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Abstract

In the domain of knowledge representation and reasoning, one studies knowl-
edge: what types of knowledge there are, how often these are used, how they
can be expressed in a formal language, etc. An important goal of knowledge rep-
resentation is to develop formal languages (logics) that can be used to express
a wide range of problems, to develop automated reasoning methods for these
languages, and to develop efficient implementations of these reasoning methods.

ID-logic is a knowledge representation language that extends classical logic
with inductive definitions. It can express a large variety of practical problems
in an intuitive way, and has therefore been promoted as a useful knowledge
representation language.

Model generation is a very general and widely applicable automated reason-
ing method. The topic of this dissertation is propositional model generation for
ID-logic. As such, this work offers an important contribution to the development
of automated reasoning methods for ID-logic.

The main part of this dissertation is concerned with the propositional frag-
ment of ID-logic, called PC(ID), and with model generation algorithms for it.
We provide two alternative semantical characterizations of PC(ID), both of
which yield important insights into the underlying structure of PC(ID) theories,
and both of which therefore contribute to the understanding of the model gen-
eration task for PC(ID). Also, the second characterization offers a vocabulary-
preserving transformation of PC(ID) theories to propositional logic.

We then study practical model generation algorithms for PC(ID). We discuss
a number of possible strategies, provide various propagation rules, and present
algorithms for these rules. We have also implemented a propositional model
generator for PC(ID).

The rest of the dissertation is concerned with ID-logic itself. We discuss a
methodology of knowledge representation in ID-logic and provide some exam-
ples. We also extend ID-logic with aggregate expressions, thereby extending the
applicability of model generation for ID-logic. We study propositional model
generation algorithms for this extension, and have implemented such algorithms.
Finally, we compare ID-logic to a related formalism, namely ASP, and provide
a transformation of ID-logic theories to ASP theories.
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Chapter 1

Introduction

This thesis deals with the topic of model generation for ID-logic. ID-logic is a
formal language: it extends classical logic with inductive definitions. It has been
promoted as a useful knowledge representation language. Model generation is a
quite general type of reasoning that can be applied to a wide variety of practical
computational problems. We elaborate on these claims further on.

Without going into the formal specifics, we illustrate some of the topics of
this thesis with an informal example, based on an example from Mumick et al.
(1990).

Example 1.1. (Company control) A large company A wants to acquire control
over a company B via the stock-market. It will have control when the sum
of shares of B that are in A’s control exceeds 50%; the shares in A’s control
are those that A owns, and those that other companies that are controlled by
A own. Thus, if A controls a third company C, then the shares that C owns
of B contribute to A’s potential control over B. Additional relevant domain
knowledge is that the total number of shares of a company is 100%, as well as
some concrete data: A owns 20% of its own shares, B owns 10% of C’s shares,
and C owns 40% of A’s shares.

There may be several solutions for A to gain control of B: A may buy new
shares in B, or it may buy shares in other companies that possess shares in
B. Different solutions have different costs and may differ also on other more
strategic aspects (e.g., A may want to avoid buying shares in B, to hide its
intentions). Thus, A is interested in viewing different solutions to evaluate
them along several criteria.

We illustrate the use of ID-logic and the method of problem solving by means
of model generation in the context of this problem. The first step of this method
is to describe the knowledge of this domain. The crucial concept in this problem
is that of control. This is a nice example of a recursively defined concept. In
ID-logic, this concept is expressed by the following definition:

v,y (Controls(z,y) « Sum{s,z| (z=2zV Controls(z, z)) (1.1)
ANOwns(z,y) = s} > 50) '

1
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26%
20% \/ A< = T=B Q 49%
40% /
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40% \ /// 10%
C
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Figure 1.1: A shareholdership function for Example 1.1

Informally, this definition reads: “Company x controls company y if the sum of
shares s of y controlled by z, i.e. those that x itself owns and those that other
companies z controlled by x own, exceeds 50.” Note that this definition contains
a sum aggregate. The summation is over a multiset of values s; we have denoted
this multiset by the set of tuples (s, z).

We express also the additional domain knowledge, and the assertion that A
should control B, as ID-logic formulas:

Ve Sum{s,z | s = Owns(z,c)} = 100,
Owns(A,A) = 20,

Owns(B, C) = 10,

Owns(C, A) = 40,

Controls(A, B).

AA,.\,.\A
—_ = e e
S U s W N
NN NN N

We have now expressed the relevant knowledge in a formal ID-logic theory
(formulas (1.1)—(1.6)). The next (and final) step of the problem solving method
is to compute solutions for this theory, i.e., situations in which all requirements
are satisfied. This can be done using the techniques developed in this thesis.

One of the possible solutions is shown in Figure 1.1. Indeed, this ownership
function makes sure that each of (1.1)—(1.6) is satisfied. This solution is repre-
sented in logic as a model, M, of the theory (1.1)—(1.6). M’s domain is the set
of companies {A, B, C} and values {0,1,...,100}, and M interprets Owns as

(A A) — 20, (B,A) — 40, (C,A) — 40,
(A,B) — 26, (B,B) — 49, (C,B) — 25,
(A, C) — 60, (B,C) — 10, (C,C) — 30,
and Controls as
(AA), (A, B), (A, Q).

A controls C because it has 60% of its shares. Therefore, it controls 26%+25% =
51% of B’s shares, and therefore A controls B as well. Therefore A controls all
of its own shares, hence it controls itself. B and C control nobody.
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1.1 General background and goal of the thesis

This thesis falls within the broader research area of knowledge representation
and reasoning (KR&R). In this domain, one studies knowledge: what types of
knowledge there are, how they are used, how they can be expressed in a formal
language, etc. An important goal of this field is to develop formal languages
(logics) that can be used to express a wide range of problem domains, to de-
velop automated reasoning methods for these languages, and to develop efficient
implementations of these reasoning methods. This goal is an important step to-
wards declarative problem solving: a method of (computational) problem solving
whereby the human expert declares his knowledge of the problem in a formal
specification (theory), and then simply applies a program that implements the
appropriate automated reasoning task to this theory, to solve the problem.

First-order logic (FO) is an example of a well-known and widely used KR
language. It has many assets: it is very expressive, has a clear and objective
informal semantics which corresponds to its formal semantics, and since it is so
widely studied, there exist many types of reasoning for it. Examples include
deductive reasoning, implemented by theorem provers, querying, implemented
amongst others by SQL database systems, and model generation, implemented
by model generators or satisfiability solvers.

A type of knowledge that is used frequently throughout mathematics, and
that is present in almost any non-trivial domain, is definitional knowledge. De-
spite the expressivity of FO, it cannot express some sorts of definitional knowl-
edge, namely inductive definitions. We give two examples of inductive defini-
tions that cannot be expressed in FO:!

e the transitive closure TC (reachability) of an arbitrary binary relation R.
It is usually defined inductively by the following two rules:

— a tuple (z,y) is in TC if it is in R;
— a tuple (z,y) is in T'C if there is some z such that both (z,z) and
(z,y) are in T'C.

This definition is inductive because the second rule makes use of the con-
cept being defined: (z,y) isin TC if ... are in T'C;

e the control relation from Example 1.1: it defines which company controls
which other company in terms of the ownership function, and the control
relation itself.

It is therefore natural from a KR point of view to extend FO with a formal
language construct to express definitional knowledge. This is precisely what
ID-logic does. It offers a syntax and a formal semantics to express inductive

IThe fact that transitive closure cannot be expressed in FO is well-known (e.g., Libkin,
2004, Proposition 3.1). The fact that the control relation cannot be expressed in FO is an
easy consequence: let R be an arbitrary relation, then if we construct the Owns function such
that for any (a,b) € R, Owns(a,b) = 51 and for any (a,b) € R, Owns(a,b) = 0, the Controls
relation as defined in (1.1) is the transitive closure of R.
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definitions (IDs); this formal semantics corresponds to the informal semantics
of definitions as used in mathematics (Denecker, 1998). Hence, ID-logic ex-
tends first-order logic with inductive definitions. ID-logic was originally defined
by Denecker (2000), and further developed by Denecker and Ternovska (2004,
2008). It has been shown to be a useful language for knowledge representation,
for instance by Denecker and Ternovska (2007).

Other language constructs that enhance modelling flexibility can be added
to FO, or to ID-logic, as well. This has been done with aggregate expressions
such as the sum aggregate in Example 1.1 by Pelov et al. (2007).

The semantics of ID-logic is specified as an extension of the standard model-
theoretic semantics of FO. A model describes a situation of the specification’s
domain that satisfies all requirements of the specification. For instance, in
the company control example (Example 1.1), the model M specifies a situation
representing a particular state of shareholdership, and the corresponding control
relation. Examples where it is useful to find a model of a given theory abound.
We elaborate on practical application areas in Section 1.1.2, and sketch a simple
example here. Consider a course scheduling problem: we can describe in an ID-
logic theory that different courses should be taught at different moments, that
they should be taught in classrooms that are big enough to hold all subscribers to
the course, etc. The desired solution is a schedule that satisfies all requirements:
each model of the ID-logic theory describes such a schedule.

Hence, an important goal of the KR&R research group of Leuven is to de-
velop the automated reasoning method finite model generation for ID-logic, and
to develop efficient algorithms and implementations for it. With this purpose, we
have developed a system called IDP in close collaboration with Johan Wittocx.
This system can handle finite model generation for full first-order logic—and
for ID-logic with aggregate expressions, which extends first-order logic.

In the current state of the art, finite model generation problems are often
solved—e.g., in the IDP system—in two phases:

1. a grounding phase, in which a given first-order theory and a finite domain
are reduced to an equivalent variable-free, or propositional, theory;

2. a propositional model generation phase, in which the models of a given
propositional theory are computed.

This thesis has the second phase, propositional model generation for ID-logic,
as its main topic.

The propositional fragment of FO is called propositional calculus (PC); that
of ID-logic is called PC(ID). The model generation problem for PC is in practice
equivalent to the satisfiability problem for PC, which is called SAT. Likewise, the
model generation problem for PC(ID) (in other words, the propositional model
generation problem for ID-logic) is called SAT(ID). Thus, this thesis seeks to
develop techniques to solve the SAT(ID) problem.

The research domain of SAT has thrived in recent years; many highly efficient
“SAT solvers” have been developed (see, e.g., Mitchell, 2005). We therefore
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realize the goal of this thesis by eztending such SAT solvers with techniques to
handle inductive definitions (IDs) and aggregate expressions.

1.1.1 Significance of ID-logic in knowledge representation

The type of knowledge under consideration in this work, and representable in ID-
logic, can be described as precise and discrete knowledge. However, in practical
settings of knowledge representation, precise information is often lacking. This
phenomenon has been the motivation for the research areas of nonmonotonic
and common-sense reasoning. Nevertheless, inductive definitions have a relevant
role to play in some of the most important common-sense knowledge principles.

One of the first nonmonotonic reasoning principles to be investigated was
the Domain Closure Assumption by Reiter (1982). It is the assumption that
the domain of discourse contains no other objects than those named by ground
terms. This assumption cannot be expressed in classical first-order logic, but
it can be in ID-logic, as we demonstrate in Section 3.1.6. The Domain Closure
Assumption is often applied in combination with the Unique Name Azioms by
Reiter (1980), which express that different terms represent different objects.
This combination is implicitly present in logics with Herbrand model semantics
(cf. Section 2.2.1), such as logic programming.

An important principle of default reasoning is the Closed- World Assumption
(CWA) by Reiter (1977), which assumes any proposition to be false unless it can
be proven from the given theory. Typically this principle is applied to a theory as
a whole. ID-logic, in contrast, is suitable to model such defaults in a localized
way, namely within inductive definitions. Indeed, when a definition contains
no undefined symbols, we can interpret it as a set of material implications aug-
mented with the CWA, instead of the standard view of a set of definitional rules.
The principle of CWA also led to the development of the Local Closed-World
Assumption (Cortés Calabuig, 2008), which applies a closed-world assumption
on a well-defined domain, and an open-world assumption elsewhere. Also this
assumption can suitably be expressed in ID-logic.

Temporal reasoning is a major subdiscipline of KR&R. Inductive definitions
have an important contribution to offer to this field. This was illustrated by
Denecker and Ternovska (2007), who formalized in ID-logic the most general
representation to date of Situation Calculus. Involving iterated inductive defi-
nitions, this representation could correctly deal with arbitrary ramifications of
actions.

Closely related to the previous, also causal knowledge has been widely stud-
ied in KR&R. The Situation Calculus formalisation of (Denecker and Ternovska,
2007) builds on the observation that the construction process of an inductive
definition formally mimics the physical process of the propagation of causes and
effects in a dynamic system. Also CP-logic (Vennekens, 2007), a logic for rep-
resenting causal processes, is based on the same construction process, using the
well-founded semantics.

Finally, ID-logic extends FO, which can be considered the best-known logic
for knowledge representation; many other logics have been compared to FO.
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1.1.2 Application areas

Examples of problems on which finite model generation has been applied with
great success are many and come both from industry and from academia. They
include various types of electronic design analysis such as hardware testing and
verification (Gupta et al., 2006), logic synthesis, FPGA routing (Nam et al.,
1999); of software analysis methods such as formal verification (Prasad et al.,
2005) and computer aided verification (Heljanko and Niemela, 2003; Gupta and
Malik, 2008); artificial intelligence domains such as planning (Kautz and Sel-
man, 1992), diagnostic reasoning (Balduccini and Gelfond, 2003), decision sup-
port (Nogueira et al., 2001); and domains from other sciences such as biology
(Erdem and Tiire, 2008), linguistics (Konczak and Vogel, 2005), and many oth-
ers. The referenced works are but a minimal selection of the vast body of work
that discusses applications of finite model generation.

We clarify the methodology of problem solving by means of finite model gen-
eration by elaborating on a concrete example. It concerns a decision support
system by Nogueira et al. (2001) for the NASA’s space shuttle. The reaction
control system (RCS) of the space shuttle is the system responsible for perform-
ing precise manoeuvers in space. It consists both of mechanical components such
as fuel and oxidizer tanks, plumbing, valves and jets, and of electronic circuitry
to control the valves and direct the jets. All components are subject to failure,
e.g., valves can get stuck. The space shuttle has built-in redundancy to cope
with such failures. However, finding a suitable plan to correctly manoeuver the
space shuttle even in the presence of failures is a complex task. Nogueira et al.
solved this task by formally modelling the RCS’s functionality as a Stable logic
program. Given a set of failures and a manoeuvering goal, the computational
task of finding a suitable plan can then be solved by finding finite models of
that program.

We show part of such a formal model of the RCS’s functionality.? The
plumbing system consists of nodes connected by pipes. Such nodes can be tanks
containing helium or propellant fuel, junctions between the pipes, and jets.
Pipes may or may not have a valve, that can be open or closed at any timepoint
(depending on whether or not they are stuck, and depending on the instructions
issued by an astronaut, e.g. by pressing a button, which is connected to the valve
through electronic circuitry). Any node or any valve might contain a leak. We
first represent which nodes are linked, i.e., between which nodes fluids can flow
uninterruptedly.

VYni,ne,t Linked(ni, ng,t) «—
—Leaking(n,) A —~Leaking(nz)A
(Pipe(nl, ng)V (1.7)
(Jv PipeWithValve(ny, n2,v)A
Position(v,t) = Open A —\Leaking(v)))

20ur representation here slightly deviates from the one in (Nogueira et al., 2001), but the
essence is the same.
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Definition (1.7) defines nodes n; and ny to be linked at (discrete) timepoint ¢,
if neither of them contains a leak, and they are connected by a direct pipe, or
by a pipe that contains a non-leaking valve that is open at time ¢. Using this
concept, it is straightforward to define whether a fluid can reach from n; to ns
at time ¢:

VYni,ng,t CanReach(ny,no,t) «— Linked(ni,na,t),
Vni,ne,t CanReach(ny,na,t) < Ing CanReach(ny,ns, t)A 3. (1.8)
Linked(ns, na, t)

Definition (1.8) defines that a fluid can reach from n4 to ns at time ¢ if they are
linked at that time, or if a fluid can reach from n; some intermediate node ns
at time ¢, which itself is linked to ny at time t.

Propellant tanks may need to be pressurized at certain timepoints: this is
the case when helium from a helium tank can reach the propellant tank.

Vhik, ptk,t Pressurizes(htk,ptk,t) «— HeliumTank(htk)A
PropellantTank(ptk)A (1.9)
CanReach(htk, ptk,t)

“

Finally, we can describe constraints on the plumbing system, such as “a
tank should never be pressurized through two different helium tanks at the
same time”. We can use the previously defined concept Pressurizes to express
this constraint:

Vptk,t PropellantTank(ptk) D
ﬁ(ﬂ htky, htke htky # htko A Pressurizes(htky, ptk,t)A
Pressurizes(htks, ptk, t)) (1.10)

The formal theory modelling all of the RCS’s functionality contains many
more similar definitions and constraints. Certain input data for this theory is
fixed, such as the layout of the plumbing system (which nodes are helium tanks,
which are junctions, between which nodes there are pipes, etc.); certain input
data varies over different flights of the space shuttle, such as which nodes are
leaking, which valves are stuck, and which manoeuver is desired. The theory
augmented with the (finite) input data may have a number of (finite) models.
Any such model describes concrete relations and functions for all the concepts in
the theory, e.g., it describes per valve when it is open, it describes for all nodes
ny and ng when a fluid can reach from n; to ng, etc. Some of these relations
represent a plan (a sequence of instructions issued by an astronaut) that will
execute the desired manoeuver correctly, even in the presence of faults. If there
is no such model, there does not exist a correct plan.

Thus, the methodology is as follows:

e a knowledge engineer (in the example, engineers from NASA) models the
problem domain in a formal theory;

e for a specific problem in the domain, the specific input data is gathered;
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e the specific problem is solved by automatically generating (a) model(s) of
the given theory and data.

The advantage of this approach towards computational problem solving lies
in the fact that the complex domain knowledge of the problem at hand is repre-
sented in a declarative way. This causes solutions to be elaboration tolerant with
respect to changes in the domain knowledge, and in general significantly sim-
pler, smaller and more flexible than those produced by “direct” approaches—(ad
hoc) imperative implementations of (ad hoc) algorithms for solving the compu-
tational problem. For instance, Boenn et al. (2008) report on their experience
with automatic composition of melodic and harmonic music: two previous di-
rect approaches resulted in programs of respectively 8,000 and 88,000 lines of
(imperative) code, whereas the declarative approach using finite model gener-
ation by Boenn et al. yielded a logic theory of 191 lines, augmented with 500
lines of scripting code to provide desired functionality such as creating actual
audio files.

1.2 Contributions

The first part of the thesis is a semantical study of propositional inductive defi-
nitions (hence of PC(ID)) from the viewpoint of model generation. We provide
two independent alternative characterizations of the semantics of propositional
inductive definitions. The first is based on justification semantics (Denecker
and De Schreye, 1993), the second on loop formula semantics (Lin and Zhao,
2004). These two semantics will prove essential for developing the algorithms
later on in this thesis. These characterizations provide an alternative to the
model-theoretic semantics of PC(ID).

Based on these results, we develop algorithms to solve the SAT(ID) prob-
lem. More precisely, we develop algorithms for reasoning on PC(ID) theories,
and study how to integrate them in current SAT solvers. We use a framework by
Nieuwenhuis et al. (2006) to discuss different strategies for solving the SAT(ID)
problem, and explain how our algorithms can be used to implement those strate-
gies. We implement a SAT(ID) solver, called MINISAT(ID), as an extension of
the SAT solver MINISAT (Eén and Sérensson, 2003), and we illustrate that it
has state-of-the-art performance.

We then discuss a further extension of ID-logic with aggregate expressions.
We use a semantics developed by Pelov et al. (2007) that provides a natural
extension of the semantics of inductive definitions used in ID-logic. This exten-
sion further enhances the applicability of ID-logic model generation. We also
develop algorithms to solve the corresponding extended satisfiability problem.

Finally, we make a comparison of ID-logic and Answer Set Programming
(ASP) (see, e.g., Niemeld, 1999), or more precisely, of ID-logic and Stable logic
programs. This logic is closely related to ID-logic. Therefore we relate our work
to ASP—and we do so also throughout the rest of the thesis.

We summarize our contributions:
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. a characterization of propositional IDs using justifications, and one using

loop formulas;

. several algorithms to solve the SAT(ID) problem;
. an implementation of some of these algorithms;

. algorithms to solve the SAT(ID) problem extended with aggregate expres-

sions under Pelov et al.’s semantics;

a detailed comparison of ID-logic and Stable logic programs.

This work has profited from a collaboration with colleague Johan Wittocx.
Especially, initial understanding of the properties of justifications (Chapter 4)
and of the BwLoop algorithm (Chapter 5) was gained through this collaboration.
However, all technical contributions of Chapters 4-7—definitions, propositions,
proofs—are the author’s contribution.

1.3 Structure of the text

The text is structured as follows:

e Chapter 2 introduces the background required for the rest of the text: it

introduces first-order logic, logic programming under the stable semantics
and under the well-founded semantics, and ID-logic.

In Chapter 3 we present ID-logic from a knowledge representation point
of view: we give examples and provide some methodological principles of
modelling in ID-logic. We then discuss the IDP system, and make the
bridge to the rest of the thesis by briefly explaining the grounding phase.
Some of the contributions in this chapter were published in (Marién,
Gilis, and Denecker, 2004; Marién, Wittocx, and Denecker, 2006; Wit-
tocx, Marién, and Denecker, 2008c).

Chapter 4 provides two different characterizations of the semantics of
propositional IDs: one in justification semantics, the other in loop for-
mula semantics. The contributions in this chapter regarding justifications
have been published in (Marién, Mitra, Denecker, and Bruynooghe, 2005;
Marién, Wittocx, and Denecker, 2007b; Marién, Wittocx, Denecker, and
Bruynooghe, 2008); the contributions regarding loop formulas have not
been published before.

We develop algorithms for the SAT(ID) problem in Chapter 5. We present
these algorithms in Nieuwenhuis et al.’s framework, which enables us to
discuss different strategies for solving the SAT(ID) problem. We present
the SAT(ID) solver MINISAT(ID), provide experimental results to evalu-
ate some of the possible strategies, and evaluate MINISAT(ID)’s perfor-
mance. Most contributions in this chapter have been published in (Marién,
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Mitra, Denecker, and Bruynooghe, 2005; Marién, Wittocx, and Denecker,
2007a,b; Marién, Wittocx, Denecker, and Bruynooghe, 2008).

e In Chapter 6 we provide algorithms for the SAT(ID) problem extended
with aggregate expressions under Pelov et al.’s semantics. These contri-
butions have not been published before.

e In Chapter 7 we compare ID-logic and Stable logic programs as knowl-
edge representation languages. We provide a transformation from ID-logic
theories to Stable logic programs, and vice versa. We also briefly com-
pare two methods for finite model generation: Herbrand model generation
and model expansion. The contributions in this chapter were published
in (Marién, Gilis, and Denecker, 2004; Marién, Wittocx, and Denecker,
2006).

e Finally, we summarize the results of this thesis and conclude in Chapter 8.



Chapter 2

Preliminaries

2.1 Introduction

In this chapter we introduce concepts from the domains of classical logic and
of logic programming that will be used throughout the rest of the thesis. In
particular, we define several logics.

A logic consists of a syntax and a semantics. The syntax is specified by
defining what constitutes a well-formed statement, or theory, in the logic; the
semantics is given by defining what constitutes a model of a given well-formed
statement. A third component of a logic is informal in nature and is not always
stated: its informal semantics. It describes how a well-formed statement in the
logic should be read, and therefore how it can intuitively be understood.

The logics that we define here are classical first-order logic, logic program-
ming under the well-founded semantics and under the stable semantics, and
ID-logic. Stable logic programs is defined as a particular sublogic of logic pro-
gramming under the stable semantics.

In this chapter we give a non-constructive characterization of models of ID-
logic theories. In later chapters we will provide algorithms to construct, or
generate, such models.

2.2 Classical logic

We begin by recalling some essential concepts from classical logic; for a full
exposition, see, e.g., (Enderton, 2001).

A wocabulary, which we will often denote by X, is a set of variables, and
predicate and function symbols, each with an associated arity. We often denote
a symbol S with arity n by S/n. 0-ary function symbols are called constants;
variables and constants are called object symbols. A term is inductively defined
as either an object symbol or an expression of the form F(¢1,...,t,), where F'
is an n-ary function symbol, and all the ¢; are terms. An atom is an expression

11
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of the form P(t1,...,t,), where P is an n-ary predicate symbol, and all the t;
are terms.

A vocabulary is called propositional if it consists only of O-ary predicate
symbols (“propositions”).

The set of first-order logic (FO) formulas is inductively defined as:

e an atom is an FO formula;
o if v is an FO formula, then so is —;
o if ©, 1) are FO formulas, then so is ¢ V ;

e if v is an FO formula and z is a variable, then 3z ¢ is an FO formula.
Occurrences of x in ¢ are said to be in the scope of the quantifier Jz.

We use the following standard abbreviations: @A) for =(—pV-1), ¢ D ¥ for
—pVh, p = for (o D PY)A (Y D ¢), and Va ¢ for ~(Iz —p). Also, we abbreviate
Nscss by NS, and \/ .gs by \/ S. A literal is an atom P(ty,...,t,) or its
negation —P(t1,...,t,), called respectively a positive and a negative literal.
For a literal [, we identify ——l with . For a set of literals S, we denote by S
the set {—l |l € S}, and by S the set SU S.

The informal reading of an FO formula is well-known: “A” means “and”
(conjunction), “V” means “or” (disjunction), “Jz” means “there exists an z
such that”, etc.

A variable x is a free variable of a formula ¢ if & appears in ¢, and is not in
the scope of a quantifier. An FO sentence is a closed formula, i.e., one without
free variables. An FO theory is a set of FO sentences. For a theory T, we
denote its vocabulary by vocab(T). We say that T is a theory over vocabulary
Y if vocab(T) C X. A finite theory is formally equivalent to one sentence,
consisting of the conjunction of all sentences of the theory.

Example 2.1. Let ¥ contain the constant symbol Philosopher and the predi-
cate symbols Man/1 and Mortal/1. In this vocabulary we can describe prop-
erties of men and of mortals, and of one philosopher. Then the following is a
well-formed FO theory over X:

| Man(Philosopher),

o= Ve Man(x) D Mortal(z) |’

The informal reading of the two sentences of T5 1 is “the philosopher is a man”
and “all objects that are men are mortal”.

Let ¥ be a vocabulary. A Y-interpretation I, or simply interpretation if 3
is clear from the context, consists of a domain dom(I), and an interpretation of
each predicate and function symbol S of ¥, denoted S'. An interpretation of
an object symbol o € ¥ is a domain element d € dom(7); an interpretation of a
predicate symbol P/n € ¥ is an n-ary relation on dom(7); an interpretation of a
function symbol F/n € ¥ is an n-ary function on dom(/). An interpretation can
be understood as denoting a state of the described domain. A pre-interpretation
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of ¥ consists of a domain and an interpretation of all object and function symbols
of 3.

Throughout the text, we implicitly assume =/2 to be part of any non-
propositional vocabulary; it is an interpreted predicate symbol that always rep-
resents the identity relation in the domain, i.e., =/27 = {(d,d) | d € dom([)},
for any interpretation I. We use =/2 in infix-notation.

Example 2.2. Example 2.1 continued. Consider the Y-interpretation I3
with domain {Snoopy, Socrates} that interprets Philosopher!22 = Socrates,
Man'22 = {Socrates}, and Mortal’>2 = {Snoopy, Socrates}. This interpre-
tation describes a world with two objects, called Snoopy and Socrates, and with
the properties that Socrates is a man but Snoopy is not, and both are mortals,
and where the object symbol Philosopher denotes Socrates.

We use the following alternative terminology and notation. We represent
the truth value true by t, and false by f. For a given vocabulary ¥ and in-
terpretation I, a domain atom is of the form P(d), where P/n is a predicate
symbol of ¥, and d € dom™(I). We denote by I(P(d)) = t that d € P! and by

I(P(d)) = f that d ¢ P'.

Example 2.3. Examples 2.1 and 2.2 continued. We have the following truth
values in I o:

I52(Man(Socrates)) =t Iy 2(Mortal(Socrates)) =t
I o(Man(Snoopy)) = f Ir2(Mortal(Snoopy)) = t.

We sometimes restrict a Y-interpretation I to a vocabulary ¢ C X. This
restriction, denoted I|,, is the o-interpretation with the same domain as I,
and same interpretations on all symbols of . Conversely, we may extend a
o-interpretation to a X-interpretation. A special case is when o consists of all
object and function symbols of ¥: thus we may extend a pre-interpretation of
Y to a X-interpretation.

For an arbitrary term t and interpretation I, we denote by t/ the domain
element of if ¢ is an object symbol o, and the domain element F! (¢! ... ) if
tis a term F(t1,...,t,). We extend the notation ¢! to tuples of terms 7. If T
is a tuple of variables of ¥, n = |Z| and d € dom"(I), we denote by I[Z/d] the
interpretation that has the same domain as I, interprets T = (z1,...,2,) by
d= (di,...,dy), and coincides with I on all other symbols.

Example 2.4. Consider a vocabulary ¥ that includes a function symbol Fib/1
and the constant symbol Zero. Consider also an interpretation I with domain
dom(I) = N that interprets Zero by the natural number 0, and Fib/1 by the
Fibonacci function f : N — N defined by

(n) = 1 ifn=0orn=1,
=Y fn—1)+ fn—2) ifn>1.
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As an example, we give the meaning of the term Fib(F'ib(Zero)) in I. It is

(Fib(Fib(Zero)))' = Fib! (Fib! (Zero"))
= Fib! (Fib! (0))
= Fib' (1)
~ 1.

We inductively define when an interpretation I satisfies an FO formula ¢,
or I is a model of p, denoted I = ¢:

o I =P ift € Pl

o [=pVvyifl Eyporl k=1,

o I'|E—pif I = ¢

o [ |=3Jx ¢ if there exists a d € dom([I) for which I[z/d] |= ¢.

We also denote I = ¢ by I(p) = ¢, and I |£ ¢ by I(¢) = f. For a theory
T,1=Tiff I = ¢ for every sentence ¢ € T; I is said to be a model of T.
For theories or sentences , 1, we define that ¢ entails 1, denoted ¢ = 1, iff
for every model I of ¢, also I = ¢ holds. This notation generalizes also the
notation for validity of a sentence p: by | ¢ we mean §) = ¢, i.e., @ is valid.

Example 2.5. Examples 2.1-2.3 continued. We have that Iy | T51. This
means that Is o denotes a possible state of the world described by T'.

Indeed, I, = Man(Philosopher), because Philosopher’22 = Socrates,
and Socrates € Man!22. Also Iy» = Vo Man(z) D Mortal(z), because for
each domain element d € dom(ls2), I22[z/d] = Man(z) DO Mortal(x). We
illustrate this: for d = Snoopy, Iss[x/Snoopy] = Man(z) D Mortal(z) be-
cause Snoopy & Man'22, hence the implication is satisfied; for d = Socrates,
Iy o[z /Socrates] = Man(x) D Mortal(z) because both Socrates € Man'22 and
Socrates € Mortal’>2, hence the implication is again satisfied.

The informal meaning of 751, “the philosopher is a man, and all men are
mortal”, is also satisfied by Is 5.

Example 2.6. Examples 2.1-2.3 and 2.5 continued. We illustrate also the
concept of entailment. We have that

Man(Philosopher) A (Vo Man(z) > Mortal(z)) = Mortal(Philosopher).

Indeed, in any possible world where the philosopher is a man and all men are
mortal, the philosopher is mortal.

2.2.1 Herbrand interpretations

In logic programming, the domain is often restricted to the Herbrand universe,
i.e., the set of all ground (variable-free) terms of the vocabulary. A Herbrand
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pre-interpretation is a pre-interpretation that has the Herbrand universe as its
domain and interprets each constant and function symbol by itself. A Herbrand
interpretation is an interpretation that extends a Herbrand pre-interpretation.!
The models of a theory that contains the Unique Names Azioms (UNA)
(Reiter, 1980) and the Domain Closure Assumption (DCA) (Reiter, 1982) are
isomorphic to Herbrand interpretations.
The UNA can be expressed in FO as follows:

e asentence VZ Vg F;(T) # F;(¥), for all function symbols F; # F; (including
constants) in the vocabulary, and where T and g have the appropriate arity
for F; and Fj;

e a sentence VT Vy F;(Z) = F;(y) D T = ¥, for all non-constant function
symbols F; in the vocabulary, and where T and 3y have the appropriate
arity for F;.

The DCA expresses that every object in the domain is represented by a
variable-free term of the vocabulary. In general the DCA cannot be represented
in FO. An exception is when all function symbols of the vocabulary are con-
stants, C1,...,Cy; it is then the sentence

Ve (x=C1V---Va=Cy).

This expresses that every object in the domain is represented by one of the
constants.

However, the general case of the DCA (when there are non-constant function
symbols) can be represented in ID-logic, using an inductive definition. We give
this definition of the DCA in ID-logic in Section 3.1.6.

2.2.2 Propositional logic and SAT

Recall that a vocabulary is called propositional if it consists only of 0-ary pred-
icate symbols. We call the predicate symbols of a propositional vocabulary
atoms.

When ¥ is a propositional vocabulary, we assume the pre-interpretation has
an empty domain. We then treat a Y-interpretation as a function ¥ — {f,t}.
We formally define the relation: let 3 be a propositional vocabulary, I a -
interpretation. Then for any atom p € 2, I(p) =t if p! = {()}, where () is the
zero-ary tuple, and I(p) = f if p! = 0.

The fragment of FO restricted to propositional vocabularies is called propo-
sitional calculus (PC). A much-used fragment of PC is conjunctive normal form
(CNF). A theory is said to be in CNF if it is a conjunction of clauses, where a
clause is a disjunction of literals. Equivalently, a CNF theory is a set of clauses.
An arbitrary PC theory T can be transformed in linear time into a CNF theory

LA Herbrand interpretation is sometimes defined as a set of ground atoms—an object
of a different type then a classical interpretation. However, there is a simple isomorphism
between Herbrand interpretations as we define them here, and Herbrand interpretations as
sets of ground atoms.



16 CHAPTER 2. PRELIMINARIES

with an extended vocabulary, whose models have a one-to-one correspondence
to the models of T' (Tseitin, 1968). The advantage of CNF over full PC for
computational purposes is that CNF has a very simple structure.

The Boolean satisfiability problem (SAT) is the problem of deciding whether
a given PC theory has a model. A famous result by Cook (1971) states that the
SAT problem is NP-complete.

Example 2.7. Let ¥ be {p,q,r}, and let T5 7 be the following CNF theory:

Then 715 7 is satisfiable; indeed, the following interpretation is a model of 15 7:
Lz ={p+— f,qg — t,r — t}. The first three clauses each contain one true
literal in I 7, the last clause contains two.

Decision procedures for SAT were developed by Davis and Putnam (1960)
en Davis et al. (1962); the procedure proposed in the latter paper is now com-
monly referred to as “the Davis-Putnam-Logemann-Loveland (DPLL) proce-
dure”. Early implementations of this and other procedures were not widely
successful, largely until Marques-Silva and Sakallah (1999) added clause learn-
ing to the DPLL procedure. Contemporary implementations of these procedures
(“SAT solvers”) are very efficient (Mitchell, 2005), and have many practical ap-
plications in industry. The research domain of SAT is highly active (Kleine
Biining and Zhao, 2008).

2.2.3 Three-valued and four-valued semantics

The purpose of propositional model generation techniques is to construct a
model. During this construction, the eventual truth value of some atoms is still
unknown—initially, every truth value is unknown. We treat “unknown” as a
third truth value, and represent it by w. This construction may also (temporally)
lead to inconsistency: when some atom is set to both true and false. We treat
“inconsistent” as a fourth truth value, and represent it by ¢. In the rest of this
section we extend the classical semantics of FO as given above to four-valued
semantics, and explain the relation between three- and four-valued semantics.

Logic programming semantics such as the well-founded semantics (see fur-
ther) are inherently three-valued. Our definition of the well-founded seman-
tics depends on the three-valued semantics presented here. The four-valued
semantics we present here is due to Belnap (1977), and generalizes Kleene’s
three-valued semantics.

A four-valued X-interpretation is a pair I = (I, Is) of two Y-interpretations
that extend the same pre-interpretation. Intuitively, I; underestimates what is

true, and I3 overestimates it. Let P(d) be a domain atom. Then
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I(P(d)) = t if both I(P(d)) = t and I,(P(d)) =
— I(P(d)) = f it both I;(P(d)) = f and 12(P<d))
— I(P(d)) = wif [,(P(d)) = f and I»(P ())) 2

— I(P(d)) =1 if I,(P(d)) =t and I,(P(d)) = f.

If for every predicate symbol P € %, Pt C P2 holds, then I = (I3, I,) is said
to be consistent. We denote this by Iy C I5. A three-valued Y-interpretation is
a consistent four-valued one. Observe that if I is a three-valued interpretation,
I,(P(d)) = t implies I5(P(d)) = t, and I,(P(d)) = f implies I;(P(d)) = f,
hence I(P(d)) cannot be 3.

A three-valued X-interpretation (Ij,I,) approzimates any two-valued X-
interpretation I that has the same pre-interpretation as I; and I,,, and for which
I; CIC1,. I is alower bound on the approximated interpretations (anything
that is true in I;, is true in any approximated interpretation), I, is an upper
bound on the approximated interpretations (anything that is false in I,,, is false
in any approximated interpretation).

Example 2.8. Examples 2.1-2.3 continued. Consider the three-valued X-
interpretation Iy g = (I;, I,,) with the same domain as before, {Snoopy, Socrates},
and with the pre-interpretation of Philosopher as before: Philosopher?s =
Socrates. Let the lower bound I; have Man’ = (), and Mortal’t = {Snoopy},
and let the upper bound I,, have Man'+ = {Socrates}, and Mortal’* = {Snoopy,
Socrates}.

We have

I s(Man(Socrates)) = u Iy s(Mortal(Socrates)) = u
I g(Man(Snoopy)) = f I g(Mortal(Snoopy)) = t.

This three-valued interpretation describes a situation in which it is unknown
whether Socrates is a man, but it is certain that Snoopy is not a man, and in
which it is unknown whether Socrates is mortal, but it is certain that Snoopy is
mortal.

For a four-valued interpretation I = (I, l2) and a formula ¢, we define
I 4 ¢ by induction as:

o I =, P¥)ift" e Ph;

TEspVYit T Egpor I 4

I 4~ if (12, 11) 4 #;

I =4 3z ¢ if there exists a d € dom(I) for which (I1[z/d], I2[z/d]) =4 ¢.

Observe that the two-valued satisfaction relation can be defined by means
of the four-valued one: for a two-valued interpretation I and a formula ¢, we
have that I = ¢ iff (I,1) =4 .

We introduce the notation I(¢) = v, where [ is a four-valued interpretation,
© a formula, and v a four-valued truth value.
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When I is a three-valued interpretation, I 4 ¢ implies I(¢) = ¢t and
I 4 —p implies I(¢) = f. Note that I =4 —¢ implies T [£4 ¢, but not vice
versa: it is possible that both I =4 ¢ and I [~#4 =@ hold—then I(p) = u. Also,
the following result relates the |=4 relation for three-valued interpretations to
the [= relation for two-valued interpretations.

Proposition 2.1. Let I = (I}, 1) be a three-valued X-interpretation, and let
I’ be a two-valued Y-interpretation with I; C I' C I,,. Let ¢ be an FO formula
over 3. Then I |=4 ¢ implies I' |= @, and I' |= ¢ implies (I, I}) =4 .

The first part of this result says that for three-valued I, if I =4 ¢, then ¢ it is
true in any I’ approximated by I, hence is certainly true. The second part says
that if ¢ is known to be true in some two-valued interpretation approximated by
I =(I;,1,), it is certainly true in the interpretation (I, I;), which overestimates
what is true, and underestimates what is false.

In practice, we will never work with inconsistent interpretations or truth
values; throughout the text all four-valued interpretations will be consistent
and therefore three-valued, unless explicitly mentioned.

We treat a propositional three-valued Y-interpretation as a function ¥ —
{f,u,t}. We then obtain the following truth tables for three-valued semantics:

/\‘tfu \/‘tfu
-t f u tjit f u tlt t t
|t u fFi1r 57 Flt f u
ulu f u ul|t u u

We sometimes extend two-valued o-interpretations to three-valued X-inter-
pretations, for ¢ C ¥; if I is a o-interpretation and S a predicate symbol in
¥\ o, then we define the extension I’ to be unknown in all domain atoms of S.
Formally, for any P/n € %, d € dom™(I), I'(P(d)) = I(P(d)) if P/n € o, and

I'(P(d)) = u otherwise. I’ is called the empty extension of I to X.

2.3 Well-founded and stable model semantics

2.3.1 Syntax

A rule over ¥ is an expression of the form?

vz (P() — ). (2.1)

2This syntax generalizes the syntax conventionally used in logic programming; we instan-
tiate this to the normal logic programming syntax further on.
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where P is a predicate symbol of X, £ is a tuple of terms of X, ¢ is an arbitrary
FO formula over X, and the free variables of both ¢ and ¢ are a subset of .
We often leave the universal quantification of the rule implicit. Note that the
symbol “—” is a new symbol. We call P the head of the rule, ¢ the body. The
empty disjunction is written as |, the empty conjunction as T, when used in
rule bodies. A rule with T as body is called a fact. Note that = T and | —L.

For simplicity of notation, and without loss of generality, we assume that
rules are of the form VZ (P(T) « ¢), i.e., the terms in the head and the free
variables in the body are precisely the variables Z. This form can be obtained by
replacing any non-variable term ¢ in the head by a new variable z, and replacing
the body ¢ by ¢ A x = ¢, and by subsequently replacing each rule of the form
Vzg (P(7) — ¢) by v7 (P(z) — 37 ¢).

We define a logic program to be a set of rules.

A normal logic program is a set of rules, all of which have a conjunction of
literals as their body. In the context of stable model semantics for normal logic
programs we use the notation standard in the literature: we use the symbol
“:=" instead of “«”, “not” instead of “=”, and “” instead of “A”, we make
the universal quantification of rules implicit, and we omit the set notation { . }
Thus, a rule of a normal logic program has the form

P(t) :- Ly,...,Ly,not Lyyyq,...,n0t Ly, (2.2)

where the L; are atoms of the vocabulary with free variables .
A constraint is an expression of the form

:=Li,...,Ly,not Lyy41,...,00t Ly, (2.3)

Still in the context of stable model semantics, we treat a constraint (2.3) as
syntactic sugar for a rule

False :- Lq,...,Ly,not Lyy41,...,00t L,,not False,

where False is a predicate symbol not in . In next section, Example 2.13, we
will explain that this forces at least one of L1,..., Ly, " Lyy1,...,7 Ly, to be
false.

2.3.2 Semantics

It is customary to define the well-founded and stable model semantics for propo-
sitional logic programs. One then uses the Herbrand pre-interpretation to derive
the first-order semantics from the propositional one. We follow this approach
for the stable model semantics. However, in this work we also want to define
non-Herbrand well-founded models. To this end we define the well-founded se-
mantics on a first-order level. For a definition of the stable model semantics on
a first-order level, we refer to (Denecker, 1993).

The well-founded semantics was first defined for propositional normal logic
programs by Van Gelder et al. (1991), and generalized to logic programs by
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Van Gelder (1993). We deviate from these definitions and follow an alternative
definition by Denecker and Vennekens (2007), where the well-founded model is
constructed as the limit of a well-founded sequence.

Let I be a three-valued interpretation and P(d) a domain atom. Then we
denote by I[P(d)/t] respectively I[P(d)/ f] the interpretation I’ that is identical
to I except that I'(P(d)) = t respectively I’(P(d)) = f. We extend the notation
to sets U of domain atoms.

Definition 2.1 (Well-founded sequence). Let A be a logic program over %, T
a three-valued Y-interpretation. A well-founded sequence for A from I is any
sequence (I;)o<;<n of three-valued X-interpretations, such that Iy = I, and each
I; 11 is derived from I; as follows:

i) Iix1 = I;|P(d)/t] for some domain atom P(d) such that I;(P(d)) = u, and

there is a rule VZ (P(T) « ) in A with I;[Z/d](¢) = t; or

it) Ii11 = L;[U/ f] for some set of domain atoms U such that for each P(d) € U
the following conditions hold:

e [;(P(d)) = u, and
e for each rule VZ (P(Z) « ) in A, L[z/d,U/f](¢) = f.

Such a set U is called an unfounded set with respect to I;.

Note that for predicates P that do not occur in the head of a rule of A,
any domain atom P(d) that is unknown in the given (initial) three-valued in-
terpretation can be made false by an application of the second derivation rule
(i), since the qualification “for each rule VZ (P(Z) <« ¢) in A ...” is trivially
satisfied. Or, to put it more succinctly: non-defined predicates are always false.

This is a form of closed-world reasoning (Reiter, 1977).

Example 2.9. We illustrate the concept of unfounded set on a propositional

vocabulary. Let Ag g =
b —aq,
q—pAr |’

and consider the three-valued interpretation I with I(p) = I(q) = u, I(r) = t.
Then {p, ¢} is an unfounded set with respect to I. We have that I' = I'{p, ¢}/ f]
is the interpretation with I'(p) = I'(q) = f, I'(r) = t; and indeed, both I'(¢) =
f and I'(p A r) = f hold, where ¢ is the body of the only rule with p in the
head, and p A r is the body of the only rule with ¢ in the head.

