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Abstract: This article presents a control design method for simultaneous shaping of the poles
and zeros of linear time-invariant systems, motivated by the application of non-collocated
vibration suppression to flexible multi-body systems. An entire suppression of vibrations at
a target mass for a given excitation frequencies can be recast into the problem of assigning
zeros of the transfer function from the excitation force to the target mass’ position. The design
requirement of achieving sufficient damping in the closed loop system combined with suppressing
vibrations at the target, leads to the minimization of the spectral abscissa function of the closed
loop system as a function of the controller parameters, subject to zero location constraints.
These constraints exhibit polynomial dependence on the controller parameters. We present two
approaches to solve the optimization problem which are both based on constraint elimination
followed by application of an algorithm for non-smooth unconstrained optimization. The design
approach is applicable to delay-free models as well as time-delay models of retarded and neutral
type. Simulations results illustrate its applicability to a spring-mass-damper system.
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1. INTRODUCTION

Vibration suppression remains an interesting topic of
study in a number of engineering applications. The detri-
mental effects of vibration are well known and are there-
fore considered a phenomenon which must be removed or
reduced. Some examples of undesired vibrations include
machine tool vibrations which affect the surface finish of
the machined workpiece, fatigue failure of mechanical in-
struments or adverse effects of base vibrations in precision
instruments, etc. Extensive studies have been conducted
on both passive and active absorbers for the purpose of
vibration suppression, see Preumont (2018). The advan-
tages of passive absorbers have been known for a long
time and are extensively used in practice (e.g. Rana and
Soong, 1998, Den Hartog, 1985). While passive absorbers
are effective in suppressing vibrations, these devices cannot
achieve complete vibration suppression as there always
exists some residual vibration resulting from the non-ideal
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nature of the absorber. In what follows, we shall focus
on active vibration suppression only. Some of the existing
studies include: Hosek and Olgac (2002), Vyhlidal et al.
(2019), Pilbauer et al. (2016), Rivaz and Rohling (2007).
Numerous other examples of active methods can also be
found in Preumont (2018).

Most of the existing investigations on the topic of vibra-
tion suppression address the basic collocated vibration
absorption task, where the absorber is attached directly
to the target mass whose vibrations are to be suppressed.
However, it may be impossible to mount an absorber or
sometimes even a sensor directly on the target object.
For example, it is impossible to place an absorber at the
tip of a machining tool or at the end-point of the micro-
manipulator of a surgery robot for practical reasons. In
such circumstances, it becomes necessary to apply an al-
ternative approach which involves placing the absorber at
a location different from the target location, which, in turn
performs the desired task of suppression. This is termed
as 'non-collocated vibration suppression’. Studies on non-
collocated vibration suppression have been so far limited.
Existing work in a similar area include: Wie et al. (1993),
Balas and Doyle (1994), Yang and Mote (1992). The cited
texts typically use the term ’non-collocated’ to indicate
separately located sensor-actuator pairs. In the context
of the current work, however, the term ’non-collocated’
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vibration suppression shall be restricted to the situation
wherein the vibration absorption device is located at a po-
sition remote from the target mass at which the vibrations
are to be suppressed.

Recently, in Olgac and Jenkins (2021), a benchmark prob-
lem was presented for the active tuning of an absorber to
silence a point on the structure which is remote from the
absorber. Prior to this, in Jenkins and Olgac (2019), the
authors’ team devised a method for actively suppressing
a discrete vibration frequency by identifying a ’resonant
substructure’ which is connected to the target and tuning
the absorber such that the eigenvalues of the substructure
lie on the imaginary axis at the desired frequencies of
suppression. Due to the direct eigenvalue assignment of
the resonant substructure, the substructure behaves as
an ideal absorber and thereby completely suppresses the
desired frequency at the target object. However, as per
Theorem 1 in Jenkins and Olgac (2019), such resonance-
based absorption is not always possible to achieve. Specif-
ically, it was demonstrated in Silm et al. (2021) that this
method of eigenvalue assignment of the resonant substruc-
ture is rendered infeasible in situations wherein it is not
possible to identify such a resonant substructure. Fig. 1
shows a typical example of such a scenario. In these cases,
vibration suppression can be achieved by considering the
force balance at the target mass, and directly assigning the
transmission zeros from the external excitation force to the
position of the target mass. This approach remains consis-
tent with the findings in Miu (1991) and Buhr (1997).

