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Abstract. We present new constructions of multi-party homomorphic
secret sharing (HSS) based on a new primitive that we call homo-
morphic encryption with decryption to shares (HEDS). Our first con-
struction, which we call Scooby, is based on many popular fully homo-
morphic encryption (FHE) schemes with a linear decryption property.
Scooby achieves an n-party HSS for general circuits with complexity
O(|F | + logn), as opposed to O(n2 · |F |) for the prior best construc-
tion based on multi-key FHE. Scooby can be based on (ring)-LWE with
a super-polynomial modulus-to-noise ratio. In our second construction,
Scrappy, assuming any generic FHE plus HSS for NC1-circuits, we ob-
tain a HEDS scheme which does not require a super-polynomial modulus.
While these schemes all require FHE, in another instantiation, Shaggy,
we show how in some cases it is possible to obtain multi-party HSS with-
out FHE, for a small number of parties and constant-degree polynomials.
Finally, we show that our Scooby scheme can be adapted to use multi-key
fully homomorphic encryption, giving more efficient spooky encryption
and setup-free HSS. This latter scheme, Casper, if concretely instantiated
with a B/FV-style multi-key FHE scheme, for functions F which do not
require bootstrapping, gives an HSS complexity of O(n · |F |+n2 · logn).

1 Introduction

One of the more interesting cryptographic constructions to be developed in
recent years has been homomorphic secret sharing (HSS). This concept, which
can be seen as a distributed analogue of homomorphic encryption, was intro-
duced in [6], where a two party construction for branching programs was pre-
sented based on the decisional Diffie-Hellman assumption. The idea of HSS starts
from the concept of a (traditional) secret sharing scheme, where an input x to
some function is split into n shares, (x1, . . . ,xn). This sharing, that in this work
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we always assume to be a full threshold sharing, is created via an algorithm
(x1, . . . ,xn)← ShareHSS(x). An HSS scheme has two additional algorithms, the
first yi ← EvalHSS(F ; xi) takes a function description F and a share xi and pro-
duces a corresponding output share yi. The second RecHSS(y1, . . . , yn) takes the
output shares and reconstructs the result F (x). To avoid trivial solutions one
requires that the length of the yj ’s should be compact, i.e. it only depends on
the output length of the function F and the security parameter. An important
class of HSS schemes are those with additive reconstruction, where the function
RecHSS simply computes y1+ . . .+yn. We refer to these as additive HSS schemes.
It is such additive HSS schemes that we focus on in this work.

Motivation for HSS. The main application of HSS is towards secure two-party
or multi-party computation with succinct communication. Indeed, the break-
through work of [6] showed that for a large class of circuits, it’s possible to
achieve secure computation with sublinear communication in the circuit size un-
der DDH, which was previously only known using fully homomorphic encryption.
Since then, HSS has proven useful in various other applications, and is closely re-
lated to pseudorandom correlation generators [3] and pseudorandom correlation
functions [4], which allow generation of correlated randomness with a minimal
amount of interaction. HSS for simple classes of functions, particularly the case of
distributed point functions [23], has also proven useful for applications including
private information retrieval [7] and secure RAM computation [19]. On a more
theoretical side, HSS has also been used to build 2-round secure computation
and nearly optimal worst-case to average-case reductions [8].

Additive reconstruction is an important feature of HSS in many secure com-
putation settings, where it may be desirable for the output shares to be re-used
in another secure computation based on secret sharing. This is the case, for
instance, when using HSS to generate preprocessing material for multi-party
computation protocols in the dishonest majority setting [3]. It can also be a use-
ful feature in scenarios where a client reconstructing the output is constrained
to perform only lightweight computations.

Current State of HSS and Related Primitives. Related to HSS is the dual concept
of function secret sharing (FSS) [5, 7]. In FSS, the shared data is a secret function
F (from some publicly known class of functions), such that the parties can locally
obtain secret shares of F (x), for any public input x. For general function classes
such as polynomially-sized circuits, function secret sharing and homomorphic
secret sharing are equivalent.

Obtaining efficient n-party HSS and FSS is complex for general functions.
The most efficient known scheme is that based on an LWE-construction from
spooky encryption. Spooky encryption, introduced by Dodis et al. [18], is a
rather complex construction based on a multi-key variant of FHE [17, 25],
and for our purposes we are only interested in additive-function-sharing spooky
encryption (or AFS-spooky encryption). Spooky encryption is a semanti-
cally secure public-key encryption scheme consisting of the usual three algo-
rithms (KeyGenSpooky,EncSpookypk ,DecSpookysk ) as well as an additional algorithm
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EvalSpookypk1,...,pkn
(F, ct1, . . . , ctn). The EvalSpooky algorithm, given a function F on n

arguments from a given class, and n ciphertexts cti, encrypting xi under pki, pro-

duces n new ciphertexts ct′1, . . . , ct
′
n such that, computing yi ← DecSpookyski

(cti),
we have that y1 + . . .+ yn = F (x1, . . . , xn).

In [18], it is shown that it is possible to build FSS from AFS-spooky en-
cryption. Roughly, to share an input function F the dealer first generates n
AFS-spooky key pairs (pki, ski) ← KeyGenSpooky(1λ). The dealer also generates
an n-out-of-n description of the function F , i.e. functions Fi(x) such that F (x) =
F1(x)+ . . .+Fn(x). Finally, the function secret sharing of the input function F is

defined to be the tuple Fi = (ski, pk1, . . . , pkn,Enc
Spooky
pk1

(F1), . . . ,EncSpookypkn
(Fn)).

To define the FSS evaluation we create a function Cx which takes as input
the n additive shares of a function F , and evaluates it on the input x, which is
hard-coded into Cx. By applying

EvalSpookypk1,...,pkn

(
Cx,Enc

Spooky
pk1

(F1), . . . ,EncSpookypkn
(Fn)

)
,

we obtain ciphertexts ct′1, . . . , ct
′
n, where ct′i can be decrypted (using ski) to

obtain yi such that y1 + . . .+ yn = F (x).
In [8], Boyle et al. showed how the FSS construction from spooky encryption

can be modified to enable an additive HSS scheme. The ShareHSS(x) opera-
tion additively shares x into x = x1 + . . . + xn, generates n spooky key pairs
(pk1, sk1) ← KeyGenSpooky(1λ), and then encrypts xi via cti ← EncSpookypki

(xi).

The share values xi output by ShareHSS(x) being xi = ({pki}ni=1, {cti}ni=1, ski).

The EvalHSS(F,xi) function executes EvalSpookypk1,...,pkn
on the function F and the

ciphertext (ct1, . . . , ctn) so as to obtain n ciphertexts ct′1, . . . , ct
′
n. The output of

EvalHSS(F,xi) then being DecSpookyski
(ct′i).

Thus, there is a strong connection between HSS, FSS and spooky construc-
tions, and, as mentioned above, the prior most efficient n-party HSS and FSS
constructions for circuits arise from AFS-spooky based on LWE (and a circular
security assumption). The best current construction for AFS-spooky encryption
of Dodis et al. [18] has a complexity of O(n2 · |F |). In particular, each gate of
the underlying arithmetic circuit F requires a bootstrapping operation which in
the multi-key FHE setting has complexity O(n2).

