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We present an ab initio computational study of the Auger electron spectrum of

benzene. Auger electron spectroscopy exploits the Auger-Meitner effect and, al-

though it is established as an analytic technique, the theoretical modeling of molec-

ular Auger spectra from first principles remains challenging. Here, we use coupled-

cluster and equation-of-motion coupled-cluster theory combined with two approaches

to describe the decaying nature of core-ionized states: (i) Feshbach-Fano resonance

theory and (ii) the method of complex basis functions. The spectra computed with

these two approaches are in excellent agreement with each other and also agree

well with experimental Auger spectra of benzene. The Auger spectrum of benzene

features two well-resolved peaks at Auger electron energies above 260 eV that cor-

respond to final states with two electrons removed from the 1e1g and 3e2g highest

occupied molecular orbitals. At lower Auger electron energies, the spectrum is less

well resolved and the peaks comprise multiple final states of the benzene dication.

In line with theoretical considerations, singlet decay channels contribute more to the

total Auger intensity than the corresponding triplet decay channels.

I. INTRODUCTION

X-ray spectroscopies are widely used for probing the electronic structure of molecules and

materials1–3. Based on transitions involving core electrons, they exploit special features of

the core orbitals—their localized nature, the element specificity of their energies, and the

sensitivity to the environment of these energies1–7. Progress in experimental techniques such

as laser technology and, more specifically, the higher quality of X-ray beams, has motivated

recent efforts to advance theoretical capabilities for modeling core-level transitions.5,8,9
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FIG. 1: Different types of Auger decay: (a) regular Auger decay, (b) resonant participator decay,

and (c) resonant spectator decay. Reproduced with permission from Ref. 14.

Irradiation with X-rays creates vacancies in core orbitals, producing highly excited or

ionized states. Alternatively, core-hole states can also be created by nuclear transformations

such as electron capture or internal conversion of some radionuclides. In molecules with light

atoms—C, N, and O—which are most relevant to organic chemistry, core-hole states relax

predominantly via autoionization processes collectively referred to as the Auger-Meitner

effect10,11. In non-radiative Auger decay, a valence electron fills the core vacancy, liberating

sufficient energy to eject another electron, called the Auger electron, into the continuum.

Different types of this process are shown in Fig. 1: core-ionized states, produced, for ex-

ample, in X-ray photoionization spectroscopy (XPS), undergo regular Auger decay, whereas

core-excited states, produced in X-ray absorption spectroscopy (XAS), undergo resonant

participator or spectator Auger decay. Less common are double and triple Auger decay

in which two or three electrons are simultaneously emitted, resulting in multiply charged

cations.12,13

In Auger electron spectroscopy,15 the intensity of the emitted Auger electrons is recorded

as a function of their kinetic energy. Auger electron spectroscopy benefits from the element-

and environment-sensitivity of core orbitals and, therefore, can provide information about

the electronic structure not accessible by other techniques1. It has been employed to
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characterize with high accuracy and high spatial resolution the chemical composition of

surfaces16–19, materials20–22, nanostructures23,24, and gas-phase molecules25–28.

Auger electrons find uses beyond spectroscopy, e.g., in radiotherapy and precision

medicine.29–32 Because Auger decay produces multiple electron tracks in the vicinity of the

emission site, typically within 500 nm, it can deposit large amounts of energy into the

surrounding molecules. This ability of Auger emitters to deliver considerable levels of radi-

ation to a specific target33–35 has motivated the therapeutic use of molecules labeled with

radionuclides that emit Auger electrons upon nuclear decay.

Theoretical modeling of Auger processes is difficult owing to the metastable nature of

core-ionized and core-excited states, which are embedded in the ionization continuum. Con-

ventional quantum chemistry methods are formulated for discrete bound states with L2-

integrable wavefunctions and thus cannot describe states subject to electronic decay. One

can circumvent this problem by artificial stabilization of core-hole states by means of the

core-valence separation36 (CVS). This approach, in which decaying states are approximated

as bound states, delivers excellent energies in most cases. However, energies alone are not

sufficient for modeling Auger spectra, because a complete description requires decay widths

as well.

In this contribution, we compute decay widths for the core-ionized states of benzene

and construct its Auger spectrum. As a prototypical aromatic molecule, benzene is often

used as a model system to test new spectroscopic techniques37–42 and benchmark theoretical

methods43–50. The high symmetry and multiple core orbitals make Auger decay in benzene

particularly interesting, which motivated several experimental and theoretical studies.51–57

In the early experiment by Spohr et al., Auger electrons were generated by electron

impact51, which likely produces highly excited molecules, giving rise to an Auger spectrum

containing regular and resonant contributions. Later, Köppe and co-authors used X-ray

radiation to produce core-ionized states52; they reported an Auger spectrum of benzene

obtained with 390 eV radiation, which they referred to as the sudden limit, as well as an

Auger spectrum obtained using lower excitation energies closer to XAS transitions. It is ex-

pected that the former spectrum should be dominated by non-resonant Auger decay whereas

the latter spectrum should feature resonant contributions. The most recent experiment by

Carniato et al. employed higher energy radiation (510 eV) and measured Auger electrons

in coincidence with photoelectrons in order to eliminate the resonant contributions to the
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spectrum.53

Fig. 2 shows the Auger spectra of benzene from the three experiments. The spectra have

similar shape, but show noticeable differences both in the peak positions and the intensities.

The position of the lowest peak (labeled L in Fig. 2) differs by 0.58 eV and even more

troubling is the fact that it is not possible to align the positions of all major peaks by a

constant shift. For example, if the spectra are aligned by the lowest peak then the position

of the highest peak (labeled H in Fig. 2) varies by 1.44 eV, an so on. This is illustrated in

Figs. ??, ??, and ?? in the Supplemental Information (SI).

Theoretically, Auger decay in benzene was studied by Tarantelli et al. using a statistical

approach, which assumes that all decay channels have identical partial widths.55 Specifically,

they computed the decay channels, i.e., the dicationic states of benzene, with second-order

algebraic diagrammatic construction (ADC(2))58,59 and constructed the spectrum using the

density of states as a proxy of the intensities. On the basis of these calculations, Tarantelli

et al. were able to interpret the main features in the Auger spectrum.55

FIG. 2: Auger spectrum of benzene from (a) Spohr et al.,51 (b) Rennie et al.,52 and (c) Carniato

et al.53

In view of the challenges faced by quantitative experimental measurements of Auger
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spectra and the noticeable discrepancies between the three experimental Auger spectra of

benzene, there is a need for accurate theoretical modeling. By using a high-level description

of the electronic structure and computing the Auger decay widths explicitly, we hope to

clarify the nature of the main spectral features in the Auger spectrum of benzene and to

provide a benchmark for future experiments.

We use two different theoretical approaches to compute the decay widths of the core-

ionized states: Feshbach-Fano resonance theory60–62 and the method of complex basis func-

tions (CBF),63 which is based on complex scaling.64,65 The comparison between these differ-

ent theoretical approaches, and between theory and experiment, provides insights into the

Auger spectrum of benzene and into Auger decay in general.