Shifting a zero in the complex plane however impacts the
dynamics of the overall setup due to which the stability of
the closed-loop system must be accounted for. Therefore,
in addition to the absorber, a second controller was added
in Silm et al. (2021) to improve the closed-loop response.
The addition of a second control-loop is, however not ideal
since, in the case of non-collocated suppression the design
of the absorber and the second controller are interdepen-
dent and therefore these must be designed together. This is
unlike the collocated setting wherein the absorber and the
controller can be designed separately. Therefore, a more
appropriate approach would be to use a single controller
which could possibly attain multiple objectives, e.g. in
terms of suppressing a desired vibration frequency as well
as any higher level control task to be performed. As stated
earlier, suppressing a certain frequency of vibration can
be interpreted as placing the transmission zeros of the
target system, while optimizing the controller parameters
to achieve any higher level objective relate to shaping the
closed-loop poles. This leads to a design problem for a
single controller which can be interpreted as a constrained
optimization problem of simultaneous shaping of the poles
and zeros of the system. The article presents a solution to
the above problem using constraint elimination, following
which, the remaining controller parameters are optimized
to achieve the desired control objective.

The next sections are arranged as follows: Section 2 de-
scribes the problem in detail and presents the motivation
towards the specific case. From this, Section 3 lays out
the detailed procedure for controller parameterization fol-
lowing which, in Section 4, the same is implemented and
simulated on a laboratory setup model. Finally, Section 5
provides a conclusion to the article.
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Fig. 1. Mass-spring-damper system excited by an external
vibration force f.

2. PROBLEM STATEMENT

Fig. 1 shows an example setup of the task. In the spring-
mass-damper system shown an external excitation force
f, typically a harmonic disturbance, acts on the mass mg.
The force propagates through the system and excites the
remaining masses causing them to oscillate at the same
frequency. The desired control objective in this example is
to completely suppress vibrations at the target mass mq
while simultaneously achieving a higher level control task,
which we will specify in what follows as having a sufficient
stability margin of the closed-loop system. For instance,
the equivalent of mass m1 could represent a tool tip or the
tip of a surgery robot or a similar device, on which it is
not possible or feasible to attach an absorber. To correctly
suppress the target frequency at this point, the control
effort must be applied remotely using the control inputs
uy and us.

2.1 State-Space Model

To begin with, consider the state-space model of a system
given by

i(t) = Az(t) + Bf(t) + Byu(t)
y(t) = Ca(t) (1)
yl(t) = C’lx(t),

where A € R™*" describes the dynamics, B € R™*! is the
input matrix describing where a vibration force f(t) acts
and C € R " specifies the position of the target mass to
be suppressed. The matrices By € R"*P and C; € R7*"™
are determined by the location of the actuators and sensors
of the static output-feedback controller

ut) = K yi(t —7) (2)

where K € RY*P is the controller gain matrix to be
designed. In order to generalise the problem, we assume
a non-negligible measurement lag, which is represented by
the time delay 7 > 0. Note that for the setup shown in
Fig. 1, the control input u is given by u = [u1 us).

Substituting the controller input (2) in (1) yields the
closed-loop system:
i(t) = Azx(t) + Bf(t) + BiKTCyx(t — 1)

y(t) = Cx(t). ®)
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2.2 Transmission Zeros

Given the system (3) excited by a disturbance f(t) = Fet,
F # 0, the state-response is z(t) = Xe*, X € C. For the
excited system, the transmission zeros are characterized
by any A € C for which f(¢) results in a zero steady-state
output, i.e. y(t) = 0. By substituting y(¢) = 0 in (3), the
imposed conditions can be reformulated as
M —A—-BKTCie ™ —-B| [X] [0 4
C o ||F|=lo]- @

Assuming the system described by the state-space model
in equation (3) is both controllable and observable with f
as the input and y as the output, the transmission zeros
are obtained from the non-trivial solutions of (4) and are
thus represented by

M —A— B KTCie ™ —B
detq & 1e ODO. (5)

For a given frequency of vibration to vanish from the
output, a corresponding pair of transmission zeros must
be located on the imaginary axis. Suppressing m frequen-
cies wq,...,wm, thereby leads to assigning 2m zeros at
locations +jws, ..., £jwy, respectively, each of which must
satisfy equation (5).