1.1 Our Contribution

We present new constructions of homomorphic secret sharing in the multi-
party setting, supporting up to n − 1 out of n corruptions. Our constructions
improve upon the only previous general construction, based on AFS-spooky en-
cryption [18], either by being more efficient, or in some cases, relying on different
assumptions.
HSS from Homomorphic Encryption with Decryption Shares. We
present our constructions as a new primitive called homomorphic encryption
with decryption to shares (HEDS), which can be seen as a homomorphic en-
cryption scheme with a special decryption algorithm that (non-interactively)
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outputs an n-party secret share of the encrypted message. HEDS is closely re-
lated to both spooky encryption and homomorphic secret sharing (HSS): the
major difference compared to spooky is that HEDS needs to set up private de-
cryption keys under a common public key with either a trusted setup algorithm
or a secure multiparty computation protocol, while the difference with HSS is
that the homomorphic evaluation algorithm is public. As is the case for spooky,
HEDS immediately implies additive HSS for the same class of functions.
Scooby Construction: HEDS from Linear Decryption FHE. We show
that HEDS can be built using any FHE scheme with a special decryption prop-
erty, which we call linear decryption based fully homomorphic encryption (LD-
based FHE) schemes. Examples of such LD-based FHE schemes are LWE-based
constructions like BGV [11], BFV [20], GSW [22] and TFHE [15, 16]. Notice
this special property of almost all FHE schemes, where the decryption function
is a linear function of the secret key, has been exploited previously, including for
HSS in the two-party setting [18, 9] and other applications [10, 21].

Any of these schemes can be used to instantiate our Scooby construction,
giving additive HSS for circuits. Recall in AFS-spooky the key generation is run
independently by the n-parties, in our variation the keys are instead generated
by a trusted third party.4

Since this construction only requires single-key FHE and not multi-key FHE,
we obtain n-party HSS that is simpler and more efficient than the AFS-spooky-
based construction. In particular, the computational complexity grows asO(|F |+
log n), whereas AFS-spooky has complexity O(n2 · |F |) for n parties. In addition,
when instantiated with BGV we show that the standard parameter sets for
bootstrapping are sufficient for our construction.

At a high level, at the core of Scooby is a well-known 2-party distributed
decryption procedure, which non-interactively decrypts an LWE-based cipher-
text into two shares, assuming the ciphertext modulus has super-polynomial size.
This trick has been used previously, including in the construction of AFS-spooky.
Our main contribution is to bootstrap this 2-party non-interactive algorithm into
an n-party non-interactive algorithm. We do this by placing the n parties on the
leaves of a binary tree, and then homomorphically evaluating the two party pro-
tocol at each internal node of the tree. Each party only needs to evaluate the
2-party protocol at each node on the path from the root to its leaf. Each homo-
morphic evaluation at the internal nodes is exactly equivalent to a bootstrapping
operation, namely a homomorphic evaluation of the decryption circuit for some
key. Thus, decryption into shares costs O(log n) operations per party.

Removing the Super-polynomial Modulus. The problem with Scooby,
as well as all LWE-based additive HSS schemes, is that we require a super-
polynomial modulus-to-noise ratio in the underlying LD-based FHE scheme.
This is a stronger form of LWE assumption that usually requires larger pa-

4 In some sense the “spooky” behaviour exhibited by spooky encryption cannot really
be explained, whereas our “spooky” behaviour can be explained by the setup proce-
dure. This setup procedure in some sense acts like the janitor in Scooby-Doo, who
has set up the spooky goings-on.
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Construction Assumptions Setup Complexity

DHRW [18] LWE with Uniform CRS O(n2 · |F |)
(AFS-Spooky) super-polynomial modulus

Scooby: §5 LD-based FHE with Trusted O(|F | + log n)
(HEDS) super-polynomial modulus

Scrappy: §6.1 Generic FHE + Trusted O(|F | + log n)
(HEDS) 2-party HSS for NC1

Shaggy: §6.2 2-party HSS for NC1 Trusted O(1)
(HEDS) (n = 4, constant-deg F )

Casper: (Full Version) Specific MK-FHE with Uniform CRS O(n · |F | + n2 · log n)

(AFS-Spooky) super-polynomial modulus or O(n2 · |F | + n2 · log n)

Table 1. Summary of n-party HSS Constructions. All FHE-based constructions al-
low arbitrary functions F , and assume circular security to avoid blow-up in the key
sizes (this assumption can be removed by relaxing to bounded-depth circuits). The
asymptotic complexities ignore potential factors in λ that are independent of n and F .

rameters to compensate. We give a variant of the construction where we only
need standard FHE, together with an HSS scheme for NC1 circuits. Using re-
cent constructions of HSS [27, 29, 1] based on either Paillier encryption or class
groups, we obtain the first additive HSS schemes for circuits that do not re-
quire LWE with a super-polynomial modulus. The complexity of the HSS is also
O(|F | + log n), however, it is likely to be less efficient in practice than Scooby.
We call this construction Scrappy. We summarize our results in Table 1.

Avoiding FHE Entirely. We also show that in certain cases, we can obtain
multi-party HSS without using any form of FHE whatsoever. We do this through
a variant of the previous construction, where we bootstrap a HEDS scheme to
handle more parties by homomorphically evaluating its own decryption circuit.
This transformation is more challening to apply without resorting to FHE, and
we are only able to obtain a 4-party HEDS scheme for constant-degree polyno-
mials, based on Paillier encryption. Nevertheless, as far as we are aware, this
is the first instance of > 2-party, dishonest majority HSS for constant-degree
polynomials, without relying on FHE. We call this construction Shaggy.

Spooky from HEDS. In addition, in the full version, we show how our Scooby
scheme can be adapted to give a true AFS-spooky encryption, i.e. with no trusted
setup and independent keys, if we base our construction on specific multi-key
FHE (MK-FHE). This instantiation can have a simpler complexity than that
given in [18], in particular, assuming the function F can be evaluated without
bootstrapping, our complexity is O(n · |F |+n2 · log n). If F requires a bootstrap-
ping for all the operations, it is O(n2 · |F |+n2 · log n). We call this construction
Casper.

We give two variants of Casper, one based on the TFHE scheme [13], and
one based on the BFV scheme [14]. We note that being MK-FHE schemes, the
construction will be less efficient than our Scooby scheme, which works over most
(practical) FHE schemes. It is interesting to note that the spooky construction
from [18] also goes via MK-FHE. In particular, they make use of the MK-FHE
scheme of [17, 25]. The route though is more complex than our tree-based con-
struction, leading to an increased complexity.
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2 Preliminaries

For a set S, we denote by a ← S the process of drawing a from S with a
uniform distribution on the set S. If D is a probability distribution, we denote
by a← D the process of drawing a with the given probability distribution. For
a probabilistic algorithm A, we denote by a ← A the process of assigning a
the output of algorithm A; with the underlying probability distribution being
determined by the random coins of A.

All reductions modulo an integer p will be assumed to be centred, i.e. in the
interval (−p/2, . . . , p/2).

We let R = Z[X]/(XN + 1) and Rp denote the localisation of R at p, i.e.
(Z/pZ)[X]/(XN + 1). For a real interval I we let RI denote the restriction of
the set R to have coefficients in the support of I. Thus as sets (but not as rings)
we have Rq = R(−q/2,...,q/2).