A well-founded sequence is terminal if it cannot be extended. Denecker and
Vennekens (2007) showed that, for a given logic program A and three-valued
interpretation I, any terminal well-founded sequence for A from I has the same
limit.

Let X be a vocabulary. Denote by Iy (s) the three-valued X-interpretation
that is the empty extension to X of the Herbrand pre-interpretation for X.
Hence, I (s is the three-valued Herbrand interpretation with I H(Z)(P(a)) =u

for any domain atom P(d).
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Definition 2.2 (Well-founded model). Let A be a logic program over 3. Then
the well-founded model of A is the limit of some (any) well-founded sequence
for A from Iy (x).

Example 2.10. Let As 1o =

(R(A,B) < T),

(R(B,C) «T),

(R(B,D) «T), )
Vo,y (TC(z,y) — R(z,y)),
Va,y (TC(z,y) <« =z TC(x,2) NTC(z,y))

and let ¥ = vocab(Asz.10). We interpret (R(A, B) < T) as an abbreviation for
Va,y (R(z,y) «— © = ANy = B), and similarly for other rules. We construct
the well-founded model of Ag 1g.

The Herbrand pre-interpretation has domain {A, B, C, D}, and interprets the
constants A, B,C, D by the domain elements of the same name. Iy (x) is the
empty extension of this pre-interpretation to {R/2,7C/2}. We construct a
well-founded sequence for Ag 19 from I (x).

e We have Iy = I (x).

e We find Il = Io[R(A, B)/t}7 IQ = Il[R(B,C)/t], and Ig = [2[R(B,D)/t]
from the first three rules, applying derivation rule (¢).

e From rule Vz,y (I'C(z,y) < R(z,y)) we then further derive by (i) the
interpretations Iy, I5 and I, which make respectively TC(A, B), TC(B, C)
and TC(B, D) true.

e Applying rule (4), we find I; = Ig[TC(A, C)/t]. Indeed, using the substi-
tution z/B, we have that Is[(z,y)/(A, C)](3z TC(z,2) NTC(z,y)) = t.

e Similarly, Is = I7[T'C(A,D)/t].

e We now apply derivation rule (). The only rules with R(x,y) as a head
have either t = AANy=B, x=BAy=C,orz=BAy =D as body,
and therefore, for any two-tuples d other than (A, B), (B, C) or (B, D), we
have that I3[Z/d](p) = f for any rule VZ (R(Z) < ¢) in Ag 9. Hence,
{R(A,A),...,R(D,D)} is an unfounded set with respect to Is, and we find
Iy = IS[{R(AvA)7 LR R(D7 D)}/.ﬂ

e Finally, consider the remaining unknown domain atoms: U = {T'C(A, A),
TC(B,A),...,TC(D,D)}. This is an unfounded set with respect to Iy;
we can therefore apply rule (i), obtaining I,g = Io[U/f]. We show
that this is indeed the case. All domain atoms in U are instantiations
of TC(z,y); the rules with TC(z,y) in the head have bodies R(x,y) re-
spectively 3z TC(x, z) ATC(z,y). Indeed we find

— for TC(A,A), that both Iy[(z,y)/(A,A)](R(z,y)) = f and
[9[($,y)/(A,A)](HZ TC(QL‘, Z) A TC(Z’ y)) =f;
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— for TC(B, A), that both Ig[(x7y)/(B7A)](R(x,y)) = f and
I[(z,y)/(B,A)] (32 TC(x,2) ANTC(2,y)) = f;

— for TC(D, D), that both Iy[(z,y)/(D,D)](R(z,y)) = f and
Ihl(z,y)/(D,D)](3z TC(z,2) NTC(2,y)) = f-

I is two-valued, and therefore terminal. Thus, the interpretation Iy with
R = {(A,B),(B,C),(B,D)} and TCTo = {(A,B), (A,C), (A,D), (B, C),(B,D)}
is a well-founded model of Ay 1. Observe that T'C' is the transitive closure of
R.

In general, the well-founded model may be three-valued.

Example 2.11. We illustrate this on a definition with a propositional vocabu-
lary. Let Ag,ll =

b~ q,

q<— —p ’

and ¥ = {p,q}. Then Ip(x) is the well-founded model of Az ;. Note that
It (s)(p) = I (s)(q) = u. Indeed, neither the first nor the second rule of a well-
founded sequence can be applied on Iy (5. Therefore the well-founded sequence
consisting of only this (initial) interpretation is terminal.

We now define the stable model semantics of logic programs. It is defined
for propositional logic programs.

If a propositional logic program is positive, i.e. it has no negative literals in
any rule body, then it has a least model. Let ¥ be a propositional vocabulary,
A a positive logic program over Y. Consider the set of Y-interpretations Z =
{I | for any p € ¥ with I(p) = ¢t,3(p <« ¢) € A with I(¢) = t}. Then the
least model of A is the interpretation I € Z for which the set {p | I(p) = t} is
subset-minimal.

The least model of A coincides with its well-founded model. It can be derived
by first applying the first derivation rule (7) of well-founded sequences (making
domain atoms true) exhaustively, and then applying the second derivation rule
(i7) on all remaining unknown atoms.

We introduce the reduct program transformation originally defined by Gel-
fond and Lifschitz (1988). This definition assumes A contains no nesting of
negation; this can be easily generalized.

Definition 2.3 (Gelfond-Lifschitz reduct). Let A be a propositional logic pro-
gram over X, I a X-interpretation. Then the Gelfond-Lifschitz reduct GL(A, I)
is the logic program obtained from A by replacing all occurrences (in rule bod-
ies) of negative literals - P by L if I(P) =t¢, and by T if I(P) = f.

Note that the Gelfond-Lifschitz reduct of any program under any interpre-
tation is a positive logic program, and therefore has a least model.
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Definition 2.4 (Stable model). Let A be a propositional logic program over
vocabulary X. Then a Y-interpretation I is a stable model of A iff I is the least
model of GL(A,T).

We then define the logic of Stable logic programs as normal logic programs
(including constraints) under the stable model semantics.

Example 2.12. Let As 12 be the normal logic program

p :—notgq,
q :— notp.

Both I = {p—t,q— f} and I, = {p — f,q+— t} are stable models of As 15.
For instance, we have that GL(Ag.12,11) =

p:-T,
q:-1,

which indeed has I; as its least model. Note that the well-founded model of
Ay 19 is {p — u,q — u} (cf. Example 2.11).

Example 2.13. Let Ay 13 be a normal logic program containing the rule
False :- Lq,...,Ly,not Lyy41,...,00t L,,not False,

and no other rules with False in the head. Recall that this is how a con-
straint of the form :- Ly,...,L,,,not Lyy,41,...,n0t L, is defined. Consider
an interpretation I with I(False) = t. The reduct GL(A3.14,I) contains
the rule False :- Ly,..., L. Its least model I’ has I'(False) = f. Since
I(False) # I'(False), I cannot be a stable model of Ay 13.

Consider instead an interpretation I with I(False) = f. Then the reduct
GL(A3.14,I) contains the rule False :-= L1,...,T. In order for I to be a sta-
ble model of As 13, the least model I’ of the reduct should have I'(False) =
I(False) = f. Therefore, at least one of Lq,..., L,, must be false, or at least
one of Ly,y1,...,L, true, to satisfy Ag ;3.

Whereas the well-founded model (of a propositional logic program) is unique
and may be three-valued, the stable models are not unique, and are two-valued.
However, the following result establishes a strong relationship between well-
founded models and stable models.

Proposition 2.2 (Van Gelder et al., 1991). If the well-founded model of A s
two-valued, then A has a unique stable model, and it coincides with the well-
founded model.

The inverse, however, is not true. Below is an example with a unique stable
model which is not its well-founded model.
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Example 2.14. Examples 2.12 and 2.13 continued. Let As 14 =

p :—notg,
g :—-notp,
- Q.

Due to the constraint :- ¢, As 14 has a unique stable model, namely I; = {p —
t,q — f}. The well-founded model of As 14, however, is {p — u,q — u}.

2.4 ID-logic

We now introduce ID-logic, the logic for which this thesis seeks to develop
efficient model generation algorithms. It was originally introduced by Denecker
(2000), and further developed by Denecker and Ternovska (2004, 2008).

2.4.1 Syntax

ID-logic is a logic that intends to provide a formal syntax and semantics for
definitions, and extend FO with them, as they are constructs that occur often
in mathematics, but in general cannot be expressed in FO.

As an example, we recall our own definition of the satisfaction relation from
Section 2.2:

“We inductively define when an interpretation I satisfies an FO
formula ¢, denoted I = ¢:

I=P@)ift e Pl

TEeVoiflEporl v

Te—pit i

I |= 3z ¢ if there exists a d € dom([) for which I[x/d] E ¢.”

We observe the following syntactical structure (also in other examples):

o a declaration that one or more concepts will be defined in terms
of other concepts;

o the actual definition, consisting of a set of rules. Each of these
rules is of the form “[defined concept] if [logical expression]”.

These observations justify the following formal syntax, and its informal
meaning.
Like a logic program, a definition is a set of rules. Recall that a rule is of
the form (2.1):
VT (P (t) « gp) .

In ID-logic, we call the rule symbol “—” definitional implication, and in par-
ticular, we distinguish it from (the inverse of) material implication, “2>”. If A
is a definition over vocabulary ¥, we denote by Def(A) the set of predicate
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symbols, called the defined symbols, appearing in the head of some rule of A,
and by Open(A), called the open symbols, the symbols ¥\ Def(A).

The informal reading of an ID-logic definition A is of a mathematical defi-
nition of the concepts Def(A), i.e., “we define Def(A) (by induction) as [the
set of rules in A]”. The definitional implication “—” should be read as “if”; a
body of a rule gives a sufficient condition to derive the head of the rule. The
set of all rule bodies of a definition gives a necessary condition to derive a de-
fined predicate. This declarative reading is supported by the formal semantics
(see next section), which was shown by Denecker (1998) to coincide with the
semantics of definitions as occurring in mathematics, for most common types of
definitions.

An ID-logic theory is a set of definitions and FO sentences.?> Thus ID-logic
extends first-order logic with a definition language construct. As such, ID-logic
has recently often been called FO(ID).

Example 2.15. The following theory T5 15 is a well-formed ID-logic theory,
consisting of four definitions and three FO sentences.

{ Va,y (Sibling(x,y) — = # y A Iz Parent(z,x) A Parent(z,y)) },

{ Va,y (Brother(z,y) < Male(z) A Sibling(x,y)) },

{ Va,y (Sister(x,y) < Female(x) A Sibling(z,y)) },

Va,y Husband(x,y) = Wife(y, x),

Y,y Husband(x,y) D Male(z) A Female(y),

Vo Male(z) = = Female(x),

Va,y (Uncle(x,y) <« 3z Brother(z,z) A Parent(z,y)),
Va,y (Uncle(z,y) <« 3z Husband(z,z) A Aunt(z,y)),
Yo,y (Aunt(x,y) <« 3z Sister(z,z) A Parent(z,vy)),
Va,y (Aunt(x,y) <« Iz Wife(x,z) AUncle(z,y))

(Az15)

Consider definition As 15. It is a definition by simultaneous induction: an uncle
is defined in terms of an aunt, and conversely, an aunt in terms of an uncle.
The informal meaning of As 15 corresponds to the definition of the uncle and
aunt relations in natural language. In particalur, consider a married couple,
Ann and Bob, and neither of the two has siblings. Then, although there is a
circular dependency (Ann is the aunt of some person y if Bob is the uncle of y,
and vice versa), it is clear that Ann is not an aunt of anybody, nor is Bob an
uncle of anybody.

2.4.2 Semantics

Unlike the well-founded and the stable model semantics, an inductive definition
may have a model for every given interpretation of Open(A). To define this,
we begin by introducing a parameterized version of the well-founded semantics.

3ID-logic is sometimes defined to have a more general syntax, whereby definitions are
allowed to be nested as subformulas in FO sentences (see, e.g., Denecker and Ternovska,
2008).
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Definition 2.5 (Well-founded model extending Ip). Let A be a definition over
Y, and let Ip be an Open(A)-interpretation. Then define I, as the empty
three-valued extension of Ip to Def(A) (i.e., all domain atoms of Def(A) are
unknown). The well-founded model of A extending Io, denoted wfma (Ip), is
the limit of any well-founded sequence for A from Ij,.

Definition 2.6 (Model of A). Let A be a definition over 3, and let I be a
(two-valued) X-interpretation. Then I is a model of A, denoted I E A, iff

I = meA(I|Open(A))'

We point out the correspondences and differences with the well-founded
model of a logic program:

e a model of a definition is by definition two-valued, the well-founded model
of a logic program may be three-valued;

e a definition A may have many (or no) models: for every Open(A)-inter-
pretation at most one; a logic program has a unique well-founded model,;

e the well-founded model of a logic program is a Herbrand model, a model
of a definition may have an arbitrary pre-interpretation;

e if the well-founded model I of a logic program A is two-valued, then I is
also a model of definition A, namely, with I false for every domain atom
of the non-defined symbols of A. Or conversely, if A is a definition, and
A is the logic program obtained from A by adding Vz (P(Z) « L) for
each P € Open(A), then if the well-founded model of A’ is two-valued, it
is a model of A.

We restate the original intention of ID-logic: to provide a formal syntax and
semantics for definitions as they occur in mathematics (and add this to FO).
It was shown by Denecker (1998) that the formal semantics of definitions coin-
cides with the semantics of definitions as occurring in mathematics. Intuitively,
Open(A) are the concepts that are used in the definition A, and Def(A) are
the concept that are being defined.

Example 2.16. Let Ag 16 =

{ Va,y (TC(x,y) — R(z,y)), }
Va,y (TC(z,y) < 3z TC(z,2) NTC(2,y))

We have Def(As16) = {TC}, Open(As16) = {R}. Consider the Open(As 16)-
interpretation Ip with dom(Ip) = {A,B,C,D} and R = {(A,B), (B,C),
(B,D)}. Refer to Example 2.10 to see that the well-founded model of Aj 14
extending Ip is wfma, ,,(Io) = I2.16 with dom(I2.16) = dom(lp), R216 = Rlo
and TCI2'16 = {(A, B), (A, C), (A, D), (B, C)7 (B, D)} Thus -[2.16 ': A2.16~

With the semantics of definitions in place, the semantics of ID-logic is a
simple extension of FO semantics.
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Definition 2.7 (Model of an ID-logic theory). Let 7' be an ID-logic theory
over 3, and T a (two-valued) Y-interpretation. Then I is a model of T, denoted
I'=T,iff I = ¢ for every FO sentence or definition ¢ € T

Example 2.17. Example 2.16 continued. Let T5 17 = {Az16, 7(Iz TC(z, x))}.
Then any interpretation I in which R’ describes an acyclic graph is a model
Of T2.17. FOI‘ instance, 12,16 ': T2‘177 because 12.16 |: Agblg, and 12‘16 |:

=3z TC(z,x)).

We define also the entailment relation = between ID-logic theories T} and
T5 as it was done for FO: T} = T if for every model I = T1, also I = T3 holds.
We derive from this the congruence relation 2: Ty 2 Ty if Ty = T and T = 77,
i.e., T1 and T, have the same models. Note that a particular case is when T} or
T5 consists of a single definition.

ID-logic has both monotone and non-monotone aspects. The logic as a
whole is monotone: if a sentence ¥ or a definition A is added to a theory T, the
consequences of T are retained (and may grow). Le., T |= ¢ implies TU{¥} = ¢
and T'U {A} E ¢. Non-monotonicity is present within definitions: if a rule is
added to a definition A, the consequences of A may decrease.

Propositional ID-logic

Definition 2.8 (PC(ID), SAT(ID)). The propositional fragment of ID-logic is
called PC(ID) . The satisfiability problem of PC(ID) is called SAT(ID).

Observe that PC(ID) is an extension of PC with propositional inductive
definitions (IDs).

As we will see in Chapter 5, the SAT(ID) problem of a given PC(ID) theory
is solved in practice by searching for a model of that theory. Hence, if we can
solve the SAT(ID) problem, we can also solve the model generation problem for
PC(ID), i.e., the propositional model generation problem for ID-logic.

Remark 2.1. The semantics of propositional inductive definitions is just derived
from that on the first-order level. Therefore, the intended semantics (informal
meaning) of propositional inductive definitions is derived from the intended
semantics of first-order definitions.

Consider, for instance, the definition { p—gq, q<0D } Its declarative
reading is “we define p,q as: p is true if ¢ is true, and ¢ is true if p is true”.
Formally, the only model of this definition is {p — f,q — f}. We illustrate
why this is also the intended model.

Recall Ay 15 from Example 2.15. If we instantiate this definition with con-
stants Ann and Bob, who are married and have no siblings, and some constant
Y denoting an arbitrary person, and then simplify the definition, we obtain:

Uncle(Bob,Y) <« Aunt(Ann,Y),
Aunt(Ann,Y) <« Uncle(Bob,Y) [’

which is of the form { p—gq, q—0p } As we have seen in Example 2.15, its
informal meaning is that Uncle(Bob,Y') and Aunt(Ann,Y) are false.
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Totality

Mathematicians often follow certain linguistic conventions when formulating
inductive definitions. For instance, for non-monotone inductive definitions, they
often specify that the definition is by induction on some given well-founded
order. That is, the definition is meant to be used in a setting where that well-
founded order is imposed, and is ill-defined otherwise.

Whether or not a (syntactically well-constructed) definition is (semantically)
well-defined is expressed in ID-logic using the semantical concept of totality. The
formal definition of totality is based on the observation that if the well-founded
order over which the induction is specified is not imposed, then the definitional
construction process may not be able to derive the truth or falsity of certain
tuples in the defined relation—the well-founded model may be three-valued.

Definition 2.9 (Totality). Let A be a definition over ¥, T' an ID-logic the-
ory over X.. Then A is total with respect to T iff for any 3-model I of T,
wimAa (I|open(a)) is two-valued. A is total if it is total with respect to the
empty theory (and therefore with respect to any theory).

Intuitively, then, a definition A is a valid definition only in conjunction with
a theory T such that A is total with respect to T

It is easy to derive that positive definitions are always total. We show an
example of a definition that is total only with respect to a specific theory.

Example 2.18. Van Gelder et al. (1991) introduced the following definition of
the winning states of a two-player game with alternating players: Ag 13 =

{ Va (Win(z) < 3y Move(z,y) A —Win(y)) }.

Here, Move/2 describes the valid transitions between states of the game; a
winning state is one for which there exists a move (transition) to a losing state.

As 15 is not total. For instance, its well-founded model extending Ip with
dom(Ip) = {1,2} and Movelo = {(1,2),(2,2)} is three-valued (it is unknown
in both Win(1) and Win(2)).

But the definition is intended to be used in situations where the Move/2
relation describes an acyclic graph with finite branches, i.e., where there is a
well-founded order < on the game states such that Move(x,y) implies y < z.
This is expressed formally by saying that As g is total with respect to 75 1,
where T5 15 is the following theory:

Va,y Move(x,y) Dy < x,

-(Fz z < x),

Ve,y,zx <yAy<zDzx<z,

{ Vo (F<(z) <Yy y <z D F(y)) },
Vo Fo(z).

Indeed, when the Move/2 relation satisfies the above, then the well-founded
model of As g can be constructed by first assigning Win to be f for all final
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states (from which no move is possible), and then propagating these values to
earlier states along the given order; since the graph described by Move/2 is
acyclic, all states will in this way eventually be assigned a two-valued truth
value.
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Chapter 3

Knowledge representation
in ID-logic

This chapter presents ID-logic from a knowledge representation point of view.
We provide some methodological principles of modelling in ID-logic in Sec-
tion 3.1, and some examples of modellings in ID-logic in Section 3.3. Most of
these examples fit in the computational paradigm of model expansion—a gen-
eralization of finite model generation—which we introduce in Section 3.2.

In Section 3.4, we then present a concrete system to solve model expansion
problems for ID-logic: the IDP system. Such problems are solved in two phases:
a grounding phase, which reduces an ID-logic theory and a finite domain to a
PC(ID) theory, and a propositional model generation phase, which finds models
of a given PC(ID) theory. We present a simple grounding technique in Sec-
tion 3.5, and establish some simple complexity results about the satisfiability
problem for PC(ID) in Section 3.6; these two sections make the bridge to later
chapters, which elaborate on the second phase. We conclude in Section 3.7.

3.1 On modelling in ID-logic

The work in this section is based on (Marién et al., 2004, 2006). In accordance
with practical use in the IDP system, we use many-sorted logic (see, e.g., Ender-
ton, 2001; for details of the IDP system, see Wittocx and Marién, 2008). When
needed, we will start the declaration of a theory by a declaration of types (sorts)
and vocabulary as follows:

types: [A declaration of all types of the vocabulary]

vocabulary: [A declaration of the vocabulary, including type information].

We will sometimes use arithmetic operations such as +, —, abs(-). It is
beyond the scope of this work to elaborate on IDP’s treatment of such operations;
instead, we refer to (Wittocx et al., 2008a).

31
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3.1.1 Definitional knowledge

An important form of knowledge, present in almost any non-trivial domain, is
definitional knowledge: knowledge of certain concepts in the domain that are
deterministically defined in terms of other concepts. Examples abound: for
instance, in the domain of planar geometry, the concept square is defined in
terms of simpler concepts:

An object is a square if it is a rectangle that is equilateral; (3.1)

in the domain of propositional logic, the concept of satisfaction (=) between an
interpretation and a formula, is defined in terms of the structure of the formula
and the interpretation of trivial formulas:

e [ =V if ¥ is an atom, P, and I(P) =t,
e [ EUif Uis ¥y APy and both I =¥, and T | Uy, (3.2)
o [ EVUif ¥is—® and not I E P;

and so on for many domains.

ID-logic provides an explicit language construct to represent this type of
knowledge. Thus the intuitive definitions (3.1) and (3.2) can be straightfor-
wardly represented as ID-logic definitions (3.3) respectively (3.4) (using the
obvious interpretations for all symbols used):

{ Square(z) — Equilateral(z) A Rectangle(z) }, (3.3)
VI,P (E(,P) — IsAtom(P) A True(I, P)),
VI,U (E,¥) « IsConj(¥, \Ifl,\Ilg)/\|:(I,\Ill)/\|:(I,\I/2)), . (3.4)
VIO (=(1,0) — IsNeg(¥, ®) A ~j=(I, ®))

Hence, ID-logic supports a natural, modular representation of definitions
as formal objects; it is part of our ID-logic modelling methodology to use the
definition construct exclusively for this purpose. Since in standard mathematical
practice, definitions are always well-defined, and well-defined definitions are
total (with respect to the theory in which they occur, cf. Section 2.4.2), an
interesting consequence is that theories that are modelled according to this
methodology never contain non-total definitions.

Throughout this section we will refer to an example from the well-known
block’s world domain. We give a full account of this example in Section 3.3.1;
here we mention some details for illustrative purposes. The block’s world domain
contains amongst others the concepts On, Free, and Move. The latter describes
the movements of blocks to other blocks over time and is usually the relation
we want to construct; On and Free are concepts of which we have definitional
knowledge. The former specifies which blocks are on top of which other blocks
at any given timepoint, and is defined in terms of the initial positioning of blocks
and their movements over time, the latter is of a block having no other block on
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top of it at a given timepoint. It is easy to see that definitions (3.5) and (3.6)

are a correct representation of these concepts:

Vbl, bQ (O?’L(bl, bg, I?’th) — ImtzallyOn(bl, bg)),
Vbhbg,t (On(bl,bg,t) — Move(bl,bg,t— 1)),

Wor bt (On(by,bast) —  On(by,by,t — 1)A . (35)
ﬁ(3b3 ]\40’06(1)17 bg,t — 1)))
{ vb,t (Free(b,t) — =(3V On(V,b,1))) }. (3.6)

3.1.2 Modularity

Part of our ID-logic modelling methodology is to provide separate definitions
whenever possible. This enhances modularity and readability. Examples where
such a separation is not possible, are definitions by simultaneous induction, such
as the definition of uncles and aunts in Example 2.15. In the same example,
however, we did provide separate definitions for the concepts sibling, brother,
and sister, since they can be defined independently.

Note that as a side-effect of the fact that ID-logic allows users to write
separate definitions, one can introduce different definitions for the same concept.
While for general methodological purposes this feature should not be considered
more than just an interesting side-effect, the following example illustrates that
it may sometimes be useful.

Example 3.1. Consider definition (3.1) of the concept square on the one hand,
and the next definition on the other hand:

An object is a square if it is a rhombus that is orthogonal. (3.7)
Both definitions can coexist in one ID-logic theory:

T — Va (Square(z) «— Equilateral(z) A Rectangle(z)) },
31— Va (Square(z) < Orthogonal(z) A Rhombus(z)) }

This theory contains two definitions for the predicate Square/1. Note that
together these definitions constrain their open predicates; for example, T3 1 log-
ically entails the formula Vo (Fquilateral(xz) A Rectangle(x) = Orthogonal (z) A
Rhombus(z)).

The rationale behind our proposed principle of providing separate defini-
tions, i.e., separate modules of knowledge, whenever possible is very simple: it
is much easier to verify whether several small definitions correctly model your
intentions than it is to verify the same for one large definition. Similarly, in FO,
one prefers to write small sentences, each of which represents a single isolated
property, over writing a large conjunction of sentences.

When a knowledge engineer writes separate definitions of each of which he
knows that it correctly models his intentions, he need not even consider the
question of whether the resulting theory is still correct. By contrast, if he
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merges the separate definitions into one big definition, the question becomes
very relevant.

For instance, in the block’s world domain, suppose that we want to define
the strategy of moving always the first (according to a given total order < over
blocks) free block to the last free block. This can be modelled by the definition

{ vbl,bQ,t (MO’U@(bhbg,t) — Vb/ F’I”@@(b/7t) D) b/ Z bl A b/ § bg) } (38)

Note that definitions (3.5), (3.6) and (3.8) have a circular dependency: On
depends (a.o0.) on Move, Move on Free, and Free on On. Therefore it is not
at all obvious whether the definition consisting of all the rules of definitions
(3.5)—(3.8) together also correctly models our intentions. In fact it does, as can
be shown using the modularity theorem by Vennekens and Denecker (2005);
however, having to prove this is an inconvenience easily avoided by applying
our principle.

3.1.3 FO sentences

Naturally, many domains also contain non-definitional knowledge. In our ID-
logic methodology we represent such knowledge by FO sentences.! These sen-
tences should be as declarative as possible, i.e.; their informal reading should
be as close as possible to the natural language reading of the knowledge being
expressed. It is one of the strong points of FO that many natural language
statements can be declaratively expressed in it.

An example in the block’s world domain is the knowledge that a precondition
for moving block x to block y, is that both are free:

VaVyvt Move(z,y,t) D Free(z,t) A Free(y,t). (3.9)

Also existentially quantified sentences (constraints) are often useful. Con-
sider the statement “there is a final timepoint after which no moves are made”.
This could be expressed in ID-logic (FO) by the sentence

3t vt' (¢ >t > -3z, y Move(z,y,t'))). (3.10)

For comparison, assume that a constant F', representing the final timepoint,
is given; the representation of the original statement then becomes

Vt (t > F D —(3z,y Move(z,y,t))). (3.11)

Notice the shared structure of expressions (3.10) and (3.11); this is an indication
of the fact that the declarative reading of these expressions is close to the natural
language statement being represented.

INaturally, domains with other types of knowledge, such as causal knowledge, statistical
knowledge, ..., may require other logics altogether; it is out of the scope of this work to
consider these.
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3.1.4 FO rule bodies

ID-logic allows arbitrary FO formulas as rule bodies. Recall, for instance, the
rule in definition (3.5):

Vbl, b27t (On(bl, bg,t) — On(bh bz,t - ].) A _|(E|b3 MO’UG(bl,bg,t — 1)))

Note that because FO rule bodies are allowed, it is possible to write a set of
rules VZ P(Z) «— ¢1[T],...,VT P(T) «— @n[T] as one single rule, VI P(T) «—
©1[Z] V -+ V on[T]. (They are formally equivalent.)

A good methodological practice is to have each rule in a definition correspond
to one sufficient condition for making the defined concept true; informally, to
one “case”. Consider, for instance, the natural language specification of when
one block is on top of another block in the block’s world: “a block is on top of
another one on the initial timepoint if it is so given initially; a block is on top
of another one if it was moved there on the previous timepoint; and also if it
was already there on the previous timepoint and has not been moved since.”
The three rules of definition (3.5) correspond to these three cases.

When the syntax of rule bodies is restricted, as in normal logic programs,
this methodological practice cannot be followed. For instance, to represent
the above rule for On/3 in normal logic programming syntax, a new concept
representing the subformula (3b3 Move(by,bs,t — 1)) has to be introduced and
defined.

We will not elaborate further on the meaning of different types of defini-
tions, and the methodological impact this has on writing sets of rules. Suffice
it here to say that the semantics of definitions provided by ID-logic captures
the mathematical concept of “definition”, and that this unifies several types of
definitions, to wit: non-inductive definitions, monotone inductive definitions,
non-monotone inductive definitions over a well-founded order, iterated induc-
tive definitions, simultaneous inductive definitions, etc. For a comprehensive
account, we refer to (Denecker, 1998).

3.1.5 On the use of function symbols

Since ID-logic works with classical interpretations, function symbols can be used
freely. Functions abound in computational problem solving; often the solution
of some computational problem is a function. Consider for instance the graph
colouring example.

Example 3.2. A graph colouring of a given graph, represented here by Edge,
with a given set of colours, is a function, represented here by Colour, that
assigns a colour to each vertex of the graph, such that neighbouring vertices are
assigned different colours. The following theory models this problem.

types: Viz,Clr
vocabulary: FEdge(Vitx,Vitx), Colour(Viz) : Clr
Vu1Yuy Edge(v, va) D (Colour(vy) # Colour(vs)) (3.12)
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We have seen typical uses of constant symbols in expressions (3.5) and (3.11):
the initial timepoint Init, and the final timepoint F. Often the intended in-
terpretation of constant symbols is given, but this is not necessarily the case.
Consider, for instance, a concept such as the mayor of a town. We may wish
to represent this concept by a function symbol Mayor, without knowing who it
represents.

In finite model generation, a function can be represented by a predicate sym-
bol called its graph; this requires the addition of an axiom stating that this predi-
cate symbol represents a function. For instance, the function Colour(Vitz) : Clr
above can be represented by PColour(Vtax,Clr); this requires the axioms

Yo ¢ PColour (v, c),
Vv, c1,cq PColour(v,ci) A PColour(v,c2) D ¢ = ca.

However, it is good methodological practice to use function symbols when-
ever the expressed concept is a function. The reason is that this enhances
readability for at least two reasons:

e no extra axioms are necessary,

e function symbols are used as terms and therefore often require fewer vari-
ables to be used. Compare, e.g., the following two representations of
“...are assigned different colours”:

Colour(vy) # Colour(vsa),
—(3e PColour(vy,c) A PColour(va,c)).

Observe, also, that the intended interpretation really is that of a term,
e.g., Colour(v) represents the domain object “the colour of v”.

3.1.6 UNA and DCA not default

Recall from Section 2.2.1 that all models of a theory augmented with the Unique
Names Axioms (UNA) and the Domain Closure Assumption (DCA) are isomor-
phic with a Herbrand model. Such a model has a one-to-one correspondence
between variable-free terms and domain elements. Thus, each domain element
is represented by a unique term.

The UNA and DCA are not assumed in ID-logic. Therefore, ID-logic the-
ories may have non-Herbrand models. However, both UNA and DCA can be
represented in ID-logic; UNA can actually be represented in FO, but DCA can-
not. We represent the DCA here in ID-logic. It expresses that every object in
the domain we are describing is represented by a variable-free term of the vocab-
ulary. A theory that contains the DCA but not the UNA has the property that
in its models, each domain element is represented by at least one variable-free
term, and possibly by more.
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U(Cl) — T,
(a rule for each constant C; in the vocabulary)
UlCu) < T,
VI (U(F1(®) — Nger Uli), )

(a rule for each non-constant function
symbol F; in the vocabulary)

VI (U(Fn(T) — AperUlwi))

Vo Ulz).

The free use of function symbols in ID-logic (cf. Section 3.1.5) is a conse-
quence of the fact that UNA and DCA are not default.

The IDP system (see Section 3.4) also allows a localized form of UNA and
DCA. It uses a typed language; when declaring a type, the language allows a
declaration of a “local Herbrand universe”: a set of constants with that type,
and interpreted by themselves in any model. This may be useful for certain
fixed domains, e.g. a type direction with constants {N, E,S, W}.

3.2 Model expansion

Given a theory, model expansion is the computational task of finding a model
that expands a given interpretation of a given subvocabulary of the theory. This
task generalizes finite model generation, and has many practical applications.
Mitchell and Ternovska (2005) proposed model expansion for FO and for ID-
logic as a framework for solving NP problems.

Definition 3.1 (MX). Let £ be a logic. Model expansion for L, denoted
L-MX is the following decision problem. An instance of the problem consists
of a L-theory T, a vocabulary o C vocab(T), and a finite o-interpretation I.
The problem is to decide whether there exists a vocab(T')-interpretation I such
that I =T and I|, = I,.

We denote £L-M X simply by M X if L is clear from the context. The vo-
cabulary o is called the input vocabulary, the finite o-interpretation I, is called
input interpretation, the vocabulary vocab(T')\ ¢ is called expansion vocabulary,
and the vocab(T)-model I is called an expansion model of I, for T.

Consider £ = FO and £ = ID-logic. Mitchell and Ternovska (2005) proved
that FO-M X and ID-logic-M X are NEXP-complete.

Definition 3.2 (Parameterized M X). Let £ be a logic, T a L-theory, o a
subvocabulary of vocab(T). Then the problem L£-M X7 5 is the problem of
deciding, for a given finite o-interpretation I, whether there exists an expansion
model of I, for T.

Observe that if o = vocab(T'), then M X 7 5 reduces to model checking,
while if ¢ = @, the problem is that of deciding the existence of a model of T
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with a given finite size. Hence (parameterized) model expansion generalizes
finite model generation for the case where model size is given.

Example 3.3. Recall the graph colouring problem in Example 3.2. Our ID-
logic encoding of this problem was the following theory T3 3:

types: Vix,Clr
vocabulary: Edge(Vix,Vtx), Colour(Vix) : Clr
YoiVe Edge(vi,v2) D (Colour(vy) # Colour(vs)).

Let the input vocabulary o be { Edge(Vtx, Vtx)}. Then the problem M X g, ,
is the problem of deciding for a given finite o-interpretation, i.e., for a given finite
graph and set of colours, whether the graph is colourable.

For instance, let the input interpretation be I,: I, has domains Vir =
{a,b,c} and Clr = {R,G,B} and interprets Edge by Edge’> = {(a,b), (b,c),
(c,a)}. This interpretation represents the graph a <—=b ——=¢ and three
colours.

Then M X g, , - with input I, is satisfiable (i.e., the answer to the decision
problem is “yes”), as witnessed by, for instance, the expansion model I that
extends I, with Colour! = {a+— R,b+ G,c > B}.

Parameterized M X for FO is implemented in the MXG solver by Mohebali
(2007).

For a given L-theory T, input vocabulary ¢, and decision problem X on finite
o-structures, we say that £-M X7,y erpresses X when a finite o-interpretation
I, belongs to X iff there exists an expansion model of I, for T. Mitchell and
Ternovska proved that parameterized model expansion for FO and for ID-logic
captures NP. This means the following:

e for any T and o C vocab(T'), the problem M X p ,y is in NP;

e for any NP decision problem X on the class of finite o-interpretations,
there is a theory T with vocab(T) 2 o such that M X 7,y expresses X.

In general, the expressivity of the logic £ determines the complexity class
that is captured by £-M X and by L-MX. .

Mitchell et al. (2006) presented a similar result for NP search problems,
to the effect that for every NP search problem, there is an ID-logic theory T
and a vocabulary o C vocab(T) such that the expansion models of any finite
o-interpretation I, have a one-to-one correspondence to solutions of the NP
problem for input I.

This means that parameterized M X is ideally suited as a computational
paradigm for solving search problems (with logic). In this paradigm, a problem
is solved by computing expansion models of a specific theory in some logic L.
To this end, a human expert should model the theory such that its expansion
models correspond to the solutions of the problem at hand.? This paradigm is
very closely related to the Answer Set Programming paradigm, which we discuss
in Chapter 7.

2Depending on the choice of £, it may not always be possible to achieve a one-to-one
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3.3 Examples

In this section, we illustrate the use of model expansion for ID-logic on a number
of examples, most of which have been published before in (Marién et al., 2006;
Wittocx et al., 2008¢). Also other works demonstrate that ID-logic is a valuable
knowledge representation language; for instance, Denecker and Ternovska (2007)
presents in ID-logic the most general version of situation calculus to date.

3.3.1 Block’s world

We have partly discussed the block’s world before. Here we give a full represen-
tation of the problem.

A table and a number of blocks are given; the blocks are initially stacked in
some given configuration. Also a finite number of timesteps is given, as well as
a goal configuration of the blocks. The task is to find a sequence of moves that
lead from the initial configuration to the goal configuration. A move consists of
a putting a block that is free (has no blocks on top of it) on the table, or on
top of another free block. There can be only one move per timestep, and the
sequence should be completed in the given number of timesteps.

In the representation below, we use a type Block to represent the set of blocks
and the table, and a type Time to represent the timepoints. The symbols in the
input vocabulary are InitOn/2 and GoalOn/2, representing the initial and goal
configuration, and constants T'able, Init and Final, representing respectively
the table, the initial and the final timepoint.

The meaning of the expansion predicates On/3, Move/3 and Free/2 is clear.

Observe that the table is treated as a special block which is always free and
cannot be moved. We use the ezists unique quantifier “3!”, which is defined by
T 7] if (3T ¢[7]) A (VZ1, T2 @[T1] A [T2] D T1 =T2).

types: Block, Time
input vocabulary: InitOn(Block, Block),
GoalOn(Block, Block),
Table : Block, Init : Time, Final : Time
expansion vocabulary: On(Block, Block, Time),
Move(Block, Block, Time),
Free(Block,Time)

correspondence. In such cases, a many-to-one correspondence (many expansion models to one
solution) may be the best achievable result. However, Mitchell et al. (2006) show that in the
case of ID-logic a one-to-one correspondence can always be achieved.
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Vbl, b2 (On(bl, bg, Im't) — Im'tiallyOn(bl, bg)),
Vbl,bg,t (On(bl,b%t) — Move(bl,bg,t— 1)),

Vb1, ba,t (On(br, ba,t) <  On(by,ba,t — 1)A , (3.13)
—(3b3 Move(by,bs,t — 1)))

vb, ¢ (Free(b,t) — =(3¥' On(t/,b,1))), )

vt (Free(Table,t) — T) ; .

—(3b,t Move(Table,b,t)), (3.15)
Wby, b, t Move(by,be,t) D Free(by,t) A Free(bs,t), (3.16)
Yt by, by Move(by, ba,t), (3.17)
Vb1, by GoalOn(by,bs) D On(by, by, Final). (3.18)

3.3.2 Hamiltonian circuit

A Hamiltonian circuit of a given graph is a closed path that visits every vertex
exactly once.

In the representation below we use one type, Vtx. The input vocabulary
consists of one predicate symbol, Edge/2, representing the edges of the graph.
The expansion vocabulary consists of the constant symbol Start, representing
an arbitrary vertex, and the predicate symbols Ham/2, representing the edges
of the Hamiltonian circuit, and Reached/1, representing the vertices that are
reached by the path Ham/2 when leaving from Start.

types: Vitx
input vocabulary: Edge(Viz, Vix)
expansion vocabulary: Ham(Vtx,Vtx), Reached(Vitx), Start : Vix

Ve,y Ham(z,y) D Edge(z,y), (3.19)
Vo 3y Ham(z,y), (3.20)
Vy Iz Ham(z,y), (3.21)
{ Vo (Reached(x) «— Ham(Start,x)), } (3.22)

Va (Reached(x) «— Ty Ham(y,x) A Reached(y)) [’
Vo Reached(x). (3.23)
(3.24)

Note the difference between the inductive definition (3.22) of Reached/1,
and the sentence

Va Reached(x) = (3y Ham(y,z) A Reached(y)). (3.25)

In the latter, there is no requirement that a vertex v is reachable by Ham/2
from some fized start vertez, in order for v to be in the Reached/1 relation.
E.g., an interpretation I with dom(I) = {a, b, ¢}, Start! = a, Ham! = {(b,c),
(c,b)} and Reached! = {b,c} satisfies (3.25) but not definition (3.22).
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3.3.3 N-queens

The N-queens problem is a well-known combinatorial problem whereby N chess
queens must be positioned on an N x N grid such that no two queens can capture
each other (by moving over rows, columns or diagonals).

We use a type D to represent the domain {1,..., N}, and no input vocab-
ulary. The expansion vocabulary consists of one predicate symbol, Queen/2,
which represents the grids on which a queen is positioned. This representation
uses arithmetic such as abs(-) end —/2, which is interpreted in the obvious way.

types: D
input vocabulary: —
expansion vocabulary: Queen(D, D)
Vr Jle Queen(r, ¢), (3.26)
Ve 3lr Queen(r, c), (3.27)

Vry,re,c1,c0 abs(re —r1) = abs(ca —¢1) D (3.28)
—(Queen(ry, c1) A Queen(ra, ca)). '

Observe that both here and in the previous example, we could have used
function symbols instead of the predicate symbols Queen/2 and Ham/2. How-
ever, it is not obvious from the natural language specification of the problem in
either example that the solution is a function. Therefore we consider it a matter
of choice whether or not to represent the concepts as a function. By contrast,
the desired solution of the graph colouring problem (cf. Example 3.2) is clearly
a function; there is no reason not to use a function symbol there.

3.3.4 Transitive reduction

The transitive closure T of a binary relation R is the least relation that contains
R and is transitively closed. It can be represented by the following definition in

ID-logic:
Vr,y (T(az,y) — R(Iay)),
{ Va,y (T(z,y) « 3z T(x,2) NT(z,y)) } : (3.29)

Conversely, the transitive reduction of a binary relation 7' is a minimal re-
lation R which has T' as its transitive closure. For arbitrary 7', neither the
existence nor the uniqueness of such a relation R is guaranteed.

In the representation below we use the type D to represent T’s (arbitrary)
domain. The input vocabulary is {T'/2}. The expansion vocabulary consists of
two predicate symbols: R/2, the desired transitive reduction relation, and 7'S/4,
representing the transitive closure of a relation smaller than R: for each u and
v, the binary relation T'S(-, -, u,v) denotes the transitive closure of R\ {(u,v)}.

Observe that this representation uses the definition of transitive closure as
given above.
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types: D
input vocabulary: T(D, D)
expansion vocabulary: R(D, D), TS(D,D,D, D)
Va,y (T(z,y) « 3z T(z,2) AT(z,y)) |’ '

V%y,u,v (TS(x,y,u,v) — R(l'vy) A _‘(l' =ulhNy= ’U)), (3 31)
YV, y, u,v (TS(x,y,u,v) — 3z (TS(x, z,u,v) A TS(z,y,u,v))) ’ ’

Vo,y (R(z,y) > =TS(x,y,2,y)). (3.32)
Recall that the M X computational paradigm requires the human expert to
model the theory such that its expansion models correspond to the solutions of
the problem at hand. Since is not trivial that expansion models of the above the-

ory correspond to transitive reductions, we formally prove it. In the following,
let T be the theory (3.31)—(3.32).

Proposition 3.1. The model expansion problem MXr (1, correctly models
the transitive reduction problem of T.

Proof. We denote by tc(X) the transitive closure of a relation X.
Indeed, if I is a solution to this MX problem, then we have the following:

e Since I = (3.30), we have tc(RT) = T'.

e We show that R is subset-minimal. Assume towards contradiction that
there exists a binary relation R’ such that R’ C R!, and tc(R') = T".

— Choose a tuple (a,b) € R and ¢ R’
— (a,b) € T! because T! = tc(R') O RI.

— Therefore, and using tc(R') = T, there exists a sequence (a,cy),

(c1,¢2), ..., (cn,b) of tuples, all of which are in R'.

— Since I = (3.32), (a,b,a,b) ¢ TS!. Hence, and using I = (3.31),
there does not exist a sequence (a,c}),(ch,ch),...,(ch,b) in RT\
{(a,0)}.

— Because R!\ {(a,b)} D R/, the sequence (a,cy), ..., (cn,b) consists
of tuples in R’ \ {(a,b)}, hence, with ¢} = c¢1, ¢h = ca, ..., ¢}, = cp,
we have found a sequence (a,c}), (¢}, ch), ..., (c,,b) in R\ {(a,b)}.
Contradiction.

Conversely, let R” be a transitive reduction of T'. Then it is trivial to construct
a structure I that is a solution to the MX problem, with R = R”. O
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3.4 The IDP system

The previous sections motivate the use of ID-logic as a knowledge representation
language, and model expansion as a computational paradigm. Following these
motivations, we have built an ID-logic-M X solver called IDP (Marién et al.,
2006; Wittocx et al., 2008c; Wittocx and Marién, 2008). The implementation
of the IDP system is joint work with Johan Wittocx.