2.8 Formulation as an Optimization Problem

It is important to note that in placing zeros the dynamics
of the overall system are changed as a result, which could
lead to instability of the overall setup. Due to this and in
order to achieve the desired higher-level objectives, further
analysis of the closed-loop poles must be carried out. The
characteristic matrix of the closed-loop system is

MO\K)=M—A-B KTCie™, (6)
where \ represents the characteristic roots of the closed-
loop system (3).

For a time-delay system expressed by equation (3) there
exist in general infinitely many characteristic roots. The
condition for ensuring overall stability of the system is that
all characteristic roots are located in the open left half-
plane (Michiels and Niculescu, 2007). Due to the infinite
dimensionality of system (3) and the finite degrees of
freedom of the controller in K, stabilizing the system and
maximizing the decay rate of solutions leads to an opti-
mization problem of minimization of the spectral abscissa
function «(K) subject to constraints on the location of
transmission zeros. This can be restated as follows:

Krerﬁggxp a(K) :=sup(R(A) : det(M (N, K)) =0) (7a)
st. hi(K)=0, i=1,....m (7b)
where

) . ij —A- BlKTCleijwiT —-B
hi(K) = det ([ C 0 .

In formulating the problem as above, we have trans-
formed our physical problem of non-collocated vibration
suppression into a mathematical optimization problem.
Problem (7) is challenging since the objective function is
in general a non-convex function of K and typically not
smooth in the minima (Vanbiervliet et al., 2008), while
the constraints are multi-variable polynomial functions in

K. In this work, we present a procedure to convert the
constrained optimization problem into an unconstrained
one by elimination. Elimination is especially advantageous
in our setting, where it is important that the zero-location
constraints are satisfied without the need to have fully
converged to the minimizers (typically this corresponds to
multiple defective rightmost characteristic roots, which are
highly sensitive). To perform the constraint elimination,
we exploit the property that, in general, the constraints
are affine in a subset of the controller parameters, while
for the single input case they are affine functions of K.
The procedure is detailed in the next section.

3. CONTROLLER DESIGN

In what follows, we distinguish between two cases, the
multi-input case which is universally applicable and the
single-input case.

8.1 Multi-Input Case

Consider a controller for a system with p inputs and
q outputs, the controller gain K is of dimension ¢ X
p. The general idea behind constraint elimination is to
select elements (dependent variables) of the matrix K and
express these elements in terms of the remaining elements
(independent variables) of K.

Controller Parameterization:  The intuition behind our
dependent parameter selection is to transform the non-
linear set of constraints given in (7b) into a set of equations
which are affine in the dependent variables, which can
subsequently be eliminated. This is achieved by selecting
the dependent parameters (equal to the number of placed
zeros), from either a single row or a single column of the
gain matrix K. The procedure for assigning 2m zeros using
a controller with p inputs and g outputs, where 2m < ¢ is
therefore as follows:

(1) Designate 2m elements of the controller gain matrix
K, taken from a single row using 2m column entries
as dependent variables. To simplify the notations in
what follows we will designate the first 2m elements
from the first row, using the first 2m entries of the
gain matrix as g7 = [g1, ..., gam]-

(2) Express the dependent variables as a function of the
independent ones to satisfy the constraints.

(3) With the 2m parameters from the first row fixed
for positioning the zeros, the remaining pg — 2m
parameters can be optimized for the control task at
hand. These independent parameters are represented
by the independent parameter matrix K, where

0 -+ 0 Eiomgr .- kip
k2,1 k2,2m k2,p

KL= . (8)
kq,l kq,2m kq,p

The matrix of the feedback part of the state-space equation
(3) can be written as:

B1KCy = B119(K1) Cy1.0m + BIKECy 9)
where By ; € R™*! denotes the first column of the input

matrix By and C1 1.2, € R*™*" denotes the first 2m rows
of the output matrix C.
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Constraint Elimination:  Positioning the transmission
zeros at the desired locations can be achieved by substitut-
ing wi,...,wn, in the equation h;(K) = 0 from (7), leading
to 2m equations in ¢y, . . ., gam, by which, these dependent
parameters are eliminated. Using the relation from (9)
and by applying the Weinstein—Aronszajn identity, i.e.
det(I —UV) = det(I — VU) to equation (7b), for a single
frequency w; we obtain that