2.1 Homomorphic Secret Sharing

The following definition of public-key HSS is adapted from [9]. Note that, as
we are only interested in schemes with additive reconstruction, we can disregard
the decoding algorithm, DecHSSsk , that is given in the more general definition of
HSS [8]. Concretely, in additive HSS the decoding algorithm simply adds up all
the shares.

Definition 2.1 (Additive Public Key Homomorphic Secret Sharing).
An n-party, public-key homomorphic secret sharing (HSS) scheme for a class of
functions F over a ring R with input space I ⊆ R consists of PPT algorithms
(KeyGenHSS,ShareHSSpk ,EvalHSSpk ) with the following syntax:

– KeyGenHSS(1λ, n)→ (pk, (ek1, . . . , ekn)): Given a security parameter 1λ, the
setup algorithm outputs a public key pk and n evaluation keys (ek1, . . . , ekn).

– ShareHSSpk (pk, x)→ (x1, . . . ,xn): Given public key pk and private input value
x ∈ I, the share algorithm outputs shares (x1, . . . ,xn).

– EvalHSSpk (F ; xi, eki) → yi: On input a function F ∈ F , the parties share xi,
and it’s evaluation key eki, the homomorphic evaluation algorithm outputs
yi ∈ R, which is party i’s share of an output y ∈ R.

This definition is in the multi-input setting, meaning that it supports a com-
pact evaluation of a function F on shares of inputs x(1), . . . , x(ρ) given by ρ
parties that are usually referred to as clients. More concretely, each client in-

puts x(i) to the Share algorithm which returns shares x
(i)
j , j ∈ [n], to n parties

(the servers). Each server can then locally run Eval on input (x
(1)
j , . . . ,x

(ρ)
j )

obtaining a share yj such that F (x(1), . . . , x(ρ)) =
∑
j∈[n] yj . Note that the

KeyGenHSS algorithm cannot be run by any single party, so can be seen as a
form of correlated randomness generated by a trusted dealer. We describe the
required security properties for the algorithms (KeyGen,Share,Eval) according
to this more general formulation.
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Security Experiment ExpHSS,secA,j (λ)

Let I ⊂ [n] be the set of corrupt servers.

1. (pk, (ek1, . . . , ekn))← KeyGenHSS(1λ).
2. (x0, x1, state)← A(1λ).
3. b← {0, 1}.
4. (xb,1, . . . ,xb,n)← ShareHSSpk (pk, xb).
5. b′ ← A(state, pk, {ekj ,xb,j}j∈I).
6. Return b′ = b.

Fig. 1. Security Experiment ExpHSS,secA,j (λ)

Definition 2.2 (HSS (Statistical) Correctness). We say that an n-party
public-key HSS scheme (KeyGenHSS,ShareHSSpk ,EvalHSSpk ) is correct for a class of
functions F if, for all security parameters λ ∈ N, for all functions F ∈ F , for
all x(1), . . . , x(ρ) ∈ I (where I is the input space of F ), for all (pk, ek1, . . . , ekn)

← KeyGenHSS(1λ) and for all (x
(i)
1 , . . . ,x

(i)
n ) ← ShareHSSpk (pk, x(i)), i ∈ [ρ], we

have

Pr
[
y1 + · · ·+ yn = F (x(1), . . . , x(ρ))

]
≥ 1− negl(λ),

where
yj ← EvalHSSpk (F ; (x

(1)
j , . . . ,x

(ρ)
j ), ekj), j ∈ [n],

where the probability is taken over the random coins of KeyGenHSS, ShareHSSpk and

EvalHSSpk .

Definition 2.3 (HSS Security). Let I be the set of corrupt servers. For each
j ∈ I and non-uniform adversary A (of size polynomial in the security parameter
λ), it holds that ∣∣∣Pr[ExpHSS,secA,j (λ) = 1]

∣∣∣ ≤ 1

2
+ negl(λ),

where ExpHSS,secA,j (λ) is the experiment defined in Figure 1.

Remark 2.1 (Private-key HSS). HSS can also be defined in the single-input,
private key setting, which is weaker than the public-key flavour above. Here,
there is no KeyGen algorithm, and Share is run only once on all inputs together,
so can be seen as a trusted dealer algorithm that distributes the shares.

2.2 Spooky Encryption

“Spooky” encryption is a type of public key encryption scheme which exhibits
a form of limited malleability, so called “spooky action at a distance” [18]. The
particular form of spooky encryption we will use is so called additive-function-
sharing spooky encryption (or AFS-spooky encryption). We present a definition
which works for any finite ring R, and arithmetic circuit C, and not just for the
case of F2 as originally presented.
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Definition 2.4 (AFS-spooky Encryption). An AFS-spooky encryption
scheme, over a finite field Fp, is a public-key encryption scheme given by a tu-

ple of four algorithms (KeyGenSpooky,EncSpookypk ,DecSpookysk ,EvalSpookypk1,...,pkn
) with the

following syntax:

– KeyGenSpooky(1λ): This is a probabilistic polynomial time algorithm which on
input of a security parameter λ outputs a public/private key pair (pk, sk).

– EncSpookypk (m): This probabilistic polynomial time algorithm takes a message
m ∈ R and generates a ciphertext ct encrypting that message under the
public key pk.

– DecSpookysk (ct): Given a ciphertext ct encrypted under the public key associated
to sk, this algorithm produces the underlying plaintext.

– EvalSpookypk1,...,pkn
(C, ct1, . . . , ctn): Given an arithmetic circuit description C :

Rn −→ R, n public keys pk1, . . . , pkn, and n of ciphertexts ct1, . . . , ctn,
this produces n ciphertexts ct′1, . . . , ct

′
n

An AFS-spooky encryption scheme must be correct, as an encryption scheme,
i.e. we must have

∀(pk, sk)← KeyGenSpooky(1λ), ∀m ∈ R : DecSpookysk ( EncSpookypk (m) ) = m.

It must also be IND-CPA as an encryption scheme and satisfy the following form
of limited malleability called AFS-spooky correctness.

Definition 2.5 (AFS-spooky Correctness). There exists a negligible func-
tion ν such that for all λ ∈ N, every arithmetic circuit C computing a n-argument
function f : Rn −→ R, and all inputs x1, . . . , xn of C, we have

Pr

∑
i∈[n]

yi = C(x1, . . . , xn) :

∀i ∈ [n], (pki, ski)← KeyGenSpooky(1λ),

∀i ∈ [n], cti ← EncSpookypk (xi),

(ct′1, . . . , ct
′
n)← EvalSpookypk1,...,pkn

(C, ct1, . . . , ctn),

∀i ∈ [n], yi ← DecSpookyski
(ct′i)

 ≥ 1−ν(λ)

In [18], it is shown how to construct an AFS-spooky encryption scheme in
the CRS model using an LWE-based multi-key FHE [17, 25] and assuming a
circular security assumption. The common reference string (output by a separate
generation algorithm), necessary in the multi-key FHE construction, is assumed
as input to the key generation algorithm, and correctness and security hold for
all outputs of the common reference string generator.

In their work, Dodis et al. [18] show that AFS-spooky encryption implies
FSS for general circuit; in [8], Boyle et al. show that AFS-spooky also enables
HSS for multiple inputs; in fact, it implies HSS without any setup, where the
key generation algorithm is simply run locally by each client providing input.

