G0
=

(1 − rz)

(1 − rp)
. (7.9)

We will now identify the lower band edge ej(ωc−B/2) and calculate its distance
from the poles and zeros. Since we are dealing with narrowband filters, the dis-
tance between ejωc and ej(ωc−B/2) will be relatively small, hence the influence
of the complex conjugate pole-zero pair on the change in frequency response
from ejωc to ej(ωc−B/2) will be negligible. It then suffices to consider the region
depicted in Fig. 7.2 for calculating the lower band edge, and

|H(ej(ωc−B/2))| ≈ K
|Z1Q

′|
|P1Q′| ≈ K

|Z1Q|
|P1Q| , (7.10)

where the second approximation is justified by the fact that all points shown
in Fig. 7.2 are close to the unit circle, so that the unit circle may be locally
approximated by its tangent in ejωc , and hence Q ≈ Q′. Furthermore, the arc
length between R and Q′ is nearly equal to |RQ|. Since the frequency response
is approximately symmetric around the center frequency if the poles are close
to the unit circle [11, Ch. 11], the bandwidth can be calculated as B ≈ 2|RQ|.

Recall our definition of bandwidth,

|H(ejωc)|
|H(ej(ωc−B/2))| =

{ 1√
2

if Gc

G0
≤ 1

2 ,
√

Gc

G0
if Gc

G0
≥ 1

2 .
(7.11)

Moreover, combining (7.6) and (7.10) yields

|H(ejωc)|
|H(ej(ωc−B/2))| =

(1 − rz)|P1Q|
(1 − rp)|Z1Q| . (7.12)

With the Pythagorean theorem applied to the triangles P1RQ and Z1RQ, we
obtain two more equations,

|P1Q|2 = |P1R|2 + |RQ|2 = (1 − rp)
2 + |RQ|2, (7.13)

|Z1Q|2 = |Z1R|2 + |RQ|2 = (1 − rz)
2 + |RQ|2, (7.14)

which can be solved for |RQ|, together with (7.11) and (7.12), resulting in

B ≈ 2|RQ| =







2
√

(1−rp)2(1−rz)2

(1−rp)2−2(1−rz)2 if Gc

G0
≤ 1

2 ,

2

√
( Gc

G0
−1)(1−rp)2(1−rz)2

(1−rz)2− Gc
G0

(1−rp)2
if Gc

G0
≥ 1

2 .
(7.15)
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Dividing both the numerator and denominator in the above square root ex-
pressions by either (1 − rp)

2 or (1 − rz)
2, and subsequently using the result in

(7.9), yields the following expressions for the zero and pole radius:

rz =







1 − B
2

√

1 − 2
G2

c

G2
0

if Gc

G0
≤ 1

2 ,

1 − B
2

√
Gc

G0
if Gc

G0
≥ 1

2 ,
(7.16)

rp =







1 − B
2

√
G2

0

G2
c
− 2 if Gc

G0
≤ 1

2 ,

1 − B
2

√
G0

Gc
if Gc

G0
≥ 1

2 .
(7.17)

These expressions, together with K = G0 , constitute the notch filter design

procedure. Note that, while the expressions in (7.16) and (7.17) may theoreti-
cally yield negative results, this should never occur for the narrowband filters
we are dealing with (i.e., for sufficiently small B).

7.2.2 Resonance Filters

A similar procedure can be used to design resonance filters, but then the zeros
should be placed between the origin and the poles, i.e., 0 ≤ rz < rp < 1, see
Fig. 7.3. Note that in this case, no assumption can be made about the position
of the zeros, i.e., depending on the specified gain at resonance, the zeros may
be close to the origin, or close to the poles (near the unit circle), or anywhere
in between. We will however assume that the distance between Z1 and P1

is significantly larger than the distance from P1 to the unit circle, and the
same for Z2 and P2, such that the zeros can be neglected when calculating the
bandwidth. As in the notch filter case, we will also assume that the influence
of the complex conjugate pole-zero pair on the change in frequency response
from ejωc to ej(ωc−B/2) is negligible. Hence the bandwidth, which in this case
is defined by

|H(ejωc)|
|H(ej(ωc−B/2))| =

{ √
2 if Gc

G0
≥ 2,

√
Gc

G0
if Gc

G0
≤ 2,

(7.18)

only depends on the pole position, see Fig. 7.4, i.e.,

|H(ejωc)|
|H(ej(ωc−B/2))| ≈

|P1Q|
(1 − rp)

. (7.19)

This expression, together with the Pythagorean theorem in (7.13), results in

B ≈ 2|RQ| =

{
2(1 − rp) if Gc

G0
≥ 2,

2(1 − rp)
√

Gc

G0
− 1 if Gc

G0
≤ 2,

(7.20)
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Figure 7.3: Pole-zero plot for resonance filter.

so that the pole radius can be calculated as

rp =

{
1 − B

2 if Gc

G0
≥ 2,

1 − B

2
√

Gc
G0

−1
if Gc

G0
≤ 2. (7.21)

The upper part of (7.21) was also derived in [8, Ch. 6].

Determining the zero radius for the resonance filter is somewhat more difficult,
as no assumption can be made about the position of the zeros. Graphically
evaluating the gain at resonance and at DC yields

|H(ejωc)| = K
(1 − rz)|Z2R|
(1 − rp)|P2R| , (7.22)

|H(ej0)| = K
|Z1A||Z2A|
|P1A||P2A| = K

|Z1A|2
|P1A|2 . (7.23)

Eliminating K from (7.22) and (7.23), and taking into account design equations
(7.2a) and (7.2d), leads to

(1 − rz)|Z2R||P1A|2
(1 − rp)|P2R||Z1A|2 =

Gc

G0
, (7.24)
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Figure 7.4: Bandwidth calculation for resonance filter.

where we can make the following approximations. Since the poles are close to
the unit circle, |P2R| ≈ |SR| = 2 sinωc, and |P1A| ≈ |RA| = 2(1 − cosωc).
Furthermore, the fraction

|Z1A|2
|Z2R| =

r2
z − 2rz cosωc + 1

√

r2
z − 2rz cos 2ωc + 1

, (7.25)

may be approximated by a first-order polynomial in rz . As rz varies between 0
and 1, the fraction in (7.25) takes on a value between 1 and (1− cosωc)/ sinωc,
which leads to the following approximation:

|Z1A|2
|Z2R| ≈ (1 − rz) +

(1 − cosωc

sin ωc

)

rz. (7.26)

Substituting the above approximations in (7.24), results in a first-order equa-
tion in rz,

(1 − rz)

(1 − rp)
=

Gc

G0

(

rz + (1 − rz)
sinωc

1 − cosωc

)

, (7.27)

which can readily be solved by using (7.21), i.e.,

rz =







1−Γ

1−Γ+ B
2

Gc
G0

if Gc

G0
≥ 2,

1−Γ
1−Γ+ B

2
√

Gc/G0−1

Gc
G0

if Gc

G0
≤ 2,

(7.28)

with

Γ =

{
B
2

Gc

G0

sin ωc

1−cos ωc
if Gc

G0
≥ 2,

B

2
√

Gc/G0−1

Gc

G0

sin ωc

1−cos ωc
if Gc

G0
≤ 2. (7.29)
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It should be noted that, once the bandwidth is specified, the boost Gc/G0

cannot take on an arbitrarily large value. The maximum boost, given B, is
obtained when the zeros are placed at the origin, and can be calculated from
(7.29) with Γ = 1.

Finally, the broadband gain factor K can be calculated by evaluating (7.4) at
ej0, i.e.,

K = G0

1 − 2rp cosωc + r2
p

1 − 2rz cosωc + r2
z

. (7.30)

7.3 Design Examples

We have applied the above design procedure to four design examples. In the
first example, the bandwidth of a resonance filter with ωc = 2 rad (0.64π rad),
G0 = 1 (0 dB), and Gc = 4 (12 dB) takes on different values B = {0.01, 0.1, 0.2}
rad

(
{0.0032, 0.032, 0.064}π rad

)
, see Fig. 7.5. The second example illus-

trates the effect of varying the boost of a resonance filter as Gc/G0 = {2, 3, 4}
(
{6, 9.5, 12} dB

)
, with ωc = 1 rad (0.32π rad), B = 0.05 rad (0.016π rad), and

G0 = 1 (0 dB), see Fig. 7.6. In the third example, in Fig. 7.7, the center
frequency of a notch filter with B = 0.1 rad (0.032π rad), G0 = 1 (0 dB), and
Gc = 0.3 (−10.5 dB) is set to ωc = {1, 1.5, 2} rad

(
{0.32, 0.48, 0.64}π rad

)
.

The fourth example is included to illustrate the capability to fade from a res-
onance filter to a notch filter using the proposed design procedure. In Fig.
7.8, the boost/cut of a parametric equalizer filter with ωc = 1.5 rad (0.48π
rad), B = 0.1 rad (0.032π rad), and G0 = 1 (0 dB) is varied as Gc/G0 =
{1.1220, 1.0593, 1.0233, 1, 0.9772, 0.9441, 0.8913}

(
{1, 0.5, 0.2, 0,−0.2,−0.5,−1}

dB
)
. Note that a flat magnitude response (Gc/G0 = 1) is obtained by setting

rz = rp in (7.3), resulting in pole-zero cancellation, and K = G0.

Finally, we compare the new procedure to three state-of-the-art techniques for
designing parametric equalizer filters. A cascade of a notch filter with ωc = 1
rad (0.32π rad), B = 0.05 rad (0.016π rad), G0 = 1 (0 dB), and Gc = 0.7 (−3
dB), and a resonance filter with ωc = 2 rad (0.64π rad), B = 0.1 rad (0.032π
rad), G0 = 1 (0 dB), and Gc = 4 (12 dB), was designed using the proposed pole-
zero placement technique, as well as using the techniques described by Regalia
and Mitra [4], Bristow-Johnson [7], and Moorer [2]. From Fig. 7.9 it can be seen
that the four methods perform equally well on the notch filter, whereas some
discrepancies in the 3 dB-bandwidth appear for the resonance filter. More
specifically, in Bristow-Johnson’s method, the resonance filter bandwidth is
somewhat underestimated.
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Figure 7.5: Design example 1: resonance filter with varying bandwidth.
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Figure 7.6: Design example 2: resonance filter with varying boost.
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Figure 7.7: Design example 3: notch filter with varying center frequency.
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Figure 7.9: Comparison with three state-of-the-art design procedures.

7.4 Conclusion

In this correspondence, we have proposed a new pole-zero placement technique
for designing second-order parametric equalizer filters. Depending on whether
a notch or resonance filter characteristic is desired, certain approximations on
the pole and zero positions can be made which simplify the filter design equa-
tions. Expressions were given for calculating the filter’s pole radius, zero radius,
and broadband gain factor, which, together with the specified center frequency,
completely determine the filter transfer function. The effect of varying the de-
sign variables, i.e., center frequency, bandwidth, and boost/cut, was illustrated
in four design examples. The proposed design procedure was also compared to
three state-of-the-art algorithms and was found to be equally accurate, with
the additional advantage of providing an intuitive design approach executed
entirely in the digital domain.
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Abstract

Constrained pole-zero linear prediction (CPZLP) is proposed as a new method
for parametric frequency estimation of multiple real sinusoids buried in noise.
The method is based on a signal model that consists of a cascade of second-order
constrained pole-zero models, thereby exploiting the linear prediction property
of sinusoidal signals. The signal model is parametrized directly with the un-
known frequencies, which are then estimated using a numerical optimization
approach. By independently optimizing each second-order stage in the cascade
model, a computationally efficient algorithm is obtained with a complexity that
is linear in both the data record length and the number of sinusoids. The linear
complexity allows for using relatively long data records, leading to high accu-
racy even at low signal-to-noise ratios (SNR). Simulation results confirm that
the CPZLP algorithm nearly achieves the Cramér-Rao lower bound for SNR
as low as 5 dB.

8.1 Introduction

The problem of estimating the frequencies of a sum of sinusoidal signals (multi-
tone signals) buried in additive noise has received a lot of attention during the
past decades. Solutions to this problem have been applied in many different
areas, such as audio and speech processing, radar signal processing, telecom-
munications, etc. The existing methods are usually categorized as being either
nonparametric or parametric. Nonparametric frequency estimation is directly
based on Fourier transform theory, hence the signal is processed in a frame-
based manner. The main drawback of nonparametric methods is their limited
frequency resolution for finite frame length. Parametric methods, on the other
hand, can achieve a higher resolution but require the postulation of a generat-
ing signal model. We refer to [1] for a recent overview of parametric frequency
estimation methods.

A particular class of parametric methods exploits the linear prediction (LP)
property of sinusoidal signals. It is well known that a sum of P sinusoids can
be described exactly using an all-pole model of order 2P , with mirror symmetric
LP coefficients [1]. However, it has been shown that the all-pole model is not
exact when noise is added, and in this case a pole-zero model of order 2P
should be used [2]. Still, by constraining the poles and zeros to lie on common
radial lines in the z-plane, the number of unknown parameters in the pole-zero
model can be limited to P and the LP parameters can be uniquely related
to the unknown frequencies [3]. The constrained pole-zero model has been
widely applied in adaptive notch filtering (ANF), see, e.g., [3]-[5]. The ANF
algorithms are however very sensitive to the choice of the initial conditions
and the exponential forgetting factor, and in nonstationary scenarios memory



222 Chapter 8. Efficient Parametric Frequency Estimation

resetting of the ANF is regularly required to enable sufficiently fast tracking.

In this paper, we describe a new parametric frequency estimation method that
is based on the constrained pole-zero model proposed in [3], realized using a
cascade of second-order sections with a direct frequency parametrization [4],[5].
The proposed method is referred to as constrained pole-zero linear prediction
(CPZLP) and, in contrast to the ANF approach, the signal is processed in
a frame-based manner. In the CPZLP method, the minimization of a least-
squares (LS) objective for multi-tone frequency estimation is decoupled into a
set of single-tone subproblems that can be solved consecutively by exploiting
the cascade structure of the signal model. Each subproblem can be viewed as
a single-variable unconstrained nonlinear optimization problem, and is solved
iteratively using a numerical line search method [6, Ch. 3]. Because of the
decoupling, the CPZLP method achieves a computational complexity that de-
pends linearly on the frame length and on the number of second-order sec-
tions, even when Hessian information is used in the optimization method. As
a consequence, relatively long frame lengths can be used to increase the noise
robustness.

The paper is organized as follows. In Section 8.2, we introduce the constrained
pole-zero signal model and derive the CPZLP algorithm by considering the
decoupled optimization of the LS objective. We describe a line search method
with three possible ways of calculating the search direction (steepest descent,
Gauss-Newton, and quasi-Newton), and provide details on the gradient and
Hessian calculation. Section 8.3 deals with the computational complexity of the
CPZLP algorithm, and Section 8.4 contains Monte Carlo simulation results that
illustrate the CPZLP performance in terms of frequency variance as compared
to the Cramér-Rao lower bound (CRLB). Finally, Section 8.5 concludes the
paper.

8.2 Constrained Pole-Zero Linear Prediction

8.2.1 Signal Model

The observed signal y(t) is assumed to consist of a sum of real sinusoids and
additive noise,

y(t) =

P∑

n=1

An cos(ωnt + φn) + r(t), t = 1, . . . , N (8.1)

with An the amplitude, ωn ∈ [0, π] the radial frequency, and φn ∈ [0, 2π) the
phase of the nth sinusoid. While most parametric frequency estimators rely on
the hypothesis that the noise r(t) is white [1], we do not make explicit assump-
tions about the noise. The CPZLP algorithm has been tested both with white
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noise, see Section 8.4, and with colored noise, see [7]. Troughout this paper, it
is assumed that the number of sinusoids P in the observed signal is known a
priori, which is a common assumption in parametric frequency estimation [1],
[3]-[5]. We should note that the CPZLP approach can be elegantly extended
to achieve joint order and frequency estimation [7]. The frequencies ωn are
assumed to be stationary over the observed data frame t ∈ [1, N ]. Frequency
tracking in a nonstationary environment is possible if CPZLP is preceded by
an adaptive segmentation.

It is well known that a sum of P sinusoids can be described exactly as an
autoregressive process of order 2P . A sum of P sinusoids in additive white
noise, similarly, can be modeled as an autoregressive moving average process
of order 2P , having zeros that coincide with the poles [2]. This observation has
led to the constrained pole-zero model for signals that consist of sinusoidal or
narrowband components in noise [3], which is given as

y(t) =

2P∑

i=0

ρiaiz
−i

2P∑

i=0

aiz
−i

e(t). (8.2)

This model has been widely used for deriving ANF algorithms. The LP coef-
ficients ai in (8.2) are mirror symmetric because the poles are constrained to
lie on the unit circle, i.e., ai = a2P−i and also a0 = a2P = 1. Moreover, the
zeros are constrained to lie on the same radial lines as the poles, at a constant
distance ρ from the origin (0 ≤ ρ < 1). Note that ρ is defined as the pole radius
or pole contraction factor since in the prediction error filter, corresponding to
the inverse signal model, ρ appears in the denominator. Throughout this pa-
per, ρ is assumed to be a fixed parameter, the choice of which is however of
great importance to the frequency estimation performance. The residual signal
e(t) is usually assumed to be an uncorrelated sequence, such as a white noise
sequence or a Dirac impulse. With the aim of achieving direct frequency esti-
mation, the model in (8.2) is sometimes rewritten using a second-order sections
cascade structure [4], [5],

y(t) =

(
P∏

n=1

1 − 2ρ cos θnz−1 + ρ2z−2

1 − 2 cos θnz−1 + z−2

)

e(t) (8.3)

with θn ∈ [0, π] denoting the angles of the pole-zero pairs in the upper half of
the z-plane.

8.2.2 Decoupled Optimization

The goal of the proposed frequency estimation method is to have the angles θn

in the constrained pole-zero signal model (8.3) converge to the frequencies ωn
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of the observed signal in (8.1). To this end, a LS objective is defined as follows:

V (θ) =
1

N

N∑

t=1

e2(t,θ) (8.4)

with, from (8.3),

e(t,θ) =

(
P∏

n=1

1 − 2 cos θnz−1 + z−2

1 − 2ρ cos θnz−1 + ρ2z−2

)

y(t) (8.5)

and

θ =
[
θ1 . . . θP

]T
. (8.6)

Instead of directly minimizing V (θ) w.r.t. the parameter vector θ, we divide
the minimization problem into P subproblems. Let the intermediate residual
signal en(t,θn) be defined as the output of the nth section of the prediction
error filter cascade,

en(t,θn) =

(
n∏

l=1

1 − 2 cos θlz
−1 + z−2

1 − 2ρ cos θlz−1 + ρ2z−2

)

y(t) (8.7)

with

θn =
[
θ1 . . . θn

]T
(8.8)

and eP (t,θP ) = e(t,θ). Then the nth subproblem is defined as follows:

min
θn

Vn(θn) = min
θn

1

N

N∑

t=1

e2
n(t,θn). (8.9)

Note that the minimization in (8.9) is performed w.r.t. θn only, while the ob-
jective Vn(θn) depends on the entire vector θn. However, if the subproblems
are solved consecutively, starting at n = 1, then in the nth subproblem, esti-
mates for θ1, . . . , θn−1 are available and only θn needs to be estimated. As a
consequence, the subproblems are entirely decoupled and can be treated indi-
vidually.

The solution to the nth subproblem is obtained iteratively using a line search
optimization method [6, Ch. 3], i.e.,

θ̂(k+1)
n = θ̂(k)

n + µkp(k) (8.10)

with k ∈ N the iteration index. The step length µk is determined using back-
tracking with Armijo’s sufficient decrease condition [6, Ch. 3]. The search
direction p(k) can be obtained with one of the following methods:
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1. Steepest descent (SD):

p(k) = − ∂

∂θn
Vn

(
θ̂

(k)

n

)
(8.11)

in which

θ̂
(k)

n =
[

θ̂
(κ1)
1 . . . θ̂

(κn−1)
n−1 θ̂

(k)
n

]T

(8.12)

with κi, i = 1, . . . , n − 1 the index of the final iteration in the ith
subproblem, and k the current iteration index in the nth subproblem.

2. Gauss-Newton (GN):

p(k) = −

(
∂

∂θn
en

(
θ̂

(k)

n

))T

en

(
θ̂

(k)

n

)

(
∂

∂θn
en

(
θ̂

(k)

n

))T(
∂

∂θn
en

(
θ̂

(k)

n

))
(8.13)

with
en(θn) =

[
en(1,θn) . . . en(N,θn)

]T
. (8.14)

3. Quasi-Newton with damped BFGS updating [6, Ch. 18] (BFGS) :

p(k) = −B−1
k

∂

∂θn
Vn

(
θ̂

(k)

n

)
(8.15)

Bk+1 = Bk − BksksT
k Bk

sT
k Bksk

+
ukuT

k

uT
k sk

(8.16)

with

sk = θ̂(k+1)
n − θ̂(k)

n (8.17)

vk =
∂

∂θn
Vn

(
θ̂

(k+1)

n

)
− ∂

∂θn
Vn

(
θ̂

(k)

n

)
(8.18)

uk = λvk + (1 − λ)Bksk (8.19)

and

λ =







1 if sT
k vk ≥ γsT

k Bksk (8.20)

(1 − γ)
sT

k Bksk

sT
k Bksk − sT

k yk
if sT

k vk < γsT
k Bksk (8.21)

The parameter γ ∈ (0, 1) is usually chosen as γ = 0.2 [8]. Since each
CPZLP subproblem is a scalar optimization problem, the Hessian ap-
proximation Bk, the displacement vector sk, the change of gradients
vector vk and its damped counterpart uk are all scalars, and the general
BFGS calculations in (8.16), (8.19)-(8.21) can be greatly simplified:

Bk+1 = max
(vk

sk
, γBk

)

. (8.22)
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The iterative algorithm for solving the nth subproblem is terminated at itera-
tion κn, either when

∣
∣
∣
∣
p(κn) ∂

∂θn
Vn

(
θ̂

(κn)

n

)
∣
∣
∣
∣
≤ τ (8.23)

with τ a specified tolerance, or when the maximum number of iterations is
reached, i.e., κn = kmax.

8.2.3 Gradient and Hessian Calculation

The above methods for calculating the search direction p(k) in the line search
algorithm in (8.10) require gradient and Hessian information, which can be
calculated using either ∂

∂θn
Vn(θn) (in the SD and BFGS methods) or en(θn)

and ∂
∂θn

en(θn) (in the GN method). These quantities can be calculated in an
efficient manner as follows.

From the definition of en(t,θn) in (8.7) it follows that

en(t,θn) =
1 − 2 cos θnz−1 + z−2

1 − 2ρ cos θnz−1 + ρ2z−2
en−1(t,θn−1) (8.24)

with e0(t) = y(t). This filtering operation can be executed for t = 1, . . . , N pro-
vided that the initial filter states are known. For simplicity, we set en(t,θn) =
en−1(t,θn−1) = 0 for t ≤ 0. The intermediate residual signal vector en(θn)
can be constructed from en(t,θn), t = 1, . . . , N as in (8.14).

By differentiating both sides of (8.24) w.r.t. θn, we obtain

∂

∂θn
en(t,θn) =

2(1 − ρ) sin θnz−1(1 − ρz−2)

(1 − 2ρ cos θnz−1 + ρ2z−2)2
en−1(t,θn−1) (8.25)

which can again be calculated for t = 1, . . . , N by setting ∂
∂θn

en(t,θn) =

en−1(t,θn−1) = 0 for t ≤ 0. The derivative vector ∂
∂θn

en(θn) is constructed

using ∂
∂θn

en(t,θn), t = 1, . . . , N .

Finally, the gradient ∂
∂θn

Vn(θn) can be calculated by differentiating (8.9), i.e.,

∂

∂θn
Vn(θn) =

2

N

N∑

t=1

(
∂

∂θn
en(t,θn)

)

en(t,θn) (8.26)

=
2

N

(
∂

∂θn
en(θn)

)T

en(θn). (8.27)

The above quantities should be evaluated at θn = θ̂
(k)

n for calculating the
search direction in (8.11), (8.13), and (8.15). It follows from (8.12) that this
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evaluation can be achieved by replacing θn with its current estimate θ̂
(k)
n in the

filter transfer functions in (8.24) and (8.25), and by evaluating en−1(t,θn−1)

at θn−1 = θ̂
(κn−1)

n−1 (which has already been done in the final iteration of the
(n − 1)th subproblem).

8.3 Computational Complexity

The operations that are performed in each iteration k of the nth subproblem
in the CPZLP algorithm are summarized in Table 8.1, with reference to the
relevant equations and with the number of multiplications as a measure for
computational complexity. The number of backtracking steps needed until
Armijo’s sufficient decrease condition is satisfied in iteration k of subproblem
n, is denoted by βn,k.

The computational complexity of the entire CPZLP algorithm can then be cal-
culated as follows. As an example, we derive the total number of multiplications
MBFGS when the BFGS method is applied. From Table 8.1, we have

MBFGS =

P∑

n=1

( κn∑

k=1

(
(13 + 3βn,k)N + (17 + 5βn,k)

)
)

(8.28)

= (13N + 17)

P∑

n=1

κn + (3N + 5)

P∑

n=1

( κn∑

k=1

βn,k

)

(8.29)

= (13N + 17)κ̄P + (3N + 5)
P∑

n=1

κnβ̄n (8.30)

with κ̄ the average number of iterations per subproblem and β̄n the average
number of backtracking steps per iteration in subproblem n, i.e.,

κ̄ =
1

P

P∑

n=1

κn, β̄n =
1

κn

κn∑

k=1

βn,k. (8.31)

Assuming that the average number of backtracking steps per iteration is the
same for all subproblems, i.e., β̄1 = . . . = β̄P = β̄, the computational complex-
ity for the three different methods can be written as

MSD = κ̄P
[
(13 + 3β̄)N + (14 + 5β̄)

]

MGN = κ̄P
[
(14 + 3β̄)N + (15 + 5β̄)

]

MBFGS = κ̄P
[
(13 + 3β̄)N + (17 + 5β̄)

]
(8.32)

From the above expressions, it is clear that the computational complexity is
linear w.r.t. both the frame length N and the number of sinusoids P . As a
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Table 8.1: CPZLP complexity comparison: number of multiplications in iteration k of subproblem n

calculation of Eqs. SD GN BFGS

gradient (8.24)-(8.26) 10N + 6 10N + 6 10N + 6

Hessian (8.13),(8.17),(8.18),(8.22) 0 N 2

search direction (8.11),(8.13),(8.15) 1 2 2

termination criterion (8.23) 1 1 1

step length [6, p. 37] (1 + βn,k)(3N + 5) (1 + βn,k)(3N + 5) (1 + βn,k)(3N + 5)

parameter estimate (8.10) 1 1 1

TOTAL (13 + 3βn,k)N + (14 + 5βn,k) (14 + 3βn,k)N + (15 + 5βn,k) (13 + 3βn,k)N + (17 + 5βn,k)
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consequence of decoupling the problem into scalar subproblems, the GN and
BFGS methods are not significantly more expensive than the SD algorithm,
although they do take into account Hessian information in the optimization
algorithm. The actual complexity depends on the average number of iterations
and backtracking steps per iteration in the P subproblems. This leads to
the peculiar observation that the fastest converging method will also have the
lowest complexity, which is in contrast with the traditional trade-off between
convergence speed and complexity.

8.4 Simulation Results

Monte Carlo simulations were carried out to validate the performance of the
CPZLP algorithm. The observed signal is a sum of P = 3 sinusoids, with ampli-
tudes [A1, A2, A3] = [1, 0.5, 1.5], radial frequencies [ω1, ω2, ω3] = [0.25, 0.4, 0.7]π,
and phases [φ1, φ2, φ3] = [0, 0.8, 1.5]π. The pole radius is fixed to ρ = 0.95,
which appears to be an optimal value for most sinusoidal frequency estimation
problems [7]. The optimization algorithm parameters are set as recommended

in [6]: the initial step length is µ
(0)
k = 1, the contraction factor determining

the step length µ
(m)
k = ηmµ

(0)
k in the mth backtracking step is η = 0.9, the

scaling factor determining Armijo’s sufficient decrease condition is c = 10−4,
Powell’s parameter in the damped BFGS update is γ = 0.2 [8], the termination
criterion tolerance is τ = 10−6, and the maximum number of iterations per

subproblem is kmax = 30. The initial estimate θ̂
(0)
n = π/3 is chosen equal for

all three subproblems, to illustrate the sensitivity of the algorithm w.r.t. the
choice of initial conditions. An additional rescue procedure is implemented,
which restarts the iterative procedure for subproblem n with a different ini-
tial estimate if κn = kmax. When after five rescue restarts, subproblem n still
remains unsolved, we set θ̂n = π/2 and continue with subproblem n + 1.

The CPZLP algorithm is evaluated w.r.t. frequency bias and frequency vari-
ance, defined as (n = 1, 2, 3)

bias
(
θ̂(κn)

n

)
= E

{
θ̂(κn)

n

}
− ωn (8.33)

var
(
θ̂(κn)

n

)
= E

{
(θ̂(κn)

n − ωn)2
}
. (8.34)

The expectation operator E{·} in (8.33)-(8.34) is approximated by averaging
over 100 simulation runs, with different realizations of the Gaussian white noise
signal r(t). The CPZLP algorithm was found to produce approximately unbi-
ased frequency estimates for N ≥ 256 and SNR ≥ 0 dB (SD), N ≥ 512 and
SNR ≥ 25 dB (GN), and N ≥ 512 and SNR ≥ 10 dB (BFGS).

The frequency variance is displayed in Figs. 8.1(a)-(c) as a function of different
frame lengths N ∈ [64, 8192], with SNR = 15 dB. The CRLB for estimating
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ωn, n = 1, 2, 3, from the true signal model in (8.1) is also shown in Fig. 8.1,
and was calculated under the assumption that the sinusoidal frequencies are
not near 0 and π [9, Ch. 3] and sufficiently separated from each other [7]. In
this case, the Fisher information matrix is diagonal and the CRLBs for the
different frequencies are independent and equal to [7], [9, Ch. 3]

CRLB(ωn) =
6

N(N + 1)(2N + 1)SNRn
(8.35)

with SNRn = A2
n/(2σ2

r) and σ2
r the noise variance. It can be seen that with the

GN method, only var(θ̂
(κ1)
1 ) comes close to the CRLB, which is probably due

the proximity of θ̂
(0)
1 to ω1 and the relatively good SNR1. The BFGS method

performs much better, with all three variance curves staying near the CRLB for
N ≥ 512. Figs. 8.1(d)-(f) show the frequency variance versus SNR ∈ [−10, 40]
dB, with N = 2048. With the GN and BFGS methods there is a clear treshold
effect, i.e., the variance suddenly drops for SNR ≥ 25 dB (GN) and SNR ≥
15 dB (BFGS). In favorable estimation conditions the treshold effect can occur

at SNR as low as 5 dB (which is illustrated by the var(θ̂
(κ1)
1 ) curve in Figs.

8.1(e)-(f)).

To have an idea of the actual computational complexity, the required number
of iterations κn and the average number of backtracking steps per iteration
β̄n are plotted for n = 1, 2, 3 as a function of N and SNR in Fig. 8.2. It is
clear that the SD method is not suited for the frequency estimation problem
under consideration. The GN method requires more iterations than the BFGS
method, but due to the fact that GN consistently produces estimates that
meet Armijo’s sufficient decrease condition without backtracking (β̄n ≡ 0), it
is computationally cheaper than BFGS.

8.5 Conclusion

We have presented a new parametric frequency estimation method for multiple
real sinusoids corrupted by noise. The so-called CPZLP algorithm provides
frame-based frequency estimation by optimizing the parameters of a cascade of
second-order constrained pole-zero filter sections in a decoupled and consecutive
fashion. Each of the unknown frequencies is estimated using a line search
optimization algorithm, which has been implemented with three popular line
search methods (SD, GN, and BFGS). The computational complexity of the
CPZLP algorithm is linear w.r.t. both the number of sinusoids and the frame
length, such that long data frames can be used and hence noise robustness
is increased. Monte Carlo simulation results show that the BFGS method is
particularly promising, since it provides unbiased and near-optimal frequency
estimates for frame lengths larger than 512 samples and SNR as low as 5 dB
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Figure 8.1: CPZLP frequency variance and CRLB, (a)-(c) versus frame length
N , (d)-(f) versus SNR.
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Figure 8.2: CPZLP number of iterations κn and average number of backtrack-
ing steps per iteration β̄n, (a)-(c) versus N , (d)-(f) versus SNR.
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in favorable estimation conditions and 15 dB in worse conditions. Since the
required number of iterations and backtracking steps has a profound effect
on the actual complexity, the faster converging GN and BFGS methods are
computationally much more interesting than the SD method. Further work [7]
includes an extension of the CPZLP algorithm to multi-pitch estimation and
an approach to joint order and frequency estimation.
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Abstract

While several proactive acoustic feedback (Larsen-effect) cancellation schemes
have been presented for speech applications with short acoustic feedback paths
as encountered in hearing aids, these schemes fail with the long impulse re-
sponses inherent to for instance public address systems. We derive a new
prediction-error-method (PEM)-based scheme (referred to as PEM-AFROW)
which identifies both the acoustic feedback path and the nonstationary speech
source model. A cascade of a short- and a long-term predictor removes the
coloring and periodicity in voiced speech segments, which account for the un-
wanted correlation between the loudspeaker signal and the speech source sig-
nal. The predictors calculate row operations which are applied to prewhiten
the speech source signal, resulting in a least squares system which is solved
recursively by means of NLMS or RLS algorithms. Simulations show that this
approach is indeed superior to earlier approaches whenever long acoustic chan-
nels are dealt with.