Both approaches originate from non-Hermitian quantum mechanics, which offers a power-

ful and elegant framework for treating molecular electronic resonances.66–70 The Schrödinger

equation is reformulated such that the resonances are separated from the continuum and

become isolated states with L2-integrable wavefunctions and complex energies,

Eres = E − i
Γ

2
, (1)

where the real part E describes the energy of a resonance and the imaginary part gives

its decay width Γ, which is inversely proportional to the lifetime. The Feshbach-Fano ap-

proach and the method of complex basis functions represent two techniques to achieve such

reformulation in practice.67–70

These ideas were recently exploited to model molecular Auger decay rates in

the framework of coupled-cluster (CC) theory71 and its equation-of-motion (EOM)

extensions:72–74 Skomorowski and Krylov have developed a method based on the Feshbach-

Fano formalism14,75 whereas Matz and Jagau have developed methods based on CBFs.76,77

The structure of the paper is as follows: Sec. II outlines the details of our theoretical

modeling, Sec. III presents the numerical results, and Sec. IV offers concluding remarks.
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II. THEORETICAL AND COMPUTATIONAL DETAILS

A. Relevant electronic states of benzene

Fig. 3 shows the occupied molecular orbitals (MOs) of benzene and their irreducible

representations. The electronic configuration of the ground state of neutral benzene is

X1A1g = (core)12(2a1g)
2(2e1u)

4(2e2g)
4(3a1g)

2(2b1u)
2(1b2u)

2(3e1u)
4(1a2u)

2(3e2g)
4(1e1g)

4 , (2)

where the core comprises six doubly occupied orbitals

(core)12 = (1a1g)
2(1e1u)

4(1e2g)
4(1b1u)

2 . (3)

Following Wentzel,80,81 we treat Auger decay as a two-step process in which the second

step, filling of the core hole and ejection of the Auger electron, is independent of the first step,

creation of the core vacancy. Thus, our theoretical treatment focuses on the second step.

Fig. 4 shows a sketch of the electronic states relevant for our modeling: the neutral ground

state, the core-ionized states, which are the initial states in the Auger process, and the

doubly ionized valence states, which represent the final states. The core-ionized states are

metastable and decay producing free electrons and doubly ionized valence states. Different

doubly ionized states correspond to different decay channels, giving rise to Auger electrons

with specific energies. The rates of decay into the respective doubly ionized target states

determine the intensities in the Auger spectrum: Faster decay rates correspond to a higher

probability of decay into the respective doubly ionized target state.

Given that the four core-ionization energies (IEs) of benzene differ by only 0.1 eV, we

assume that any of the six core orbitals can be ionized, i.e., all six core-ionized states (2A1g,

2E1u,
2E2g,

2B1u) contribute equally to the total Auger spectrum. A rough estimate of

the number of possible Auger transitions is 6 × 15 × 15 = 1, 350 because the core vacancy

can be filled by an electron taken from any valence shell and the Auger electron can also

originate from any valence shell. In this estimate, we do not take into account degenerate

shells and the spin multiplicity of the doubly ionized target states. Also, we do not include

channels resulting from three-electron processes, i.e., those leading to 3-hole-1-particle (3h1p)

target states of the dication because these channels are expected to have lower intensity.

Furthermore, we do not consider resonant Auger decay and focus on the non-resonant Auger
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FIG. 3: Occupied molecular orbitals of benzene. Irreducible representations are given for the D6h

point group (in red) using Mulliken convention78 and for the largest Abelian subgroup (D2h, in

black), using Q-Chem’s symmetry notation.79

decay. This is justified by the setup of the most recent measurement, which supposedly

excludes contributions from resonant Auger decay.53

Using a one-electron picture and Koopmans’ theorem, the energies of the Auger electrons
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FIG. 4: Initial and final states in regular Auger decay.

are:82

EAuger = ϵv1 + ϵv2 − ϵcore, (4)

where ϵv1 and ϵv2 are the energies of the valence holes created by the Auger decay and

ϵcore is the energy of the core orbital with the hole. In correlated treatments, different 2h

configurations can mix, giving rise to correlated doubly ionized states, which we call DIP

states. The positions of the peaks in the Auger spectrum are then

EAuger = EDIP − EcoreIP. (5)

Further, correlated treatments are able distinguish singlet and triplet Auger channels. As

per Fig. 3, the highest-energy Auger electrons should correspond to the DIP states with 2

holes in the 1e1g highest occupied molecular orbital (HOMO) of benzene.

Because the IEs of the core orbitals are very close (ca. 0.1 eV), one can anticipate

that the positions of the peaks in the Auger spectrum of benzene follow the energies of

the DIP states and that the intensity pattern follows the density of DIP states. Indeed,

this approach has been used in earlier theoretical treatments of the Auger spectrum of

benzene.55 Although the density of correlated DIP states can provide a zero-order picture

of the Auger spectrum, a quantitative treatment needs to account for different probabilities

associated with different decay channels.81–83 These probabilities are proportional to the

partial widths of the metastable core-ionized states for decay into a particular channel. If

all decay channels are considered, these partial widths sum up to Γ from Eq. (1). In

the following two sections—IIB and IIC—we discuss and compare our two approaches for

computing these partial widths, i.e., Feshbach-Fano resonance theory and the method of

complex basis functions. We show that accounting for partial widths leads to significant
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changes in the Auger intensities as compared to an estimate based on the density of DIP

states.

We note that the contributions of triplet decay channels are expected to be smaller than

the contributions of singlet channels.82,84 The dominance of singlet channels is also confirmed

by experiments on atoms, where the peaks in the Auger spectrum can be unambiguously

mapped onto the decay channels.85 In the Appendix we analyze the contributions of singlet

and triplet channels for the two many-body approaches used in this work.

Specific details of theoretical protocols are given below. All calculations were carried out

using the Q-Chem package.86,87

B. Feshbach-Fano approach

For the Feshbach-Fano calculations, we employ CC and EOM-CC theory with single

and double substitutions (CCSD and EOM-CCSD, respectively)72–74,88 and its extensions to

core-level states using CVS.43,89–97 The reference state in these calculations corresponds to

neutral benzene and is treated by CCSD:

|ΨCC⟩ = eT |Φ0⟩ , (6)

T = T1 + T2 =
∑
ia

tai a
†i+

1

4

∑
ijab

tabij a
†b†ji, (7)

where |Φ0⟩ is the Hartree-Fock reference determinant, which defines the separation between

occupied and virtual orbital spaces. Following the standard notation, indices i, j, k, . . . de-

note orbitals from the occupied space, indices a, b, c, . . . denote orbitals from the virtual

space, and indices p, q, r, . . . denote orbitals that can be either occupied or virtual.

The core-hole states are described by EOM-IP-CCSD as

|ΨIP⟩ = RIPeT |Φ0⟩ , (8)

RIP = RIP
1 +RIP

2 =
∑
i

ri i+
1

2

∑
ija

raij a
†ji, (9)

and the EOM-IP amplitudes ri and raij are found by diagonalizing the similarity transformed

Hamiltonian, H̄ = e−THeT in the space of 1h and 2h1p determinants. The IEs are directly

obtained as eigenvalues of the EOM-IP-CCSD equations. We use the CVS scheme where

the EOM-IP operators RIP
1 and RIP

2 are restricted to operators that include at least one core
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orbital.89–92 This makes the core-ionized states artificially bound and separates them from

the double ionization continuum. The doubly ionized target states are described by the DIP

variant of EOM-CCSD:98–100

|ΨDIP⟩ = RDIPeT |Φ0⟩ , (10)

RDIP = RDIP
1 +RDIP

2 =
1

2

∑
ij

rij ij +
1

6

∑
ijka

raijk a
†kji , (11)

and the EOM-DIP amplitudes rij and raijk are determined by diagonalization of H̄ in the

space of 2h and 3h1p determinants.