3 Homomorphic Encryption with Decryption to Shares
(HEDS)

In this section we formally introduce the notion of a scheme which imple-
ments Homomorphic Encryption with Decryption to Shares (HEDS) and relate
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it with other concepts described in previous sections. Loosely speaking, a HEDS
encryption scheme is similar to public-key HSS, except with a public evaluation
algorithm that outputs a ciphertext, more akin to evaluation in homomorphic
encryption. The ciphertext is then convert into shares in the decryption algo-
rithm, which uses one party’s private key. In addition, similarly to HSS, but
unlike in spooky encryption, the parties need to engage in a protocol, or assume
a trusted third party, to set up the associated public and secret keys. Thus the
action from the outside seems spooky, but this can be explained away as an
effect of the setup protocol.

We start by giving the definition of HEDS, and then we show that it enables
both homomorphic and function secret sharing.

Definition 3.1 (HEDS Encryption). A HEDS encryption scheme for a class
of functions F : R∗ → R, over a ring R, is given by a tuple of PPT algorithms
(SetUpHEDS,EncHEDS

pk , DecHEDS
sk , EvalHEDS

pk ), with the following syntax:

– SetUpHEDS(1λ, n): This randomized algorithm takes as input a security pa-
rameter λ, a number of parties n. It outputs the tuple (pk, sk1, . . . , skn).

– EncHEDS
pk (m): This takes as input the public key and a message m ∈ R, and

outputs a ciphertext ct.
– DecHEDS

ski (ct): Given a ciphertext ct encrypted under the public key this out-
puts a value yi for each i ∈ [n].

– EvalHEDS
pk (C, (ct1, . . . , ctρ)): On input of the public key pk, a set of n cipher-

texts, and an arithmetic circuit description C : Rρ −→ R of a function from
the specified class, this produces a ciphertext ct.

The algorithms
(
SetUpHEDS,EncHEDS

pk ,DecHEDS
sk ,EvalHEDS

pk

)
should satisfy the

following correctness and security requirements.

Definition 3.2 (HEDS Correctness). There exists a negligible function ν
such that for all λ ∈ N, every arithmetic circuit C computing a ρ-argument
function f : Rρ −→ R in F , and all inputs x1, . . . , xρ of C, we have

Pr

∑i∈[n] yi = C(x1, . . . , xρ) :

(pk, sk1, . . . , skn)← SetUpHEDS(1λ, n),

∀i ∈ [ρ], cti ← EncHEDS
pk (xi),

ct← EvalHEDS
pk (C, (ct1, . . . , ctρ)),

∀i ∈ [n], yi ← DecHEDS
ski

(ct)

 ≥ 1− ν(λ).

Definition 3.3 (HEDS Security). For all subsets A ⊂ [n] of size < n, and
all probabilistic polynomial time adversaries (A1,A2) we have

Pr

 b = b′ :

(pk, sk1, . . . , skn)← SetUpHEDS(1λ, n), b ∈ {0, 1},
(m0,m1, state)← A1(pk, {ski}i∈A),

ct← EncHEDS
pk (mb),

b′ ← A2(ct, state)

 ≤ negl(λ),

i.e. the encryption scheme is IND-CPA, even when up to n − 1 secret keys are
given to the adversary.
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Compactness. Just as with fully homomorphic encryption, we say that HEDS
is compact if the share decryption algorithm is independent of the evaluated
function.

3.1 Multi-input HSS from HEDS Encryption

Here we relate HEDS encryption and HSS showing that HEDS encryption
implies HSS with multiple inputs. Let P be a set of n servers and C be a set
of m clients. Let C be a circuit representing a function F : Rm → R in a
class function F . To build an HSS-scheme, we need to define three algorithms
KeyGenHSS, ShareHSS, EvalHSS as in Definition 2.1. Let (SetUpHEDS,EncHEDS

pk ,

DecHEDS
sk , EvalHEDS

pk ) be a HEDS encryption scheme for F , as defined in the pre-
vious section, we proceed as follows.

– KeyGenHSS(1λ, n):

1. Run (pk, sk1, . . . , skn)← SetUpHEDS(1λ, n)

2. For each i ∈ [n], set eki := ski
3. Return pk and (ek1, . . . , ekn)

– ShareHSSpk (x(j)): Each client Pj ∈ P, on input x(j) performs the following
steps. We recall that the goal is to obtain shares (x1, . . . ,xn) of (x1, . . . , xm).

1. For i ∈ [n] and j ∈ [m], generate x
(j)
i such that x(j) = x

(j)
1 + . . .+ x

(j)
n .

2. For each x
(j)
i , compute ct

(j)
i = EncHEDS

pk (x
(j)
i ).

3. Set xi = {ct(j)i }j∈[m], for i ∈ [n].

– EvalHSSpk (F ; xi, eki): Given a function F : Rm → R, each server i ∈ [n]
computes circuit description C of F and proceeds as follows.

1. Compute cti = EvalHEDS
pk

(
C, (ct

(1)
i , . . . , ct

(m)
i )

)
2. Compute yi = DecHEDS

eki (cti)

By Definition 3.2, we know that the evaluation algorithm outputs to the servers
the shares y1, . . . , yn such that

∑
i∈[n] yi = y = F (x(1), . . . , x(m)).

Proposition 3.1. Assuming the existence of a HEDS encryption scheme for a
class of functions F , there exists a public-key multi-input HSS scheme for F .

Proof. Correctness follows by inspection of the scheme described above and by
correctness of the underlying HEDS construction. Security also follows from the
security of HEDS.

In the other direction, we observe that a public-key HSS scheme implies
HEDS for the same class of functions, however, the resulting HEDS scheme
may not be compact. This is because the HSS evaluation algorithm will have to
be carried out in the HEDS decryption step, since HSS uses a private key for
evaluation.
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4 Linear-Decryption Based FHE

Our main constructions are based on a form of FHE which comes from LWE-
style systems. We abstract much of the details of the specific construction away in
what follows, for example the specific key generation and encryption algorithms.
This allows us to capture schemes as diverse as BGV [11], BFV [20], GSW [22]
and TFHE [15, 16]. These schemes all have the same form of decryption equation,
namely one based on a linear inner product combination of the ciphertext with
the secret key, modulo the ciphertext modulus. The result of this inner product
is then processed to produce the plaintext (which is an element of Rp for some
prime p) in one of two distinct ways, depending on whether the message is
embedded at the top of the range modulo q (as in FV), or the bottom of the
range modulo q (as in BGV). We refer to these two types of decryption as FHE
as being of type msb and type lsb respectively. We call the whole class of such
FHE systems Linear Decryption based, or LD-based FHE. Similar definitions
have been considered previously [9, 21, 10].

Let sec denote some statistical security parameter and λ denote a compu-
tational security parameter. We define such a scheme as follows, the precise
encryption and evaluation algorithms are not important for our discussion.

Definition 4.1 (LD-based FHE). An LD-based FHE scheme is given by a
tuple of algorithms (KeyGenFHE,EncFHEpk ,DecFHEsk ,EvalFHEpk ), as follows:

– KeyGenFHE(1λ, p): This randomized algorithm takes as input the secu-
rity parameter λ and a plaintext modulus space p. It outputs a tuple
(q,N,B, d,∆, S, pk, sk). The value q will correspond to the ciphertext modu-
lus5, the value N will be the LWE-ring dimension (which for convenience we
assume is a power of two), the value B will be a “noise bound”, the value d
is one less than the dimension of the ciphertext space, the value ∆ is set to
be bq/pc, the value S is a bound on the secret key size S, and pk (resp. sk)
will be the public (resp. private) keys.
The private key sk = (s1, . . . , sd) is assumed to be a random element in Rdq
sampled such that ‖sk‖∞ ≤ S. Note, this is not necessarily sampled uniformly
at random subject to this constraint.
All subsequent algorithms are assumed to take the tuple (N, q, d,B,∆) im-
plicitly as input parameters.