B

det(I - R(wi,KL)fl |: 0 :| gT [Cl,l:2m 0] eijw“—) =0

— 1- gT [01,1:2777, 0} R(wi, KL)71 |:Bé’1:| e*jwi‘r =0

(10)
provided that R is invertible, where
. |Io0 A B BiKTCremiwiT
Rlwi, K1) = jwi {0 o] - [—C 0} - [ 0 0|
Since the entries of K are real-valued, assigning a single

pair of imaginary zeros +jw leads to two equations:
g Rz, Ko)} = R "
9" S{z(wi, Kp)} = S{e/ 7}

where

z(wi, KL) = [Cl’l;gm O] R(wi, KL)71 l:B(l)’1:| .
By means of the above equations, we have effectively
transformed the polynomial constraints in K, to a set of
linear equations in g. For m frequencies to be suppressed,
we can concatenate (11) to obtain a system of linear
equations of the form:

P(Kp)g =Q, (12)
where P € R?™*2™ and @Q € R?™*1,
For a square and invertible matrix P,
9(Kr) = P(Kr)™'Q. (13)

Optimization:  The characteristic matrix of the time-
delay system characterized by (3) is given as:

M (M Kp)=M—-A-B,KI'Cie =By 1g(KL)TC11.0me ™

(14)
using the equations (8) and (9), where A represents the
characteristic roots of the closed-loop system. As laid out
in Section 2.3, for ensuring overall stability the indepen-
dent parameters Ky can be optimized to minimize the
spectral abscissa function

KLHel]g;Xp a1 (K1) :=sup(R(\) : det(M;(\, K1) = 0).
(15)

The above function is a non-smooth, non-convex function.
To solve this problem, we use the MATLAB program
HANSO (Burke et al., 2005) for optimization. The method
uses BFGS method with weak Wolfe line search and gradi-
ent sampling. It relies on computing the rightmost eigen-
values along with the derivatives of the objective function
with respect to the controller parameters, wherever the
derivatives exist (Michiels et al., 2010). The rightmost
eigenvalues are computed using the package Software for
analysis and control of time-delay system, from Michiels
(2011). An entry to the gradient of the above equation,
whenever it exists, can be computed using:

i w gl
Ak o onn, (16)
] w Wﬂ

where w and v are the left and right eigenvectors of the
characteristic matrix M; respectively and k;; denotes an
entry from the free parameter matrix K. From equation
(13), it is clear that g itself is a function of the independent
parameters K, and thus, the derivative of this term in the
equation (14) is obtained by using the chain rule.

3.2 Single-Input Case

For a single input controller, the original constraints
(7b) are already affine in the controller parameters K.
The adopted approach is similar to the one presented in
Michiels et al. (2010), wherein algebraic techniques for
direct assignment of right-most poles were devised. In this
article, the approach is extended to the case of direct
assignment of the transmission zeros for suppressing a
target vibration frequency.

Constraint Elimination: For a single-input controller we
have K € R? with ¢ > 2m. For each frequency to be
suppressed, the constraints h;(w) = 0 from equation (7)
can be reduced to the following:

B,

det(I — R(w;)™* [ 0

] KT [Cy 0]e™ %™y =0

— 1-K"[C; 0] R(w;)™! [%1] e IT =0 (17)
by applying the Weinstein-Aronszajn identity (provided R

- . . |10 AB
is invertible) where R(w;) = jw; [0 0} — [C 0]_
Assignment of a pair of zeros thus leads to two equations
in K: ‘
RIKT 2(w;)} = R{e?¥7}

HET (w0} = ST "

where
1 | B .
z(w;) = [C1 0] R(w;) ol i=1....m
Therefore, for m pairs of imaginary zeros placed at loca-
tions +jwy, ..., Tjwm,, we obtain 2m linear equations in K

which can be expressed in the form
PK =Q
where P € R?™*4 and @) € R?™*1,

(19)

The above equation (19) is an underdetermined system of
equations in K and generically all solutions to (19) can be
expressed as

K=Ky+GL (20)
where Ky € R?*!, G € R1¥9=2m [, ¢ RI=2mx1 Here, Ky
and G are fixed, while L represents the free parameters.