In the Feshbach-Fano approach, a resonance state is obtained as the result of the inter-

action between a bound discrete state and continuum states.60–62 The Feshbach projection

operators Q and P divide the full Hilbert space into bound and continuum subspaces,

respectively,61 and these subspaces are coupled via the matrix elements of the many-body

Hamiltonian between the bound and continuum configurations. By using the Löwdin par-

titioning technique,62 the problem of computing the resonance energy is formulated as an

eigenproblem of a non-Hermitian effective Hamiltonian HQQ defined in the Q-space:

HQQ |Ψ̃⟩ = Ẽ |Ψ̃⟩ , (12)

Ẽ = E − i
Γ

2
, (13)

HQQ = HQQ +HQP G
(+)
P (E)HPQ , (14)

G
(+)
P (E) = lim

ϵ→0

1

E + iϵ−HPP

. (15)

In practice, Eqs. (12)–(15) are solved perturbatively. In zeroth order, one computes the

eigenstates |Ψ⟩ of the bound-space Hamiltonian HQQ. Then, the complex resonance energy

Ẽ is computed using the first-order correction, i.e., by computing a matrix element between

the bound and continuum states

Ẽ ≈ E + E(1) = E + ⟨Ψ |HQP G
(+)
P HPQ |Ψ⟩, (16)

giving rise to

E = Re⟨Ψ|HQQ|Ψ⟩ ≈ E +
∑
µ

P.V.

∫ ∞

0

dE ′ ⟨Ψ|HQP |χ±
µ,E′⟩⟨χ±

µ,E′|HPQ|Ψ⟩
E − Eµ − E ′ , (17)

Γ = −2 Im⟨Ψ|HQQ|Ψ⟩ ≈
∑
µ

2π ⟨Ψ|HQP |χ±
µ,E−Eµ

⟩⟨χ±
µ,E−Eµ

|HPQ|Ψ⟩ =
∑
µ

Γµ . (18)
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Here, µ denotes the decay channels and Eµ the associated threshold energies, while χ±
µ,E

refers to scattering states, which are normalized according to ⟨χ±
µ,E|χ

±
µ′,E′⟩ = δµµ′ δ(E −E ′).

The Feshbach-Fano approach has recently been applied by Skomorowski and Krylov to

compute Auger decay rates using EOM-CC wave functions.14 In their approach, CVS was

used to define the projector Q. The bound part of a resonance state, that is, Ψ from Eqs.

(17) and (18), can be computed by CVS-EOM-IP-CCSD and the continuum states χ±
µ,E are

represented by products of EOM-DIP-CCSD states and free-electron states.

In this approach, the final expression for the partial width corresponding to the decay of

an initial core-hole state into channel µ is

Γµ = 2πgα

∫
dΩk

(∑
p

hµ
pkγ

p +
1

2

∑
pqr

⟨pq||kr⟩µ Γpq
r

)(∑
p

hµ
kpγp +

1

2

∑
pqr

⟨kr||pq⟩µ Γr
pq

)
,

(19)

where gα accounts for spin degeneracy and Ωk for the angle of the emitted electron with

momentum k. hpk and ⟨pq||kr⟩µ are matrix elements of the one-electron and two-electron

parts of the Hamiltonian.

Because of the two-electron nature of Auger decay, the dominant contribution to Eq.

(19) comes from the two-body Dyson orbitals Γpq
r and Γr

pq,
83 which connect EOM-IP-CCSD

(ΨN−1) and EOM-DIP-CCSD (ΨN−2) states

Γp
qr = ⟨ΨN−2|p†qr|ΨN−1⟩ (20)

Γpq
r = ⟨ΨN−1|p†q†r|ΨN−2⟩ . (21)

These are contracted with two-electron integrals in which index k corresponds to a continuum

orbital,

⟨ΨN−2|akO2|ΨN−1⟩ = 1

2

∑
pqr

⟨kr||pq⟩Γr
pq, (22)

⟨ΨN−1|O2a
†
k|Ψ

N−2⟩ = 1

2

∑
pqr

⟨pq||kr⟩Γpq
r . (23)

Here, a†k denotes the creation operator corresponding to a free electron with momentum k

and O2 is the two-electron part of the Hamiltonian.81,83 Because the EOM-CC Hamiltonian

is not symmetric, both left and right Dyson orbitals, i.e., Γpq
r and γp as well as Γr

pq and γp,

need to be computed.

In this work, we describe the continuum orbital k by plane waves. Complete expressions

and details of the calculations of mixed Gaussian-plane-wave integrals are available in Ref.
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14. The integration over Ωk is carried out using Lebedev’s quadrature and we found that

for benzene a very fine integration grid of order 17 is needed for converged results; calcu-

lations with the default grid of order 5 yield partial widths that break symmetry-imposed

constraints. Sample inputs are given in the SI.

The structure of benzene was optimized with RI-MP2/cc-pVTZ; the respective Cartesian

coordinates are given in the SI. The fully uncontracted 6-311(2+,+)G** basis set was used

in the CVS-EOM-IP-CCSD and EOM-DIP-CCSD calculations45,101 to evaluate the partial

widths according to Eq. (19). In line with the frozen-core (fc) CVS approach, the core

electrons, that is, the K-shells on carbons, were frozen in all valence calculations.91 The

decay widths were convoluted with a Gaussian function with a fixed full width at half

maximum equal to 1.15 eV. The so-obtained Auger intensities were then combined with the

Auger electron energies calculated according to Eq. (5) to generate the final Auger spectra.

In addition, natural orbitals (NOs) were computed to analyze the many-body wave functions

in terms of a molecular orbital framework.102,103

C. Complex basis function approach

In the CBF method, we describe the metastable core-ionized states directly by CCSD,

without invoking CVS. In these calculations, |Φ0⟩ from Eqs. (6) and (7) is a determinant

with a core hole. To obtain the required high-energy solutions of the unrestricted Hartree-

Fock (UHF) equations, the MOM (maximum orbital overlap) algorithm is used.104,105 The

IEs are then computed as differences between the total CCSD energies of the core-ionized

states and that of the neutral molecule, hence the name ∆CCSD.

In the CBF method,63,106,107 the description of Auger decay is based on an L2-

representation of the resonance wave function obtained through analytical continuation of

the Hamiltonian to the complex plane. A particular advantage of this approach is that no

assumption needs to be made about the functional form of the wave function of the Auger

electron. The complex resonance energy from Eq. (1) is computed as eigenvalue of a non-

Hermitian Hamiltonian without invoking perturbation theory and the total decay width is

obtained as Γ = −2 Im(Eres).