– EncFHEpk (m, type): On input of m ∈ Rp this will output a ciphertext ct ∈ Rd+1
q

such that

ct · (1,−sk) =

{
m+ p · ε (mod q) If type = lsb,
∆ ·m+ ε (mod q) If type = msb.

A ciphertext such that ‖ε‖∞ ≤ B will be called valid. The encryption algo-
rithm produces such a valid ciphertext. The precise algorithm use for encryp-

5 In practice there may be many ciphertext moduli depending on which level a cipher-
text is sitting at, at a high level this can be ignored. Although it can be important
in practice
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tion will depend on the public key, and the specific scheme. All that concerns
us is the form of the ciphertext.

– EvalFHEpk (F (x1, . . . , x`), {ct1, . . . , ct`}): On input of ` valid ciphertexts cti and
an arithmetic function F (x1, . . . , x`) this function will homomorphically
evaluate the function F over the ciphertexts, producing a valid ciphertext
as output.

– DecFHEsk (ct): On input of a valid ciphertext and a secret key this will compute
the message as

m =

{
(ct · (1,−sk) (mod q)) (mod p) If type = lsb,⌊

(ct · (1,−sk) (mod q)) · p/q
⌉

If type = msb.

The correctness requirement simply says that EvalFHE, when given ` valid
ciphertexts, outputs a valid encryption of the correct result. The security re-
quirement is the standard notion of IND-CPA security.

For example: In the case of the BGV scheme [11] from ring-LWE we will have
that ct = (c0, c1), so that decryption is given by ct · (1,−sk) = c0 − s1 · c1, and,
hence, for this scheme we have n = 1 and sk = s1. The BFV scheme [20] has the
same structure, the main difference being that BFV uses the msb decryption,
while BGV uses lsb.

In the case of Ring-GSW, a ciphertext is in R
(d+1)×(d+1)`
q , with d = 1 and

sk = s1. In practice it is composed by 2 · ` FV-like ciphertext (i.e., with the
message encrypted in the msb). To decrypt a Ring-GSW ciphertext, we only
decrypt one of these ciphertexts: the others contain redundant information. An-
other way of seeing a Ring-GSW ciphertext, is with a very sparse secret key
sk = (sk1, . . . , sk2`), where all the keys corresponding to the FV-like ciphertext
that we are not going to decrypt are set to zero. The TFHE scheme [15, 16] uses
a combination of FV-like ciphertexts (with message encrypted in the msb, called
LWE and RLWE ciphertexts) and Ring-GSW ones.

Parameters for Decryption to Shares. For such LD-based FHE schemes we
have a special form of non-interactive two party distributed decryption, which
we shall now outline in the lsb and the msb cases. We will require the parameters
are selected so that

q > 2 · p · (B + 1) · 2sec, (1)

where sec is the statistical security parameter. This two-party distributed de-
cryption, which is essentially the same technique as in [18, 9], will form the basis
of our first multi-party HEDS construction in Section 5.

4.1 Two-Party Distributed Decryption: Type lsb

Suppose sk is split into two keys sk1 and sk2 with sk = sk1+sk2 (mod q), with
sk1 held by party P1 and sk2 held by party P2. Now we can, without interaction,
given a valid ciphertext ct encrypting a message m, compute an additive sharing
of m = m1 + m2 (mod p) between P1 and P2 as follows. We require that the
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parties have agreed upon a public random value for each decryption, but later
will remove this using a PRF.

2-party DistDeclsb: Let R← Zq be a public random nonce.

1. P1 computes d1 ← ct·(1,−sk1)+R (mod q) and then m1 ← d1 (mod p).

2. P2 computes d2 ← ct·(0,−sk2)−R (mod q) and then m2 ← d2 (mod p).

We prove that this leads to a correct result with overwhelming probability.

Proposition 4.1. Given an LD-based FHE scheme of type msb (Definition 4.1),
where (q,N,B, d,∆, S, pk, sk)← KeyGenFHE(1λ, p), with q > 2·p·(B+1)·2sec and
sk1 + sk2 = sk. Let (ct,m) be a pair of ciphertext/plaintext messages and m1 and
m2 values obtained with the 2-party distributed decryption procedure described
above. Then, it holds that

m = m1 +m2 (mod p),

with probability at least 1−N · 2sec.

Proof. First we notice that

m = ((d1 + d2) (mod q)) (mod p),

and that we will always have m = m1 + m2 (mod p) if the internal reduction
modulo q in the decryption equation for m does not need to compensate for a
wrap around. However, since we know ct is valid (i.e., ct · (1,−sk) = m + p · ε
(mod q) with ‖ε‖∞ ≤ B ) we also know that the coefficients of d1 + d2 (mod q)
will lie in the range (−p·(B+1), . . . , p·(B+1)). Thus, the distributed decryption
will potentially result in an error if and only if the coefficients of d1 lie in one of
the two ranges (−q/2,−q/2+p·(B+1)) or (q/2−p·(B+1), q/2). Since each party
added or subtracted the random R, it holds that d1 is uniformly distributed in
the range (−q/2, . . . , q/2). Therefore, the probability there is a wraparound in
a single coefficient is bounded by 2 · p · (B + 1)/q < 2−sec. However, we also
known that, if there is a wrap around, it will definitely result in an invalid
distributed decryption, as the error only consists of the addition of a single
value of q (mod p) 6= 0. Thus, a single coefficient will be correct with probability
1 − 2−sec. To obtain a correct decryption we need all coefficients to be correct,
which will happen with probability(

1− 2−sec
)N ≈ 1−N · 2−sec.

We report details on the two party distributed decryption for the type msb
in the full version.
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5 Scooby: Multi-Party HEDS from LD-based FHE

In this section we detail how to construct a HEDS encryption scheme for
the underlying ring Rp, from generic LD-based FHE. We call our construction
Scooby, as it is similar to a spooky encryption but with a trusted setup. To
denote the specific nature of this construction we refer to SetUpScooby, EncScoobypk ,

etc., instead of SetUpHEDS, EncHEDS
pk , etc.

At the core of Scooby is the 2-party distributed decryption procedure de-
scribed in the previous section. We show that, assuming an LD-based FHE
scheme, this directly yields a 2-party Scooby. We then show how to bootstrap
the 2-party scheme to the multi-party setting.

5.1 HEDS Key Generation

First, we need to slightly modify the KeyGen algorithm for the underlying
FHE scheme to take a “special” form that is common to all standard FHE con-
structions. More concretely, the algorithm KeyGenFHE(1λ, p) proceeds as follows,
using two sub-procedures ParamGen() and PubKeyGen():

1. params ← ParamGen(1λ, p): This algorithm takes as input a security pa-
rameter λ, a plaintext modulo p and produces the scheme parameters
params = (q,N,B, d,∆, S).

2. sk← Rnq such that ‖sk‖∞ ≤ S.