9.1 Introduction

Acoustic feedback, also referred to as the Larsen-effect (howling) occurs in
microphone-amplifier-loudspeaker-room systems (Fig. 9.1) when the micro-
phone is too close to the loudspeaker and/or when the amplification is too large.
In Fig. 9.1, K is the amplifier gain, y(t) is the microphone signal, u(t) = Ky(t)
is the loudspeaker signal, f(t) is the feedback path impulse response, and v(t)
is the (speech) source signal. Acoustic feedback occurs when the loop gain is
larger than one at a frequency where the loop phase is a multiple of 2π.

A conventional solution consists of inserting notch filters into the signal path,
thus decreasing the loop gain at those frequencies for which the problem arises.
Examples of this approach are available in commercial products (Sabine [1],
DBX, Behringer, Shure [2]). The main disadvantage is that the system is
reactive, i.e., the howling phenomenon first needs to be detected before the
notch filter can be computed and placed in the loop. In most systems, detection
takes more than 0.5 s, hence a “proactive” approach is more desirable. Another
disadvantage of the notch-filter-based systems is that they do not suppress the
“reverb-like” sound which occurs in a system which is marginally stable.

In this paper, we will focus on single-channel acoustic feedback cancellation
(AFC) schemes as depicted in Fig. 9.2 (although multi-loudspeaker (beam-
forming) techniques exist [3],[4]). This type of AFC schemes is inspired by
acoustic echo cancellation (AEC) schemes. The filter coefficient vector f(t) of
the acoustic path from the loudspeaker to the microphone

F (q, t) = f(t)T q (9.1)
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K
v(t)

f

y(t)

u(t)

Figure 9.1: A microphone-amplifier-loudspeaker-room system.

=
[
f0(t) f1(t) . . . fnF (t)

]








q0

q−1

...
q−nF








(9.2)

is estimated as f̂(t). Here q−1 is the delay operator. The nF + 1 coefficients
of f̂(t) are copied at regular time instants to the cancellation filter f̂0(t). The
loudspeaker signal u(t) is filtered by the room impulse response f(t) and also by
the cancellation filter f̂0(t). The difference between the cancellation filter out-
put and the microphone signal is the feedback-compensated signal d(t) which
should then be equal to the speech source signal v(t) (for a correct model f̂(t)).
In Fig. 9.2, e(t) is the excitation sequence of the source signal, and

H(q, t) =
1

1 + a1(t)q−1 + ... + anA(t)q−nA
(9.3)

is a time-varying autoregressive (AR) speech model of order nA. The coefficient
vector of the denominator is a(t). Finally, the q−d block in Fig. 9.2 is a forward
delay, which is often unavoidable in digital implementations (buffers for A/D
and D/A converters, ...), and which will be exploited further on.

An AEC-like approach has been used for AFC in, e.g., [5],[6]. In AEC, an
important assumption is that the “near-end speech signal” v(t) is uncorrelated
with the loudspeaker signal u(t), and hence Wiener filtering theory can be ap-
plied in order to identify the room impulse response with only the loudspeaker
signal as an input to the system. The main complication in AFC compared
to AEC is that this assumption is not fulfilled anymore. It is known that a
correlation between the speech source signal v(t) and the loudspeaker signal
u(t) results in a bias in the identified room impulse response when direct iden-
tification is applied (i.e., when the room impulse response is identified as if the
system were operating in open loop) [7],[8].

This bias can be removed using the prediction error method (PEM), which
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Figure 9.2: Acoustic feedback cancellation scheme.

incorporates a speech source signal model into the identification procedure [9].
The speech source signal in this system identification setup is to be considered
as a “noise” signal, and its parameters have to be estimated along with the
room impulse response. This speech model can then be used to prewhiten
the speech source signal component in both the loudspeaker signal and the
microphone signal. The feedback problem has been studied mainly in the
hearing aids context where the feedback path impulse response is less than 5
ms. In this paper, we focus on public address (PA) systems, where the feedback
path typically has a much longer impulse response, e.g., up to 500 ms, and hence
an alternative approach will be needed.

Speech, although highly nonstationary over longer time periods, is often con-
sidered to be stationary during short frames of ca. 20 ms (e.g., 160 samples at
8 kHz). Within these frames, it can be whitened by a cascade of a short-term
predictor (STP) and a long-term predictor (LTP). The STP models the filter-
ing operation performed by the vocal tract, and the LTP models the periodic
behavior of the glottal excitation sequence during voiced speech. The STP
identifies an AR process of order nA (e.g., nA = 10 at 8 kHz). The LTP is
an AR process with basically one single non-zero tap at a lag which can vary
between 20 and 160 samples at 8 kHz. The room impulse response length for
PA applications on the other hand (unlike for hearing aid applications) can
have several thousand of non-zero taps, and is mostly stationary over longer
periods of time. So it is advantageous to use data windows of several seconds to
estimate the room impulse response, over which the speech signal then will be
nonstationary. This contrast between the long stationarity period of the long
room impulse response and the short stationarity period of the STP speech
model, and the corresponding number of data points which are available to
identify each of them, is fundamental to the problem of AFC for PA systems.

In [9], the authors derive a two-channel algorithm (2ch-AF), which uses the
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same data window length for the identification of the speech model as for the
room impulse response identification. This is justified for short acoustic paths
such as in hearing aids. For PA systems, this approach is suboptimal as is
shown in [10], but it still performs better than so-called direct identification,
since it still provides some degree of prewhitening (with an “averaged” speech
model).

Another method is described in [11], and its theoretical basis is derived in [9].
We will refer to this algorithm as PEM-AF. It effectively distinghuishes between
the estimation window length for the speech model and for the room impulse
response model, but it implicitly uses an assumption about the stationarity of
the speech model, which is not valid for long acoustic impulse responses as in
PA applications. Existing methods also use an incomplete speech model (STP
only), which provides some whitening, but does not remove the periodicity
due to the glottal excitation, resulting in the loudspeaker signal still being
correlated to the source signal during voiced speech.

In this paper, we introduce a new technique which estimates the speech model
over short time windows (over which it is stationary), and the room impulse
model over longer time windows (which is necessary because the number of
parameters is much larger). The speech model is then not required to be
stationary during the complete room impulse response. Our scheme will also
include an LTP which models the periodicity in e(t). The difference with the
existing schemes like [9] is, aside from this LTP, also the “row transforma-
tion” approach. The row transformations allow the whitening to be performed
correctly (they can be interpreted as a decorrelation of the speech source com-
ponent in the right hand side of a least squares system), and we will show that
this scheme indeed outperforms existing methods. These row transformations
are required to perform the prewhitening step correctly, hence the algorithm is
named “prediction-error-method-based adaptive filtering with row operations”
(PEM-AFROW).

This paper is organized as follows. In Section 9.2, we first review the prediction
error method, 2ch-AF and PEM-AF. In Sections 9.3 and 9.4, we introduce
our new procedure. It uses alternating updates of the speech model and the
adaptive filter which models the room. In Section 9.7 we show simulation
results, and Section 9.8 contains the conclusion of the paper.

9.2 Prediction Error Method

In [9] the so-called prediction error method (known from system identification
theory [12]) is applied to the AFC problem. Under the assumption of sta-
tionarity, it is proved that if in a scheme as shown in Fig. 9.3 the forward
delay d is larger than the order nA of the AR process which generates the
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Constraint : 1st tap = 1
+

A(q, t) ⇒ 1/H(q, t)
B(q, t) ⇒ F (q, t)/H(q, t)

âb̂

v(t)

e(t)AR(nA)
H(q, t)

f

y(t)

u(t)

K

q−d

Figure 9.3: Identification part of the 2ch-AF scheme [9].

speech signal, the two-channel MMSE-based adaptive filter {Â(q, t), B̂(q, t)}
with filter coefficient vectors {â(t), b̂(t)} will converge to the unique solution
{H−1(q, t), F (q, t)H−1(q, t)}.

This allows to introduce a cancellation filter F̂0(q, t) = A−1(q, t)B(q, t) into
the scheme (see Fig. 9.2). If this is implemented as an IIR filter, stability
monitoring is needed, but it is a trivial modification to perform a deconvolution
first, which results in an FIR cancellation filter.

The filters b̂(t) and â(t) are updated concurrently in the two parallel branches,
and so the scheme is referred to as two-channel adaptive feedback canceller
(2ch-AF). The estimation data window is the same for both branches, and
hence the scheme provides good results in hearing aid applications, where the
speech signal is stationary over the data window length required to estimate
the acoustic path.

PEM-AF was proposed in [9],[11]. This technique uses two independently up-

dated adaptive filters f̂(t) and â(t), as shown in Fig. 9.4. The estimation of f̂(t)
and â(t) can be performed over different data window lengths (different RLS
forgetting factors). In PEM-AF, â(t) decorrelates the scalar output residuals
of the adaptive filter f̂(t). In a stationary setup, where the order of both filters
is arbitrary, this is equivalent to a prewhitening operation for the input of the
filter f̂(t). Also this scheme performs well in hearing aid applications, where
the speech model does not change over the data window needed to estimate
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AR(nA)

H(q, t)
e(t)

v(t)y(t)

u(t)

ff̂

q−d

K

â

Figure 9.4: PEM-AF scheme [9],[11]. Only the identification part is shown, the
estimate f̂ can be used in a scheme like Fig. 9.2 to perform acoustic feedback
cancellation.

the acoustic impulse response.

As explained in Section 9.1, this assumption does not hold in PA applications.
In the next section we will derive a new method with much better performance
for long acoustic paths. It will become clear that PEM-AF can be viewed as
an approximation of this method. The performance gain of the new method in
the next section will be shown by simulations.

9.3 Proposed Algorithm: PEM-AFROW

We model the speech source signal as a time-varying AR (TVAR) signal of
order nA (see Figs. 9.1 and 9.2):

v(t) = a1(t)v(t − 1) + . . . + anA(t)v(t − nA) + b(t)e(t). (9.4)

It is instructive to first assume that e(t), the excitation sequence, is a white
noise sequence, and the factor which accounts for the energy variations in the
excitation sequence, b(t) = 1. Further on, we will only assume b(t) to be
constant during the length of a frame and in Section 9.4, we will use a more
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general model for e(t). We start from the minimization problem

min
f̂(t)

∥
∥
∥Uf̂ (t) − y

∥
∥
∥ , (9.5)

with

U =








u(t) u(t − 1) . . . u(t − nF )
u(t − 1) u(t − 2) . . . u(t − nF + 1)

...
...

. . .
...

u(0) 0 . . . 0








, (9.6)

y =








y(t)
y(t − 1)

...
y(0)








. (9.7)

This minimization results in a biased estimate f̂(t) for f(t) since y(t) contains
the “disturbance” v(t) which is correlated with u(t), i.e.,

y = Uf(t) + v (9.8)

with

v =








v(t)
v(t − 1)

...
v(0)








. (9.9)

If we have the finite impulse response filter

A(q, t) = H−1(q, t) (9.10)

available at each time instant, with coefficients a(t), we can apply a prewhiten-
ing by forming the matrix

A =








1 a1(t) a2(t) . . . anA(t) 0 . . . 0
0 1 a1(t − 1) . . . anA−1(t − 1) anA(t − 1) . . . 0
...

...
...

. . .
...

...
. . .

...
0 0 0 . . . 0 0 . . . 1








(9.11)

and modifying the minimization problem (9.5) to

min
f̂(t)

∥
∥
∥AUf̂ (t) − Ay

∥
∥
∥ . (9.12)

This will effectively whiten the component v(t) in y(t), while performing only
row operations on the input matrix U, i.e., from (9.8)

Ay = AUf(t) + e, (9.13)
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and thus lead to an unbiased estimate f̂ (t). If we have an estimate Â(q, t) of
H−1(q, t) available at each time instant, with coefficients â(t) ∈ R

nA+1, we can
apply a prewhitening by forming the matrix

Â =








1 â1(t) â2(t) . . . ânA(t) 0 . . . 0
0 1 â1(t − 1) . . . ânA−1(t − 1) ânA(t − 1) . . . 0
...

...
...

. . .
...

...
. . .

...
0 0 0 . . . 0 0 . . . 1








(9.14)

and modifying the minimization problem (9.5) to

min
f̂ (t)

∥
∥
∥ÂUf̂ (t) − Ây

∥
∥
∥ . (9.15)

We now introduce the assumption that a(t) and b(t) are constant during frames
of 20 ms, which is a common assumption for speech signals. This means that
we rewrite

Â =















1 â
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i−1 . . . 0
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..
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













↑
M
↓
↑
M
↓
...

(9.16)
and

bi = b(iM) = ... = b((i + 1)M − 1), (9.17)

with, e.g., M = 160 for a sampling rate of 8 kHz, and i = ⌈t/M⌉ , the first
integer larger than or equal to t/M . This means that i is the frame index. We
define

âi =
[

1 â
(1)
i . . . â

(nA)
i

]T

. (9.18)

We now decouple the nonlinear equations in order to calculate the estimates
âi and the room response f̂(t) in an alternating fashion. In the first step, an
estimate f̂ (iM−1) from the previous frame is used to filter a frame iM, . . . , (i+
1)M − 1 of data (20 ms), see Fig. 9.5. The filter output is subtracted from the
corresponding microphone samples, resulting in

d(t) = y(t) − uT (t)̂f (iM − 1), t = iM, . . . , (i + 1)M − 1, (9.19)

with

u(t) =






u(t)
...

u(t − nF )




 . (9.20)
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Figure 9.5: PEM-AFROW. In the first step, â is estimated in the left hand side.
It is then copied to the right hand side, where the estimation of f̂ is performed
on the same data frame (step 2). Finally, f̂ is copied to the left hand side and
used in the next frame.

Note that if the estimate f̂(iM − 1) were exact, then d(t) = v(t). Then linear
prediction is performed on this d(t), t = iM, . . . , (i+1)M−1 (Levinson-Durbin
algorithm) to find the linear prediction error filter âi for frame i.

In the second step, (9.15) is solved for f̂(t), t = iM, . . . , (i + 1)M − 1, which is
possible since âi is known from step 1. Note that the window length should be
set appropriately. This improves the estimate f̂(t) for f(t), since f(t) is assumed
constant or “slowly changing” compared to the frame length. Note that the
stimulus energy bi is assumed constant over a frame, and this means that the
variance on the estimate f̂(t) may differ from frame to frame. The two steps
can be iterated on the frame. Since none of these two steps will increase

E {‖ε‖} = E
{∥
∥
∥ÂUf̂ (t) − Ây

∥
∥
∥

}

, (9.21)

with E{·} the expected value operator, the algorithm will converge to a (pos-
sibly local) minimum of (9.15).

In order to reduce the complexity, we will perform only one iteration per frame.
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The minimization problem (9.15), with a fixed value of Â, can be solved for f̂(t)
by means of any adaptive filtering algorithm. We have implemented this both
using a QR-decomposition-based RLS (QRD-RLS) algorithm and an NLMS
algorithm. The input vector is in both cases

ǔT (t) = âT
i






uT (t)
...

uT (t − nA)




 , i = ⌈t/M⌉ , (9.22)

and the desired signal input (right hand side sample) is

y̌(t) = âT
i






y(t)
...

y(t − nA)




 , i = ⌈t/M⌉ . (9.23)

Since u(t) is a shifted version of u(t − 1) with one sample prepended, and âi

remains constant during a frame of M samples, ǔ(t) will be a shifted version
of ǔ(t − 1) with one sample prepended. So inside a frame, only one vector
multiplication has to be performed to calculate ǔ(t). On the other hand, at the
start of each frame, a matrix multiplication should be performed to calculate
all elements of ǔ(iM) as follows:

ǔT (iM) = âT
i






uT (iM + 1)
...

uT (iM − nA + 1)




 . (9.24)

For real-time implementation, the scheme involves a delay of one frame for the
update of f̂(t), since âi can only be calculated at time t = (i+1)M−1. Note that
this is not a problem since we have assumed that the room impulse response is
constant over more than one frame. The delay is effectively implemented as a
delay line for the input samples u(t) before they are fed to Eq. (9.22).

Once the room impulse response has been identified, the next step is to insert
the cancellation filter into the feedback loop scheme by setting f̂0(t) = f̂(t),
e.g., at regular time intervals (see Fig. 9.2). It is important to notice that this
obviously influences the adaptation. The input data used for the identification
procedure then depend on the current model estimate, which is reminiscent of
a nonlinear optimization problem. This dependency is effectively ignored in
our implementation (it is also ignored in adaptive control theory [13, Ch. 7]).
Experiments indicate that updating the cancellation filter regularly is beneficial
to the identification process. This can be explained because a time-variant for-
ward path (from microphone to loudspeaker) decreases the correlation between
the loudspeaker signal and the speech source signal.
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At this point, the difference between PEM-AF and PEM-AFROW becomes
obvious: in PEM-AFROW the stationarity of the speech model is explicitly as-
sumed in the minimization problem by stating that âi remains constant during
a frame (see Eq. (9.16)). At the start of each frame, the full input vector ǔT (t)
is recalculated. In PEM-AF, this assumption of stationarity is not made for the
optimization problem itself (the optimization is decoupled in two completely
independent adaptive filters), and the full input vector is never recomputed
after a change of â(t) in PEM-AF. This can only be justified for short acoustic
impulse responses, and (as will be shown later on) PEM-AF performs much
worse than PEM-AFROW for long acoustic impulse responses.

9.4 Long-Term Prediction

For the TVAR signals studied in the previous section (where e(t) was a white
noise sequence), the prewhitening step removes all of the correlation between
the loudspeaker signal and the source signal. However, the excitation sequence
e(t) for voiced speech is periodical (glottal excitation). Hence the input signal
u(t) to the adaptive filter is –due to this periodicity– still correlated with the
source signal, even after prewhitening. This in practice leads to a severely
biased estimate of the room impulse response (the bias being localized at the
excitation harmonics).

A possible solution could be to increase the length (span) of the prediction
filter a(t) so that it becomes longer than the period of the excitation sequence.
It would then combine the periodicity together with the AR coefficients for the
vocal tract model. The problem here is that the pitch period can be as long
as 160 samples, and hence not enough data is then available in a 160 sample
window to estimate the (160 + nA − 1) prediction filter coefficients.

A standard approach in speech coding [14] is to cascade an STP of order
nA (e.g., 12), which models the vocal tract characteristics in the feedback-
compensated signal d(t) (defined in (9.19)),

w(t) = âT
i






d(t)
...

d(t − nA)




 , i = ⌈t/M⌉ , (9.25)

with an LTP with only one tap and a lag equal to the pitch period to model
the periodicity in d(t),

ε(t) = w(t) − αjw(t − Kj), j = ⌈t/MLTP⌉ . (9.26)

The LTP can be estimated in windows of 20 ms (which is the frame length M of
the STP), with a 10 ms overlap. This means that the LTP model is estimated
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each 10 ms, corresponding to MLTP samples (at 8 kHz, MLTP = 80). In order
to estimate the LTP, we minimize

min E
{

‖ε(t)‖2
}

= min
Kj ,αj

E
{

‖w(t) − αjw(t − Kj)‖2
}

. (9.27)

The solution follows from

E {w(t − Kj)w(t − Kj)}αj = E {w(t)w(t − Kj)} . (9.28)

In order to estimate these values, we define

w(t) =








w(t)
w(t − 1)

...
w(t − M + 1)








. (9.29)

We can then estimate

αj =
[
wT (t − Kj)w(t − Kj)

]−1
wT (t)w(t − Kj). (9.30)

The variance of the LTP residual is

σ2
j = wT (t)w(t) − [wT (t)w(t − Kj)]

2

wT (t − Kj)w(t − Kj)
. (9.31)

This variance σ2
j is evaluated for different values of Kj = Kmin, . . . , Kmax (the

lag), and the parameters {Kj, αj} which result in the minimum value of σ2
j are

chosen as the predictor for LTP frame j.

In the PEM-AFROW method of Section 9.3 and Fig. 9.5, the speech model will
now be a cascade of an STP and LTP. The details of the resulting algorithm
will be given in Section 9.5.

It is important to note that by applying the LTP, the actual order of the speech
source model is the lag of the LTP model plus the order of the STP model, and
as stated in [9], to guarantee identifiability, the forward delay must be larger
than the order of this model. In practice this delay is approximately 20 ms,
but then it does not matter too much where this forward delay is implemented:
often a latency d is introduced by buffering after and before the A/D and D/A
converters, or even –due to the relatively low velocity of sound waves– this
delay appears automatically from the distance between the loudspeaker and
the microphone.

In Section 9.3 it was mentioned that at frame borders, the whole input vector
has to be recalculated by means of a matrix multiplication. It must be noted
that when the LTP is added to the algorithm, this matrix multiplication has to
be performed not only at frame borders of the STP, but also at frame borders
of the LTP. The next section will show this in detail.
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Note that a multi-tap LTP [14] may be used instead of a single-tap LTP. In the
algorithmic description of the next section, we have made abstraction of this
in order to keep the pseudo-code readable. In the algorithm description, we
also assumed no overlap between the LTP frames. This means that the LTP
parameters Kj and αj are estimated only once per STP frame (i.e., i = j).

9.5 Algorithm Description

In order to apply row updates, the input vector of the adaptive filter ũ(t)
(which consists of the residual signal of the cascade of the STP and LTP) and
the vector from which this is computed, namely ǔ(t), have to be recalculated
whenever the STP changes (which happens at each frame border). When the
vector ǔ(t) has been recalculated Kj samples ago (Kj is the lag of the LTP),
ũ(t) has to be recomputed completely (by applying the LTP). At all other
time instants, ǔ(t) and ũ(t) are shifted versions of the previous ǔ(t − 1) and
ũ(t−1), with only one new element in front. If the LTP data windows overlap,
the vector ũ(t) has to be recomputed whenever the LTP changes.

An adaptation threshold Ta was included in order to account for A/D-D/A or
amplifier noise. Without this threshold, the algorithm’s coefficients could drift
during silence. A complete pseudo-code description is given in Table 9.1.

9.6 Complexity

The complexity is evaluated when the algorithm is operated with an NLMS
adaptive filter. In these complexity expressions a multiplication and an addition
are counted as two separate floating point operations. A “search range” Kmin to
Kmax has to be specified for the lag of the LTP (at 8 kHz, typically Kmin = 20,
Kmax = 160). The complexity depends on these parameters through

∆K = Kmax − Kmin. (9.32)

For the complexity calculation we assume a single-tap LTP, and we also assume
that the frames do not overlap. Since at each frame border the full NLMS input
vector is recalculated, the complexity per sample is

8(LF + nA) + 4∆K + 5 +
(2nA + 4)LF + 4nA

2 − 5nA + 15

M
(9.33)

floating point operations, with LF = nF + 1. The algorithm was implemented
in C++ on a Pentium III, 1GHz PC without any specific optimization effort,
and runs in real time with Kmin = 40, Kmax = 320, LF = 2000, nA = 24,
M = 320 at 16 kHz sampling rate, with an LTP frame overlap of 160 samples.
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Table 9.1: PEM-AFROW. The function Adapt(coefficients,inputvector, desired signal sample) is an adaptive
filtering algorithm, e.g., RLS or NLMS. The function LongTermPredictor(short-term prediction residual vector)

performs the operations which are explained in section 9.4.
for each sample u(t), y(t), t = 0, 1, . . .

u(t) = [u(t) ūT (t − 1)]T //̄· means all components but last

y(t) = [y(t) ȳT (t − 1)]T //u(t), y(t) have length nA

d(t) = y(t) − f̂T
0

(t)[u(t) u(t − 1) . . . u(t − nF )]T //d(t) is the compensator output

d(t) = [d(t) d̄T (t − 1)]T //d(t) has length M

ǔ(t − M) = âT
i−1u(t − M)

}

//Short-term whiteningǔ(t − M) = [ǔ(t − M) ¯̌uT (t − M − 1)]T

y̌(t − M) = âT
i−1y(t − M)

ũ(t − M) = ǔ(t − M) − αi−1ǔ(t − M − Ki−1)
}

//Long-term whiteningỹ(t − M) = y̌(t − M) − αi−1y̌(t − M − Ki−1)

ũ(t − M) = [ũ(t − M) ¯̃u
T (t − M − 1)]T

if ũT (t − M)ũ(t − M) > Ta //Energy threshold Ta: adapt or not

f̂(t + 1) = Adapt
(
f̂(t), ũ(t − M), ỹ(t − M)

)
//With RLS or NLMS

end if

if t = iM − 1, i ∈ Z

{âi, w(t)} = LevinsonDurbin
(
d(t)

)

{Ki, αi} = LongTermPredictor
(
w(t)

)

for k = 0, . . . , nF − 1 //Recalc. whole NLMS input vector

ǔ(t − M − k) = âT
i u(t − M − k)

ũ(t − M − k) = ǔ(t − M − k) − αiǔ(t − M − k − Ki)
end for

ǔ(t − M) = [ǔ(t − M) . . . ǔ(t − M − nF )]T

ũ(t − M) = [ũ(t − M) . . . ũ(t − M − nF )]T

end if

if t − Ki = iM − 1, i ∈ Z //Recalc. LTP on full input vector

for k = 0, . . . , nF − 1
ũ(t − M + 1 − k) = ǔ(t − M + 1 − k) − αiǔ(t − M + 1 − k − Ki)

end for

end if

if DecideToUpdateCompensator(t)

f̂0(t) = f̂(t)
else

f̂0(t) = f̂0(t − 1)
end if

end for
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9.7 Simulation Results

In Fig. 9.6, we first compare the PEM-AFROW approach to the decoupled
PEM-AF approach for short paths, as they occur in, e.g., hearing aids. In the
figure the average of the error norm

∥
∥
∥f(t) − f̂(t)

∥
∥
∥ (9.34)

for 7 different speech signal inputs is plotted as a function of time. In order to
provide an idea of the variance, also the convergence curves of the individual
realizations are shown. Note that only the identification performance (in closed
loop) is shown, which means that the cancellation filter f̂0(t) (see Fig. 9.2) is
not inserted into the scheme during adaptation. If the filter would be inserted,
the performance will generally be better, since inserting the filter corresponds
in fact to inserting an uncorrelated signal into the loop. The acoustic path has
50 taps. We use NLMS for both approaches, since in a practical implementation
this would be the adaptive algorithm of choice (due to complexity constraints).
The NLMS step size is 0.04 for PEM-AFROW, while PEM-AF, which uses a
modified NLMS algorithm and hence a different definition of the step size, was
tuned to give equal initial convergence speed (step size 0.03). This allows us to
make a fair comparison of the resulting bias/variance of the solution. Note that
the performance of all algorithms is dependent of the energy ratio (“signal to
noise ratio”) of the loudspeaker component arriving on the microphone versus
the source signal arriving on the microphone (the source signal should thus be
interpreted as “noise”). The simulations shown here were performed with a
value of -5 dB for this ratio, which was the edge of stability for this setup, and
hence certainly relevant. Experiments show a similar performance difference
between the algorithms for other ratios. The STP frame length is 160 samples,
the LTP frame overlap is 80 samples, the minimum and maximum lag for the
LTP are 20 and 160 respectively. The sampling frequency is 8 kHz. The STP
model order in PEM-AFROW and PEM-AF is 10. The forward delay is 200
taps in both PEM-AFROW and PEM-AF (note that the PEM-AF version of
[11] does not explicitly incorporate a forward delay, but the theoretical analysis
of [9] shows that this is required for correct performance, hence we added it
to the system). PEM-AF and PEM-AFROW are seen to yield comparable
performance, which is to be expected since the assumption of stationarity of
the speech model during the data window for acoustic path identification is
fulfilled in this experiment. The difference with PEM-AFROW including LTP
is insignificant (and hence this curve is not plotted). Direct identification is
seen to give poor results (i.e., when the room impulse response is identified as
if the system were operating in open loop).

For longer paths, as in PA applications, PEM-AF performance decreases with
path length, and for, e.g., LF = 1000, its behavior is certainly better than the
direct identification behavior, as shown in Fig. 9.7, but a large bias remains.
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Figure 9.6: Closed-loop identification for short acoustic paths (50 taps). Upper
figure: weight error norm versus time for 7 realizations with different speech
signals for PEM-AFROW, PEM-AF and direct identification. Lower figure: the
averages of the convergence curves of the realizations. PEM-AFROW performs
equally well as PEM-AF for short paths (as expected). PEM-AFROW with
LTP does not perform better than without LTP.
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Also here the shown convergence curve of PEM-AF was tuned to have equal
initial convergence to PEM-AFROW. PEM-AFROW on the other hand, does
perform well also for long paths. The poor performance of PEM-AF is to be
attributed to the stationary speech model assumption, which is not fulfilled for
long paths.

9.8 Conclusion

We have introduced a new algorithm, referred to as PEM-AFROW, which
allows for acoustic feedback cancellation in setups with long acoustic paths.
It uses a speech source model with short- and long-term prediction. Not only
the howling phenomenon is suppressed but also the reverberation-like sounds,
which indeed become audible in the region of marginal stability. The main
difference with existing schemes is twofold. First, our algorithm incorporates a
long-term prediction filter which removes periodicity in the short-term speech
signal residual, and second, we do not assume stationarity of the speech signal
over the length of the data window on which the acoustic path is identified.

PEM-AFROW hence performs very well for long acoustic paths, contrarily
to existing algorithms which were developed for short path applications. For
short acoustic paths the performance of PEM-AFROW is equal to that of the
existing methods. Thanks to the low complexity, the algorithm can easily be
implemented in real time.
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Abstract

The PEM-AFROW algorithm has been developed to model a room impulse re-
sponse under closed-loop conditions such as in microphone-amplifier-loudspeaker
systems, and is particularly suited for a speech signal input. If a controller is
inserted in the loop which uses this model to remove the loudspeaker signal
component from the microphone signal, an efficient feedback cancellation can
be performed. In this paper, we address crucial implementation-oriented is-
sues which have not been studied so far. In particular, we propose adaptation
control mechanisms for feedback cancellation based on PEM-AFROW, and we
provide efficient subband and frequency domain implementations for this algo-
rithm.

10.1 Introduction

In closed-loop electro-acoustic systems such as public address (PA) systems or
hearing aids, system instability due to acoustic feedback (the so-called Larsen-
effect [1], or howling) is a well-known phenomenon. It occurs when the system
loop gain exceeds unity on frequencies ωi where the loop phase equals 2nπ
radians, with n integer. An acoustic feedback canceller is a controller for this
system, which attempts to maintain stability, resulting in an “added gain”.
This performance measure is the difference between the maximum gain for
a stable controlled system and the maximum gain for a stable uncontrolled
system.

The most important disadvantage of traditional acoustic feedback solutions
[2],[3], mainly based on the insertion of notch filters centered on ωi, is that
they are reactive (the instability first has to occur and be detected before the
notch filter can be designed, and typically this detection takes up to 0.5 s).
Notch filters in the signal path also result in signal distortion. They cannot
remove the reverberation-like sound which occurs in marginally stable systems.
On the other hand, a major advantage is that the notch filtering technique
can be made quite robust against fast changes in the acoustic environment:
typically, a small displacement of a microphone will only modestly affect the
center frequencies on which instability occurs. This means that by using wider
notch filters, robustness can be achieved.

In [4],[5], an alternative acoustic feedback cancelling method is derived which
is based on the so-called PEM-AFROW algorithm (which is a Prediction Error
Method Adaptive Filter using matrix-ROW operations as a preprocessing step).
This method belongs to a class of adaptive feedback cancellation algorithms
which are based on adaptive filtering and are similar to standard acoustic echo
cancelling [6]-[10]. Fig. 10.1 provides a diagram, where K is the gain, q−1 is



260 Chapter 10. Robust and Efficient AFC Implementation

the delay operator, hence q−d is a delay of d samples. The speech source signal
v(t) is assumed to be a time-variant autoregressive (TVAR) process, and is
modeled as the output of an IIR filter

H(q, t) =
1

1 + a1(t)q−1 + ... + anA(t)q−nA
(10.1)

driven by white noise e(t), hence v(t) = H(q, t)e(t). Because of the closed
signal loop, standard adaptive filters such as used in acoustic echo cancellation
are found to provide biased solutions [10]. However, the PEM-AFROW algo-
rithm allows for an unbiased joint identification of a linear model f̂ (t) of the
room impulse response (RIR) f(t), and of the TVAR coefficients â(t) of the
denominator of H(q, t), under closed-loop conditions (see also Fig. 10.1). Here
f̂(t) is a vector which contains estimates of the coefficients of the finite impulse
response (FIR) filter f(t), modeling the RIR (acoustic feedback path)

f̂(t) =








f̂0(t)

f̂1(t)
...

f̂nF (t)








, (10.2)

â(t) is a vector

â(t) =








1
â1(t)

...
ânA(t)








, (10.3)

and q−d is a delay of d taps. In [11], it is shown that for d > nA, both f(t) and
a(t) can be uniquely estimated. For a real speech input signal, apart from a
short-term predictor with coefficients â(t), additionally a long-term predictor is
used, but for simplicity we will ignore this in this paper (details are in [5]). The
estimated RIR f̂(t) can then be used in a so-called “controller” f̂0(t), where the
loudspeaker signal (far-end signal) u(t), filtered by the model of the RIR (the
controller), is subtracted from the microphone signal y(t).