The CBF method is related to complex scaling of the Hamiltonian64,68 through the iden-
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tity

Eres =
⟨Ψ(r)|Ĥ(reiθ)|Ψ(r)⟩

⟨Ψ(r)|Ψ(r)⟩
=

⟨Ψ(re−iθ)|Ĥ(r)|Ψ(re−iθ)⟩
⟨Ψ(re−iθ)|Ψ(re−iθ)⟩

(24)

with θ (0 < θ < π/4) as the complex-scaling angle. In the CBF method, the complex-scaled

wave function on the right-hand side of Eq. (24) is expressed in terms of Gaussian functions

with a scaled exponent that take the form

χµ(r, A) = Nµ(θ)Sµ(rA) exp
[
−α e−2iθr2A

]
, (25)

where Nµ is a normalization constant and Sµ is a polynomial that depends on the an-

gular quantum number of χµ. By scaling only selected basis functions, one obtains a

finite-basis representation of the exterior complex-scaled Hamiltonian of Eq. (24).108,109

In contrast to complex scaling of the Hamiltonian, the CBF method is compatible with

the Born–Oppenheimer approximation and thus applicable not only to atoms but also to

molecular electronic resonances.

While the resonance energy Eres is independent of the scaling angle θ in the complete basis

set limit, a dependence does exist when working with a finite basis. We determine the optimal

value for θ through minimization of |d(Eres − E0)/dθ|, where E0 is the energy of neutral

benzene in the present case. While Im(E0) would be zero in the complete basis set because

the ground state of benzene is stable against loss of electrons, this is not the case in a finite

basis. Previous applications have shown that minimizing this energy difference generally

leads to better results than minimizing |dEres/dθ|.76,110–112 Further theoretical details of the

CBF method can be found elsewhere.63,70,111,113

We note that a variety of applications have shown that CBFs combined with CC theory

provide an accurate description not only of Auger decay but of other types of electronic

resonances such as temporary anions and molecules in static electric fields as well.111–114

To compute partial Auger decay widths in the framework of the CBF approach, Matz and

Jagau developed two different procedures.76,77 The first one can be viewed as a generalization

of CVS36. In this procedure, partial widths are evaluated by applying projectors that are

specific to a particular Auger decay channel.77 The approach works well combined with

CCSD, EOM-CCSD, and configuration interaction singles (CIS) wave functions but has the

disadvantage that each decay channel requires a separate calculation.

The second approach is based on the decomposition of the imaginary energy and works

only for CCSD wave functions.76 This approach, which has the advantage that all partial
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widths can be evaluated from a single calculation, was used in the present work. The partial

width of a particular decay channel is computed as the contribution to the imaginary part

of the CCSD energy

ECCSD = EHF +
∑
ijab

(1
4
tabij +

1

2
tai t

b
j

)
⟨ij||ab⟩ (26)

from those amplitudes tabij where a or b refers to the core hole and i and j are the occupied

valence orbitals that are empty in the target state. Note that, because of the two-electron

nature of Auger decay, the Hartree–Fock energy would be real-valued in the complete basis

set limit and the non-zero value of Im(EHF) results from using a finite basis.

In the CBF approach, where partial decay widths are evaluated using Eq. (26) alone,

there seemingly is no need to compute the wave functions of the doubly ionized target states.

However, the energies of these target states are needed to construct the Auger spectrum. In

a first approximation, we used Eq. (4) and the orbital energies obtained in the Hartree–Fock

calculations on the core-ionized states for this purpose. However, Eq. (4) is a rather crude

approximation of the Auger electron energy and Eq. (5) represents a natural improvement.

In contrast to the Feshbach-Fano approach based on EOM-CC wave functions, there is no

obvious way to evaluate Eq. (5) in the framework of the CBF approach based on CCSD wave

functions for the core-ionized states. In the present work, we evaluated Eq. (5) in the same

way as in Sec. II B, that is, as differences between EOM-DIP-CCSD and EOM-IP-CCSD

energies. However, we found that the assignment of the partial widths computed with CCSD

using Eq. (26) to channel energies computed with EOM-DIP-CCSD is not straightforward.

This is because the EOM-DIP-CCSD eigenvectors RDIP often are not represented by a single

transition but have contributions from several orbitals. We constructed the partial width

for each DIP state by summing up those CCSD partial widths whose involved orbitals i and

j correspond to the leading EOM-DIP-CCSD amplitudes (rij > 0.1). We then weighted the

contributions by the corresponding DIP amplitudes rij and linearly combined the resulting

widths for the DIP states with leading amplitudes corresponding to the same transition. We

only considered DIP states with dominant 2h character, because 3h1p configurations do not

contribute to the Auger decay process.

The structure of benzene was taken from Ref. 76. This structure differs from the one used

in Sec. II B on the order of 0.001 Å, which is irrelevant for our purposes. All calculations

were carried out using a modified cc-pCVTZ basis set where s- and p-shells were replaced by
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those from cc-pCV5Z. In the CBF-CCSD calculations, three complex-scaled s-, p-, and d-

shells were added to all C atoms. The resulting basis set is denoted cc-pCVTZ(5sp)+3(spd)

and is provided in the SI.

The optimal complex-scaling angle θopt was determined as 12◦ by minimization of |d(Eres−

E0)/dθ|. For this purpose, the CBF-CCSD energies of neutral benzene and of the core-

ionized 2A1g state were recalculated in the range 6◦ − 16◦ in steps of 1◦. The same optimal

value for θ was assumed for the other core-ionized states since there is evidence that θopt

varies little between resonances with similar electronic structures.70

Benzene has four distinct core-ionized states, two of which are doubly degenerate. When

starting from reference determinants with a core hole, six core-ionized states can be con-

structed because the degeneracy of the 2E1u and 2E2g states is artificially lifted. Accordingly,

we computed six sets of partial widths corresponding to the six core-ionized states. The ef-

fect of this artificial symmetry breaking on the results is discussed in Sec. III. The final

Auger spectra were built by applying a Gaussian broadening function with a full width at

half maximum equal to 1.15 eV to all decay widths in complete analogy to Sec. II B.

III. RESULTS AND DISCUSSION

A. Energies of core-ionized and valence doubly ionized states

Table I shows the IEs of benzene. As anticipated, they are very close, spanning the

energy range from 290.78 eV to 290.86 eV at the CVS-EOM-IP-CCSD/u6-311(2+,+)G**

level. The computed IEs agree well with the experimentally determined core-ionization

threshold for benzene of 290.42 eV.52 Using the larger cc-pCVTZ(5sp) basis improves the

agreement by about 0.1 eV. The comparison of the different theoretical methods reveals

that CBF-EOM-IP-CCSD yields energies that are systematically too high by about 1.5 eV.

CBF-∆CCSD yields energies that are even higher by ca. 1 eV, which can be explained by

a better description of core relaxation in this approach.The last column of Table I shows

that the degeneracy of the 2E1u and 2E2g states is lifted in the ∆CCSD calculations. This

artificial splitting amounts to about 1 eV.

In the simulation of the Auger spectrum using the Feshbach-Fano approach we com-

puted 143 EOM-DIP-CCSD states (73 singlets and 70 triplets) with dominant 2h character,
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TABLE I: Core ionization energies (in eV) of benzene.