3. pk ← PubKeyGen(1λ, sk, params): This algorithm, on input the secret key
and scheme parameters, samples and outputs an associated public key pk.

5.2 Security Assumption

In our construction, we generate an FHE public key based on a secret-key
sk = sk0 + sk1, where sk0, sk1 are both sampled uniformly with coefficients
bounded by the parameter S. For security, we require that the scheme defined by
(pk, sk) satisfies the standard IND-CPA security notion, even when the adversary
is given one of the original secret keys ski. This is formalized as follows.

Definition 5.1 (Bounded secret key IND-CPA security). Let FHE =
(KeyGenFHE,EncFHEpk ,DecFHEsk ,EvalFHEpk ) be a linear decryption-based FHE scheme,

where KeyGenFHE is split into two sub-routines ParamGen,PubKeyGen as above.
We require that for (q,N,B, d,∆, S) ← ParamGen(1λ, p), and sk0, sk1 ← Rdq

with ‖ski‖ ≤ S, sk = sk0 + sk1 and pk ← PubKeyGen(sk), it holds that for any
PPT algorithm A, for any σ ∈ {0, 1}, messages m0,m1 and bit b← {0, 1}:

Pr[A(1λ, pk, skσ,Enc
FHE
pk (mb)) = b] ≤ 1/2 + negl(λ).

It is straightforward to verify that, given a linear decryption-based FHE
scheme that satisfies the bounded secret-key IND-CPA security, we obtain a
2-party Scooby encryption scheme using the prior algorithms for 2-party dis-
tributed decryption into shares described in the previous section. Indeed, this
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2-party distributed decryption forms the basis of the 2-party spooky construction
in [18] and HSS construction in [9]. However, to obtain an n-party generalization
is not immediate. A direct application of the trick used for 2-party to, say, 3-
parties results in decryption errors due to unaccounted for wrap-arounds in the
reduction modulo q of the local decryption. Coping with these wrap-arounds,
without resorting to interaction, thus seems a challenge. A challenge which we
solve in the next section.

5.3 From 2-party to n-party HEDS

Here we give the details of our construction Scooby, for n-party HEDS. The
encryption and evaluation algorithms of Scooby are identical to that of the un-
derlying linear decryption FHE scheme, so here we only describe the setup and
share decryption procedures. We give two different variants of the construction,
depending on whether the FHE scheme encodes the message in the lsb or msb
of the ciphertext. In this section, we focus on a linear decryption FHE scheme
that encodes the message in the lsb of the ciphertext; in the full version, we give
a variant for the msb type.

Scooby Setup. Recall that the setup algorithm in HEDS takes as input a se-
curity parameter and outputs a global public key pk, as well as secret keys
sk1, . . . , skn to each of the n parties. For Scooby, in both the lsb and msb vari-
ants of LD-based FHE scheme, the underlying SetUpScooby algorithm is the same.
Note that in the following, the SetUpScooby algorithm should be seen as a trusted
setup procedure that is either run by a trusted third party, or executed via
an MPC protocol, which can be done, for instance, based on the techniques
from [28].

The SetUpScooby algorithm is described in Figure 2. Recall that the main
challenge is to setup up some key material which allows n parties to convert an
FHE ciphertext into shares of the message, while using the 2-party distributed
decryption method from the previous section. We build a binary tree with n
leaves, where the original FHE ciphertext lives at the root node. We split the
FHE secret key skFHE into two shares s̃k0, s̃k1, and then generate a fresh FHE
key pair for each of the two child nodes, and encrypt each s̃kb, for b ∈ {0, 1},
under the corresponding public key. This process is repeated with the FHE
secret keys generated for the children, and so on throughout the tree. Note that
we abuse notation by writing ctv = EncFHEpkv

(s̃kv), even though s̃kv may not lie

in the plaintext space; we implicitly assume here that s̃kv is broken up into bits
(or possibly larger chunks), so ctv is actually a vector of ciphertexts encrypting
each bit separately.

The idea is that, during the decryption phase, the parties can homomorphi-
cally evaluate the 2-party distributed decryption function at each node of the
tree, obtaining a share of the message, now encrypted under a child node’s public
key. The i-th party repeats this for each node on the path to leaf i, where it fi-
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Algorithm SetUpScooby(λ, p, n)

The algorithm takes as input the security parameter λ, plaintext modulus p, and
number of parties n. It outputs a public key pk and secret keys (sk1, . . . , skn).

1. Let params = (q,N,B, d,∆, S)← ParamGen(1λ, p).
2. Sample a key Kprf ← {0, 1}λ.
3. We construct a complete (but not necessarily full at the last layer) binary tree

with n leaves and height h = dlog(n)e, and index the levels from 0 up to h.
Each node in level i of the tree is labelled with a string of i bits, so the root is
the empty string ⊥, and the children of node v are v‖0 and v‖1.

4. Sample s̃k0, s̃k1 ← Rdq such that ‖s̃kj‖∞ ≤ S.

5. Let skFHE⊥ = s̃k0 + s̃k1 and sample pkFHE
⊥ = PubKeyGen(1λ, skFHE

⊥ , params).
6. For each internal node v (excluding the root and leaves) with children v‖0 and

v‖1:

(a) Sample s̃kv‖0, s̃kv‖1 ← Rdq such that ‖s̃kj‖∞ ≤ S.

(b) Let skFHEv = s̃kv‖0 +s̃kv‖1, sample pkFHE
v = PubKeyGen(1λ, skFHE

v , params).

(c) Let ctv = EncFHEpkv
(s̃kv).

7. Let ski contain the leaf secret key s̃ki, together with Kprf and the public keys
and ciphertexts on the path from the root to leaf i.

8. Output pk := pkFHE⊥ and the secret keys (sk1, . . . , skn).

Fig. 2. Trusted setup algorithm for the Scooby construction

nally obtains a ciphertext encrypting an n-party sharing of the original message,
which it can decrypt.

Given this setup procedure we define EncScoobypk and EvalScoobypk exactly as is

the case in the underlying LD-based FHE scheme. Next, we detail the DecScoobyski
procedure in the lsb case.

Scooby Decryption. The decryption algorithms for Scooby in the lsb/msb-
mode are described in Figure 3 and the full version, respectively. The decryption
algorithm requires dlog ne−1 evaluations of the EvalFHE function for the underly-
ing LD-based FHE scheme, each for a different public key. Note that the circuit
used in EvalFHE is almost exactly the decryption circuit, so the complexity of
each of these homomorphic operations is the same as a bootstrapping operation
in the underlying FHE scheme.

It is also clear that, due to the fact that at each internal branch we are
homomorphically evaluating the two-party distributed decryption method from
either Section 4.1 (for the lsb case) or the method for the msb case given in
the full version, the final n messages mi will sum up to the decryption of the
ciphertext ct. The only difference is that instead of adding or subtracting a
random nonce R, the parties are using the PRF F to randomize their shares
in distributed decryption; thus, the correctness property of the scheme relies on
the security of F .
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Algorithm DecScoobyski
(ct) (for lsb-based construction)

Let F : {0, 1}λ × [n]→ Rq be a pseudorandom function.