The resulting signal d(t) ideally has no remaining component stemming from
the loudspeaker, but only contains the so-called “near-end signal” v(t). The
echo canceller terminology “near-end” and “far-end” will also be used in this
paper to denote the corresponding signals (far-end for the loudspeaker signal,
and near-end for the speech signal), although the description “far-end” does
not strictly fit into the acoustic feedback cancellation context.

The PEM-AFROW algorithm [4],[5] operates in two steps, Fig. 10.2. In a first
step, the estimate f̂(t) is assumed to be correct, and it is used to find a linear
prediction error filter â(t) that whitens the speech source signal. In a second
step, this linear prediction error filter is in turn assumed to be correct, and it
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Figure 10.1: Acoustic feedback cancellation.

is used to perform a whitening of the speech source component in the input
and desired signal for an adaptive filter which then provides an update of the
estimate for f̂(t). The linear prediction filter â(t) is –after convergence– equal
to the inverse of the speech source model H(q, t), and hence the adaptive filter
f̂(t) then indeed operates on whitened versions of the signals u(t) and y(t) as its
input and desired signal, respectively. It is easily shown that from the point of
view of the adaptive filter f̂(t), this scheme with a TVAR input and whitening
filters as described above, corresponds to a scheme without whitening filters,
but driven by a white noise signal. For a white noise input, decorrelation
between u(t) and v(t) is achieved when d ≥ 1. Hence due to the decorrelation
provided by the delay, the adaptive filter f̂ (t) will converge to an unbiased
solution.

The advantages of using such a scheme are obvious. It is proactive (no insta-
bility has to occur before feedback path identification can take place), and the
RIR is continuously tracked. Secondly, no (notch) filtering occurs in the sig-
nal path, which means that in case perfect identification is achieved, no signal
distortion occurs. Finally, this scheme also removes the “reverberating” sound
which occurs near the edge of stability.

In this paper, we address crucial implementation-oriented issues which have
not been studied so far. We will focus on some robustness issues (Section 10.2)
which exist in the context of PEM-AFROW-based acoustic feedback cancella-
tion. In particular, we will study the topics adaptation control (Section 10.2.1),
the use of prior knowledge (Section 10.2.2), the use of a foreground/background
filter pair (Section 10.2.3), proactive notch filtering (Section 10.2.4), using non-
linearities (Section 10.2.5), and finally the inclusion of a highpass filter (Section
10.2.6). Section 10.3 deals with subband and frequency domain implementa-
tions of PEM-AFROW. Section 10.4 provides simulation results, and Section
10.5 gives the overall conclusions.
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Figure 10.2: PEM-AFROW identification algorithm.

10.2 Robustness

The controller in a PEM-AFROW-based acoustic feedback cancellation scheme
stabilizes an unstable system (loudspeaker-room-microphone-amplifier). The
controller f̂0(t) should be matched to the acoustic feedback path f(t) at all
times to avoid instabilities. Fast changes in the environment can often not be
tracked fast enough by the adaptive filter and hence several robustness issues
arise. These will be addressed in the following sections.

10.2.1 Adaptation Control

Problem Statement

In the context of standard acoustic echo cancellation, a near-end signal forms
a disturbance (measurement noise) for the identification process performed by
the adaptive filter. If the near-end signal v(t) is correlated with the far-end
signal u(t), this will result in a bias in the estimate of the filter coefficients
f̂(t). If the signals are uncorrelated, still variance on f̂(t) will result due to the
measurement noise. When NLMS-based algorithms are used (as is often the
case because of their low complexity), an excess mismatch on f̂(t) is introduced
in the presence of near-end signals. Hence a double-talk detector is used to
switch off adaptation during periods where near-end speech is present in order
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to avoid variance on the estimate of the RIR, and a far-end activity detector is
used to switch off adaptation when the far-end signal energy is below the noise
level.

In the acoustic feedback cancellation context, see Fig. 10.1, this far-end activity
detector is also required (adaptation may only occur when a signal is present),
but a double-talk detector is obviously irrelevant. The loudspeaker signal is
correlated with the near-end signal due to the presence of the forward path
Kq−d, hence the feedback cancellation system continuously operates in double-
talk mode. In order to be able to perform continuous adaptation when the far-
end (and hence also near-end) signals are present, the PEM-AFROW algorithm
decorrelates u(t) and v(t) by the whitening procedure combined with a delay
in the forward path. This effectively avoids a bias in the estimate. Due to
the continuous adaptation during signal presence, convergence speed in a real-
world scenario, is fast enough to turn the audio volume level from −∞ dB to
5 to 10 dB added gain in 5 seconds without howling occurring. Note that in
this case 0 dB is defined as the level at which in the system without a feedback
controller howling would start to occur. The PEM-AFROW algorithm avoids
the bias, but still a large variance may result. The amount of variance depends
on the ratio FNR between the two components in the microphone signal y(t):
the far-end component x(t) and the near-end component v(t). We define

FNR =
E{x2(t)}
E{v2(t)} , (10.4)

where E{·} is the expectation operator. The near-end component can be seen as
measurement noise for the identification process, while the far-end component
in the microphone signal is indeed the loudspeaker signal filtered by the RIR
f(t), and so represents the signal part which is useful for the identification
process. Hence for a large value of the FNR, the variance will be low. For high
gains in the forward path of an acoustic feedback application, the identification
works better, which is of course useful since the Larsen-effect occurs at high
gains. On the other hand, in several scenarios the FNR may be low (see below),
and this will lead to a large variance on the estimate of the RIR, which may
then result in instability of the system (Larsen-effect).

Onset Detection

Instabilities primarily occur at speech onsets, or in general at sudden level
increases of the near-end signal. At a speech onset (a sudden level increase
of v(t)), the FNR is temporarily very small because the corresponding level
increase in x(t) is delayed by the forward path q−d and the delay due to the
RIR f(t) itself, see Fig. 10.3. Hence if no control algorithm is incorporated
in the system, onsets of speech may cause the estimate of the RIR to drift
away from the correct solution. This will often lead to instability of the whole
system.
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Figure 10.3: Timeline of the far-end near-end ratio, starting from a near-end
speech onset.

The control algorithm we propose is based on the observation that a level
increase in y(t) is always followed by a time interval with low FNR, until the
level in x(t) increases correspondingly. If an increase in y(t) (e.g., a speech
onset) is detected, adaptation is switched off for a predefined time interval
∆. It is important that the onset is detected instantaneously, and hence time
averaging to obtain an energy estimate of y(t) is impossible, because the lag
introduced by the averaging would already allow the adaptive filter coefficients
to drift substantially.

In order to achieve instantaneous detection, a Gaussian distribution of the
(whitened) near-end signal ε(t) is assumed, and the short-term variance σ2

ε(t)
of this distribution is estimated over an exponential window

σ2
ε(t) = λεσ

2
ε(t − 1) + (1 − λε)ε

2(t), (10.5)

with 0 ≪ λε < 1 a forgetting factor. A speech onset is detected at time t0
when an (instantaneous) value of ε(t) occurs which is larger than cσε(t), with
c a constant.

If an onset is detected, adaptation is disabled from time t0 to time t0 + ∆.
A conservative setting for ∆ would be the sum of the forward delay and the
number of taps in the RIR. Sometimes most energy of the RIR is concentrated
in the beginning of the RIR, and ∆ can be taken smaller: it is important that
after the delay ∆, the FNR assumes a sufficiently large value.

10.2.2 Prior Knowledge of the Feedback Path

The near-end speech source signal takes on the role of “measurement noise”
for the identification process of the RIR by an adaptive filter. The PEM-
AFROW algorithm contains an adaptive filter, which identifies the RIR, and
a prewhitening stage, which whitens the measurement noise. The whitened
measurement noise will result in a variance on the estimate of the room impulse
response.
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In order to provide robustness, the cost function can be modified to incorporate
prior knowledge. This will lead to regularized versions [12],[13] of the adaptive
filtering algorithm, in which the variance on the estimate of the RIR is reduced
at the expense of a (hopefully) minor bias. We now introduce other regularized
versions of the NLMS algorithm starting from a Mean Square Error (MSE) cost
function:

V
[
f̂(t), t

]
= E{ε2(t)} (10.6)

= E{[ỹ(t) − ũT (t)̂f (t)]2}, (10.7)

with ỹ(t) = âT (t)y(t) the whitened microphone signal where

y(t) =








y(t)
y(t − 1)

...
y(t − nA)








(10.8)

and

ũ(t) =








ũ(t)
ũ(t − 1)

...
ũ(t − nF )








(10.9)

with nF + 1 the adaptive filter length and ũ(t) = âT (t)u(t) the whitened
loudspeaker signal where

u(t) =








u(t)
u(t − 1)

...
u(t − nA)








(10.10)

From this minimization problem, the well-known LMS or stochastic gradient
algorithm is derived:

f̂(t) = f̂(t − 1) − µ̄
∂V
[
f̂ , t
]

∂ f̂

∣
∣
∣
∣
∣
f̂=f̂(t−1)

(10.11)

= f̂(t − 1) + µ̄E{ũT (t)ε(t)} (10.12)

≈ f̂(t − 1) + µ̄ũ(t)ε(t), (10.13)

where µ̄ is the step size parameter. With a normalized step size,

µ̄(t) =
µ

ũT (t)ũ(t)
, (10.14)

the update formula for Normalized LMS (NLMS) is obtained as

f̂ (t) = f̂(t − 1) + µ
1

ũT (t)ũ(t)
ũ(t)ε(t). (10.15)
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If a good estimate f̄ for f̂(t) has been obtained off-line (e.g., by a measurement
of the impulse response at system setup, or by an off-line procedure based on,
e.g., RLS, which does not exhibit excess mismatch as NLMS does, but which
is computationally more expensive), then an alternative cost function can be
defined:

V
[
f̂ (t), t

]
= E

{

ε2(t) + β
∥
∥
∥f̂(t) − f̄

∥
∥
∥

2
}

. (10.16)

Here β is a parameter which can be used to weight the importance of both
terms. Along the lines of the derivation of the LMS and NLMS algorithms,
regularized LMS and NLMS algorithms can be obtained. The regularized LMS
update is

f̂(t) = f̂(t − 1) + µ̄
(

ũ(t)ε(t) − β
[
f̂(t − 1) − f̄

])

(10.17)

= (1 − βµ̄)̂f (t − 1) + µ̄
[
ũ(t)ε(t) + βf̄

]
, (10.18)

from which the regularized NLMS update follows by choosing µ̄ to minimize
the a posteriori error, and then introducing an additional step size parameter,

f̂(t) = f̂ (t − 1) + µ
ε(t)

ũT (t)ū(t)
ū(t) (10.19)

ū(t) = ũ(t)ε(t) − β
[
f̂(t − 1) − f̄

]
. (10.20)

Experiments show that using the update formula (10.19) instead of (10.15) in
the RIR identification part of the PEM-AFROW algorithm is especially useful
at system startup. So at startup, a relatively large β can be used, which can
then be decreased gradually. A similar approach was used in [14].

10.2.3 Foreground/Background Filter

In order to minimize the variance on the estimate and (for NLMS algorithms)
the excess mismatch due to the presence of the (whitened) speech source signal
(measurement noise), a small step size should be chosen. While this provides
robustness against measurement noise, it results in slow convergence. Under
variations in the RIR however, fast tracking is required, in order to avoid
instability.

In the acoustic echo cancellation context, often a twin filter structure is used
[15],[16] to overcome problems in double-talk situations. A similar idea can now
be applied in acoustic feedback cancellation. Two adaptive filters estimate the
RIR from the whitened microphone signal and the whitened loudspeaker signal.
The so-called background adaptive filter f̂B(t) is operated with a larger step
size (µB) than the foreground filter f̂(t) (step size µ). For example: µB = 10µ.
The residual energies E{ε2

B(t)} of the whitened background filter residuals and
E{ε2(t)} of the whitened foreground filter residuals are estimated as σ2

T,εB
(t)
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and σ2
T,ε(t), respectively, over an exponential window,

σ2
T,ε(t) = λT σ2

T,ε(t − 1) + (1 − λT )ε2(t), (10.21)

σ2
T,εB

(t) = λT σ2
T,εB

(t − 1) + (1 − λT )ε2
B(t), (10.22)

and similarly the energy E{ỹ2(t)} of the whitened microphone signal ỹ(t) =
âT (t)y(t) is estimated as

σ2
T,ỹ(t) = λT σ2

T,ỹ(t − 1) + (1 − λT )ỹ2(t). (10.23)

Here 0 ≪ λT < 1 is a forgetting factor. At discrete time intervals t = n∆T

with n integer, these energy estimates are compared, and the coefficients f̂B(t)
are copied to f̂ (t) if the condition

σ2
T,εB

(n∆T ) < γ1σ
2
T,ε(n∆T ) (10.24)

is met (optionally an additional condition

σ2
T,εB

(n∆T ) < γ2σ
2
T,ỹ(n∆T ) (10.25)

can be imposed). If on the other hand

σ2
T,εB

(n∆T ) > γ3σ
2
T,ε(n∆T ), (10.26)

the coefficients f̂(t) are copied to f̂B(t), to avoid divergence of f̂B(t). In these
conditions, γ1,2,3 are parameters with 0 < γ1,2,3 < 1 and γ1 ≤ γ3.

The above procedure effectively combines the advantages of a large step size
(fast convergence in case of a large change in the room impulse response) and
of a small step size (low-variance steady-state behaviour). This strategy can be
applied in a time domain NLMS approach, in a subband approach (see Section
10.3.1), as well as in a frequency domain NLMS approach (Section 10.3.2).

10.2.4 Notch Filtering

Problem Statement

In the PEM-AFROW algorithm, an unbiased estimate f̂(t) of the RIR is
formed. The loudspeaker signal u(t) is filtered by this RIR model, and the
result is subtracted from the microphone signal y(t), effectively cancelling the
transfer function f(t) between loudspeaker and microphone. This means that
essentially no signal distortion occurs in this setup (assuming a perfect esti-
mate), more specifically that the signal is not attenuated in certain frequency
regions, and that the gain level g which is set on the amplifier, is effectively
obtained, even when this means that the corresponding loop gain is larger than
unity. An obvious issue is that if the tracking behaviour of the PEM-AFROW
algorithm is non-perfect, an unstable system may result as soon as the RIR
changes.
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Traditional approaches to feedback cancellation in PA applications use notch
filtering. Disadvantages of this approach are the reactive character and the
fact that signal distortion occurs: the gain is reduced in frequency regions
where howling is likely to occur, which not only gives the signal an audible
distortion, but which also results in the fact that the gain level which is set on
the amplifier, is not reached whenever the system becomes unstable.

PEM-AFROW was shown to be very robust against changes in the acoustic
feedback path due to moving objects. These changes have the largest influence
on the RIR (and require a good tracking behaviour of the algorithm) when they
occur in the vicinity of the loudspeaker or microphone, e.g., head movements
of the speaker. Experiments were performed with a real-time system with
loudspeaker and microphone spaced 2 to 3 meters apart, in an office room
environment, and it was shown that howling cannot be induced by fast head
movements, by partially covering up the microphone or loudspeaker, nor by
moving large objects in the space between loudspeaker and microphone. Hence
for these cases robustness is guaranteed by the PEM-AFROW algorithm.

On the other hand, when the microphone or loudspeaker position is changed,
the RIR “shifts” over the time axis. This is a change of the RIR which the
PEM-AFROW algorithm can not track fast enough: it is less robust than
notch-filtering-based techniques when the loudspeaker or microphone itself is
moved.

Proactive Notch Filtering

We have simulated a RIR [17] for a room of 10× 5× 4 m with reflection coeffi-
cients of the walls equal to 0.8, with a loudspeaker on position (3.21, 3.21, 2.5) m
and a microphone on positions (1, 2, 1) m and (1, 1.95, 1) m, hence 5 cm apart.
The RIR for the first microphone position and the difference between the RIRs
for both microphones is plotted in Fig. 10.4. The difference has the same
order of magnitude as the impulse responses themselves. It is obvious that a
PEM-AFROW-based approach, which has to track the impulse response, may
need a considerable amount of time before it has compensated for the difference
between the impulse responses. On the other hand, the position of many of the
peaks in the loop gain frequency spectrum shown in Fig. 10.5, does not change
much, which indicates that a notch-filtering-based approach can be more ro-
bust against the microphone displacement. Depending on the room acoustics,
only a limited number of modes is available that can give rise to instabilities,
and so a small change in the distance between loudspeaker and microphone
may lead to a small change in the center frequencies of the oscillations (unless
a completely different mode becomes active), while it can lead to large changes
in the RIR, see Fig. 10.4. Since notch filtering is robust against small changes
in the center frequencies, it is desirable to combine the PEM-AFROW provided
estimates of the RIR (proactive) with the notch filtering technique (robust).
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Figure 10.4: RIR vs. time index for first microphone position, and the (large)
RIR difference between the two microphones.
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Figure 10.5: Loop gain vs. frequency index for two slightly different microphone
positions (10 cm apart).
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Table 10.1: Notch filter design, starting from the PEM-AFROW room impulse
response estimate.

1. for i = 1, . . . , NrActive
if Gl(ωi) < Tmin

decrease depth on ωi

end if
end for

2. while maxima can be found

(a) find ωmax = arg maxω Gl(ω) where ωmax > Tmax

(b) if ωmax close to existing notch ωF

ωF = ωmax

increase depth on ωF

elseif NrActive < Max
new notch on ωmax

end if

end while

The condition for instability is fulfilled when the loop gain Gl(ω) ≥ 1 on fre-
quencies where the loop phase ϕl(ω) = n2π, with n an integer number. The
frequencies ωi for which this condition holds, can be found from the estimate of
the RIR which is provided by PEM-AFROW, and the knowledge of the forward
gain K: Gl(ω) = K|F̂ (ω)|, where |F̂ (ω)| denotes the magnitude response of f̂ .

The algorithm we have used to design the notch filters is given in Table 10.1.
It places notch filters on frequencies ωi where Gl(ωi) > Tmax with threshold
Tmax < 1, independently of the phase characteristic (although this would be
easy to incorporate), and it removes notch filters on frequencies where Gl(ω) <
Tmin . The notch filter design procedure is repeated regularly (a few times per
second), and each time only a limited number of notch filters are designed.
Then the PEM-AFROW algorithm is allowed to adapt to the new acoustic
impulse response with the notch filters included. This results in an update of
Gl(ω). The notch filter depth on a certain frequency may then be increased or
decreased, depending on the new value of Gl(ω).

The notch filters are IIR filters with two poles and two zeros each. From a
numerical point of view, it is important not to combine all of the notch filters
into one IIR filter, but to apply all of the so-called “biquads” individually to
the signal, as otherwise numerical instability may result if the poles are close
together. A design procedure for notch filters is described in [18].

At first sight it may seem advantageous not to include the notch filters in the
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Figure 10.6: Combined system with proactive notch filtering and a controller
f̂0(t).

feedback path (the part of the loop which is modeled by the PEM-AFROW
algorithm), but instead place them in the forward path (the part containing
the delay). That way, the PEM-AFROW adaptive filter would not have to
model the changing notch filter characteristics. But on the other hand, the
FNR would become very low on the notch frequencies when the notch filters
are placed in the forward path (the loudspeaker signal is attenuated, while
the near-end signal is not), and a large variance on the estimation of the loop
gain would occur on the notch frequencies. Simulations show that this leads to
wrong decisions on where to place (or remove) notch filters.

The notch-filtering-based acoustic feedback controller is now combined with a
PEM-AFROW-based controller, as shown in Fig. 10.6. The PEM-AFROW
algorithm estimates the cascade of the notch filters with the RIR and this
estimate is then used in a controller f̂0(t) which cancels the remaining loud-
speaker component in the microphone signal. The advantage compared to the
PEM-AFROW-only algorithm [4],[5] is that the notch filters –when chosen ap-
propriately wide– guarantee robustness for path changes (in exchange for some
distortion), and the controller removes the residual reverb-like sounds.

If Tmax is chosen smaller than 1, the above technique leads to a proactive
system, because new notch filters will be designed before the system becomes
unstable at the corresponding frequencies. The system can be made robust
to path changes by choosing an appropriate width for the notch filters. The
parameters for the notch filters should be chosen to avoid audible distortion. It
is important to note that due to the additional PEM-AFROW-based controller
f̂0(t), which removes residual loudspeaker components from the microphone sig-
nal, the loop gain on the frequencies ωi is not limited to Tmax as in traditional,
notch-filtering-only techniques.
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Figure 10.7: A limiter or clipper should be added to avoid clipping in the
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10.2.5 Nonlinearities

If large signal levels are applied to the loudspeaker/amplifier (e.g., in case
the Larsen-effect occurs), the loudspeaker or amplifier may exhibit nonlinear
behavior (clipping). A PEM-AFROW-based acoustic feedback cancellation
scheme provides a linear estimate of the transfer function for the system with
input signal u(t) and output signal x(t) (see Fig. 10.1). This system comprises
the amplifier (which is not explicitly drawn in the figure, but in practice is
placed just before the loudspeaker), the loudspeaker, the acoustic feedback
path and the microphone (we will refer to this system as the RIR). The linear
estimate, which is used in the controller f̂0(t), will not be a correct model when
nonlinearities due to loudspeaker or amplifier clipping occur in the system.
Because of the mismatch between the (linear) controller and the (nonlinear)
system, instabilities (howling) will occur.

A simple and efficient method to avoid clipping in the room impulse response
is by limiting the maximum amplitude of u(t) as shown in Fig. 10.7, i.e., by
adding a limiter or clipper on the left hand side of the controller, before its
input.

In several applications, nonlinear operations are required in the signal path
(e.g., dynamics processing). These operations should be applied before the
input of both the controller and the RIR system, such that the identification
algorithm does not see these nonlinearities. Note that also the gain control K
should preferably be placed in the left hand part of the scheme, as shown in
the figure, such that variations and nonlinearities (e.g., dynamics compression)
in K do not have to be tracked by the adaptive algorithm.
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10.2.6 Highpass Filtering

Often the low cut-off frequency of the loudspeaker or amplifier is higher than
that of the microphone. This means that for low-frequency near-end signals
(e.g., generated by displacing the microphone stand), the FNR may become
very small. Due to the large variance on the estimation resulting from this, the
system may become unstable. A simple solution is to use a highpass filter on
the microphone signal with a cut-off frequency (depending on the loudspeaker
characteristics) of, e.g., 100 Hz. The influence on the speech quality will be
very small, while low-frequency near-end signals are suppressed.

10.3 Subband and Frequency Domain Imple-

mentations

In PA applications, typically long impulse responses are involved, and high
sampling frequencies are desired. This leads to a high computational complex-
ity in time domain algorithms. We propose two different frequency domain
implementations. The first one (Section 10.3.1) is based on a subband imple-
mentation of the time domain algorithm. A filterbank is used to split the time
domain signals into independent frequency bands, and processing is done in-
dependently in each of these bands. The advantage (apart from a complexity
reduction) will be that the filter length can be chosen independently for each of
the frequency bands. The downside of this approach is the latency introduced
by the filterbank operation.

The second frequency domain implementation reduces this latency since it is
based on the partitioned block frequency domain adaptive filtering (PBFDAF)
algorithm (Section 10.3.2).

10.3.1 Oversampled DFT-Modulated Filterbank Imple-
mentation

We first propose an implementation based on a subband implementation of
the NLMS algorithm. A DFT-modulated perfect reconstruction filterbank [19]
divides the signals in subbands and then the PEM-AFROW-based algorithm
is applied in each subband. This is advantageous from a performance and
complexity point of view.

It is well known that the performance of the NLMS-based algorithms which
run in each band is better when the eigenvalue spread of their input signal
is smaller. Since for a typical speech signal the bandfiltered signals in the
subbands are whiter than the fullband signal, the eigenvalue spread is indeed
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smaller.

The complexity is also reduced compared to time domain processing: in an
M -band filterbank with N -fold downsampling, the filter length of the adaptive
filters in each band is roughly N times smaller than for the corresponding
time domain setup, and the adaptive filters also operate at an N times lower
sampling rate. The adaptive filters in only M

2 + 1 of the bands have to be
computed, since the other bands are complex conjugated. So –neglecting the
complexity of the filterbank operations– the complexity in the subband scheme
is M

2N2 smaller compared to the corresponding time domain scheme.

In order to avoid aliasing, it is important to use an oversampled filterbank
(which means that N < M). The filterbank prototype filter will never have
ideal properties (it is not a brick wall filter), and hence for M = N , frequency
components above the Nyquist frequency would be present in the subband
signals before the downsampling. The “perfect reconstruction” property of the
filterbank would indeed compensate for the aliasing even in that case, but only
if no processing occurs in the subbands. This is not the case in our scheme.
So N should be chosen small enough, such that no aliasing occurs even with
non-ideal bandpass filters in the filterbank.

In the subband processing context, complexity can even further be reduced
thanks to the properties of the physical environment. It can be observed that
for a typical room (or hall), the absorption of the high-frequency components is
much higher than for the low-frequency components. We propose to estimate
the maximum required number of filter taps for each subband individually in a
calibration stage. It should be noted that calibration should be performed in an
empty room, and that (due to absorption in the clothing) the impulse response
of rooms is always shortened when people (the audience) enter the room (note
that a similar approach could also be used in acoustic echo cancelling scenarios).

Fig. 10.8 shows the setup of this system. Straightforward implementation is
shown in the upper part where a PEM-AFROW algorithm is performed in each
of the subbands independently. In the lower part of Fig. 10.8, we show how
one analysis filter bank can be removed by directly reusing the subband signals
as inputs for the adaptive filters. Since the synthesis/analysis filterbank pair
in the lower part of Fig. 10.8 introduces a delay q−d0 , and the subband filters
have to estimate the subband path between loudspeaker and microphone, this
delay must also be included before the subband filters.

Since the individual PEM-AFROW algorithms in each of the subbands run
at an N times lower sampling frequency, their parameters should be adjusted
compared to the fullband version of the algorithm. This means that the AR
order, the frame length and the forward delay are all N times smaller compared
to the fullband version.
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Figure 10.8: Filterbank implementation. Upper: straightforward implementa-
tion. Lower: implementation with one analysis bank less (identification part
shown only for one subband).
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The resulting algorithm, implemented in C++ without any specific optimiza-
tion effort, runs in real time on a Pentium Mobile 1.7 GHz with a Linux oper-
ating system, and Jack1 as the sound device interface, for a 16-band filterbank,
with 2-fold oversampling, and with 600 filter taps per band.

10.3.2 Frequency Domain Implementation

A major disadvantage of the above filterbank approach, is the delay introduced
by the filterbanks. This delay becomes larger when the number of subbands
(and hence the complexity reduction) is larger. Although a certain amount of
delay is required in the PEM-AFROW algorithm, the sum of a large filterbank
delay and the delay due to the A/D-D/A buffering may become prohibitive for
certain applications. In [20], the authors use a partitioned block frequency do-
main adaptive filtering algorithm (PBFDAF, also known as the MDF algorithm
[21]) to overcome this disadvantage.

It should be noted though that in the PEM-AFROW algorithm, the input vec-
tor of the adaptive filter f̂ has to be recalculated each time when the estimated
AR coefficients â change. This amounts to a matrix-vector multiplication with
dimension (nF + 1) × (nA + 1), which occurs at least every speech frame, but
which may occur more often due to the nondeterministic nature of the long term
predictor [5]. In an implementation with PBFDAF, this results in the FFTs
of all of the input vector partitions having to be recalculated each time this
occurs. The computational complexity for such a PBFDAF implementation
will hence become comparable to the complexity of an FDAF implementation
with FFT size equal to 2× (nF + 1) and a shift size equal to the frame length.

In practical applications, it is often advisable to use the PBFDAF or FDAF
algorithm to achieve a low latency, instead of the subband approach of Sec-
tion 10.3.1. PBFDAF and FDAF combined with PEM-AFROW both have
comparable complexity, but the FDAF algorithm results in a more simple im-
plementation.

10.4 Simulations

In this section, we will first focus on the individual benefits achieved by onset
detection, the use of both a foreground and a background filter, and proactive
notch filtering, and then we will review a combined system which incorporates
all of the techniques described above.

1http://www.jackaudio.org
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10.4.1 Onset Detection

The simulation environment consists of an artificial RIR of 2000 taps (obtained
with the mirror image method [17]) for a room of 10 × 5 × 4 m, the reflection
coefficients of the walls are 0.8, with a loudspeaker on position (3.21, 3.21, 2.5)
m and a microphone on position (1, 2, 1) m. A sampling frequency of 16 kHz
is used. A speech signal contains several different types of onsets, and hence
in order to obtain reproducible results, we use a white noise input signal with
intermittently a level of -46 dB during 1 second, and a level of 0 dB during 1
second. The adaptive filter in the PEM-AFROW algorithm has a (sufficient)
order of nF + 1 = 2000 taps. The frame length for energy comparison (Section
10.2.1) is 20 ms, parameter c defined in Section 10.2.1 is 5, and the adaptation
inhibition time after detection of an onset (Section 10.2.1) is ∆ = 2(nF + 1).
The added gain is set to 5 dB.

For the algorithm without onset detection, audible (transient) instabilities are
present at the onsets of the louder signal blocks, even with small step sizes for
the adaptive NLMS algorithm (µ = 0.005), which corresponds to an unaccept-
ably low convergence and tracking speed. With µ = 0.05, these transients even
take more than a second to disappear. With the onset detection switched on,
the stepsize can be as large as µ = 0.2 (which obviously results in an acceptable
tracking speed), without audible instabilities.

These results are confirmed when a speech input signal is used instead of a
white noise signal. The values for the maximum of µ when onset detection is
off may vary, because of the different types of onsets in a speech signal. But
the value of µ = 0.2 as a maximum value when onset detection is switched on,
is consistent with the white noise experiment.

10.4.2 Foreground/Background Filter

The same simulation setup is used, without the onset detection algorithm.
The step size for the foreground filter is chosen 10 times smaller than for the
background filter. The values for the parameters mentioned in Section 10.2.3
are γ1 = γ3 = 0.86 and condition (10.25) is omitted. We evaluate the behavior
for the previously mentioned input signal. Large stepsizes can be used for the
background filter (e.g., µ = 0.9), which allows for very fast convergence, while a
small variance can be obtained due to the behavior of the foreground filter with
the smaller step size. When µ is chosen not too large, then for high loop gains
(high FNR), e.g., with an added gain of 10 dB, the foreground/background filter
structure does not exhibit instabilities at onsets, because the slow foreground
filter “bounds” the divergence of the faster background filter. For low loop
gains (e.g., with negative added gains) or higher values of µ, onset detection
should be used to prevent coefficients from drifting from the optimal solution.
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The foreground/background filter structure is not only important for robustness
related to signal properties, but also for robustness against system changes
(i.e., changes of the RIR). The simulations use the room and geometry setup
as detailed in Section 10.2.4. In the simulations, abrupt switches between two
artificial impulse responses are performed, one corresponding to microphone
position (1, 2, 1) m, and one corresponding to microphone position (1, 1.95, 1)
m. In this case a real speech input signal is used. As a reference, we consider
a system with a single adaptive filter with µ = 0.09, resulting in the same
variance as the foreground filter in the twin filter structure. In the twin filter
setup, for an added gain of 5 dB, no audible transient is present, while a clear
transient is audible in the reference system. For an added gain of 10 dB, a
short transient is audible during 0.5 s. For an added gain of 13 dB, a transient
instability is audible during 1 s.

All these results were also verified with a real-time (16 kHz) implementation
with a real speech input signal, in a real acoustic environment (office room of
7× 3.5× 3.6 m, a reverberation time (T60) of 120 ms, and a distance between
loudspeaker and microphone of 2 m).

10.4.3 Proactive Notch Filtering

Real-time experiments at a 16 kHz sampling rate in a real environment were
performed with added gains of about 5 dB, using only the notch filtering section
(proactive, designed based on the PEM-AFROW estimate), and without the
additional controller f̂0(t). It is known that this is a typical stable added gain
for notch-filtering-based feedback suppression. Fast movements (about 1 Hz) of
the microphone over a distance of 30 cm, at 1 m distance from the loudspeaker,
do not result in instability for this proactive notch filtering approach, while for
the PEM-AFROW-based feedback suppression algorithm in [4],[5], instability
does indeed sometimes occur under these conditions. Note however that, for
constant microphone-loudspeaker distances, much higher added gains can be
achieved with the approach in [4],[5] (up to 15 dB), even with large changes in
the RIR due to movements of, e.g., people in the vicinity of the loudspeaker or
microphone.