CVS-EOM- CVS-EOM- CBF-EOM- CBF-

IP-CCSD IP-CCSD IP-CCSD ∆CCSD

Statea Core u6-311(2+,+)G**c cc-pCVTZ(5sp)c cc-pCVTZ(5sp) cc-pCVTZ(5sp)

orbitalb +3(spd)c +3(spd)c

2A1g 1ag 290.86 290.74 292.04 293.10

2E1u 1b3u 290.85 290.72 292.02 291.82

2E1u 1b2u 290.85 290.72 292.02 292.81

2E2g 2ag 290.80 290.68 291.98 291.82

2E2g 1b1g 290.80 290.68 291.98 292.77

2B1u 2b3u 290.78 290.66 291.96 293.03

aIrreducible representations are given for the full molecular point group, D6h, using Mulliken convention.
bIrreducible representations are given for the computational point group, D2h, using Q-Chem convention.
cFor the definition of basis sets, see Secs. II B and IIC. CBF calculations were performed with a scaling

angle of 12◦.

whereas in the simulation using the CBF approach we computed 166 EOM-DIP-CCSD states

(88 singlets and 78 triplets). These states span the range from 24 eV to 43 eV, which cor-

responds to Auger electrons with energies of 244–267 eV. In both simulations, the number

of computed target states is less than the estimated total number of 2h configurations be-

cause of configuration mixing, which stabilizes some states while destabilizing others. The

destabilized states appear at much higher energies and mix with 3h1p configurations, which

reduces their contributions to the Auger spectrum. Our calculations do not include decay

channels corresponding to Auger electrons with energies below 244 eV.

Table II shows the energies and the character of the 14 lowest DIP states. The basic

structure of the double ionization spectrum is consistent with Koopmans’ theorem, i.e.,

the energies of the orbitals involved in the ionization process. Our DIP energies and the

character of the corresponding wave functions also agree well with the ADC(2) results from

Ref. 55. In accordance with well-known trends for excitation energies, ADC(2) yields double

ionization energies that are consistently lower than EOM-DIP-CCSD energies by 1.5–2.0 eV.

In agreement with Hund’s rules, the ground state of doubly ionized benzene is a triplet
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TABLE II: Double ionization energies (eV) of the 14 lowest doubly ionized states of benzene. The

composition of the wave functions in terms of the leading DIP amplitudes is also given.

State Energya Energyb Energyc Compositiona

3A2g 24.85 25.17 23.34 1e−2
1g (0.67)

1E2g 25.48 25.80 23.96 1e−2
1g (0.66)

1A1g 25.92 26.25 24.59 1e−2
1g (0.64), 1a−2

2u (0.28)

3B1g 27.85 28.14 26.19 3e−1
2g 1e

−1
1g (0.47)

3E1u 27.90 28.26 26.07 1e−1
1g 1a

−1
2u (0.67)

3E1g 27.96 28.24 26.30 3e−1
2g 1e

−1
1g (0.47)

1B1g 28.05 28.33 26.44 3e−1
2g 1e

−1
1g (0.46), 1a−1

2u 1b
−1
2u (0.11)

3B2g 28.07 28.35 26.41 3e−1
2g 1e

−1
1g (0.47)

1E1g 28.16 28.43 26.55 3e−1
2g 1e

−1
1g (0.46), 1a−1

2u 3e
−1
1u (0.11)

1B2g 28.25 28.52 26.63 3e−1
2g 1e

−1
1g (0.47)

1A1u 29.90 30.16 28.08 1e−1
1g 3e

−1
1u (0.47)

3E2u 29.98 30.26 28.32 1e−1
1g 3e

−1
1u (0.41), 3e−1

2g 1a
−1
2u (0.11), 1e−1

1g 1b
−1
2u (0.11)

3A1u 30.04 30.29 28.22 1e−1
1g 3e

−1
1u (0.47)

1E2u 30.04 30.31 28.39 1e−1
1g 3e

−1
1u (0.37), 3e−1

2g 1a
−1
2u (0.38), 1e−1

1g 1b
−1
2u (0.15)

aComputed with EOM-DIP-CCSD/u6-311(2+,+)G**.
bComputed with EOM-DIP-CCSD/cc-pCVTZ(5sp).
cComputed with ADC(2), taken from Tarantelli et al.55

(3A2g), which is described as ionization from the doubly degenerate HOMO (1e1g). According

to EOM-DIP-CCSD calculations, its double-ionization energy is 24.85 eV, which is close to

the experimentally determined value of 24.65 eV.115 The two singlet states, which also result

from ionization of the HOMO (1E2g and 1A1g), appear just 0.6 eV and 1.1 eV above the

ground state.

Above these three states, there is a gap of almost 2 eV, followed by a cluster of seven

states, which span a range of 0.4 eV from 27.85 eV to 28.25 eV. Six of them are ionizations

from HOMO and HOMO-1 (1e1g ⊗ 3e2g = 1/3E1g ⊕ 1/3B1g ⊕ 1/3B2g), whereas the last

one is a triplet state (3E1u) corresponding to ionization of HOMO and HOMO-2 (1e1g ⊗

1a2u). Interestingly, the corresponding singlet state (1E1u) is 3 eV higher in energy while the
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singlet-triplet splittings of the states described as HOMO ⊗ HOMO-1 amount to at most

0.2 eV. This difference arises due to the very different values of the respective exchange

integrals, ⟨1e1g 1e1g | 1a2u 1a2u⟩ ≈ 0.341 hartree, ⟨1e1g 1e1g | 3e2g 3e2g⟩ ≈ 0.036 hartree, which

were computed by summing over all degenerate orbitals.

Next comes a second distinct gap of 1.7 eV after which the structure of the DIP spectrum

becomes less resolved. The next group of doubly ionized states, which is only partly included

in Table II, results from ionization from HOMO and HOMO-3 but these states are separated

by only 1 eV from higher-lying ones. Notably, the lowest-lying state in this group is a singlet

(1A1u) and not a triplet. This can be explained by the low value of the exchange integral

⟨1e1g 1e1g | 3e1u 3e1u⟩ ≈ 0.067 hartree.

As one can see from Table II, the low-lying DIP states are well represented by a single

2h configuration. However, this changes at higher energies, where we observe considerable

configuration mixing so that many states cannot be described by a single 2h configuration.

This has also been observed in the ADC(2) study of doubly ionized benzene by Tarantelli et

al.55 and in an ADC(2) study of doubly-ionized fluorinated benzenes.57 We note that some

of the higher-lying DIP states also show considerable 3h1p character. While the energy of

these satellite states is overestimated by EOM-DIP-CCSD, the effect on the Auger spectrum

is small because of their small contribution to the two-body Dyson orbital (Eqs. (20) and

(21)).

The analysis of the EOM-DIP-CCSD wave functions in terms of natural orbitals (NOs)

and their populations shown in Fig. 5 confirms these observations. For the neutral ground

state, the shape of the NOs is very similar to that of the canonical HF MOs from Fig. 3.

By comparing the NO occupations of the DIP states with those of the neutral reference

state, one can infer the character of the orbitals from which the electrons are removed in the

course of Auger decay. For example, for the 3A2g state at 24.85 eV and the 1A1g state at

25.92 eV, the occupation numbers of the 1b3g and 1b2g NOs change from 1.92 to 1.01 relative

to the neutral reference. This implies that a total of 1.82 electrons are removed from these

NOs, which together represent the 1e1g shell in the full point group, while 0.18 electrons are

removed from other orbitals. For the 3B1g state at 27.85 eV, the occupation numbers of the

6ag and 1b3g NOs change from 1.95 to 1.53 and those of the 3b2g and 1b2g NOs from 1.92

to 1.50. This means that the a total of 1.68 electrons are removed from the 1e1g and 3e2g

shells and 0.32 electrons are removed from other orbitals.
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FIG. 5: Frontier NOs and their occupation numbers for the ground state of benzene and selected

doubly ionized states. Irreducible representations are given for the D6h point group (in red) and

for the largest Abelian subgroup (D2h, in black).