DecScoobyski
(ct):

1. Parse ski as s̃ki, K
prf and (pkFHE

v , ctv), for every node v from the root to leaf i.
2. Let c̃t⊥ := ct.
3. For each internal node v on the path from the root to leaf i (excluding the root

and leaf):
(a) Write v = u‖b, where u is the parent of v (so b = 0 if v is a left child and

b = 1 otherwise).
(b) Define the function:

fbc̃tu : sk 7→
(
c̃tu · (b,−sk) + (−1)b · F (Kprf , u) (mod q)

)
(mod p)

(c) Compute c̃tv := EvalFHE
pkv

(fbc̃tu , ctv).

4. Write i = u‖b, then take the leaf ciphertext c̃ti and output the share

mi =
(
c̃ti · (b,−s̃ki) + (−1)b · F (Kprf , u) (mod q)

)
(mod p)

Fig. 3. Decryption to shares for lsb-based Scooby

Theorem 5.1. Let F be a pseudorandom function, and suppose there is an LD-
like FHE scheme which satisfies the hardness assumption from Definition 5.1,
such that (q,N,B, d,∆, S)← ParamGen(1λ, p) with q > 2 · p · (B+ 1) · 2sec. Then
the Scooby construction in Fig. 2–3 is a secure n-party homomorphic encryption
scheme with decryption to shares.

The proof is given in the full version.

Remark 5.1. Note that for correctness to hold it is not sufficient that for a single
party the path from the root to the node is correctly split. We need this to happen
for all parties simultaneously. This means that the obtained probability is in fact
1− n ·N · 2− sec and not, as initially might be believed, 1− log(n) ·N · 2− sec.

A simpler variant relying on circular security. The previous construc-
tion avoids relying on a circular security assumption by switching to a freshly
sampled FHE key at each node of the tree. We could instead simplify this
slightly, with a variant of the construction where only one set of FHE secret
keys is used. Here, we would start by sampling an independent secret key
s̃ki for each leaf i. The public key associated with node v is then defined as
pkv = PubKeyGen(1λ, skv, params), where skv is the sum of all the leaf secret
keys that are descendants of v. We additionally encrypt sk under pkv and give
this out to the relevant parties. This introduces a circular security assumption,
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however, it does not seem to offer any significant efficiency benefits except for a
slightly simpler setup algorithm.

5.4 BGV Parameters Supporting Scooby

It would appear that at first sight the parameters needed for Scooby are
larger than those needed for standard FHE bootstrapping, due to the increase
in q required by Equation (1). However, this is not necessarily the case, as we
now explain in the case of the BGV encryption scheme.

Standard BGV decryption simply requires the bound q > 2 · p · (B + 1) for
valid decryption, so we appear to have boosted the size of q by a factor of 2sec.
However, bootstrappable BGV as implemented in (say) HELib [24] utilizes an
underlying levelled SHE scheme. At level zero, where no further homomorphic
operations may take place without bootstrapping, we have a ciphertext modulus
q0 which satisfies q0 > 2 · p · (B + 1). At level L, i.e., the initial encryption level,
we have a ciphertext modulus qL which satisfies qL > 2 · p · (B+ 1) · 2bp·L, where
bp is the (average) bits-per-level of the chain of ciphertext moduli. On passing
from each level from L down to zero, the size of the ciphertext modulus drops
by (on average) 2bp . Note that, when bootstrapping a ciphertext from level zero,
we do not end up with a ciphertext at level L, instead we obtain a ciphertext at
level U (which denotes the so-called “usable” number of levels).

To see how this affects Scooby, we need to remember that at the end of the
EvalScoobypk procedure we will have a ciphertext at level U . This will satisfy our

bound in Equation (1) if 2bp·U ≥ 2sec. Then, in executing DecScoobyski
, at each level

of the tree we notice that we are actually executing an operation equivalent to
boostrapping. This is because at each node v = u‖b, where u is the parent node
and b ∈ {0, 1}, we are essentially either performing a homomorphic decryption

with the key (1,−s̃k
FHE

u‖1 ), or a homomorphic decryption with the key (0,−s̃k
FHE

u‖0 ).

Thus, at each stage of the execution of DecScoobyski
we have a ciphertext ct which

is at level U .
Examining the bootstrappable BGV parameters proposed in [24] we see that

in all cases we have 2bp·U ≥ 2128. Thus the Equation (1) does not actually result
in any increase in parameters, at least in the case of the BGV scheme.

6 Multi-Party HEDS from Weaker Assumptions

We now present alternative constructions to the previous section, without
relying on FHE with linear decryption and a super-polynomial modulus. In the
first construction, in Section 6.1, we use any generic FHE scheme and a 2-
party HSS scheme that supports homomorphic evaluation of the FHE decryption
circuit. This means we no longer need the local decryption trick from Section 4.1,
so can use FHE based on LWE with a polynomial modulus [12]. All LWE-
based FHE constructions have decryption in NC1, so the 2-party HSS can be
instantiated based on the Paillier assumption [27] or on class groups [1], which
support HSS for all of NC1.
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In Section 6.2, we also give a variant of the construction that only requires
2-party HSS, and not FHE. This gives a way to bootstrap two-party HSS con-
structions to the multi-party setting. We show how it can be used to transform
two-party HSS for branching programs, based on Paillier encryption, into 4-party
HSS for homomorphic evaluation of constant-degree polynomials.

6.1 Scrappy: HEDS from Standard FHE + HSS for NC1

This construction, shown in Fig. 4, follows the tree-based structure of Scooby
from the previous section. Previously, though, at each node of the tree, an FHE
ciphertext was split into two ciphertexts encrypting shares of the message, by
doing a special homomorphic decryption procedure tailored to the linear decryp-
tion property of the FHE scheme. In Scrappy, we instead do the homomorphic
decryption procedure inside a 2-party HSS scheme. Since most FHE schemes
have decryption in NC1, it suffices to rely on HSS for NC1, which can be built
from non-LWE-based assumptions. Of course, if done naively, this means we no
longer get encrypted shares of the previous message, but would actually obtain
the shares directly due to use of HSS. To avoid leaking all intermediate shares,
we use an additional FHE scheme on each level of the tree, and use this to
homomorphically evaluate the HSS evaluation procedure. The HSS evaluation
keys are then only given out at the leaves of the tree, while at higher levels they
are encrypted under FHE. Note that we only need the weaker, private-key form
HSS, from Remark 2.1, where the sharing algorithm can be seen as done by a
trusted dealer.

Theorem 6.1. Suppose there exists fully homomorphic encryption, and a 2-
party HSS scheme that supports homomorphic evaluation of the FHE scheme’s
decryption circuit. Then, there exists an n-party homomorphic encryption
scheme with decryption to shares, for any n = poly(λ).

The proof is given in the full version.

Remark 6.1. The above theorem implies n-party HEDS assuming (1) LWE with
a polynomial modulus [12], (2) circular security, and (3) HSS for NC1 circuits,
which can be based on decisional composite residuosity [27] or a DDH-like as-
sumption in class groups [1]. If we only require n-party HEDS for bounded-depth
circuits, we can remove the circular security assumption, since we only required
levelled FHE.

6.2 Shaggy: Bootstrapping HEDS to More Parties

We now give a separate transformation that increases the number of parties
in HEDS, without relying on fully homomorphic encryption. The construction,
in Fig. 5, essentially applies one layer of the previous, tree-based construction,
with a branching factor of n instead of 2. Additionally, instead of alternating
between FHE and HSS evaluation, we always evaluate within an n-party HEDS
scheme. This allows bootstrapping any sufficiently powerful n-party HEDS to
support n2 parties.
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Scrappy: n-party HEDS from FHE + HSS

Let (KeyGenFHE,EncFHE,EvalFHE,DecFHE) be an FHE scheme and (ShareHSS,EvalHSS)
be a 2-party HSS scheme for the FHE decryption circuit.