The input language of IDP is ID-logic with many extensions; a theory in the
IDP language is a set of FO sentences and inductive definitions. The extensions
include:

e aggregates, both in FO sentences and in rule bodies (cf. Chapter 6);
e quantifiers with numerical constraints;

e order-sorted types;

e arithmetic; and

e partial functions.

For a complete description of the IDP language and of the semantics of these
extensions, we refer to (Wittocx et al., 2008c; Wittocx and Marién, 2008). A
complete IDP specification consists of a type and vocabulary declaration, a dec-
laration of the input vocabulary o, a declaration of the output vocabulary, and a
theory in the IDP language. “Output vocabulary” is the subset of the expansion
vocabulary that suffices to describe problem solutions. E.g., in the transitive
reduction encoding of Section 3.3.4, the relation R/2 suffices to describe the
solution; T'S/4 is just used as an auxiliary symbol.

As an example, we encode the graph colouring problem from Example 3.2
in IDP. The Asci symbol ! means V, “= means #, and otherwise, the syntax is
self-explanatory.

Given:
type { Clr Vtx }
Edge (Vtx,Vtx)
Find:
Colour(Vtx) : Clr
Satisfying:
! vl v2 : Edge(vl,v2) => Colour(vl) ~= Colour(v2).

The IDP system consists of two components: a grounder, GIDL (Wittocx
et al., 2008a), and a propositional model generator, MINISAT(ID) (Marién et al.,
2008).

GIDL’s task is to transform a given ID-logic-M X problem with a given input
interpretation to a PC(ID) theory, the models of which correspond to the ex-
pansion models. Its algorithms have been described in (Wittocx et al., 2008a,b).
The output language of GIDL is Extended CNF (ECNF, see Section 5.2.4), a
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normal form for PC(ID) theories. It extends CNF with propositional definitions
and propositional aggregate expressions.

There are two propositional solvers for the IDP system: MIDL (Marién et al.,
2007a,b) and the more recent MINISAT(ID) (Marién et al., 2008). The former
supports CNF with propositional definitions, the latter supports full ECNF. We
discuss the implementation of the latter at length in Chapters 5 and 6; suffice
it to say here that it is an extension of the SAT solver MINISAT (Eén and
Sérensson, 2003).

The performance of the IDP system as a whole has recently been tested by
Wittocx et al. (2008c¢); it compared favourably to similar systems, scoring best
on at least three aggregated measures over a wide range of problems.

3.5 Grounding

In the IDP system, the grounding phase is performed by GIDL. The development
of efficient grounding techniques, and the implementation of GIDL, is the work
of Johan Wittocx (Wittocx, Marién, and Denecker, 2008a,b). To make this text
self-contained, we present here a simple but very naive grounding technique.
The techniques used in GIDL produce significantly smaller PC(ID) theories
than the one presented here.

First we remove all function symbols from the given theory. For any function
symbol F'/n, introduce a new predicate symbol Pr/(n+ 1), and add the axiom
vz 3y Pr(Z,y). Replace all occurrences of a function symbol F' in the form
A(...,F(%),...) by 3t" A(...,t',...) A Pr(t,t'), except in the head of rules of a
definition. If VZ (A(...,F(),...) < ¢) is a rule of a definition, then replace it
by Vz,t' (A(....t,...) — Pr(t,t') A o).

We now assume that the given theory is function-free. We further assume
that a finite domain D is given.? For each domain atom d € D, we introduce a
new constant symbol d. For a formula ¥[Z] and a tuple d € DIl we represent by
[z /d] the propositional formula obtained from W[Z] by replacing all occurrences
of T by d. Then the grounding of an FO formula ¢ is the formula Grp(¢) defined
by:

o if o =VT U[z], it is Agepi=1 Gro(¥[T/d]);
o if o =37 U[z], it is \/gc pi=1 Gro(¥[T/d]);
o if o =1 A s, it is Grp(e1) A Grp(ps);
o if o =1 Va,itis Grp(p1) V Grp(v2);

o if o =V, it is “Grp (V).

3Note that in practice, a finite input interpretation is given, i.e., more than just a finite
domain. GIDL exploits the given input interpretation to reduce the size of the resulting
PC(ID) theory.
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The grounding of a rule VZ (P(Z) « ¥[z]) in an inductive definition is the
set of rules P(d) « Grp(¥[z/d]), for each d € DI?I.

Note that Grp(p) is variable-free, but may not have a propositional vo-
cabulary. To convert Grp(p) into a PC(ID) theory, we have to create a new
vocabulary, in which we convert every atom P(d) corresponding to a domain

atom P(d) into a separate propositional atom; this is a trivial operation.

Example 3.4. The grounding Gr, ;) (A3.4) of Az 4 =

Va,y TC(x,y) — R(z,y),
Va,y TC(z,y) <« 32 TC(x,z) A R(z,y)

is the definition

TC(a,a) < R(a,a), TC(b,a) — R(b,a),

TC(a,b) — R(a,b), TC(b,b) — R(b,b),

TC(a,a) < (TC(a,a) A R(a,a)) V (TC(a,b) A R(b,a)),
TC(a,b) — (TC(a,a) A R(a,b)) V (T'C(a,b) A R(b,D)),
TC(b,a) — (TC(b,a) A R(a,a)) V (T'C(b,b) A R(b,a)),
TC(b,b) — (TC(b,a) A R(a,b)) V (T'C(b,b) A R(b,b))

If T is an ID-logic theory, then for every model I of Grp (A T') with dom(I) =
D and d! = d for every d € D, I|yocan(ry = T. Conversely, for every model I
of T with dom(I) = D, there is an extension I’ of I with I’ = Grp(AT) and
d!" = d. We can therefore solve the model generation problem of 7' in domain
D by solving the propositional model generation problem of Grp(AT).

3.6 Satisfiability of propositional ID-logic

We give some simple complexity results about the SAT(ID) problem. In Chap-
ter 5, we discuss algorithms for the SAT(ID) problem at length.

Proposition 3.2. SAT(ID) is NP-complete.

Proof. (Membership) Checking whether a propositional interpretation is a well-
founded model can be done in polynomial time, e.g. in quadratic time using an
algorithm by Van Gelder (1993). It is easy to define an algorithm that uses such
a well-founded semantics algorithm and finds SAT(ID) models in polynomial
time on a non-deterministic Turing machine.

(Hardness) Any SAT problem is trivially also a SAT(ID) problem. O

Recall Definition 2.9 of totality of a definition A with respect to a theory
T: for each I |= T, the well-founded model of A extending I|ppen(a) must be
two-valued. Though deciding totality is not directly relevant for the SAT(ID)
problem, it is an interesting problem, not least because stable and well-founded
models coincide for total definitions.
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Proposition 3.3. Deciding whether a given propositional inductive definition
A is total with respect to a given propositional theory ® is a co-NP-complete
problem.

Proof. (Membership) Any interpretation I such that I = ® and such that the
well-founded model of A extending I|ppen(a) is not two-valued, is a certificate
for the non-totality A with respect to ®. Both checking whether I = ® and
whether the well-founded model of A extending I|ppen(a) is two-valued can be
done in polynomial time.

(Hardness) Consider the definition A = { p—-pA® }. A is total with
respect to the empty theory iff ® is unsatisfiable. Thus we have found an
instance of our decision problem that is equivalent to a co-NP-hard decision
problem, namely UNSAT. O

Proposition 3.4. Let A be a definition that is total with respect to some theory
T. Then A is satisfiable.

Since it is part of our ID-logic methodology to write definitions that are total,
we expect most definitions to be satisfiable. This, of course, has no implications
on the satisfiability of a PC(ID) theory that contains only total definitions, not
even when the theory without the definitions is also satisfiable. The reason is
that the definitions may share vocabulary with the rest of the theory (and exert
extra constraints on it).

3.7 Conclusions

We have presented ID-logic from a knowledge representation point of view,
and highlighted some methodological principles of modelling in ID-logic. We
mention some in summary:

e represent definitional knowledge by definitions;
e represent definitions as separate modules;
e represent non-definitional knowledge by FO sentences;

e represent each “case” of an informal definition by one rule in the formal
definition;

e use function symbols whenever the represented concept is clearly a func-
tion.

We have followed the suggestion of Mitchell and Ternovska (2005) to use the
model expansion problem as a computational paradigm to solve NP problems.
We then gave a number of examples of model expansion for ID-logic, and pre-
sented the IDP system, a system for ID-logic-M X . Finally, we have presented
a simple grounding technique, and established some results about SAT(ID).



Chapter 4

Semantical analysis of
propositional definitions

4.1 Introduction

In this chapter we perform a semantical analysis of PC(ID), and more specifi-
cally, of propositional inductive definitions (IDs). The central question is: when
is a given interpretation a model of a propositional definition?

We give two independent characterizations of (models of) IDs. The first
one (Theorem 4.1) is a graph theoretical characterization of IDs; it uses graph
structures called justifications. The second one (Theorem 4.2) is a PC charac-
terization of IDs; it involves propositional formulas called loop formulas.

Such a semantical analysis is important in its own right, because it yields new
insights into the logic. For instance, our second result defines a transformation of
PC(ID) theories to PC theories. It also offers us a new way of characterizing the
correspondences and the differences between PC(ID) and propositional Stable
logic programs.

Importantly, these results also form the theoretical underpinnings to develop
algorithms for solving the SAT(ID) problem. This is the topic of Chapter 5.
In that chapter, we use both characterizations that are developed here. For
instance, we develop an algorithm that seeks to produce a loop formula, by
searching for possible justifications. This chapter forms the link between such
algorithms and the original semantics of inductive definitions.

Section 4.2 introduces a normal form for IDs, which we use throughout the
text, and presents some graph concepts. In Section 4.3, justification semantics
is introduced, and some derived concepts useful for SAT(ID) algorithms are
defined. Section 4.4 defines loop formulas for inductive definitions, and discusses
some observations derived from the general result.

47
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4.2 Preliminaries

4.2.1 Completion

Clark (1978) defined the completion of a logic program. Here we similarly define
the completion of a propositional inductive definition (ID) A, denoted comp(A):
it is the propositional formula

A (p=Vielp—pea}). (4.1)

pEDef(A)

For a PC(ID) theory T, denote by comp(T) the theory obtained from T" by
replacing each definition A € T by comp(A).
The following result is well-known:

Proposition 4.1. Let A be a propositional ID. Then A |= comp(A).

Note that for any given Open(A)-interpretation Ip, A has a unique model
extending Ip (or possibly no model at all, if it is non-total). comp(A) on the
other hand may have multiple models extending Io.

Example 4.1. Let Ay = { p—pVa } Then comp(Ag1) = (p = p Va).
Ay has two models: {p — t,a — t}, {p — f,a — f}; comp(As1) has the
same two models, and the additional model {p — t,a — f}.

4.2.2 Definitional Normal Form

Recall that for a set of literals S, we denote by S the set {—s | s € S}, and by
S the set SUS.

A propositional definition A is in definitional normal form (DefNF') if each
p € Def(A) is defined by exactly one rule, denoted p < ¢, the body of which is
either a disjunction or a conjunction of literals. We call p < ¢,, the rule defining
p. Slightly abusing notation, in some contexts ¢, will be used to denote the set
of literals in the body of the rule defining p. E.g., | € ¢, means that [ is
one of the conjuncts or disjuncts of ¢,. We extend this notation to negative
defined literals: for | € Def(A), we denote by ¢, the formula —p_;, which is a
conjunction if ¢—; is a disjunction, and vice versa. Then the literals I’ € ¢; are
the negations of the conjuncts or disjuncts of p_;.

Observe that for DefNF definitions A the completion simplifies to

comp(A) = N p=gp (4.2)
pEDef(A)

i.e., a simple replacement of < by =. It then follows from Proposition 4.1 that
for any p € Def(A), A = (p = ¢p). -
We partition the set of defined literals Def(A) in two:

Diits = {p | ¢p is a disjunction} U {—p | ¢, is a conjunction},

Ciits = {p | ¢p is a conjunction} U {-p | ¢, is a disjunction}.
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For atoms p € Def(A) for which ¢, is a singleton, we treat ¢, as a conjunction.
Also, we interpret T and L here as literals of Open(A), with fixed truth values
t respectively f.

We call literals in Dy disjunctively defined, and literals in Cyes conjunctively
defined. Observe that from A = (p = ) for defined atoms p we can derive
A = (-p = —pp); for a negative literal | = —p that is disjunctively defined, ¢,
is a conjunction, so -, is a disjunction; for a conjunctively defined negative
literal { = —p, ), is a conjunction. Hence, all disjunctively defined literals are
equivalent to the disjunction of their body literals, and all conjunctively defined
literals are equivalent to the conjunction of their body literals.

pegqVr,

qg—pA-s |-
Then we have Dy = {p, ¢}, Cits = {0, ¢}, and comp(A4s2) = (p = q V
r) A (g = p A —s). For the disjunctively defined literals p and —g, we have ¢, =

V{g,r} and ¢, = \/{—p, s}, and consequently it holds that Ay 2 = p = \/{q,r}
and Ay o E —q = V{-p,s}.

An arbitrary propositional definition can be transformed in linear time into
an equivalent (up to the original vocabulary) DefNF definition using predicate
introduction. The transformation starts by merging all rules with the same head
atom into one rule as follows: p < ¢1,...,p < @, becomes p «— ©1 V-V @,,
for all defined atoms p. It then simply applies the following two steps until
DefNF form is reached:

— replace a positively occurring subformula 1 of some rule body by a newly
introduced atom, say py;

— introduce a new rule py, < 1.

Its correctness is proven by Wittocx et al. (2006).

As an example, we show how a definition in normal logic programming form
is transformed to DefNF. Let the definition consist of rules p; < 1; ;, for 1 <
1 <nand for 1 < j < n;, where the ¢); ; are conjunctions of literals. The DefNF
definition obtained after our transformation consists of disjunctive rules of the
form p; «— \/1§j§ni pij, for 1 < ¢ < n, and of conjunctive rules of the form
Dij < Vi, for 1 <i<mnand for 1 <j <n;. The p;; are new atoms.

Besides the obvious advantage of simplified theoretical results, the use of
DefNF has also practical advantages.

Example 4.2. Let Ay =

e It is very similar to the widely used conjunctive normal form (CNF); in
fact, transforming comp(A) to CNF is trivial. This means that in practical
implementations of SAT(ID) solvers, the data structures that are used by
SAT solvers to represent CNF clauses can be reused to represent DefNF
rules.

e Anger et al. (2006a) studied the behaviour of truth propagation algorithms
with and without the possibility to assign a truth value to a rule body
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in normal logic programming. They found that the former potentially
behaved exponentially better than the latter. Under our transformation
to DefNF above, rule bodies are represented by atoms, and therefore,
normal truth propagation algorithms for DefNF automatically behave like
the faster truth propagation algorithms for the corresponding normal logic
programming definition. Their work was done in the context of stable
model semantics, but carries over to ID semantics.

In the following sections, we study the satisfaction relation I = A for DefNF
definitions A with vocabulary Y. The results generalize, with appropriate adap-
tions of definitions, to arbitrary propositional definitions.

4.2.3 Some graph concepts

A (directed) graph is a tuple (V, E) of vertices V and edges E. The edges form
a binary relation over vertices. A path from v; € V to vo € V is a non-empty
sequence of edges (v1,v’), (v/,v"),..., (™, vy), each of which is in E. For a
graph G = (V, E), we denote by v € G that v € V and by (v1,v2) € G that
(v1,v2) € E. For graphs G = (V,E) and G’ = (V', E’), G' is a subgraph of G if
V'CVand E'! C E.

Given a graph G = (V, E), a set of vertices S C V is said to be strongly
connected if for any v1,ve € S, the graph contains a path through S from v; to
va. A loop of a graph is a non-empty, strongly connected set of vertices. For
instance, if (v,v) € G, then the singleton {v} is a loop.

A strongly connected component of G = (V, E) is a maximal subgraph G’ =
(V',E’) of G such that V' is strongly connected. By SCCq we denote the set
{V''| G" = (V',E’) is a strongly connected component of G}. Note that in
general some vertices may not occur in any loop of G, and will therefore not be
represented in SCCg. We define the SCC-partition of G, denoted SCCJCS, as the
set SCCq U {{v} | v € G and v does not occur in a loop of G}. Observe that
SCCE indeed forms a partition of V.

We define a relation <g on the SCC-partition of G: for 51,5, € SCCE,
S1 2¢g Sy if for some vy € Si, vo € Sy, there is a path in G from vy to vy,
or if S; = S3 = {v}, where v does not occur in a loop of G. Observe that for
51,82 € SCCq, S1 =¢ Sz implies that for any vy € S1, vo € So, there is a
path in G from vy to vi. Also, S1 =g S3 and Sp =g S7 implies that S; = Ss.
The order < is well-founded if G is finite. Hence =<¢ is a partial order. Note
that < is now also defined on the strongly connected components of G, since
SCCq C SCCE. We will often refer to a minimal strongly connected component
of G: this is a component G’ = (V',E’) such that there is no V" € SCCq
with V" #£ V' and V" <¢ V’. Note that in general there may be several such
minimal components.

We will sometimes encounter finite graphs G with the property that for ev-
ery v € G, there is a v’ € G such that (v,v’) € G. Tt follows that such a graph
contains at least one loop, and therefore also at least one minimal strongly con-
nected component. Furthermore, such a minimal strongly connected component



4.3. JUSTIFICATION SEMANTICS 51

is also minimal in SCCE, i.e., it has no outgoing edges.
When considering subgraphs of a given graph, the following simple property
of their strongly connected components is often useful:

Proposition 4.2. Let G be a graph, and G’ a subgraph of G. Then for any
S’ e SCCJGF,, there exists an S € SCCg such that S’ C S.

4.3 A graph theoretical characterization of def-
initions

This section introduces justification semantics. The results in this section are
based on the work of (Marién et al., 2005, 2007b, 2008), and build on concepts
first defined by Denecker and De Schreye (1993).

4.3.1 Justifications

The truth values of defined symbols are determined by the truth values of open
symbols. We want to identify, for each defined literal, what would constitute
sufficient reason for it to be true.! Consider an atom c¢ defined by the rule
¢+—c1 N...Ncpy: in order for ¢ to be true, all of {cy,...,cy} should be true.
On the other hand, in order for an atom d defined by the rule d «— d;V...Vdy to
be true, it suffices that one d; be true. We call such direct (local) dependencies
c~{c1,...,en}, d~ d; direct justifications.

Definition 4.1 (Direct justification). Let [ € D?f(\A). A direct justification
for 1, denoted DJ(1), is a set of literals such that:

o if [ € Dyys, DJ(1) is a singleton {I'}, for I € ¢y;
o ifl e Clitsa DJ(l) = ¥y

However, such direct justifications on their own do not suffice yet to capture
the deterministic relationship between open and defined symbols imposed by a
definition. To capture this relationship we may use a graph structure, built out
of direct dependencies as above. This motivates the following definition:

Definition 4.2 (Justification). A justification J for A is a directed graph (V, E)
where V = 3, and E is such that for each [ € Def(A), the set {I' | (1,I') € E}

is a direct justification for I, denoted DJ;(l), and for each | € Open(A), E
contains no edges leaving .

Observe that a justification J is uniquely determined by the function d; :
Diits — X defined by d;(1) = z if DJ;(1) = {z}, for each | € Dis.

INote that identifying reasons for literals to be true is the same as identifying reasons for
atoms to be either true or false.
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Rb <~ Ibc ﬁRb -~ ﬁIbc Rb - Ibc ﬁ‘Rb < ﬁIbC

v a
Epe / —Fpe S By / ﬁEbf
S f v/ v 7

Iy ——> R, \~I, —>—R, iy — - \_{,ch ,,,,,,,, ~ R,
\ v 3 v V
Eab Eac "Eab ﬁEaC Eab Eac ﬁEab ﬁEac

(a) A justification, Ji (b) Overview of possible justifications

Figure 4.1: Justifications for Ay 3.

Example 4.3. Consider irreflexive undirected graphs with nodes {a, b, c}. We
represent the edge between nodes x and y by E,,. Then R, (for z € {b,c}) in
the following definition expresses the reachability of  from a (I, expresses the
reachability of y from a via x):

A _ Rb — Eab \ ch7 ch — Rc A EbC7
48 Rc — Eac \ Ib07 Ibc — Rb A Ebc '

Then Figure 4.1a shows a justification, Ji, for Ay 3. J; is characterized by
dy, (Rp) = Lep, dy, (Re) = Ive, dy, (—Ipe) = Ry, and dj, (—1ep) = ~Re..

Figure 4.1b shows an overview of all possible justifications for A4 3, whereby
possible edges are shown as dotted arrows. For each literal from which possible
edges leave, exactly one of the edges must be chosen in an actual justification.

The intuitions given for the concept of justification also motivate the defini-
tion of the support property.

Definition 4.3 (Support). Let J be a justification for A, I a 3-interpretation.

"

Then J supports I if for each I € Def(A), I(l) = I(A\ DJ;(1)).

The conjunction A DJ;(1) is true in I if all literals in the direct justification
of [ in J are true. If that conjunction is true, then [ itself must be true.

Example 4.4. Example 4.3 continued. Consider the inter-

pretation Iy = {Ry — t, R. — t, Iyc — t, Ip — t, Ep. — t, a
Eu — f, Eqc — f}. This interpretation represents the graph X x
shown on the right, and the statements that b and c are reach- b—v—oc

able from a, and that b is reachable via ¢, and ¢ via b.
The justification J; shown in Figure 4.1a supports I;.

Let J be a justification and L a loop in J. L is a set of literals. We call
L positive, negative, or mized, depending on whether it consists respectively of
atoms only, of negative literals only, or of both. A non-negative loop is either
positive or mixed, i.e., it is a loop that contains at least one atom.

Still building on the intuitions behind the concept of justification, we point
out that our explanation contains a causal component: a defined literal [ is
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Figure 4.2: Justifications for Ay 7.

true because all literals in {I’ | (I,I') € J} are true, for a given justification
J. This implies that loops in a justification graph are unwanted: they reflect
a cyclic, and therefore flawed, chain of reasons. However, it can be seen from
the definition of the well-founded semantics (Definition 2.2) that some sets of
atoms—unfounded sets—can “legitimately” cause each other to be false. In
other words, negative loops are no problem. This motivates the definition of
the loop-safeness property.

Definition 4.4 (Loop-safeness). Let J be a justification for A, I a ¥-interpre-
tation. Then J is loop-safe in I iff for any non-negative loop in J, all literals in
the loop are false in 1.

Example 4.5. Examples 4.3-4.4 continued. J; is not loop-safe in I, since
{Rp, I, Re, Ipc} is a loop in J; that contains an atom, yet also contains true
literals. Note that the loop {—Rp, —Iep, 7 Re, Iy} is harmless: it contains only
negative literals.

Naturally, we are interested in the combination of support and loop-safeness.

Definition 4.5 (Witness). Let J be a justification for A, I a ¥-interpretation.
Then J is a A-witness for I iff J supports I and J is loop-safe in I. If A is
clear from the context, we simply say J is a witness.

Example 4.6. Examples 4.3-4.5 continued. There cannot be a A4 3-witness
J for I;: if the support property is not to be violated, then d;(Ry) = I and
dj(R.) = Iy, but then {Ry, Ip, Re, Inc} is a loop; if the loop-safeness property
is not to be violated, all literals in it must be false, which they are not in I.

Jp in Figure 4.1a is a witness for I = {Ry — f, Re — f, Ipc — [, Lo — T,
Ebc'_)f7Eab’_>.fa Eac'_)f}'

Example 4.7. Consider the definition Ay 7 = { p—aV-p } There are
two justifications for Ay 7, shown in Figure 4.2. J; cannot be loop-safe in any
interpretation, since the loop {p, ~p} contains an atom and necessarily contains
a true literal. Consider an interpretation I that has Jy as its witness. Then .Jo
supports I, hence I(p) = I(a), and I(—p) = I(p A —a). This is only possible for
the interpretation I = {p +— t,a — t}.

With the concept of witness in place, we come to our main result. This result
formalizes our intuitions: if there exists a justification that satisfies all criteria
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it should—support and loop-safeness—to represent a sound set of reasons for
defined literals to be true in a given interpretation, i.e., if there exists a witness
for the interpretation, it must be a model of the definition, and vice versa.

Theorem 4.1. Let I be a Z-interpretation. Then I = A iff there exists a
A-witness for I.

Example 4.8. Example 4.7 continued. I = {p — t,a — t} is the only model
of Ay 7. Note that A4 7 is not total, because its well-founded model extending
{a > f} is three-valued: {p — u,a— f}.

We prove this result in Section 4.3.2, where we first introduce some prelim-
inary results about justifications.

4.3.2 Properties of justifications
We start by some results regarding the support property.

Proposition 4.3. Let I be a X-interpretation. Then I = comp(A) iff there
exists a justification J for A that supports I.

Proof. We do a case analysis on the two types of rules of A.

(p—=p1V---Vpy)EA. If T |= comp(A), we have I = p = p; V-V pn.
Suppose I(p) = t. Then at least one p; is true in I. Then let d;(p) = p;:
the support condition is thereby satisfied in p. Also, —p is then false:
the condition is then also satisfied in —p. Suppose instead I(p) = f.
Then all p; are also false in I. Hence, whichever p; is chosen as d;(p),
the support condition is satisfied in p. Since all —p; are true in I, also
I(—p) = I(\, —ps) is satisfied.

The reverse also is easy to verify (if the support condition is satisfied in
p,then ITEp=p; V- Vpn).

(p—p1 A+ Apn) € A. This is symmetric to the previous case.

O

The following concept, derived from justifications, will be useful throughout
the text.

Definition 4.6 (Subjustification). Let J be a justification for A and I €

—

Def(A). The subjustification of J starting in [, denoted Sub(J,1), is the sub-
graph of J consisting of [ and all literals reachable from [ in J.

Proposition 4.4. Let J be a justification for A, I a S-interpretation, and let
J support I.

L —

1. Letl € Def(A) be a literal with I(l) =t. Then all literals in Sub(J,1) are
true in 1.
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2. Let L be a loop in J. Then L consists entirely of false, or entirely of true
literals in 1.

A special case of item 2 is when L € SCC;.

Proof. We prove item 1 by induction: [ is true (in I'), and if all literals reachable
from [ in J in i steps are true, then all literals reachable from [ in J in 7 + 1
steps must be true. Indeed: let I’ be a literal reachable from [ in J in ¢ steps,
and !’ is true. Since J supports I, it follows that all literals in DJ;(l’) are true
in I. Since all literals reachable from [ in J in i + 1 steps are member of D.J;(I")
for some !’ reachable from [ in J in 4 steps, this proves the induction step.

It follows from the definition of Sub(J,1) that a loop L is a subset of Sub(J, 1)
for any [ € L. Hence item 2 is an easy consequence of item 1. O

We further make a few observations that may help gain insight in the struc-
ture of a witness. The proofs of these statements follow trivially from the
definition of loop-safeness and from the above results. Let J be a witness for 1.

e Let S € SCCy. If S contains an atom, it consists of false literals in 1.

e Let S € SCCy. If S is mixed, then so is S. No atom p € S occurs in a

loop in J, i.e., =35’ € SCCy :p € S’. Hence S as a whole is not a loop in
J.

e Let the graph G be the restriction of J to true literals in I. Then SCCq
contains only negative loops.

We are now ready to prove Theorem 4.1, which states that I = A iff there
exists a A-witness for I. The proof follows from Lemmas 4.1 and 4.2, which
correspond to the “only if” and “if” cases, respectively.

Lemma 4.1. Let I be a X-interpretation, and let I = A. Then there exists a
A-witness for 1.

We recall Definition 2.1 of a well-founded sequence, and instantiate it here
for propositional definitions in DefNF. A well-founded sequence for a DefNF
definition A from a three-valued interpretation I, is any sequence (I;)o<i<n of
three-valued interpretations, such that Iy = I,, and such that for 0 < i < n,
I;11 is derived from I; by changing I; according to one of the following rules:

e I, 1(p) =t for an atom p € Dj;s with I;(p) = w and I;(b) = t for at least
one b € pp;

o I;11(p) =t for an atom p € Ciys with I;(p) = u I;(b) =t for each b € ¢,;

e I, 1(p) = f for all p € U, for some set of atoms U for which, for each
p €U, Ii(p) = u and

— if p € Dijgs, then I;11(b) = f for each b € ¢,;
— if p € Ciis, then I;11(b) = f for at least one b € ¢,.
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U is called an unfounded set with respect to ;.

Let I, be a three-valued interpretation that is two-valued on Open(A) and in-
terprets all atoms in Def(A) by w. Then if (I;)o<;<x, is a well-founded sequence
from I, and I, is two-valued, then I, = A.

Proof. (of Lemma 4.1)
Let I be a model of A. Hence there is a well-founded sequence (I;)o<;<n s
above, with Iy the empty extension of I|ppen(a) to ¥ and with I, = I.

We introduce a (stage level) function f : & — {0,...,n}, and define it as
follows: for each [ € 3, f(I) = i iff I;(I) # u, and either i = 0 or I;_1(l) = u.
Since I, = I, I, is two-valued and f is total. Note that f(I) = f(-l) for any I.

We now use f to define a justification J (by defining the function d;) and
to prove that it is a witness for I.

e For each atom [ € Dy;s with I(1) = ¢, let d;(I) = b for a literal b € ¢; with
I¢qy—1(b) = t. Note that f(b) < f(I) and I(b) = I(I) follows.

e For each negative literal | € Dy with I(l) = f, let dj(I) = I’ for some
arbitrary 1" € ¢;. We have that Ir;_1(b) = t for any b € ¢, and
therefore again f(I') < f(I) and I(I ) I(1).

e For each atom [ € Dy with I(l) = f, let d;(I) = I’ for some arbitrary
I" € ¢1. We have I (b) = f for each b € ¢y, hence f(I') < f(I) and
Iy = I(1).

e For each negative literal [ € Dy with I(1) = ¢, let dj(I) = b for a literal
b € ¢y with Iy (b) = t. This exists because -l is an atom € Cii¢s that
became false in I(—;. We again have f(b) < f(I) and I(b) = I(I).

J supports I: for literals in D5 it follows from the definition of dj; for
literals in Cjjs it follows from the construction of I. We show that J is also
loop-safe in 1.

Observe that for each (I,!') € J such that I(I) = t (and therefore also
I(lI')y = t), if I is an atom, then f(I) > f(I'); if | is a negative literal, then
f() = f(I"). Let G be the subgraph G of J, defined as the restriction of J
to true literals in I. Hence any loop in G consists of negative literals. By
Proposition 4.4, item 2 and because J supports I, it follows that any loop in J
is either also a loop in G, and therefore a negative loop, or it consists entirely
of false literals in I. Therefore J is also loop-safe in I. O

We first illustrate the “if” case of Theorem 4.1 on an example.

Example 4.9. Examples 4.3-4.6 continued. Recall the justification J; from
Figure 4.1a, which is a A4 3-witness for the interpretation I that maps every
atom to false.

We use Jp to construct a sequence of three-valued interpretations with limit
I, and show that the sequence is a well-founded sequence.
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— Initially, Ino = {Epc — f,Eap — fyEac — fFYU{p— u|p € Def(A4s3)}.
Currently the literals U = {Rp, = Rp, Re, = Rey Tvey —Ipe, Iep, —Ip} are
unassigned, and for none of them, all its children in J; are assigned.

— Therefore we know that the restriction of J; to U must contain (a) loop(s).
In fact, at least one such loop is positive (we elaborate on the reasons in the
proof). Indeed: the loops are L = {Ry, Re, Iy, I.p} and L; L is a positive
loop.

— Since J; is loop-safe in I, all atoms in L are false in I.

— We show that L is an unfounded set with respect to Iz . (In the proof it is
shown that there must exist such a loop L.) Each literal in L N Cyjts (i.e. Tpe
and I.) has a child in J; that is € L, and therefore false in I o[L/f]. For
each literal [ in L N Dyys (i.e. Ry and R..), all literals in ¢; are either € L or
false in I g.

— Therefore, In1 = Iz o[{Rp, Rec, Ivc, Iev}/ f] is a valid extension of the well-
founded sequence.

— Iy is two-valued and therefore terminal; it is equal to I5.

Lemma 4.2. Let I be a X-interpretation. If there exists a A-witness for I,
then I = A.

Proof. Let I be a two-valued interpretation, and J a witness for I. We will use
J to construct a sequence (I;)o<;<n of three-valued interpretations. We prove
that the sequence is a well-founded sequence, and that I,, = I, and therefore
I = A. We denote by dom(I;) the set of atoms for which I; is two-valued.

The induction hypothesis, for each i, is that I;(p) = I(p) for each p €
dom(I;), and if ¢ > 0, then the relation between I;_; and I; satisfies the criteria
of a well-founded sequence.

Let Io = I|open(a)- lo clearly satisfies the induction hypothesis.

Suppose we have constructed I, gd\ i satisfies the induction hypothesis.
We denote by D; the set of literals dom([;), and by U; the unassigned literals
S\ D;.

If U; is empty, then I; is two-valued, and therefore I; = I, and we are done.

If there exists a literal [ in U; with DJ;(1) C D;, then we extend the sequence
with I;41, the interpretation derived from I; by changing I;,11 (1) to I(l). It is
easy to see that then ¢ + 1 satisfies the induction hypothesis.

If there is no such literal left and U; is not empty, then we will show that a set
of atoms can be found that is an unfounded set with respect to ;. Let the graph
G be the restriction of J to U;. Since for each I € U;, DJ;(1) contains an I’ € Uj;,
G contains a loop, and contains a minimal strongly connected component L.
Note that L has no outgoing edges in G. In J, however, literals [ € Cj;s N L may
have outgoing edges, i.e., for some literals I € ¢y, I’ may be in D;.

Now let the graph G’ be the restriction of .J to L. Observe that since L C Uj,
G’ is a subgraph of G. We show that also each | € G’ has a child in G’:

e if | € Djjs, then because there is no literal I’ in U; with DJ;(I') C D;,
we have d;(I) € U;. We also have -l € Ciits, and because —l € L, each
I € pyNU; is also in L, hence d;(l) € L, hence d;(1) € G';



58 CHAPTER 4. SEMANTICAL ANALYSIS OF PC(ID)

e if | € Cjts, then ds(=l) € L, hence ~ds(—l) € L, hence d(I) € G'.

Thus, G’ contains a minimal strongly connected component L’. Because J is a
witness for I, for any loop in J that contains an atom, all literals in it are false
in I. Since both L and L’ are loops in .J, and L’ C L, it is impossible that both
L' and L contain an atom.

Suppose L’ contains an atom. Hence L contains no atoms at all, or L
contains only atoms. We show that all atoms in L must be false. Assume
towards contradiction that some I € L has I(I) = t. Since J supports I, we find
I(I') = t for all I' € Sub(J,1) by Proposition 4.4. Also, any I’ € L contains at
least one child in G'; if I(I’) = ¢ then that child is also in in Sub(J,1). Thus we
find a loop L” C L in G, for which all literals are true. Since L is also a loop
in J and J is a witness for I, L” contains no atoms. Contradiction.

Thus, still supposing L’ contains an atom, we have that L is a loop consisting
of false atoms in I. We show that L is an unfounded set with respect to I;.

e Take any ! € DysNL. By construction of L, for each I’ € 1 we have either
I' e Lorl € D;. In the former case I(I') = f is already known, in the
latter case I(I") = f follows from the fact that J supports I (if I(I') = ¢,
then I(A\ ¢-;) = f, hence, by support, I(—l) = f, hence I(l) = t). We
find I(I") = f for each I’ € ¢; as desired.

e Take any | € Cjis N L. By construction of L, ~ds(=l) € L, i.e., we find
some I’ € ¢ with I(I') = f as desired, namely I’ = =d j(-l).

Now suppose that L’ contains no atoms. Then L’ consists entirely of atoms,
and because L is a loop in J, J is loop-safe in I and L’ C L, they are all false
in I. In the same way as in the previous case we find that L’ is an unfounded
set with respect to I;.

In either case, let I; 11 be the interpretation derived from I; by changing
I;+1(1) to I(l) (which is f) for each [ in the unfounded set. Again i+ 1 satisfies
the induction hypothesis. O

Proof. (of Theorem 4.1) This is a direct consequence of Lemmas 4.1 and 4.2. O

4.3.3 Three-valued semantics

Theorem 4.1 is an interesting result for SAT(ID) solving: it tells us that we can
verify that an interpretation I is a model by finding a witness for it, or prove
that it is not a model by showing that there exists no witness for it. However, in
practical algorithms, we will construct a model: during its construction, we have
a three-valued interpretation. We will prefer to reject candidate interpretations
before they are two-valued. To this end we extend the result, and the definition
of witness, to three-valued semantics.

Definition 4.7 (Three-valued support). Let J be a justification for A, I a
three-valued X-interpretation. Then J three-valuedly supports I iff, for each

—

1€ Def(A), if I(ADJ;(1)) # w then I(1) = I(\ DJ,(1)).
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Recall that the truth of the conjunction A\ DJ;(l) can be seen as a reason
for the truth of a defined literal I. The requirement for three-valued support is
that for each defined literal [, whenever that conjunction is two-valued in I, [
itself must have the same truth value in I. It is then possible that a defined
literal already has a two-valued truth value, while its body is still three-valued.
This state may come up often in practical SAT(ID) algorithms.

Observe that any justification 3-valuedly supports the empty interpretation,
and that for 2-valued interpretations the notions of support and of 3-valued
support coincide.

Example 4.10. Consider the definition Ay 19 = { p—a, q<+< a }, and
the three-valued interpretation I = {p — f,q — f,a — wu}. There exists but
one justification for Ay 19, and it 3-valuedly supports I. However, it supports
neither I U {a + f} nor IU {a — t}.

Definition 4.8 (Witness, generalized). Let J be a justification for A, I a 3-
valued Y-interpretation. Then J is a witness for I iff J 3-valuedly supports
and J is loop-safe in [.

This concept generalizes the concept of witness for two-valued interpreta-
tions: if I is a two-valued interpretation, then a generalized witness J for (I, I)
is a witness for I.

During SAT(ID) solving we may wish to reject three-valued interpretations
that cannot be strengthened to a two-valued interpretation that has a witness.

4.3.4 Simplifications
Loop-safeness

Definition 4.4 of loop-safeness involves not only a condition on loops, but also
a condition on truth values of literals in those loops. We may wonder whether
the latter can be eliminated, i.e. whether the concept of loop-safeness can be
made independent of interpretations. The following example illustrates that for
some definitions, any justification will contain loops with atoms: incorporating
a condition on truth values in the definition of loop-safeness therefore seems
appropriate.

Example 4.11. Let Ay = { p—gq, q<—0p } There is a unique justifica-
tion J for Ay 11; it contains the loops {p, ¢} and {—p, ~¢}. The former contains
an atom, and since this loop cannot be avoided (J is unique), its literals have
to be false. Hence {p — f,q+— f} is the only model of Ay ;.

We can simplify the concept of loop-safeness however by identifying the
atoms that are unavoidably part of a loop in any justification: they have to be
false in any model.

Definition 4.9 (A%). We define the set of unavoidably false literals O as {l €
Def(A) | for any justification J for A, Sub(J,1) contains a non-negative loop}.
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The loop-simplification of A, denoted A?, is the definition { p<—-p } if O
contains both some atom p and its negation —p; else it is the definition obtained
from A by replacing

® p«— ¢, by p— L for each atom p € O; and
® p «— ¢, by p— T for each negative literal —p € O.

If the set of unavoidably false literals contains both an atom and its nega-
tion, the definition is unsatisfiable. Otherwise, all literals in the set are in-
deed unavoidably false, i.e., false in any model of the definition. In the loop-
simplification, all the unavoidable loops are broken by the replacements.

The following proposition follows easily:

Proposition 4.5. A = A?.

The interesting part of A? is the set of rules that have not been changed:
it corresponds to that part of A that really depends on Open(A). A SAT(ID)
solver could compute (the truth values imposed by)? A? in an initialization
phase.

Example 4.12. Let Ay 10 =

p—=qVr, q<p, T<Dp
s—tVa, tes '

An overview of possible justifications J for Ay 15 is shown in Figure 4.3. We have
that p € O, because when J is such that d;(p) = ¢, then {p, ¢} is a positive loop;
when d;(p) = r, then {p,r} is a positive loop. Also ¢ € © because if d;(p) = ¢,
{p, q} is a positive loop, and if d;(p) = r, ¢ depends on the positive loop {p,r};
r € O for analogous reasons. s € O, because if d;(s) = a, Sub(J, s) is loop-free.
Non of the negative literals is in O, because the loops in their subjustifications
are negative.
Hence O = {p,q,r}, and A?u =

p(_J—’ q(_J—7 lr(_J—7
s—1tVa, t«—s ’

A? . (and hence Ayqs) has two models: {p — f,q — f,r — f,s— &t —
t,a—th {p— foqa— f,r— f,s— f,t— fia— f}. The truth values
{p— f,q— f,r — f} can be computed in an initialization phase.

We can now return to our initial concern regarding loop-safeness. The fol-
lowing result shows that A? has a nice property: for any I = A%, there exists
a A%-witness that has no non-negative loops at all. Thus, for loop-simplified
definitions, loop-safeness is indeed independent of interpretations.

2In a practical implementation, the replacements by T and L naturally do not have to be
executed explicitly.
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Figure 4.3: Overview of possible justifications for Ay 5.

Proposition 4.6. Let I be a Y-interpretation. I = A iff there exists a justifi-
cation for AP that supports I, and in which all loops are negative.

Proof. We have I |= A iff I = A% by Proposition 4.5, and I = A? iff there
exists a A?-witness for I by Theorem 4.1. We still need to prove that if there
exists a AP-witness for I, there also exists one in which all loops are negative.

Suppose, towards contradiction, the contrary: that any A?-witness J for I
contains a non-negative loop. Let J be such a witness, and L a non-negative
loop in J. All literals in L are false in I because J is a witness. Suppose,
first, that L N Dy = 0. Then all literals in L are unavoidably false, and this
contradicts the fact that A? is a loop-simplification. Therefore LN Djis # 0; let
l € LN Dyis. Consider the justification J’ obtained from J by setting dj := ',
for some literal I’ € ¢; with I’ # dj(I). By I = A? we have that all literals
in ¢; are false in I, therefore J' also supports I, and since it coincides with
J everywhere but in [, it is therefore also a A?-witness for I. Hence J’ also
contains a non-negative loop.

e Suppose J' also contains a non-negative loop, L, through [. The above
procedure of changing the justification in one literal of L N Dy, or of
L’ N Dy, can be repeated: if for any such change (recursively), the new
justification contains a loop through the literal where the justification was
changed, then for any justification J”, we have that Sub(J"”,l) contains a
non-negative loop. Hence [ is again unavoidably false, which contradicts
the fact that A? is a loop-simplification.

e Therefore there exists a set of such changes from J, such that in the
resulting witness J(3), Sub(J(3), [) contains no non-negative loops. How-
ever, J®) is a A?-witness for I, and therefore contains a non-negative
loop which is totally independent of L. We can repeat the same process
on this loop, resolving the loop, and finding another new independent non-
negative loop. This therefore leads to an infinite number of independent
loops, which contradicts the fact that the number of loops is finite.
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Stable justifications

In Definition 2.6 we defined inductive definition semantics using the well-founded
semantics extending interpretations of the open symbols. We now introduce a
similar definition of the stable model semantics; it will help us relate the seman-
tics of total inductive definitions to the stable model semantics (Corollary 4.1).
This corollary will be used in Chapter 5 to relate the computational properties
of SAT(ID) and ASP.

Definition 4.10 (Stable model extending Ip). Let I be a X-interpretation,
Io an Open(A)-interpretation, and I/, the empty extension of Ip to ¥. Then
To A is the definition obtained from A by removing rules (p < ¢,) for which
I, (¢p) = f, and replacing rules (p < ¢,) for which I;,(p,) =t by (p «— T). I
is a stable model of A extending Io iff I|pes(a) is a stable model of To A and
Iopen(a) = Io. We denote this by I =4 A.

Example 4.13. Let Ay13 = { p——qgVa, q<« P } Then {a — t,p —

tq — f} Fa Asas, {a = fip— tqg— f} o Adas, and {a = f.p —
f,q— t} Est Ag13. Note that there are two stable models extending {a — f}.

It follows straightforwardly from a result by Van Gelder et al. (1991) that if
a definition A is total with respect to a theory T', then for each I =T, A has a
unique stable model extending I|ppen(a), and it coincides with the well-founded
model of A extending I|open(a)-

We adapt the definitions and results of Section 4.3.1 to stable semantics.
This has the advantage of simplifying matters, which may also lead to a com-
putational advantage.

Definition 4.11 (Stable justification). A stable justification for A is a directed
graph (V, E) where (1) V = S, and E such that each atom p € Dy has exactly
one edge (p,!) € E, where | € ¢,; (2) each atom p € Cyys has edges (p,l) € E
for each [ € ¢,; and (3) E has no other edges.

A stable justification can be seen as a simplification of a (general) justifi-
cation: it has only edges leaving from defined atoms, not from their negative
literals. This implies that the only type of loops possible in a stable justification
are positive loops.

Example 4.14. Let Ay 14 =

p<— q,
q<— 7D,
e

Figure 4.4a illustrates a (the only) stable justification for Ay 14, Figure 4.4b
illustrates a (the only) justification for Ay 14.