B. Density of states

Fig. 6 shows the densities of singlet and triplet DIP states computed with EOM-DIP-

CCSD together with the ADC(2) results from Ref. 55. As discussed in Sec. II A and in

Ref. 55, the density of DIP states can be considered as a crude approximation to the Auger

spectrum.

Fig. 6 illustrates that, after application of a broadening function, most DIP states are no

longer individually discernible. Rather, a spectrum with a few broad peaks, each comprising
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FIG. 6: Density of singlet and triplet DIP states in benzene computed with EOM-DIP-CCSD/u6-

311(2+,+)G** and ADC(2) (from Ref. 55). To match the lowest-lying EOM-DIP-CCSD peaks,

the ADC(2) data were shifted by 2.15 eV and 1.33 eV for singlet and triplet states, respectively.

many DIP states, is obtained. An exception is the lowest peak in the triplet manifold at 25

eV, which corresponds to the 3A2g state. This state (first entry in Table II) originates from

double ionization of the doubly degenerate HOMO. The lowest-lying singlet peak at around

26 eV is composed of two states (1E2g and 1A1g), which are derived by ionization of the

HOMO (see Table II). The next two peaks, which are well separated from the higher-lying

ones, comprise four triplet and three singlet channels, respectively, as detailed in Table II.

Beyond 30 eV, each peak in the singlet and the triplet spectrum comprises even a larger

number of DIP states.

Fig. 6 shows that, after application of a uniform shift, the agreement between EOM-DIP-

CCSD and ADC(2) is very good for the lowest two peaks in each panel, still acceptable for

the third peak, and substantially worse at higher energies. While the uniform shift can be

justified by the well-known performance of EOM-CCSD and ADC(2) (see Sec. IIIA), the

reason for deteriorating agreement at higher energies is less obvious. It may be related to the

increasing admixture of 3h1p configurations that we observe in the higher-lying DIP states.

ADC(2) treats these doubly excited configurations at a lower level than EOM-CCSD, which

may lead to poor description of states in which the weight of these configurations becomes

comparable to the weight of the 2h configurations.

Importantly, Fig. 6 only provides a crude picture of the Auger spectrum. The most
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important shortcoming is that it suggests equal contributions of singlet and triplet channels

to the spectrum, whereas it is clear from theoretical considerations that the contributions of

triplet states are smaller (see Appendix). One needs to compute partial widths of the decay

channels for quantitative modeling, and we do so in the next section.

C. Total Auger spectrum

The non-resonant Auger spectra of benzene computed with the two different methods

discussed in Section II (Feshbach-Fano and CBFs), are shown in Fig. 7. The largest partial

widths are given in Tables ?? and ?? in the SI. Notably, there are many channels with

partial widths of the same order of magnitude and there is not a single channel with a width

of more than 2 meV. Thus, the data in the tables cannot be interpreted without actually

constructing the spectrum.

The comparison of the two spectra in Fig. 7 illustrates the very good agreement between

the two theoretical approaches, in spite of the vastly different treatment of the outgoing

electron. This cross-validates our two approaches. For the CBF method, Fig. ?? in the SI

shows how using Eq. (4) instead of Eq. (5) for the peak positions leads to a substantially

different Auger spectrum. This demonstrates the importance of using a high-level electronic-

structure model.

The two spectra in Fig. 7 have eight and nine distinct peaks, respectively, which we

loosely group into the following categories based on the Auger electron energies: a) peaks

above 262 eV, b) peaks between 252 and 262 eV, and c) peaks below 252 eV. The two peaks

above 262 eV are the easiest to describe. They correspond to the two lowest peaks in the

density of singlet states (see Fig. 6) and arise from double ionization of the HOMO and

mixed ionization of HOMO/HOMO-1, respectively.

In the range between 252 and 262 eV, each peak is composed of many decay channels.

As one would expect, contributions from lower-lying orbitals become more important with

decreasing Auger electron energy. We observe that the final states in this energy range

have a predominant 2h character and are thus well represented by EOM-DIP-CCSD. Below

252 eV, contributions from lower-lying orbitals gain even more weight and the final states

develop substantial 3h1p character, which makes their description by EOM-DIP-CCSD less

reliable. This affects both spectra in Fig. 7 equally.
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FIG. 7: The non-resonant Auger spectrum of benzene computed using the Feshbach-Fano approach

(red curve) and the CBF approach (green curve). The DIP energies needed for the positions of the

peaks were computed with EOM-DIP-CCSD for both approaches (see Secs. II B and IIC).

Additionally, we investigated the contributions of singlet and triplet states to the com-

puted spectra. As discussed in the Appendix and in Refs. 55 and 82, singlet channels are

expected to have notably larger Auger intensities in comparison to triplet channels. Fig. 8

shows that this is indeed the case with both approaches—the Auger spectrum of benzene is

dominated by contributions from singlets.

Interestingly, the 3A2g ground state of the benzene dication has zero Auger intensity in
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both of our approaches (Feshbach-Fano and CBF). Likewise, the contributions of the low-

lying triplets listed in Table II are very small. Only below 260 eV, the triplet contributions

become noticeable. At these energies, they visibly affect the shape of the spectrum. This

is most evident for the peak around 250 eV, which becomes the most intense peak in the

spectrum due to the combined contributions of singlets and triplets. We reiterate that such

differences in the Auger intensity of singlet and triplet channels are not apparent from the

density of states shown in Fig. 6. Thus, a mere analysis of decay channels does not provide

a complete picture of Auger decay.

Furthermore, we note that the triplet contributions are overestimated by the Feshbach-

Fano approach as compared to the CBF approach. Such overestimation of triplet intensities

was observed in previous studies, where it was attributed to the limitations of the plane-wave

treatment of the Auger electron.75 It was also shown that using Coulomb waves improves

the results.14,75. Despite this limitation of the plane-wave treatment, the overall spectrum

in Fig. 7 is barely affected; Feshbach-Fano and CBF agree well with each other in the entire

energy range.

FIG. 8: Contributions from singlet and triplet decay channels to the non-resonant Auger spectrum

of benzene. Left: Feshbach-Fano approach, right: CBF approach.
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D. Auger spectra corresponding to individual core-ionized states

To analyze the contributions of the four different core-ionized states (2A1g,
2E1u,

2E2g,

2B1u) to the overall Auger spectrum in Fig. 7, we plotted the spectra resulting from selective

ionization in Fig. 9. Here, the contributions of degenerate core orbitals (e1u, e2g) were added

together. We anticipate that our results will provide useful insights into Auger spectroscopy

experiments using narrow-band X-rays, which may lead to selective core-ionization.