In addition to this experiment, and in order to provide reproducible results,
simulations were performed with a room geometry as detailed in Section 10.2.4,
for a combined system as in Fig. 10.6. Sudden changes between the two
RIRs are applied (which are worse conditions than the 1 Hz movements in the
real-environment experiment described above). Then it is evaluated for which
maximum gain level, no instability or audible artifacts occur upon changes of
the impulse responses. The results are provided in Table 10.2. The step size
for the NLMS filter in the PEM-AFROW algorithm is 0.05. For comparison:
the stable added gain when only the notch filtering section is used is 5 dB.



10.5. Conclusions 279

Table 10.2: Simulation results for different notch filter parameters. Bandwidths
are normalized (1 = Nyquist frequency).

Bandwidth Depth Added gain

3dB BW = 1/20 12 dB 10 dB
3dB BW = 1/10 12 dB 13.9 dB
1dB BW = 1/5 3 dB 12.9 dB

10.4.4 Highpass Filter

Though difficult to quantify numerically, real-time experiments show a huge
improvement of stability in case the microphone is displaced when a highpass
filter is available, see Section 10.2.6.

10.4.5 Combined Real-Time System

The combined frequency domain system is implemented for use in a real-time
environment, in C++ on a Linux PC (Pentium M, 1.7 MHz). A graphical user
interface is available for setting parameters of different building blocks, and for
switching on and off the different modules. The filter length is 2048 taps, and
the sampling frequency 16 kHz. In this way, a RIR of 128 ms can be modeled.
The system is set up in a real environment (office room of 7×3.5×3.6 m, with
a reverberation time (T60) of 120 ms, and a distance between loudspeaker and
microphone of 2 m), and maintains stability far better than the PEM-AFROW-
based system without the robustness add-ons.

As a general result from real-time experiments, we can state that the most
important elements for increased robustness are the highpass filter, the fore-
ground/background filter structure, and onset detection. Proactive notch filter-
ing can increase robustness somewhat, but has the disadvantage of introducing
signal distortion.

10.5 Conclusions

In this paper, we have shown a number of procedures to increase the robustness
and to reduce the complexity of a PEM-AFROW-based feedback cancellation
system. Concerning robustness, we have shown how onset detection avoids
instability at onsets of the near-end signal. We have derived an NLMS-type
algorithm which allows for prior knowledge of the RIR to be incorporated in
the adaptation rule which is particularly useful at system startup. Then a twin
filter structure (adopted from acoustic echo cancellation) was shown to be also
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effective in acoustic feedback cancellation. On the one hand RIR changes can
be tracked quickly while on the other hand a small variance on the estimate of
the RIR can be maintained during steady-state operation. A highpass filter is
included to avoid high variance on the low-frequency part of the RIR estimate.
Finally, the combination of notch filtering and PEM-AFROW was shown to
provide a more robust solution to feedback path changes if some distortion is
allowable. Concerning computational complexity we have demonstrated how
the PEM-AFROW algorithm can be implemented in subbands, where extra
complexity reduction can be obtained due to the physical characteristics of
reverberation in a typical environment, and as an alternative a low-latency
frequency domain implementation can be used.
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Abstract

While linear prediction (LP) has become immensely popular in speech model-
ing, it does not seem to provide a good approach for modeling audio signals.
This is somewhat surprising, since a tonal signal consisting of a number of sinu-
soids can be perfectly predicted based on an (all-pole) LP model with a model
order that is twice the number of sinusoids. We provide an explanation why
this result cannot simply be extrapolated to LP of audio signals. If noise is
taken into account in the tonal signal model, a low-order all-pole model appears
to be only appropriate when the tonal components are uniformly distributed
in the Nyquist interval. Based on this observation, different alternatives to the
conventional LP model can be suggested. Either the model should be changed
to a pole-zero, a high-order all-pole, or a pitch prediction model, or the conven-
tional LP model should be preceded by an appropriate frequency transform,
such as a frequency warping or downsampling. By comparing these alterna-
tive LP models to the conventional LP model in terms of frequency estimation
accuracy, residual spectral flatness, and perceptual frequency resolution, we
obtain several new and promising approaches to LP-based audio modeling.

11.1 Introduction

Linear prediction (LP) is a widely used and well understood technique for
the analysis, modeling, and coding of speech signals [1]. Its success can be
attributed to its correspondence with the speech generation process. The vocal
tract can be modeled as a slowly time-varying, low-order all-pole filter, while
the glottal excitation can be represented either by a white noise sequence (for
unvoiced sounds), or by an impulse train generated by periodic vibrations of
the vocal chords (for voiced sounds). By using this so-called source-filter model,
a speech segment can be whitened with a cascade of a formant predictor for
removing short-term correlation, and a pitch predictor for removing long-term
correlation [2].

The source-filter model is much less popular in audio analysis than in speech
analysis. First of all, the generation of musical sounds is highly dependent on
the instruments used, hence it is hard to propose a generic audio signal gener-
ation model. Second, from a physical point of view, polyphonic audio signals
should be analyzed using multiple source-filter models, which seems rather im-
practical. Finally, the enormous success of perceptual audio coders [3] and the
recent advent of parametric coders based on the sinusoidal model [4], originally
proposed for speech analysis and synthesis [5], have shifted the research inter-
est in audio analysis away from the LP approach. Nevertheless, some audio
coding algorithms still rely on LP [6]-[15], which is then usually performed on
a warped frequency scale [16]. Also, in audio signal processing applications
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other than coding, prediction error filters obtained with LP are used for the
whitening of audio signals, e.g., to produce robust and fast converging acoustic
echo and feedback cancelers [17]-[20].

Since many audio signals exhibit a large degree of tonality, i.e., their frequency
spectrum is characterized by a finite number of dominant frequency compo-
nents, it is useful to analyze LP of audio signals in the frequency domain, i.e.,
from a spectral estimation point of view. Intuitively, one could expect that
performing LP using a model order that is twice the number of tonal compo-
nents, leads to a signal estimate in which each of the spectral peaks is modeled
with a complex conjugate pole pair close to (but inside) the unit circle. In
practice, however, this does not seem to be the case, and very often a poor
LP signal estimate is obtained. The fundamental problem when performing
LP of an audio signal, is that apart from the tonal components, a broadband
noise term should generally also be incorporated in the tonal model. The noise
term can either account for imperfections in the signal’s tonal behavior, or for
noise introduced when working with finite-length data windows. Whereas a
sum of N sinusoids can be perfectly modeled using an AR(2N) model, i.e., an
autoregressive or all-pole model of order 2N , a sum of N sinusoids plus (white)
noise, should instead be modeled using an ARMA(2N ,2N) model, i.e., an au-
toregressive moving-average or pole-zero model with 2N zeros and 2N poles
[21]-[25].

A first consequence of incorporating a noise term in the tonal signal model,
is that the LP spectral estimate is smoothed [22],[26], due to the fact that
the estimated poles are drawn towards the origin of the z-plane [22],[27]. A
second consequence, which to our knowledge has not been recognized up till
now, is that the estimated poles tend to be equally distributed around the
unit circle when noise is present, even at high signal-to-noise ratios and for
low AR model orders. From this observation, it follows that signals with tonal
components that are approximately equally distributed in the Nyquist interval
can be better represented with an all-pole model than signals that have their
tonal components concentrated in a selected region of the Nyquist interval.
Unfortunately, audio signals tend to belong to the latter class of signals, since
they are typically sampled at a sampling frequency that is much higher than
the frequency of their dominating tonal components.

In [28], it was shown that audio signals having their dominating tonal compo-
nents in a frequency region that is small compared to the entire signal band-
width may exhibit a large autocorrelation matrix eigenvalue spread and hence
tend to produce inaccurate LP models due to numerical instability. A stabi-
lization method based on a selective LP (SLP) model [1] was proposed, which
reduces the LP model bandwidth to the frequency region of interest. The in-
fluence of the signal’s frequency distribution on LP performance was also rec-
ognized with the development of so-called frequency-warped linear prediction
(WLP) [12],[16]. The warping operation is a non-uniform frequency transform
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which is usually designed to approximate the constant-Q frequency scale [29],
and also provides a good match with the Bark or ERB psychoacoustic scales,
provided that the warping parameter is chosen properly [30]. In [12], WLP
was shown to outperform conventional LP in terms of resolving adjacent peaks
in the signal spectrum, however, no gain in spectral flatness of the LP resid-
ual was obtained. We will review the SLP and WLP models, as well as three
other LP models that appear to be suited for tonal audio signals, and show
how all of these models are capable of solving the frequency distribution issue
described above. More specifically, we will also consider high-order all-pole
models [22], constrained pole-zero models [24],[25],[31]-[37] and pitch predic-
tion models. Pitch prediction (PLP), also known as long-term prediction, was
originally proposed for speech modeling and coding, and was more recently
applied to audio signal modeling in the context of the MPEG-4 advanced au-
dio coder (AAC) [38],[39]. High-order (HOLP) and pole-zero (PZLP) linear
prediction models have not been applied to audio modeling before, however,
some speech analysis techniques rely on a PZLP model [40]-[42]. All considered
approaches result in stable LP models, and some outperform the WLP model
both in terms of conventional measures, such as frequency estimation error and
residual spectral flatness [43, Ch. 6], and in terms of perceptually motivated
measures, such as inter-peak dip depth (IDD) [12]. Moreover, many of these
alternative models perform even better when cascaded with a conventional LP
model. The LP models described in this paper were evaluated and compared
experimentally for a synthetic audio signal in [44]. This work is extended here
by also performing a mathematical analysis of the different LP models, and de-
scribing additional simulation results for synthetic signals and true monophonic
and polyphonic audio signals.

This paper is organized as follows. Section 11.2 provides some background
material on the signal model and the LP criterion. In Section 11.3, we analyze
the performance of the conventional LP model, and illustrate the influence of
the distribution of the tonal components in the analyzed signal. In Section
11.4, five alternative LP models are reviewed and interpreted as potential so-
lutions to the observed frequency distribution problem. The emphasis is on
the influence of using models other than the conventional low-order all-pole
model, and not on how the model parameters are estimated. However, for each
LP model, references to existing estimation methods are provided. LP model
pole-zero plots and magnitude responses for a synthetic audio signal are pre-
sented throughout Sections 11.3 and 11.4. A detailed analysis is only provided
for the pole-zero LP model, since all other alternative LP models are all-pole
models, which can be analyzed using an approach similar to the conventional
LP model analysis in Section 11.3. In Section 11.5, we provide LP model
pole-zero plots and magnitude responses for true monophonic and polyphonic
audio signals. Furthermore, the conventional and alternative LP models are
compared in terms of frequency estimation accuracy, residual spectral flatness,
and perceptual frequency resolution, both for synthetic and true audio signals.
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Finally, Section 11.6 concludes the paper.

11.2 Preliminaries

11.2.1 Tonal Audio Signal Model

We will only consider tonal audio signals, i.e., signals having a continuous
spectrum containing a finite number of dominant frequency components. In this
way, the majority of audio signals is covered, except for the class of percussive
sounds. The performance of the different LP models described below will be
evaluated for three types of audio signals: synthetic audio signals consisting
of a sum of harmonic sinusoids in white noise, true monophonic audio signals,
and true polyphonic audio signals.

The fundamental frequency of monophonic audio signals is usually, i.e., for most
musical instruments, in the range 100–1000 Hz. The number of relevant har-
monics (i.e., frequency components at multiples of the fundamental frequency,
having a magnitude that is significantly larger than the average signal power)
is typically between 10 and 20. It can thus be seen that most dominating fre-
quency components in audio signals, sampled at fs = 44.1 kHz, lie in the lower
half of the Nyquist interval, i.e., between 0 and 11025 Hz (corresponding to the
angular frequency range from 0 to π/2). This property will be a key issue in
the rest of the paper.

Like for speech signals, we can also assume short-term stationarity for audio
signals. Monophonic audio signals can typically be divided in musical notes of
different duration. Each note can then be subdivided in four parts: the attack,
decay, sustain, and release parts. The sustain part is usually the longest part of
the note, and exhibits the highest degree of stationarity. The attack and decay
parts are shortest and may show transient behavior, such that stationarity can
only be assumed on very short time windows (a few ms). Whereas LP of speech
signals is typically performed on time windows of around 20 ms, longer windows
appear to be beneficial for LP of audio signals. In our examples, a time window
of 46.4 ms is used, corresponding to L = 2048 samples at fs = 44.1 kHz, or,
in musical terms, 1/32 note at 161.5 beats per minute. In our theoretical
derivations, however, we will assume L → ∞ to avoid window end effects.

The underlying signal model that is assumed for all audio signals throughout
this paper is the following:

y(t) =

N∑

n=1

αn cos(ωnt + φn) + r(t), t = 1, ..., L (11.1)

where, for ease of notation, the time index t has been normalized w.r.t. the
sampling period Ts = 1/fs. This signal model is referred to as the tonal signal
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model, and may differ from the sinusoidal model [5] used in speech and audio
coding in that only the tonal components in the observed audio signal y(t)
are modeled by sinusoids, while the non-tonal components are contained in the
noise term r(t). The tonal components correspond to the fundamental frequen-
cies and their relevant harmonics, and are characterized by their amplitudes
αn, (radial) frequencies ωn ∈ [0, π] and phases φn ∈ [0, 2π), n = 1, . . . , N . The
noise term r(t) will generally have a non-white, continuous spectrum, and may
also contain low-power harmonics.

Two special cases of the tonal signal model are of particular interest in audio
signal modeling. In the monophonic signal model, it is assumed that all tonal
components are harmonically related to a single fundamental frequency ω0, i.e.,

y(t) =

N∑

n=1

αn cos(nω0t + φn) + r(t), t = 1, ..., L. (11.2)

In the polyphonic signal model, the signal is assumed to contain multiple sets of
harmonically related sinusoids, with multiple fundamental frequencies ω0,n, n =
1, . . . , N :

y(t) =

N∑

n=1

(
Mn∑

m=1

αn,m cos(mω0,nt + φn,m)

)

+ r(t), t = 1, ..., L. (11.3)

Note that the number of relevant harmonics (Mn − 1) may differ for each of
the N fundamental frequencies ω0,n, and that only one overall noise term is
added.

The monophonic signal model in (11.2) is an harmonic signal model, while the
tonal and polyphonic signal models in (11.1) and (11.3) are not. We should
stress that of all LP models described below, the pitch prediction model de-
scribed in Section 11.4.3, is the only model in which the harmonicity property
is exploited. The other models do not rely on harmonicity, although the cal-
culation of the LP model parameters may be simplified by taking harmonicity
into account.

Example 11.1 [Synthetic audio signal] A synthetic audio signal, generated
from the monophonic signal model in (11.2), is well suited for examining the
properties of the LP models presented below, since it provides exact knowledge
of the fundamental frequency f0 = ω0(fs/2π) and the number of harmonics.
In the examples throughout Section 11.3 and 11.4, a synthetic audio signal is
used with L = 2048 samples, N = 15 tonal components and random, uniformly
distributed amplitudes αn ∈ [0, 1] and phases φn ∈ [0, 2π). The synthetic au-
dio signal and its magnitude spectrum are shown in Figs. 11.1(a) and 11.1(b),
respectively. The radial fundamental frequency was chosen to be ω0 = 2π/64,
i.e., with 64 samples per period T0, such that, at fs = 44.1 kHz, the fundamen-
tal frequency f0 ≈ 689.1 Hz is in the mid-range of musical notes (i.e., slightly
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Figure 11.1: Synthetic audio signal: (a) time-domain waveform, (b) magnitude
spectrum.

lower than F5). The fundamental frequency and its harmonics are then also in
the discrete set of frequencies at which the length-L discrete Fourier transform
(DFT) is evaluated (see Fig. 11.1(b)). The pitch period T0 being equal to
an integer number of sampling periods (T0 = 64Ts), will allow us to clearly
illustrate the effect of pitch prediction in Section 11.4.3. Finally, T0 also being
an integer multiple of 2(N +1)Ts will yield an integer downsampling operation
in the SLP method in Section 11.4.5.

11.2.2 Linear Prediction Criterion

The aim of LP is to obtain a linear parametric model G(z) that predicts the
observed signal y(t) up to an uncorrelated residual e(t, ξ),

Y (z) = G(z)E(z, ξ) (11.4)

or

E(z, ξ) = H(z)Y (z) (11.5)

where ξ represents a vector that contains the LP model parameters, Y (z) and
E(z, ξ) denote the z-transform of the observed and residual signal, respectively,
and H(z) = G−1(z) corresponds to the prediction error filter (PEF), which has
the property of whitening the input signal y(t). The PEF transfer function
H(z) is required to be stable, while the LP model transfer function G(z) is
not. In fact, when modeling sinusoidal components in the observed signal y(t),
an unstable LP model G(z) having poles on the unit circle can be very useful.



11.2. Preliminaries 291

The LP model is generally an infinite impulse response (IIR) model, i.e.,

G(z) =
B(z)

A(z)
=

b0 + b1z
−1 + . . . + b2Qz−2Q

1 + a1z−1 + . . . + a2P z−2P
(11.6)

with the numerator and denominator order defined as 2Q and 2P , respectively.
While in conventional LP, G(z) is an all-pole model (i.e., B(z) ≡ 1), in this
paper we also consider pole-zero LP models. For analyzing the LP performance
for tonal input signals, it will be useful to consider the radial representation of
G(z),

G(z) =

b0

Q
∏

l=1

(
1 − ρle

jζlz−1
)(

1 − ρle
−jζlz−1

)

P∏

l=1

(
1 − νle

jθlz−1
)(

1 − νle
−jθlz−1

)

(11.7)

=

b0

Q
∏

l=1

(
1 − 2ρl cos ζlz

−1 + ρ2
l z

−2
)

P∏

l=1

(
1 − 2νl cos θlz

−1 + ν2
l z−2

)

(11.8)

with ρl, νl denoting the zero and pole radii, and ζl, θl the numerator and de-
nominator resonance frequencies, respectively. In the sequel we will assume
b0 = 1, such that the LP model parameter vector can be defined as follows:

ξ = [θ1, . . . , θP , ν1, . . . , νP , ζ1, . . . , ζQ, ρ1, . . . , ρQ]T . (11.9)

From a spectral estimation point of view, the parameter vector ξ should be
estimated such that the LP residual e(t, ξ) has an approximately flat spectrum
[1]. In the case of audio LP, the residual does not have to be a white noise
signal, as is often assumed in other LP applications, but it can also be a Dirac
impulse, which also has a flat spectrum. The parameter vector estimate is
the result of minimizing a least-squares (LS) criterion, which can be expressed
in the time domain as well as in the frequency domain, following Parceval’s
theorem:

min
ξ

V (ξ) = min
ξ

L∑

t=1

e2(t, ξ) = min
ξ

1

L

L−1∑

k=0

∣
∣E
(
ej 2πk

L , ξ
)∣
∣
2

(11.10)

with E
(
ej 2πk

L , ξ
)
, k = 0, . . . , L−1 the L-point discrete Fourier transform (DFT)

of the LP residual.

In the theoretical analysis, we will assume an infinitely long observation window
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(L → ∞), such that (11.10) becomes

min
ξ

V (ξ) = min
ξ

1

2π

∫ 2π

0

∣
∣E
(
ejω , ξ

)∣
∣
2
dω = min

ξ

1

2π

∫ 2π

0

∣
∣H
(
ejω
)∣
∣
2∣
∣Y
(
ejω
)∣
∣
2
dω

(11.11)

using (11.5) to obtain the second equality, in which
∣
∣H
(
ejω
)∣
∣
2

denotes the PEF

magnitude response and
∣
∣Y
(
ejω
)∣
∣
2

is the power spectrum of y(t). From the
tonal signal model in (11.1), and assuming that the cross-spectrum of the tonal
part and the noise part of y(t) is zero, we obtain

∣
∣Y
(
ejω
)∣
∣
2

=
N∑

n=1

α2
n

4

(
δ(ω − ωn) + δ(ω + ωn)

)
+
∣
∣R
(
ejω
)∣
∣
2

(11.12)

such that (11.11) can be rewritten, using
∣
∣H
(
ejωn

)∣
∣
2

=
∣
∣H
(
e−jωn

)∣
∣
2
, as

min
ξ

V (ξ) = min
ξ

[
N∑

n=1

α2
n

2

∣
∣H
(
ejωn

)∣
∣
2

+
1

2π

∫ 2π

0

∣
∣H
(
ejω
)∣
∣
2∣
∣R
(
ejω
)∣
∣
2
dω

]

.

(11.13)
To simplify the analysis, we assume that the noise term r(t) in the tonal signal

model has a flat spectrum, i.e.,
∣
∣R
(
ejω
)∣
∣
2

= σ2
r , ∀ω, such that

min
ξ

V (ξ) = min
ξ

[
N∑

n=1

α2
n

2

∣
∣H
(
ejωn

)∣
∣
2

+
σ2

r

2π

∫ 2π

0

∣
∣H
(
ejω
)∣
∣
2
dω

]

. (11.14)

This approximation can be justified in the LP analysis by noting that the noise
term in the tonal signal model is spectrally much flatter than the tonal part of
the observed signal.

11.3 Conventional Linear Prediction Model

We now analyze the minimization of the LP criterion in (11.14) for a conven-
tional, all-pole LP model. The PEF is in this case an all-zero filter,

H(z) =

P∏

l=1

(
1 − 2νl cos θlz

−1 + ν2
l z−2

)
. (11.15)

We will examine the effect of setting P = N , since we know that an AR(2N)
model should be capable of perfectly modeling a noiseless sum of N sinusoids
[25]. However, in the tonal signal model (11.1), a noise term is also present,
hence the solution to the LP estimation problem will be a compromise of at-
tenuating the tonal components, while increasing (or maintaining) the flatness
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of the noise spectrum. In [22], this compromise was analyzed w.r.t. its effect
on the radii {νl}P

l=1 of the PEF zeros, while disregarding the effect on the PEF
zero angles {θl}P

l=1. In our analysis, we will focus on the effect of the noise on
the estimated PEF zero angles.

The LP model parameters in ξ = [θ1, . . . , θP , ν1, . . . , νP ]T can be obtained as
the solution to a system of 2P equations, that are obtained by differentiating
the LP criterion in (11.14) w.r.t. {θl}P

l=1 and {νl}P
l=1, i.e.,







∂

∂θl

{
N∑

n=1

α2
n

2

∣
∣H
(
ejωn

)∣
∣
2

+
σ2

r

2π

∫ 2π

0

∣
∣H
(
ejω
)∣
∣
2
dω

}

= 0, l = 1, . . . , P (11.16)

∂

∂νl

{
N∑

n=1

α2
n

2

∣
∣H
(
ejωn

)∣
∣
2

+
σ2

r

2π

∫ 2π

0

∣
∣H
(
ejω
)∣
∣
2
dω

}

= 0, l = 1, . . . , P .(11.17)

We will first consider the case in which the noise term is equal to zero, i.e.,
σ2

r = 0. In this case, the LP estimation problem can be formulated as follows:

min
ξ

V (ξ) = min
ξ

N∑

n=1

α2
n

2

∣
∣H
(
ejωn

)∣
∣
2

(11.18)

which leads to the following system of equations:







N∑

n=1

α2
n

2

[
∂

∂θl

∣
∣H
(
ejω
)∣
∣
2
]

ω=ωn

= 0, l = 1, . . . , P (11.19)

N∑

n=1

α2
n

2

[
∂

∂νl

∣
∣H
(
ejω
)∣
∣
2
]

ω=ωn

= 0, l = 1, . . . , P . (11.20)

From the PEF transfer function in (11.15), we can calculate the PEF magnitude
response, and its partial derivatives w.r.t. the parameters θl, νl, l = 1, . . . , P :

|H(ejω)|2 =

P∏

l=1

[

(1−ν2
l )2+4ν2

l (cos ω−cos θl)
2−4νl(1−νl)

2 cos θl cosω
]

(11.21)

∂

∂θl
|H(ejω)|2 = 4νl sin θl

[
(1 + ν2

l ) cosω − 2νl cos θl

]

×
P∏

k=1
k 6=l

[

(1 − ν2
k)2 + 4ν2

k(cos ω − cos θk)2 − 4νk(1 − νk)2 cos θk cosω
]

(11.22)

∂

∂νl
|H(ejω)|2 = 4

[
ν3

l − (3ν2
l + 1) cos θl cosω + νl(cos2 ω − sin2 ω + 2 cos2 θl)

]
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×
P∏

k=1
k 6=l

[

(1 − ν2
k)2 + 4ν2

k(cos ω − cos θk)2 − 4νk(1 − νk)2 cos θk cosω
]

(11.23)

The system of equations (11.19)-(11.20) with (11.22)-(11.23) generally has mul-
tiple solutions, even when the PEF zero angles {θl}P

l=1 are constrained to lie
in [0, π], which correspond to (local) minima of the LP criterion. The global
minimum V (ξ) = 0 in case P = N is obtained for the parameter values

{
θl = ωl, l = 1, . . . , P (11.24)

νl = 1, l = 1, . . . , P . (11.25)

The PEF thus behaves as a cascade of second-order all-zero notch filters, with
all the zeros on the unit circle and with the notch frequencies equal to the
frequencies of the tonal components. Note that the corresponding LP model
transfer function G(z) = H−1(z) is in this case unstable.

Next, we will illustrate the influence of a non-zero noise term on the solution
(11.24)-(11.25) obtained in the noiseless case. The second term in the LP
criterion (11.14), which is due to the noise, can be rewritten using Parceval’s
theorem as follows:

σ2
r

2π

∫ 2π

0

∣
∣H
(
ejω
)∣
∣
2
dω = σ2

r

(

1 +

2P∑

i=1

a2
i

)

. (11.26)

It can hence be seen that this term acts as a minimum norm constraint in
the LP criterion, in the sense that it penalizes the squared norm of the PEF
impulse response coefficient vector

a =
[
1 a1 . . . a2P

]T
. (11.27)

This minimum norm constraint has two effects on the solution (11.24)-(11.25)
that was obtained in the noiseless case. A first effect, which was investigated
in [22], is that the estimated PEF zeros are drawn towards the origin of the
z-plane and hence the estimated PEF zero radii {νl}P

l=1 are less than one. A
second effect is related to the estimated PEF zero angles {θl}P

l=1. Consider the
following constrained estimation problem,

min
ξ

V (ξ) = min
ξ

σ2
r

(

1 +

2P∑

i=1

a2
i

)

s.t. νl > 0, l = 1, . . . , P. (11.28)

In this estimation problem, the squared norm of the PEF impulse response
coefficient vector is minimized under a constraint that rules out the trivial
solution a1 = . . . = a2P = 0. It is straightforward to see that the solution to
(11.28) can be obtained by setting a1 = . . . = a2P−1 = 0 and a2P = β with
|β| > 0, which results in a PEF that behaves as a comb filter. The PEF zeros are
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then uniformly distributed on a circle with radius 2P
√

β, and with an angle π/P
between neighbouring zeros. In case β > 0, the PEF zero angles in the Nyquist
interval correspond to θl = π

2P +(l−1) π
P , l = 1, . . . , P , while if β < 0, the PEF

has P + 1 zeros in the Nyquist interval, i.e., θl = (l − 1) π
P , l = 1, . . . , P + 1.

The latter case corresponds to a one-tap pitch prediction filter (see Section
11.4.3), which in fact deviates from the conventional LP model in (11.15) since
the zeros at DC and at the Nyquist frequency do not have a corresponding
complex conjugate zero.

We can therefore expect that when noise is present, the estimated PEF zeros
are both shifted towards the origin and rotated around the origin, hence tending
to a uniform angular distribution. The extent to which the zeros are displaced
as compared to the noiseless solution, depends on the noise power σ2

r , which
determines the relative importance of the minimum norm constraint in the
LP criterion (11.14). The angular effect described above can also be observed
in the noiseless case when the LP model order 2P > 2N , in which case the
2P − 2N “extraneous” PEF zeros tend to be uniformly distributed around the
unit circle if a minimum norm constraint is incorporated in the LP criterion
[45].

Example 11.2 [Conventional LP of synthetic audio signal] When we estimate
a conventional LP model of order 2P = 2N = 30 for the synthetic audio signal
defined in Ex. 11.1, using the covariance method [1] to calculate the model pa-
rameters, we obtain a PEF as illustrated by the pole-zero plot and magnitude
response in Figs. 11.2(a) and 11.2(b), respectively. The conventional LP model
nearly succeeds at correctly modeling all the tonal components in the synthetic
audio signal. However, if we add Gaussian white noise to the observed signal,
the covariance method yields the estimated conventional LP model shown in
Figs. 11.3(a) and 11.3(b), for a signal-to-noise ratio (SNR) of 25 dB. The PEF
zero configuration is in this case clearly a compromise between the LP solu-
tions to the tonal part and the noise part of the signal: the PEF has 9 complex
conjugate zero pairs in the sum of sinusoids’ frequency region, and another
6 complex conjugate zero pairs which are nearly uniformly distributed in the
upper half of the Nyquist interval. A similar result is obtained when we use
the autocorrelation method [1] instead of the covariance method to predict the
noiseless synthetic audio signal. Indeed, the autocorrelation method introduces
noise in the autocorrelation domain by distorting the signal’s periodicity due
to zero padding. This example illustrates the above statement that for conven-
tional LP models, the PEF zero configuration is a trade-off between suppressing
the tonal components and keeping the noise spectrum as flat as possible. Note
that in the absence of noise (Fig. 11.2(b)), the PEF high-frequency response
may become extremely large.
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Figure 11.2: Conventional LP model of synthetic audio signal with order
2P = 30 and covariance method: (a) PEF pole-zero plot, (b) PEF magnitude
response.
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Figure 11.3: Conventional LP model of synthetic audio signal plus noise (SNR
= 25 dB) with order 2P = 30 and covariance method: (a) PEF pole-zero plot,
(b) PEF magnitude response.
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11.4 Alternative Linear Prediction Models

In this section, we present five existing alternative LP models, and we illus-
trate how all these models attempt to compensate for the shortcomings of
the conventional LP model, described in Section 11.3, when the input signal’s
tonal components are concentrated in the lower half of the Nyquist interval.
In the first three alternative LP models, namely the constrained pole-zero LP
(PZLP) model, the high-order LP (HOLP) model, and the pitch prediction
(PLP) model, the influence of the input signal’s frequency distribution is de-
creased by using a model different from the conventional low-order all-pole
model. In the last two alternative LP models, namely the warped LP (WLP)
model and the selective LP (SLP) model, the performance of the conventional
low-order all-pole model is increased by first transforming the input signal such
that its tonal components are spread in the entire Nyquist interval. As stated
earlier, we will mainly focus on the alternative LP models, and not on how the
model parameters can be estimated.

11.4.1 Constrained Pole-Zero LP Model

It is well known that, whereas a sum of N sinusoids can be exactly modeled
using an AR(2N) model, a sum of N sinusoids plus white noise should be
modeled using an ARMA(2N, 2N) model [21]-[24] with equal coefficients in
the AR and MA parts, i.e., the zeros coinciding with the poles [23],[25]. This
observation can be extended to a sum of (finite-bandwidth) damped sinusoids
plus white noise, but in this case the zeros should be slightly displaced towards
the origin, remaining on the same radial line as the poles [24], [25]. The LP
model in (11.8) can then be simplified to a constrained pole-zero LP (PZLP)
model with an equal number of poles and zeros,

G(z) =

P∏

l=1

(
1 − 2ρl cos θlz

−1 + ρ2
l z

−2
)

(
1 − 2νl cos θlz−1 + ν2

l z−2
) (11.29)

the constraint being that the poles and zeros are on the same radial lines, i.e.,
ζl = θl, l = 1, . . . , P , with the poles positioned between the zeros and the unit
circle, i.e., 0 ≪ ρl < νl ≤ 1, l = 1, . . . , P .