Definition 4.12 (Stable witness). Let J be a stable justification for A, I a 3-
interpretation. J stably supports I if, for each p € Def(A), I(p) = I(A\ DJ;(1)).
J is stably loop-safe in I if any loop in J consists of false atoms in I. J is a
stable witness for I iff J stably supports I and is stably loop-safe in I.
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Figure 4.4: Justifications for Ay 14.

A stable witness for an interpretation has the same function as a witness,
only now for stable semantics: its existence entails that the interpretation is
a stable model. This result can be derived as a simplification of the proof of
Theorem 4.1.

Proposition 4.7. Let I be a X-interpretation. I =g A iff there exists a stable
witness for I.

Example 4.15. Example 4.14 continued. Ay 14 does not have any model, be-
cause its only justification (cf. Figure 4.4b) cannot be a witness for any interpre-
tation. Indeed, for loop-safeness, the literals in both loops {p, ~¢} and {-p, ¢}
all need to be false. However, Ay 14 does have stable models (extending (). We
have both {p — t,q— for— f} Ex Aand {p— f,qg— t,r — f} Ea A.
Indeed, the stable justification of Figure 4.4a is a stable witness for both inter-
pretations. Note that r must be false because {r} is a loop.

From Van Gelder et al.’s result mentioned earlier and Proposition 4.7 we
derive the following result.

Corollary 4.1. Let A be total with respect to T, and I =T. Then I E A iff
there exists a stable witness for I.

Recall that we expect most definitions to be total with respect to the rest of
the theory in which they occur. Since stable justifications have a smaller domain
than justifications, we may therefore prefer searching for a stable witness over
searching for a witness.

We adapt also Definition 4.9 of the loop-simplification of a definition to
stable semantics.

Definition 4.13 (Stable loop-simplification). We define the set of stable un-
avoidably false literals O as {l € Def(A) | for any stable justification J for A,
Sub(J,1) contains a loop}. The stable loop-simplification of A is the definition
obtained from A by replacing p «— ¢, by p «— L for each atom p € Og.

Since the only type of loops possible in a stable justification are positive
loops, O is defined as a set of atoms, not literals. We can therefore only derive
falsity of defined atoms here.

Observe that the condition of loop-safeness simplifies to loop-freeness for
stable loop-simplifications.
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Example 4.16. Examples 4.14-4.15 continued. The stable loop-simplification
of A4.14 is

p—q,

q<— 7P,

r— 1

4.3.5 Related work

Justifications for the well-founded semantics were first defined, albeit in a dif-
ferent form, by Denecker and De Schreye (1993), and further elaborated by
Denecker (1993). To the best of our knowledge, our works in (Marién et al.,
2005, 2007b, 2008) are the only other publications using justifications for the
well-founded semantics.

In the context of stable model semantics, similar notions have been defined.
For instance, Pontelli and Son’s (2006) justifications are very similar to our sta-
ble justifications. They used the concept for debugging of Stable logic programs:
a justification provides a reason for the truth of an atom in a stable model, and
can therefore be used to explain unintended truths. Anger et al. (2005) used
graph structures with comparable characteristics to implement the nomore++
system for the stable model semantics.

In a wider context, graph structures that “justify” interpretations have been
used for various purposes, such as for Prolog proof verification (Roychoudhury
et al., 2000), and for local search for SAT (Jarvisalo et al., 2008).

4.4 A propositional logic characterization of def-
initions

This section introduces loop formula semantics. We characterize propositional
inductive definitions in propositional logic. In other words, we establish a re-
duction from PC(ID) to PC. This reduction introduces new formulas (in the
original vocabulary) to the theory.

While there may be too many new formulas to make this reduction use-
ful as a practical means of computing PC(ID) models, it is quite possible to
add only those formulas that are relevant during the search for such models—a
significantly smaller number of formulas. As such, these formulas can be consid-
ered as representing ID-based propagations. We elaborate on this extensively
in Chapter 5. The general idea of PC formulas that represent propagation for
an extension of PC is called theory propagation in the domain of satisfiability
modulo theories, and is discussed in, e.g., (Ganzinger et al., 2004; Nieuwenhuis
et al., 2006).

The new formulas are called loop formulas: propositional formulas which
eliminate specific unwanted models of a definition’s completion. The idea of loop
formulas was proposed, for stable model semantics, by Lin and Zhao (2004).

After we have established the main result in Section 4.4.1, we discuss the
relation of our loop formulas with Lin and Zhao’s in Section 4.4.2, and discuss
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Figure 4.5: Dependency graph of Ay 17

some consequences in Section 4.4.3.

4.4.1 Loop formulas

For a given DefNF definition A, we want to define a set of formulas ®(A) such
that A = comp(A)U®P(A). It is clear that these formulas should involve literals
that depend on themselves, hence the following concept:

Definition 4.14 (Dependency graph). The dependency graph of A is the graph

with vertices 3 and edges (I,1') for each | € Def(A) and I € ¢;. We call a loop
in A’s dependency graph simply a loop in A.

Example 4.17. Let Ay 17 =

p+—gq,
q < pA-T,
r<— pAa

The dependency graph of Ay 17 is shown in Figure 4.5. Dotted edges leave from
literals in Dys, solid edges from literals in Cjits. The loops in Ay 17 are {p,q},
{p,q,—r}, {-p,—q}, and {—p,—q,r}. The models of Ay 17 are {a — t,p —
figm forethand {a— fope foge fire— f1

Note that if L is a loop in a definition A, then so is L. Also note that the
dependency graph of A is the union of all justifications for A. A loop of any
justification for A is a loop in A, but not necessarily vice versa.

If L is a loop in A, then the literals in L depend on other literals in L, but
they may also depend on literals external to L.

L —

Definition 4.15 (External disjuncts, conjuncts). Let L C Def(A) be a set of
defined literals. We define L’s external disjuncts D**(L) as (UleDmsﬂL i)\ L,

and L’s external conjuncts C**(L) as (UlecmsﬂL ¢1) \ L.

Example 4.18. Example 4.17 continued. We give D***(L) and C***(L) for each
100p L in A4.17.

L|{p.¢} {p,a,—r} {-p,~¢} {-p,—qr}
D>YL) | D {—a} {r} 0
(L) | {=r} 0 0 {a}

We elaborate on some instances from this table: consider the loop {p, ¢}. Neither
p nor g belongs to Dis, hence D**({p,q}) = (. Consider instead the loop
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{p,q,—r}. —r is € Dys and it has body literals ¢, = {p,—a}. We therefore
have DeXt({]L q, ﬁT}) = {P7 ﬁa} \ {p7 q, ﬁ76} = {ﬁa’}'

The intuition behind the concept of loop and that of external disjuncts, can
best be expressed by a formula.

Definition 4.16 (Loop formula). For any set of defined literals L, L’s loop
formula LFA(L) is defined as

\/ L>\/ D™ (L).

We have defined the concept of loop formula for arbitrary sets L of de-
fined literals, but it is most intuitive when L is a loop. L’s loop formula then
says: “if any literal in the loop is true, also some external disjunct should be
true”. In other words, it says that literals in a loop need some justification
from literals outside the loop in order to be true. Observe that we could have
equivalently formulated this as: “if all external disjuncts of a loop are false,
then the literals in the loop should be false too”, corresponding to the rewriting
=\ D**(L) > =\/ L of L’s loop formula. A special case is when a loop has no
external disjuncts: then its loop formula simply says that all literals in the loop
have to be false.

We show on an example that (and why) this intuition certainly holds true
for some loops, but not for all.

Example 4.19. Examples 4.17-4.18 continued. Consider again loop L =
{p, g, —r}, and consider how some well-founded sequence could derive any literal
in L to be true. To make p true, first ¢ should be made true. To make ¢ true,
first both p and —r should be made true. Finally, to make —r true, first p or
—a should be made true. Hence, only the truth of —a can justify the truth of
any literal of L. Observe that —a is the only external disjunct of L. Hence, the
loop formula of L, pV qV —r D —a, is satisfied. Observe that this is indeed the
case in the models of Ay 17.

Now consider also L' = {-p, ~q}. Because {p,q} is an unfounded set with
respect to the empty interpretation, a well-founded sequence can make the lit-
erals of L’ true at any point; no justification from external literals is needed.
The loop formula of L', =p V =g D r, is not satisfied. Note that an unfounded
set is always a set of atoms.

We try to build an intuition of which loops are relevant, i.e., for which loops
the loop formula is satisfied. From the above example, we might guess that any
loop that contains an atom is relevant. This is not the case, as the following
example illustrates.

Example 4.20. Examples 4.17-4.19 continued. Consider also the loop L” =
{=p, ~q,r}. Observe that L' = {—p, —¢q}, of which we showed in Example 4.19
that its loop formula is not satisfied, is a subloop of L”. The literals of L’ do
not need external justification to be true. Thus, a well-founded sequence could
make the literals of L” true by first making the literals of L’ (—p and —q) true,
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Figure 4.6: Dependency graph of Ay o;

and then propagating this truth to the remaining literal, r. Hence also L” does
not need external justification because L’ acts as its “justifying kernel”. The
loop formula of L is not satisfied.

The previous example refines our intuition of which loops are relevant: those
that do not contain a “justifying kernel”. We now elaborate on this concept:
it is already clear that a justifying kernel is a negative subloop; however, some
extra conditions need to be applied.

Example 4.21. Consider Ay01 =

p—gq
g pV -, )
r<«—-—pAa

the dependency graph of which is shown in Figure 4.6. The only difference with
Ay 17 from Example 4.17 is that ¢ is now defined by a disjunction instead of a
conjunction. Ay 17 is not total: it has no model with a — ¢. Its only model is
{a’_)f’p'_)t7q'—>t7’r'—>f}'

We consider the loop L = {—p,—¢q,r} of Ayo1. It has a subloop, L' =
{=p, —q}, which is negative. We show that nevertheless, L’ alone cannot justify
the truth of the literals of L. Consider again how a well-founded sequence could
make L’s literals true. To make r true, first both —p and a should be made true.
—p and —¢ could be made true together (i.e., the atoms {p, ¢} made false as an
unfounded set), but then first 7 should be true (since ¢ depends disjunctively on
—r, or =g conjunctively on r). Indeed, {p,q} is an unfounded set with respect
to {r — t}. Since r € L, this means that L’ cannot act as justifying kernel for
L. The relevant property, therefore, is that C=**(L') N L = {r} # 0.

Building on the above intuitions, we now formally define the concepts justi-
fying kernel and relevant loop.

Definition 4.17 (Justifying kernel, Relevant loop). Let L, L’ be loops in A.
Then L' is a justifying kernel for Liff L' C L, L' is negative, and C***(L')NL = ().
L is a relevant loop iff it does not contain a justifying kernel.

Example 4.22. Examples 4.17-4.20 continued. {p,q} and {p, ¢, —r} are rele-
vant loops in Ay 17; {—p, ¢} is a justifying kernel for itself and for {—p, —q, r}.

Some properties immediately follow from the definition of justifying kernels
and relevant loops:
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e if a loop L is positive, then it cannot contain a justifying kernel, and
therefore it is a relevant loop;

e if a loop L is negative, then it is its own justifying kernel, and therefore
is not a relevant loop. I.e., a necessary condition for being a relevant loop
is containing an atom;

e if I/ is a justifying kernel for L, then either L' = L or D**(L') N L # .
Indeed, if both D*Y(L')NL = () and L’ C L were true, then because also
C*(L")N L = 0 holds, literals in L’ could not reach literals in L\ L', and
hence L would not be a loop.

Having now defined relevant loops, we can define the set of relevant loop
formulas.

Definition 4.18 (Relevant loop formulas). The relevant loop formulas of A are

LFA = U LFA(L).

L is a relevant loop of A

Example 4.23. Examples 4.17-4.20, 4.22 continued. We have

LFA4.17 = LFA4,17({p’ Q}) U LFA4.17({p7 q, _‘T})

- (\/{p7Q} D \/(Z)) U (\/{p,q,ﬁr} ) \/{ﬁa})

=(pA-¢)A(pVqV-rD-a).

The following proposition formally states the above intuitions: the loop
formula of a relevant loop is satisfied in any model of A.

Proposition 4.8. A model of A is a model of LEA(L) for any relevant loop L.

Proof. Let I be a model of A. We assume towards contradiction that for some
relevant loop L in A, we have I &= LFA(L).

If I f£ LEA(L), then L’s external disjuncts are false, i.e. I | —\/ D®'(L),
and L itself contains a true literal, i.e., I =\/ L. Let [ € L have I(l) = t.

By Theorem 4.1, I has a A-witness J. Then by Proposition 4.4, all literals
in Sub(J,1) are true. Since all literals of D**(L) are false, d;(I') € L for
each I' € Dys N L, and if I' € Sub(J,1), then so is d;(I"). Also for each I’ €
Ciits N L N Sub(J,1) we find that some " € oy is in Sub(J,1) N L, because L is
a loop. Let G be the subgraph of J obtained by restricting J to Sub(J,{) N L.
Then it follows that G contains a minimal strongly connected component L'.
Note that L’ is also a loop in J and of A. By its minimality, L’ has no outgoing
edges in G, hence we find C***(L') N L = (). Since L’ consists of true literals in
I, and J is loop-safe in I, L’ is a negative loop.

Hence, we have found a justifying kernel L’ for L, which contradicts the fact
that L is a relevant loop. O

The following is an easy consequence:
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Lemma 4.3. A = comp(A) U LFA.

Proof. Let I = A. Then I = comp(A) is a long-standing result (see Proposi-
tion 4.1), and I = LFa follows trivially from Proposition 4.8 and the definition
of LFA. ]

We now show that we don’t just obtain the above entailment result, but a
general equivalence result.

Theorem 4.2. A = comp(A) U LFa.

To prove the result in the other direction, we introduce an auxiliary concept
called partial justification.

Definition 4.19. (Partial justification) A partial justification for A is a partial
function PJ : Djts — X such that for each literal ! in its domain dom(P.J),
PJ(Z) [SHB

The empty partial justification is the one with the empty domain. Observe
also that if J is a justification or A, then dj is a partial justification with
dOHl(dJ) = Dlits~

Definition 4.20. A justification J for A is an instance of a partial justification
PJ for A if for each | € dom(PJ), d;(1) = PJ(I).

Definition 4.21. (Restricted dependency graph, loop of a partial justification)
The restricted dependency graph of a partial justification PJ for A is the sub-
graph Dep(PJ) of the dependency graph of A obtained by removing, for each
I € dom(PJ), all edges leaving I, except (I, PJ(1)).

A loop in Dep(PJ) is called a loop of PJ.

We distinguish again between negative, positive and mixed loops. A non-
negative loop is one that contains an atom.

Observe that the restricted dependency graph of the empty partial justifi-
cation is nothing else than the dependency graph itself. Thus, the concept of a
partial justification can be seen as a generalization of the notions of dependency
graph and justification.

Definition 4.22. A partial justification PJ supports an interpretation I if
I(l) = I(PJ(l)) for each literal [ € dom(P/J).

Definition 4.23. (Dangerous loop) We call a loop L of a partial justification
dangerous in interpretation I if it is non-negative and contains a true literal in
1.

Definition 4.24. A partial justification PJ is loop-safe in I if it contains no
dangerous loops in I. ILe., all non-negative loops consist of false literals.

On the set of partial justifications for A, we can define a precision order:
PJ <, PJ'ifdom(PJ) C dom(PJ’) and for each | € dom(PJ), PJ(l) = PJ'(l).
Clearly, if J is an instance of PJ, then PJ <, d;.

The following result is straightforward:
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Proposition 4.9. Let PJ,PJ’ be partial justifications with PJ <, PJ'. Then
a loop of PJ' is a loop of PJ.

As a consequence, a loop of any partial justification is a loop of the empty
partial justification and hence of A, and a loop of an instance J of some partial
justification PJ is a loop of PJ. In particular, if PJ has no dangerous loops
in I, then none of its instances has, i.e., all instances of a loop-safe partial
justification are loop-safe.

Proposition 4.10. Let I be an interpretation with I = comp(A) and PJ a
partial justification that supports I and is loop-safe in I. Then PJ has an
instance that is a witness for I.

Proof. Let J be an arbitrary instance of PJ for which I(l) = I(ds(l)) for all
I ¢ dom(P.J) (this exists because I = comp(A)). Then clearly J supports I.
As shown above, any instance of PJ is loop-safe in I, hence J is a witness. [

We now prove the main result in the other direction.
Lemma 4.4. comp(A)U LFA E A.

Proof. Let I be a model of comp(A)U LFa. To prove that I = A, we will show
that I has a A-witness. All references to dangerous loops and loop-safeness are
with respect to I, which is fixed throughout the proof.

We construct a sequence (PJ;)o<i<n of increasingly precise partial justifica-
tions. The sequence is constructed in such a way that the following induction
hypotheses hold for each i: a) PJ; supports I; b) PJ; <, PJ; forall 0 < j <3
(i.e. we have increasing precision); and ¢) any dangerous loop of PJ; is disjoint
from dom(P.J;). Moreover, the last element P.J,, of the sequence will be proven
to be loop-safe. It then follows from part a of the hypothesis and Proposi-
tion 4.10 that PJ, has an instance that is a witness for I, and by Theorem 4.1,
we obtain that I = A.

Note that because of its strictly increasing precision, the length of this se-
quence is bound by |Dys|. For the same reason, the set of dangerous loops of
PJ; decreases with increasing i. In fact, each new partial justification in the
sequence is constructed such that this decrease is also strict.

We take for PJy the empty partial justification. Clearly the induction hy-
pothesis holds. Assume that we obtained PJ;. If PJ; has no dangerous loops, it
is loop-safe; then set n := ¢ and we are done. Otherwise, take a subset maximal
dangerous loop L. Such a loop exists since the set of dangerous loops of PJ; is
not empty. Note that for an arbitrary dangerous loop L’ of PJ; with L' N L # (),
L’ is a subset of L. Also note that by induction hypothesis ¢, dom(PJ;)NL = (.

There are two cases:

There is a literal d € D***(L) such that I(d) =t. Let | € LN Dy be a lit-
eral such that d € ¢;. Since I |= comp(A), we also have I(I) = t. Define
PJ; 11 by extending PJ; with PJ;1(I) = d. Parts a and b of the induction
hypothesis are clearly satisfied for i+1. As for part ¢, assume towards con-
tradiction that P.J; 11 has a dangerous loop L’ such that L'Ndom(PJ;41) #
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(). By Proposition 4.9, this is a loop of PJ; as well, hence it follows from
the induction hypothesis ¢ that L'’ Ndom(PJ;41) = {I}. Hence, L’ is a loop
of PJ; with a non-empty intersection with L. Since the latter is maximal,
we have L' C L. On the other hand, since L’ is a loop of PJ;11 and l € L',
we have also PJ;11(l) = d € L', which is impossible since d ¢ L. Thus,
we obtain the desired contradiction. It follows that ¢ holds for PJ; ;.

There is no literal d € D***(L) such that I(d) = t. Consider the set T' of
true literals of L: T ={l € L | I(l) = t}. Note that T is not empty since
L is dangerous. Let [ be an arbitrary element of T'. It is easy to see that
Dep(PJ;) has an edge from [ to some I’ € T. Indeed, since I |= comp(A)
it follows that I = ¢;. If I € Ciits, then every body literal is true, and
since L is a loop, at least one body literal belongs to L, and hence to T
If | € Dyjts, at least one body literal I’ is true, and since every literal in
Dt (L) is false, I’ belongs to L, and hence to T. It follows that the graph
Dep(PJ;) restricted to T contains loops. Consider the strongly connected
components of this graph and take a minimal one, say L’. Minimal means
that no [ € L’ has an edge in this graph to a literal I’ € T\ L'.

We first show that, although L’ is a loop of A, it cannot be a relevant
loop. Indeed: assume towards contradiction that it is. Then I |= LFA(L').
Since I = \/ L' by construction of L', we find I |=\/ D**(L’). However,
all literals of D®**(L’) are false in I because either they belong to D®**(L),
and in this case of the case analysis D®**(L) contains no true literals, or
they belong to L, and can therefore not be true by construction of L’.
Contradiction.

Hence, L’ has a justifying kernel, say L”, which is a non-empty negative
loop consisting of negative literals such that C=*(L") N L' = (. Tt fol-
lows that C**(L") is a subset of C***(L’). By the construction of L’ as
the minimal component, we also have C®**(L’) C C®**(L), hence we find
cht (L/I) g cht (L)

Now, define PJ; 11 by setting, for each I € Dyis N L", PJ;11(1) to a literal
in ¢; N L" (this is possible, since L” is a negative loop). Given that
I E comp(A) and I = AL"” (by construction), it is easy to see that
I(l) = I(PJ;i11(1)), for every I € L”. Parts a and b of the induction
hypothesis are clearly satisfied for ¢ + 1. To prove ¢, assume towards
contradiction that PJ;;; contains a dangerous loop L; such that L; N
dom(PJ;+1) # 0. Similar to the first case of the case analysis, we find
that L1 Ndom(PJ;41) C L and therefore, Ly C L. On the other hand,
since L is dangerous, it contains an atom a, and a € L” because L” is a
negative loop. Since L; is a loop of P.J; 1, there is a path in L; through
Dep(PJ;41) from some negative literal [ € L” N Ly to a. Consider the first
pair (I1,l2) on this path such that Iy € L” and Iy ¢ L”. By construction
of PJ;y1, if 1 € Dy, then also Iy € L” hence I; € Cyis and Iy € C*(L").
Since C™Y(L") C C**(L), as we have seen, it follows that lo ¢ L, which
contradicts with Iy € L1 C L. It follows that c is satisfied.
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In both cases we have shown how to extend the sequence with a partial justi-
fication PJ;y1 in such a way that the induction hypotheses are fulfilled. This
concludes the proof. O

Proof. (of Theorem 4.2) This is a direct consequence of Lemmas 4.3 and 4.4. O

Example 4.24. Consider Ay 7 = { p<—aV -p } (cf. Examples 4.7-4.8), and
Agos ={ p—an-p}. Wehave LFA,, =pV -p D a=a, and LFa,,, =
pV —p D —a = —a. Hence we find the congruences Ay 7 = ((p =aV-p) A a)
and Ay oq = ((p =aA-p)A ﬂa).

The unique model of Ay 7 is {p — t,a > t}; that of Ayogis {p— f,a— f}.
Both are non-total definitions.

Remark 4.1. Note that \/ L D \/ D™*(L) can be rewritten in CNF as follows:

A (ﬁz v\/ Dext(L)) . (4.3)
leL
Also note that for any loop L, \/ L D \/D*Y(L) entails AL D> \/ D**(L),
because L is non-empty.

4.4.2 Relation with ASP

We can partition the set of relevant loops £ into positive loops £ and mixed
loops £*, and accordingly we can partition LFA into LEY = Urers+ LFA(L)
and LFE = | rer+ LEA(L). We show that the loop formulas introduced by
Lin and Zhao (2004) for ASP are equivalent to LF.

We recall Lin and Zhao’s results. Let A,;, be a normal logic program,
i.e., a set of rules with bodies that are conjunctions of literals. The positive
dependency graph of Ay, is the graph with vertices ¥ and edges {(p,q) | (p —
AB) € Apip,q € B}. Let L be a loop in the positive dependency graph. Then
define®

R(L, Apy) = {/\B‘(pHAB) € Apipp € L, 3q (qGBAqEL)},and
R (L, App) = {/\B‘(p<—/\B) € Apip,p € L, g (qEB/\qeL)}.

Then the loop formula LFE?I;ZMO(L) is the formula

=\/ R (L,Aup) O AL (4.4)

If £ is the set of loops in the positive dependency graph, then LFETS;ZhaO is

defined as | ¢ s1.2 LF&:‘I;ZhaO(LL and comp’ (A1) as comp(App)UA Open(A).
Then Lin and Zhao (2004) proved that an interpretation I is a stable model of
Apip iff it is & model of comp’(A,,) U LFEE’I’ZhaO.

30ur presentation slightly differs from Lin and Zhao’s, where R, R~ were sets of rules
rather then rule bodies.
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Clearly the positive dependency graph is the restriction of the dependency
graph to atoms; a loop in it is a positive—and therefore relevant—Iloop, i.e.,
LY = £+, The difference between comp’(A,,) and comp(A,,,) is the differ-
ence between stable model semantics, and stable model semantics extending the
open symbols, as defined in Definition 4.10. Note that equation (4.4) can be
equivalently written as \/ L D \/ R™(L,A,;,). Hence, to relate LF&L‘;;ZMO to

LF}, we only have to relate R~ (L, App) to DY(L).

Consider the transformation from normal logic programming form to DefNF
as presented in Section 4.2.2: it introduces a new atom and a new rule for each
conjunctive body. Let A be the result of applying that transformation on A,,,.
Then, for any positive loop L in A, each (A B) € RT(L, A,;) is represented
in A by a new atom n;", and likewise each (A B) € R~ (L, A,;,) by a new atom
n; . Let Nt be the set of new atoms n;, and N~ the set of new atoms n; .
Then L' = LUNT is a positive loop in A, and D***(L') = N~. In other words,
had Lin and Zhao produced their results for DefNF instead of for normal logic
programs, their loop formulas would have been identical to LFX.

We easily derive from Lin and Zhao’s proof also the following result (recall
Definition 4.10 of |=4):

Proposition 4.11. Let A be a DefNF definition, I a X-interpretation. Then
I =gt A iff I |= comp(A)U LF.

4.4.3 Corollaries and observations

Some interesting questions and observations arise from the above theoretical
results.

Firstly, we already had a link between models of total definitions and stable
models (cf. Corollary 4.1). Proposition 4.11 offers a new link between sta-
ble models and the positive part of the loop formulas; this raises the question
whether we can express the concept of totality using the partitioning of relevant
loops in positive and mixed loops.

Secondly, since strongly connected components of a graph correspond to the
graph’s maximal loops, we know that there are no relevant loops encompassing
different strongly connected components. We can therefore split a definition
into smaller definitions, according to the strongly connected components.

Thirdly, we illustrate the relations between unfounded sets and relevant
loops.

Finally, some examples show that some loop formulas may be entailed by
other loop formulas; the former can therefore be considered redundant. We try
to establish a characterization of loops that are not redundant.

Totality
The following result now is an easy consequence:

Proposition 4.12. Let T be a PC(ID) theory. If A is total with respect to T,
then T'U comp(A) U LF{ = LFx.
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Proof. Let A be total with respect to T'. Let I be an interpretation with I =T
Then I = A iff there exists a stable A-witness for I (by Corollary 4.1), iff
I =5 A (by Proposition 4.7), iff I = comp(A) U LFX (by Proposition 4.11).
Hence, any model of T'U comp(A) U LF{ is a model of A, and therefore (by
Theiorem 4.2) of comp(A) U LF{ U LFE. Hence, T U comp(A) U LFX entails
LFE. O

This result offers us a means of establishing non-totality of a definition in
a way independent of the definition of the well-founded semantics. It may also
have consequences for SAT(ID) solving; it helps to determine what types of
propagation to consider. More on this in Chapter 5.

Strongly connected components

We investigate whether strongly connected components offer a way to subdivide
a definition in several smaller definitions. Let G be the dependency graph of

—

a DefNF definition A, restricted to Def(A). For a literal I, denote by [ the
atom in [; for a set of literals S, denote by S the set {l | | € S}. We define
SCCA = {S | S € SCCL}. Observe that for any S € SCCE, also S € SCCE,
since the dependency graph is symmetric with respect to negation; S and S are

represented by the same set of atoms in SCC. Since G is restricted to D?f(\A),
singleton sets {l} for atoms [ € Open(A) are not represented.

Let A be a definition, and S C Def(A). Then by Als we denote the
definition {(p < ¢,) € A |p € S}.

Proposition 4.13. Let A be a DefNF definition, T the PC(ID) theory {A|s |
S €S8CCA}. Then A=T.

Proof. The set of loops in A is exactly the union of the sets of loops of each A|g;
the set of rules in A is exactly the union of the rules of each Alg. Hence this
result follows easily from the loop formula equivalence result, Theorem 4.2. [

This proposition has direct relevance for SAT(ID) solving. In order to have
a simple format for PC(ID) theories—to enable easy parsing and simple data
structures—we not only want definitions to be in DefNF, but also we want there
to be only one definition. This can be obtained using the transformation for
merging definitions described in Section 7.2.1. However, an undesired effect
might be that there is a bigger search space for the SAT(ID) problem with
one big definition than for the equivalent original SAT(ID) problem with many
smaller separate definitions. Fortunately this proposition tells us that this is
no real concern, because we can again subdivide the search space by simply
calculating strongly connected components, and in effect treat each strongly
connected component as a separate definition. Note that these separate defini-
tions are at most the size of the original definitions, and possibly smaller.

Example 4.25. Let A = { p—p, q—q } The theory obtained by subdi-
viding A is {{ p—p } , { q<—q }}, consisting of smaller definitions.
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Unfounded sets

The concept of unfounded set is central to the definition of a well-founded se-
quence, Definition 2.1, and therefore to the semantics of inductive definitions.
Intuitively, an unfounded set is a set of atoms that, when assumed to be all
false, are confirmed by their rules in the definition to be false. Since this is
a form of circular reasoning, we might expect a strong relation between un-
founded sets and relevant loops. The following example, however, shows that
the concept of unfounded set is too general for a strong relation to be possible;
Propositions 4.14 and 4.15 show our best results relating the two concepts.

Example 4.26. Let Ay o6 =

p — a, s«—sVt,
q—qNb, t—u, ;
r—tAc, u—tVa

and let I be the three-valued interpretation with I(a) = f, and I unknown in
all other atoms. Then U = {p,q,r,s,t,u} is an unfounded set with respect to
I. Indeed, for each [ € U, IU/fl(¢1) = f.

Ay 26 contains three relevant loops: {¢}, {s} and {¢,u}. Both {¢q} and {¢,u}
are themselves unfounded sets with respect to I; {s} is not, because it depends
disjunctively on ¢. Also {p} is on its own an unfounded set with respect to I;
however, it is not a loop of Ay o6.

Observe furthermore that the dependency graph of Ay o6 contains subgraphs
that are unconnected, but that nevertheless each have an atom in U (namely,
the subgraphs with vertices {p}, {¢} and {r, s, ¢, u}).

Proposition 4.14. Let A be a DefNF definition, I a three-valued interpreta-

tion, and U an unfounded set in A with respect to I. Let G be the dependency

graph of A, restricted to U, and let U' be a minimal component in SCCE. Then

a) either U’ is a relevant loop in A and I(\/ D¥*(U")) = f, or U’ is a singleton
{1}, and I(yv;) = f; and

b) if the set U\ U’ is non-empty, it is an unfounded set with respect to I[U’ ] f].

This result concerns a minimal component in SCCZ}7 but indirectly sheds a
light on the structure of G as a whole, through the recursive result of item b.

Example 4.27. Example 4.26 continued. Both {p}, {¢} and {¢,«} are minimal
components in SCCE, where G is the restriction of Ay 6’s dependency graph
to U. Consider U" = {t,u}: it is a relevant loop of Ay a6, and I(\/ D=Y(U")) =
I(a) = f. The set U\ U’ = {p,q,r, s} is unfounded with respect to I[U’/f].

Proof. It U’ is a singleton {l}, where | does not occur in a loop of G, then it
follows from the minimality of U’ that ¢; NU = (), and since U is an unfounded
set with respect to I, it follows from I[U/f](¢;) = f that I(y;) = f. Else, U’ is
a minimal component in SCCq. Since U’ consists of atoms, it is a relevant loop
of A. By minimality, we have that D**(U’) N U = (). Choose an arbitrary d €
D=Y(U’), and let | € U'NDyjys be the atom with d € ¢;. Because I[U/ f](p1) = f
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and ¢; is a disjunction, I(d) = f. Hence I(\/ D***(U’)) = f follows, thereby
proving item a.
Item b follows easily from the definition of unfounded set. O

The following proposition simply confirms the intuitions that we have used
to build the concept of relevant loop and of its loop formula.

Proposition 4.15. Let A be a DefNF definition, I a three-valued interpre-
tation. Let L C Def(A) be a positive (and hence relevant) loop of A with
I(V D (L)) = f and I(l) = u for each | € L. Then L is an unfounded set in
A with respect to I.

Example 4.28. Example 4.26 continued. Both {p} and {¢,u} are positive
loops of Ayo6, all of whose external disjuncts are false in I, and indeed both
are unfounded sets with respect to I.

Proof. Consider arbitrary | € L N Dys. Then for each I’ € o, either I’ € L
and therefore I[L/f](I') = f, or I’ € D™Y(L), hence from I(\/ D**(L)) = f
also I[L/f](l') = f follows. Therefore we have I[L/f]|(p;) = f. For arbitrary
I € LN Ciys, from the fact that L is a loop it follows that ¢; contains an I’ € L.

Since I[L/f](I') = f, I[L/f](y1) = f follows. O

Redundant loops

Gebser and Schaub (2005); Gebser et al. (2006) defined the notion of “elemen-
tary loops” for ASP, a subset ¥ of LFki:l‘thao such that comp(Ay,,y) UT =

LFES;ZhaO. We derive from their work similar results for our context.
The basic intuition is that some relevant loops may be redundant; we want

to have criteria to determine which ones. We look at some examples.

Example 4.29. Let Ay 09 = { P—DpAqg, q<Dp } Its relevant loops are {p}
and {p, ¢}; both have no external disjuncts. Clearly we have that comp(A4.29)U
LFA, ,,({p}) E LFA, ,,({p,q}); in words: {p,q} is a redundant loop.

It may seem that the reason for the redundancy of {p, ¢} in previous example
is that it has a strict subset which is also a relevant loop. However, the following
example shows that this condition is not sufficient.

Example 4.30. Let Ay 30 = { p—qVr, q—pVr, r—pVgq } The rel-
evant loops of Ay 30 are {p,q}, {p,7r}, {g,r}, and {p, ¢, r}. Despite the fact that
each of the three former loops is a subset of the latter, we have comp(Ay.30) U

LEA({p,q}) U LFA({p,7}) U LEA({g,7}) = LEA({p,q,7})-

Observe the difference between Examples 4.29 and 4.30: in the former, the
subloop L' = {p} of the redundant loop L = {p, q} has D=*(L’) N L = (), while
in the latter, each of the subloops L’ of L = {p,q,r} has D**(L')N L # 0. We
refine this intuition.

Let L be a loop of A that does not contain any negative subloop. Then
L is relevant, and any subset of L that is a loop is relevant as well. Suppose
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L contains a subloop L' C L with D®**(L'YN L = (). We show that then L is
redundant.
Formally, we prove the following:

Proposition 4.16. Let L be a loop of A that contains a subloop L' C L with
DY LYNL = 0. Then comp(A) UUpvep LEA(L") = LEA(L), where £ =
{L" C L|L" is aloop}.

Proof. Denote ¥ = comp(A) U Uy cp LFA(L"). We construct a sequence
(Si)o<i<n of subsets of L, and prove the following by induction for each i: a) if
i >0, then S; 2 S;_1, and b) U = A\, g (I DV D**(L)). Since the sequence
is strictly growing and limited by L, it is finite and ends with Sy = L; from
the induction hypothesis it then follows that A,c, (I O \/ D*%(L)) = LFA(L)
is entailed by W.

Let So = L'. Since D***(L')NL = (), we have D***(L') C D***(L). Therefore
LEA(L") = Ners (1 © VD™Y(L)), which proves the induction hypothesis for
1 =0.

Assume the induction hypothesis holds for 4, and S; C L (otherwise we are
done). Because L is a loop, L\ S; contains an [ with ¢; N'S; # (). By the
induction hypothesis, for any I’ € ¢; N'S; we have that ¥ =1’ D \/ D=Y(L). If
I € Ciits, then comp(A) 1 D I’; modus ponens on [ D I and I’ D \/ D***(L)
yields I D \/ D™*(L). If there is no such [ € Cjits, then I € Dyys, and comp(A) =
I DV ¢;. Distinguish the following cases:

e o, NL C S;. Modus ponens on I D \/ ¢, and I D \/ D**(L) for every
I' € ¢y N S; then yields that ¥ =1 D> \/ D™Y(L) (since literals I’ € ¢; \ L
are already member of D**(L)).

e If there is no such [ as in the previous case, then [ is part of a loop
L" ¢ (L\S;) with D*=Y(L”) N L C S;. Then resolve I D \/¢; with
I >\ D (L") for each I’ € ;N L”. In the resulting formula { D \/ X,
X is a subset of S; UD**(L); continued resolution with I’ D \/ D***(L)
for each I’ € X N S; yields also in this case ¥ =1 D> \/ D™Y(L).

Hence, with S;11 = S; U {l}, the induction hypothesis holds for ¢ + 1. O

An elementary loop is any relevant loop that is not redundant; i.e. a relevant
loop that contains a negative subloop, or a loop that contains neither a negative
subloop, nor any strict subloop that has no external disjuncts in the bigger
loop. Denote by € the set of elementary loops in A, and by LFY the set of loop
formulas J .o LFA(L). From the above, we derive the following result:

Corollary 4.2. A = comp(A) U LFX.

4.4.4 Related work

There is a substantial amount of work on loop formulas for ASP, starting with
(Lin and Zhao, 2004). We mention some important ones. Erdem and Lifschitz
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(2003) defined the notion of a tight Stable logic program A as one for which
A = comp(A), i.e., no loop formulas are needed. Gebser and Schaub (2005);
Gebser et al. (2006) introduced elementary loops for ASP. Lin and Zhao (2004)
and Giunchiglia et al. (2004) use loop formulas to build SAT-based ASP solvers:
respectively ASSAT and CMODELS. Lee (2005) investigates theoretical properties
of loops and loop formulas for ASP; he generalized, amongst others, the formula
LFk:ll;Zhao(L) to arbitrary sets of literals L (not necessarily loops), and showed
that still Ay, = LF&TLTPZMO(L) holds. In our setting this property does not
hold. Lifschitz and Razborov (2006) show why it is inevitable that the number
of loop formulas is, in the worst case, exponential in the theory size. Ferraris
et al. (2006) generalize loop formulas to stable model semantics for disjunctive
logic programs with nested expressions.

This work is the first to formulate loop formulas for inductive definitions
(or for the well-founded semantics). As such, it is also the first vocabulary-
preserving reduction of (DefNF) definitions to PC. Pelov and Ternovska (2005)
did define a reduction of inductive definitions to propositional logic. Their
reduction, however, introduces new symbols to the vocabulary, as well as new
formulas based on this new vocabulary to the theory. Whereas our loop formulas
can be used (implicitly or explicitly) individually to derive ID-based propaga-
tions, the new formulas of Pelov and Ternovska’s reduction cannot easily be
used for the same purpose, because of the new symbols: these are only mean-
ingful when all new formulas containing them are being used. However, their
reduction is polynomial in size, and therefore has very different potential uses
then our reduction.

The reduction by Pelov and Ternovska is based on the well-founded operator
as defined by Van Gelder et al. (1991): a level can be assigned to every defined
atom, namely, an integer that denotes the number of times the well-founded
operator has to be applied before the atom gets a two-valued truth value. It
introduces for every defined atom a number of new atoms that together denote
this level. Then the property that the levels are “well behaved” according to
the well-founded operator can be encoded in propositional logic, using these new
atoms. A significant part of this reduction consists of an encoding of arithmetic
properties in propositional logic; it is interesting to note that this could be
avoided if a SAT Modulo the theory of arithmetic solver were used. The relation
of Pelov and Ternovska’s reduction to our loop formulas is unclear.

4.5 Conclusions

In this chapter, we have introduced justifications and loop formulas for proposi-
tional inductive definitions. We have established that the following statements
are equivalent, for a DefNF definition A and a Y-interpretation I:

1. T EA;

2. there exists a A-witness for I;
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3. I = comp(A)U LFA. This is the first vocabulary-preserving PC charac-
terization of PC(ID) theories.

We have defined several related concepts that will be of further help for
constructing SAT(ID) algorithms in Chapter 5:

— a witness for three-valued interpretations;

— the loop-simplification of a definition;

— a stable witness;

— positive versus mixed relevant loops;

— strongly connected components;

— elementary loops.
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Chapter 5

SAT(ID) algorithms

5.1 Introduction

In this chapter, we develop various algorithms that can be used to implement
a SAT(ID) solver. Also, we propose various strategies for SAT(ID) solving,
i.e., various sorts of algorithmic behaviour. We further discuss an implemen-
tation of a SAT(ID) solver, MINISAT(ID), and evaluate its behaviour and its
performance.

We present our algorithms in a framework that was proposed by Nieuwenhuis
et al. (2006) in the context of SAT Modulo Theories (SMT). In the domain of
SMT, one studies the satisfiability problem of ground first-order formulas with
respect to some given background theory, such as the theory of equality, the the-
ory of the integers, and so on. Different approaches for this problem exist; they
vary in how they combine SAT solving of the given ground first-order formula
(interpreted as a PC theory) with “theory solving” of the background theory.
Nieuwenhuis et al. used their framework to model several of these approaches
and describe their properties. The framework can be used to describe the be-
haviour of model generation algorithms for various extensions of PC, including
PC(ID); it separates concerns of correctness and completeness from concerns of
how to implement certain propagations.

The framework uses “transition rules” to specify propagations of model gen-
eration algorithms. In Section 5.3, we use the two semantical characterizations
of PC(ID) from the previous chapter—justification semantics and loop formula
semantics—to propose specific transition rules. We discuss different sets of such
rules and their resulting behaviour. The focus of this section is primarily in
establishing a wide range of possible or conceivable SAT(ID) strategies. For in-
stance, we will introduce the so-called A-Propagate transition rule, which derives
an arbitrary consequence of the given definition and three-valued interpretation.

In Section 5.4 we then develop algorithms to implement these transition
rules. We also give an in-depth discussion of the most important of these algo-
rithms (which is used extensively in MINISAT(ID)) in Section 5.5.

81
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In Section 5.6 we discuss some SAT solving techniques that are used in
contemporary state-of-the-art SAT solvers; these techniques can be incorporated
in SAT(ID) solvers as well.

We implemented the SAT(ID) solver MINISAT(ID), which we present in
Section 5.7. MINISAT(ID) is built as an extension of the SAT solver MINISAT
(Eén and Sérensson, 2003). We motivate the algorithmic choices made in MINI-
SAT(ID), discuss its properties and some implementation details, and evaluate
its performance. Finally, in Section 5.8 we conclude and discuss related and
future work.

5.2 Preliminaries

First, we give a brief introduction to SMT in Section 5.2.1, and then present the
framework by Nieuwenhuis et al. in Section 5.2.2. In Section 5.2.3 we use this
framework to present various sorts of algorithmic behaviour for SMT. Finally,
in Section 5.2.4 we discuss a normal form for PC(ID) theories which we will use
throughout the rest of the text.

5.2.1 SAT Modulo Theories (SMT)

SAT Modulo Theories (SMT) is the problem of deciding whether a given ground
first-order formula is satisfiable with respect to some given background theory,
such as the theory of equality, the theory of the integers, and so on. The
background theory T is potentially a first-order theory. We denote by SMT(T')
the satisfiability problem of ground first-order formulas augmented with 7.

A ground (i.e. variable-free) first-order formula ¥ is then said to be T-
satisfiable or T-consistent if ¥ AT is satisfiable. Entailment in 7T, for formulas
Uy, Ua, is denoted ¥ =1 Uy, and means that ¥y A =Wy is T-inconsistent. A
theory lemma of T is a propositional clause ¢ such that § =7 ¢. A decision
procedure for T-satisfiability is called a T-solver.

Example 5.1. Let T be the following theory over the vocabulary with function
symbols f/1, g/1, h/1 and the predicate symbol =/2:

Ve,yz =y D f(z) = f(y),
Yo,y x =y D g(z) = g(y),
Va,y x =y D h(x) = h(y).

—
[N
N

(This is part of the theory of Equality with Uninterpreted Functions (EUF)
(Burch and Dill, 1994) over that vocabulary. For simplicity, we have left out
other axioms of that theory, which are irrelevant to this example.) Let ¥ be
the following ground theory over the same vocabulary, extended with an atom
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p and constants a, b, c:

a=0bV f(a)# f(b), (5.4)
g(a) =g(c) V p, (5.5)
fla) = f() vV —p, (5.6)

h(a) # h(b) (5.7)

We have that ¥ =1 a # b: indeed, (5.7) =1 a # b because (5.7) A (5.3) A (a = b)
is inconsistent. From a # b and (5.4) we find f(a) # f(b), from f(a) # f(b)
and (5.6) we find —p, and from —p and (5.5) we find g(a) = g(c) (all by normal
entailment).

In the following section, we describe the framework by Nieuwenhuis et al.
(2006), which can be used to model several approaches to solve SMT problems
and their behavioural properties. In Section 5.2.3 we then outline a number of
such approaches, and discuss how they can be modelled in the framework.

5.2.2 Transition systems

To introduce SAT(ID) algorithms and solving strategies, we use the framework
of transition systems proposed by Nieuwenhuis et al. (2006). This framework
offers a rule-based formalism in which one can easily express model generation
algorithms; the authors used it to describe an abstract version of the well-known
DPLL algorithm for SAT (Davis and Putnam, 1960; Davis et al., 1962), as well
as different generic algorithms for SAT Modulo Theories (SMT). We will later
present an instantiation of Nieuwenhuis et al.’s (2006) framework for SAT(ID).