– SetUpScrappy(1λ, n): Construct a complete binary tree of height h = dlogne and
n leaves, and index the levels from 0 (at the root) up to h. Each node in level
i of the tree is labelled with a string of i bits, so the root is labelled with the
empty string ⊥, and the children of node v are labelled v‖0 and v‖1.
1. Sample a root key pair (pk⊥, sk⊥) = KeyGenFHE(1λ).
2. Sample HSS shares (s0, s1) = ShareHSS(sk⊥).
3. For each internal node v (excluding the root and leaf nodes), with parent

node u and children v‖0, v‖1, compute the following values:
(a) (pkv, skv) = KeyGenFHE(1λ).
(b) ctsv = EncFHEpkv

(sv)

(c) (sv‖0, sv‖1) = ShareHSS(skv).
4. Output pk := pk⊥ and the secret keys ski :=

(
si, {pkv, ctsv}v∈pathTo(i)

)
, for

i = 0, . . . , n− 1.
– EncScrappypk (m): Output ct = EncFHE

pk (m).

– EvalScrappypk (C, (ct1, . . . , ctm)): Output c̃t = EvalFHEpk (C, ct1, . . . , ctm).

– DecScrappysi (c̃t):
1. Let c̃t⊥ := c̃t.
2. For each internal node v on the path from the root to leaf i (excluding the

root and leaf), with parent node u:
(a) Define the pair of functions:

fc̃tu : sk 7→ DecFHE
sk (c̃tu)

gc̃tu : sv 7→ EvalHSS(fc̃tu , sv)

(b) Compute c̃tv := EvalFHEpkv
(gc̃tu , ct

s
v).

3. Output yi = EvalHSS(fct, si).

Fig. 4. Constructing n-party HEDS using standard FHE and 2-party HSS

Theorem 6.2. Let n-HEDS be an n-party HEDS for a class of circuits C, whose
decryption algorithm, when viewed as a function of ski, can be written as a circuit
in C. Then, n2-HEDS (in Figure 5) is an n2-party HEDS for C. Its encryption
and evaluation algorithms are the same as in n-Scooby, while the complexity of
decryption increases by a polynomial factor.

The proof is given in the full version.
Note that the decryption complexity of the bootstrapped construction

n2-HEDS is increased by a polynomial factor. Depending on the original n-party
scheme, then, it may not be possible to apply the transformation more than
once, if the new decryption algorithm is no longer in the class C.
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Construction n2-HEDS

Let n-HEDS be an n-party HEDS. We build n2-party HEDS, and label the parties
Pi,j , for i, j ∈ [n]

– SetUpn
2-HEDS(1λ, n2):

1. Let (pk, sk1, . . . , skn) = SetUpn-HEDS(1λ, n).
2. For i ∈ [n]:

(a) Sample (pki, ski,1, . . . , ski,n) = SetUpn-HEDS(1λ, n).
(b) Sample ctsi = Encn-HEDS

pki
(ski).

3. Output pk and the n2 secret keys ski,j := (cti, ski,j , pki), for i, j ∈ [n].

– Encn
2-HEDS

pk (m): Output ct = Encn-HEDS
pk (m).

– Evaln
2-HEDS

pk (C, (ct1, . . . , ctρ)):

1. Compute ct = Evaln-HEDS
pk (C, ct1, . . . , ctρ).

2. Let fct be the function that takes as input ski and outputs Decn-HEDS
ski

(ct).

3. Compute c̃ti = Evaln-HEDS
pki

(fct, ct
s
i ), for i = 1, . . . , n.

4. Output (c̃t1, . . . , c̃tn).

– Decn
2-HEDS

ski,j
(c̃ti): Output yi,j = Decn-HEDS

ski,j
(c̃ti).

Fig. 5. Bootstrapping n-party HEDS to n2 parties

Instantiation with HSS from Paillier. We show how to apply the above
transformation to two-party HSS based on the decisional composite residuosity
assumption used in Paillier encryption. We can only apply the transformation
once, so we obtain a 4-party HEDS/HSS scheme, which can support homomor-
phic evaluation of constant-degree polynomials. As the underlying two-party
scheme n-HEDS, we can use the HSS construction from [27] or [29].

First, we need to frame the 2-party HSS constructions of [27, 29] in our
HEDS framework. The constructions are given in a “public-key” flavour of HSS,
with SetUpHSS and EncHSS algorithms which are the same as in HEDS. The
EvalHSS algorithm, however, requires knowing a secret key, unlike the syntax
for EvalHEDS. To make this fit our HEDS framework, we define EvalHEDS in the
scheme to simply be the identity function, and move homomorphic evaluation
into DecHEDS

ski . This makes the resulting HEDS non-compact, but it can still be
used for the construction in Fig. 5.

Complexity of Evaluation in Paillier-based HEDS. We now analyze the circuit
complexity of the resulting DecHEDS algorithm, which performs HSS evaluation
of constant-degree polynomials. We can assume the polynomial is a simple mono-
mial f(x1, . . . , xc) = x1x2 · · ·xc for a constant number of inputs (since to handle
sums of monomials, it’s enough to evaluate each monomial separately and add
the shares).
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With the methods of [27, 29], each input xi is given as a Paillier encryption
of xi, together with encryptions of xi multiplied with each bit of the secret key.
In homomorphic evaluation, the parties perform c−1 sequential multiplications,
where in each of these, the core operation is a step that computes:

z = DDLog(Cd mod N2) + Fk(id) mod N

Here, N = pq is a public modulus, C ∈ Z∗N2 is a ciphertext, d is a secret
share that is known only to one party, and F is a pseudorandom function with
key k known to both parties. The distributed discrete log function DDLog(X)
computes bX/Nc · (X mod N)−1 mod N .

In general, modular exponentiation and inversion are not known to be in
NC1. However, it turns out that DDLog(Cd), when viewed as a function of d for
fixed C, does lie in NC1. The idea is that since C is public, we can consider the
powers C2j mod N2 as hard-coded into the description of the function. Similarly,
we hardcode C−2

j

mod N , for j = 1, . . . , `, where ` is the bit length of d. This
allows computing

Cd =
∏̀
j=1

(C2j )dj mod N2, (Cd mod N)−1 =
∏̀
j=1

(C−2
j

)dj mod N

Since iterated product, modular reduction, addition/subtraction and integer
division are all in NC1 [2], DDLog(Cd) can be computed as an NC1 circuit.
Furthermore, evaluation of a PRF based on factoring can be done in NC1 [26].

In the complete multiplication algorithm, the above step is repeated O(λ)
times in parallel, which does not affect the circuit depth. The multiplication
algorithm is run c times sequentially, where the outputs of one multiplication
are used as the private d shares input to the next. If c is a constant, it follows
that the entire evaluation procedure is in NC1.

Plugging in two-party HSS for poly-sized branching programs (which includes
NC1), we obtain the following.

Corollary 6.1. Assume the decisional composite residuosity assumption holds.
Then, there exists a 4-party (non-compact) homomorphic encryption scheme with
decryption to shares for constant-degree polynomials.
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