We now analyze the PZLP model performance for predicting tonal signals cor-
responding to the signal model (11.1), when P = N , by substituting the PEF
magnitude response |H(ejω)|2, obtained by inverting the magnitude response
of G(z) in (11.29), in the LP criterion (11.14). First, we evaluate the second
term of the LP criterion (11.14). Using the direct-form representation of the
PZLP model in (11.6), with Q = P and b0 = 1, the PEF magnitude response
can be calculated as

|H(ejω)|2 =
|A(ejω)|2
|B(ejω)|2 (11.30)
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=
ra(0) + 2

∑2P
i=1 cos(iω)ra(i)

rb(0) + 2
∑2P

i=1 cos(iω)rb(i)
(11.31)

with ra(i) =
∑2P

p=i apap−i and rb(i) =
∑2P

p=i bpbp−i the autocorrelation func-
tions of the PEF numerator and denominator coefficients, respectively. Note
that when predicting tonal signals, the PEF poles and zeros are typically very
close to the unit circle, and the PEF zeros are allowed to lie on the unit
circle. We can then approximately state that the PEF pole radii are equal,
i.e., ρ1 = . . . = ρP = ρ and likewise that the PEF zero radii are equal, i.e.,
ν1 = . . . = νP = ν. In this case, the numerator and denominator of the PEF
transfer function admit a particular structure, as shown in [31],

H(z) =
1 + νg1z

−1 + . . . + νP−1gP−1z
−P+1 + νP gP z−P

1 + ρg1z−1 + . . . + ρP−1gP−1z−P+1 + ρP gP z−P
. . . (11.32)

. . .
+νP+1gP−1z

−P−1 + . . . + ν2P−1g1z
−2P+1 + ν2P z−2P

+ρP+1gP−1z−P−1 + . . . + ρ2P−1g1z−2P+1 + ρ2P z−2P

and, as a consequence, the autocorrelation function of the PEF numerator
coefficients can be rewritten, for i = 0, . . . , 2P , as

ra(i) =







P−i∑

p=0

gpgp+i(ν
2p+i + ν4P−(2p+i)) +

i−1
2∑

p=1

gP−pgP−i+p(ν
2P−i + ν2P+i),

i = odd
P−i∑

p=0

gpgp+i(ν
2p+i + ν4P−(2p+i)) +

i
2−1
∑

p=1

gP−pgP−i+p(ν
2P−i + ν2P+i)

+g2
P− i

2

ν2P , i = even

(11.33)
and similarly for rb(i), i = 0, . . . , 2P , by replacing ν with ρ in (11.33). Since ν
and ρ are assumed to be close to 1, we can make the following approximations,







ν2p+i + ν4P−(2p+i) ≈ 2ν2P i = 0, . . . , 2P, p = 0, . . . , P − i (11.34)

ν2P−i + ν2P+i ≈ 2ν2P i = 0, . . . , 2P, p = 1, . . . , ⌊ i−1
2 ⌋ (11.35)

ρ2p+i + ρ4P−(2p+i) ≈ 2ρ2P i = 0, . . . , 2P, p = 0, . . . , P − i (11.36)

ρ2P−i + ρ2P+i ≈ 2ρ2P i = 0, . . . , 2P, p = 1, . . . , ⌊ i−1
2 ⌋ (11.37)

where ⌊x⌋ denotes the floor function, which returns the highest integer less
than or equal to x. We can hence rewrite ra(i) in (11.33) and rb(i) as

{

ra(i) = ν2P γi i = 0, . . . , 2P (11.38)

rb(i) = ρ2P γi i = 0, . . . , 2P (11.39)
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with

γi =







2

P−i∑

p=0

gpgp+i + 2

i−1
2∑

p=1

gP−pgP−i+p, i = odd

2

P−i∑

p=0

gpgp+i + 2

i
2−1
∑

p=1

gP−pgP−i+p + g2
P− i

2
, i = even.

(11.40)

Substituting (11.38) and (11.39) in (11.31) yields

|H(ejω)|2 =

ν2P

(

γ0 + 2

2P∑

i=1

cos(iω)γi

)

ρ2P

(

γ0 + 2
2P∑

i=1

cos(iω)γi

) =
ν2P

ρ2P
(11.41)

which is expected to be a good approximation except in the close neighbor-
hood of the PEF pole-zero angles θl, l = 1, . . . , P , where the PEF magnitude
response approaches zero because the PEF zeros are closer to the unit circle
than the poles. However, when integrating the PEF magnitude response over
the entire frequency range [0, 2π), the notches in |H(ejω)|2 at ω = θl are neg-
ligible, such that the second term in the LP criterion (11.14) can be written
as

σ2
r

2π

∫ 2π

0

∣
∣H
(
ejω
)∣
∣
2
dω = σ2

r

ν2P

ρ2P
. (11.42)

We now consider the minimization of the LP criterion (11.14) for the PZLP
model (11.29), assuming that ν1 = . . . = νP = ν and ρ1 = . . . = ρP = ρ with
0 ≪ ρ < ν ≤ 1 and using the approximation (11.34)-(11.37) such that the
result in (11.42) can be applied. Since ν and ρ are close to each other, they
cannot be treated as independent variables, and minimizing the LP criterion
w.r.t. ν and ρ can be achieved by setting the total derivative w.r.t. ν and ρ to
zero, which leads to the following system of equations,







∂V (ξ)

∂θl
=

N∑

n=1

α2
n

2

[
∂

∂θl

∣
∣H
(
ejω
)∣
∣
2
]

ω=ωn

+
∂

∂θl

(

σ2
r

ν2P

ρ2P

)

= 0, l = 1, . . . , P (11.43)

dV (ξ)

dν
=

∂V (ξ)

∂ν
+

∂V (ξ)

∂ρ

dρ

dν
= 0 (11.44)

dV (ξ)

dρ
=

∂V (ξ)

∂ρ
+

∂V (ξ)

∂ν

dν

dρ
= 0 (11.45)

with

∂V (ξ)

∂ν
=

N∑

n=1

α2
n

2

[
∂

∂ν

∣
∣H
(
ejω
)∣
∣
2
]

ω=ωn

+
∂

∂ν

(

σ2
r

ν2P

ρ2P

)

= 0 (11.46)
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∂V (ξ)

∂ρ
=

N∑

n=1

α2
n

2

[
∂

∂ρ

∣
∣H
(
ejω
)∣
∣
2
]

ω=ωn

+
∂

∂ρ

(

σ2
r

ν2P

ρ2P

)

= 0. (11.47)

Since ν and ρ are close to each other, we can assume

dρ

dν
≈ dν

dρ
≈ 1 (11.48)

and moreover
∂

∂ν

(

σ2
r

ν2P

ρ2P

)

≈ − ∂

∂ρ

(

σ2
r

ν2P

ρ2P

)

. (11.49)

Substituting (11.46)-(11.49) in (11.44) and (11.45), and noting that the ex-
pression in (11.42) does not depend on the PEF pole-zero angles θl, we can see
that all the terms in the system of equations (11.43)-(11.45) that are due to
the noise component in the observed signal cancel out. In other words, if the
PEF poles and zeros are close to the unit circle, then the solution to the LP
estimation problem using the PZLP model is insensitive to (white) noise in the
observed signal. This is the main strength of the PZLP model as compared to
the conventional LP model, which was shown in Section 11.3 to be much more
sensitive to noise when predicting tonal signals.

It remains to show that the PEF angles calculated from (11.43)-(11.45) con-
verge to the frequencies of the tonal components. The PZLP PEF magnitude
response and its partial derivatives w.r.t. θl, l = 1, . . . , P , ν, and ρ can be
calculated as

|H(ejω)|2 =

P∏

l=1

|Al(e
jω)|2

|Bl(ejω)|2 (11.50)

=

P∏

l=1

(1 − ν2)2 + 4ν2(cos ω − cos θl)
2 − 4ν(1 − ν)2 cos θl cosω

(1 − ρ2)2 + 4ρ2(cos ω − cos θl)2 − 4ρ(1 − ρ)2 cos θl cosω

∂

∂θl
|H(ejω)|2 =

|Bl(e
jω)|2 ∂

∂θl
|Al(e

jω)|2 − |Al(e
jω)|2 ∂

∂θl
|Bl(e

jω)|2

|Bl(ejω)|4

×
P∏

k=1
k 6=l

|Ak(ejω)|2
|Bk(ejω)|2 (11.51)

∂

∂ν
|H(ejω)|2 =

P∑

l=1

{
∂
∂ν |Al(e

jω)|2
|Bl(ejω)|2

P∏

k=1
k 6=l

|Ak(ejω)|2
|Bk(ejω)|2

}

(11.52)

∂

∂ρ
|H(ejω)|2 = −

P∑

l=1

{

|Al(e
jω)|2 ∂

∂ρ |Bl(e
jω)|2

|Bl(ejω)|4
P∏

k=1
k 6=l

|Ak(ejω)|2
|Bk(ejω)|2

}

(11.53)

with

∂

∂θl
|Al(e

jω)|2 = 4ν sin θl

[
(1 + ν2) cosω − 2ν cos θl

]
(11.54)
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∂

∂θl
|Bl(e

jω)|2 = 4ρ sin θl

[
(1 + ρ2) cosω − 2ρ cos θl

]
(11.55)

∂

∂ν
|Al(e

jω)|2 = 4
[
2ν(cosω − cos θl)

2 − (1 − ν)(1 − 3ν) cos θl cosω − ν(1 − ν2)
]

∂

∂ρ
|Bl(e

jω)|2 = 4
[
2ρ(cosω − cos θl)

2 − (1 − ρ)(1 − 3ρ) cos θl cosω − ρ(1 − ρ2)
]
.

The global minimum of (11.14) with P = N , corresponding to V (ξ) = σ2
r , is

obtained when






|Al(e
jωl)|2 = 0, l = 1, . . . , P (11.56)

∂

∂θl
|Al(e

jωl)|2 = 0, l = 1, . . . , P (11.57)

∂

∂ν
|Al(e

jωl)|2 = 0, (11.58)

or, equivalently,

{
θl = ωl, l = 1, . . . , P (11.59)

ν = 1 (11.60)

and hence, following the assumption that the PEF poles are close to the zeros,
ρ → 1.

Example 11.3 [Constrained pole-zero LP of synthetic audio signal] The PZLP
model parameters can be estimated, either using an adaptive notch filter-
ing (ANF) algorithm, for which several implementations have been suggested
[24],[25],[31]-[35], or using the constrained pole-zero linear prediction (CPZLP)
algorithm for multi-tone frequency estimation [36],[37]. Alternatively, if the
PEF pole and zero radii are fixed a priori, any existing frequency estimation
algorithm may be used to estimate the unknown PEF angles. When harmonic-
ity can be assumed, i.e., for monophonic audio signals, an adaptive comb filter
(ACF) may be a useful alternative to the ANF, as it relies on only one unknown
parameter (i.e., the fundamental frequency) [32],[35]. Similarly, a comb-filter-
based variant of the CPZLP algorithm has been described in [37].

Figs. 11.4(a) and 11.4(b) show the PEF pole-zero plot and magnitude response
of a PZLP model of the synthetic audio signal introduced in Example 11.1, and
with additive Gaussian white noise (SNR = 25 dB). The PZLP model param-
eters were calculated using the CPZLP algorithm with a comb filter model
[37] of order 2P = 30, pole radius ρ = 0.95, and zero radius ν = 1, and with
a numerical line search method using the BFGS quasi-Newton algorithm with

initial fundamental frequency estimate ω
(0)
0 = 0.001 and line search parameters

as suggested in [36]. It can be seen that the PEF magnitude response exhibits
a notch filter behavior at the frequencies of the tonal components, while being
approximately flat in the remainder of the Nyquist interval.
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Figure 11.4: Constrained pole-zero LP model of synthetic audio signal plus
noise (SNR = 25 dB) with order 2P = 30 and CPZLP algorithm: (a) PEF
pole-zero plot, (b) PEF magnitude response.

11.4.2 High-Order LP model

It is well known that a pole-zero model can be arbitrarily closely approximated
with an all-pole model, provided that the model order is chosen large enough.
This means that a noisy sum of sinusoids can also be modeled using a high-
order all-pole model instead of a pole-zero model [22]. In Section 11.3, the LP
minimization problem (11.14) was analyzed for the case of an all-pole model
of order P = N . When noise is present in the observed signal, the LP solution
was shown to be a compromise between cancelling the tonal components and
maintaining a flat high-frequency residual spectrum. By increasing the model
order, the density of the zeros near the unit circle is increased accordingly,
and hence the frequency resolution in the tonal components frequency range
improves without sacrificing high-frequency residual spectral flatness. However,
as the LP model order 2P approaches the observation window length L, the
variance of the estimated model parameters may be unacceptably large, leading
to spurious peaks in the signal’s spectral estimate [22]. It has been suggested
that the order 2P of a high-order LP (HOLP) model should be chosen in the
interval L/3 ≤ 2P ≤ L/2 to obtain the best spectral estimate for a noisy sum
of sinusoids [22],[46].

Example 11.4 [High-order LP of synthetic audio signal] Performing a L/2 =
1024th order LP of the noisy synthetic audio signal fragment defined before,
using the autocorrelation method to estimate the model parameters, we obtain
a PEF pole-zero plot and magnitude response as shown in Figs. 11.5(a) and
11.5(b). Examining the distribution of the PEF zeros in the complex plane re-
veals that this approach produces approximately 1024−2N zeros, lying on and
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Figure 11.5: High-order LP model of synthetic audio signal plus noise (SNR =
25 dB) with order 2P = 1024 and autocorrelation method: (a) PEF pole-zero
plot, (b) PEF magnitude response.

nearly equally spaced around the unit circle (to provide overall spectral flatness
of the PEF magnitude response), and 2N additional zeros at the frequencies
±nω0, n = 1, . . . , N of the tonal components (to provide the notch filter behav-
ior). Note that when applying the covariance method to the estimation of the
HOLP model parameters, a similar result is obtained.

11.4.3 Pitch Prediction Model

In LP of speech signals, the conventional LP model is usually cascaded with
a so-called pitch prediction (PLP) model, with the aim of removing the long-
term correlation from the signal. This technique can also be used to remove
the (quasi-)periodicity from monophonic audio signals, since it implicitly relies
on the harmonicity of the observed signal. If we consider a sum of harmonic
sinusoids having a pitch period T0 that corresponds to an integer number of
sampling periods KTs, where K is referred to as the pitch lag, then perfect
prediction can be obtained by using a one-tap pitch predictor, of which the
PEF transfer function is given by

H(z) = 1 − z−K = 1 − z−T0/Ts = 1 − z−2π/ω0 . (11.61)

The PEF magnitude response corresponding to (11.61) is

|H(ejω)|2 = 2
[

1 − cos
(2πω

ω0

)]

. (11.62)

It can be seen that |H(ejω)|2 = 0 at ω = kω0, ∀k ∈ Z, which corresponds
to a comb filter behavior, i.e., the PEF zeros are positioned on and equally
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spaced around the unit circle, at angles corresponding to integer multiples of
the fundamental frequency ω0. In other words, referring to the analysis in
Section 11.3, the requirements of having the PEF zeros on the unit circle at
angles nω0, n = 1, . . . , N (for cancelling the tonal components) and uniformly
distributed on the unit circle (for maintaining the LP residual spectral flatness)
are both fulfilled with the PLP model in (11.61).

However, for the PLP model to be capable of producing a good spectral esti-
mate of a monophonic audio signal, we should improve the model in (11.61) in
two ways. First of all, in audio signals the amplitudes of the harmonics nω0

typically decrease with increasing n (see, e.g., Figs. 11.11(b) and 11.14(b) in
Section 11.5). This effect requires the PEF magnitude response to be spectrally
shaped such that the comb filter notch depth decreases for increasing frequency.
This can be achieved by using a multi-tap PLP model [47], which features mul-
tiple non-zero filter coefficients centered around the pitch lag value. In speech
processing, a 3-tap PLP model is often applied, since this configuration usually
provides enough flexibility in terms of spectral shaping,

H(z) = 1 + aK−1z
−(K−1) + aKz−K + aK+1z

−(K+1). (11.63)

From the 3-tap PEF magnitude response

|H(ejω)|2 = (cosKω + aK + (aK−1 + aK+1) cosω)2 (11.64)

+ (sin Kω + (aK−1 − aK+1) sin ω)2

it can be derived that the desired spectral shaping for our application, i.e., a
decreasing notch depth for increasing frequency, is obtained when −1 ≤ aK <
(aK−1 + aK+1) < 0 [47].

Secondly, the PLP model in (11.62) is based on the assumption that the pitch
lag K = T0/Ts is an integer number, which is generally not the case. Non-
integer pitch lags can be incorporated in the PLP model in two ways: either
by using a multi-tap PLP model for interpolation (see, e.g., [2]), or by using a
fractional delay filter [48], for which numerous design methods exist [49]. We
prefer to combine both approaches, such that the multi-tap structure may be
primarily used for spectral shaping, whereas interpolation for non-integer pitch
lags is achieved with a fractional delay filter. A combined fractional multi-tap
PLP model has been proposed in [47], with

H(z) = 1 +
K+1∑

l=K−1

alz
−l

(
I−1∑

i=−I

wh(I + f/D)sinc(I + f/D)zi

)

. (11.65)

The fractional delay interpolation filter is a Hamming-windowed, truncated
(length-2I) approximation of the ideal sinc-like interpolation filter [49], with
wh(t) denoting the Hamming window (centered at t = 0). In (11.65), D is
the interpolation ratio (where 1/D is referred to as the pitch resolution), and
f = 0, 1, . . . , D − 1 denotes the fractional phase.
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Figure 11.6: Fractional 3-tap PLP model of synthetic audio signal plus noise
(SNR = 25 dB): (a) PEF pole-zero plot, (b) PEF magnitude response.

Typically, for estimating the PLP model parameters, in a first step the op-
timal pitch lag K and fractional phase f are estimated by an exhaustive
search of the minimal fractional 1-tap PLP residual power over the interval
K ∈ [Kmin, Kmax] and f ∈ [0, D − 1]. In speech analysis, the pitch lag limits
correspond to the highest-pitched (female) and lowest-pitched (male) voices
being analyzed and are typically chosen in the range Kmin = 20, . . . , 40 and
Kmax = 120, . . . , 160 samples, at fs = 8 kHz. For pitch analysis of audio signals,
we propose to set the pitch lag range such that it corresponds to a fundamental
frequency range of 100, . . . , 1000 Hz, i.e., at fs = 44.1 kHz, K ∈ [44, 441]. In a
second step, the fractional 3-tap PLP model parameters al, l ∈ [K − 1, K + 1]
are estimated using the estimated pitch lag and fractional phase from the first
step. Some useful approximations for efficiently calculating the 3-tap PLP
model parameters from the input signal autocorrelation function have been
suggested in [2].

Example 11.5 [Pitch prediction of synthetic audio signal] The parameters of
the fractional 3-tap PLP model given in (11.65) were estimated for the noisy
synthetic audio signal defined earlier using the method proposed in [47], with
an interpolation filter of length 2I = 32 and an interpolation ratio D = 8, and
by forcing the input correlation matrix to be Toeplitz [2]. The resulting PEF
magnitude response and pole-zero plot are shown in Figs. 11.6(a) and 11.6(b).
Note the additional circle of zeros around the origin in Fig. 11.6(a), which
is due to the fractional part of the PEF transfer function, and the spectral
shaping effect in Fig. 11.6(b), which is obtained by using multiple taps in the
PLP model.
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11.4.4 Warped LP Model

Warped linear prediction (WLP) is probably the most well-known technique for
LP of audio signals, see [12] and references therein. In WLP, the input signal
undergoes a non-uniform frequency transformation before a conventional LP
is performed, with the aim of enhancing the frequency resolution in certain
frequency regions. The frequency transformation is usually defined by an all-
pass bilinear transform in the z-domain, which maps the unit circle onto itself,

z−1 7→ z̃−1 =
z−1 − λ

1 − λz−1
. (11.66)

The so-called warping parameter λ is typically chosen such that the correspond-
ing frequency mapping

ω 7→ ω̃ = ω + 2 arctan

(
λ sin ω

1 − λ cosω

)

(11.67)

approximates the Bark auditory scale [30], i.e., when the sampling rate fs is
expressed in kHz,

λBark(fs) = 1.0674

√

2

π
arctan(0.06583fs) − 0.1916. (11.68)

Since λBark(44.1) > 0, the warping operation tends to spread out the tonal
components in the observed signal over the entire Nyquist interval. From the
conventional LP analysis in Section 11.3, it can hence be expected that ap-
plying a conventional, i.e., low-order all-pole LP model to the warped signal
will yield a better prediction than a conventional LP model of the original
signal. The optimal prediction is obtained when the frequency transformation
produces a uniform spreading of the tonal components in the Nyquist interval.
For monophonic audio signals this is never the case, since the bilinear frequency
warping in (11.66)-(11.67) disturbs the harmonicity of the signal. For this class
of signals, the frequency transformation of the selective LP model described in
Section 11.4.5 appears to be better suited. However, for polyphonic audio sig-
nals, the above bilinear frequency warping may be a near-optimal mapping,
since in this case the different fundamental frequencies are approximately re-
lated to each other according to the Bark scale (see also the simulation results
in Section 11.5.3).

Example 11.6 [Warped LP of synthetic audio signal] The warped spectrum
of the noisy synthetic audio signal defined before, is shown in Fig. 11.7(a) for
λ = λBark(44.1) = 0.75641. Figs. 11.7(b) and 11.7(c) illustrate the PEF pole-
zero plot and magnitude response on a warped frequency scale f̃ = ω̃(fs/2π),
when a 2Nth order WLP model is calculated using the autocorrelation method.
The frequency resolution of the signal’s WLP spectral estimate is very good for
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the five lowest tonal components nω0, n = 1, . . . , 5, while the higher harmonics
are modeled less accurately because they are too closely spaced on the warped
frequency scale. The PEF transfer function can be unwarped to the original
frequency scale, but then the PEF impulse response is of infinite duration.
The PEF pole-zero plot and magnitude response on the original frequency
scale, obtained by truncating the unwarped PEF impulse response to a length
of L/4 = 512 samples, are shown in Figs. 11.7(d) and 11.7(e). The pole-zero
plot on the original frequency scale clearly illustrates that the WLP model
succeeds both at cancelling the (low-frequency) tonal components (by placing
a few zeros approximately on the unit circle at the lower tonal component
frequencies), and at preserving the overall spectral flatness of the residual (by
placing a large number of zeros uniformly spaced around and close to the unit
circle).

Note that the WLP residual e(t, ξ) can be calculated without unwarping the
PEF transfer function, but instead by considering the PEF as a warped FIR
filter [50]. Moreover, before feeding the WLP residual to a synthesis filter or
calculating its spectral flatness (see Section 11.5), it should be post-filtered
with a high-pass filter defined as [12]

D−1
0 (z) =

1 − λz−1

√
1 − λ2

. (11.69)

11.4.5 Selective LP Model

In some cases, e.g., when dealing with monophonic audio signals, a uniform
frequency mapping may be more useful than a non-uniform mapping such as the
warping operation described in Section 11.4.4, since it preserves the harmonic
relation between the tonal components. A uniform mapping which allows to
“zoom in” on a certain frequency region ω1 ≤ ω ≤ ω2, is accomplished by

ω 7→ ω̃ = π
ω − ω1

ω2 − ω1
(11.70)

which, when combined with a conventional LP model, is known as a selective
LP (SLP) model [1].

To obtain a uniform spreading of the tonal components over the entire Nyquist
interval, we should choose ω1 = 0 and ω2 = ω1 + ωN , with ω1 and ωN the
frequencies of the lowest and highest tonal components, see (11.1). This leads
to

ω 7→ ω̃ = Γω (11.71)

with

Γ =
π

ω1 + ωN
. (11.72)
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Figure 11.7: Warped LP model of synthetic audio signal plus noise (SNR = 25
dB) with order 2P = 30, warping parameter λ = λBark(44.1), and autocorre-
lation method: (a) Noisy synthetic audio signal magnitude spectrum (warped
scale), (b) PEF pole-zero plot (warped scale), (c) PEF magnitude response
(warped scale), (d) PEF pole-zero plot (original scale), (e) PEF magnitude
response (original scale).
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In the z-domain this corresponds to the mapping

z−1 7→ z̃−1 = z−Γ (11.73)

which is a downsampling operation with downsampling factor Γ. In the case
of a monophonic audio signal, the downsampling factor can be rewritten using
(11.2),

Γ =
π

(N + 1)ω0
=

fs

2(N + 1)f0
(11.74)

and in the polyphonic case, using (11.3),

Γ =
π

ω0,1 + MNω0,N
=

fs

2(f0,1 + MNf0,N)
. (11.75)

Note that the optimal downsampling factor Γ, given in (11.72), is highly signal-
dependent, and non-integer downsampling is required in general. These diffi-
culties can be easily avoided by using an approximate, integer downsampling
factor (see Section 11.5) which is chosen to be fixed for the entire signal analysis.
It should then typically be chosen in the range Γ = 2, . . . , 10, if possible using
some prior knowledge about the frequency range of the instrument generating
the audio signal being analyzed.

Example 11.7 [Selective LP of synthetic audio signal] The spectrum of the
noisy synthetic audio signal defined before, downsampled with a factor Γ = 2
(obtained from (11.74) with ω0 = 2π/64 and N = 15), is shown in Fig. 11.8(a),
and the PEF pole-zero plot and magnitude response, resulting from using a
2Nth order SLP model, calculated with the autocorrelation method, are plotted
on the downsampled frequency scale in Figs. 11.8(b) and 11.8(c). The PEF
zeros are nearly perfectly distributed in a uniform way around the unit circle,
with exactly one complex conjugate zero pair for each tonal component in the
downsampled signal. After upsampling, the PEF pole-zero plot and magnitude
response shown in Figs. 11.8(d) and 11.8(e) are obtained. The PEF behavior
on the original frequency scale is comparable to the PLP model PEF behavior,
i.e., nearly perfect cancellation of the tonal components is achieved, at the cost
of having additional notches in the upper half of the Nyquist interval, which
may result in a non-smooth high-frequency residual spectrum. The LP residual
can either be calculated on the downsampled or on the original time scale.

11.5 Simulation Results

In this section, we evaluate the conventional and alternative LP models de-
scribed in Sections 11.3 and 11.4 in terms of frequency estimation accuracy,
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Figure 11.8: Selective LP model of synthetic audio signal plus noise (SNR =
25 dB) with order 2P = 30, downsampling factor Γ = 2, and autocorrelation
method: (a) Noisy synthetic audio signal magnitude spectrum (downsampled
scale), (b) PEF pole-zero plot (downsampled scale), (c) PEF magnitude re-
sponse (downsampled scale), (d) PEF pole-zero plot (original scale), (e) PEF
magnitude response (original scale).
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residual spectral flatness, and perceptual frequency resolution for a synthetic
harmonic audio signal with varying fundamental frequency and SNR. After-
wards, we apply the different LP models to true monophonic and polyphonic
audio signals, and we analyze the PEF behavior by examining the pole-zero
plots and magnitude responses. Residual spectral flatness figures are given for
true audio signals as a function of pitch and time offset of the analysis window
within the signal.

We should stress that the aim is to compare different LP models, and not the
algorithms that can be used to estimate the model parameters. Some models
come with parameter estimation algorithms that are well established (e.g., co-
variance method or autocorrelation method with Levinson-Durbin algorithm
[51, Ch. 6] for all-pole models), yet other models do not. In particular, PZLP
models typically result in a non-convex parameter estimation problem that
is solved either in an adaptive or iterative way. As a consequence, the per-
formance of the corresponding estimation algorithms (e.g., ANF or CPZLP)
depends heavily on the initial conditions. In the simulation results presented
below, the initial conditions are chosen in the neighborhood of the true funda-
mental frequencies in the observed audio signal, such that the PZLP estimation
algorithms yield a solution that corresponds with high probability to the global
solution. In this way, the emphasis is on the model performance rather than on
the estimation algorithm performance. For the same reason, knowledge of the
true fundamental frequencies is also assumed when determining the optimal
downsampling factor in the SLP estimation algorithms, and for designing a
PLP model for polyphonic audio signals. For the conventional LP model, the
performance may differ substantially for the autocorrelation and covariance
estimation methods, hence the results for both methods are included.

11.5.1 Synthetic Audio Signal

Throughout Ex. 11.2-11.7, the performance of conventional and alternative LP
models was illustrated by inspecting the PEF pole-zero plots and magnitude
responses, resulting from the prediction of a noisy synthetic audio signal with
fundamental frequency f0 ≈ 689.1 Hz and SNR = 25 dB. We also present a
more quantitative evaluation of the different LP models, for a synthetic audio
signal with variable fundamental frequency and SNR.

A first performance measure is the Mean Square Frequency Error (MSFE),
which is defined with the aim of evaluating the frequency estimation accuracy
of the different LP models,

MSFE =
1

N

N∑

n=1

(θl(n) − ωn)2 (11.76)
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with

l(n) = argmin
l

‖νle
jθl − ejωn‖2 (11.77)

= argmin
l

(
1 + ν2

l − 2νl cos(θl − ωn)
)
. (11.78)

In other words, the MSFE is calculated as the mean square difference between
each of the frequencies ωn of the N tonal components in the observed signal,
and the angle of the PEF zero νl(n)e

jθl(n) that is closest to the point ejωn in
the complex plane. The MSFE was calculated for a synthetic audio signal
with N , L, fs, αn, and φn as in Ex. 11.2, with additive Gaussian white noise
resulting in an SNR = 25 dB, and with varying fundamental frequency, equal to
the first 11 center frequencies of the Bark scale [52]. A second experiment was
conducted with similar signals having a fixed fundamental frequency f0 ≈ 689.1
Hz, and an SNR varying between -50 dB and 50 dB in steps of 10 dB. The
MSFE results, averaged over 100 Monte Carlo trials for different realizations
of the Gaussian white noise sequence, are shown in Figs. 11.9(a) and 11.9(b).
The MSFE of the low-order all-pole models (LPAUTO, LPCOV, WLP, and SLP)
appears to be more or less invariant w.r.t. varying fundamental frequency and
SNR, with MSFE values varying between -50 and -20 dB, the highest of which
is obtained with the conventional LP model. It can be observed that models for
which the PEF zeros are on (PLP and PZLP) or very close to (HOLP) the unit
circle generally provide a higher frequency estimation accuracy. The HOLP
model produces MSFE values between -70 and -50 dB, which are invariant
with varying fundamental frequency, and slightly lower for high than for low
SNRs. At sufficiently high fundamental frequency and SNR values, the PLP
and PZLP models achieve an MSFE as low as -90 (PLP) and -100 (PZLP) dB.
However, the PLP and PZLP model MSFE performance is seen to be worse for
lower fundamental frequencies and SNR values. The sensitivity of these models
to the fundamental frequency is presumably related to the fact that these are
the only models that explicitly rely on the harmonicity of the observed signal
(since in the PZLP case, the comb filter model is used). The performance drop
of the PZLP model at low SNR values is due to the accuracy of the CPZLP
algorithm, which is known to be relatively poor at SNR values below -5 dB
[37].

A second performance measure is the Spectral Flatness Measure (SFM) of the
LP residual, defined as [43, Ch. 6]

SFME =

exp

[

1

L

L−1∑

k=0

ln
∣
∣E
(
ej 2πk

L , ξ
)∣
∣

]

1

L

L−1∑

k=0

∣
∣E
(
ej 2πk

L , ξ
)∣
∣

(11.79)

with E
(
ej 2πk

L , ξ
)
, k = 0, . . . , L− 1 the L-point DFT of the LP residual e(t, ξ).

The SFM is a real number between 0 and 1, with SFM = 1 corresponding to a
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Figure 11.9: Mean square frequency error (MSFE) and residual SFM curves of
Monte Carlo simulations for a synthetic audio signal with variable fundamental
frequency and SNR.
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flat spectrum, and is often expressed on a dB-scale (0 dB corresponding to a flat
spectrum). Monte Carlo simulation results of the residual SFM after prediction
of the synthetic audio signals with varying fundamental frequency and SNR
described above, are shown in Figs. 11.9(c) and 11.9(d). The residual SFM of
the low-order all-pole models (LPAUTO, LPCOV, WLP, and SLP) decreases with
increasing fundamental frequency and increasing SNR. The first observation
can be explained by noting that at low fundamental frequency values, the
low-order all-pole models tend to model multiple tonal components with one
complex conjugate pole pair, while the remaining poles are used to model
the high-frequency noise spectrum. As a consequence, most of the poles are
located relatively far away from the unit circle, hence resulting in a smoother
spectral behavior. The residual SFM drop at high SNR values should not
be surprising, since the low-order all-zero PEFs generally do not succeed at
completely cancelling the tonal components from the observed signal. On the
other hand, the residual SFM of the PLP and PZLP models can be seen to
increase with increasing fundamental frequency and decreases (PLP) or remains
quasi constant (PZLP) with increasing SNR. The HOLP model residual SFM
is the highest among all LP models, and appears to be independent of both
fundamental frequency and SNR. The SFM of the synthetic audio signals before
LP was on average -10 dB in the varying fundamental frequency case, and -35
dB in the varying SNR case. A relevant extension to the low-order alternative
LP models described in Section 11.4, is to cascade them with a conventional
LP model. Such a cascaded model can be motivated by noting that for true
audio signals, the noise term in the tonal signal models (11.1)-(11.3) may be
non-white. Hence an alternative LP model could be applied first for predicting
the tonal components, and in a second step a conventional LP model could be
used for whitening both the noise and the unpredicted tonal components in
the residual of the alternative LP model. This cascaded structure appears to
be beneficial for the low-order alternative LP models (PZLP, PLP, WLP, and
SLP) in terms of increasing the residual SFM, especially at high SNR values
and, for the PZLP and PLP models, also at low fundamental frequency values.