We now introduce the basic concepts of the framework.

A state sequence M is a pair consisting of a finite sequence of literals My =
(loly ... 1) such that for i # j, [; # 1 and [; # —l;, and a set My C {lo,...,l,}
called M’s set of decision literals. In text, we often specify the decision literals by
marking them as 4. Thus (I3 {1 I9) denotes the state sequence ({lo l1 [2), {lo,l2})-
A state sequence M = ((M,, My) determines a (three-valued) interpretation.
We denote M(I) =tifl € M;, M(l) = f if =l € My, and M (l) = u otherwise.
Additionally, we denote by A M the conjunction A, ., ;.

The empty state sequence will be denoted as (). The concatenation of state
sequences will be denoted by simple juxtaposition. For instance, if [ is a literal
and M, N denote the state sequences ({loly ... ), Mg) and ((I1] ... 1), Na),
such that all [;, l;- and [ are literals of different atoms, then M I9 N denotes the
state sequence ((loly ... I, LIGY ... 1), Mg U {l} UNy).

A state is either the special state FailState, or a pair of the form M || F,
where M is a state sequence and F is a logic theory (throughout the chapter,
a PC(ID) theory). We may write M || F, to denote M || F'U {p}. A state is
used as an abstract representation of an intermediate stage of some inference
process, specifying which literals were made true, in what order they were made
true, which were the decision literals and what theory F' is currently being
worked on (note that this may also change throughout the execution).
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A transition relation = is a binary relation over states. If S==5’, we say
that there is a transition (of =) from S to S’. A sequence (So,...,Sn—1,Sn)
such that S;=5;411 for 0 < i < n is called a derivation and is denoted
So—S1—...—S5,,_1=—=S5,,. Given such a derivation, S,, is called its cur-
rent state and each S; (i < m) one of its previous states. An application of a
transition relation on a derivation is an extension So—...=S5,,=—=S5,,+1. We
denote by =* the reflexive-transitive closure of =.

A transition rule R is a rewrite operation on states, and is represented as
follows:

S — if {QR[S, s,

where S, S’ are arbitrary states, and Qg[S, S’] denotes some conditions on them.
Thus, a transition rule R specifies a transition relation, denoted :R>, where
S = 8 if QR[S, 5] is satisfied. A transition rule R is said to be applicable to

a state S if there exists a transition of = from S. An algorithm for a given
transition rule R is an algorithm that, given S, finds some S’ for which Qg[S, S’]
holds.

A transition system S is a set of transition rules. Given a transition system

S, we define the transition relation -5, as the union of the transition relations
associated to its rules. Le., = is U{:R>| R € S}. A state S is final with

respect to S if there is no S’ such that S Ny

As an illustration, in Figure 5.1 we define the transition system Sppyr, con-
sisting of five transition rules: {UnitProp, PureLit, Decide, Fail, Backtrack}. In
this figure, ¥ is a CNF theory, [ a literal, and M, N state sequences. This
system can be used to model the classic DPLL algorithm (Davis and Putnam,
1960; Davis et al., 1962), as we will illustrate next.

It was shown by Nieuwenhuis et al. (2006) that

e this system terminates, i.e., there are no infinite derivations; and

s
o if (| ¥ i’;"‘L S, where S is final with respect to Sppry, then S is
FailState iff U is unsatisfiable, and if S is of the form M | ¥’, then
M is two-valued and M = V.

The PureLit rule is satisfiability-preserving, but not equivalence-preserving.
For the system Spppr,— = /Spprr \ {PurelLit} also the following completeness
result is easy to prove: for any model M of ¥, there is a derivation with final
state M.

To model the DPLL algorithm, we restrict the applicability of the rules of
SpprL- In general, such restrictions are called a strategy of the given transition
system. Naturally, a strategy could be described as a transition system itself (by
incorporating the restrictions in the condition Qg of the transition rules). It is
often easier, however, to first define a general transition system, and then define
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UnitProp:
M(l
M| = MI|T if
for some clause (¢ V1) € U, M(p) = f
PurelLit:

M(l
M| W —=MI|V if

=l occurs in no clause of ¥

Decide:

Fail:

for some clause ¢ € U, M(p) = f

M| @ = FailState if
M contains no decision literals

Backtrack:
for some clause p € ¥, (M4 N)(p) = f

MEN|V —=M-l|¥ if
N contains no decision literals

lorem
Bt
Miw e -
{
{

Figure 5.1: The Dppy1, transition system

different strategies for that system. The DPLL algorithm can be described as
the following strategy for the Spprr, system:

e apply Backtrack and Fail when they are applicable; otherwise,
e apply UnitProp and PurelLit when they are applicable; otherwise,
e apply Decide.

The strategy for the Spppr,— system derived from this one by removing the
PureLit rule is also called a DPLL strategy.

Example 5.2. Let ¥ =pVq,—qVr,pV-r,—pV-q. In the following derivation,
we denote by, e.g., UnitProp on pVq, an application of the UnitProp rule, whereby
the clause (¢ V [) in the description of UnitProp is instantiated by the clause
pV q. Then the following is a valid DPLL derivation:

i UnitP
0 [ w P pt | TR g
UnitProgx pV—r) —‘pd - ” o Backtrack:(o>n —gVr) P ” o
UnitP —pV—
nit ropg pV q) —q H p Recid Decide —\qrd ” U
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The last state of this derivation is final. Its state sequence p —qr9 corresponds
to the two-valued interpretation {p — t,q — f,r — t}, which is a model of ¥.

One advantage of the transition system framework is that it carries with
it a clear separation of concerns: the correctness and completeness of a given
system, versus the algorithmic behaviour of a given strategy for the system,
versus the algorithms to implement each of the transition rules.

Generic backtracking rules

Observe that Backtrack and Fail can be seen as derivatives of UnitProp: if, by
disregarding the condition M (I) = wu, the application of the UnitProp rule would
lead to a conflicting state sequence, then either Backtrack or Fail is applicable.
We use this observation to define a schema for generic Backtrack and Fail rules.
In this schema, we will derive from a given transition rule that under certain
conditions adds a literal [ to the state sequence, a transition rule that backtracks
and one that fails when the same conditions hold, except that [ is false.

Let Qr[M, 1, ¥] denote some conditions on M, [ and ¥, and let R be a
transition rule of the form

M =
M| @ i M=
QR[MaL\Ij]v

then Backtrack(R) is the transition rule

(MK N)(Q) = f
MIKN |V = M-k|V if{Qr[ME NI,

N contains no decision literals,

and Fail(R) is the transition rule

M) =f
M| W —s FailState  if { Q[M, 1, V]

M contains no decision literals.

We denote by [R]BF the set of transition rules {Backtrack(R), Fail(R)}, and
by [R]BFF the set of transition rules {R, Backtrack(R), Fail(R)}.

Note that this schema is generic in the same way algorithms that implement
the transition rules of [R]BF* are: an algorithm that can be used to find, from a
given state M || W, literals { for which M || ¥ = M || ¥, can also be used to
find applications of Backtrack(R) and Fail(R)—the main difficulty is in finding
literals [ for which Qgr[M, [, ¥] holds, rather then in deciding whether M () = u.
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5.2.3 SMT solving techniques

In this section, we will discuss several techniques that have been proposed to
solve SMT problems. Many of these techniques have been applied in the context
of ASP solvers as well. We will indicate how these techniques can be modelled
as strategies of an appropriately chosen transition system.

Let T be a given first-order theory (the background theory), and ¥ a ground
first-order theory. Let Sgyt be the transition system obtained by extending the
Spppr_ system with the following transition rules:

T-Propagate:

M =
M| @ — M| ¥ g § M) =u
AM f=rl
[T-Propagate] 5"
T-Learn:
M| — M|V, gV ETY
A
Restart:
M| @ — 0w if {_

Observe that Spppr,_ contains the rules [T-Propagate]®F, i.e., Backtrack(T-
Propagate) and Fail(T-Propagate). We omit the conditions that define these
rules, since they follow the generic backtracking schema. We will do so through-
out the rest of the text with other transition rules as well.

We now give a summary of various SMT(T') solving techniques, and for
most of them, illustrate how to model them as a strategy of the SgyT transition
system. For a comprehensive discussion of their properties, such as correctness
and termination, we refer to Nieuwenhuis et al. (2006).

I. Eager techniques. These techniques amount to translating (based on the
properties of T') the given ground theory ¥ to a propositional CNF formula
U’ and then applying a SAT solver on ¥’'. Depending on the purpose,
a satisfiability-preserving or a model-preserving transformation should be
used.

Though some such transformation approaches can be modelled as strate-
gies of the Ssyr system (using T-Learn), a general strategy is hard to
define.

I1. Lazy techniques. In these techniques, a T-solver is used to verify T-con-
sistency of SAT models or interpretations. All of the following are lazy
techniques.
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Naive approach. Find a SAT model, and subsequently verify its T-consis-
tency. If it is not, add a “theory lemma” that precludes this model to the
theory, and restart.

This approach can be modelled in Sgyir as follows:

e apply the DPLL strategy of the Spppr,— system while possible;

e otherwise (i.e. when a SAT model of ¥ has been found), apply T-
Learn if possible, immediately followed by Restart.

Incremental approach. Detect T-inconsistencies of state sequences as soon
as they are generated, or at regular intervals. This technique is also called
“early pruning”.

This approach can be modelled in Sgyr as follows:

e when any of [T-Propagate]|®F is applicable, then apply 7-Learn for a
theory lemma ¢ such that M(—y) =t (such a clause certainly exists
when any of [T-Propagate]5F is applicable, e.g. a subclause of - A M),

and immediately follow this by Restart; otherwise,
e apply any rule of Spppr,—.
On-line SAT. When T-inconsistency of a state sequence is found, don’t restart

the SAT search from scratch, but backtrack only as far as needed to make
the resulting state sequence T-consistent.

This approach can be modelled in Sgyr as follows:

e apply a rule of [T-Propagate]®F when applicable; otherwise,

e apply any rule of Spppr,_.

If a given state sequence M is T-inconsistent, there also exists a theory

lemma that is inconsistent in M. An often-used variant of the above

strategy can therefore be modelled as follows:

e when a rule of [T-Propagate]|®F is applicable, apply the T-Learn rule
to derive a clause that is inconsistent in the current state sequence;
otherwise,

e apply any rule of Spppr,—.
Theory propagation. This is also called “forward checking simplification”.
Instead of verifying T-consistency a posteriori, guide the SAT search a

priori, by providing propagation based on T. Observe that this may still
include backtracking based on T

This approach can be modelled in Sgyr as follows:

e apply any rule of Spppr,_ U [T-Propagate]®F .
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Exhaustive theory propagation. Perform all possible theory propagations
before applying Decide. This technique ensures that T-inconsistent states
aren’t ever reached.

This approach can be modelled in Sgyr as follows:

e apply T-Propagate when possible; otherwise,

e apply any rule of Spppy,_-

5.2.4 Normal form

In the previous chapter we used a normal form for definitions: a definition is
in DefNF' if each atom defined by it has exactly one rule defining it, and if
each rule body is either a conjunction or a disjunction of literals. We now also
define a normal form for PC(ID) theories. A PC(ID) theory that has at most
one definition, which is in DefNF, and a propositional logic part, which is in
conjunctive normal form (CNF), is said to be in Eztended CNF (ECNF) normal
form.! Throughout this chapter, we assume a propositional vocabulary ¥ and
an ECNF theory consisting of a CNF formula ¥ and a DefNF definition A.

Since this chapter is concerned with constructing models, and therefore
mostly with three-valued interpretations, we will from now on assume interpre-
tations to be three-valued, unless we explicitly state otherwise. Accordingly, by
support we mean three-valued support, and by a witness we mean a generalized
witness.

We denote an interpretation I either as a (total) function I : ¥ — {¢, f, u},
or as a partial function I : ¥ — {¢, f}. The notation will be clear from the
context. In the second case, we denote by dom(I) the set of atoms on which T is
defined. We say that interpretation I’ is an extension of I if dom(I) C dom(I”)
and I/|dom(1) =1.

5.3 SAT(ID) transition rules

The SAT(ID) problem is the problem of deciding the satisfiability of a given
ECNF theory ¥ U {A}. Such a problem is viewed here as the SMT(A) satisfia-
bility problem for ¥. The derived entailment relation = is therefore defined by
Uy =a Uy if U3 U{A} | Ty, We define the relation =4 also for interpretations
M: M E=a Uif (AM) Ea U. Note that M |=a U entails that M’ = ¥ for
each model M’ of A that extends M.

In this section we will propose different transition rules for the SAT(ID)
problem, construct various transition systems out of these rules, and investigate
their properties.

LOther extensions of CNF are added to ECNF in Chapter 6. See Appendix A for a
description of the AscII syntax for ECNF.
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r |d—diV---Vdy | c—c A Aew
Bl('f‘) d\/_‘dl —cV

BN(’I") dV —dy —cVcn
C(r) | ~dvdiV---Vdy |cVaer V-V ey

Figure 5.2: Clauses in the CNF representation of a definition’s completion

We start by instantiating the T-Propagate and T-Learn rules for SAT(ID):
A-Propagate:

M| o, A — M| 7,A i § M) = u
M Eal

A-Learn:

M| ¥,A — M| T, A if{‘I”A':‘P

o &V,

Observe that A-Propagate can be considered to model the most general type
of propagation of literals based on definitions possible: it derives any arbitrary
literal that is a consequence of the current state and the given definition. Like-
wise, A-Learn derives an arbitrary clause that is entailed by the given definition.

While these rules are obviously correct, their conditions do not yield in-
sight into possible implementations. For this purpose we will define less general
transition rules with more specific conditions in the following section. In Sec-
tion 5.3.2 we will then build concrete transition systems from these rules and
describe strategies for them. Section 5.4 will be concerned with developing
algorithms that implement these transition rules and systems.

5.3.1 Specific transition rules

Recall the loop formula equivalence result of Theorem 4.2: for a DefNF definition
A, A = comp(A) U LFa, where comp(A) is the conjunction of all equivalences
obtained from rules of A by replacing the definitional implication < by =, and
LFp is the set of loop formulas LFA(L) = \/ L D \/ D™*(L), for all relevant
loops L in A.

We represent both comp(A) and LFA(L) in CNF. Figure 5.2 gives the set
of clauses {C(r), Bi(r), ..., By(r)} derived from disjunctive and conjunctive
rules 7 € A; LFA(L) can be represented as A\,o, (= V \/ D™'(L)).

In Figure 5.3 we define some transition rules for propagation based on the
definition A: UnitPropDef, BwLoop and FwLoop. These rules are derived from
the loop formula result: they achieve the effect that unit propagation (i.e., the
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UnitPropDef:
M wA  —mifua e M= ,
(p V1) € comp(A) with M(p) = f
[UnitPropDef]®F
BwLoop:

M) =u
A contains a relevant loop L

M| U,A = M-l|W,A if
| | " such that M(VD(L)) = f

and [ € L
[BwLoop]&F
FwLoop:
M(d)=u
A contains a relevant loop L
M| ¥,A = Md| ¥v,A if such that M(\/ L) = ¢,
d € D**(L) and
M D= (L)\{d}) = f
[FwLoop]®F

Figure 5.3: Transition rules for definition-based propagations

UnitProp transition rule) would have on the clauses of comp(A) U LFa, but

without the need to explicitly add these clauses to the theory. Observe that

o . UnitPropDef BwlLoop FwLoop .
the transition relations = =, =", and = specified by these rules are

. A-Propagate
subrelations of = —et™,

Example 5.3. Let A =
P qAT,
g+« sVa,

r<—rV-oaVhbh,
s« SsSANc

)

and consider the state p || A. We give a derivation in the transition system
{UnitPropDef, BwLoop, FwLoop}:

p | A UTEREP g A TP g | A PEERP g s | A

UnitBropDel g —sa || A TSP pgr—sab || A.
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The first two transitions derive respectively ¢ and r from the completion of the
rule p < g Ar, using the clauses —pV q and —p V r. The third transition derives
—s from the loop {s}: its loop formula is s D L. The fourth transition derives
a from the completion of the rule ¢ « sV a, using the clause =¢ V s V a. The
final transition derives b from the loop {r}: its loop formula is r D —a V b.

Recall Propositions 4.14 and 4.15 to see how the UnitPropDef and BwLoop
rules relate to unfounded sets. Let M be the current state sequence, and U an
unfounded set with respect to M, then for any w € U, there is a derivation
from the current state that derives —u using only UnitPropDef and BwlLoop.
Vice versa, if U is a positive loop on which BwLoop is applicable, then U is an
unfounded set with respect to M.

BwlLoop and FwLoop are applicable on mixed relevant loops as well; thus,
BwLoop could be seen as generalizing the concept of unfounded set to literals.

P g Va,
q<— —pVb ’
and consider the state —a || A. A has two relevant loops, with loop formulas

BwLoop
pV-g Daand —pVqg Db Bwloop is applicable on the first one: —a || A =*

Example 5.4. Let A =

—a-pq || A. Next, FwLoop is applicable on the second one: ~a—pgq | A Fuoop
—a-pgb |l A.

Another important property of the proposed rules is that UnitPropDef, Bw-
Loop and FwLoop together are still less general then A-Propagate, as the follow-
ing example illustrates.

Example 5.5. Let A =
p—=pVaqVb,
{ q—qVb } ’
and consider the state p || A. The clauses of comp(A) that contain p or —p are
—pVpVqVb, pV—p, pV-q, and pV-b. They are all already satisfied by {p — t};
UnitPropDef is not applicable. The loop formulas for A are p D ¢V b and g D b;
neither BwLoop nor FwlLoop is applicable on either of them. However, A has

exactly one model extending {p — t}, namely {p — ¢,q — t,b — t}. Thus,
both g and b can be derived using A-Propagate.

As a consequence, the exhaustive theory propagation strategy cannot be im-
plemented using only UnitPropDef, BwLoop and FwLoop. Then it cannot be
avoided that A-inconsistent states are sometimes reached,? hence there is a
clear need for the backtracking and failure variants of these rules.

In Figure 5.4 we define transition rules for SAT(ID) that modify the theory.
The transition rules AddComp and AddLF are also derived from the loop formula

2In the exhaustive theory propagation strategy no A-inconsistent states are reached, since
it gives the A-Propagate rule the highest priority.
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AddComp:

© € comp(A

M| U,A —=M|¥,pA if
pgVv

AddLF:

M|V,A = M| V,A,LF L is a relevant loop in A,l € L

{LF =1V D>(L)

LF ¢ 9
Simplify:
M| U,A = M| ¥ APM jf {O is consistent
RemoveDef:
M|U,A =M|T if {w A

Figure 5.4: Theory-modifying transition rules

. . AddComp AddLF A-Learn
equivalence result; the relations = — " and == are subrelations of —> .

The transition rules Simplify and RemoveDef aim to simplify the given PC(ID)
theory. We define the concepts O)[M] and APMI used in the conditions of the
Simplify rule later in this section.

Though less general then A-Learn, the AddComp and AddLF rules clearly
suffice to encode the eager technique, a reduction to SAT. The RemoveDef tran-
sition rule is, strictly speaking, redundant, but emphasizes that the purpose of
some strategies may be to reduce a definition to SAT.

Example 5.6. Consider again A from Example 5.5. comp(A) consists of the
clauses ¥ = {pV ¢, pV —b, ¢V —b}, plus some trivially satisfied clauses. LFx
consists of the clauses Uy = {-pVqVb, 7qVb}. We have the following derivation
in {AddComp, AddLF, RemoveDef}:

AddComp™ AddLF*
— —

0 A 0 Ty, A 0 Uy Uy A R | gy Uy,

The final transition is valid because U1 U Uy = A, by the loop formula result.
The theory in the final state is a PC theory, on which normal SAT solving
techniques can be applied.

We now explain the Simplify rule. Recall Definition 4.9 of a loop-simplifica-
tion. We defined the set of unavoidably false literals O as the set of literals [
such that any justification contains a non-negative loop reachable from [, and
the loop-simplification A? as the definition obtained from A by replacing the
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rules that define unavoidably false literals [ by rules [ < . If ¢ is inconsistent,
A% is defined as the inconsistent definition {p «— —p} (for some arbitrary p).

The idea of these definitions is that A? is a simpler definition than A itself,
because many loops have been removed, yet A = A? (cf. Proposition 4.5).
Thus, computations on A® may be easier than on A.

We refine the concepts of ©) and A?. Some literals may be consequences of
the CNF theory ¥; when these literals are already known, the set of unavoidably
false literals may be larger than when they are not. We therefore redefine the
concepts, now with respect to an interpretation. For an arbitrary interpretation

—

M, we define O[M] as the set of literals {I € Def(A) | for any justification .J
for A that 3-valuedly supports M, Sub(J,l) contains a non-negative loop}. We
also define A?IM] derived from A and O[M] in the same way as A? is derived
from A and O.

The Simplify transition rule replaces a definition A, in a given state sequence
M, by A?IM] on the condition that O[M] is consistent. This replacement is
equivalence preserving in M. When ¥ U{A} = A M, it is model preserving.

5.3.2 Concrete transition systems

We want to find a transition system for SAT(ID) with the following desirable
properties: correct, complete, efficient, and efficiently implementable. Natu-
rally, correctness and completeness are of primary importance. Correctness of
the transition rules proposed in previous sections has already been established;
in this section we propose transition systems that are complete, and discuss
strategies for them. We will also compare their behaviour in terms of efficiencys;
for this purpose, we next introduce the notion of decide-efficiency.

Decide-efficiency

A common transition rule shared by all SAT(ID) transition systems presented
here is Decide (but see Remark 5.1 below in this respect). An important goal of
transition systems, or strategies for them, is efficiency in terms of the number of
times Decide has to be applied. Let A and B be transition systems or strategies
defined over the same set of states. We say A is more decide-efficient than B,
if there exists a state S and state sequence M, such that to derive from S some
state which has M as its state sequence, the minimal number of applications
of the Decide rule (over all possible derivations) that A needs is smaller than
the same number of B. Under this definition some systems may be mutually
more decide-efficient than each other: whereas A may need fewer applications of
Decide than B to derive some state sequence M; from some state S7, there may
be another state S5 and state sequence Ms such that B needs fewer applications
of Decide than A to derive My from So. We say A is strictly more decide-efficient
than B if A is more decide-efficient than B, and B is not more decide-efficient
than A. We use the concept of decide-efficiency only for correct and complete
SAT(ID) transition systems.
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When comparing the behaviour of transition systems or strategies, other
measures of efficiency have to be taken into account as well, for at least two
reasons: first, making transition rules more general improves decide-efficiency,
yet the complexity of algorithms that implement the rules may be worse, and
second, in some systems it may be possible to derive certain partial interpreta-
tions using fewer applications of Decide, but at the cost of a much larger number
of applications of some other rule.

Remark 5.1. A correct and complete transition system without a “decision” or
“choice” transition rule is conceivable. It contains a rule for reducing a definition
to SAT, and a resolution rule.

Remark 5.2. A particular strategy for SAT(ID) transition systems might be to
derive truth values for defined literals only when these values follow from the
semantics of the definition and from the current state sequence, i.e., only using
rules such as UnitPropDef, BwLoop or FwLoop. In such a strategy, there are two

restrictions: ¢) Decide can only be applied to literals in Open(A), not to literals

in D?f(\A); i) UnitProp (on clauses of ¥) can only derive literals of Open(A),
not literals of D?f-(\A). One advantage of such a strategy would be that standard
algorithms for finding the well-founded model of a definition could be applied
(e.g. Van Gelder, 1993; Berman et al., 1995; Lonc and Truszczynski, 2000), in
particular when a given interpretation is two-valued on Open(A). However,
Jarvisalo et al. (2005) investigated restrictions similar to (i) in the context of
boolean circuits, and concluded that for some theories a proof of unsatisfiability
is exponentially longer with than without the restriction; it is likely that their
results carry over to PC(ID). Also, a strategy with restriction (i) is clearly
strictly less decide-efficient than one without. For these reasons we will not
further consider this type of strategy.

Reduction to SAT

Definition 5.1 (Reduce). We define the Reduce transition system as the sys-
tem consisting of the rules {Decide, AddComp, AddLF, RemoveDef, Restart} U
[UnitProp]BF+.

Proposition 5.1. Reduce is complete.

Proof. This follows from the loop formula equivalence result, Theorem 4.2, and
the completeness of the Spppr,_ system. O

Observe that RemoveDef is not essential to the Reduce system—the system
obtained from Reduce by removing this rule is still correct and complete. Nat-
urally, the purpose of RemoveDef is to enable creating a purely propositional
theory, so that SAT solvers are applicable to it. Also Restart is not essential; its
purpose is to enable a strategy such as Repetitive SAT, discussed below.

Also observe that the Restart rule causes non-termination. Special strategies
are required to ensure termination. We now discuss some strategies for Reduce.
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Reduction to SAT. This corresponds to the eager technique for SMT. Start
by applying AddComp and AddLF until comp(A) U LE is completely
added to W. Then apply RemoveDef, and finish by applying the remaining
rules as in the DPLL strategy of the Spppr,— system. (Do not use Restart.)

Observe that this strategy ensures that when RemoveDef is applied, it is
already known that ¥ = A. The problem of deciding whether ¥ = A
is, in general, as hard as the complement of the SAT(ID) problem (since
U = A iff AU is satisfiable).

Repetitive SAT. This technique is eager in that it adds comp(A) to the CNF
theory initially; other than that it corresponds to the naive and on-line lazy
techniques for SMT. (Step 1) Start by adding applying comp(A) (using
AddComp), and (Step 2) then apply the Spppr,— system rules until either a
model is found, or FailState is reached. In the former case, (Step 3) apply
AddLF for some loop formulas LF that are not satisfied by the model, if
such a loop formula exists, and from there go back to Step 2 (either by
applying Restart—the naive approach—or by using Backtrack—the on-line
approach). If no such loop formula exists, a SAT(ID) model is found.

The naive repetitive SAT strategy corresponds—apart from the different
definition of loop formula—to the strategy applied by the AssAT (Lin and
Zhao, 2004) and cMODELS (Lierler, 2005) ASP systems.

We have implemented the on-line repetitive SAT strategy as a possible
execution strategy for our solver MINISAT(ID) (cf. Section 5.7).

To implement this strategy, an algorithm is required that can extract
from a given definition and two-valued interpretation an unsatisfied loop
formula.

The obvious drawback of this strategy is that it neglects important infor-
mation of the definition until very late in the search, namely, when a SAT
model of ¥ U comp(A) has been found. This may have the effect that a
large fraction of the executed search is superfluous.

Incremental. Start by adding comp(A). Then apply the Spppr,— system rules,
but whenever there are loop formulas not satisfied in the current three-
valued interpretation, add one such formula.

This strategy has clear advantages over the previous one: backtracking
based on loop formulas is applied as soon as possible. It requires an algo-
rithm that can extract from a given definition and three-valued interpreta-
tion a set of unsatisfied loop formulas; the disadvantage may be that this
algorithm is too expensive to apply for every three-valued interpretation
obtained along a derivation.

A further advantage that Reduction to SAT and Repetitive SAT have over
this strategy is that the former two are entirely independent of the SAT
solving algorithm. Thus, for these strategies one can make use of off-the-
shelf SAT solvers. The Incremental strategy, on the other hand, requires
a modification of a SAT solver’s internal structure.
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Adding loop formulas early, as in the case of Reduction to SAT and to a
much lesser degree also of Incremental, has the effect of enabling extra prop-
agations. In strategies where loop formulas are not added eagerly, the same
propagations can be achieved only through the Decide rule. Hence we have
the following efficiency order: Reduction to SAT is strictly more decide-efficient
than Incremental, which in turn is strictly more decide-efficient than Repetitive
SAT. However, if we compare efficiency in terms of how often they typically
apply the AddLF rule,® we have Incremental > Reduction to SAT and Repeti-
tive SAT > Reduction to SAT, the reason being that Reduction to SAT simply
applies AddLF as often as possible.

Using definition-based propagation techniques

Definition 5.2 (BwLoop, FwLoop, Loop). We define the BwLoop transition
system as {Decide} U [UnitProp]BF* U [UnitPropDef|®f* U [BwLoop|®F*, the
FwLoop transition system as {Decide} U [UnitProp]BF* U [UnitPropDef]®F* U
[FwLoop|BF*, and the Loop transition system as BwLoop U FwLoop.

Proposition 5.2. BwLoop, FwLoop and Loop all terminate and are complete.

Proof. Termination is proven just as for the Spppp_ system. Completeness
again follows from Theorem 4.2 and completeness of the Spppr,— system. O

The following example shows that BwLoop and FwLoop are mutually more
decide-efficient. As a consequence, Loop is strictly more decide-efficient than
both BwLoop and FwLoop.

Example 5.7. Let A = { p—pVa } It has one loop formula: p D a. In the
state p | A, FwLoop is applicable, deriving a. To derive a in BwLoop from that
state, a possible derivation is

Decide

o H A Decid p—|ad ” A BacktraiEWLoop

'pa A

Conversely, in the state —a || A, Bwloop is applicable, deriving —p. To derive
=p in FwLoop from that state, a possible derivation is

Decide

—a H A Decid _‘apd ” A Backtrangoop) .

a-p |l A.
We now introduce different strategies for (Bw/Fw)Loop and compare them.

Loop-based theory propagation. This strategy corresponds to the theory
propagation approach for SMT. We define the strategy for the Loop sys-
tem.

e apply any rule of [R]BF, for R € {UnitProp, UnitPropDef, BwLoop,
FwLoop} when possible; otherwise,

3In the worst case the three strategies require the same number of applications of the
AddLF rule.
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e apply any rule of {UnitProp, UnitPropDef, BwlLoop, FwLoop} when
possible; otherwise,

e apply Decide.

Similar strategies for BwLoop and FwLoop are derived from this one by
removing respectively the [FwLoop|BF* or the [BwLoop]BF* rules.

Full loop propagation. This strategy resembles the previous one, but tries
to postpone the transition rules based on relevant loops till the unit prop-
agation rules are exhausted:

e apply any rule of [UnitProp]BF or [UnitPropDef]BF when possible; oth-
erwise,

e apply any rule of UnitProp or UnitPropDef when possible; otherwise,

e apply any rule of [BwLoop]BF*+ or [FwLoop]B™* when possible; other-
wise,

e apply Decide.

Again similar strategies, called respectively Full BwLoop propagation and
Full FwLoop propagation, are derived for BwLoop and FwLoop.

Stable loop propagation. This strategy is based on the Full loop propaga-
tion strategy, but it restricts application of the transition rules based on
relevant loops to positive loops throughout the search, and allows applica-
tion of these rules on mized relevant loops only when the state sequence
is two-valued.

e apply any rule of [UnitProp|BF or [UnitPropDef|B when possible; oth-
erwise,

e apply any rule of UnitProp or UnitPropDef when possible; otherwise,

e apply any rule of [BwLoop]® * or [FwLoop]®F* on positive loops when
possible; otherwise,

e apply Decide when possible; otherwise,

e apply any rule of [BwLoop|BF or [FwLoop]BF on mixed relevant loops.

We again derive similar strategies, called respectively Stable BwLoop prop-
agation and Stable FwLoop propagation, for BwLoop and FwLoop.

Loop-based theory propagation and Full loop propagation are equally decide-
efficient: they both apply all possible propagation rules before applying Decide.
They are both strictly more decide efficient than Stable loop propagation, be-
cause the latter postpones certain propagations.

The motivation for the Stable loop propagation strategy can be found in the
observation that theories modelled according to the ID-logic modelling method-
ology contain only definitions that are total with respect to the theory T in
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which they occur—slightly abusing terminology, we call such theories also to-
tal. Proposition 4.12 tells us that in such cases, T'U comp(A) U LF{ = LFX.
Thus, when no more propagation according to the restricted rules is possible,
i.e., when T'U comp(A) U LEY is satisfied, LF is also satisfied, so no more
rules are applicable.* In other words, the final application of [BwLoop]®F and/or
[FwLoop]BF rules for mixed relevant loops is necessary only when theories are
not total, something which should not happen according to our methodology.
Nevertheless, even for the class of total theories, Full loop propagation is more
decide-efficient then Stable loop propagation, as the following example illustrates.

Example 5.8. Consider the theory T =

{p(—ﬂp/\a}, (5'8>
bV —a, (5.9)
—cV a, (5.10)
bV e, (5.11)

and consider the empty state sequence. The only relevant loop for defini-
tion (5.8) is mixed: {p,-p}; its loop formula is p V =p D —a, or simply —a.
Equations (5.9)-(5.10) entail (b V ¢) D —a, and therefore (5.9)-(5.11)F —a.
Thus, definition (5.8) is total with respect to (5.9)-(5.11). Nevertheless, while
the only rule of Stable loop propagation applicable to () || T is Decide, in Full
loop propagation also FwLoop is applicable.

However, the Stable loop propagation strategy has important algorithmic
advantages over the Full loop propagation strategy, as we will see in Section 5.4.
These advantages stem from the fact that when only positive loops are sought,
the search space can be restricted to atoms. (Note that in the context of loop-
searching algorithms, by “search space” we always denote a graph of literals.)

The motivation for both the Stable and Full loop propagation strategies as
compared to the Loop-based theory propagation strategy is also algorithmic in
nature, but can already be illustrated with an example.

Example 5.9. Let A =
p1<—p2Aa,
P2 < p3,

Pn <— P1
and consider the state —a || A. Then the Full loop propagation strategy would
find the following derivation:

—a ” A UnitP:ro;)Def —a—py ” A UnitP:ro;)Def —a—py —py, ” A

UnitPropDef*
= 7a"p1Pn--- P32 || A

4Note that we then have that M |[=s; A, where M is the current (two-valued) state
sequence, according to Proposition 4.11.
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Each of the UnitPropDef applications is a local propagation: it is based on one
rule of As 9. The above derivation is also valid in Loop-based theory propagation,
but the latter strategy could also derive, e.g.,

BwLoop
—

—Qa H A Bgoop —Q —|p1 || A —|a—\p1 —|p2 || A

BWLOOP*
=  TaPp17P2... Pn—1"Pn ” A,

using the fact that {p1,pa,...,pn} is a loop, and BwLoop is applicable on it.
The BwLoop applications, however, are global: they require all rules of Asg to
be taken into account.® Such a global search is particularly time-ineffective if it
does not yield any propagations, as would have been the case, e.g., if some rule
pi—1 < p; had not been in the definition.

Thus, the motivation for preferring the Stable and Full loop propagation
strategies over the Loop-based theory propagation strategy is that algorithms
for [UnitProp]BF* and [UnitPropDef]®™+ are more time-effective than those for
[BwLoop]BF+ and [FwLoop]BF+.

Observe also that Full loop propagation is equally decide-efficient as Reduce
to SAT, and strictly more decide-efficient than Incremental. Indeed, Incremental
can use loop formulas only for backtracking, while Full loop propagation and
Reduce to SAT can use them also for propagation.

5.4 Algorithms

In this section we propose concrete algorithms for transition rules, taking into
account the strategies in which they are to be used.

5.4.1 UnitPropDef

An algorithm for the [UnitPropDef]BF* transition rules is easy to construct by
means of an algorithm for CNF unit propagation (i.e., for the [UnitProp]®F+
rules). All that is required is to represent comp(A) in CNF form (cf. Figure 5.2;
observe in particular that this representation is linear in the size of A), and
then apply the [UnitProp]B™* algorithm. We call the clauses denoted by C(r) in
Figure 5.2 long clauses.® Note that to reconstruct any rule 7 it suffices to know
the long clause C(r), the head atom h of r, and whether h € D5 or h € Cjgs.
One particularly effective algorithm for CNF unit propagation is the “two
watched literals scheme”, introduced by Moskewicz et al. (2001). In any clause
 with at least two literals, two different literals wi (¢) and wa(yp) are denoted
as “watched”. Then the algorithm ensures that the following invariant remains
satisfied: Vo € W : I(wi(p) Awa(p)) # FV I(wi(p) V ws(p)) = t, where T is

50Observe that the BwLoop rule could have been formulated differently, deriving all literals
of the loop to be false at once. Our argument here that all rules of the definition have to be
taken into account for applying the rule remains valid also with this alternative formulation.
SIf the size of the body is 1, then the “long clause” is actually also binary.
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the current interpretation at any point of the search. To implement this, each
literal keeps a list of the clauses in which it is watched. If then a literal becomes
false, those clauses are visited, and we have the following possibilities for each
clause ¢:

o there is a third literal I € ¢ such that I(l) = t: the watch from the false
literal can move to [;

e there is no such third literal: then the other watched literal must be true,
if ¢ is to be satisfied. It may already be true. It may also already be false;
in that case a conflict is derived. This last case may arise because literals
that obtain a two-valued truth value must be processed sequentially: when
the two watches of ¢ both become false, one of them will necessarily be
processed first.

It is easy to verify that [UnitProp]®F* on the clauses of comp(A) implements
[UnitPropDef]BF+.

Remark 5.3. Some ASP solvers provide four different propagation mechanisms
for rules (from head to body and vice versa, for both disjunctive and con-
junctive rules), which together are equivalent to the UnitPropDef rule. For
instance, SMODELS implements these four mechanisms in its AtLeast procedure
(Simons, 2000), using a counter-based algorithm derived from Dowling and Gal-
lier’s (1984) algorithm for computing the deductive closure of a set of rules.

5.4.2 Relevant loop algorithms

We now investigate algorithms related to relevant loops. Most algorithms pro-
posed here have no direct application in any of the proposed transition rules,
but are useful as a reference. They solve the following tasks:

e deciding whether a set of literals is a relevant loop;
e finding a relevant loop;
e finding all relevant loops of a definition.

“Stable” strategies require positive relevant loops: for finding these, the
algorithms here can be simplified by searching not in the dependency graph
of A, but in its positive dependency graph (the restriction of the dependency
graph to atoms), and by disregarding the search for justifying kernels.

Deciding whether a set of literals is a relevant loop

We assume a definition A and a set of literals L to be given. By G we denote
the dependency graph of A, restricted to L.

To decide whether L is a relevant loop of A, one first has to decide whether
L is a loop of A. This can be done, e.g., using Tarjan’s (1972) algorithm for
finding strongly connected components: L is a loop of A iff G has a unique
strongly connected component, namely the whole graph.
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Algorithm 5.1: FindJustifyingKernels(L, G)

Result: A set of literals: the union of all justifying kernels for L.
(Empty if there are none.)

1 L’ := the negative literals in L;

2 foreach | € I’ N Dy do l.count := card{(l,I") € G | ' € L'};
35 .= {l € L' N Clits | H(Z,l/) cGyr: 1l € L/} @] {l € L' N Diiss | l.count = 0},
a L':=1L"\S;

5 while L' #0 A S # () do

6 Choose s € S; S := 5\ {s};

7 foreach (I,s) € Gr such thatl € L' do

8 if [ € Ciyys then S := SU{l}; L' := L\ {i};

9 if | € Dy then
10 l.count--;
11 L if l.count =0 then S := SU{l}; L' :== L\ {l};

12 return L’;

When L is indeed a loop of A, Algorithm 5.1 can be used to determine
whether or not L contains any justifying kernels, and therefore, whether L is a
relevant loop.

Algorithm 5.1 assumes that L is a loop in A. The algorithm uses the integer
data structure l.count for disjunctive literals I, and keeps track of two sets, L’
and S. Both sets are subsets of L, and they satisfy L' NS = § throughout
the algorithm. Intuitively S contains only literals that are certainly not in any
justifying kernel for L; L’ contains those literals that might be. The algorithm
proceeds by trying to remove literals from L’ by propagation from literals of S.
This happens for disjunctively defined literals, when it is shown that none of
their disjuncts belongs to L', and for conjunctively defined literals, when one
of their conjuncts is shown not to belong to L'’. When all propagations from
a given literal s of S are done, that literal is removed from S. The algorithm
finishes either when L’ is empty (thus, there are no justifying kernels for L), or
when S is empty (thus, since all propagations are done, L’ is a justifying kernel,
or a union of different justifying kernels).

This algorithm (as well as Tarjan’s algorithm for deciding whether L is a
loop) is linear in the size of L.

Finding relevant loops

To find a relevant loop L, rather than just deciding whether a given set of literals
L is one, we can appeal to the following property:

Proposition 5.3. If A has a loop, it has a relevant loop.

Proof. Let L be a loop in A. Either L is relevant, or it contains a justifying
kernel L’. Then L’ is a relevant loop, since it is a loop, and consists of atoms
only. O
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Therefore finding a relevant loop can be done by first finding a loop, using
Algorithm 5.1 to decide whether it has a justifying kernel, and if so, negating the
literals in that kernel. To find a loop, one can use, for instance, Tarjan’s (1972)
algorithm for finding strongly connected components. And to find a justifying
kernel, instead of returning true or false, Algorithm 5.1 can be made to return
the union L’ of all justifying kernels for a given loop. If L’ is non-empty, an
individual justifying kernel can easily be extracted by choosing an arbitrary
l € L', and searching all literals in L’ that are reachable from [. The resulting
algorithm is also linear (in the size of A).

Finding all relevant loops

The Reduction to SAT strategy requires finding all relevant loops. It was shown
by Lifschitz and Razborov (2006) that in the worst case there are exponentially
many loop formulas (in the size of the definition). Therefore the usefulness of
this strategy has to be doubted.

A simple method is to first find all strongly connected components of the
dependency graph, and subsequently test each subset of each component for
relevance. Naturally, a lot of redundancy in this method can be avoided with
slightly more involved techniques, as well as by taking into account that it
suffices to find all elementary loops (cf. Section 4.4.3), but the exponential
nature can most likely not be avoided.

In contrast, the reduction to SAT proposed by Pelov and Ternovska (2005)
introduces new symbols, but does not cause the theory size to explode: the
authors show that the reduction of a PC(ID) theory T with one definition A
has size O(size(T) x |Def(A)]), where size(T) is the total number of literals in
T and |- | means cardinality.

5.4.3 BwLoop

We recall the BwLoop transition rule:

M()=u
M|V,A = M-l|| ¥ A if {A contains a relevant loop L such that
M(\/D™(L)) = f and | € L.

To implement this rule (and the [BwLoop]BF rules), an algorithm is needed
that finds not just a relevant loop, but a relevant loop L for which in the current
interpretation M, M(\/ D***(L)) = f and M(\/ L) # f hold. In other words,
a relevant loop whose literals are not (all) false, but whose external disjuncts
are. We call such a loop an unfounded loop in M. Recall that Proposition 4.15
proves that if M(l) = u for each | € L, such a loop is also an unfounded set in
M.

The algorithm that we propose to search for unfounded loops in M is based
on justification semantics. First, to see the relation between relevant loops
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and justifications, recall that a loop in a justification for A is also a loop (in
the dependency graph) of A. Conversely, observe that a loop of A can be
constructed as the union of some loops in some justifications for A, since A’s
dependency graph is the union of all justifications for A.

The following result establishes to relevance of justification semantics to the
search for unfounded loops in M.

Proposition 5.4. Let M be an interpretation for which a A-witness J exists.
Then A contains no unfounded loops in M.

Proof. Let L be a relevant loop in A with M(\/L) # f. Assume towards
contradiction that M(\/ D*Y(L)) = f. Let NF = {l | M(l) # f}, and let | €
NPF. Because J supports M, if | € Cjys, then all I’ € ¢, have M (I') # f, while if
l € Diits, M(ds(1)) # f. By assumption, this implies that d;(I) € D™*(L). We
therefore have found that any non-false literal in L has a non-false child in the
restriction of J to L. Hence this graph contains a minimal strongly connected
component L’. L’ has no children in NF. Because J is a witness, L’ must be a
negative loop. Then since L is a relevant loop, we have that C**(L") N L # 0.
Let ¢ be a literal in C®**(L') N L: again because J supports M, we find that
M(c) # f. But then ¢ € NF, which contradicts our construction of L. O

Our strategy will be to search for (construct) a A-witness; when it is found,
then by Proposition 5.4 the [BwLoop|®f* rules are not applicable any more.
The search will fail if there is an unfounded loop L in M: instead of finding a
A-witness, the search will then return L.

We will construct a A-witness by making local changes to a given justifica-
tion. We first define a helpful concept.

Definition 5.3 (Local witness). Let M be a (three-valued) interpretation, [ €

—

Def(A) a defined literal with M (1) # f, and J a justification for A. Then J is
a local A-witness for M in 1 if J supports M, and J contains no non-negative
loops that contain I.

A justification J that is a local witness for M in all non-false literals [ €

"

Def(A) is a witness for M. It also follows immediately from this definition
that if there exists a local witness for M in some literal [, then there are no
unfounded loops in M that contain /. On the other hand, if no local witness
exists for M in some literal [, then also there exists no witness for M.

We will now construct an algorithm for the [BwLoop]®F* rules. This algo-
rithm depends on a few assumptions:

1. the rules of [UnitProp]BF* and [UnitPropDef]BF* are not applicable to M;
2. a justification J that supports M is given;

3. we search for unfounded loops L in M that contain no false literals at all.
This assumption ensures that we can restrict the search space to non-false
literals;
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4. aliteral cs with M (cs) # f, called a cycle source, is given; we search for
unfounded loops L in M that contain cs.