Optimization:  The optimization follows a similar pro-
cedure as with the multi-input case. Using (20) the con-
straints are automatically satisfied. We then minimize the
spectral abscissa

&(L) := sup(R(\) : det(M(A, L)) = 0)
where
My(\, L) =M — A— BiKICe ™ — BILTGTCre™".
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4. NUMERICAL EXPERIMENTS

To validate the above procedure, we apply the algorithm
to a simulated setup shown in Fig. 1. The masses, spring
constants and damping coefficients of the elements in the
setup are shown in Table 1. Here, the target mass to
be suppressed is the mass m; and the target frequency
of suppression is 19 rad/s. The state variable x and the
system state, input and output matrices A (given on the
bottom of this page), B, C are:

. . . . T
x=[zo Lo X1 T1 T2 T2 Tq Lo

B:[Om%)OOOOOO}T,C:[()OlOOOOO]T.
4.1 Controller Design with Multiple Inputs

The control input and output matrices for the multi-input
controller are given by:

00100000
L 00010000

B _[00000-207-1" 100001000
7100000 2= 00 7' |00000100(
’ 00000010

00000001

Using the above data, we parameterize the controller gain
K using the procedure described in Section 3.1. Fig.
2 shows the pole-zero plot of the overall system after
optimization with dependent parameters corresponding to
input u; and outputs x,,2,. We see that the zeros are
indeed placed correctly and the rightmost eigenvalues lie
in the left half-plane. Fig. 4 shows the simulated output
of the displacement of target mass m; upon excitation by
external force f(t). The controller is turned on at t = 10s
at which point, we see that the vibration is completely
suppressed at the output.

4.2 Controller Design with Single-Input

For the single-input case, the input control force is applied
on the mass my only. The input matrix By is:
B,=[00000--00]"
while the output matrix C; is the same as in the multi-
input case. The controller gain K is parameterized using
the procedure outlined in Section 3.2. The results of the
optimization can be seen from the pole-zero plot in Fig. 3.

The plots show that the zeros are indeed placed correctly
meaning that the vibrations of frequency 19rad/s are
correctly suppressed. The advantage of using a single input
controller is that with this controller both objectives viz.
suppressing a given frequency as well as any other higher
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Fig. 2. Pole-Zero plots for the multi-input case. The plot
shows the optimized poles and zeros, based on the
selection of the dependent parameters
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Fig. 3. Pole-Zero plot for the single-input case

level control objective are simultaneously fulfilled using
a single input. Additionally, unlike the multi-input case,
dependent parameters for placing the zeros do not need to
be preselected as the constraints are already affine in all
variables. A drawback of using the single-input controller is
that it has a smaller number of degrees of freedom. For this
reason, a smaller spectral abscissa could be reached with
the controller steering two different inputs. On comparing
the spectral abscissa function of the two, it is evident
that the multi-input case yields far better results due
to the greater number of free parameters available for
optimization.
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Table 1. Parameter values

1 1

Mass in kg Stiffness in Nm™ Damping in Nsm™
Mg 0.5 ka 400 Ca 1.9
mo 1 ko 410 co 2.1
mq 0.5 k1 1450 c1 4.9
ma 1.15 ko 380 c2 2.2

k3 405 c3 2
kp 1500 cp 5
. Disturbance w(t)
2
z
3o
e
2
4 . . . . . . . . .
0 2 4 6 8 10 12 14 16 18 20
Time (s)
107 State x(t) using outputs z,, &,
6F ! ! T : : T
=
Eo
8
&
a4
s .
0 2 4 6 8 10 12 14 16 18 20
Time (s)

Fig. 4. Displacement of target mass m; subject to external
excitation force f acting on mass mg. The multi-input
controller with dependent parameters corresponding
to input uy and outputs z,, &, is turned on at t = 10s.

5. CONCLUSION

A procedure for controller parameterization applied to
non-collocated vibration suppression is presented in this
article. The method involves solving a constrained opti-
mization problem by constraint elimination. Future work
in this topic is the study of the optimal selection of de-
pendent and independent parameters for the multi-input
setup. Experimental verification of the above concept is
also planned as one of the next steps as part of the research
work.
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