Finally, the third performance measure we will use is the Inter-peak Dip Depth
(IDD) [12], a perceptually motivated measure which reflects the separability of
spectral peaks for a certain model. It is defined for an LP model of a length-L
sum of two sinusoids at frequencies f1 and f2 Hz, separated by two times the
equivalent rectangular bandwidth (ERB) [53] at the lower frequency f1, i.e.,
f2 = f1 + 2(0.108f1 + 24.7), as

IDD =
L1 + L2

2Ld
(11.80)

with L1 and L2 corresponding to the amplitude of the two peaks in the LP
model magnitude response, and Ld to the minimal amplitude between the two
peaks. The higher the IDD, the better the perceptual frequency resolution of
the model is expected to be. The IDD was measured for all LP models except
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Figure 11.10: IDD results for two-tone signal with frequencies f1 and f2 =
f1 + 2ERB(f1).

the PLP model, for 24 sets of two sinusoids, with f1 corresponding to the center
frequency of the 24 Bark scale bands [52]. The PLP model is not appropriate for
this type of signal, since the sinusoid frequencies are not harmonically related.
The IDD results for the conventional LP, PZLP, WLP and SLP models with
order 2P = 2N = 4 and for the HOLP model with order 2P = L/2 = 1024
are shown in Fig. 11.10. The low-order all-pole models perform poorly, except
for the conventional LP model with the covariance estimation method, which
has a very high IDD even in the low-frequency region. For true audio signals,
however, the LPCOV model will perform worse in terms of perceptual frequency
resolution since the estimated model parameters can strongly differ for noise-
free and noisy sinusoidal signals, see Figs. 11.2(a) and 11.3(a). The HOLP
model IDD exhibits a similar trend as the LPCOV model IDD, as it slightly
increases with increasing frequency, remaining on average 14 dB below the
LPCOV model IDD curve. The PZLP model can be seen to produce high IDD
values at low and high frequencies, but performs poorly in the mid-frequency
range (250 to 1370 Hz), which is exactly the frequency range of interest in audio
applications. Of course, the IDD performance of an LP model is strongly
related to the bandwidth of the spectral peaks that it can produce. As a
consequence, the PZLP model IDD performance can be improved by increasing
the pole radius (e.g., ρ = 0.99, see Fig. 11.10), which is equivalent to reducing
the smallest achievable bandwidth [54], however, when dealing with true audio
signals a lower value of the pole radius is expected to be more appropriate for
taking into account the damping of the tonal components.
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Figure 11.11: Monophonic audio signal: (a) Time-domain waveform, (b) mag-
nitude spectrum.

11.5.2 Monophonic Audio Signal

A length-L monophonic audio fragment was extracted from a Bb clarinet sound
recording in the McGill University Master Samples collection [55]. The frag-
ment, which corresponds to the samples 70001 to 72048 of the G4 note record-
ing, is shown in Fig. 11.11(a), along with its magnitude spectrum in Fig.
11.11(b). The fundamental frequency corresponds to f0 = 387.6 Hz, and the
number of relevant harmonics is chosen to be N = 15. A conventional LP
model of order 2P = 30, calculated using the autocorrelation method, pro-
duces a PEF as illustrated in Figs. 11.12(a) and 11.12(d), which is again a
compromise between cancelling the tonal components and keeping the residual
spectrum relatively flat. A better resolution is obtained using a PZLP model
with 2P = 30, ρl = 0.95 and νl = 1, l = 1, . . . , P , as shown in Figs. 11.12(b)
and 11.12(e), and using a HOLP model with 2P = 1024, see Figs. 11.12(c)
and 11.12(f). A fractional 3-tap PLP model was calculated using the method
proposed in [47], with the algorithm parameters given in Ex. 11.5, resulting in
the PEF shown in Figs. 11.12(g) and 11.12(j), in which the spectral shaping
capability of the 3-tap PLP model is clearly exploited. A WLP model with
2P = 30 and λ = λBark(44.1) produces an unwarped PEF as shown in Figs.
11.12(h) and 11.12(k). Finally, the SLP model with 2P = 30, for which the
optimal downsampling factor from (11.72) was rounded to Γ = 4, has a PEF
after upsampling which is given in Figs. 11.12(i) and 11.12(l).

The residual SFM values obtained with the different LP models were calcu-
lated for 2048-sample fragments taken from the sustain part of the Bb clarinet
recordings in [55] with varying pitch, ranging from D3 to D6 (corresponding to
f0 = 146.8 Hz to 1174.7 Hz), and are shown in Fig. 11.13(a). The original sig-
nal fragments have an average SFM value of -31 dB. The residual SFM curves
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(a) conventional LP model
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(b) pole-zero LP model
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(c) high-order LP model
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(d) conventional LP model
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(e) pole-zero LP model
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(f) high-order LP model
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(g) pitch prediction model
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(h) warped LP model
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(i) selective LP model
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(j) pitch prediction model
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(k) warped LP model
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Figure 11.12: Monophonic audio signal: PEF pole-zero plots (first and third
row) and PEF magnitude responses (second and fourth row) for conventional
and alternative LP models.
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for the PZLP and PLP models are not shown, as they are (partially) outside
the displayed SFM range, with an average residual SFM of -12 and -19 dB,
respectively. Fig. 11.13(c) contains the residual SFM results when the analysis
window time offset is varied in steps of 2048 samples from the onset till the end
of the Bb clarinet G4 note in [55], which is plotted in Fig. 11.13(b). Again,
the PZLP and PLP curves are omitted, with an average residual SFM of -10
and -19 dB, respectively, while the original signal fragments have an average
SFM of -29 dB. From Fig. 11.13(a), we can observe that the residual SFM
does not exhibit a notable trend with varying fundamental frequency for any
of the LP models, which is somewhat contradictory with the results obtained
for synthetic signals (see Fig. 11.9(c)). This can be explained by suggesting
that the residual SFM value for true audio signals is primarily determined by
the (low-power) harmonics which are modeled as noise components instead of
tonal components. This undermodeling effect is generally independent of the
fundamental frequency, but rather depends on which musical instrument is con-
sidered. Figs. 11.13(b) and 11.13(c) show that the LP model performance is
comparable in the decay, sustain, and release part of the note, but somewhat
worse in the attack part. This is mainly due to the fact that the attack part ex-
hibits much less stationarity than the other signal parts. In both experiments,
the HOLP model and the PZLP and PLP models cascaded with a conven-
tional LP model, provide the best residual SFM results, which is consistent
with the results obtained for synthetic signals (see Figs. 11.9(c) and 11.9(d)).
The WLP model, potentially cascaded with a conventional LP model, performs
somewhat worse yet still outperforms the LPAUTO model, while the SLP and
LPCOV models yield significantly poorer results.

11.5.3 Polyphonic Audio Signal

From the concert hall Steinway recordings in [55], a polyphonic audio signal
was generated by adding four monophonic piano sounds. The samples 2001 to
4048 of the C4, E4, G4, and C5 note recordings were added to obtain a length-L
C major chord, plotted in Figs. 11.14(a) and 11.14(b). The four fundamental
frequencies are f0,n = {258.4, 323, 387.6, 516.8}Hz, and each of the monophonic
components has 7 relevant harmonics, i.e., Mn = 7, n = 1, . . . , 4. The PEF
obtained with a conventional LP model of order 2P = 2

∑4
n=1 Mn = 54 is

shown in Figs. 11.15(a) and 11.15(d). It can be seen that the PEF has only
one low-frequency notch and an overall high-pass shape. The PZLP model
with 2P = 54, ρl = 0.95 and νl = 1, l = 1, . . . , P , produces exactly as many
PEF notches as there are non-overlapping tonal components, as can be seen
in Figs. 11.15(b) and 11.15(e). The same holds true for the HOLP model
with 2P = 1024, of which the PEF is shown in Figs. 11.15(c) and 11.15(f).
The PLP model does not seem to be suited for predicting polyphonic signals
since the tonal components do not obey an integer harmonic relation. An
alternative PLP approach could exist in cascading as many PLP models as there
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Figure 11.13: Residual SFM curves for a true monophonic audio signal with
variable fundamental frequency and analysis window time offset.
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Figure 11.14: Polyphonic audio signal: (a) Time-domain waveform, (b) mag-
nitude spectrum.

are different fundamental frequencies in the polyphonic signal, but this does
not yield good results. Another alternative PLP approach may be based on the
fractional harmonic relations which exist between the fundamental frequencies
in a musical chord, e.g., for a major chord (consisting of dominant, third, fifth,
and octave) it can be verified that f0,2 = (5/4)f0,1, f0,3 = (3/2)f0,1, and
f0,4 = 2f0,1. As a consequence, a fractional PLP model with pitch lag K =
4(T0,1/Ts) samples would produce PEF notches at all the tonal components
in the polyphonic signal. However, allowing such large pitch lags deteriorates
the performance of the algorithm for calculating the PLP model parameters,
since the allowable pitch lag search space [Kmin, Kmax] becomes very large,
rendering the algorithm slower and less reliable. Moreover, the large number
of spurious notches in the PEF frequency response leads to an extremely non-
smooth residual spectrum. As an example, a fractional pseudo-3-tap PLP
model [47], assuming knowledge of the pitch lag K = 4(T0,1/Ts) = 682.6625
samples, was constructed by setting aK−1 = aK+1 = −0.05 and aK = −0.9.
The resulting PEF when 2I = 32 and D = 8 is shown in Figs. 11.15(g) and
11.15(j). Finally, the WLP and SLP models were applied to the polyphonic
signal, both with 2P = 54, a warping parameter λ = λBark(44.1) resulting in
the unwarped PEF in Figs. 11.15(h) and 11.15(k), and a downsampling factor
Γ = 6 (rounded from the optimal value in (11.75)) resulting in the upsampled
PEF shown in Figs. 11.15(i) and 11.15(l).

Two similar experiments as in the monophonic case were performed, for cal-
culating the residual SFM values after prediction of a polyphonic audio signal
with varying pitch and analysis window time offset. Fig. 11.16(a) shows the
residual SFM results for LP of a 4-note major chord (consisting of dominant,
third, fifth, and octave) created from the concert hall Steinway recordings in
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(b) pole-zero LP model
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(c) high-order LP model
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(d) conventional LP model
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(e) pole-zero LP model
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(f) high-order LP model
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(g) pitch prediction model
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(h) warped LP model
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(i) selective LP model
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(j) pitch prediction model
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(k) warped LP model
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Figure 11.15: Polyphonic audio signal: PEF pole-zero plots (first and third
row) and PEF magnitude responses (second and fourth row) for conventional
and alternative LP models.
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[55], in which the dominant varies from A0 to C7 (corresponding to f0 = 27.5
Hz to 2093 Hz) and the analysis window is in the release part of the chord.
The LPCOV and PLP curves are not shown, since they are partially below
the displayed residual SFM range, having a residual SFM value of -11 and -
30 dB, respectively. The original polyphonic signals have an average SFM of
-32 dB. At very low pitched chords, the LPAUTO, HOLP, WLP, SLP models
and the PZLP and PLP models cascaded with a conventional LP model, are
quite competitive, however, towards higher pitch values, the HOLP and WLP
models outperform the other models. The superior performance of the WLP
model as compared to the other low-order models should not be a surprise. As
noted in Section 11.4.4, the tonal components in a polyphonic signal are ap-
proximately distributed according to the Bark scale and are hence mapped to
a nearly uniform frequency distribution after frequency warping. The LPAUTO

and SLP models still perform reasonably well for high pitched chords, while
the cascaded PZLP and PLP models perform worse. It appears that the ap-
proach of decomposing the polyphonic signal into a number of harmonic signals
(which is what the PZLP and PLP models attempt to do) is not beneficial in
terms of residual spectral flatness. In Fig. 11.16(b) the 4-note major chord
with dominant C4 is plotted, for which the residual SFM results of LP with a
variable analysis window time offset are shown in Fig. 11.16(c). During the
attack part of the chord (analysis window offset = 0 s), all LP models perform
poorly. In the next 5 positions of the analysis window, which correspond to
the decay and sustain parts, the residual SFM performance is the best. Again,
the HOLP and WLP models yield better results than the LPAUTO and SLP
models, which in turn outperform the PZLP and PLP models, cascaded with
a conventional LP model. In the release part of the chord (analysis window
offset = ca. 0.6 s to 9.8 s), the residual SFM performance is highly fluctuating
for all models, and particularly, the cascaded PZLP model residual SFM curve
exhibits a decreasing trend towards the end of the chord, due to the decreas-
ing SNR. The original C major chord has an average SFM of -37 dB, and the
LPCOV and PLP models, resulting in an average residual SFM of -12 and -28
dB, respectively, are not shown in the graph.

11.6 Conclusion

In this paper, we have analyzed the performance of the conventional LP model
when applied to tonal audio signals, and illustrated how the quality of this
model depends on the distribution of the signal’s tonal components in the
Nyquist interval. It was shown that the conventional LP model, with a model
order equal to two times the number of tonal components, and calculated by
minimizing an LS criterion, produces a PEF that features a trade-off between
cancelling the tonal components and keeping the residual spectrum as flat as
possible. This trade-off occurs since the tonal components in an audio signal,
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sampled at fs = 44.1 kHz, are typically located in the lower half of the Nyquist
interval.

Five existing alternative LP models were described, applied to tonal audio sig-
nals, and interpreted in terms of relieving the trade-off inherent in the conven-
tional LP model. The first three alternative LP approaches solve the frequency
distribution problem by considering a model different from the low-order all-
pole model, namely a (constrained) pole-zero (PZLP) model, a high-order all-
pole (HOLP) model, or a pitch prediction (PLP) model. Two other alternative
approaches aim at improving the low-order all-pole model’s performance, by
first transforming the input signal and hence altering the distribution of its
tonal components. If an all-pass bilinear transform is used, we end up with the
warped all-pole (WLP) model, whereas a linear frequency transform leads to
the selective all-pole (SLP) model.

Extensive simulation results were reported with the aim of assessing the per-
formance of the conventional and alternative LP models. Summarizing, we
can state that a high-order all-pole model appears to be better suited to the
audio LP problem than a conventional, low-order all-pole model. However,
the HOLP model, which typically has half as many model parameters as the
number of samples in the analysis window, is impractically complex in many
applications. It could hence be expected that the PZLP model is a good alter-
native, since it can approximate the HOLP PEF impulse response with fewer
parameters. This seems to be true only for monophonic audio signals, and even
in this case, estimating the model parameters without prior knowledge on the
fundamental frequency range is not a trivial task. Another good alternative to
the HOLP model in the case of monophonic signals is the PLP model, espe-
cially when cascaded with a conventional LP model, as is common use in speech
analysis. Finally, for polyphonic audio LP, the WLP model performance comes
very close to the optimal HOLP model performance, however, the WLP model
performs poorly in terms of perceptual frequency resolution, unless its model
order is chosen to be an order of magnitude larger than the number of tonal
components in the observed signal [12].
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Abstract

Acoustic feedback occurs in many audio applications involving musical sound
signals. However, research efforts in acoustic feedback control have mainly
been focused on speech applications. Since sound quality is of prime impor-
tance in audio applications, a proactive approach to acoustic feedback control
is preferred to avoid ringing, howling, and excessive reverberation. Adaptive
feedback cancellation (AFC) using a prediction-error-method (PEM)-based ap-
proach is a promising proactive solution, but existing algorithms are again de-
signed for speech applications only. We propose to replace the all-pole near-end
speech signal model in the PEM-based approach with a cascade of two near-
end signal models: a tonal components model and a noise components model.
We derive the identifiability conditions for joint identification of the acoustic
feedback path and the cascaded near-end signal models. Depending on the
model structure that is used for the near-end tonal components, five different
PEM-based AFC algorithms are considered. By applying some relevant model
approximations, the computational overhead of the proposed algorithms com-
pared to the normalized least mean squares (NLMS) algorithm can be reduced
to 25 % of the NLMS complexity. Simulation results for both room acoustic
and hearing aid scenarios indicate a significant performance improvement in
terms of the misadjustment and the maximum stable gain increase.

12.1 Introduction

Acoustic feedback is a physical phenomenon arising in several speech and audio
applications, which may severely degrade sound quality and may even cause
damage to human hearing and to loudspeaker components. When a sound
signal is picked up by a microphone and then amplified and played back in the
same acoustic environment, a closed signal loop is created, which may give rise
to system instability. The existence of an acoustic feedback path limits a sound
system’s performance in two ways. First of all, there is an upper limit to the
amount of amplification that can be applied if the system is required to remain
stable, which is referred to as the maximum stable gain (MSG). Second, the
sound quality is affected by occasional howling when the MSG is exceeded, or,
even when the system is operating below the MSG, by ringing and excessive
reverberation.

Many solutions to the acoustic feedback problem have been proposed, see [1] for
an overview. Apart from manual feedback control [2], the two most promising
solutions are notch-filter-based howling suppression (NHS) and adaptive feed-
back cancellation (AFC). Notch-filter-based solutions aim at detecting nar-
rowband ringing or howling sounds in the microphone signal spectrum, and
subsequently inserting suitably designed notch filters in the closed signal loop
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to stabilize the system and remove the narrowband interferences. The ringing
or howling detection is typically based on an energy comparison of the entire
microphone signal spectrum and its narrowband components [3]-[5], whereas
the notch filter design is usually performed using a biquadratic filter design
method [6]-[8]. The main advantages of the notch-filter-based approach are its
reasonable computational cost and its robustness when operating in an unsta-
ble sound system. A major shortcoming, however, is the reactive nature of
NHS, i.e., feedback suppression is only achieved after the system has become
(nearly) unstable. As a result, signal distortion can never be avoided. More-
over, the MSG when using an NHS is on average only 5 dB higher than the
MSG without feedback control [1], which is too small in many applications.
Two approaches have been suggested to obtain a so-called proactive feedback
detection in NHS systems, i.e., for detecting frequencies where system instabil-
ity could potentially occur even before ringing effects actually become notice-
able. A first approach is based on detecting hidden resonances by cumulative
harmonic analysis (CHA) [9], but has not yet been incorporated in an NHS
system for performance evaluation. A second approach features a combined
NHS-AFC system [10],[11], that achieves proactive notch filtering at the cost
of an increased computational complexity.

Adaptive feedback cancellation (AFC) is a more recent approach to acoustic
feedback control, based on the concept of acoustic echo cancellation (AEC). If
the loudspeaker signal is fed to an adaptive filter, having the microphone signal
as its desired output signal, then the feedback component in the microphone
signal may be predicted by the adaptive filter. However, in contrast to the
AEC situation, in AFC the loudspeaker signal is correlated with the near-end
signal, which causes standard adaptive filtering algorithms to converge to a bi-
ased solution [12],[13]. A variety of decorrelation techniques has been suggested
for bias removal, which can be divided into two categories [14], depending on
whether the decorrelation is performed in the closed signal loop, or in the
adaptive filtering circuit. Decorrelation in the closed signal loop is achieved by
cascading the amplifier with a delay [12],[15],[16], with an all-pass filter [17], or
with a nonlinear signal operation such as a frequency shifting [16],[18],[19] or a
half-wave rectification [20],[21], or by adding a noise signal to the loudspeaker
signal, in a continuous [21]-[23] or non-continuous [24],[25] way. Decorrelation
in the adaptive filtering circuit can be obtained by cascading the adaptive filter
with a delay [25]-[27], by performing an indirect closed-loop identification [28],
or by prefiltering the adaptive filter’s input and desired signal with an inverse
model of the near-end signal, which is either fixed [13],[29], or adaptively es-
timated [11],[30]-[32]. In contrast to the NHS approach, an AFC algorithm
performs proactive feedback control, i.e., if the acoustic feedback path charac-
teristics can be effectively tracked by the adaptive filter, then the sound system
is guaranteed to remain stable, and moreover ringing and reverberation effects
are also avoided. In hearing aid applications, increases of up to 20 dB in MSG
have been reported [15],[18],[31]. The main drawback of the AFC approach is
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its high computational cost, especially in room acoustic applications where the
adaptive filter order is typically very large.

Research efforts in acoustic feedback control so far have mainly dealt with
speech applications. In this paper, we explicitly focus on feedback control in au-
dio applications involving musical signals, e.g., public address (PA) systems in
concert venues, or hearing aids (HA) operating in a musical environment. When
dealing with audio instead of speech applications, two major issues should be
taken into account. First of all, whereas in speech applications intelligibility
is of prime interest, for audio applications sound quality becomes much more
important. Second, audio signals typically exhibit a much higher degree of
tonality than speech signals, whereas many feedback control techniques are
not designed to work with tonal signals. In fact, none of the above-mentioned
NHS or AFC approaches is capable of meeting these two requirements. From a
sound quality point of view, the NHS approach is inappropriate since howling,
ringing, and excessive reverberation cannot be avoided. Moreover, in the NHS
feedback detection, discriminating between undesired feedback oscillations and
desired tonal components in the microphone signal spectrum is a non-trivial
task [3],[5]. Existing AFC techniques are generally also not appropriate for
audio applications. Decorrelation in the closed signal loop will either lead to
unacceptable signal distortion (in the case of frequency shifting, half-wave rec-
tification, and noise injection), or will not be capable of providing sufficient
decorrelation for tonal near-end signals (in the case of delay, all-pass filtering,
and psychoacoustically masked noise injection [33]). When performing decorre-
lation in the adaptive filtering circuit, cascading the adaptive filter with a delay
will also be insufficient for tonal signals, while indirect closed-loop identification
requires the injection of a reference signal, which is again undesirable in terms
of signal quality. AFC techniques that include a prefiltering of the adaptive fil-
ter’s input and desired signal with an inverse model of the near-end signal have
been designed particularly for near-end speech signals, where the near-end sig-
nal model is a low-order all-pole speech signal model. Finally, in a closed-loop
scenario a tonal near-end signal generates a tonal loudspeaker signal, so that
the adaptive filter input signal is also tonal, which may dramatically decrease
its convergence speed [34, Ch. 9].

The aim of this paper is to develop a modification to existing prediction-error-
method (PEM)-based AFC approaches [11],[31],[32], such that these become
capable of dealing with tonal audio signals. The PEM-based AFC algorithms
are based on the PEM for system identification [35, Ch. 3],[36, Ch. 7]. Decorre-
lation is performed by prefiltering the adaptive filter’s input and desired output
signal with a time-varying inverse model of the near-end signal, which is es-
timated by linear prediction (LP) of the feedback-compensated signal. The
PEM-AF algorithm in [31] was derived for hearing aid applications, featuring
a recursive LP of the feedback-compensated signal, and involving some com-
mon model approximations which are only relevant for short acoustic feedback
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paths. In [32], the PEM-AFROW algorithm was proposed for room acous-
tic applications, featuring a batch (frame-based) LP, and inheriting its name
from the fact that no model approximations are introduced such that the pre-
filtering operation only performs row operations in the loudspeaker signal data
matrix. In [37], the PEM-AF and PEM-AFROW algorithms were shown to be
special cases of a more general recursive prediction error (RPE) identification
algorithm. A common feature of the PEM-AF, PEM-AFROW, and RPE algo-
rithms is the low-order all-pole structure that is used for modeling the near-end
signal, which is indeed appropriate for speech signals. However, this conven-
tional LP model is usually not well suited for tonal audio signals, which can be
modeled more efficiently as a sum of sinusoids plus noise. It is well known that
a signal consisting of sinusoids in noise admit a pole-zero rather than an all-
pole representation [38],[39]. As a consequence, the existing PEM-based AFC
algorithms can be applied to audio signals only if the all-pole near-end signal
model order is chosen very large. This would however lead to a dramatic in-
crease of the computational requirements for the PEM-AF, PEM-AFROW, and
RPE algorithms and to a violation of the PEM-AF stationarity assumptions in
time-varying acoustic environments. In [40], we have investigated several alter-
native LP models for audio signals: pole-zero models, pitch prediction all-pole
models, frequency-warped all-pole models, and downsampled all-pole models.
Some of these alternative models appear to be capable of generating a “whiter”,
i.e., less correlated LP residual than the conventional low-order all-pole model,
especially when cascaded with a conventional LP model. This observation is
exploited in the current paper to derive a set of new AFC algorithms that can
also handle tonal near-end signals. The proposed algorithms feature a cascade
of two near-end signal models, a first one for predicting the tonal components,
and a second one for predicting the “noise-like” components in the near-end
signal. The noise components model is chosen to be a conventional low-order
all-pole model, while the tonal components model can be any of the alterna-
tive LP models described in [40]. An additional advantage of the proposed
algorithms is that, by prefiltering the adaptive filter’s input signal with the
cascaded inverse near-end signal models, the tonal components in the input
signal are also (partially) removed, and hence the adaptive filter’s convergence
is further improved.

This paper is organized as follows. In Section 12.2, the acoustic feedback
problem is described in a discrete-time signal processing context, and the AFC
concept is explained. In Section 12.3, we introduce a prediction error minimiza-
tion criterion that features a cascade of two near-end signal models, and outline
the proposed AFC algorithm. Also, an overview is given of the possible model
structures for the near-end tonal components. In Section 12.4, we rederive the
identifiability conditions given in [31] for the PEM-AF algorithm, for the case
of cascaded near-end signal models, resulting in the requirement of inserting
processing delays at appropriate positions either in the closed signal loop or in
the adaptive filtering circuit. Then in Section 12.5, algorithmic details of the
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PEM-based AFC approach with cascaded near-end signal models are given for
different near-end tonal components model structures. Section 12.6 deals with
computational complexity and contains an overview of the model approxima-
tions that can be applied for decreasing the complexity. In Section 12.7, we
illustrate the performance of the proposed algorithms by means of simulation
results in both PA and HA scenarios. Finally, Section 12.8 concludes the paper.

12.2 Adaptive Feedback Cancellation

12.2.1 Problem Description

The acoustic feedback problem is depicted in Fig. 12.1(a) for a setup with one
microphone and one loudspeaker. In this setup, we refer to the source signal
v(t) as the near-end signal, and to the loudspeaker signal u(t) as the far-end
signal (adopting terminology from acoustic echo cancellation). The acoustic
feedback path F{·} is defined as a function that maps the far-end signal u(t)
to the feedback signal x(t), and is typically assumed to be linear, (slowly)
time-varying, and of finite order nF , i.e.,

F (q, t) = f0(t) + f1(t)q
−1 + . . . + fnF (t)q−nF (12.1)

where t ∈ Z denotes the discrete time variable after sampling at sampling
frequency fs = 1/Ts, and q denotes the time shift operator, i.e., q−ku(t) =
u(t − k). The electro-acoustic forward path G{·} maps the microphone signal
y(t) = v(t)+x(t) to the far-end signal u(t) and is defined as the cascade of the
characteristics of the microphone, the A/D-converter, the amplifier, the D/A-
converter, the loudspeaker, and any signal processing device that is inserted
in the signal loop, such as an equalizer, a compressor, etc. The forward path
mapping is typically nonlinear for large signal amplitudes, due to amplifier or
loudspeaker saturation, or because of compression. In the closed-loop system
analysis, however, it is usually assumed that the forward path mapping is linear
and time-varying, i.e.,

G(q, t) = g1(t)q
−1 + . . . + gnG(t)q−nG , (12.2)

and possibly of infinite order (nG → ∞). Note that the forward path is assumed
to contain (at least) one unit delay, i.e., g0(t) ≡ 0, to avoid an algebraic loop.

The far-end signal and the near-end signal are related by the so-called closed-
loop transfer function as follows:

u(t) =
G(q, t)

1 − G(q, t)F (q, t)
v(t). (12.3)

According to Nyquist’s stability criterion [41], the closed-loop system becomes



338 Chapter 12. AFC for Audio Applications

G

music

u(t)

v(t)

y(t)

forward path feedback path
acousticelectroacoustic

loudspeaker

microphone

x(t)

F

(a)

F

d[t, f̂(t)]
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Figure 12.1: (a) Acoustic feedback problem in 1-microphone/1-loudspeaker
setup, (b) Adaptive feedback cancellation concept.

unstable if there exists a radial frequency ω for which

|G(ejω , t)F (ejω , t)| ≥ 1 (12.4)
{

∠G(ejω , t)F (ejω , t) = n2π, n ∈ Z (12.5)

where the short-time frequency responses G(ejω , t) and F (ejω , t) of the for-
ward and feedback path, respectively, are obtained using the short-time Fourier
transform (STFT). Except for the phase-modulated feedback control methods
(see [1] for an overview), most of the existing methods for acoustic feedback
control attempt to avoid the magnitude condition in (12.4) from being met for
any ω ∈ [0, π], disregarding the phase condition (12.5). The maximum stable
gain (MSG) is defined as the electro-acoustic forward path gain value at which
the point of instability of the closed-loop system is attained, and is usually
determined in an experimental way, see, e.g., [25],[42]. If the amplifier’s broad-
band gain factor K(t) is factored out from the forward path transfer function,
i.e.,

G(q, t) = K(t)J(q, t) (12.6)

and if P denotes the set of frequencies at which the phase condition (12.5) is
met, i.e.,

P = {ω|∠G(ejω , t)F (ejω , t) = n2π} (12.7)

then the maximum stable gain (MSG) can be formally defined as follows,

MSG(t) [dB] = −20 log10

[

max
ω∈P

|J(ejω , t)F (ejω, t)|
]

. (12.8)

12.2.2 Adaptive Feedback Cancellation

The AFC concept consists in placing an FIR adaptive filter F̂ (q, t) in par-
allel with the acoustic feedback path, having the far-end signal as its in-
put and the microphone signal as its desired signal, see Fig. 12.1(b). The
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feedback signal x(t) is then predicted by the adaptive filter output signal
ŷ[t|̂f(t)] = F̂ (q, t)u(t), which is subtracted from the microphone signal to de-
liver the feedback-compensated signal d[t, f̂(t)] = y(t) − ŷ[t|̂f(t)], with

f̂(t) ,
[

f̂0(t) . . . f̂nF (t)
]T

. (12.9)

Throughout this paper, we will assume that the acoustic feedback path model
order nF is known and that the adaptive filter order is equal to nF . Note that
the PEM-based AFC approach introduced in Section 12.3 has been shown to
reduce the undermodeling bias and variance that tend to occur in the insuf-
ficient order case (nF̂ < nF ) [43]. The closed-loop transfer function of the
system with AFC is given by

u(t) =
G(q, t)

1 − G(q, t)[F (q, t) − F̂ (q, t)]
v(t) (12.10)

such that the MSG can now be written as follows,

MSG(t) = −20 log10

[

max
ω

|J(ejω , t)[F (ejω , t) − F̂ (ejω , t)]|
]

(12.11)

and obviously increases when the mismatch between F̂ (q, t) and F (q, t) de-
creases. It is also expected that when F̂ (q, t) approaches F (q, t), the feedback-
compensated signal d[t, f̂(t)] will approach the near-end signal v(t), which
should lead to better sound quality [1].

12.3 PEM-Based AFC

12.3.1 Data Model

The estimation of the adaptive filter coefficients in f̂(t) should be approached
from a closed-loop system identification point of view. It is well known that if
the near-end signal v(t) is a correlated sequence, such as speech or music, then
standard Wiener or least-squares (LS) estimation provides a biased solution
[1],[12],[13],[44]. An unbiased feedback path estimate can be obtained with the
so-called direct method [44] when a model of the near-end signal is taken into
account in the identification (corresponding to the “noise model” in system
identification theory). The data model can then be written as

y(t) = F (q, t)u(t) +

v(t)
︷ ︸︸ ︷

H(q, t)e(t) (12.12)

with e(t) an uncorrelated sequence such as Gaussian white noise or a Dirac
impulse. However, because of the nonstationarity of speech and music signals,
the near-end signal model H(q, t) is time-varying and so should be estimated
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concurrently with the acoustic feedback path F (q, t). This is possible by ap-
plying a prediction error system identification method [35, Ch. 3],[36, Ch. 7],
as shown in [11],[31],[32],[37]. Here, the near-end signal model is assumed to
be an all-pole model, which is a relevant assumption for speech applications.