In Section 5.5 we will motivate and discuss these assumptions, and indicate
how Js and cs, which we assume here to be given, can be acquired. Here we
limit the discussion to a few remarks about these assumptions.

e Assumption 1. We call a state in which no rule of [UnitProp]®F+ or
[UnitPropDef]BF* is applicable a UP-saturated state. If we apply the
[BwLoop]|BF* rules in the context of a strategy like Full or Stable loop
propagation, this assumption will hold. We refer to Example 5.9 to moti-
vate the use of those strategies.

e Assumption 2. In a UP-saturated state M, there always exists a support-
ing justification Js.

Furthermore, it is easy to find one: Js; can simply be constructed by
searching, for each | € Dy with M(1) # f, for a literal I’ € B; with
M(I") # f; the existence of such a literal is a consequence of the fact that
the state is UP-saturated. In MINISAT(ID), we exploit the two watched
literals data structure to search for a supporting justification even more
efficiently. We explain the details in Section 5.7.3.

e Assumption 3. By restricting the search space to non-false literals, we may
miss out on certain unfounded loops L in M. However, we will show in
Section 5.5 that the falsity of literals in those loops will be derived anyway
by a combination of BwLoop on subloops of L and UnitPropDef.

e Assumption 4. We will develop the notion of cycle sources in Section 5.5;
it suffices here that these are literals that are potentially in an unfounded
loop L in M.

Our algorithm starts from the given cycle source cs, and tries to find a local
witness for M in cs. It either succeeds, or it finds an unfounded loop in M.

We first give a brief intuition behind the algorithm. Starting from cs, we
first find a set of literals that might contain a loop through cs. Then we try to
“justify” literals of that set by making local changes to J,. A literal is “justified”
once it is certain that J; contains no path from this literal to cs. When cs itself
is justified, Js has no loop through it, and because it supports M, it is then a
local witness for M in cs. When on the other hand all possible ways of justifying
literals have been tried in vain, all literals that are not justified are in a loop.
Potentially that loop is not a relevant loop: we can apply Algorithm 5.1 to test
this.

We now give a more comprehensive high-level overview of the algorithm.

e Initially, the algorithm constructs the set HP (“has path”) of all literals
that have a path (of length at least one) to ¢s in J,, such that no literal
along the path is false in M. This is a simple depth-first search in the
transpose of J; (i.e., the symmetric graph of J,). Hence, all literals that
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belong to an eventual unfounded loop in Js are in H P, and possibly some
more. However, if cs ¢ HP, then J; is already a local witness for M in
cs.

e The algorithm attempts to “justify” literals by making local changes to
Js. A literal is justified when it certainly has no path in Js to ¢s. When
a literal gets justified, it is therefore removed from HP. The purpose of
the algorithm is to justify cs.

e The algorithm may make local changes to J,, but all changes retain the
invariant that Js; supports M. M itself remains unchanged throughout
the algorithm. Making a local change to Js; means setting dy, (1) := U, for
some literal [ € HP N Dy;s and I’ € ;. The support invariant is retained
by choosing I’ such that M (I") # f, since [ € HP and therefore M (l) # f.

e A literal I € D5 can be justified by setting dj, (1) to a literal that does
not belong to H P, and therefore has no path to c¢s in Js. If ; contains no
such literal, it is possible that it contains a literal I’ that can be justified
first, after which [ can still be justified by setting dj (1) := I'. A literal
l € Cyits can be justified by showing that all literals in ¢; do not belong to
HP. If there are HP literals in ;, they have to be justified first.

This top-down process of trying to justify literals is executed by means of
a working queue @, initialized with ¢s.” It contains literals that we may
still try to justify. Literals are pushed on @) at most once. And since only
HP literals are considered, @ is therefore eventually emptied, or cs gets
justified before that.

e The algorithm maintains a set L, initialised with cs, of literals that are
waiting to be justified. Hence, every literal that is added to @ is added to
L as well. But whereas literals are popped from @ as soon as an attempt
at their justification is made, they are removed from L only when such
an attempt is successful—i.e., “justifying” a literal means removing it
both from HP and from L. All literals in L are reachable from cs in the
dependency graph. When the algorithm terminates with an empty queue
@, but a non-empty set L, all literals in L are in a loop in any justification
that supports M. Thus, if L does not contain a justifying kernel, it is then
an unfounded loop in M.

Algorithm 5.2 is the concrete algorithm. The function “Justify(l)” in it
justifies literal [, and propagates this justifiedness in a bottom-up way to its
parents in L.

Proposition 5.5. Let M, Js, cs satisfy assumptions 1—4. Then if Algorithm 5.2,
called on cs, returns a non-empty set L, then L is an unfounded loop in M iff

"The use of a queue as data structure, and not a stack, means that the algorithm searches
for changes to Js that may justify cs in a breadth-first way, i.e., as close to cs as possible.
This is advantageous for cycle sources that can be justified—they are justified as soon as
possible—and not disadvantageous for other cycle sources.
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Algorithm 5.2: BwlLoop(cs, M, J,, A)—Justifying a cycle source cs

Result: A set of literals that is either empty or an unfounded loop in M.
Js may change; if result is 0, J, is local A-witness for M in cs.

1 Let HP := {l| ! has a path to c¢s in Js through non-false literals};
2 if cs ¢ HP then return (;

3 Let L:=Q :={cs};

4 while Q # (0 do

5 Pop literal | from @Q;

6 if [ € Dyys then

7 if 3" € ¢; such thatl' ¢ HP and M(I') # f then

8 | dy, (1) =15 Justify(D);

9 else
10 foreach I’ € ¢; such that M(I') # f and !’ ¢ L do
11 L L Add !’ to Q and to L;
12 else
13 if ;N HP is empty then
14 | Justify(1);
15 else
16 L foreach I’ € oy N HP \ L do Add ! to Q and to L;

17 return L;

18 function Justify [

19 Remove [ from HP, L and Q;

20 if | = cs then return 0;

21 foreach I’ € L N Cyys with 1 € oy do

22 L if oy N HP is empty then Justify(l');

23 foreach I’ € L N Dy with l € oy do
24 | dy (1) == 1; Justify(l');

25 end function

L contains no justifying kernel. If instead Algorithm 5.2 returns the empty set,
the resulting Js is a local A-witness for M in cs.

Proof. (Sketch) The following properties can easily be proven to be invariant.
1. J, supports M.
2.QCLCHP.
3. For any literal [ € L, the dependency graph contains a path from cs to [.

4. Any literal not in H P certainly has no path in J; to ¢s. Any literall € HP
either has a path in Jg to c¢s, or is waiting to be removed from HP (as
may be the case for literals € Cj;s on which Line 22 has not yet called
Justify).
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P=—4¢q —a P C q —a
a -q -p a -q -p
~—— ~——
(a) Justification with d s, (p) = a (b) Justification with d, (p) = ¢

Figure 5.5: Justifications for As 19

5. (At each start of the while loop.) For any literal [ € L\ @, and any path
from [ to cs in the dependency graph (by 2 and 4 that is at least one
path):

e the path contains a literal in @, or

e all literals along the path are in L \ @, and for each literal I’ € Djs
along the path, all literals in ¢y \ L are false in M.

When Algorithm 5.2 returns a non-empty set L (Line 17), @ is empty. Then
by invariants 3 and 5, each literal [ € L is in a loop in the dependency graph
(that also contains cs), and all literals in D®**(L) are false in M. Hence, if L is
a relevant loop, i.e., if it contains no justifying kernel, then it is an unfounded
loop in M.

When Algorithm 5.2 returns the empty set, then by invariants 2, 4 and 5,
Js contains no loop through cs; by invariant 1 it is therefore a local witness for

M in cs. O

Algorithm 5.2 has running time that is linear in the size of A, restricted
to HP.® In the worst case, HP = Def(A), but typically, we expect HP <
Def(A).

Example 5.10. Let Ag 19 =

{ pqVa, }

qep '

e Let M be the empty interpretation, J, the justification with d;, (p) = a
(see Figure 5.5a), and ¢s = p. Call Algorithm 5.2 on p. Then HP = {q}
in Line 1: ¢ is the only literal that has a non-empty path in J; to p. Since

p € {q}, the algorithm returns the empty set; J is a local witness for M
in p (and, incidentally, a witness for M).

e Let M be the empty interpretation as before, cs = p, but now d;_ (p) =
q (see Figure 5.5b). Call Algorithm 5.2 on p. Then HP = {p,q} in
Line 1. The algorithm continues with setting L := @ := {p}, entering

8The if-test in Line 22 must be implemented using a counter, to avoid that ¢} is visited
|gﬂl/‘ times.
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the while loop, and popping p from (. It finds that a € ¢p, a ¢ HP
and M(a) # f, hence it sets d;_ (p) := a and calls Justify(p) in Line 8.
In the Justify(p) function, it is immediately found that p is the cycle
source; again the algorithm returns the empty set and (the changed) J; is
a local witness for M in p.

e Let M be {a+— f}, cs=p,and dj, (p) = ¢q. Call Algorithm 5.2 on p. The
algorithm commences the same as in previous case, finding HP = {p,q}
and L := @ := {p}, and entering the while loop with p. Since M (a) = f,
the if-test fails, and the algorithm reaches the foreach statement in Line 10,
where ¢ is added to @ and L. We then have L = {p, ¢}, Q@ = {q}. In the
next iteration of the while-loop, ¢ is popped from Q. It is € Ciis, and ¢q
contains p which is a member of HP. The foreach statement of Line 16
does nothing, because p is already in L. Then we have Q = 0, so the
algorithm returns the set L = {p, ¢} in Line 17. Indeed it is an unfounded
loop in M.

We give a more comprehensive discussion concerning this algorithm in Sec-
tion 5.5, including an explanation how to construct a witness for M from local
witnesses for M in various cycle sources.

5.4.4 FwLoop and A-Propagate
Recall the FwLoop and A-Propagate transition rules:
M(d)=u
A contains a relevant loop L such that
M(VL)=t, deD*(L), and
M D)\ {d}) = f,

M| U,A = Md|U,A if

M) =u

M|U,A =MIL|¥,A if
Ml

To implement the FwLoop rule, an algorithm is needed that finds a relevant
loop L containing at least one true literal in M, such that all literals but one
of D***(L) are false in M, and the remaining one is unknown. Note that for
the [FwLoop]BF rules, the requirement becomes that all literals of D™*(L) are
false in M—as for the [BwLoop]BF rules. We focus here on FwLoop’s distinctive
feature: all but one of the literals in D®**(L) is false, and the non-false literal is
unknown. Therefore we assume that BwlLoop is not applicable any more.

A possible implementation is to try candidate disjuncts one by one, verifying
for each of them whether it is an FwLoop consequence. The obvious method
of verifying this, is temporarily assuming the candidate disjunct to be false,
and subsequently applying the BwlLoop algorithm, Algorithm 5.2. We show
that this method is slightly stronger than FwlLoop: it actually implements the
A-Propagate transition rule.
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Algorithm 5.3: A-Propagate(M, J,,, A)

1 Let S :={l|!is unknown in M};

2 while S # 0 do

3 Pop [ from S;

4 Let CS := {l/ € Diits | de (l/) = l},

5 while CS # ) do

6 Choose some cs € CS;

7 Let L := the result of Algorithm 5.2 on cs, assuming the

interpretation M U {l — f};

8 if L#0 and M(\/L) =t and L is relevant then return ;
9 else CS :=CS\ {es};
10 Fail;

Let M be an interpretation. A witness for M or for an extension of M is
called an extended witness for M. The intuition of this concept is that some
propagations may still be needed before an interpretation is reached that has a
witness. For instance, for the definition { p < a }, the interpretation {a — f}
does not have a witness, simply because the propagation to —p has not happened
yet.

We then have the following derivation from the condition M [=a 1 of the
A-Propagate rule.

M a liff
any model M’ of A extending M has M'(l) = t iff
M =l cannot be extended to a model of A iff

M -l cannot be extended to an interpretation that has a A-witness.

By assuming a candidate disjunct [ to be false and then applying Algo-
rithm 5.2, we verify whether M —l has an extended A-witness (cf. Proposi-
tions 5.4 and 5.5).

In a UP-saturated state where BwlLoop is not applicable any more, there
exists a witness J,,. In Section 5.5 we illustrate that a witness J,, can be
constructed by repetitive application of Algorithm 5.2. Here we assume J,, to
be given.

For any given literal [, it suffices to run Algorithm 5.2 on the cycle sources
CS :={l' € Diits | dy,(I') =1}. Indeed, any loop L that is unfounded in M —i
certainly contains a literal of C'S. Algorithm 5.3 implements this procedure of
trying to find a A-Propagate consequence of M. Its complexity is O(|Def(A)| x
|A|): there are in total |Def(A)| cycle sources on which to call Algorithm 5.2,
which takes (in the worst case) O(]Al) time.

Example 5.11. We illustrate Algorithm 5.3. Let A = { p—ava, }, M =
q<—pAb
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{p — t}, and J,, the justification with d s, (p) = a and dj,(—q) = —b. Suppose
Line 3 chooses g to assume false. Then CS = (); the inner while-loop is finished
trivially. The outer while-loop restarts; suppose Line 3 chooses a to assume false.
Then CS = {p}; Algorithm 5.2 applied on p in interpretation {p — t,a — f}
now yields the loop {p,q}. Indeed, {p,q} is a relevant loop and a is a A-
Propagate consequence of M.

5.4.5 Simplify

The Simplify transition rule is intended to find unavoidably false literals:

M| ¥, A — M || U, APM] if {O[M] is consistent

Recall that the set O[M] was defined as the set of defined literals [ such that
Jsub(l) contains a non-negative loop for any justification J that supports M.
Thus, the literals of O[M] are unavoidably false because they are in, or depend
on, unavoidable non-negative loops. In this respect, Simplify can be intuitively
understood as a global version of BwLoop: it does not just find one unfounded
loop in M; it finds all of them.

Suppose M is UP-saturated, and O[M] is consistent. Let M’ be the state
sequence reached after UP-saturation of M[O[M]/f]. Then it follows from this
definition that there exists a witness for M’. As such, an algorithm for finding
O[M] can be used both as an algorithm for Simplify, and as an algorithm for
finding an initial witness. In the next section, we will need such an initial
witness.

On the precondition that M is UP-saturated, Algorithm 5.4 finds O[M],
and therefore A?IM] Tt also finds a justification J,, that supports M, and such
that for any literal [ not in O[M], either M(l) = f or Jy sup(l) contains no
non-negative loops.

Algorithm 5.4 is intended to be used only initially, i.e. when M is reached
through UP-saturation of the empty interpretation. However, it is applicable
throughout the search.

The intuition behind Algorithm 5.4 is similar to that behind Algorithm 5.2.
In this algorithm, however, we do not start from a cycle source, and the initial
set of literals that might contain one or more loops is the set of all defined
literals. “Justifying” a literal from the set is done in the same way as before,
but now in a bottom-up order—because we want to perform a global search.

We explain Algorithm 5.4 in some more detail. It initially overestimates
O[M] by all non-false defined literals (Line 1), and then iteratively (the repeat-
loop) removes literals [ for which the constructed justification J,, satisfies the
requirements. The first while-loop removes literals [ for which the constructed
justification J,, contains no loops at all through [; the second one finds literals
[ in negative loops, which are removed in Line 18.
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Algorithm 5.4: Finding O[M]

Let S© :={l € Def(A) | M(l) # f};
2 foreach [ € Cy;s do l.count := card{y; };

s Let Ch:= {l € Open(A) | M(1) # £;
4 repeat
5 while Ch # 0 do

=

6 Let [ € Ch; Ch:= Ch\ {l};

7 foreach I’ € Dy, N S© with | € p do

8 L SO = SO\ {I'}; Ch:=ChU{l'}; dy, (') =1
9 foreach I’ € Cyys N S© with | € ¢y do

10 U'.count--;
11 if I".count = 0 then S© := S\ {I'}; Ch:= ChU{l'};

12 Let U := {l € S© | [ is a negative literal}; fizpoint := f;
13 while —fixpoint do

14 fixpoint = t;

15 foreach v € U do

16 if u € Dys Ao, NU =0, or u € Ciigs A, N SC Z U then
17 L L U :=U\ {u}; fixpoint := f;

18 SO =8O\ U; Ch:=U;

19 foreach u € Dy, NU do dj, (u) := v’ for some v’ € v, NU;
20 until Ch =0 ;

21 return S©;

Since justifications have no edges leaving from open literals, all open literals
can be used as starting points of the bottom-up propagation; Line 3 further
restricts the starting points to non-false literals, so that three-valued support
can be preserved when changing J,,. When the first while-loop is finished, the
remaining literals in the overestimate S© for ¢ are all in a loop, or depend on
one: for each [ € SO, ;NSO # (). Next, Line 12 initializes a set U to all negative
literals in S©, and the second while-loop shrinks this set until it contains only
literals u € Dy for which ¢, contains a literal in U, and literals u € Cys for
which ¢, NS® C U. Thus, U contains a negative loop in the dependency graph,
and after the changes to J,, in Line 19, the literals in U are all in a negative
loop in J,,, or depend on one—and can therefore also be removed from S©.

This algorithm can be seen as an adaptation of an algorithm for finding
the well-founded model by Berman et al. (1995); it behaves as Berman et al.’s
algorithm would when all non-false open body literals are replaced with t. With
an appropriate implementation of the foreach-loop of Line 15, its running time
is quadratic in the size of A. If A is total (with respect to the empty theory),
it is linear.
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Algorithm 5.5: Finding O4:[M]

1 Let SO :={l € Def(A) | M(l) # f}:
2 foreach [ € Cj;s do l.count := card{¢; };

3 Let Ch:={l € Open(A)U Def(A) | M(1) # f};
4 while Ch # () do
5 Let [ € Ch; Ch:=Ch\ {l};
6 foreach I’ € Dy N S© with | € o do
7 | 89 :=8O\{l'}; Ch:=ChU{l'}; dy,(I') :=1;
foreach I’ € Cyys N S© with | € ¢y do
U'.count--;
L if I'.count = 0 then S© := S\ {I'}; Ch:= Ch U {l'};

10

11 return S©;

Example 5.12. Let A5 12 = { Z:;Aa’ ,and M = {a — t}. Then M is
UP-saturated. Ajs 12 has two justifications, which both contain the non-negative

loop L = {p, q}.

We illustrate Algorithm 5.4. Initially, S© = {p, —p, q, ~q}, p.count = 2, and
Ch = {a}. In the first while-loop, a is removed from Ch, and p.count set to 1.
Then Ch = 0, and next U is initialized to {—p,~¢}. A fixpoint is immediately
reached: both —p and —¢ have an element of U in their rule body. S© is then
reduced to {p,q}, {-p, ¢} is added to Ch, and d;, (—p) := —q is set. In the
next iteration of the repeat-loop, both —p and —g are removed from Ch without
any changes to S©. The algorithm terminates with O[M] = {p, q}.

We have also defined the concept of stable unavoidably false literals, Oz [M].
We define a stable variant of the Simplify and SimplifyFail transition rules. Al-
gorithm 5.5 implements this stable variant. Note that it is almost the same
as Algorithm 5.4, with removal of the second while-loop. Algorithm 5.5 can
therefore be seen as an algorithm to compute the greatest unfounded set with
respect to M; it operates in linear time. While somewhat less sophisticated, it
is based on the same principle as SMODELS’ Atmost algorithm (Simons, 2000).

Notably, Algorithm 5.5 also finds an initial stable witness. We illustrate the
different behaviours of Algorithms 5.4 and 5.5 on an example.

Example 5.13. Let Aj 13 =

p< qVa,
g pVr,
r<—rANgq

The dependency graph of Asi3 is shown in Figure 5.6a. Consider M = ().
Applying Algorithm 5.4 yields initial values of S© = {p, =p,q, ~q,7, -1}, Ch =
{a,~a}, and count values for —p, —q and r of 2. In a first iteration of the repeat-
loop, a may be chosen, after which p is removed from S© and dj, (p) := a is
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Figure 5.6: Dependency graph of and partial justification for As 13.

set. When —a is chosen next, (—p).count := 1 is set, and when p is chosen,
(—q).count :=1 is set, and the first while-loop ends.

Then S© = {-p,q,—q,r,—r}, and U is initialized to {-p, =g, -r}. Subse-
quently —p gets removed from U, because —p € Cjits, and ¢—,NS© = {q}, which
is Z U. The second while-loop ends, and S© is set to {-p, ¢, 7}, Ch to {—q, —r}.
Also, dj, (—r) is set to —r or —q, say —q.

In the next iteration of the repeat-loop, both =¢ and —r are removed from
Ch, without changes to S©. After that U is initialized to {—p}, but again —p
gets removed from U, ending the second while-loop with empty U. Then also
the repeat-loop ends, and O[M] = {—p, ¢, 7} is returned. Indeed, for each literal
lin O[M], Jsus(l) contains a non-negative loop for any justification J that three-
valuedly supports M. The resulting justification, J,,, is shown in Figure 5.6b
(note that ¢ ¢ dom(J,,)); any instance of J,, is a witness for M[O[M]/ f].

Applying instead Algorithm 5.5 (note that now J,, is a stable partial jus-
tification) yields initially S© = {p,q,r} and Ch = {a, ~a,—p,~q,-r}. In the
while-loop, p is removed from S© and dj, (p) is set to either —q or a, and q is
removed from S© and d,(g) set to —p. The algorithm terminates with the set
{r}, which is an unfounded set.

5.5 Discussion of the BwLoop algorithm

We now focus attention on Algorithm 5.2, which implements the [BwLoop]|BF+
transition rules. We motivate the assumptions that we made in Section 5.4.3.

5.5.1 Search space restricted to non-false literals

We made the restriction of searching only for unfounded loops that contain no
false literals at all in the given state sequence M. We motivate this restriction,
but start with an example of an unfounded loop in M that does contain false
literals.

Example 5.14. Let Ag 14 =
p—qVrVa,

q < p, )
r<—pAq
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and consider the state —a—r || As14. This state is UP-saturated. Ajs 14 has
two relevant loops: Ly = {p,q,r} with D***(Ly) = {a}, and Ly = {p,q} with
D™ (L) = {r,a}. With M = {a — f,r — f} as in the given state, we have
both M (D**(Ly)) = f and M(D**(Ls)) = f; however, L; contains a literal
that is false in M, Lo does not.

The unfounded loop L; in the previous example contains a subloop that is
also an unfounded loop, yet contains no false literals. The following property
proves that we can always find such a subloop, and that therefore, we can safely
discard negative literals from the search.

Proposition 5.6. Let M || ¥, A be a UP-saturated state, and L an unfounded
loop in M for which 3l € L : M(l) = f. Then there exists an unfounded loop
L' C L in M, such that no literal of L' is f in M.

Proof. Recall that L is an unfounded loop in M if it is a relevant loop for which
M(\/ D™Y(L)) = f, and for which M(\/ L) # f (not all literals of L are false).

Let Lyg ={l € L | M(l) # f}. We construct a loop L' C L y.

Let Gy be the restriction of the dependency graph to L., and let [ € L.
Let X be the set of literals reachable from [ in G . By UP-saturatedness, every
l € L4y has a child in Gy (if | € Ciiss, all literals I’ € ¢; are children in G).
Therefore X contains a loop. We define I’ as the minimal strongly connected
component of G ¢ restricted to X. By definition of G, L’ contains no literals
that are false in M.

We further show that M(\/ D*™*(L’)) = f. Suppose the contrary: Id €
D(L') with M(d) # f. Because L is an unfounded loop in M, we have
d ¢ D™*(L), and since I’ C L, we find d € L. Since d is by definition a
body literal of some literal in L', d is reachable in Gf from any literal = € L.
Therefore d should be in L', which contradicts d € D™*(L').

Finally, we show that L’ does not contain a justifying kernel. Suppose toward
contradiction that K C L’ is a negative loop with C***(K)NL’ = (. Clearly also
K C L, and since L is relevant, C***(K)NL # (. Hence C**(K)NL C L\L'. Let
¢ be a literal of C**(K) N L: by UP-saturatedness, M(c) # f, hence ¢ € Lg.
Thus also ¢ is reachable in Gy from any I’ € L, and ¢ should be in L', which
contradicts ¢ € C**(L'). O

5.5.2 Cycle sources

The search for unfounded loops in M is guided by the concept of cycle source:
the literal where the search begins.

We want the probability that a given cycle source actually leads to an un-
founded loop in M to be as high as possible, in other words, we want as few
cycle sources as possible. On the other hand, we also want to have a complete
algorithm, hence, for each unfounded loop L in M there should be at least one
cycle source cs € L.
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We take into account previous searches for unfounded loops in M.% Indeed,
if M(\/D***(L)) = f, then some literal d € D***(L) must have become false
since the last time the same search was done. Hence, literals | € Dy with a
d € ; that has become false since the last search are good candidate cycle
sources. We elaborate on this idea.

Let M’ be an interpretation that has a witness J,,, and let M be an inter-
pretation that extends M’. Intuitively, M and M’ are the state sequences of
the current state S and some previous state S’. Consider a relevant loop L with
no false literal in M (M(\/ L) # f). Then also M'(\/ L) # f, and therefore,
by Proposition 5.4, L is not an unfounded loop in M’ (because there exists a
witness for M"). Consider a literal | € Dy N L. Possibly dj, (1) € D**(L). If
M(dy, (1)) = f (i.e., we have found a disjunct that has become false since the
last search), then .J,, does not support M and hence is not a witness for it. It
is therefore possible that no witness for M exists, and that L is an unfounded
loop in M. As such, [ is a good candidate cycle source (in state S). If on the
other hand M(dy, (1)) # f, then J, may still be a witness for M. Possibly J,,
violates support of M in another literal I’ € L, but in that case I’ will be a cycle
source for the same reason.

This inspires the following definition:

Definition 5.4 (Cycle sources). Let M, M’ be interpretations with M an
extension of M’, and let J, be a witness for M’. Then the set CS of cycle
sources (with respect to M, M’ and J,,) is defined as C'S = {l € Dy | M (1) #

FAM(dy, (1) # f AM(dy, (1) = f}

Let M, M’, J, and CS be as in the definition. Then there exists a justi-
fication J, that supports M, such that dj (1) = dj, (1) for each | € Dy \ CS.
For this justification, the set {I € Dis | dy, (1) # d, } is equal to CS; for other
justifications that support M, this set is a superset of C'S.

The discussion leading up to Definition 5.4 can now be summarized by the
following result:

Proposition 5.7. Let M, M’, J, and CS be as in Definition 5.4. Then any
unfounded loop in M contains a literal cs € CS.

Example 5.15. Let Ag 15 =

{ p<—qVaVb, }
q—p ’
and consider M; = (). The justification J,, with d;, (p) = a is a witness for M.
Consider My = M [b/ f]; since a is still u, J,, is also a witness for My. There are
therefore no cycle sources. Finally, consider M3 = Ms[a/f] = {a — f,b— f}.
Then C'S with respect to Ms, Ms and J,, is the singleton {p}. Thus, there may

be an unfounded loop L in Mjz that contains p. That is indeed the case for
L = {p,q} with D*Y(L) = {a,b}.

9This also requires an initial search: this is performed by Algorithm 5.4 for the Simplify
rule.
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Algorithm 5.6: FindWitness(M, Js, J,,, A)

Result: An unfounded loop in M if it exists; else, the empty set, and J,

is a witness for M.

1 Let CS :={l € Dyts | ds, (1) #dy,(1)};

2 while CS # ) do

3 Choose a cs € CS;

Let L := the result of Algorithm 5.2 on cs;

if L # 0 then return L;

% Else: (S has become strictly smaller

EES

6 return ();

Definition 5.5. (Witness up to C'S) A justification J is a witness for interpre-
tation M up to a set CS of literals, if J supports M, and for any non-negative
loop in J, either all literals in the loop are false in M, or the loop contains a
literal of C'S.

Recall also the concept of local witness in a literal: a justification J is a local
witness for M in c¢s if J supports M, and J contains no non-negative loops that
contain ¢s. Furthermore, recall that Algorithm 5.2, when applied on cs, either
finds an unfounded loop containing cs, or produces a local witness in cs.

Thus, if J is a witness for M up to C'S, and Algorithm 5.2 applied on c¢s € C'S
(and J) produces a local witness for M in cs, then afterwards, J is a witness
for M up to CS\ {cs}. Therefore, by repetitive application of Algorithm 5.2
on all literals of C'S, either an unfounded loop in M will be found, or a witness
for M up to the empty set, i.e., a witness for M. When such a witness has been
found, there are no more unfounded loops.

The above reasoning requires that Algorithm 5.2 satisfies an additional in-
variant: namely that J is a witness up to C'S, where J is the justification on
which Algorithm 5.2 makes its local changes. It can be easily verified that this
is indeed the case—the algorithm only changes d () for literals { € HP, in such
a way that if any new loops are created, they certainly already contain a cycle
source. Actually, we can even strengthen Algorithm 5.2: when any cycle source
cs’ € CS is being justified (HP may contain other cycle sources than the one
on which the search is started), it can be removed from CS, and the invariant
is still valid. This requires changing Line 19, which now reads “Remove [ from
HP, L and Q7, to “Remove [ from HP, L, C'S and Q”. Note that in this way,
the original cycle source cs itself is also removed from C'S when justified. Using
this change to Algorithm 5.2, we can now apply the algorithm repetitively for
all cycle sources.

Algorithm 5.6 applies this repetitive procedure. It assumes J,, and Js to
be given, where J,, is a witness for the previous state sequence M’, and J; is
a supporting justification for the current state sequence M. The application of
Algorithm 5.2 may change J;, as well as C'S in the way indicated above.

Algorithm 5.6 can be understood as an algorithm for the Full BwLoop prop-
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agation strategy. It gets called when a UP-saturated state has been reached;
as soon as a loop has been found, the resulting propagations or backtracks are
executed, and the UnitProp and UnitPropDef rules can resume. When the algo-
rithm terminates without finding a loop, Decide is applicable in the Full BwLoop
propagation strategy.

Proposition 5.8. Let M, J,, and Js be as given above. Then Algorithm 5.6,
when called on CS, either returns a unfounded loop L in M, or returns the
empty set. In the second case, the resulting justification Js is a witness for M.

Remark 5.4. When Algorithm 5.6 returns the empty set and a witness, this
witness can be used the next time cycle sources are needed. Using the most
recent witness for this purpose has the advantage that then the produced set of
cycle sources is small, since few literals will have become false in the mean time.

Remark 5.5. An interesting property of witnesses is that they remain witnesses
after backtracking (until a decision literal). Thus, to integrate the above in a
strategy such as Full BwLoop propagation, it suffices to always store the last
obtained witness, J,.

5.5.3 The search space HP

The search space of Algorithm 5.2 is given by the rules that define the initial
set HP. Thus, by modifying the first line of the algorithm, we can restrict
(or enlarge) the search space. Notice that the search space not only determines
which literals will be visited, but also which literals can be used to justify literals
(the ones outside the search space).

Firstly, the initial set H P should be restricted to literals that are in the same
strongly connected component as c¢s in the dependency graph. Other literals
may also have a path to the cycle source in Js; however, they cannot be in the
same cycle as the cycle source. Recall our observations in Section 4.4.3 in this
respect.

Stop-at-cycle-sources variant. A possible alternative initialization of HP is
the set {l | I has a path to ¢s in J,; on which all literals are non-false in M and
¢ CS and in the same strongly connected component as ¢s}. In other words, the
reachability search in J,’s transpose is “cut off” at cycle sources other than cs.
The idea in this variant is that literals in a path to c¢s in Js that does contain
another cycle source will be visited anyway when Algorithm 5.2 is called on
that cycle source. This definition makes the search space smaller than in the
standard definition.

Dynamic dependency graph variant. The dynamic dependency graph is the
dependency graph restricted to non-false literals. In another initialization of
HP, we set HP to the strongly connected component of ¢s in the dynamic
dependency graph. The idea here is that the strongly connected components
have to be searched once, right before Algorithm 5.6 is called, and after this,
the initialization of HP in Algorithm 5.2 can be done in constant time.

We now illustrate the effect that the proposed variants have on the behaviour
of Algorithm 5.6.
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Example 5.16. Let Aj 165 =

p1 < Dp2VapVb,

pPN—1 ¢ pnVan—1Vby_i,
PN — p1VayVby

and let M = {a; — f,...,ay — f}. Suppose J,, and J;s are such that Algo-
rithm 5.6 finds C'S = {p1,...,pn}. It calls Algorithm 5.2 on each p;, whereby in
the standard variant HP = {p1,...,pn} is calculated every time (which costs
linear time)—and the rest of the algorithm merely sets d;_(p;) := b; and returns
the empty set. Thus, it takes O(N?) time to find a witness.

When Algorithm 5.6 instead uses the Dynamic dependency graph variant,
the strongly connected component {pi,...,py} in the dynamic dependency
graph is computed only once, in O(N) time; the initialization of HP to this
set is thereafter done in constant time N times. The same witness is therefore
found in O(N) time. When instead the Stop-at-cycle-sources variant is used,
HP is each time initialized to the empty set, which also takes constant time,
and again the same witness is found in O(N) time.

The difference in behaviour between the Dynamic dependency graph variant
and the Stop-at-cycle-sources variant is illustrated in next example.

Example 5.17. Example 5.16 continued. Let M’ = M[{b1,...,bn}/f]. Again
CS ={p1,...,pn}. Suppose the Stop-at-cycle-sources variant is used, and the
cycle sources are processed in the order as given here. Then for p;, HP is
initialized to @ (because py € CS); Algorithm 5.2 removes p; from CS. Next,
for py, HP is initialized to {p;}; Algorithm 5.2 removes also ps from CS. This
continues, until for py, HP is initialized to {p1,...,pn}. Then py € HP, and
Algorithm 5.2 finds the unfounded loop {p1,...,pn}. The whole process takes
O(N?) time.

Suppose on the other hand that the Dynamic dependency graph variant is
used: then (for arbitrary first cycle source), HP is initialized to {p1,...,pn},
and the same unfounded loop is found in O(N) time.

The Dynamic dependency graph variant is the only variant that ensures that
Algorithm 5.6 runs in linear time (because of its constant-time initialization of
HP), as is illustrated by these examples. On the other hand, in this variant the
search space of Algorithm 5.2 is much larger than in the other variants.

5.5.4 Remarks and related work

There is still much room for variation and optimization in Algorithm 5.2. We
gather some detailed remarks regarding such individual ideas in this section,
and point to related work.

Remark 5.6 (Stable variant, unfounded sets). Algorithm 5.2 can trivially be
adapted to become an algorithm for the Stable loop propagation strategy. It
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should then only find positive loops, which can be achieved by limiting the
search to atoms. Again, this is achieved by simply modifying the first line of
Algorithm 5.2, where H P is initialized.

The Stable variant can be understood as an algorithm for finding unfounded
sets. Anger et al. (2006b) published an algorithm that seems closely related
to the Stable variant of Algorithm 5.2; their algorithm was used in the CLASP
solver by Gebser et al. (2007a). In particular, the following sets have similar
functionalities: Set ~ L, Ext ~ @, Sink ~ vocab(¥ U {A})\ HP. The precise
relation between Source and C'S' is unclear.

SMODELS’ Atmost algorithm (Simons, 2000) finds the greatest unfounded
set with respect to a given three-valued interpretation. It is also a linear-time
algorithm (in the size of the largest strongly connect component). This greatest
unfounded set may not be a relevant loop itself, but instead contain literals from
more than one unfounded loop, as well as literals that depend on such loops.
Algorithm 5.4 in Section 5.4.5 also finds the greatest unfounded set.

As also remarked by Anger et al. (2006b), it is often more efficient to find
small unfounded sets and let the rest of the computation be handled by unit
propagation, than it is to find the greatest unfounded set.

Remark 5.7 (Justifying conjunctive literals). For completeness of Algorithm 5.2
(i.e., all possible ways of justifying cs are tried), it is required that all non-false
body literals of all HP literals are considered for justification. However, there
is no requirement as to when, or in what order, they are considered. For a
literal [ € Dy, any literal in ¢; offers a chance to justify [, and it is therefore
advantageous to consider them all as soon as possible. Therefore all non-false
literals in ¢; are pushed on @ together (unless one of them is justified). For a
literal [ € Cyys however, even if some literal I’ € ¢; gets justified, there may still
be some I € ¢; not justified yet. It is therefore advantageous to consider them
one by one. One way to achieve this is to push one literal I’ of ¢; on @, and
designate it as the guard of I. When at some later time [’ is justified, all literals
for which it is guard are pushed on @ for re-evaluation. Using this process,
literals [ € Dy are pushed on ) at most once, literals | € Cjjs are pushed on @
at most |¢;| times. This is the version we have implemented in MINISAT(ID)
(cf. Section 5.7); the exact algorithm is therefore given in Appendix C.

We illustrate the potential advantage of this system. Consider the definition

cs «—pVaq, ] < CS,
p—1riN---ANrn, T9 <+ CS,
q s, ’
s+ csVa, TN < CS

and suppose that cs is a cycle source. Let M = ), and let J; have d s, (s) = cs and
dy (cs) = q. Algorithm 5.2 first constructs H P in the transpose of J: it adds s,
q and cs to HP, as well as all r;’s and p. It finds HP = {¢s,p,q,71,...,7N,S}.
In the first iteration of the while-loop, it pushes p and ¢ on the queue (assume
in that order). In the next iteration, p is treated: depending on which variant
we have chosen, either all the r; are pushed on the queue, or one of them, which
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is designated the guard of p. In the next iteration, ¢ is treated; s is pushed on
the queue. Depending on the chosen variant, the queue is now (ry...ry s), or
(r; 8), so we now have either N iterations, or one iteration, treating r; atoms
(in vain). In the final iteration, s is treated; the algorithm then sets d;_(s) = a,
and calls Justify(s). This in return calls Justify(q), which sets dj, (cs) = ¢
and calls Justify(cs), and terminates.

Suppose on the other hand that M = {a — f}. Algorithm 5.2 called on cs
then proceeds exactly the same as before, and adds either only one r;, or all of
the r; to L, depending on the variant; after s is treated, the queue is empty,
and the algorithm returns either {cs,p, q,7;, s}, or {¢s,p,q,71,...,7N, S}

Remark 5.8 (Symmetric variant). A general graph technique for finding the
strongly connected component containing a node N (and therefore, a superset of
all loops containing N), is by taking the intersection of all nodes reachable from
N with all nodes reachable from N in the transpose of the graph. Algorithm 5.2
applies a similar technique. However, the algorithm is concerned with finding
some loop, not necessarily the greatest one: consequently it restricts the search
by considering not the transpose of the dependency graph, but the transpose of
Js: a subgraph of it.

Given this observation, one can see that the symmetric version of Algo-
rithm 5.2 is also correct: initially marking the H P literals in J; (instead of in
its transpose), and then searching in the transpose of the dependency graph.

Remark 5.9 (Source pointers). The search is restricted by considering not the
transpose of the dependency graph, but the transpose of J,. In this respect, the
purpose of J, is comparable to that of the so-called source pointers in SMODELS’
Atmost algorithm (Simons, 2000).

Remark 5.10 (Loop-free justifications). When Algorithm 5.2 returns a loop, J;
certainly contains a cycle through cs. However, after BwLoop is applied, cs is
false. Hence, three-valued support then remains valid if d_(cs) is changed back
to dj,(cs), i.e., the literal that originally became false and caused cs to be a
cycle source. The advantage of this is that the resulting justification J; does
not contain a cycle through cs. Especially in the case of the stable variant,
and when working on a loop-simplified definition, this is a useful way of finding
loop-free (instead of merely loop-safe) witnesses.

Remark 5.11 (AddLF). Note that the AddLF transition rule under the Incre-
mental strategy can be implemented using Algorithm 5.2: the only additional
requirement is that M(\/ L) = ¢t. Unless this additional requirement can be
exploited to produce a more efficient algorithm, this suggests that BwlLoop is
more useful than AddLF under the Incremental strategy.

5.6 Enhancements to DPLL

Contemporary DPLL-based SAT solvers’ algorithms are far more sophisticated
than the DPLL strategy as outlined in Section 5.2.2. Mitchell (2005) offers an
overview of enhancements to DPLL that are implemented in most of today’s
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Figure 5.7: Enhancements to DPLL

DPLL-based SAT solvers: clause learning, backjumping and restarts, adapted
heuristics, and pre-processing techniques. In this section we give a brief account
of these enhancements.

5.6.1 Clause learning, backjumping and restarts

The idea of clause learning and backjumping originates in the constraint satis-
faction domain (Prosser, 1993), but was first introduced in SAT by Marques-
Silva and Sakallah (1999). The idea can be modelled using the Learn and
Backjump transition rules given in Figure 5.7: firstly, when a clause (¢ V 1)
is a consequence of the given theory, it can be added to it; secondly, if the
current state sequence falsifies that clause, one can backtrack till an inter-
pretation M for which M(¢) = f and M(I') = u, and add I’ to M. Note
that the behaviour of the Backjump rule can be described in terms of Learn,

Backtrack and UnitProp: if M4 N || @ “S4™ a7/ || @, then M4 N || & =20

MEN |0, (v 1) B8 01w, (v 1) "™ A0 || W, (o v 1), In prin-
ciple, these rules are valid throughout a derivatlon in practice, they are invoked
after a conflict, and the learned clause is derived using a resolution process that
starts from the conflicting clause. For this reason—more precisely: using this
strategy—the techniques are often called “conflict-driven” clause learning and
backjumping.

Classic DPLL can be described as performing a tree-like resolution process:
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by adding clause learning, additional forms of resolution are obtained. Beame
et al. (2004) have shown that DPLL enhanced with conflict-driven clause learn-
ing is more powerful then regular resolution, which in turn is more powerful than
classic DPLL. This gives a theoretical reason for the success of conflict-driven
clause learning SAT solvers.

Since the Learn transition rule can add unlimited numbers of clauses, memory
management can become problematic. Therefore modern solvers also implement
the Forget rule. They deploy heuristics to determine the “usefulness” of a clause:
the likelihood that it will contribute to the future search process. Clauses are
then removed from the theory when their usefulness drops below a predefined
threshold. They also limit the applicability of the Forget rule to clauses that
have previously been learned, thus making the requirement ¥ |= ¢ trivial to
verify.

Clause learning can also be seen as a way of acquiring new information—and
thereby better-informed heuristics—as the search process unfolds. The Restart
rule acts on this observation by enabling the search process to simply restart
with an empty partial assignment (more precisely, with the state sequence up
to the first decision literal), in the hope that the new search will make more
useful choices for the Decide rule. Experiments have proven this technique to
increase robustness (e.g., Biere, 2008).

Termination and completeness are affected by the addition of these rules.
Nieuwenhuis et al. (2006) provides an overview of viable strategies and proofs
of termination and completeness.

5.6.2 Heuristics

Decision heuristics determine on which literal to apply the Decide rule; the
choice of heuristics can make or break an effective SAT solver. Most heuristics
that perform well for conflict-driven clause learning solvers are geared towards
favouring literals which have appeared in recently derived conflict clauses. Ex-
amples include the Variable Move To Front heuristic (Ryan, 2004), the Variable
State Independent Decaying Sum heuristic (Moskewicz et al., 2001), and the
BerkMin heuristic (Goldberg and Novikov, 2002). Also the Forget and Restart
rules are subject to heuristics.

It is an open question whether special-purpose decision heuristics tuned to
SAT(ID) can yield improved performance on practical instances (as opposed to
those for SAT). An obvious concern is that a good decision heuristic for SAT(ID)
should behave on the theory ¥, A as a good decision heuristic for SAT would
on the theory ¥, comp(A), LFA. This can be achieved if, whenever a conflict
related to A is found, the clauses of comp(A) and LFA that are conflicting are
added to the theory, and the chosen SAT heuristic is used on the result.

The SMODELS solver for ASP uses “lookahead” propagation; the informa-
tion obtained during the lookahead process can be used to calculate the size of
the remaining search spaces after individual choices. This is an interesting alter-
native heuristic; however, the lookahead and clause learning techniques diminish
each other’s returns and are therefore not often used together.
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5.6.3 Preprocessing

Preprocessing techniques for SAT try to derive, from a given propositional the-
ory U, a smaller theory ¥’  such that ¥’ = W. This derivation is done in a
preprocessing phase, and can therefore be more elaborate than propagation al-
gorithms are; the idea is that the effort pays off because the SAT solving time
on V¥’ is likely to be smaller than that on W.

A simple preprocessing technique is the PurelLit rule. More elaborate tech-
niques are described a.o. by Eén and Biere (2005) and are based on general
resolution; their purpose is both to remove redundant variables and to remove
redundant clauses.

In our work, the purpose of a SAT(ID) solver is as a tool to solve model ex-
pansion problems for ID-logic theories. This requires theory equivalence instead
of satisfiability equivalence; consequently, many standard SAT preprocessing
techniques such as pure literal removal are not applicable even to the CNF part
of a given ECNF theory.

5.7 MINISAT(ID)

We have implemented a SAT(ID) solver on the basis of an existing open source
SAT solver, namely MINISAT (Eén and Sorensson, 2003). The resulting solver is
called MINISAT(ID) (Marién et al., 2008) and is available for download (Marién,
2008). MINISAT(ID) can be considered the successor of MIDL (Marién et al.,
2007a,b), our earlier SAT(ID) solver, which operated according to the same
strategy.

This section introduces the solving strategy and implementation details of
MINISAT(ID), and reports on its performance.