Our results show that the symmetry of the core holes impacts the intensity pattern

despite their very similar energy. Although the individual spectra have a general structure

that is similar to that of the overall spectrum in Fig. 7, the decay width corresponding to

a particular Auger electron energy differs. For example, the 2B1u state produces enhanced

intensity in the Auger electron energy regime around 250 eV, whereas the 2A1g state mostly

stimulates an energy regime closer to 255 eV.

The inspection of Fig. 9 also illustrates more substantial differences between the

Feshbach-Fano and the CBF approaches that are not visible in the overall spectrum in

Fig. 7. For example, it appears that the CBF approach overestimates the intensity of the

decay channels around 260 eV for the degenerate core holes (e2g and e1u). This may be due

to the shortcoming of the CBF/CCSD approach discussed in Sec. IIIA, namely that the

degeneracy of the e2g and e1u core orbitals is lifted. Fig. ?? shows the same data as in Fig.

9 but normalized together rather than individually, illustrating the effect of the artificial

symmetry breaking on the CBF spectra. In addition, Fig. ?? shows that there is more

variation among the individual spectra in the CBF approach than in the Feshbach-Fano

approach for the non-degenerate core-hole states as well.

E. Total decay widths

We also calculated the total decay widths of all core-ionized states; the results are shown

in Table III. The variation in the width among the core holes does not exceed 15%, which is

not surprising given that all states are derived from C(1s) orbitals. However, the widths com-

puted with CBFs are about a factor of two larger than those computed with the Feshbach-

Fano approach. This is most likely due to the latter calculations including only a finite num-

ber of decay channels. In contrast, In the CBF approach the total decay width is computed
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FIG. 9: Auger spectra of benzene corresponding to selective ionization of each core orbital. The

spectra are normalized individually and the degenerate core orbitals (e1u and e2g) are treated

together. Left: Feshbach-Fano approach. Right: CBF approach.

directly, without considering individual decay channels. We note that both approaches vio-

late symmetry-imposed constraints yielding different widths for degenerate orbitals. In the

Feshbach-Fano calculations, the core-hole states are exactly degenerate and the mismatch in

widths occurs because a different number of decay channels is included in the calculations.

In the CBF approach, the symmetry violation is more pronounced and happens because the

core-hole states are described based on independent open-shell CCSD calculations.

TABLE III: Total decay widths of the core-ionized states of benzene in meV.

Core orbital Feshbach-Fano CBF

1ag (1a1g) 41.70 76.45

1b2u (1e1u) 44.20 78.84

1b3u (1e1u) 43.10 84.80

2ag (1e2g) 46.20 84.63

1b1g (1e2g) 47.30 78.02

2b3u (1b1u) 48.60 75.23

Average width 45.17 79.66
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FIG. 10: The theoretical Auger spectra of benzene from Fig. 7 computed using Feshbach-Fano and

CBF approaches compared to the most recent experiment.53 The experimental spectrum is shifted

by -1.60 eV to match the theory peak at 253.15 eV.

F. Comparison to the experimental Auger spectrum

Fig. 10 compares the Auger spectrum from the most recent experiment53 (see Fig. 2,

spectrum C) and our theoretical Auger spectra from Fig. 7. The experimental spectrum has

a broad structure with various unresolved bands. Eight distinct peaks can be distinguished,

two of which are in the high Auger electron energy regime above 262 eV. The latter two

peaks, which are relatively well resolved in the experimental spectrum, can be, on the basis

of our calculations, unambiguously assigned to final states arising from double ionization of

the HOMO and HOMO/HOMO-1, respectively.

However, the intensity pattern of these two peaks differs between theory and experiment.

We note that our two theoretical spectra agree with the one reported by Tarantelli et al.55; on

the other hand, the three experimental spectra agree with each other as well in this respect.

Provided that the experimental intensity pattern is real and not an artifact of calibration

or detection, a possible explanation for the mismatch could be the contribution of resonant

Auger decay to the experimental spectra. Both participator and spectator resonant Auger
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decay contribute intensity, especially for the higher-energy Auger electrons. The mismatch

could also be due to the effect of nuclear motion, which is neglected in the present treatment.

For example, it has been demonstrated for the water molecule that vibrational effects can

modify Auger intensities considerably.116 We will explore the intensity mismatch between

theory and experiment in future work.

At lower Auger electron energies, the experimental spectrum has five peaks in the region

between 250 and 260 eV and one peak below 250 eV. Both theoretical spectra reproduce the

intensity pattern of these peaks quite well: (a) all peaks are more intense than the two above

260 eV, (b) the peak below 250 eV is somewhat less intense than the ones between 250 eV

and 260 eV, and (c) the most intense peak is the one around 250–251 eV. The weak trend in

the intensity between 250 eV and 260 eV is captured better by the Feshbach-Fano approach,

whereas the CBF approach seems to overestimate the intensity of the peak at around 260

eV. However, the CBF spectrum is superior below 250 eV, where two well-resolved peaks

are obtained, whereas the Feshbach-Fano spectrum only has a weak shoulder (this is likely

because we computed fewer DIP states for the latter spectrum).

We also note that the higher electron-energy peaks in the experimental spectrum do

not fully align with those in the theoretical spectra even after the experimental spectrum is

shifted by 1.60 eV. This misalignment may be either due to an insufficient level of correlation

treatment in EOM-IP-CCSD, or due to some problems in the experiments. We reiterate that

there is noticeable disagreement between the three measurements, as seen in Fig. 2 and in

the SI.

IV. CONCLUSIONS

We have reported a theoretical ab initio study of Auger decay in benzene. Partial Auger

decay widths were computed with two methods from non-Hermitian quantum chemistry

combined with CC and EOM-CC theory. Namely, we used the Feshbach-Fano projection

operator approach and, independently, the method of CBFs. In total, we considered over

1,000 transitions corresponding to Auger electron energies in the range from 245 eV to 270

eV, which illustrates the complexity of Auger decay in benzene.

Our two theoretical Auger spectra are in excellent agreement with each other and in

reasonable agreement with experimental Auger spectra as well. This showcases the power
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of non-Hermitian quantum chemistry and cross-validates the Feshbach-Fano and the CBF

approaches. Our Auger spectra are also in qualitative agreement with an Auger spectrum

derived from the density of doubly-ionized valence states, which validates the statistical

approach of Tarantelli et al.55

Our work illustrates the strengths and weaknesses of the Feshbach-Fano and the CBF

approaches. On the one hand, Feshbach-Fano calculations are computationally less expen-

sive because there is no need for optimizing the complex-scaling angle or complex algebra

altogether. Also, smaller basis sets as compared to CBF calculations appear to be sufficient.

Moreover, our Feshbach-Fano calculations preserve the degeneracy of the benzene core holes,

whereas this is not the case in the CBF treatment, which is based on core-hole reference

states. The latter problem could, however, be circumvented by using a closed-shell reference

in the CBF calculations.

On the other hand, CBF calculations provide direct access to total decay widths, whereas

Feshbach-Fano calculations only yield partial widths. Also, the Feshbach-Fano approach

overestimates the contributions of triplet decay channels, likely due to using plane waves

for representing the Auger electron, whereas the CBF approach gives more realistic singlet-

triplet branching ratios. This shortcoming of the Feshbach-Fano approach can likely be

remedied by improving on the plane-wave description.