If the near-end signal is a tonal audio signal, then an all-pole model is usually
not appropriate, but instead a cascade of two linear models may be used for
the near-end signal [40]. The data model can then be rewritten as

y(t) = F (q, t)u(t) + H1(q, t)H2(q, t)e(t). (12.13)

In the near-end signal model cascade, H1(q, t) is a model for the tonal com-
ponents, while H2(q, t) is a model for the “noise-like” components. The noise
components model is again chosen to be an all-pole model, i.e.,

H2(q, t) =
1

C(q, t)
=

1

1 + c1(t)q−1 + . . . + cnC (t)q−nC
(12.14)

which corresponds to the near-end speech model used in the estimation algo-
rithms in [11],[31],[32],[37]. The tonal components model can be any of the LP
models described in [40]: an all-pole (LP) model, a pole-zero (PZLP) model, a
pitch prediction (PLP) model, a frequency-warped all-pole (WLP) model, or a
selective all-pole (SLP) model. Table 12.1 lists these five models, together with
the corresponding prediction error filter (PEF) transfer functions and param-
eter vectors. Note that the parameter vectors α(t), which contain the tonal
components model parameters that have to be estimated in the PEM-based
AFC algorithm, are not equivalent to the PEF impulse response vectors, which
will be denoted as a(t). Also, the PEF order nA is not necessarily equal to the
number of elements in the parameter vector α(t), which will be denoted by nα.
In the PZLP model, the numerator and denominator order are equal, and the
poles and zeros are constrained to lie on the same radial lines in the z-plane,
more specifically at angles θi(t), i = 1, . . . , nA/2. The fractional pitch lag
K − l/D (with K ∈ Z and l = 0, . . . , D− 1) in the fractional 3-tap PLP model
can be implemented by using a fractional interpolation filter I(q, l/D). The
WLP and SLP models both have an all-pole structure in which the unit delay
element has been transformed: in the SLP model the transformation consists
in a downsampling operation (anti-aliasing filtering followed by decimation)
with a factor Γ, while in the WLP the unit delay q−1 is replaced by a bilinear
all-pass filter

D(q, λ) =
q−1 − λ

1 − λq−1
(12.15)

with warping parameter λ ∈ (−1, 1). The WLP model moreover features an
initial whitening filter

D−1
0 (q, λ) =

1 − λq−1

√
1 − λ2

(12.16)

to increase the residual’s spectral flatness [45]. More details on these models
and their properties can be found in [40].
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Table 12.1: Overview of near-end tonal components models

Model PEF transfer function Parameter vector

LP A(q, t) = 1 +

nA∑

i=1

ai(t)q
−i α(t) =

[

a1(t), . . . , anA(t)
]T

PZLP
A(q, t)

B(q, t)
=

nA/2
∏

i=1

1 − 2νi cos θiq
−1 + ν2

i q−2

1 − 2ρi cos θiq−1 + ρ2
i q

−2
α(t) =

[

θ1(t), . . . , θnA/2(t)
]T

PLP

A(q, t) = 1 −
1∑

i=−1

αi(t)q
−K−(l/D)−i

= 1 −
1∑

i=−1

αi(t)I(q, l/D)q−K−i

α(t) =
[

K, l, α−1(t), α0(t), α1(t)
]T

WLP A(q, t) = D−1
0 (q, λ)[1 +

nA∑

i=1

αi(t)D
i(q, λ)] α(t) =

[

α1(t), . . . , αnA(t)
]T

SLP A(q, t) = 1 +

nA∑

i=1

αi(t)q
−iΓ α(t) =

[

α1(t), . . . , αnA(t)
]T
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12.3.2 Prediction Error Identification Algorithm

Using the data model in (12.13), the prediction error identification approach
can be outlined as follows. The best one-step ahead predictor for y(t) can be
calculated, following [35, Ch. 3], as

ŷ[t|ξ(t)] = [1−H−1
2 (q, t)H−1

1 (q, t)]y(t)+H−1
2 (q, t)H−1

1 (q, t)F (q, t)u(t) (12.17)

with the parameter vector ξ(t) defined as

ξ(t) ,
[
fT (t) γT (t) αT (t)

]T
(12.18)

and

f(t) ,
[
f0(t) . . . fnF (t)

]T
(12.19)

γ(t) ,
[
c1(t) . . . cnC (t)

]T
(12.20)

and with α(t) defined in Table 12.1. The prediction error, defined as

ε[t, ξ(t)] , y(t) − ŷ[t|ξ(t)] (12.21)

can hence be calculated as

ε[t, ξ(t)] = H−1
2 (q, t)H−1

1 (q, t)[y(t) − F (q, t)u(t)]. (12.22)

The parameter vector ξ(t) can be estimated by minimizing the sum of squared
prediction errors,

min
ξ(t)

1

2N

t∑

k=1

ζ−1(k, t)ε2[k, ξ(t)] (12.23)

with ζ−1(k, t) a weighting factor for discounting old data and compensating
for power variations in the near-end excitation signal e(t), and N denoting the
effective window length after data weighting.

In AFC, it is considered advantageous to decouple the identification of F (q, t),
H1(q, t), and H2(q, t). This allows for using data windows of different length
[31] and applying different estimation methods [32] for the identification of the
acoustic feedback path and the near-end signal models. It has been shown that
this approach results in an estimate ξ̂(t) that corresponds to a local minimum
of the criterion in (12.23), but not necessarily to the global minimum [32],[37].
It was found in [37] that a smaller near-end signal model order increases the
probability of finding the global solution, which is yet another motivation for
using a cascade of two low-order near-end signal models rather than a single
high-order all-pole model. The identification of F (q, t), H1(q, t), and H2(q, t)
can be decoupled by performing the minimization of (12.23) in three stages:
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1. Estimation of H1(q, t): using (12.14), we can rewrite (12.22) as

H1(q, t)ε[t, ξ(t)] = C(q, t)[y(t) − F (q, t)u(t)] (12.24)

, w[t,γ(t), f(t)]. (12.25)

The near-end tonal components model H1(q, t) can then be estimated
using an appropriate LP method for predicting w[t,γ(t), f(t)], and re-
placing the parameter vectors γ(t) and f(t) by recently obtained esti-
mates, see Section 12.5 for a detailed treatment. Note that the prefilter-
ing operation with C(q, t) in (12.24) is expected to whiten the near-end
noise components in the feedback-compensated signal y(t)−F (q, t)u(t),
which facilitates the estimation of the near-end tonal components model
H1(q, t).

2. Estimation of H2(q, t): rewriting (12.22) with (12.14) as

C−1(q, t)ε[t, ξ(t)] = H−1
1 (q, t)[y(t) − F (q, t)u(t)] (12.26)

, r[t,α(t), f(t)]. (12.27)

reveals that the near-end noise components model H2(q, t) = C−1(q, t)
can be estimated by LP of r[t,α(t), f(t)], with α(t) and f(t) replaced by
recent estimates, see Section 12.5. Since the near-end tonal components
in the feedback-compensated signal y(t) − F (q, t)u(t) are cancelled by
the prefiltering with H−1

1 (q, t), these do not disturb the near-end noise
components model estimation.

3. Estimation of F (q, t): if we define the following prefiltered far-end and
microphone signals,

ũ[t,α(t),γ(t)] , C(q, t)H−1
1 (q, t)u(t) (12.28)

ỹ[t,α(t),γ(t)] , C(q, t)H−1
1 (q, t)y(t) (12.29)

then the minimization of the sum of squared prediction errors in (12.23)
w.r.t. ξ(t) can be rewritten as a standard LS minimization w.r.t. f(t),

min
f(t)

1

2N

t∑

k=1

ζ−1(k, t)
{
ỹ[t,α(t),γ(t)] − F (q, t)ũ[t,α(t),γ(t)]

}2
(12.30)

in which the parameter vectors α(t) and γ(t) may be replaced by re-
cently obtained estimates, see Section 12.5. In the LS problem defined
in (12.30), the near-end signal component in the microphone signal has
been whitened by prefiltering with C(q, t)H−1

1 (q, t) such that an unbi-
ased estimate of the acoustic feedback path can be obtained. A beneficial
side effect of this approach is that the tonal components in the far-end
signal, whose frequencies can be assumed to be equal to the near-end
tonal component frequencies since the electro-acoustic forward path is
modeled as a linear system G(q, t), are (partially) cancelled by prefilter-
ing with H−1

1 (q, t), which improves the conditioning of the LS problem
in (12.30).
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12.4 Identifiability Conditions

Before presenting the details of the PEM-based AFC algorithm with cascaded
near-end signal models, it is necessary to derive the conditions under which
the models F (q, t), H1(q, t), and H2(q, t) are jointly identifiable from the LS
criterion in (12.22)-(12.23). This derivation differs depending on which tonal
components model is used.

12.4.1 LP, PLP, and SLP Near-End Tonal Components
Models

When the inverse near-end tonal components model H−1
1 (q, t) is chosen to

have a finite-order all-zero parametrization (i.e., referring to Table 12.1, in case
of the LP, PLP, and SLP model structures), the inverse cascaded near-end
signal models H−1

1 (q, t) = A(q, t) and H−1
2 (q, t) = C(q, t) form a single all-zero

model D(q, t) , C(q, t)A(q, t) of order nD = nA + nC , and the identifiability
conditions derived in [31] can be applied. In this case, F (q, t) and D(q, t) are
jointly identifiable if all of the following conditions are satisfied [31]:

1. the near-end signal admits an autoregressive (AR) representation of or-
der nD or less,

2. processing delays of d1 and d2 samples are inserted in the electro-acoustic
forward path G(q, t) and in the adaptive filtering circuit, respectively,
with d1 + d2 ≥ nD + 1,

3. the acoustic feedback path has an initial delay of at least d2Ts s due
to the time needed for the sound to travel in a direct path from the
loudspeaker to the microphone.

Note that these conditions do not guarantee the unique identification of C(q, t)
and A(q, t), since all the zeros of these polynomials are identified together in
the cascade model D(q, t). However, this should not be a problem since the
identification of C(q, t) and A(q, t) is not of primary interest, but merely serves
as an auxiliary procedure for consistently identifying F (q, t).

12.4.2 WLP Near-End Tonal Components Model

The WLP PEF can either be implemented as an IIR filter, or as a warped FIR
filter [45]. In the latter case, the derivation of the identifiability conditions is
similar to the derivation in [31], resulting in the requirements that:

1. the near-end signal admits a mixed conventional/frequency-warped AR
representation of orders nC and nA or less, respectively,

2. processing delays d1 and d2 are inserted with d1 + d2 ≥ nA + nC + 1,
3. the acoustic feedback path has an initial delay of at least d2Ts s.
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ε[t, ξ(t)]
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Figure 12.2: Three-channel identification scheme for determining the identifia-
bility conditions with a PZLP near-end tonal components model.

12.4.3 PZLP Near-End Tonal Components Model

The PZLP near-end tonal components model H1(q, t) = B(q, t)/A(q, t) is jointly
identifiable with the noise components model H2(q, t) = 1/C(q, t) and the
acoustic feedback path F (q, t) if all of the following conditions are satisfied:

1. the near-end signal admits an autoregressive moving average (ARMA)
representation with the AR and MA orders less than or equal to nA+nC

and nA, respectively,
2. processing delays d1 and d2 are inserted with d1 + d2 ≥ nA + nC + 1,
3. the acoustic feedback path has an initial delay of at least d2Ts s.

These conditions can be derived as follows. In the PZLP case, the prediction
error can be written as

ε[t, ξ(t)] = C(q, t)
A(q, t)

B(q, t)
[y(t) − F (q, t)u(t)]. (12.31)

The LS problem (12.23) related to (12.31) can be rewritten as a three-channel
identification problem, see Fig. 12.2, by rewriting (12.31) as

ε[t, ξ(t)] = C(q, t)A(q, t)
︸ ︷︷ ︸

,D(q,t)

y(t)−C(q, t)A(q, t)F (q, t)
︸ ︷︷ ︸

,−L(q,t)

u(t) + [1 − B(q, t)]
︸ ︷︷ ︸

,−q−1B̄(q,t)

ε[t, ξ(t)].

(12.32)
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Using (12.10) and y(t) = F (q, t)u(t) + v(t), we can rewrite (12.32) as

ε[t, ξ(t)] =
D(q, t) + G(q, t)[L(q, t) + F̂ (q, t)D(q, t)]

1 − G(q, t)[F (q, t) − F̂ (q, t)]
v(t) − q−1B̄(q, t)ε[t, ξ(t)].

(12.33)
Let us again assume that the forward path and the adaptive filtering circuit con-
tain processing delays of d1 and d2 samples respectively, and that the acoustic
feedback path has an initial delay of at least d2Ts s. Under these assumptions,
the following equalities hold:

G(q, t) = q−d1Ḡ(q, t) with Ḡ(q, t) , gd1 + gd1+1q
−1 + . . . + gnGq−nG+d1(12.34)

F (q, t) = q−d2F̄ (q, t) with F̄ (q, t) , fd2 + fd2+1q
−1 + . . . + fnF q−nF +d2(12.35)

F̂ (q, t) = q−d2 ˆ̄F (q, t) with ˆ̄F (q, t) , f̂d2 + f̂d2+1q
−1 + . . . + f̂nF q−nF +d2(12.36)

L(q, t) = q−d2L̄(q, t) with L̄(q, t) , ld2 + ld2+1q
−1 + . . . + lnLq−nL+d2 (12.37)

with nL = nA + nC + nF , and hence (12.33) can be rewritten as follows:

ε[t, ξ(t)]

=
D(q, t) + q−(d1+d2)Ḡ(q, t)[L̄(q, t) + ˆ̄F (q, t)D(q, t)]

1 − q−(d1+d2)Ḡ(q, t)[F̄ (q, t) − ˆ̄F (q, t)]
v(t) − q−1B̄(q, t)ε[t, ξ(t)]

=
{
D(q, t) + q−(d1+d2)Ḡ(q, t)[L̄(q, t) + ˆ̄F (q, t)D(q, t)]

}
v(t)

−
{
q−1B̄(q, t) − q−(d1+d2)Ḡ(q, t)[F̄ (q, t) − ˆ̄F (q, t)]B(q, t)

}
ε[t, ξ(t)]. (12.38)

If the near-end signal admits an ARMA representation D0(q, t)/B0(q, t) with
the AR and MA orders less than or equal to nD and nB, respectively, then the
solution to the LS problem (12.23) with (12.38) is equal to the desired solution
if

d1 + d2 ≥ max{nD, nB} + 1 (12.39)

≥ nA + nC + 1 (12.40)

where the latter inequality follows from the fact that we have constrained the
PZLP model denominator and numerator order to be equal, see Section 12.3.1.
Indeed, it can be verified that in this case the solution to (12.23) and (12.38)
corresponds to







D(q, t) = D0(q, t) (12.41)

Ḡ(q, t)[L̄(q, t) + ˆ̄F (q, t)D(q, t)] ≡ 0 ⇔ L̄(q, t) ≡ − ˆ̄F (q, t)D(q, t) (12.42)

B(q, t) = B0(q, t) (12.43)

Ḡ(q, t)[F̄ (q, t) − ˆ̄F (q, t)]B(q, t) ≡ 0 ⇔ F̄ (q, t) ≡ ˆ̄F (q, t). (12.44)

Note that, as was the case for the LP, PLP, and SLP models, an unavoidable
ambiguity exists between the zeros of the PZLP near-end tonal components
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model PEF A(q, t)/B(q, t) and the noise components model PEF C(q, t), which
are combined in the cascade model D(q, t).

Finally, also note that an example of a signal admitting an ARMA(nD,nB)
representation is a signal consisting of a sum of sinusoids in AR noise, i.e.,

v(t) =

N∑

n=1

βn cos(ωnt + φn) +
1

C(q, t)
e(t). (12.45)

As shown in [39], the linear prediction property of a sum of N sinusoidal sig-
nals leads to an ARMA(2N ,2N) representation in white noise, which can be
extended to an ARMA(2N + nC ,2N) representation in AR(nC) noise.

12.5 Algorithm Details

In the existing PEM-AF [31] and RPE [37] algorithms, the near-end signal
model H(q, t) is identified recursively, while the PEM-AFROW [32] algorithm
features a batch near-end signal model identification. It has been found that
the latter approach is more robust, since a recursive near-end signal model
identification may result in numerical problems due to a scaling ambiguity
that is inherent in the PEM-based approach [46]. Moreover, efficient batch
estimation methods for identifying the near-end tonal components models in
Table 12.1 are readily available in the literature, see [40] for an overview. For
these reasons, we will only consider batch estimation of the near-end tonal
and noise components models H1(q, t) and H2(q, t). Moreover, we will assume
that H1(q, t) and H2(q, t) are piecewise stationary on similar time scales, such
that both models can be identified on data windows of the same size. More
specifically, we will use data windows that have a length of M samples and a
hop size of P samples. Moreover, the data window is positioned in time such
that it contains P − 1 future samples and M − P past samples. The choice of
M and P are crucial for the AFC algorithm performance: M should be chosen
large enough to obtain low-variance estimates of the parameters of H1(q, t) and
H2(q, t), but not too large such that the models themselves can be assumed
stationary in the entire data window. For LP of audio signals, data windows of
40–60 ms appear to be well suited [40]. The hop size P could theoretically be
chosen nearly as large as the data window length M (a minimal difference of
M−P = nC will appear to be necessary, as shown below), however, it should be
taken into account that a processing delay of P − 1 samples has to be inserted
in the forward path G(q, t) to preserve causality in the AFC algorithm. We
will typically choose P = M/2, such that successive LP data windows have
a 50 % overlap. This choice implies that the forward path contains a delay
corresponding to 20–30 ms. From a perceptual point of view, a forward path
delay of 20–30 ms should be acceptable in PA applications since the typical
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distance values between the loudspeakers and the audience introduce similar
delay values. In HA applications, inserting a forward path delay introduces a
time offset between the so-called “bone-conducted” sound signal and the “aid-
conducted” sound signal. Delays of 20–30 ms (or higher for severely hearing-
impaired subjects) were found to be acceptable in terms of speech quality [47],
however, no results for audio signals have been reported.

The PEM-based AFC algorithms with cascaded near-end signal models pre-
sented here, are recursive algorithms in which each recursion consists of a se-
quence of nine operations:

for t
if j = t mod P = 0

1) calculation of a priori feedback-compensated signal d[t, f̂(t − 1)]
for the entire LP data window

2) calculation of prefiltered data vector w[t, γ̂(t − P ), f̂(t − 1)]

3) batch estimation of α̂(t) using w[t, γ̂(t − P ), f̂(t − 1)]

4) calculation of prefiltered data vector r[t, α̂(t), f̂ (t − 1)]

5) batch estimation of γ̂(t) using r[t, α̂(t), f̂ (t − 1)]
end if

6) calculation of prediction error ε[t, α̂(t − j), γ̂(t − j), f̂ (t − 1)]
and prefiltered data vector ũ[t, α̂(t − j), γ̂(t − j)]

7) recursive estimation of prediction error power σ2(t)

8) recursive estimation of f̂(t) using ε[t, α̂(t − j), γ̂(t − j), f̂(t − 1)]
and ũ[t, α̂(t − j), γ̂(t − j)]

9) calculation of a posteriori feedback-compensated signal d[t, f̂ (t)]
end for

The prefiltering and LP estimation details are different depending on the near-
end tonal components model used, and will be described for the different cases.

12.5.1 LP, PLP, and SLP Near-End Tonal Components
Models

If the near-end tonal components model has an all-zero PEF, i.e., for the LP,
PLP, and SLP models, the above nine operations can be described as shown in
Table 12.2. The impulse response coefficients of the PEFs Â(q, t) and Ĉ(q, t) are
collected in the vectors â(t) and ĉ(t), respectively, which are different from –but
related to– parameter vectors α̂(t) and γ̂(t) [see (12.20) and Table 12.1]. Note
that for the calculation of ε[t, α̂(t), γ̂(t), f̂ (t − 1)] from r[k, α̂(t), f̂ (t − 1)], k ∈
[t − nC , t] in step 6a), it is required that P ≤ M − nC .

The recursive estimation of the acoustic feedback path parameter vector f̂(t)
in step 8 of the PEM-based AFC algorithm is carried out using an NLMS-
like update equation, using the prefiltered far-end signal vector ũ[t, α̂(t), γ̂(t)]
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instead of the original far-end signal vector (as would be used in a standard
NLMS-based AFC algorithm). Apart from the normalization factor ũT ũ, the
estimated prediction error power σ2(t) and the regularization parameter δ also
appear in the denominator of the update term. Three estimates of the predic-
tion error power [σ2

A(t), σ2
C(t), and σ2

ε(t)] are available in the algorithm, and
these are averaged to obtain the prediction error power estimate σ2(t) that is
used in the update equation for f̂(t).

In Table 12.2, we have omitted the actual algorithms for estimating the LP,
PLP, and SLP model coefficients. The estimation of LP model coefficients is a
well-known problem, which is readily solved by estimating a set of autocorrela-
tion coefficients and subsequently solving a linear system of equations, see, e.g.,
[48]. When estimating the autocorrelation coefficients, either the autocorrela-
tion method or the covariance method can be used. However, the covariance
method appears to be superior for predicting the near-end signal tonal compo-
nents since it does not disturb the (quasi-)periodicity of the near-end signal by
zero padding. The SLP model coefficients are estimated in a similar way, be it
that before estimating the autocorrelation coefficients, the signal is downsam-
pled by a factor Γ. The resulting SLP model coefficient vector is upsampled
by the same factor Γ. The downsampling factor should be chosen such that
the most important harmonics are maintained in the downsampled signal spec-
trum, which implies that this choice generally depends on the frequency range
and the relative importance of the harmonics of the musical instrument that
produces the near-end signal. Estimating the coefficients of the fractional 3-
tap PLP model coefficients can be done by applying a two-step pitch prediction
algorithm. First the pitch lag K and fractional phase l are estimated by per-
forming an exhaustive search for the minimal fractional one-tap PLP residual
power in the two-dimensional grid defined by K ∈

{
[Kmin, Kmax] ∩ Z

}
and

l ∈
{
[0, D − 1] ∩ Z

}
[49],[50]. The fractional 3-tap PLP model coefficients are

then estimated by calculating the autocorrelation coefficients for lags around
the previously estimated fractional pitch lag value K + l/D, and subsequently
solving a linear system of equations. This system of equations can be forced to
be Toeplitz or diagonal to speed up the estimation [51].

12.5.2 WLP Near-End Tonal Components Model

Since the WLP PEF A(q, t) has an infinite impulse response, the algorithm
in Table 12.2 cannot be used when the tonal components model has the WLP
model structure. It was shown in [52] that an efficient recursive AFC algorithm
can be obtained in this case by performing the prefiltering operations involving
A(q, t) directly in the warped domain. This is possible because an IIR WLP
PEF can be implemented as a warped FIR filter [45], which has a finite number
of filter states. The approach in [52] can be extended with a cascaded near-end
noise components model, resulting in the algorithm shown in Table 12.3. The
main difference with the algorithm in Table 12.2 is found in step 4, where the



350 Chapter 12. AFC for Audio Applications

Table 12.2: PEM-based AFC algorithm: LP, PLP, and SLP near-end tonal
components models

for t

if j = t mod P = 0

1) d[k, f̂(t−1)] = y(k)−
[

u(k) . . . u(k−nF )

]

f̂ (t−1), k ∈ [t+P−M−max(nA, nC), t+P−1]

2) w[t, γ̂(t−P ), f̂(t−1)] =










d[t+P−M, f̂ (t−1)] . . . d[t+P−M−nC, f̂(t−1)]

.

.

.
. . .

.

.

.

d[t+P−1, f̂(t−1)] . . . d[t+P−1−nC, f̂ (t−1)]










ĉ(t−P )

3) {α̂(t), σ2
A(t)} = lp/plp/slp

{
w[t, γ̂(t−P ), f̂(t−1)]

}

4) r[t, α̂(t), f̂ (t−1)] =










d[t+P−M, f̂ (t−1)] . . . d[t+P−M−nA, f̂(t−1)]

.

.

.
. . .

.

.

.

d[t+P−1, f̂(t−1)] . . . d[t+P−1−nA, f̂ (t−1)]










â(t)

5) {γ̂(t), σ2
C(t)} = lp

{
r[t, α̂(t), f̂(t−1)]

}

6a)







ε[t, α̂(t), γ̂(t), f̂(t−1)] =

[

r[t, α̂(t), f̂(t−1)] . . . r[t−nC, α̂(t), f̂(t−1)]

]

ĉ(t)

ŭ[k, α̂(t)] =

[

u(k) . . . u(k−nA)

]

â(t), k ∈ [t−nF−nC , t+P−1]

y̆[k, α̂(t)] =

[

y(k) . . . y(k−nA)

]

â(t), k ∈ [t−nC+1, t+P−1]

ũ[t, α̂(t), γ̂(t)] =










ũ[t, α̂(t), γ̂(t)]

.

.

.

ũ[t−nF , α̂(t), γ̂(t)]










=










ŭ[t, α̂(t)] . . . ŭ[t−nC, α̂(t)]

.

.

.
. . .

.

.

.

ŭ[t−nF , α̂(t)] . . . ŭ[t−nF−nC , α̂(t)]










ĉ(t)

else

6b)







ũ[t, α̂(t−j), γ̂(t−j)] =

[

ŭ[t, α̂(t−j)] . . . ŭ[t−nC, α̂(t−j)]

]

ĉ(t−j)

ỹ[t, α̂(t−j), γ̂(t−j)] =

[

y̆[t, α̂(t−j)] . . . y̆[t−nC, α̂(t−j)]

]

ĉ(t−j)

ũ[t, α̂(t−j), γ̂(t−j)] =

[

ũ[t, α̂(t−j), γ̂(t−j)] . . . ũ[t−nF , α̂(t−j), γ̂(t−j)]

]T

ε[t, α̂(t−j), γ̂(t−j), f̂(t−1)] = ỹ[t, α̂(t−j), γ̂(t−j)]−ũT [t, α̂(t−j), γ̂(t−j)]̂f(t−1)

end if

7)







σ2
ε(t) = λεσ2

ε(t−1)+(1−λε)ε
2[t, α̂(t−j), γ̂(t−j), f̂(t−1)]

σ2(t) = [σ2
A(t−j)+σ2

C(t−j)+σ2
ε(t)]/3

8) f̂(t) = f̂(t−1)+µ
ũ[t, α̂(t−j), γ̂(t−j)]ε[t, α̂(t−j), γ̂(t−j), f̂(t−1)]

ũT [t, α̂(t−j), γ̂(t−j)]ũ[t, α̂(t−j), γ̂(t−j)]+σ2(t)+δ

9) d[t, f̂(t)] = y(t)−
[

u(t) . . . u(t−nF )

]

f̂(t)

end for
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signals ŭ[k, α̂(t)] and y̆[k, α̂(t)] are computed as an intermediate step before
calculating the prefiltered data vectors r[t, α̂(t), f̂ (t − 1)] and ũ[t, α̂(t), γ̂(t)].
The far-end and microphone signals u(k) and y(k) are transformed to the two-
dimensional frequency-warped signals ū(k, κ) and ȳ(k, κ), before being filtered
by the warped PEF Â(q, t) to obtain ŭ[k, α̂(t)] and y̆[k, α̂(t)]. By organizing
the calculations in this way, none of the filtering operations involve an infinite
number of filter states. An efficient algorithm for estimating the WLP model
coefficients in α(t) can be found in [45]: first the warped autocorrelation co-
efficients are calculated, which are then fed to a Levinson-Durbin recursion to
find the model coefficient estimates.

12.5.3 PZLP Near-End Tonal Components Model

The PZLP PEF A(q, t)/B(q, t) also has an infinite impulse response but, in con-
trast with the WLP PEF, an exact recursive computation is not possible in the
PZLP case. Therefore, in all prefiltering operations involving the PZLP PEF,
the initial denominator filter states are approximated by signal values that are
prefiltered with an earlier estimate of the PZLP PEF denominator B(q, t). The
resulting algorithm is shown in Table 12.4. The PZLP approximations appear
in step 4 and step 6a of Table 12.4, more specifically in the data matrices multi-

plying the PZLP PEF denominator coefficient vector ˆ̄b(t) , [b̂1(t), . . . , b̂nA(t)]

(which has been truncated such that the leading coefficient b̂0(t) ≡ 1 is lack-
ing). The signal values in the upper triangular part (above and including the
diagonal) of these matrices are prefiltered using the previously estimated PZLP
PEF Â(q, t− P )/B̂(q, t − P ) instead of using the current estimate. We should
also remark that the matrix equations involving prefiltering with the PZLP
PEF in step 4) and step 6a) of Table 12.4 should be evaluated in a row-by-row
fashion, since some of the output signal values needed in the right-hand side of
the equation are only available in the precedings rows on the left hand side.

The PZLP model coefficients can be estimated using the so-called constrained
pole-zero linear prediction (CPZLP) method [53],[54]. This method is similar
to the adaptive notch filtering (ANF) method [55]-[57], however, it operates
iteratively on a batch of data instead of recursively updating the estimates of
the PZLP model parameters. The main advantage of the batch estimation lies
in the fact that the gradient estimates are recalculated using the entire data
window in each iteration, which makes the algorithm less sensitive to the choice
of the initial conditions as compared to the ANF algorithms [54].
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Table 12.3: PEM-based AFC algorithm: WLP near-end tonal components
model

for t

if j = t mod P = 0

1) d[k, f̂(t−1)] = y(k)−
[

u(k) . . . u(k−nF )

]

f̂(t−1), k ∈ [t+P−M−nC, t+P−1]

2) w[t, γ̂(t−P ), f̂(t−1)] =










d[t+P−M, f̂(t−1)] . . . d[t+P−M−nC, f̂ (t−1)]

.

.

.
. . .

.

.

.

d[t+P−1, f̂(t−1)] . . . d[t+P−1−nC, f̂(t−1)]










ĉ(t−P )

3) {α̂(t), σ2
A(t)} = wlp

{
w[t, γ̂(t−P ), f̂(t−1)]

}

4)







ū(k, κ) = D−1
0 (q, λ)Dκ(q, λ)u(k), k ∈ [t, t+P−1], κ ∈ [0, nα]

ȳ(k, κ) = D−1
0 (q, λ)Dκ(q, λ)y(k), k ∈ [t, t+P−1], κ ∈ [0, nα]

ŭ[k, α̂(t)] = ū(k, 0)+

[

ū(k, 1) . . . ū(k, nα)

]

α̂(t), k ∈ [t+P−M−nF , t+P−1]

y̆[k, α̂(t)] = ȳ(k, 0)+

[

ȳ(k, 1) . . . ȳ(k, nα)

]

α̂(t), k ∈ [t+P−M, t+P−1]

r[t, α̂(t), f̂(t−1)] =










y̆[t+P−M, α̂(t)]

.

.

.

y̆[t+P−1, α̂(t)]










−










ŭ[t+P−M, α̂(t)] . . . ŭ[t+P−M−nF , α̂(t)]

.

.

.
. . .

.

.

.

ŭ[t+P−1, α̂(t)] . . . ŭ[t+P−1−nF , α̂(t)]










f̂(t−1)

5) {γ̂(t), σ2
C(t)} = lp

{
r[t, α̂(t), f̂(t−1)]

}

6a)







ε[t, α̂(t), γ̂(t), f̂(t−1)] =

[

r[t, α̂(t), f̂(t−1)] . . . r[t−nC, α̂(t), f̂(t−1)]

]

ĉ(t)

ũ[t, α̂(t), γ̂(t)] =










ũ[t, α̂(t), γ̂(t)]

.

.

.

ũ[t−nF , α̂(t), γ̂(t)]










=










ŭ[t, α̂(t)] . . . ŭ[t−nC, α̂(t)]

.

.

.
. . .

.

.

.

ŭ[t−nF , α̂(t)] . . . ŭ[t−nF−nC , α̂(t)]










ĉ(t)

else

6b) as in Table 12.2

end if

7)–9) as in Table 12.2

end for
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Table 12.4: PEM-based AFC algorithm: PZLP near-end tonal components
model

for t

if j = t mod P = 0

1) d[k, f̂(t−1)] = y(k)−
[

u(k) . . . u(k−nF )
]

f̂ (t−1), k ∈ [t+P−M−max(nA, nC), t+P−1]

2) w[t, γ̂(t−P ), f̂(t−1)] =








d[t+P−M, f̂ (t−1)] . . . d[t+P−M−nC, f̂(t−1)]

.

.

.
. . .

.

.

.

d[t+P−1, f̂(t−1)] . . . d[t+P−1−nC, f̂ (t−1)]








ĉ(t−P )

3) {α̂(t), σ2
A(t)} = pzlp

{
w[t, γ̂(t−P ), f̂(t−1)]

}

4) r[t, α̂(t), f̂ (t−1)] =








d[t+P−M, f̂ (t−1)] . . . d[t+P−M−nA, f̂(t−1)]

.

.

.
. . .

.

.

.

d[t+P−1, f̂(t−1)] . . . d[t+P−1−nA, f̂ (t−1)]








â(t)

−











r[t+P−M−1, α̂(t−P ), f̂(t−1)] . . . r[t+P−M−nA, α̂(t−P ), f̂(t−1)]

r[t+P−M, α̂(t), f̂(t−1)] . . . r[t+P−M−nA+1, α̂(t−P ), f̂(t−1)]

.

.

.
. . .

.

.

.

r[t+P−2, α̂(t), f̂(t−1)] . . . r[t+P−1−nA, α̂(t), f̂(t−1)]











ˆ̄b(t)

5) {γ̂(t), σ2
C(t)} = lp

{
r[t, α̂(t), f̂(t−1)])

}

6a)







ε[t, α̂(t), γ̂(t), f̂(t−1)] =
[

r[t, α̂(t), f̂ (t−1)] . . . r[t−nC, α̂(t), f̂ (t−1)]
]

ĉ(t)







ŭ[t−nF−nC , α̂(t)]

.

.

.

ŭ[t+P−1, α̂(t)]








=








u(t−nF−nC) . . . u(t−nF−nC−nA)

.

.

.
. . .

.

.

.

u(t+P−1) . . . u(t+P−1−nA)








â(t)

−











ŭ[t−nF−nC−1, α̂(t−P )] . . . ŭ[t−nF−nC−nA, α̂(t−P )]

ŭ[t−nF−nC, α̂(t)] . . . ŭ[t−nF−nC−nA+1, α̂(t−P )]

.