5.7.1 Transition system and strategy

MINISAT(ID)’s transition system is given by Figures 5.8-5.9. Its strategy is as
follows:

e Initially, UnitProp and UnitPropDef are applied until a UP-saturated state
is reached (or Fail was applicable), after which Simplify (or SimplifyFail) is
applied.

e Whenever possible, [UnitProp]®F* and [UnitPropDef]®F* are applied.

e In UP-saturated states, [BwLoop]B ™ is applied on positive loops whenever
possible. Also, when a loop on which to apply [BwLoop|®F* is found,
AddLF is applied for that loop. We call a UP-saturated state where stable
[BwLoop]BF* is no longer applicable UPB-saturated.

o Whenever any of the above leads to a conflict, Learn and Backjump are
applied. Also Forget may be applied after Backjump. When a specified
(parameterized) number of conflicts has been reached, Restart is applied,
and the parameter is increased.
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Figure 5.8: The MINISAT(ID) transition system, part I

e Decide is applied when none of the above is applicable.

e In UPB-saturated states where none of the above is applicable (i.e., the
state sequence is two-valued), [BwLoop]B* is applied on mixed loops, if
possible.

We offer some observations and explanations about this strategy:

e It is a stable strategy. The justifications used during the main search are
stable justifications.

e When the given PC(ID) theory is total, there are no final mixed loop
propagations, as explained before. Then if the state sequence of a UPB-
saturated state is two-valued, it is a model of the theory. For non-total
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Figure 5.9: The MINISAT(ID) transition system, part II

theories, the final mixed loop propagations are executed using the algo-
rithm for Simplify, Algorithm 5.4. Since in general the solver does not
know whether the given theory is total, this final algorithm can be con-

sidered as a totality test.'°

e There exists a stable witness for any UPB-saturated state sequence: MINI-
SAT(ID) stores such a witness. It also ensures that this stable witness is
loop-free (which is possible since Simplify has been executed).

e Performing AddLF whenever [BwlLoop]B™* is applicable ensures that a
standard SAT algorithm for Learn can be used, such as the “First Unique

101f a stable witness could always be extended to a general witness by simply adding direct
justifications for negative literals in Dy, then we could simplify Algorithm 5.4. However,

this is not the case.
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Implication Point” scheme introduced by Zhang et al. (2001), and imple-
mented in MINISAT. Also observe that when a loop formula for loop L is
added to the theory, and backtracking occurs, the subsequent unit propa-
gations may do the work of FwlLoop for L, or they may again do the work
of BwLoop for L. Note that the smaller the loops that are found, the more
likely they are to be used again, either for a loop propagation or for the
derivation of a new learned clause.

5.7.2 Motivation of this strategy

The motivation of this strategy derives from observations regarding both the
types of problems encountered in practice, and the behaviour of some differ-
ent strategies on such problems. We did a number of comparisons of different
strategies, and give a detailed report on them in Section 5.7.4. Here we refer to
those comparisons to substantiate our motivation.

Why SAT(ID) solving at all? Mitchell and Ternovska (2005) proved that
all NP search problems can be cast as parameterized FO model expansion
problems (see Section 3.2). It therefore follows that to solve such problems,
inductive definitions are strictly speaking not needed.

However, the modelling of problems may have a major impact on how effi-
cient they are solved in practice. When ID-logic can be used as modelling
language, the “practical expressivity gain” (over FO) may be highly rele-
vant, both in terms of modelling convenience and in terms of solving time.
We compare MINISAT solving times of an FO encoding of the Hamiltonian
circuit problem with MINISAT(ID) solving times of an ID-logic encoding
of it in Comparison 5.1; the former cannot compete with the latter.

Observe that an FO-M X encoding of a problem may require extra vocab-
ulary compared to an ID-logic-M X encoding of the same problem.

Why not an eager technique? In a reduction to SAT strategy, one gets all
the advantages of the best off-the-shelf SAT solvers for free. This is a
strong motivation to try such a strategy.

Observe that Lifschitz and Razborov’s (2006) result regarding the number
of loop formulas impedes the use of a vocabulary preserving reduction to
SAT. To make the eager technique efficient, the reduction therefore has
to introduce new vocabulary. This was done for SAT(ID) by Pelov and
Ternovska (2005), and for ASP by Janhunen (2004). In Comparison 5.2 we
compare an implementation of Pelov and Ternovska’s reduction coupled
with MINISAT to MINISAT(ID). Again the former cannot compete with
the latter.

Why a stable strategy? Recall from Example 5.8 that even for the class of
total theories, Full loop propagation is more decide-efficient then Stable
loop propagation. Notwithstanding this result, we chose a stable strategy.
The motivation is that
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1. in a stable strategy, the search space of Algorithms 5.2 and 5.4 alike
is smaller than in a full strategy;

2. there seem to be very few practical examples where a propagation as
illustrated in Example 5.8 can occur; and

3. even in the examples where such propagation can occur, these extra
propagations do not outweigh the extra computational effort due to
the larger search spaces (larger graphs in which to search for loops).

Why no exhaustive A-propagation? The A-Propagate transition rule, im-
plemented by Algorithm 5.3, offers exhaustive A-propagation. A simple
experiment illustrated that the gain in propagations (compared to our
strategy of UnitPropDef and BwLoop propagations) is eclipsed by the extra
computational effort, cf. Comparison 5.3.

5.7.3 Implementation details

One of the purposes of the MINISAT(ID) implementation was to illustrate that
SAT(ID) is in a practical sense an extension of SAT, by extending an existing
SAT solver with inductive definition propagation mechanisms. True to this
purpose, the original code of MINISAT has not been modified beyond extra
code for command-line parsing, parsing of ECNF theories, and calls to the new
propagation methods.

We now present some implementation details of MINISAT(ID).

Global structure
MINISAT(ID)’s additions to MINISAT are the following:

1. data structures to represent a definition, as well as two stable justifications,
which we will call Js and J,, (cf. Definition 5.4; J,, represents a witness
for an earlier interpretation, J; a supporting justification for the current
interpretation);

2. code to parse an ECNF theory and initialize the above data structures;
3. code to perform the definition-based propagations: Simplify and BwLoop.

The definition A is represented using the CNF encoding of comp(A); recall
Figure 5.2 on page 90. Recall that each rule » € A is represented by a “long
clause” C(r) € comp(A). Additionally, one array says of each defined atom
whether it is in Dy or in Cigs, and one array maps each defined atom to the
clause of comp(A) representing its rule.

An extra array maps each defined atom to its strongly connected component
in the dependency graph, where the components are represented by unique
numbers.

The justifications Jg and J,, are represented using an array that maps defined
atoms in Dy;s to their child. Also their transpose is represented, using an array
that maps literals to arrays of defined literals.
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MINISAT has a method called simplify(), which is called after the initial
propagations, and before the first decision literal is picked. In MINISAT(ID),
this method contains extra code that implements the Simplify algorithm, and
initializes J,,.

MINISAT’s main propagation method is called propagate(); it performs
[UnitProp]BF+. Since comp(A) is present in the CNF theory, this method auto-
matically performs [UnitPropDef|BF* as well. In MINISAT(ID), an extra call to
a method that implements [BwLoop]BF* is added at the end of propagate(),
in such a way that unit propagations will resume if (as soon as) [BwLoop]BF™ is
able to propagate something. When propagate () terminates, a UPB-saturated
state has been reached, or a conflict has been found.

We further explain the details of the call to the [BwLoop]B™* algorithm.

MINISAT(ID) implementation of the [BwLoop|BF+ algorithm

In MINISAT, unit propagation is implemented using the two watched literals
technique. The concrete implementation is such that it is easy to retrieve from
a clause the two literals in it that are watched: they are placed in front; if one
of them is true, it is placed first. Let w;(C), wz(C) denote the first and second
watched literal of a clause C.

In order to construct a supporting stable justification, MINISAT(ID) exploits
the two watched literals of the clauses C(r). Consider the following definition
of a stable justification J,. For each atom d € Dy, defined by rule r, let d s (d)
be w1 (C(r)), unless that literal is ~d (because that is the head literal), then let
it be wy(C(r)).11 It is easy to verify that in a UP-saturated state, i.e., when
the two watched literals invariant is satisfied for each clause, this justification
Js three-valuedly supports the state.

The J,, stable justification is constructed to be a stable witness of the last
UPB-saturated state. It is loop-free. Even if backtracking occurs to a state
before the last UPB-saturated state, J,, is still a witness. When a new decision
literal has been chosen, and a new UP-saturated state has been reached, the
above technique is used to find Js, and a set of cycle sources CS is derived as
the set of atoms a for which J,,(a) # Jg(a).

For every cycle source, Algorithm 5.2 is called (it may modify Js); if it returns
a loop, the loop formula is added to the theory, the [BwLoop]®F* propagations
are performed, and the propagate () method resumes. When all cycle sources
have been processed without returning a loop, the final J; is copied to J,—it
is then a stable witness.

11 Note that if —=d € @4, this definition excludes the body literal ~d as potential child of d in
Js; however, extending such a stable justification to a general one can never yield a witness.
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5.7.4 Evaluation
Discussion of the problems and evaluation setup

We discuss the different types of problems on which we have performed our
evaluations. The IDP encodings of these problems are given in Appendix B. The
ASP encodings of the same problems are taken from the Asparagus benchmark
website;'? we have tried to ensure that the IDP and ASP encodings are as similar
as possible.

Hamiltonian circuits We discussed the Hamiltonian circuit problem in Sec-
tion 3.3.2. The instances used here are

— random Hamiltonian graphs with sizes (number of vertices, num-
ber of edges) in the categories: (100,200(%50)), (200,600(£100)),
(300, 1200(£200)), (400,2000(£400)), (500, 3000(£500));

— non-Hamiltonian graphs with sizes (39, 760), (59, 1740), (79, 3120);
these are handcrafted with a random component.

For each category, there are 10 instances. Observe that the problem state-
ment declares that each vertex must be reached: therefore in every in-
stance of this problem, all atoms of Def(A) will be true.

Sokoban puzzles The Sokoban puzzle is a planning problem. A maze is given,
containing a number of boxes, the same number of goal positions, and a
man. The man can move around in the maze and push blocks, with some
limitations; the goal is to find a sequence of moves and pushes that results
in all boxes being on a goal position.

An ID-logic encoding of this problem may include a non-monotonic induc-
tive definition of event calculus (Kowalski and Sergot, 1986). However, this
is a definition over the well-founded order of time. As a consequence, the
grounding of this definition is non-recursive.

The encoding we use, however, reduces the length of the plan, by rep-
resenting each sequence of moves followed by a sequence of pushes of
one block in a given direction as one step. The reduction in number of
timesteps needed to find a solution is considerable, and makes grounding
and solving much more efficient. However, this representation requires an
inductive definition: in order for a particular push action to be possible at
any given timestep, the man should be able to reach the point from which
that action is to start.

The propositional definitions resulting from this representation are highly
irregular. I.e., the number of literals in rule bodies varies greatly.

All instances of this problem are also taken from the Asparagus benchmark
website (all “Dimitri Yorick” and “Duthen” instances).

2http://asparagus.cs.uni-potsdam.de/
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Hitori puzzles A Hitori puzzle is combinatorial search problem. A given puzzle
is a grid, filled with numbers. A solution is a black or white colouring of
all grid squares, such that black squares do not neighbour; each number
occurs at most once in the white squares of any row and column; and all
the white cells are contiguous. The last constraint is expressed in ID-logic
by an inductive definition.

All instances of this problem are handcrafted with a random component
and have a grid of size 50 x 50.

All instances were chosen so as to be difficult enough, but feasible to solve
in a 10-minute timespan. The different Hamiltonian circuit instances vary con-
siderably in size; for the other two problem types all instances have comparable
sizes.

Observe that each of these problems contains an inductive definition. On
problems without inductive definitions (i.e. SAT problems), MINISAT(ID) has
the same behaviour as MINISAT. For the behaviour of MINISAT on SAT prob-
lems, we point out that MINISAT was the best performing solver on the last
SAT-Race (Sinz, 2008). It also has been top solver many times in various
competitions, such as the 2006 SAT-Race and the 2007 SAT competition on
industrial and handcrafted instances.

We now discuss the setup of our evaluation, and how the results are to be
interpreted.

The platform on which the experiments were run is an Intel Core 2 Duo
3GHz with 2GB RAM running Kubuntu 7.10 Linux. We used a timeout value
of 10 minutes per instance. The version of MINISAT(ID) used throughout the
comparison here is v1.3b.

In all our comparison figures, each instance corresponds to one mark on the
figure. We always compare two algorithms or programs versus one another.
The parameter being measured is indicated over the figure. For instance, if
the parameter is runtime, then marks that are above the diagonal represent
instances that were solved faster by the z-axis algorithm (horizontally written)
then by the y-axis algorithm (vertically written).

In many of the figures, groups of instances are clustered. This means that
the value being measured, e.g. runtime, is similar (per algorithm or solver) for
each of the instances of such a cluster. This happens most often with Hitori
and with Sokoban instances, since these all have comparable sizes.

The indication “TO” in the legend means “timeout”; each instance is marked
with a different symbol according to whether neither of the algorithms, only the
z-axis algorithm, only the y-axis algorithm, or both yielded timeout on it.

Comparisons of different strategies

Comparison 5.1 (The need for SAT(ID)) In Section 5.7.2 we explained that
all problems in NP can be solved by parameterized model expansion for FO,
i.e., that inductive definitions are, strictly speaking, not needed.
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Figure 5.10: Comparison of MINISAT(ID) and IDSAT

We made an encoding of the Hamiltonian circuit problem in FO-M X (by using
a predefined total order on the vertices), and compared it to the ID-logic-M X
encoding. To illustrate the importance of using inductive definitions, the com-
parison on one instance suffices; our observations are typical for most instances.
On the smallest graph of our data set (100 edges, 150 vertices), the PC(ID) file
resulting from the ID-logic encoding contained a total of 1,176 literal instances;
solving the instance with MINISAT(ID) took 0.004 seconds. On the same in-
stance, the PC file resulting from the FO encoding contained 7.9 x 10 literal
instances; MINISAT could not solve the instance within the imposed time limit
of 10 minutes.

Comparison 5.2 (Reduction to SAT vs. SAT(ID)) Pelov and Ternovska (2005)
implemented their reduction of PC(ID) to PC in IDSAT. We compared the effi-
ciency of MINISAT on the resulting files (i.e., IDSAT’s reduction is not included)
with that of MINISAT(ID) on the original PC(ID) files for Hamiltonian circuit
problems. The result is given in Figure 5.10.3

We observe that the majority of instances were solved faster by MINISAT(ID);
often by a factor of more then 10.

Comparison 5.3 (On exhaustive A-propagation) We tested the exhaustive A-
propagation strategy by adding an implementation of Algorithm 5.3 to MINI-
SAT(ID). We compared it experimentally to the standard MINISAT(ID) version.

13Version 0.9.5 of IDSAT was used, and version 2 of MINISAT.
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Our comparison was done on Hamiltonian circuit problems: on these problems
it is expected that FwLoop is often applicable, hence our test was geared towards
showing the exhaustive strategy from its most positive side. This is because all
Def(A) atoms are asserted to be true in this problem encoding.

While the number of conflicts needed to find a model often (but not consistently)
dropped by a factor of 10, the propagation speed dropped (consistently) by a
factor of 100—from 1 to 2 million to a mere 10,000 to 20,000 propagations per
second. Accordingly, the total runtime increased from an average of 1.1s to 47s.
Recall that Algorithm 5.3 works by repetitive calls to Algorithm 5.2: less then
0.02% of these calls resulted in a propagation. Such propagations made out
0.1-0.2% of the total number of propagations.

Comparison 5.4 (Normal vs. symmetric version of Algorithm 5.2) We did
not implement the symmetric variant of Algorithm 5.2, whereby the search is
done in the transpose of the dependency graph (cf. Remark 5.8). However, we
measured the size of the initial search space (number of H P literals in Line 1
of the algorithm), and compared it to the search space in the standard version.
The search space is the deciding factor regarding the efficiency of the algorithm.

Though the ratio of these two sizes of search spaces greatly varied from one
individual run of Algorithm 5.2 to the next, the average ratio was very close to
one. This suggests that in practice there are no important differences between
Algorithm 5.2 and its symmetric version.

Comparison 5.5 (On the use of guards) MINISAT(ID)’s implementation of
Algorithm 5.2 deploys a system of guards for atoms in Cjjys that are waiting to
be justified (cf. Remark 5.7 and Appendix C). We also experimented with an
implementation as given in Algorithm 5.2. On some problems, such as Hamil-
tonian circuit problems, we obtained the exact same behaviour with as without
the guards system, since in such problems all atoms in Cjs have exactly one
HP literal in their body. On other problems, we observed a slight advantage
for the system with guards.

Comparison 5.6 (Standard variant vs. Dynamic dependency graph variant)
In Section 5.5.3 we explained that the Dynamic dependency graph variant of Al-
gorithm 5.2 is the only variant that ensures linear behaviour when Algorithm 5.2
is called repetitively. On the other hand, it uses a search space that is much
larger on average. We implemented this variant and compared it to the stan-
dard variant on Hamiltonian circuit problems with 300 vertices. The typical
search space of Algorithm 5.2 increased from 150-300 literals for the standard
variant to 300-600 literals for the Dynamic dependency graph variant, and the
propagation speed dropped from 1-2 million to 0.5-1 million propagations per
second. Accordingly, the total runtime rougly doubled.

Comparison 5.7 (Standard variant vs. Stop-at-cycle-sources variant) In the
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Stop-at-cycle-sources variant of Algorithm 5.2, the initialization of the H P lit-
erals is the set {I | [ has a path to c¢s in Js through non-false, non-C'S literals}.
This set is smaller than the standard one. We implemented both possibili-
ties; the choice of variant can be controlled with MINISAT(ID)’s command line
option -defn_search=(option), where (option) is include_cs (the “standard”
variant as given in Algorithm 5.2) or stop-at_cs. The results of our compari-
son are shown in Figure 5.11, where the variants are marked “include_cs” and
“stop_at_cs” respectively.

We show three comparisons: the average size of the search space of Algorithm 5.2
(in number of literals), the average size of the loops that have been found (also
in number of loops), and the runtime. Note that the search space of Algo-
rithm 5.2 may often be empty; since this average is measured over all calls
to Algorithm 5.2, while the size of loops is averaged over all actual loops, the
average loop size may be bigger than the average search space size.

The expected difference in size of the search space is visible, and consistent.
We expect that searching for loops in smaller search spaces may lead to smaller
loops being found; also this difference is indeed visible, though not consistently
for all instances. The difference is consistent, and rather pronounced, on the
Hitori instances.

The choice seems to have no important impact on the runtime required to solve
the instances, however. All instances are clustered around the diagonal, and
both versions yielded the same number of timeouts (23 out of 366 instances).
Throughout the rest of the comparison, we have used the “stop_at_cs” version.

Comparison 5.8 (Theory propagation vs. lazy on-line) We implemented a
lazy, on-line SAT strategy for MINISAT(ID). The choice of strategy can be
controlled by MINISAT(ID)’s command line option -defn_strategy=(option),
where (option) is always for the standard variant, and lazy for the lazy on-line
SAT variant. Let T be the given PC(ID) theory. Like the standard “always”
version, the “lazy” version initially performs a Simplify step. After this, however,
it just applies SAT solving on comp(T'). When a model of comp(T") has been
found, the strategy tries the [BwLoop]BF rules: if applicable, backtracking is
done, but no further than needed.

We compare “always” and “lazy” in Figure 5.12. While for most instances,
the results are clustered around the diagonal, “always” seems to be consis-
tently faster than “lazy” on hitori puzzles. Also, “lazy” yields more timeouts
on Hamiltonian circuit instances.

We compared also the total number of loops needed to find a solution. The
“lazy” variant found some solutions without any loops at all; because these
instances are not representable on a logarithmic scale, we gave them the value
107!, Also some instances on which “lazy” timed out have this value; this is
the case when a SAT model of T' had not been found yet at the moment of
the timeout. Note that such instances that were solved by “always” within the



5.7. MINISAT(ID) 135

Average search space of loop-finding algorithm Average size of loops
10° T 10" . .
5
5 (e 2
° 3L Q.
% 10 oo @o
5 ® PR

2 @0’ (%
@ ] n 2 S, 2
< .- g °
=2l N e | Rt 8 BOHK
. 3 o 2 ¢ %
) Sl %°
@ %88' @ ) + s % & Lo %

o3 o
5 K o§° % o ) 80 & 5
880%%0 10 F o
s % 5 o °
£ DS ° o
<
2 £ A 2 o o
+ °
- 10° |

10 2 5 10° 2 5 10 10°2 51002 51002 510 2 5 10°

include_cs include_cs

Runtime (sec)
10 \ ‘ ‘ ;

stop_at_cs

include_cs

Figure 5.11: Comparison of standard variant and Stop-at-cycle-sources variant
of Algorithm 5.2

time limit are a good indication that the extra propagations of Algorithm 5.2
are helpful.

We explain the difference in number of loops of “always” and “lazy”:

on sokoban puzzles Sokoban puzzles are planning problems, whereby on each
step of the plan a reachability problem must be solved. If T is a PC(ID)
theory stemming from a sokoban puzzle, then the “lazy” variant first finds
a model of comp(T), i.e., a plan that solves the main goal, but in which
potentially some steps are actually unreachable. If so, it then (only then)
declares the step as unreachable, and goes back to finding a plan that solves
the main goal. The “always” variant, by comparison, may be solving a lot
of reachability problems for steps that would not lead to a plan anyway.
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Figure 5.12: Comparison of “always” and “lazy” variants

on hitori puzzles The hitori puzzles are constrained such that it is easy to
find a solution if the reachability requirement is not imposed. Thus the
main difficulty in solving these puzzles comes from the combination of
the reachability problem and the other constraints. The “always” variant
prevents non-reachable solutions early on in the search, and therefore has
a markedly better behaviour than “lazy”.

The total number of timeouts of “always” was 23 (out of 366), of “lazy” was 54
(out of 366).

Comparison 5.9 (Two versions of theory propagation) We also implemented
an “adaptive” variant of the standard strategy. It can be called by MINI-
SAT(ID)’s command line option ~defn_strategy=adaptive. The basic strategy
of “adaptive” is the same as the standard one, however, there is a heuristic that
controls how often the BwLoop propagation phase is performed. More precisely,
if this phase did not yield any propagations at a given decision level, then on
the next decision level the phase will be skipped. If the decision level after
that again does not yield any propagations by BwlLoop, then the phase will be
skipped on the next two decision levels, etc. The number of levels on which the
BwLoop phase is skipped thus dynamically depends on the succes of the phase
(it decreases again when there were propagations). Note that this is but one
possible heuristic; many more options can be tried.

We again compared the total number of loops required to find a solution, and
the runtimes. Figure 5.13 compares the “adaptive” strategy to both “always”
and “lazy”. We observe the same behaviour with respect to runtime as in the
case of “always” versus “lazy”: most results are clustered around the diagonal,
but “adaptive” is slower on hitori puzzles, and on some Hamiltonian circuits.
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Figure 5.13: Comparison of “adaptive” with

“always” and “lazy” variants

However, we observe that “adaptive” consistently requires slightly less loops on
sokoban puzzles, and that it consistently requires a lot more loops on hitori
puzzles—in both cases the likely explanation is the same as for the “always”

versus “lazy” comparison.

The behaviour of “lazy” versus “adaptive” can be explained as a combination
of the previous two comparisons, where “adaptive” is a strategy inbetween the

other two.

For complete reference, we also show the total number of timeouts (out of 366
instances) of the three different search strategies, per type of instance in Fig-

ure 5.14.
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“always”  “adaptive”  “lazy ”
Hamiltonian Circuit (SAT) 19 33 50
Hamiltonian Circuit (UNSAT) 4 4 4
Sokoban puzzles 0 0 0
Hitori puzzles 0 0 10
Total 23 37 54

Figure 5.14: Comparison of number of timeouts (> 10min) of different strategies
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Figure 5.15: Comparison of MINISAT(ID) and CLASP

Comparison with ASP solvers

We have compared the efficiency of MINISAT(ID) to the ASP solvers CLASP (ver-
sion 1.1.2) (Gebser et al., 2007b), SMODELS,.. (version 1.08) (Ward and Schlipf,
2004), and SMODELS (version 2.33) (Simons, 2000; Simons et al., 2002).14 The
results are given in Figures 5.15, 5.16 and 5.17.

CLASP is the solver that has won the most recent ASP competition (Gebser
et al., 2007c). MINISAT(ID) and CLASP have very comparable results, with a
slight edge for cLASP on Hamiltonian circuit problems. MINISAT(ID) outper-
forms SMODELS.. and SMODELS.

14 Al solvers were called without (i.e. with default) command-line options, except
SMODELS.c, where we used option “nolookahead” as recommended by the authors.
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Figure 5.16: Comparison of MINISAT(ID) and SMODELS,..

5.8 Conclusions and related work

In this chapter, we studied algorithms and strategies to solve the SAT(ID)
problem. We used a framework of transition rules by Nieuwenhuis et al. (2006).
We have added a generic schema for backtracking and failure transition rules to
the framework, and proposed several transition rules for the SAT(ID) problem.
In particular,

e the most general rule proposed is A-Propagate, whereby any unit conse-
quence of the given state sequence and definition is derived;

e the UnitPropDef, BwProp and FwProp rules apply definition-based prop-
agations. These rules are based on the loop formula equivalence result
(Theorem 4.2) of the previous chapter;

e the AddComp, AddLF, RemoveDef and Simplify rules apply theory modifi-
cations.

We have discussed different strategies for SAT(ID) solving based on these
transition rules. Also, we developed algorithms for each of the proposed tran-
sition rules. We have implemented one of the strategies in MINISAT(ID), an
extension of the SAT solver MINISAT, discussed its solving strategy, and evalu-
ated its performance. Our evaluation included many variants, compared against
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Figure 5.17: Comparison of MINISAT(ID) and SMODELS

each other, as well as a comparison with several ASP solvers. MINISAT(ID) had
favourable results in these experiments.

In the context of SAT(ID), this is the first work to present an overview of
possible solving strategies and algorithms. In the context of ASP, a similar
work has been done by Gebser and Schaub (2006, 2007), whereby different
propagation rules for ASP were presented in a tableau calculus.

For many of the strategies discussed here, a corresponding version in ASP
has been developed and implemented. We mention some:

e eager techniques: researched by Janhunen (2004) for ASP, and by Pelov
and Ternovska (2005) for SAT(ID);

e naive lazy approach: implemented in ASSAT by Lin and Zhao (2004) and
in CMODELS by Lierler (2005);

e theory propagation: our own solvers MIDL (Marién et al., 2007a,b) and
MINISAT(ID) (Marién et al., 2008) have implemented some form of theory
propagation for SAT(ID); the following solvers have done the same for
ASP:

— SMoODELS (Simons, 2000; Simons et al., 2002). This system addi-
tionally performs a lookahead search, a type of strategy we have not
discussed here. Lookahead search and clause learning diminish each
other’s returns and are therefore not often used together;
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— DLV (Dell’Armi et al., 2001; Leone et al., 2006). This is a system
for disjunctive logic programming, of which we have not discussed
the semantics; however, it is closely related to ASP systems such as
SMODELS;

— SMODELS.. (Ward and Schlipf, 2004). This system extends the
SMODELS system with clause learning. When used without looka-
head search, its strategy is very comparable to that of MIDL and
MINISAT(ID);

— CLASP (Gebser et al., 2007b). This is the system that is most closely
related to MIDL and MINISAT(ID) both in strategies and in algo-
rithms. It has won the most recent ASP competition (Gebser et al.,
2007¢).

There are many algorithms for computing the well-founded model of a logic
program, e.g., (Van Gelder, 1993; Kemp et al., 1995; Chen and Warren, 1996;
Lonc and Truszezytiski, 2000; Brass et al., 2001). The main differences with
our work are, firstly, that we potentially have to compute several well-founded
models, namely, one for each interpretation of the open symbols of a definition,
and secondly, that our computation has to be integrated with a SAT computa-
tion, and therefore defined literals may already have a truth value before there
is a justification for that value. As a consequence, we focus on the detection of
unfounded loops, and handle the rest of the computation with unit propagation
also used in SAT. In contrast, the referenced works all focus on the computation
of a unique well-founded model, and derive truth values only when justified by
the rules of the logic program.

Nevertheless, our method of detecting unfounded loops has important sim-
ilarities to the unfounded set detection methods of several of these works, in
particular (Lonc and Truszczyriski, 2000; Brass et al., 2001), although the lat-
ter is based on a transformation approach rather than a propagation approach.
The similarities are best understood by interpreting defined atoms that are true
but have no justification yet to be true as unknown, and by interpreting open
literals in the same way as negative literals, namely, literals that can potentially
become true later in the computation.
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Chapter 6

Aggregates

6.1 Introduction

Many practical computational problems are best expressed using aggregate ex-
pressions. An aggregate expression is a second order expression that ranges over
sets (of tuples of domain elements). FO expressions, by comparison, range over
individual tuples of domain elements. The cardinality aggregate is a typical
example: it can be seen as a function that maps a set to an integer, namely the
size of the set.

Because many problem domains are most naturally modelled using aggregate
expressions, and these cannot easily be expressed in FO or in ID-logic, we will
add certain types of aggregate expressions to ID-logic. This not only improves
modelling convenience, but often also solving efficiency. Thus, adding aggregate
expressions enhances the applicability of model generation for ID-logic. In this
chapter we present algorithms for model generation in the presence of aggregate
expressions.

In Section 6.2 we illustrate an extension of ID-logic with specific aggregates,
and present syntax and semantics for the propositional fragment of this logic. In
Section 6.3 we then introduce propositional propagation methods for aggregate
expressions, both recursive (i.e., in inductive definitions) and non-recursive. Fi-
nally, in Section 6.4 we present an extension of the MINISAT(ID) solver from
Section 5.7 with such propagation methods, and evaluate it.

6.2 Preliminaries

6.2.1 Examples of ID-logic extended with aggregates

ID-logic was extended with arbitrary aggregates by Pelov (2004); Pelov et al.
(2007). Here (and in the IDP system) we allow the most frequently occurring
aggregates: cardinality, sum, product, minimum and maximum, which we will
denote respectively by Card, Sum, Prod, Min, and Mazx.

143
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In Section 6.2.2 we present syntax and semantics of propositional ID-logic
extended with aggregates. In this section we illustrate the use of the first-order
extension one some examples, without going into formal specifics concerning
syntax and semantics. For these we refer to (Pelov et al., 2007).

Example 6.1. A magic series of order n is a function f : {0,...,n — 1} —
{0,...,n — 1} with the property that each f(i) is equal to the number of times
i equals f(j), for some arbitrary j. This is expressed in ID-logic extended with
aggregates as:

Vi f(i) = Card({7 | f(5) = i}). (6.1)

We illustrate the semantics of Clard expressions with this example. Consider
the interpretation I with domain D = {0,1,2,3}, and with f{ = {0 +— 1,1 —
2,2+ 1,3+ 0}. Then I |= (6.1), i.e., f! is a magic series of order 4. Indeed,
let E be Card({j | f(j) =1i}), then we have the following:

=0} =/{3}] =1, and f(i
=1} =|{0,2}| =2, and f(i

=2} =|{1}] =1, and f(i
=3} =[¢| =0, and f(i

J
J
J
J

g% = |{d; e D | I[j/d;] =
BN = |1d; € D|1[j/d,
g2 = |{d; e D | I[j/d;] =
BB = {d; e D|1[j/d;] E

=
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D D
~
=
~
N
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—_ — — —

An alternative syntax (allowed in the IDP system) for cardinality expressions
of the form Card({y | U[y]}) ~nis I~n y: Uly], for ~ € {=,<, <, >, >},

With the following example we illustrate the use of Sum, and the idea behind
the semantics of inductive definitions containing aggregates.

Example 6.2. Recall the company control problem from Example 1.1, and in
specific, definition (1.1).

Va,y (Controls(z,y) < Sum{s,z | (z =2V Controls(z, z)) 1]
AOwns(z,y) = s} > 50)

Let Io be the {Owns/2}-interpretation with domain {A, B, C}, and with Owns’o
as in Figure 1.1:

(A,A) — 20, (B,A) 40, (C,A)+ 40,
(A,B) — 26, (B,B)+ 49, (C,B)~ 25,
(A,C) — 60, (B,C)—10, (C,C)+~ 30

We compute wim( 1)(Ip) as the limit of a well-founded sequence from I, the
empty extension of Ip to {Controls/2}. For this purpose we have to evaluate
the Sum expression in three-valued interpretations: this does not yield a precise
value, but instead a lower and upper bound on the possible sum values. In
the evaluation here we need only the lower bound. Denote by S[z,y] the set
{s,2| (x = 2V Controls(x, z)) AN Owns(z,y) = s}. We find:

e initially, Iy = I;
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e next, I; = Ip[Controls(A, C)/t]. Indeed, Ip[(z,y)/(A, C)] Sum ) >
}

50) = t because Sum(S[z,y]" ol(@9)/(A.C]) > Sum({( A} =

T3

(
e next, Iy = I1[Controls(A, B)/t]. Indeed, I1[(z,y)/(A, B)](Sum(S[z y
50) = t because Sum/(S[z, y)"* @y)/(AB)]) > Sum({( ,A),(25,0))) =

e next, I3 = I[Controls(A, A)/t]. Indeed, we have that
Sum/(S[x, y)2 @)/ AN > Sum({(20,A), (40,B), (40,C)}) = 100 and
hence I[(z,y)/(A, A)](Sum(S[z,y]) > 50) = ¢t;

e finally, I, = I3[U/ f], where U is the unfounded set {Controls(B,A), ...,
Controls(C,C)}.

With our last example of ID-logic extended with aggregates, we illustrate
recursion over a Min aggregate.

Example 6.3. Consider the shortest path problem: the problem of finding, in
a weighted graph, the shortest path between any two edges. Van Gelder (1992)
modelled this problem as follows, where Edge(z,y, w) represents an edge (x,y)
with weight w:

Va,y,w SP(x,y,w) «—
w= Mm({w" Edge(z,y,w" )V
(Fwy,wa,z SP(z,z,w1)
/\Edge(z, y7w2)
A" = wy + ws)
(6.2)
Definition (6.2) is a correct representation of the shortest path problem. It uses

the knowledge that any shortest path of length n + 1 must be an extension of a
shortest path of length n. This fact is the basis of Dijkstra’s algorithm.

6.2.2 Ground aggregate expressions
Syntax

We extend the ECNF normal form introduced in Section 5.2.4 with ground
aggregate expressions. In Section 6.2.3 we then illustrate how to obtain such
ground aggregate expressions from first-order ones.

A weighted set is a set of tuples (I, w), where [ is a literal, and w an integer
weight. If S is a weighted set, we denote by S* the set {I | (l,w) € S}. We
allow only weighted sets for which |S%*| = | S|, i.e., each literal in S* has only
one occurrence in S.

Definition 6.1 (ECNF). A theory in ECNF normal form is a propositional
theory that may contain
e a CNF subtheory;
e rules of the form p — \/ S or p — A S, where p is an atom, and S a set of
literals;
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declarations of non-empty sets of literals;
declarations of non-empty weighted sets;
a declaration of the form p « [ < Card(S) < u, where p is an atom, S
is a previously declared set of literals, and [ and u are integers such that
0<I<u<]|S|;
a declaration of the form p «— I < Aggr(S) < u, where Aggr is one of
{Sum, Prod, Min, Maz}, pis an atom, S is a previously declared weighted
set, and [ and u are integers such that 0 <1 < u < A(j,w)es w, where A
is respectively >, [[, min< or max<. If Aggr is Sum or Prod, all the
weights in S must be > 0;

e a declaration of the form AMO(S), where S is a set of literals.

o a declaration of the form EU(S), where S is a set of literals.
Each atom p can appear at most once as the head of a rule p «— .. ..

Declarations of the form p « [ < Card(S) < wor p «— 1 < Aggr(S) < u
are called aggregate expressions in the remainder of the text. Throughout the
rest of the text U denotes an ECNF theory, and A an ECNF definition, unless
noted otherwise.

For reasons of simplicity, we disallow negative weights in weighted sets that
are used in a Sum or Prod aggregate expression. In the algorithms presented
in next section, we further assume that no weights of value 0 (zero) are used in
Sum or Prod aggregate expressions—this assumption can be met by a simple
transformation.

An ECNF theory contains at most one definition, namely the set of all
rules p «— ... in the theory. Like for DefNF definitions, each defined atom is
the head of exactly one rule. The body of that rule is either a disjunction of
literals, conjunction of literals, or the rule is an aggregate expression. We use
the symbols Dj;s and Cyiis as before, and we add the symbol Ay, denoting the
atoms that are defined by an aggregate expression and their negations.

Semantics

We define the semantics of ECNF theories. To do so, we have to define the
semantics of definitions anew. Many semantics for aggregate expressions in
logic programs have been discussed in the literature, e.g. by Van Gelder (1992);
Simons (1999); Pelov et al. (2004). In many cases such extensions were proposed
with syntactical restrictions, or only of specific aggregates, e.g. (Mumick et al.,
1990; Kemp and Stuckey, 1991; Niemeld et al., 1999; Dell’Armi et al., 2003;
Marek et al., 2004).

The approach we take here was developed by Pelov (2004); Pelov et al.
(2007): we retain the original definition of the semantics of inductive defini-
tions. This definition makes use of three-valued semantics; for this purpose,
we extend three-valued semantics to aggregate expressions; in other words, we
define the meaning of an aggregate expression in a three-valued interpretation.
Once the three-valued satisfaction relation is extended to aggregate expressions,
Definition 2.1 of a well-founded sequence is applicable to definitions containing
aggregate expressions.
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We define a three-valued set as a pair (St, S%) of two disjoint sets: a set S*
of certain elements and a set S™ of possible elements. Intuitively, such a set is
an approximation for all sets S’ with S* C S’ C St U S®. For a three-valued set
S = (St,S%), we denote by st € S that s € St, by s* € S that s € S%, and by
s* € § that s € StU S,

The valuation of a set of literals S in a three-valued interpretation I, denoted
ST, is the three-valued set ({l € S | I(l) = t},{l € S | I(l) = u}). The
valuation of a weighted set S in I, also denoted S’ is the three-valued weighted
set ({(l,w) € S|I(l)=t},{(l,w) € S|I(l)=u}).

We now define the valuation of expressions E of the form [ < Aggr(S) < win
a three-valued interpretation I. We define when I(E) = ¢t and when I(E) = f;
we derive from this that I(F) = w if I(EF) # t and I(E) # f. For Sum and
Prod, we assume the aggregated terms are strictly positive integers.!

[{I* € §T}| > lwr and

o I(lwr < Card(S) < upr) =t if {|{l* € S"}| < upr;

. I* € ST} < lwr or
I(lwr < d(S) < = fif ’{
(lwr < Card(S) < upr) = f i {|{lt € $1Y| > upr:

ny >
o I(iwr < Min(S) < upr) =t if § "< {w [ (Lw)m € 573) 2 hwr and
min ({w | (1,w)* € §13) < upr;
I
o I(twr < Min(S) < upr) = £ if | sl (Gw)" € 57 <tur or
mine ({ w)* € S'}) > upr;

my >

o I(lwr < Max(S) <upr) =t if x<( w)* €5}) > hwr and
max< ({ w)* € §1}) < upr;

w)* € ST}) < lwr or

S
<({ )t € ST}) > upr;

o I(lwr < Max(S) < upr) = f if {ma
max

rw > d
° I(lwr < Sum(S) < upr — tif > (lw)test W wWr an

* > l
[ I(lwr < Sum(S) < upr —tif lw) csl W wr or

{ (l wyrest W S upr;

2wytest W S upr;

[,uwtesr w = lwr and

° I(lwr < Prod(S) < upr) =tif { < .
(lw)rest W = UPT;

1t is theoretically straightforward to generalize the semantics for arbitrary integers, but
this requires a more involved notation, and is practically largely irrelevant.
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H(l,w)*esf w > lwr or

e I(lwr < Prod(S) < upr) =t if {
(Lw)test W < upr.

The semantics for empty sets is standard: Y (0) =0, [](0) = 1, min< (0) =
+00, and max()) = —oo. The values 00 never have to be explicitly represented:
they only need to be compared to the (finite) lower- and upperbound lwr and
upr of the given aggregate expression.

The meaning of an expression of the form AMO(S) in a two-valued inter-
pretation I is [{I € S | I(l) = t}| < 1, i.e., at most one of the literals of S
can be true. The meaning of an expression of the form EU(S) in a two-valued
interpretation I is ’{l eS|I(I) = t}’ =1, i.e., there ewists a unique literal of
S that is true. Note that such expressions occur only as sentences of an ECNF
theory, and not in definition rules. Therefore it suffices to provide their meaning
in two-valued interpretations.

Remark 6.1. A specific advantage of the separation of declarations of sets on
the one hand, and aggregate expressions over these sets on the other, is that
algorithms may exploit the fact that any given set may occur in several expres-
sions.

Remark 6.2. For Sum and Prod it is possible to define a more precise semantics,
called the wltimate semantics. The ultimate semantics takes into account all
possible approximated sets. For instance, lwr < Sum(S) < upr is then true in a
three-valued interpretation I only if for each set S’ that is actually approximated
by ST, lwr < Z(l,w)ES/ w < upr holds.

It was proven by Pelov et al. (2007) that the standard satisfaction relation
as given above is polynomially computable,? while deciding whether the ulti-
mate satisfaction relation holds is in NP, and NP-complete for some classes of
aggregate expressions.

6.2.3 Grounding of aggregates

In this section we illustrate how to ground first-order ID-logic theories with
aggregates and a finite domain into ECNF theories. The purpose of this section
is to enable the reader to relate first-order aggregates to propositional aggregate
expressions; for details of the grounding process we refer to (Wittocx et al.,
2008Db).

We introduced a general notion of predicate introduction in (Wittocx et al.,
2006; Vennekens et al., 2007a). Using predicate introduction, an arbitrary ID-
logic theory containing (possibly nested) aggregate expressions can be trans-
formed into an equivalent ID-logic theory (equivalent up to the original vocab-
ulary), where all occurrences of aggregate expressions are in a definition, and of

2This result entails that extending ID-logic with aggregate expressions by using the stan-
dard satisfaction relation does not increase the complexity of the model expansion task for
ID-logic, nor does it increase the class of problems that can be solved with ID-logic model
expansion.
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the form
vg.n (P(@n) — Aggr({7 | Q@ 71}) ~n) (6.3)

or

Vg (P(3) — Aggr({z | Qz.7l}) ~n'). (6.4)

where @ is a (possibly newly introduced) predicate symbol, Aggr € {Card,
Sum, Prod, Min, Mazx}, ~ € {=,<,<,>,>}, and n’ is an integer constant.

In ECNF, we also represent all aggregate expressions as rules; we illustrate
how first-order rules of the form (6.3) or (6.4) relate to ECNF aggregate expres-
sions.

Let D be a finite domain. For simplicity we assume D C N. Assume
further Aggr = Sum and ~ = <. Then the grounding of (6.3) in D contains
the following weighted set declarations: for all d € DI¥!, S; = {(l,xl) |
represents the instantiation of Q[Z,y] with T = (z1, z2,...,2,) and y/d, for all
(x1,22,...,2,) € D", where n = |f\}, and the following aggregate expressions:
for all d € DI7IHL p— 0 < Sum(Sy) < u, where d’ = (d, u) and p represents
the instantiation of P(y,n) with § = d, n = u. Observe that each declared
weighted set may occur in multiple aggregate expressions.

For other aggregate expressions and comparison operators, the grounding is
similar. We give an example for Card.

Example 6.4. Example 6.1 continued. We represent the magic series problem
expressed by formula (6.1) in the above normal form:

Viij Ts(ig) = £0) = J.
{ Vi (Ts(ig) = Card({5' | 1) = i}) = 4) }-

We ground this for a domain of {0, 1,2,3}, i.e., we give the ECNF propo-
sitional representation of the magic series problem of order 3. A propositional
atom of the form f; ; represents the atom f(i) = j; likewise, a propositional
atom of the form T's; ; represents T's(3, j).

JooV—Ts00, fo1V—-Tso1, ..., [fs3V—Ts33
~fooVTs00, —fo1VTso1, ..., —f33VTs3g3,
So = {fo,0, f1,05 f2,0}

Sy ={fo1, f11, f21},

So = {foz2, f12, fo2},

Tso,0 — 0 < Card(Sy) <0, Tso1 <« 1<Card(So)
Tsg2 «— 2 < Card(Sy) <2, Tsgz <3< Card(Sy)
Ts1,0 0 < Card(S1) <0,

<1,
<3,

9

TS3,3 — 3 S CaTd(S;;) S 3.
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The semantics for aggregates in definitions generalizes the semantics for ag-
gregates in FO: if P # @Q, then the definition consisting of only the rule (6.3) is
equivalent to

vg.n (P@n) = Aggr({7 | Q@ 7]}) ~ n). (6.5)

« 7

Therefore, in the case of non-recursive aggregate expressions, “«” simply
means “=" in ECNF. In practice, we distinguish between recursive and non-
recursive aggregates by searching strongly connected components in the depen-
dency graph: non-recursive aggregates are defined by an atom that forms a
singleton component.

At-most-one statements

A specific type of aggregate that occurs in many practical examples is an at-
most-one statement: a cardinality expression of the form Card({z | ¥[z]}) <1,
or equivalently, 3<1xz ¥[z]. The frequent occurrence of such statements and
the availability of an efficient propagation algorithm for it justify introduction
of the special language construct AMO(S).