We note that we could not resolve a conspicuous discrepancy between theory and ex-

periment regarding the intensity of the two peaks in the spectrum with the highest Auger

electron energies. This hints at possible extensions of our current work that are worthwhile

to pursue: the consideration of resonant contributions to the Auger spectrum as well as the

study of vibrational effects.

In conclusion, we see our work as a testament to the power and usefulness of non-

Hermitian extensions of ab initio quantum-chemical methods. We also expect that our

work will serve as a starting point for further theoretical and experimental work in the area

of Auger decay.
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Appendix A: Auger intensities of singlet versus triplet channels in the

Feshbach-Fano approach

Following Ågren and coworkers81,83, we analyze the expressions of the Auger intensity, Eq.

(23), in terms of different spin blocks of the two-body Dyson orbitals to explain differences

in relative intensities of triplet and singlet channels. We analyze the contribution to the

total intensity due to Γpq
r ; a similar analysis can be carried out for Γr

pq (left and right Dyson

orbitals are slightly different because of the non-Hermitian nature of EOM-CC; for the sake

of brevity, only the right part of the transition amplitude is shown in the following equations).

Here, we are interested in the two-electron part of the width, which is computed by

contracting the two-body Dyson orbitals83 Γpq
r —that connect EOM-IP (ΨN−1) and EOM-

DIP (ΨN−2) states—with two-electron integrals in which one index corresponds to the plane

wave.

From the definition of Γpq
r [Eq. (21)] and Fig. 4 one can see that index r corresponds to

the core orbital and indices p and q — to the valence orbitals. Since the operators for the

core and valence orbitals operate in different orbital subspaces, they commute. Therefore,

the expression for the two-body Dyson orbital connecting the core-hole state and a DIP

state can be written as

Γpq
r = ⟨Ψ0|p†q†|ΨN−2⟩ (27)

where Ψ0 is the neutral CCSD reference state re-created from the EOM-IP state by filling

the core hole by operator r. Eq. (27) shows that the leading contribution to Γ is given by

the 2h DIP amplitudes.

Following these preparations, we can now analyze the spin symmetry of Γpq
r . First, for

a state with an α core-hole, Γpq
α is non-zero and Γpq

β is zero; the converse is true for a state

with a β hole. For the DIP states with Ms = 0, Γαα
r and Γββ

r = 0. By using spin symmetry

of the singlet and triplet states with the same orbital occupations, we can write that for a

singlet DIP state

Γαβ
r = −Γβα

r (28)

and for a triplet DIP state

Γαβ
r = Γβα

r . (29)

To estimate relative contributions to the Auger intensity, we need to carry out spin

integration of the two-electron integrals. The expression for the partial width in terms of
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different spin blocks can be written as follows, by considering an α core hole and the spin

symmetry of k to be β:

Γ̃ =
1

2

∑
pqr

⟨pq||krα⟩Γpq
rα =

1

2

∑
pqr

⟨pαqβ||kβrα⟩Γ
pαqβ
rα +

1

2

∑
pqr

⟨pβqα||kβrα⟩Γ
pβqα
rα

=
1

2

∑
pqr

[⟨pαqβ|kβrα⟩ − ⟨pαqβ|rαkβ⟩]Γ
pαqβ
rα +

1

2

∑
pqr

[⟨pβqα|kβrα⟩ − ⟨pβqα|rαkβ⟩]Γ
pβqα
rα

=
1

2

∑
pqr

[−⟨pαqβ|rαkβ⟩Γ
pαqβ
rα + ⟨pβqα|kβrα⟩Γ

pβqα
rα ]

(30)

Integrating the spins out and substituting Eq. (29), the partial widths become:

Γ̃singlet =
1

2

∑
pqr

[⟨pq|kr⟩+ ⟨pq|rk⟩]Γpq
r ,

Γ̃triplet =
1

2

∑
pqr

[⟨pq|kr⟩ − ⟨pq|rk⟩]Γpq
r .

(31)

In the above expressions, indices p, q, and r correspond to spatial orbitals. As one can

see, in the singlet contribution, the two two-electron integrals, which can be interpreted as

Coulomb interaction between the core hole, the valence electrons, and a free electron, are

connected by a plus sign, whereas in the triplet contribution they are connected by a minus

sign, leading to partial cancellation.

Appendix B: Auger intensities of singlet versus triplet channels in the complex basis

function approach

As discussed in Sec. II C, the Auger intensities can be computed from the partial decay

widths obtained through energy decomposition analysis of the imaginary part of the CBF-

CCSD energy in Eq. (26). For the purpose of this work, the contribution of the singles

amplitudes is negligible76 and is therefore omitted in the following discussion. The partial

decay width of a specific channel µ can then be written as

−Γµ

2
=

1

4
Im
[
tabij ⟨ij||ab⟩+ tabji ⟨ji||ab⟩+ tbaij ⟨ij||ba⟩+ tbaji ⟨ij||ab⟩

]
= Im

[
tabij ⟨ij||ab⟩

]
. (32)

where a, b, i, j refer to spin orbitals. We now consider the CBF-CCSD energy of a core-

ionized state where the core hole has β spin. Then, if index a refers to the core hole, b

represents the outgoing Auger electron and can have α or β spin. i and j are valence
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orbitals and can also have either α or β spin. Thus, we end up with three spin cases: t
aβbβ
iβjβ

,

t
aβbα
iβjα

, t
aβbα
iαjβ

.

Recalling that b stands for the outgoing Auger electron, the first spin case can be related

to a triplet final state, while the other two spin cases correspond to singlet final states. The

contributions to the decay width can thus be written as:

−
Γtriplet
µ

2
= Im

[
t
aβbβ
iβjβ

(
⟨aβbβ|iβjβ⟩ − ⟨aβbβ|jβiβ⟩

)]
(33)

−
Γsinglet
µ

2
= Im

[
t
aβbα
iβjα

(
⟨aβbα|iβjα⟩ − ⟨aβbα|jαiβ⟩

)
+ t

aβbα
iαjβ

(
⟨aβbα|iαjβ⟩ − ⟨aβbα|jβiα⟩

)]
= Im

[
t
aβbα
iβjα

⟨aβbα|iβjα⟩ − t
aβbα
iαjβ

⟨aβbα|jβiα⟩
]

(34)

Eqs. (33) and (34) represent contributions to the imaginary part of the same-spin and

opposite-spin correlation energy. From this, we can already conclude that the partial widths

of the triplet channels are smaller than those of the singlet channels because it is well known

that the opposite-spin correlation energy is usually considerably higher that the same-spin

correlation energy.117

If we are in the case of a closed-shell reference t
aβbα
iαjβ

= −t
aβbα
jβiα

= −t
aβbα
iβjα

, which allows to

simplify Eq. (34) further so that we obtain final expressions that are similar to Eq. (31) in

Appendix A:

−
Γtriplet
µ

2
= Im

[
tabij

(
⟨ab|ij⟩ − ⟨ab|ji⟩

)]
(35)

−
Γsinglet
µ

2
= Im

[
tabij

(
⟨ab|ij⟩+ ⟨ab|ji⟩

)]
(36)

with a, b, i, j now referring to spatial orbitals.
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Bradshaw, A comprehensive photoabsorption, photoionization, and shake-up excitation study

of the C1s cross section of benzene, J. Chem. Phys. 113, 7362 (2000).
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