.

.
. . .

.

.

.

ŭ[t+P−2, α̂(t)] . . . ŭ[t+P−1−nA, α̂(t)]











ˆ̄b(t)








y̆[t−nC+1, α̂(t)]

.

.

.

y̆[t+P−1, α̂(t)]








=








y(t−nC+1) . . . u(t−nC+1−nA)

.

.

.
. . .

.

.

.

y(t+P−1) . . . y(t+P−1−nA)








â(t)

−











y̆[t−nC, α̂(t−P )] . . . y̆[t−nC+1−nA, α̂(t−P )]

y̆[t−nC+1, α̂(t)] . . . y̆[t−nC+2−nA, α̂(t−P )]

.

.

.
. . .

.

.

.

y̆[t+P−2, α̂(t)] . . . y̆[t+P−1−nA, α̂(t)]











ˆ̄b(t)

ũ[t, α̂(t), γ̂(t)]=








ũ[t, α̂(t), γ̂(t)]

.

.

.

ũ[t−nF , α̂(t), γ̂(t)]








=








ŭ[t, α̂(t)] . . . ŭ[t−nC, α̂(t)]

.

.

.
. . .

.

.

.

ŭ[t−nF , α̂(t)] . . . ŭ[t−nF−nC , α̂(t)]








ĉ(t)

else

6b) as in Table 12.2

end if

7)–9) as in Table 12.2

end for
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12.6 Computational Complexity and Model Ap-
proximations

12.6.1 Computational Complexity

The computational complexity of the PEM-based AFC algorithms with cas-
caded near-end signal models can be quantified in terms of the average number
of multiplications that have to be performed in each recursion. This complexity
measure is shown in Table 12.5 for the five different near-end tonal components
models, and also for the existing PEM-AFROW [32] and NLMS [34, Ch. 9] al-
gorithms. The complexity measure has been calculated individually for each of
the nine steps in the algorithm, such that the expressions in Table 12.5 can be
easily compared with the correponding descriptions given in Tables 12.2-12.4.

Before interpreting the expressions in Table 12.5, we should define the variables
that have not appeared earlier: the PZLP model coefficients are estimated using
the CPZLP line search optimization algorithm, which requires on average β̄
backtracking steps per iteration and κ̄ iterations per parameter θi(t) in α(t)
[53]. The fractional 3-tap pitch prediction method for estimating the PLP
model coefficients requires the specification of limits Kmin and Kmax for the
pitch lag K, and its computational complexity depends on the related quantities
∆K , Kmax − Kmin and ΣK , Kmax + Kmin, as well as on the order nI of
the fractional interpolation filter I(q, l/D). The SLP model coefficients are
estimated after downsampling the analyzed signal, which requires the inclusion
of an anti-aliasing filter of order nS .

The relative complexity of the different steps in the algorithm depends on the
application area. In room acoustic applications, the required adaptive filter
order nF is typically much larger (i.e., several orders of magnitude) than the
near-end signal model orders nA, nI , nα, and nC , and usually a few times
larger than the data window length M and hop size P . As a consequence, the
main extra complexity of the PEM-based algorithms in room acoustic applica-
tions is in steps 1 and 6, when compared to the NLMS complexity. Moreover,
since the data window hop size P is often significantly larger than the near-end
signal model orders, the complexity of step 6 comes close to the NLMS com-
plexity of nF + 1 multiplications, hence the overall increase in complexity can
almost completely be attributed to step 1 and approximately equals 2(nF + 1)
multiplications (since we have suggested to choose M = 2P ), which is 50 %
of the overall NLMS complexity. Note that when the WLP near-end tonal
components model is used, step 4 approximately involves another 2(nF + 1)
multiplications such that the overall complexity is about twice the NLMS com-
plexity. In HA applications, nF is usually also larger than the near-end signal
model orders nA, nI , nα, and nC , but similar to the squared near-end signal
model orders n2

A, n2
I , n2

α, and n2
C and the multiplied orders nAnC , nInC , and

nαnC . Consequently, steps 3, 5, and 6 contribute more significantly to the
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Table 12.5: Complexity comparison: average number of multiplications per recursion

1) 2) 3)

NLMS 0 0 0

PEM-AFROW M
P

(nF +1) 0 0

H1 = LP M+max(nA,nC)
P

(nF +1) M
P

nC
1
P

n2
A+M+4

P
nA+M

P

H1 = PZLP
M+max(nA,nC)

P
(nF +1) M

P
nC

κ̄[(13+3β̄)M+(17+5β̄)]
2P

nA

H1 = PLP
M+max(nA,nC)

P
(nF +1) M

P
nC −2

P
n2

I+ 4M∆K−5ΣK+6M
2P

nI+
2(M+1)∆K−5ΣK+6M+38

2P

H1 = WLP M+nC
P

(nF +1) M
P

nC
1
P

n2
α+ 2M+4

P
nα+M

P

H1 = SLP
M+max(Γnα,nC)

P
(nF +1) M

P
nC

1
P

n2
α+

M/Γ+4
P

nα+M
P

( 1
Γ
+nS+1)

4) 5)

NLMS 0 0

PEM-AFROW 0 1
P

n2
C+M+4

P
nC+M

P
H1 = LP M

P
nA

1
P

n2
C+M+4

P
nC+M

P
H1 = PZLP 2M

P
nA

1
P

n2
C+M+4

P
nC+M

P
H1 = PLP M

P
(nI+3) 1

P
n2

C+M+4
P

nC+M
P

H1 = WLP M+nα
P

(nF +1)+
2(M+P )−1

P
nα+4 1

P
n2

C+M+4
P

nC+M
P

H1 = SLP M
P

nα
1
P

n2
C+M+4

P
nC+M

P

6) 7) 8) 9)

NLMS nF +1 0 2(nF +2) nF +1

PEM-AFROW P+nC
P

(nF +1)+ 2P−1
P

nC 4 2(nF +2) nF +1

H1 = LP P+nA+nC−1
P

(nF +1)+ 2
P

nAnC+ 2(P−1)
P

(nA+nC) 4 2(nF +2) nF +1

H1 = PZLP P+2nA+nC−1
P

(nF +1)+ 4
P

nAnC+ 2(P−1)
P

(2nA+nC) 4 2(nF +2) nF +1

H1 = PLP P+nI+nC+2
P

(nF +1)+ 2
P

(nI+3)nC+ 2(P−1)
P

(nI+nC+3) 4 2(nF +2) nF +1

H1 = WLP P+nC−1
P

(nF +1)+2nC 4 2(nF +2) nF +1

H1 = SLP P+nα+nC−1
P

(nF +1)+ 2
P

nαnC+
2(P−1)

P
(nα+nC) 4 2(nF +2) nF +1
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overall complexity than in the room acoustic case. However, this contribution
is negligible for P ≥ {nA, nI , nα, nC}. Finally, an important feature of the
PEM-based algorithms is that no additional complexity is introduced in the
adaptive filtering part of the algorithm (i.e., steps 7–9), so when using a more
demanding adaptive filtering algorithm like the recursive least squares (RLS)
or affine projection algorithm (APA), the extra complexity of the PEM-based
algorithms does not increase accordingly.

12.6.2 Model Approximations

In the PEM-based AFC algorithms, the data vectors that are needed for the
identification of f(t), α(t), and γ(t) are recalculated entirely once in every P
recursions, see steps 1, 2, 4, and 6a in the algorithms given in Tables 12.2-12.4.
These prefiltering operations may contribute significantly to the overall com-
putational complexity, as can be seen from Table 12.5. However, by applying
certain model approximations, the number of prefiltering operations can be
reduced significantly without sacrificing too much of the AFC performance.

These model approximations are related to the stationarity of the acoustic
feedback path F (q, t) and the near-end signal models H1(q, t) and H2(q, t).
If these models are assumed to be piecewise stationary with time scales of
QF + 1, QH1 + 1, and QH2 + 1 samples, respectively, then the correponding
model estimates F̂ (q, t), Ĥ1(q, t), and Ĥ2(q, t) can be assumed equal on similar
time scales, i.e.,

F (q, t − QF ) = . . . = F (q, t) ⇒ F̂ (q, t − QF ) = . . . = F̂ (q, t) (12.46)

H1(q, t − QH1) = . . . = H1(q, t) ⇒ Ĥ1(q, t − QH1) = . . . = Ĥ1(q, t) (12.47)

H2(q, t − QH2) = . . . = H2(q, t) ⇒ Ĥ2(q, t − QH2) = . . . = Ĥ2(q, t).(12.48)

Obviously, the above approximations are only exact if the time index t corre-
sponds to the final time index of a stationarity time interval for F (q, t), H1(q, t),
and H2(q, t), and if the model estimates have zero variance. Nevertheless, we
will apply (12.46)-(12.48) without explicitly assuming that these two conditions
are fulfilled.

When applying the approximations in (12.46)-(12.48) to the algorithms given
in Tables 12.2-12.4, we can apply the following simplifications:

• In step 1, we can approximate f̂(t−1) by f̂ (k) for k = t−QF −1, . . . , t−2
such that d[k, f̂(t − 1)] is approximated by d[k, f̂(k)], which is the a pos-
teriori feedback-compensated signal that has been calculated in step 9
of the kth recursion. This simplication leads to an average computa-
tional saving of nF +1

P min[QF , M −P +max(nA, nC)] multiplications per

recursion (or nF +1
P min(QF , M − P + nC) multiplications in the WLP

case).
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• In step 2, we may replace ĉ(t − P ) by ĉ(t − lP ), l = 2, . . . ,
⌊QH2

P

⌋
+ 1,

such that only the first M −
(⌊QH2

P

⌋
+ 1
)
P and the last P elements of

the prefiltered data vector w[t, γ̂(t−P ), f̂(t− 1)] have to be recalculated
using ĉ(t− P ), while the other elements are copied and shifted from the
previous data vector w[t − P, γ̂(t − 2P ), f̂(t − P − 1)]. In this way, an

average number of nC min
(⌊QH2

P

⌋
, M−P

P

)
multiplications per recursion

can be saved.
• In step 4, a similar approximation â(t) = â(t−lP ), l = 1, . . . ,

⌊QH1

P

⌋
may

again lead to a computational saving: on average nA min
(⌊QH1

P

⌋
, M−P

P

)

multiplications per recursion in the LP case, 2nA min
(⌊QH1

P

⌋
, M−P

P

)
in

the PZLP case, (nI + 3)min
(⌊QH1

P

⌋
, M−P

P

)
in the PLP case, and

nα min
(⌊QH1

P

⌋
, M−P

P

)
in the SLP case. In the WLP case, the calculation

of ŭ[k, α̂(t)] and y̆[k, α̂(t)] can be simplified in a similar way, saving on

average nα min
(⌊QH1

P

⌋
, M−P+nF

P

)
and nα min

(⌊QH1

P

⌋
, M−P

P

)
multiplica-

tions per recursion, respectively, while the computation of r[t, α̂(t), f̂(t−
1)] can be simplified using (12.46) to save on average nF +1

P min(QF , M −
P ) multiplications per recursion.

• In step 6a, approximating â(t) = â(t − lP ), l = 1, . . . ,
⌊QH1

P

⌋
may save

nA

[
min

(⌊QH1

P

⌋
, nF +nC

P

)
+min

(⌊QH1

P

⌋
, nC−1

P

)]
multiplications per recur-

sion in the LP case, 2nA

[
min

(⌊QH1

P

⌋
, nF +nC

P

)
+ min

(⌊QH1

P

⌋
, nC−1

P

)]
in

the PZLP case, (nI + 3)
[
min

(⌊QH1

P

⌋
, nF +nC

P

)
+ min

(⌊QH1

P

⌋
, nC−1

P

)]
in

the PLP case, and nα

[
min

(⌊QH1

P

⌋
, nF +nC

P

)
+ min

(⌊QH1

P

⌋
, nC−1

P

)]
in the

SLP case. Approximating ĉ(t) = ĉ(t − lP ), l = 1, . . . ,
⌊QH2

P

⌋
further

leads to a saving of nC min
(⌊QH2

P

⌋
, nF

P

)
multiplications per recursion for

all cases.

Since the data window size M should be chosen as large as possible without
violating the assumption that the near-end signal models are stationary in the
entire data window, we typically have M ≈ QH1 ≈ QH2 . The stationarity time
scale of the acoustic feedback path depends heavily on the nature of the changes
in the acoustic environment. In PA applications, variations in room acoustics
are mainly due to microphone/loudspeaker movements, people moving around
the room, and temperature variations. The time scale of room acoustic varia-
tions due to moving people (hence also due to objects being moved by people)
has been estimated to be around 10 ms for wideband audio applications, while
temperature variations are considerably slower [58]. In HA applications, the
largest feedback path variations have been found to result from external ef-
fects (e.g., by using a telephone set or due to changes in the enclosing room
acoustics) [59], hence the variability time scale may be assumed similar to that
found in PA applications. When using 50 % overlapping data windows of 40–60
ms, e.g., M = 2P = 2048 at fs = 44.1 kHz, the main computational overhead
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of approximately 2(nF + 1) multiplications (due to step 1) can be reduced to
1.6(nF + 1) multiplications in fast changing environments (QF = 10 ms ×
44.1 kHz = 441), or nF + 1 multiplications in slowly changing environments
(Q ≥ M − P + nC ≈ 1058 = 24 ms × 44.1 kHz). In this way, the additional
complexity of the proposed PEM-based AFC algorithm compared to NLMS
reduces to 25–40 % of the overall NLMS complexity.

12.7 Simulation Results

We will evaluate the performance of the proposed PEM-based AFC algorithms
with cascaded near-end signal models by means of simulation results obtained
in two substantially different scenarios. The first scenario is a typical PA sce-
nario (at fs = 44.1 kHz), in which the sound of a single musical instrument is
picked up by a microphone, amplified, and fed back from the loudspeaker to
the microphone through a room acoustic feedback path. The second scenario
is related to HA applications, by simulating a HA that processes an incoming
classical music signal at fs = 16 kHz. We should emphasize that, except for
the adaptive filter length nF , identical values of all the algorithm parameters
are used in both simulation scenarios. It can hence be understood that the
algorithm parameters are not particularly optimized to provide a good AFC
performance in one specific simulation scenario, but instead are chosen such as
to be generally applicable.

The algorithm parameters are chosen as follows: at fs = 44.1 kHz, the data
window length M = 2048 and the hop size P = M/2 = 1024, while at fs = 16
kHz, M = 1024 and P = M/2 = 512. The near-end tonal components model
order is chosen such as to be able to model 15 tonal components in each data
window, i.e., nA = 30 for the LP and PZLP models, whereas nα = 30 for the
WLP and SLP models. The near-end noise components model order is also
set to nC = 30. A processing delay of d1 = P − 1 samples is inserted in the
electro-acoustic forward path to allow P −1 future data samples to be included
in the LP data window. In this way, the identifiability condition in (12.40) is
fulfilled without the need for inserting an additional processing delay d2 in the
adaptive filtering circuit. Moreover, the electro-acoustic forward path contains
a hard clipping saturation function to avoid numerical overflow in case of system
instability. In the identification of the WLP near-end tonal components model,
the warping parameter is chosen such that the warping map approximates the

Bark scale as suggested in [60]: λBark(fs) = 1.0674
√

2
π arctan(0.06583fs) −

0.1916. The SLP model is identified using a downsampling factor Γ = 3 and
an anti-aliasing filter of order nS = 20Γ = 60. The PZLP model is identified
using the CPZLP algorithm parameters suggested in [53] and with an initial

estimate of θ̂
(0)
i (t) = (2π440)/fs for all the PZLP model angles. The PLP
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model identification features a pitch lag range between Kmin = ⌊fs/1000⌋ and
Kmax = ⌊fs/100⌋ corresponding to fundamental frequencies in the range 100–
1000 Hz. The interpolation ratio for estimating fractional pitch lag values
K + l/D is set to D = 8, and the fractional interpolation filter order is chosen
as nI = 31. The prediction error power σ2

ε(t) is estimated using an effective
data window length of M samples by setting the forgetting factor λε = 1 −
1/M . Finally, the stochastic gradient algorithm for updating the feedback
path estimate features a step size µ = 0.005 and a regularization parameter
δ = 10−6. Unless mentioned otherwise, no model approximations are applied
in the simulations, i.e., QF = QH1 = QH2 = 0.

Both simulation scenarios have a temporal layout made up of four phases of
equal duration. During the first phase of the simulation, the electro-acoustic
forward path broadband gain factor K(t) is fixed to a value that would result in
a 3 dB gain margin if no AFC algorithm were applied. In the second phase, the
gain 20 log10 K(t) is increased linearly with time, until a value is attained that
is 10 dB above the gain applied in the first phase. This simulated gain increase
resembles the way an AFC algorithm is applied in practice, i.e., PA operators
and HA users are expected to turn on the AFC algorithm at a relatively low
gain value and subsequently raise the gain to benefit from the MSG increase
provided by the AFC algorithm. Moreover, this gain increase leads to an
improved AFC convergence, since the ratio of the feedback signal power to the
near-end signal power is increased. In the third phase, the gain is fixed to the
final gain value in the second phase, while the fourth phase features a simulated
acoustic feedback path change.

In the PA simulation scenario, the near-end signal is a 60 s excerpt from the
Partita No. 2 in D minor (Allemande) for solo violin by J. S. Bach. The
motivation for using a violin piece, is that the violin appears to be a prob-
lematic instrument in terms of sound amplification in PA applications, which
is probably due to its highly frequency-dependent directivity [61]. The acous-
tic feedback path impulse response has a length of 100 ms (corresponding to
nF = 4410 samples) and was measured in a medium-sized room. The AFC
performance is quantified by evaluating the misadjustment, defined as

MAF (dB) = 20 log10

‖f̂(t) − f‖
‖f‖ (12.49)

and the MSG defined in (12.11) as a function of time. The results when only
a near-end tonal components model H1(q, t) is used (with H2(q, t) ≡ 1) are
shown in Figs. 12.3(a),(c), while the results with cascaded near-end models
are displayed in Figs. 12.3(b),(d). In both cases, the NLMS [34, Ch. 6] and
PEM-AFROW (with nC = 30) [32] algorithm performance is also included for
reference. It can be observed that by only including a near-end tonal com-
ponents model, the AFC misadjustment as compared to the PEM-AFROW
algorithm can be improved when using the PZLP, PLP, and WLP models.
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Figure 12.3: Comparison of PEM-based AFC algorithm with NLMS and PEM-
AFROW in a PA application: (a) Misadjustment if only a near-end tonal com-
ponents model H1(q, t) is used, (b) Misadjustment if cascaded near-end models
H1(q, t) and H2(q, t) are used, (c) MSG if only a near-end tonal components
model H1(q, t) is used, (d) MSG if cascaded near-end models H1(q, t) and
H2(q, t) are used.
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However, when using the cascaded near-end signal models, a much more sig-
nificant performance improvement can be obtained, particularly when a PLP
near-end tonal components model is applied. Some of the algorithms appear
not to be able to cope with an acoustic feedback path change when operating
at a high gain value, hence closed-loop instability results (apparent from the
horizontal misadjustment curves in Figs. 12.3(a)-(b)). In terms of the MSG,
the AFC algorithm should converge fast enough such that its MSG increases
at least as fast as the gain factor 20 log10 K(t), otherwise ringing and howling
effects will occur. The best MSG performance is obtained with the LP, PZLP,
PLP, and WLP near-end tonal components models cascaded with a noise com-
ponents model. In Figs. 12.3(c)-(d), the instantaneous gain value 20 log10 K(t),
as well as the MSG values without AFC are also shown (with “MSG F1(q)”
and “MSG F2(q)” denoting the MSG before and after the acoustic feedback
path change). An MSG increase of more than 11 dB w.r.t. the case when no
AFC is applied, is obtained for the cascaded structure with a PLP tonal com-
ponents model (compared to an 8 dB MSG increase with the PEM-AFROW
algorithm).

The HA simulation reflects a scenario in which a HA user is listening to a
musical recording or performance. In this simulation, the near-end signal is
a 16 s excerpt from the first part (Kyrie) of the Mass in C minor (“Grosse
Messe”, K427) by W. A. Mozart, which features a soprano, chorus, and or-
chestra. The acoustic feedback path is a 12.5 ms measured HA feedback path
impulse response, i.e., nF + 1 = 200. The misadjustment and MSG curves
are given in Figs. 12.4(a),(c) for a near-end tonal components model only and
in Figs. 12.4(b),(d) for cascaded near-end signal models. In contrast to the
PA scenario, the HA simulation results indicate that the existing PEM-based
AFC algorithms such as PEM-AFROW may work fine in audio applications
too, as was also observed in [31],[42]. This can be explained by the fact that
the conventional LP model (which is used in these existing PEM-based AFC
algorithms) is better suited for modeling audio signals at lower sampling fre-
quencies [40]. However, the AFC performance may be further improved by
using cascaded near-end signal models, particularly with a PZLP tonal com-
ponents model, which clearly results in the fastest AFC convergence and MSG
increase. However, the algorithm with the PZLP tonal components model ap-
pears to be non-robust to acoustic feedback path changes, hence the PLP tonal
components model may be a better choice. The largest MSG increase compared
to the MSG without AFC equals more than 8 dB, which is approximately 3 dB
larger than the MSG increase obtained with the PEM-AFROW algorithm.

Finally, we evaluate the applicability of the model approximations introduced
in Section 12.6.2. In Figs. 12.5(a) and 12.5(b), we show the misadjustment
convergence curves for the PEM-based AFC algorithm with cascaded near-end
signal models for five different combinations of values for QF , QH1 , and QH2 .
Each of these variables is either set to zero, or to the value which delivers
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Figure 12.4: Comparison of PEM-based AFC algorithm with NLMS and PEM-
AFROW in a HA application: (a) Misadjustment if only a near-end tonal
components model H1(q, t) is used, (b) Misadjustment if cascaded near-end
models H1(q, t) and H2(q, t) are used, (c) MSG if only a near-end tonal com-
ponents model H1(q, t) is used, (d) MSG if cascaded near-end models H1(q, t)
and H2(q, t) are used.
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Figure 12.5: Evaluation of model approximations in PEM-based AFC algo-
rithm with cascaded near-end signal models: Misadjustment for different sta-
tionarity time scales QF , QH1 , and QH2 , (a) PA application (with PLP tonal
components model), (b) HA application (with PZLP tonal components model).

the maximum achievable computational saving. It can be seen that in the PA
case (with a PLP tonal components model), a rather unexpected performance
improvement occurs when QH1 and/or QH2 are increased. In the HA case
(with a PZLP tonal components model), increasing QH2 leads to a slightly
better performance, while increasing QH2 may lead to a severe performance
decrease.

12.8 Conclusion

In this paper, we have proposed a modification to the PEM-based AFC ap-
proach, which consists in replacing the all-pole near-end signal model by a
cascade of two linear models. In this way, the PEM-based AFC approach,
which was originally designed for speech applications only, can also be applied
to audio applications involving musical sound signals. Since the cascaded near-
end signal models are able to whiten the near-end signal component in the
microphone signal more effectively, a significant AFC performance improve-
ment is obtained. Five different algorithms have been presented, in which the
organization of the prefiltering operations is specifically tailored to the under-
lying near-end tonal components model structure. The computational require-
ments of these algorithms were analyzed in detail, leading to the conclusion
that a complexity increase of 50 % of the overall NLMS complexity can be
expected. However, if model approximations related to the stationarity of the
feedback path and the near-end signal are applied, the computational overhead
can further be reduced to 25 % of the NLMS complexity without significantly
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influencing the AFC performance. Both in PA and HA simulation scenarios,
a considerable improvement in the acoustic feedback path misadjustment and
the MSG has been observed. In particular, the PZLP and PLP near-end tonal
components models, which both feature a PEF that behaves as a cascade of
notch filters, have been found to offer the best performance.
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Chapter 13

Conclusions and
Suggestions for Future
Research

13.1 Summary and Conclusions

In this thesis, we have designed and evaluated a number of novel room acous-
tic signal enhancement algorithms for acoustic echo cancellation and acoustic
feedback control. We have designed these algorithms with the following re-
quirements in mind: a robust performance, a high sound quality, and a rea-
sonable complexity increase as compared to state-of-the-art algorithms. These
goals have been achieved by departing from the traditional ad hoc approach
for dealing with problems such as double-talk, poor excitation, and decorrela-
tion, but instead approaching these problems from a parameter estimation and
system identification point of view, hence developing theoretically well-founded
solutions.

A major part of the thesis has been devoted to the development of so-called
PEM-based adaptive filtering algorithms, i.e., algorithms that are based on
the prediction error method for system identification [1, Ch. 3],[2, Ch. 7].
These algorithms allow the concurrent modeling and identification of the room
acoustics and the near-end signal characteristics in acoustic echo and feedback
cancellation. In this way, several open problems in these two applications have
been approached from a new perspective and promising solutions have been
proposed. A first problem that was tackled with the PEM-based approach is
the double-talk problem in AEC. It was shown in Chapter 3 that the appli-
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cation of a PEM-based adaptive filtering algorithm in AEC alleviates the use
of a DTD. The corresponding convergence improvement is significant both in
a continuous and in a bursting double-talk situation, particularly for underde-
termined RLS algorithms such as the NLMS algorithm, while the complexity
increase is limited to 35–65 % of the NLMS complexity. A second problem
in which the PEM-based approach has proven valuable is the undermodeling
problem that occurs when the AEC or AFC adaptive filter order is chosen in-
sufficiently large. In Chapter 4, we have verified that the variance resulting
from undermodeling can be reduced with 20–35 dB in a scenario in which the
adaptive filter order is only 30 % of the true system order, while the bias can be
concentrated in a few adaptive filter taps which can afterwards be discarded.
A third application of the PEM-based adaptive filtering approach was inspired
by hearing aid research [3] and consists in reducing the correlation between
the loudspeaker and near-end signals for obtaining an unbiased acoustic feed-
back path estimate in AFC. The PEM-based hearing aid AFC approach was
extended to room acoustic applications in Chapter 9, by alleviating several
modeling approximations that appear to be invalid in room acoustic speech
applications and including a pitch predictor in the decorrelation. The resulting
PEM-AFROW algorithm was shown to deliver a 7 dB misadjustment improve-
ment compared to the PEM-based hearing aid AFC algorithm at a complexity
increase of only 18 %, while the convergence improvement compared to the
NLMS algorithm was found to be 12 dB at the cost of a 50 % complexity
increase. In Chapter 12, the PEM-based approach was applied to AFC in
audio applications by using two cascaded near-end signal models. When the
near-end signal tonal components are modeled with a pole-zero or pitch predic-
tion model, an additional 4 dB misadjustment improvement can be obtained
compared to the PEM-AFROW algorithm. Moreover, due to the fact that
the average stationarity period of audio signals is somewhat longer than for
speech signals, the modeling approximations used in the PEM-based hearing
aid AFC approach do make sense in room acoustic audio applications, hence
the complexity increase compared to the NLMS algorithm can be reduced to
25 %. Finally, in Chapter 2, the PEM-based AFC algorithms proposed in
this thesis were compared to the state-of-the-art AFC algorithms as well as to
other acoustic feedback control methods. The PEM-based AFC approach was
found to deliver the best performance in terms of the achievable amplification
and the resulting sound quality, while its reliability is slightly worse compared
to the state-of-the-art algorithms. The latter observation has motivated us
to improve the robustness of the PEM-AFROW algorithm using several en-
hancements reported in Chapter 10. By also increasing the PEM-AFROW
efficiency through subband and frequency domain implementations, a real-time
AFC system for speech applications was obtained and tested in real-life exper-
iments, thereby confirming the added stable gain values of around 13 dB that
were reported in Chapter 2.

A second achievement of the thesis is related to the use of regularization in lin-
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ear adaptive filtering, and more particularly in room acoustic signal enhance-
ment. In Chapter 5, a novel framework for regularization in adaptive filtering
was conceived by approaching the associated parameter estimation problem
from a Bayesian minimum mean square error point of view. As a consequence,
the existing scaled-identity-matrix-based Tikhonov and Levenberg-Marquardt
regularization methods could be related to each other, in the sense that these
methods were shown to correpond to different assumptions on the mean value
of the parameter vector’s prior distribution. Moreover, the use of a non-identity
regularization matrix was found to be MSE optimal in case prior knowledge
on the echo/feedback path as well as on the near-end signal could be measured
or estimated. In the underdetermined RLS case, the MSE optimal approach
to regularization has been related to the concept of proportionate adaptation,
thereby providing a new interpretation of the PAPA and PNLMS algorithms.
Two methods for limiting the complexity increase of the regularized RLS al-
gorithms were reviewed, while the complexity increase of the regularized APA
and NLMS algorithms was shown to be around 25 % if a diagonal regularization
matrix is used. The proposed approach to regularization was found to deliver
an increased performance both in AEC and AFC applications, in stationary
as well as nonstationary acoustic environments. In Chapter 6, “dual” regu-
larization of the near-end signal model estimation was introduced to alleviate
numerical problems encountered in some of the PEM-based adaptive filtering
algorithms. Again, the use of prior knowledge (through a model of long-term
speech characteristics) was shown to have a beneficial effect on the AEC and
AFC performance.

A third major contribution of the thesis consists in providing a comprehen-
sive treatment of the state-of-the-art in acoustic feedback control, including
results of a comparative evaluation of the state-of-the-art methods as well as
the methods proposed in this thesis. In Chapter 2, a literature review is pre-
sented that spans five decades of research in acoustic feedback control, while
the three most widely used acoustic feedback control methods are treated in
more detail, thereby discussing conceptual as well as implementation issues.
These methods are then compared in terms of the achievable amplification, the
sound quality, and the reliability, both in speech and audio sound reinforcement
applications.

Finally, we have treated three other research issues in this thesis, which on one
hand have aided us for arriving at the novel AEC and AFC algorithms discussed
above, but on the other hand may also be regarded as self-contained contri-
butions to signal processing. The first of these contributions is the pole-zero
placement design procedure outlined in Chapter 7 for designing biquadratic
parametric equalizer filters in an intuitive yet accurate way. This procedure
was successfully applied in Chapter 2 for the design of notch filters in the
two-stage NHS algorithms. A second self-contained contribution of the the-
sis is the development of a novel parametric frequency estimation method in
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Chapter 8. The CPZLP method has a few attractive features compared to
the state-of-the-art parametric frequency estimation methods and can hence
be considered a valuable tool in spectral estimation, particularly due to its low
computational complexity and its ability to operate in colored noise. Finally,
a third contribution is related to audio signal modeling using linear prediction
models. In Chapter 11, we have revealed why conventional all-pole models
appear to be unsuited for audio signal modeling, and we have reviewed and
evaluated five alternative linear prediction models for audio signals.

13.2 Suggestions for Future Research

In terms of future research, we want to stress the importance of reducing the
AEC and AFC computational complexity, which we consider the greatest chal-
lenge in room acoustic signal enhancement. We believe that the fundamental
problem concerning computational complexity, lies in the fact that a room
acoustic path is traditionally modeled using its impulse response. A large
number of coefficients is then required, particularly when operating at a high
sampling frequency (e.g., in audio applications), since then the impulse response
is more densely sampled. A challenging approach for reducing the model com-
plexity consists in using models different from the impulse response. Since a
room acoustic path typically exhibits sharp peaks in its magnitude response,
IIR (or pole-zero) models seem to be an appropriate alternative. The use of
such models in room acoustics has both been recommended [4]-[6] and discour-
aged [7],[8]. However, the appeal of these models for room acoustic applications
is mainly due to the conjecture that the IIR model denominator coefficients can
in fact be assumed time-invariant in a certain acoustic environment, regardless
of the loudspeaker and microphone positions [4]. A related model, which also
exploits the assumption of time-invariant room acoustic resonance frequencies,
is based on the use of orthogonal basis functions such as the discrete-time
Laguerre or Kautz functions, which have been evaluated in an AEC context
in [9],[10]. This concept could probably be further improved by considering
generalized orthonormal basis functions rather than the classical Laguerre and
Kautz functions [11],[12].

A related challenge in room acoustic signal enhancement, is to extrapolate
the methods proposed in a single-channel context to multi-channel systems.
Since the number of acoustic paths to be identified in a multi-channel system
equals the number of loudspeakers times the number of microphones, the com-
putational complexity of most single-channel algorithms can be understood to
explode in a multi-channel context. Again, the use of IIR models or models
based on (generalized) orthogonal basis functions may bring some relief, since,
following the arguments in [4],[10], these models would then share a common
denominator. Another problem arising in multi-channel room acoustic signal



BIBLIOGRAPHY 375

enhancement is related to the identifiability of the room acoustic path models
in case the loudspeaker signals are correlated. This problem has been studied
in the context of multi-channel AEC, and is typically tackled using ad hoc so-
lutions such as decorrelating the loudspeaker signals by introducing nonlinear
signal distortions [13],[14]. A theoretically more attractive way of reducing the
correlation between the loudspeaker signals would be to use adaptive decor-
relation filters, similarly to the approach taken in this thesis for reducing the
loudspeaker and near-end signal correlation in AFC.
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