The main reason at-most-one statements feature in many practical exam-
ples is their occurrence in exists unique statements. These can be rewritten as
EU(S) =V SAAMO(S). Exists unique statements, in turn, naturally arise as
the result of grounding a first-order sentence that contains the exists unique (3!)
quantifier. This is particularly relevant for representing functions by predicates:
a function F' : D™ — D can be represented by the predicate Pr(D"t1), if the
axiom that declares Pr to be a function is added to the theory:

vz dly Pr(T,y). (6.6)
This can be grounded to a conjunction of ground exists unique statements:

Nacp» EU{Pp(d,d’) | d € D}), which in turn are easily transformed into
clauses and AMO statements.

6.3 Aggregates: algorithms

6.3.1 At-most-one statements

We have the following equivalences for at-most-one statements:

AMO(S)

(A — 0< Card(S) < 1) AA
N\ (v =iy, (6.7)

1i,l;€8,
i<j

However, there is a simple and easily implementable propagation rule for
such statements, which makes transformations as in (6.7) superfluous.
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We define the AtMostOne transition rule and its backtracking and failure
variants [AtMostOne]BF:

AMO(S) e ¥
MY =M-l|¥ ifdleSMI=u
A eSwithl’#Aland M) =t

Observe that exactly the same propagations would be obtained by applying unit
propagation on the CNF translation of such expressions (see formula (6.7)).

The following simple algorithm implements the [AtMostOne|BF* rules. With
each literal I, a list is maintained of all expressions AMO(S) for which [ € S.
Whenever a literal [ becomes true, each such expression AMO(S) is visited,
whereby all literals in S\ {/} are made false.

Note that no new data structure has to be introduced to store at-most-one
expressions: AMO(S) can just be stored as if it was a clause \/ S. The only
references to this “clause” are from the lists described above (which are new
data structures).

Remark 6.3. One can define propagation rules for exists unique expressions of
the form EU(S); however, they would coincide exactly to the combination of
unit propagation on the clause \/ S, and at-most-one propagation on AMO(S).
It therefore suffices to provide only at-most-one propagation rules.

However, one can think of a possible enhancement for exists unique expres-
sions. When a literal I becomes true, apart from AMO(S), also the clause \/ S
could be visited, and one of its watches set to [. In fact, AMO(S) and \/ S may
even be represented by the same data structure. We tried this enhancement in
some brief experiments, and found that it didn’t yield any significant speedup.

Remark 6.4. While the reduction to SAT given by equation (6.7) is quadratic in
size, there exist linear transformations that introduce new literals. They exploit
the “divide and conquer” property that

AMO(S; U S3) = AMO(S; U {I}) A AMO(S, U {-1}),

where [ is a new atom. Using such transformations one can obtain a PC for-
mula equivalent to AMO(S) that is linear in the size of S, but also contains
a linear number of new atoms. We have not compared our approach to such
transformation approaches.

6.3.2 Reductions to SAT

For the Min and Max aggregates, the following equivalences translate aggregate
expressions into PC theories.
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1 < Min({(ly,w1),...,(Ix,wy)}) <u= ( A —|li>/\ \/ | (68)
i l il

| < Maz({(l,w), .., (v, wn)}) < u = ( A ﬁzz-) Al 69
LW >U l<w; <u

For Card, Sum and Prod, however, similar translations are not as trivial to
define. Cardinalities occur most often; translations for them have been defined,
e.g., by Sinz (2005); Marques-Silva and Lynce (2007). However, these transla-
tions require the cardinality expressions to be given as sentences (constraints)
of the theory—occurrences of a cardinality expression as a subformula are ex-
cluded. Thus, these transformations do not help to solve a problem like the
company control problem of Example 6.2.

The obvious advantage of reductions to SAT is that no special-purpose im-
plementations of propagation for aggregate expressions are required. We list
the disadvantages.

e Not all transformations retain full propagation efficiency under CNF unit
propagation.

e The generality of aggregate expressions as subformulas is lost, or at the
very least, greatly complicates the transformation.

e The ability to exploit multiple occurrences of the same weighted sets is
lost, or greatly complicates the transformations.

6.3.3 Non-recursive aggregate expressions

We define some different propagations that are possible for aggregate expres-
sions. In the rest of the text, we identify Card(S) with Sum(S’), for S’ =
{(1,1) | I € S}—the defined propagations for Sum therefore carry over to Card.
Furthermore, for the sake of brevity, we will define these propagations for Min
and for Sum only: the propagations for Max and Prod expressions can eas-
ily be derived from those for Min and Swum expressions. We again assume
interpretations to be three-valued, unless we explicitly mention otherwise.

Let S be a weighted set and M an interpretation. We use the following
notations:

. S.min%ggr = A w;; and
(l“w1)eS/\M(l1):t

M
® S.max g, = A w;,
(li;wi) €SAM (L) #f

for Aggr € {Min, Mazx, Sum, Prod}, and accordingly A = min<, max<, >, or
[1. Note that S.max}f, < Sminif, . We call S.min%]gr and S.maac%ggr the
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MinBwTrue:

[MinBw True] &
MinBwFalse:

[MinBwFalse]BF

MinFwTT:

MinFwTF:

[MinFwTF]BF
MinFwFT:

MinFwFF:

[MinFwFF]BF

= Md|V

= M-d|| ¥

=Ml |V

= M~l; | T

=Ml |V

= M-l; | ¥

(d—=1<Min(S)<u)eV
M(d)=u

M M
S.minyy,, > 1 and S.maxyy,, <u

(d—=1<Min(S)<u)eV
M(d)=u

M M
S.minyy,, <lor Smazy,, > u

M(d) = t
| Uj,wy) € S, M(ly) # fywj < u}
= {li}

(d—=1<Min(S)<u)e¥
M(d) = t
(lz,wz) S S,wi <

{(d<—1<Min(S)<u)€\Il

(d—=1<Min(S)<u)e¥

M(d) = f

if ¢ Somazdt, <w

{i | (1, w5) € 8, M(l;) # f,w; <1}
={l}

(d—=1<Min(S)<u)eV¥
M(d) = f
Smindl. > 1

(l,;,’w7j> S S, w; < u

Figure 6.1: Transition rules for Min aggregate expressions
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SumBwTrue:
(d—=1<Sum(S)<u)eU
M| ¥ = Md||T fSMd)=u
S.min%m > 1 and S.maxg{"n <u
[SumBwTrue]®F
SumBwFalse:
(d—=1<Sum(S)<u)eV
M| @ = M-d| ¥ if {Md)=u
Smazdl < lor Smazdl ~>u
[SumBwFalse]F
SumFwTT:
(d—=1<Sum(S)<u)ev
M(d) = W
M| @ o u e MO =) €5
M(l;) = u, Sming,,, +w; <u
and S.maw%m —w; <1
SumFwTF:
(d—=1<Sum(S)<u)eV
M| W = M-l | ¥ if S M(d) =t,(l;,w) €S,
M(l;) = w and Somindl —+w; > u
SumFwFT:
(d—=1<Sum(S)<u)eW
M(d) = f
. M >
M| ¥ — M|V if S'mmagmfl, .
S.mazg,,, —S - maxy,, <uand
(li,w;) € S’, where
S"={l,w;) € S| M(l) = u}
SumFwFF:
(d—=1<Sum(S)<u)eV
M(d) = f
Mo<
M| ¥ T

S.miné%m + S’.maz%in > 1 and

(l;,w;) € S, where
S ={{lj,wj) € S| M) = u}

Figure 6.2: Transition rules for Sum aggregate expressions
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known minimum and known mazimum, respectively. When M is two-valued,
the known minimum and maximum coincide.

Figure 6.1 defines transition rules for Min, and Figure 6.2 for Sum. Note
that the SumFwFT and SumFwFF transition rules use the known maximum of
a Min aggregate expression, even though they are used for Sum: they use the
value S".mazit,  where S’ = {(l;,w;) € S| M(l;) = w}. This is the smallest
weight of all unknown literals in S,

The transition rules for Min defined in Figure 6.1 have the same propagation
efficiency as CNF unit propagation has on the formulas (6.8) from Section 6.3.2.
The main advantage of the transition rules is that a weighted set S may occur
in multiple Min expressions; evaluating S.min}l. and S.maz}f, can be done
once for all these expressions.

Observe that other transition rules are imaginable, for instance the following
ones for Sum:

SumExhFw:
(d—=1<8Sum(S)<u)eV
M(d)=t
M| W = M-l |V if (d) .
For any 2-valued M’ extending M I;,
S.ming[u'm <lor S.minjswulm >

SumExhBw:
(d—=1<Sum(S)<u)e¥
M(d)=u

M| v = Md| ¥ if )
For any 2-valued M’ extending M,

. M/
I < Sming,,, < u.

These and other transition rules that do not depend on the known minimum
and maximum, but on the actual sum values for two-valued extensions of M,
are not efficiently implementable. Indeed, the problem of deciding whether
SumExhBw (e.g.) is applicable generalizes the subset sum problem, which is
NP-complete.

We illustrate the Swm transition rules of Figure 6.2 on an example.

Example 6.5. Consider Vg5 =

S ={(a,5),(b,10)}, (6.10)
p<— 1< Sum(S) <6, (6.11)
q < 10 < Sum(S) < 15. (6.12)
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Then the following is a valid derivation:

Sum:FW>TT pﬁba || ‘116,5

SumBwgFalse
—

SumFwTF
Pl Y5 = pb | es

p-ba-q | Ye.s.

The initial state sequence is M; = {p — t}. The first transition applies the
SumFwTF rule on (6.11): we have M;(p) = t, (b,10) € S, M;(b) = u, and
S.minil =0, and because 0 4 10 > 6, this transition derives My = M;[b/ f].

The second transition applies the SumFwTT rule on (6.11): we have Ms(p) =
t, (a,5) € S, My(a) = u, S:ming?, =0 and S.maze?, =5, and because both
0+5<6and5—5 <1, this transition derives M3 = [a/¢].

The final transition applies the SumBwFalse rule on (6.12): we have M3(q) =
u, S.mawé{fm =5, and 5 < 10.

The algorithms to implement the transition rules of Figures 6.1 and 6.2
are easily derived from the conditions in the rules, and are straightforward to
implement, once the appropriate data structures to represent aggregate expres-
sions are in place. Each of these algorithms runs in linear time in the size of
the weighted set S. The algorithms for MinFwTF, MinFwFF, SumFwTT and
SumFwTF may derive a linear number of propagations.

Data structures

We now present data structures that can be used to implement algorithms for
the transition rules of Figures 6.1 and 6.2. We use the following presentation:
(Data structure name)

(data type) (attribute name)
. (a list of attributes and their corresponding data types)
(data type) (attribute name)

We represent aggregate expressions using the data structures “Aggregate
expression” and “Aggregate set”.

Aggregate expression

int lwr, upr
Literal defn

An aggregate expression ae denotes a specific expression of the form defn «—
(lwr < Aggr(S) < upr). Both the specific type of aggregate Aggr and the set
identifier S are not represented by this data structure, and can be retrieved only
in combination with the aggregate set data structure given below.

Aggregate set
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[sum|prod|min|max] type
array(Literal) set

array(int) weights

array (Aggregate expression®)  exprs

int min, max, cmax

An aggregate set as denotes a subexpression of an aggregate expression,
namely Aggr(S). The specific type of aggregate Aggr is represented by as.type,
the weighted set S is represented by as.set and as.weights. It represents
by as.exprs in which aggregate expressions this aggregate set occurs. Fi-
nally, as.cmax has an auxiliary function; it is set equal to S.maw?ﬂl ggr- U 18
advantageous to some of the algorithms to store the weighted set—set and
weights—ordered by the weights.

The remaining parameters, as.min and as.max, are variable throughout the
search, and approximate respectively the known minimum and maximum. For
Sum and Prod, they hold the actual value, while for Min and Max they hold
the index of the representative literal of the actual value, which can therefore
be found in the weights array. However, this index can also go out of bounds
when all literals of the set are false: in case of Min, the index can be pushed
beyond the end of the array, representing a value of +oo; in case of Mazx, the
index can be pushed beyond the beginning of the array, representing a value of
—00.

To efficiently determine when and which propagations are possible, the fol-
lowing data structure will be used:

Aggregate watch

Aggregate set™ as
Aggregate expression®*  ae
[defn|pos|neg] type
int index

Each atom p stores a list of aggregate watches aw that record in which
aggregate expressions the atom or its negation occurs. If aw.type=‘defn’, then
p occurs as the defining literal of the aggregate expression aw.ae in aggregate
set aw.as. Otherwise, p occurs in the aggregate set aw.as on the qw.index’th
position; positively if aw.type=‘pos’, negatively if aw.type=‘neg’.

Example 6.6. Example 6.5 continued. We represent Wg 5 in these data struc-
tures:

e There is one aggregate set, as; it has type=‘sum’, set=J[a,b], weights=
[5,10], exprs=[aes, aes], and cmax=15.

e There are two aggregate expressions, ae; with lwr=1, upr=6, defn=p,
and aey with 1lwr=10, upr=15, defn=q.
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e The literals p, ¢, a, and b all have one aggregate watch: those of p and
g have type=‘defn’ and have respectively ae=ae; and ae=aey (and they
don’t use index); those of a and b have type=‘pos’, as=as, and respec-
tively index=0 and index=1 (and they don’t use ae).

The above data structures suffice to implement the transition rules of Fig-
ures 6.1 and 6.2 efficiently. Let M’ be some state sequence, and let M be the
state sequence M’ . Then the algorithms proceed by investigating all aggregate
watches of the atom [ in [: some of the aggregate expressions involved may
derive new propagations from M.

: : M M
Approximating S.min,, . and Smazy,,,

Suppose literal [ became true, and its atom [ has an aggregate watch aw with
aw.type#‘defn’. Then either aw.as.min or aw.as.max can be updated—de-
pending on whether aw.type is ‘pos’ or ‘neg’ and whether [ is an atom or
its negation. For instance, in the case of Sum, the aw.index’th element of
aw.as.weights is either added to aw.as.min, or subtracted from aw.as.max.

Note that an aggregate set’s min and max values therefore only approzimate
the theoretical known minimum and maximum values. More precisely, it is
possible that some literals of an aggregate set already have a two-valued truth
value, which however is not accounted for yet—these literals are still waiting
to be propagated. Thus, min underestimates the known minimum, and max
overestimates the known maximum.

Also note that upon backtracking, the reverse updates have to be executed.

For Sum and Prod, these updates take constant time; for Min and Mazx,
they take time linear in the size of the set (however, by exploiting the fact that
the set is ordered according to the weights, it is rarely necessary to visit each
literal).

Actual propagations

There are then two different types of aggregate propagation: backward and
forward. The applicability of the backward propagations can easily be tested
after either aw.as.min or aw.as.max has changed: for each aggregate expression
ae in aw.as.exprs, it is simply evaluated if aw.as.min > ae.lwr A qw.as.max <
ae.upr (then MinBwTrue respectively SumBwTrue is applicable), or aw.as.min >
ae.upr V aw.asmax < cge.lwr (then MinBwFalse respectively SumBwrFalse is
applicable). Note that for this purpose, it may be beneficial to store two copies
of exprs in each aggregate set: one ordered by the expression’s lwr value, the
other by its upr value. Each of these propagations takes constant time.
Forward propagations may happen in all of the other cases: either for a
literal with aw.type#‘defn’, and any aggregate expression ae in aw.as.exprs
for which no backward propagation was possible and ae.defn is two-valued, or
for a literal with aw.type=*‘defn’, and its aggregate expression aw.ae. It suffices
to first test whether ae.defn is true or false, and depending on that and on ae’s
lwr and upr values, make the appropriate literals of aw.as . set true or false. For
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instance, in the case of Sum and ae.defn is false, SumFwFT or SumFwFF may
be applicable. First, the smallest weight w of all unknown literals in aw.as.set
is determined. If aw.as.min > ae.lwr and aw.as.max — w < ae.upr, then all
unknown literals of aw.as.set are made true. If qw.asmax < ae.upr and
aw.as.min+w > ae.lwr, then all unknown literals of aw.as.set are made false.

Each of the forward propagations takes linear time in the size of the set
(often for a linear number of propagations). The ordering of the set can be
exploited to limit the search.

Integration with conflict-driven DPLL solver

To integrate these propagations into a DPLL-based SAT solver that applies
conflict-driven clause learning and backjumping (see Section 5.6), a reason
clause should be associated to each propagation: a clause from which the prop-
agated literal can be derived by unit propagation.

Example 6.7. Examples 6.5 and 6.6 continued. A reason clause for the prop-

SumFwTF on (6.11)
—

agation p || ¥e 5 p-b || Ye.5 is ~b V —p. A reason clause for the

SumFwTT on (6.11 . .
umFWTT on (6.11) p-bal Yes is a VbV —p. Finally, a

SumBwFalse on (6.12)
—

propagation p—b || Ue 5

reason clause for the propagation p—ba || Wg 5 p-ba—gq || Yes

is =q V b. Note that a does not appear in this clause.

It is possible to create such reason clauses at the time an aggregate-based
propagation is made. However, the majority of such clauses are never used. It
is therefore preferable to create reason clauses on demand—more specifically,
(only) when the clause learning process attempts to apply resolution on such a
clause. To enable such on demand reason clause generation, the following data
structures can be used:

Propagation-info
Literal lit
int weight
[defn|pos|neg] type

Aggregate reason

Aggregate set* as
Aggregate expression®* ae
[defn|pos|neg] type

The aggregate set data structure is extended with a stack of Propagation-
info’s, recording the aggregate propagations related to that set, in the order
in which they occurred. An aggregate reason represents, for each aggregate
propagation, which aggregate expression was used, and what type of propagation
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it was. Each two-valued atom that was derived by an aggregate propagation
should record its aggregate reason.

Using this combined information, it is possible to reconstruct a reason clause
for any literal that has an aggregate reason ar. Specifically, the reason clause is
built from the empty clause by:

e adding the literal itself;

e if ar.type #‘defn’; adding the literal ar.ae.defn or its negation (the added
literal should be false);

e going over ar.as’s stack of Propagation-info’s pi, adding each pi.1lit if it
is of the right type, and until the reason clause is complete. The “right
type” and “complete” are derived from ar.type, and from the properties
of ar.as. (It is here that the cmax value of an aggregate set is used.)

Example 6.8. Examples 6.5-6.7 continued. After the first propagation, from
p to —b, the following aggregate reason ar is recorded for b: ari.as=as (which
points to the set S = {(a,5), (b,10)}), ari.ae=ae; (which points to the expres-
sion with head p), and ar;.type=°‘pos’, because b occurs positively in S. Also,
a propagation-info pi; is added to as’s list of propagation-infos; pii.1it=-b,
pii.weight=10, and pi;.type=‘neg’, because b occurs positively, and —b was
derived.

The next propagation derives a from p and —b. We have the aggregate reason
are with arq.as=as, arq.ae=aep, and ars.type=‘pos’, and the propagation-info
pig with pig.lit=a, pis.weight=>5, and pis.type=‘pos’.

The final propagation derives —¢ from —b. We have the aggregate reason
ars with ars.as=as, ars.ae=aes (which points to the expression with head ¢),
and arg.type=‘defn’, and the propagation-info pis with pis.1it=b, pis.weight
is unused (take, e.g., 0), and piz.type=‘defn’.

Suppose a reason clause for —¢q is required. The clause certainly contains
the literal —q. ¢’s aggregate reason ars is used to construct the rest of the
reason clause. Since ars.as.type=‘sum’, ars.type=‘defn’ and ¢ is false, it can
be derived that SumBwFalse was used to derive =q. Because the current known
maximum ars.as.max is 5, which is smaller then ars.ae.lwr=10, the algorithm
searches for enough false literals in ars.as.set to make the maximum smaller
then 10. The initial known maximum is ars.as.cmax=15. It goes over ars.as’s
list of propagation-infos, collecting literals with type ‘neg’. The first one encoun-
tered is —b; the algorithm adds b to the reason clause. The propagation-info of
—b has weight 10. We find that after the propagation to —b, the known maxi-
mum was 15 — 10 = 5, which is already smaller than 10. Therefore, the clause
is finished: —q V b.
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6.3.4 Recursive aggregate expressions
Generalizing justification semantics

We now generalize the justification semantics of Section 4.3 to ECNF definitions
that may contain aggregate expressions.

We extend Definition 4.1 of a direct justification with a case for atoms that
are defined by an aggregate expression. The intuition is as before: a direct
justification for a defined literal is a set of literals, such that the truth of all
literals is a sufficient condition for the truth of the defined literal. For brevity
we again only define the concept for Sum and Min.

Definition 6.2 (Direct justification). Let A be an ECNF definition. Let [ €

—

Def(A). A direct justification for [ is a set of literals DJ(I) such that:
o if (I — V) €A, DJ(I) is a singleton C ¢y;
o if (= Aw) €A, DJII) =i
o if |=-dand (d— Vpq) €A, DJI(l) =g;
o if [ =-d and (d — Agq) € A, DJ(I) is a singleton C 3g.

If I € Ajits, then DJ(1) is the union of a positive and a negative direct justification
for 1, denoted respectively DJT (1) and DJ~(I), such that:

o if (I — lwr < Sum(S) < wupr) € A, then

— DJ*(l) C S, D (1) C S,
= Xt wnes, epstq Wi = lwr; and
- Z(zi,wi)es, —~lgDJ- (1) Wi < upr;
o if (I —lwr < Min(S) < upr) € A, then
— DJT(1) C{li | (l,w;) € S,lwr <w; <upr}, and
— DJ= () ={=l | (,w;) € S,w; < lwr}.
o if | = —d and (d « lwr < Sum(S) < upr) € A, then either
— DJ=(I) =0, DJ*(I) C S"* and 2 (s wi)€S, Lie D+ (1) Wi > upr, or
— DJT(l) =0, DJ(I) C S and 32, es. —gps- o Wi < lwr;
o if | = —d and (d «— lwr < Min(S) < wupr) € A, then either

— DJ~(I) =0 and DJ*(I) is a singleton {l;} C ¢4 such that w; < lwr,
where (I;,w;) € S, or

— DJT() =0 and DJ~(I) = {=l; | (li,w;) € S,w; < upr}.
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Observe that if A is an aggregate-free DefNF definition, and J a justification
for A, then for all literals [ in D5 or Ciits, the set of literals {I' | (I,I') € J} is
a direct justification DJ(1) for .

We restate the intuition: a direct justification D.J(I) for a defined literal
I is such that if A DJ(I) is true, I must be true. One can verify that indeed,
whenever M (A DJ(Il)) = t, one of the —Bw— transition rules can be applied to
derive M (I) = t. Observe that in the case of Sum and Prod, a direct justification
may contain both a literal and its negation. Such a direct justification can only
be a sufficient condition for the truth value unknown.

The notion of justification (Definition 4.2) can now easily be extended:

Definition 6.3 (Justification, extended). Let A be an ECNF definition over

Y. Then a justification for A is a directed graph (V, E) with V = S and E such
that:

e for each [ € De/f(\A), the set {I' | (I,I') € E} is a direct justification for [;

e for each ! € OM), there are no edges in F leaving from I.

A stable justification for A is a directed graph (V, E) with V = S and E such
that:

e for each | € Def(A), the set {I' | (I,1') € E} is a direct justification for I;

e for each negative literal [ and for each [ € Open(A), there are no edges in
E leaving from I.

We simply retain the earlier notions of (three-valued) support, loop-safeness,
and witness. Three-valued support formalizes the above intuition: whenever
A DJ(l) is two-valued in the given interpretation, ! must have the same truth
value.? Loop-safeness requires that for any non-negative loop the justification
contains, all literals in it are false. A witness of an interpretation is simply a
justification that three-valuedly supports the interpretation, and is loop-safe in
it.

Example 6.9. Example 6.2 continued. We represent definition (1.1), grounded
with the given domain, in ECNF. For simplicity of representation, we treat T

as an atom, and we substitute the declared sets in the aggregate expressions.
Ag.o =

Caa < 51 < Sum({(T,20),(Cap,40),(Cac,40)}) < 100,
OAB «— 51 < Sum({(T,ZG), (CAB;49), (CAC725)}) < 100
Cac < 51 < Sum({(T,60),(Cap,10),(Cac,30)}) < 100
Cpa « 51 < Sum({(Cga,20),(T,40),(Cpc,40)}) < 100
Cpp < 51 < Sum({(Cpa,26),(T, 49), (Cpc,25)}) <100
Cpc < 51 < Sum({(Cpa,60),(T,10),(Cpc,30)}) < 100
Ceca < 51 < Sum({(Cca,20), (003,40) (T, 40)}) <100
Cep «— 51 < Sum({(Cca,26),(Cep,49),(T,25)}) <100
Coco «— 51 < Sum({(C¢a,60), (Ccp,10),(T,30)}) < 100

3Recall that if A DJ(I) is false, it is not necessarily a sufficient condition for the falsity of
l—such condition must be given by the truth of A DJ(=).
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Figure 6.3: A partial justification for Ag.g.

Figure 6.3 illustrates a partial justification J for Ag g that supports the model
I ={Cyga— t,Cap — t,Cac — t,Cpa— f,Cpp+— f,Cpc+— f,Cca—
f,Cop — f,Coc — f, T — t}. We have included only the literals that are
true.

We give some examples: the direct justification in J of Cxa¢ is DJ(Cac) =
{T}. In the weighted set in Csc’s body, T has weight 60, which is indeed
> 51. This justifies the truth of Cac. We have DJ(Caa) = {T,Cac}; T and
Cac have weights 20 and 40, totalling 60, which is > 51, therefore justifying
I(Caa) =t. We also have DJ(—=Cpc) = {=Cpa}; the weights of literals other
than Cpa in Cpgc’s weighted set are 10 and 30, totalling less than 51. This
justifies I(-Cpc) = t, or equivalently, I(Cpc) = f.

We have the following generalization of Theorem 4.1:

Theorem 6.1. Let A be an ECNF definition over %, M a two-valued -
interpretation. Then M | A iff there exists a A-witness for M.

Proof. (Sketch)

The proof is an extension of the proof of Theorem 4.1. The notion of three-
valued support for a justification agrees with the three-valued semantics for
aggregate expressions defined in Section 6.2.2. Both the definition of the se-
mantics of definitions with aggregate expressions, and the proof of Theorem 4.1
depend on the notion of well-founded sequence, which has retained its original
meaning. O

Generalizing loop formula semantics

We do not generalize all results of Section 4.4 on loop formula semantics to the
aggregate case. However, we do define a specific type of generalized loop formu-
las, namely generalized stable loop formulas, and show that they are entailed by
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the definition. These loop formulas suffice for the purpose of extending SAT(ID)
solvers that use a stable strategy, such as MINISAT(ID), with aggregate expres-
sions.

We start by generalizing the notion of dependency graph.

Definition 6.4. The generalized dependency graph of A is the graph with lit-

erals 3 and edges (I,1) for each defined literal | € Def(A), and for each I in
some direct justification D.J(I) for I.

Observe that for literals [ in Djs and in Cys, the edges in the dependency
graph are simply (,1’), for any I’ € ¢;. Thus a generalized dependency graph
indeed generalizes a dependency graph.

The loops of A are, as before, the loops in the dependency graph of A. Note
that when a literal [ € Ay is in a loop L of A, at least one positive or negative
direct justification for [ contains an element of L, but not necessarily both. We
denote by All* (1) the set {I' | I’ € DJ*(I) for some positive direct justification
DJ*(l) for I}, and by All~ (1) the set {I" | I" € DJ~(I) for some negative direct
justification DJ~(l) for {}.

We generalize the notion of external disjuncts of a loop for positive loops.
Recall the intuition that literals in a relevant loop get their justification to be
true from the external disjuncts of the loop.

Definition 6.5 (Generalized external disjuncts). Let L be a positive loop of
A. The set of generalized external disjuncts of L, denoted G*(L), is the set of
literals I’ such that:

o ' € ¢\ L for some | € L N Dyjs; Or
o ' € AlIT(I) \ L for some | € L N Ays with AllT(1) N L # (; or

o I' € All=(I)\ L for some I € L N Ay with A= (1) N L # 0.

We explain the intuition behind this definition. For some atom [ € L N Ajis,
the set AllT (1) U All~ () contains all literals that could possibly be used in some
direct justification for I. The literals I’ € All*(l) U All~ (1) \ L can therefore
contribute to the external justification of literals in L.

We further explain why we split this definition in two cases, for All*(I) and
for All=(1). Consider a rule I « lwr < Aggr(S) < upr. Intuitively, it contains
two subexpressions lwr < Aggr(S) and Aggr(S) < upr, and could be written as
l— 11 N, Iy «— lwr < Aggr(S), lo «— Aggr(S) < upr, where l; and Iy are new
atoms. In this view, and if Aggr € {Sum, Prod, Max}, the set All*(l) contains
all literals that can help justify [;, and the set All~(l) contains all literals that
can help justify I (and the other way round if Aggr = Min). If AIT()NL =0,
therefore, the literals I’ € All*(l) \ L need not be in the generalized external
disjuncts, but can instead be considered as generalized external conjuncts (since
Iy A lg is a conjunction); similarly for All=(I).

Note that for an aggregate-free definition A and a loop L in A, G&Y(L) =
De*t(L). We retain the original intuition: when all (generalized) external dis-
juncts of a loop are false, none of the literals in the loop has a justification to
be true. A generalized stable loop formula embodies this intuition.
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Definition 6.6 (Generalized stable loop formula). Let L be a positive loop of
A. Then the generalized stable loop formula GLFA(L) of L is the formula

\/ Lo\ g=(L).

For an aggregate-free definition A and a positive loop L in A, the generalized
stable loop formula of L is exactly the loop formula of L. Nevertheless, gen-
eralized stable loop formulas are in some sense less general than loop formulas
for aggregate-free definitions. Indeed, in an interpretation M with M | \/ L,
M = GLFA(L) does not guarantee that for some ! € L, all literals in the di-
rect justification for [ are true.? For this reason, and because the formulas are
defined for stable loops only, we have no result of the form comp(A)U P = A,
with ® some set of loop formulas.

We do show, however, that a definition entails its generalized stable loop
formulas.

Proposition 6.1. Let L be a positive loop of A. Then A |= GLFA(L).

Proof. Assume towards contradiction that M is an interpretation such that
M = A and M = GLFA(L). Because M = GLFEA(L), we have M |=\/ L and
M ==V G (L).

We show that then there cannot exist a A-witness for M, which contradicts
M E A by Theorem 6.1. Indeed, consider an atom [ € L with M(l) = ¢, and
consider a justification J for A that supports M. Then the direct justification
DJ(l) of l in J has M = A DJ(I). By our assumption that M | —=\/ G**(L)
and by the definition of generalized external disjuncts, we find that DJ(l) C L.
Therefore there exists a positive loop of true atoms in J, and thus J is not a
witness for M. Contradiction. O

Example 6.10. Example 6.2 and 6.9 continued. Consider again the following
two rules of Agg:

Cog +— 51 < SUTTL({(CCA,20)7 (003740), (T,40)}) < 100,
Cop < 51 < Sum({(Ce¢a, 26), (Ccn,49),(T,25)}) < 100.

A positive direct justification for Co 4 must contain enough literals such that
their combined weights is > 51, and similarly for Cop. A negative direct jus-
tification for Coq must contain enough negative literals such that the sum of
weights of the remaining (non-negated) literals is < 100. These are all possible
positive direct justifications, both for Co4 and for Cep:

{Cca,Ce}, {Cca, T}, {Ccn, T}, {Cca,Ccn, T}.

Any subset of {~Cca,Ccp, T} is a negative direct justification, also both
for Cc 4 and for Cop. Note in particular that the empty set is a negative direct
justification for Cc 4 and for Copg.

4But the stable loop formulas are most useful in the other direction: M = GLFa (L) and
M = -\ GeY(L) entails M = -/ L.
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The set L = {Cca,Ccp} is an example of a positive loop of Agg. It has
Gt (L) = {T}. Note that none of the literals ~Cca, -Ccp, T occurs in any
positive direct justification of either Cca or Ceop. Therefore the generalized
stable loop formula of L is (Cca VCecp) D T.

Transition rules for generalized stable loop formulas

Based on the results of previous section, we will now define a generalization of
the BwLoop transition rule for positive loops. The BwAggrLoop and its back-
tracking counterparts [BwAggrLoop|BF are defined by

M(l)=u
M| ¥,A = M-l|¥,A if ¢ A contains a positive loop L such
that M(\/ G*(L)) = f and I € L.

We also generalize the AddLF rule to AddAggrLF:

LF =-lvV\G™=(L)
M|V, A = M| V,A,LF if { L is a positive loop in A,l € L
LF ¢ V.

Observe that in neither case, the new transition rule fully generalizes the old
one, because the conditions exclude mixed loops. In order to obtain a correct
system for definitions that contain mixed loops, we add the following transition
rule, WellFounded:

M is two-valued, and M = A

Miw.a  =0|w.ALF if {LF: V=L M) = 2}

The WellFounded transition rule can be considered as a final check for to-
tality, as was the case for the final application of Simplify in MINISAT(ID)’s
transition system outlined in Section 5.7.

Algorithms: finding direct justifications

We will develop algorithms for these transition rules. They will be based on the
assumption that neither the [UnitProp]®F or [UnitPropDef]BF, nor the transition
rules defined in Figures 6.1 and 6.2 are applicable on the current state. We call
such a state UPA-saturated.

To implement the WellFounded transition rule, we have to generalize Algo-
rithm 5.4 to definitions with aggregate expressions. To implement the AddAggr-
LF and [BwAggrLoop|BF* rules, we have to generalize Algorithm 5.2.
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Algorithm 6.1: BwAggrLoop—Justifying a cycle source cs

Let HP := {l |l has a path to ¢s in Js through non-false atoms};
if cs ¢ HP then return (J;
Let L:=Q :={es};
while Q # 0 do
Pop literal [ from @Q;
Find a supporting direct justification for [ using only literals ¢ H P;
if Succeeded then Justify(]);
else Add HP body literals of [ to () and to L;

return L;

® N O oA W N R

©

10 function Justify [

11 Remove [ from HP, L and Q;

12 if [ = cs then return 0;

13 foreach I’ € L that has 1 as a body literal and that can now be
Justified do Justify(l');

14 end function

Recall the intuition behind Algorithm 5.2: we start from a (non-false) cycle
source, and find a set of (non-false) literals that might contain a loop through it.
Then we try to justify literals of that set. A literal is justified once it is certain
that the current justification contains no path from this literal to the cycle
source. To justify a disjunctively defined literal, we set the direct justification
for it to a literal outside of the set; to justify a conjunctively defined literal, we
prove that all its body literals are outside of the set.

Also the intuition behind Algorithm 5.4 is based on justifying literals: in
that algorithm, we try to justify all defined literals. The justification we thereby
construct is a directed acyclic graph.

We present a simplified version of Algorithm 5.2 in Algorithm 6.1, where
some parts of the algorithm, which we will explain in more detail, have been
made generic.

We explain Lines 6 and 8 of Algorithm 6.1. The purpose of Line 6 is to try
to justify [, in other words, to find a direct justification D.J(I) for I that contains
only literals ¢ HP, and with M (A DJ(I)) = w or t. In the case of | € Dis,
this can be done (as in Algorithm 5.2) by finding one literal I’ in ¢; \ HP with
M(l") # f; in the case of | € Cs, this can be done by showing that all literals
I € ¢; are not in HP. (Note that by UPA-saturation and by the fact that
M(l) # f, these literals I’ all have M (I') # f.) If such a DJ(I) is found, I can
then be removed from H P, since it no longer has a path to cs in the current
justification. If such a DJ(I) cannot be found, then all literals that need to be
justified first before such a DJ(I) could possibly be found need to be added to
the queue, Q, for future consideration, and to the possible eventual loop, L.

Line 13 then applies the same search for a direct justification as in Line 6;
the fact that [ has just been removed from HP (Line 11) makes that this search



168 CHAPTER 6. AGGREGATES

Algorithm 6.2: Finding DJ(1) for | — lwr < Sum/(S) < upr
1 man = 0;
2 AT =Y . )es Wis
3 DJ :=0;
4 AuzL = (;
5 foreach (I;,w;) € S do
if min > lwr and max < upr then Break;
if M(l;) # f then
if [; € HP then Add [; to AuxL;
L else Add I; to DJ; Let min := min + w;;

10 if M(l) # t then
11 if —l; € HP then Add —l; to AuxL;
12 else Add —l; to DJ; Let max := max — w;;

© 0w N o

13 if min > lwr and max < upr then
14 DJ(l) := DJ,

15 return true;

16 else

17 Add AuzL \ L to Q and to L;
18 return false;

Algorithm 6.3: Finding DJ(I) for I « lwr < Min(S) < upr

DJ :={=l; | (l;, w;) € S,w; < lwr};
AuxL := DJNHP;
FoundPos := false;
foreach (I;,w;) € S with lwr < w; < upr do
if M(l;) # f then
if ; € HP then Add [; to AuxL;
L else Add I; to DJ; FoundPos := true; Break;

N 0 Gk W

if FoundPos A (DJ N HP = () then DJ(l) := DJ;
9 else Add AuxzL\ L to Q and to L;
10 return FoundPos;

®

may now be successful.

To extend Algorithm 5.2 (or equivalently, Algorithm 6.1) to arbitrary ECNF
definitions, therefore, we have to extend Line 6 to atoms (recall that we look
for positive loops) defined by an aggregate expression.

Algorithms 6.2 and 6.3 perform this task for atoms defined by Sum or Min.
Similar algorithms for Prod and Max are easy to derive. These algorithms
return true iff a direct justification satisfying the above conditions has been
found; in the other case, they add the appropriate literals to @ and to L (i.e.,
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Algorithm 6.4: Finding DJ(I) for (—l) « lwr < Sum(S) < upr
1 min = 0; maz =370, ) es Wis
2 Ddpin = ®7 DJmaz = wv
3 AuzL = {;
foreach (I;,w;) € S do
if min > upr or mazx < lwr then Break;
if M(l;) # f then
if I; € HP then Add [; to AuxL;

L else Add I; to DJ,,in; Let min := min + w;;
if M(l;) # t then
10 L if —l; € HP then Add —l; to AuxL;

® N o ok

©

11 else Add —l; to DJ,,qz; Let max := max — wy;

12 if min > upr or max < lwr then
13 if min > upr then DJ(I) := DJpin;
14 else DJ(l) := DJpaz;

15 return true;

16 else

17 Add AuxL \ L to Q and to L;
18 return false;

Algorithm 6.5: Finding DJ(I) for (—l) « lwr < Min(S) < upr

AuxL = 0;
foreach (I;,w;) € S such that w; < lwr do
if M(l;) # f then
if [; € HP then Add [; to AuxL;
L else DJ(I) := {l;}; return true;

oA W N

6 DJ:={-l; | w; <upr};

7 if M(ADJ)=f or (DJN HP) # () then
8 Add AuxL \ L to Q and to L;

9 Add (DJNHP)\ L to @ and to L;

10 return false;

11 DJ(l) := DJ;
12 return true;

o

they perform both Lines 6 and 8). Note that Algorithm 6.3 may exploit the
fact that weighted sets are ordered by weight to minimize the work.

These algorithms are linear in the size of the aggregated set. Line 13 of
Algorithm 6.1 can call these algorithms |S"*| times for each atom [ defined by
an aggregate expression over S. Therefore Algorithm 6.1 is quadratic in the size
of the definition, restricted to the initial set HP.
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To extend also Algorithm 5.4, in order to implement the WellFounded transi-
tion rule, we need similar algorithms for negative literals defined by an aggregate
expression. Algorithms 6.4 and 6.5 provide such algorithms for the case of Sum
and Min.

Remark 6.5. Note that we need a different direct justification for each aggregate
expression, not for each set over which aggregation is done Whereas the UPA
propagations benefit from the reuse of the values S.miny A . and S.maz)l ggr 110
different aggregate expressmns over the set S, no such beneﬁt can be obtained
for the [BwAggrLoop|BF propagations.

Cycle sources

We recall also Definition 5.4 of cycle sources. For given interpretations M’ and
M, where M’ has a witness J,,, and M is an extension of M’, we defined CS
as {l € Digs | M(I) # f ANM'(dy, (1)) # f ANM(dy, (1)) = f}. The intuition
behind this concept was that each eventual loop that could lead to propagation
contains a cs € CS.

The assumption behind Algorithm 5.2 was that a justification Jg that sup-
ports M is initially given; we remarked that CS C {l | J,(1) # Js(1)}. In
practice, the tasks of finding a supporting justification Jg and finding the set of
cycle sources C'S can be combined, since they both require investigating truth
values of defined literals, and investigating .J,,.

We extend both tasks to arbitrary ECNF definitions. Observe that finding
a supporting justification J; requires that the given state is UPA-saturated.

We now generalize the definition: CS = {l € D?f(\A) | M) # f A
M'(Naiyes, V') # FAM(Ngnes, V) = £} Again, for literals that are not a
cycle source, their direct justification can remain as it was in Jy,.

Letl € D?f(\A) be a literal with M # f. The following simple definitions of
specific direct justifications DJ({) suffice to find a supportive justification Js.

- if M(/\(z IyeJ
( l') € Ju});®

2. else,

Iy # f, retain this direct justification (DJ(I) = {lI’' |

w

o if [ is defined by | «— lwr < Sum(S) < upr, then let DJ(I) be

{li € S"= | M(l;) # f}U{~l; € S™ | M(l;) # t};

e if [ is defined by (=) « lwr < Sum(S) < upr, let DJ(I) be either
{l; € SUs | M(l;) # f} (if the corresponding sum of weights is
> upr) or DJ(I) = {~l; € S | M(l;) # t} (if the corresponding
sum of weights is < lwr);

e if [ is defined by | «— lwr < Min(S) < upr, let DJ(I) be {-l; |
(li,w;) € S, M(l;) # f,w; < lwr};

5Note that for non-false literals € Cjjts, this is trivially satisfied in UPA-saturated states.
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o if [ is defined by (—l) « lwr < Min(S) < upr, let DJ(l) be either
{l;} for some (I;,w;) € S with M(l;) # f and w; < lwr, or {=l; |
(li,w;) € S,w; < upr}.

6.4 Evaluation

We have implemented the above described algorithms as an extension of the
SAT(ID) solver MINISAT(ID) (cf. Section 5.7).

This implementation required additional data structures to be added to
MINISAT(ID), as described in Section 6.3.3. It also required a generalization of
the justification data structures. In the extended MINISAT(ID), justifications
are represented using an array that maps all defined atoms to their direct jus-
tification, represented by an array of literals. The transpose of a justification is
represented using an array that maps literals to arrays of defined literals.

We did an experimental evaluation by comparing MINISAT(ID) to some ASP
solvers. The settings of our experiments are the same as in Section 5.7.4: we
used a timeout of 10 minutes; the platform was an Intel Core 2 Duo 3GHz with
2GB RAM running Kubuntu 7.10 Linux; the solver versions are CLASP: version
1.1.2, SMODELS,: version 1.08, SMODELS: version 2.33. The IDP encodings of
the problems used here are given in Appendix B.

In Figure 6.4 we evaluate the efficiency of solving social golfer problems of
various sizes. These are scheduling problems with three parameters: number of
weeks, number of groups, and number of people per group. We have aggregated
our results over the last parameter: each row in the figure represents 4 actual
instances, for 4 different numbers of people per group.

We observe a great variety in the difficulty of these problems; many instances
can be solved in a matter of seconds, whereas many others yield timeout. MINI-
SAT(ID) is the solver with the least number of timeouts.

In Figure 6.5 we evaluate the efficiency of solving magic series problems of
various sizes (cf. Examples 6.1 and 6.4). In these problems, the ECNF represen-
tation whereby one set is reused in multiple aggregate expressions pays off dra-
matically. We give the most interesting comparison, whereby grounding times
(of LPARSE 1.0.17 for the ASP solvers, and of GIDL 1.5.2 for MINISAT(ID)) are
included.

Other comparisons are difficult to perform, because different solvers offer dif-
ferent aggregate expressions, and especially for recursive aggregates, with differ-
ent semantics. We observe that the performance of MINISAT(ID) on problems
with recursive aggregates is lower than on problems with non-recursive aggre-
gates, though: typical propagation speeds are around 5 x 10° for the recursive
case, and around 1 x 10% for the non-recursive case. The likely explanation is
that generalized justification data structures have a bad impact on low-level
behaviour (such as caching) of the solver.
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CLASP SMODELS  SMODELS.. MINISAT(ID)

3 weeks, 3 groups | 0 3.18 0 41.71 0 490 O 0.47
3 weeks, 4 groups | 2 0.02 2 0.0 2 009 1 82.51
3 weeks, 5 groups | 1 0.08 1 0.19 1 0.17 1 0.03
3 weeks, 6 groups | 0 0.13 0 029 O 033 O 0.06
4 weeks, 3 groups | 1 439 1 2825 1 214 1 0.30
4 weeks, 4 groups | 1 141 1 49.25 1 258 0 102.02
4 weeks, 5 groups | 1 022 1 947 1 033 1 0.04
4 weeks, 6 groups | 1 0.16 1 6.69 1 0.60 1 0.13
5 weeks, 3 groups | 2 783 3 24.53 2 193 2 16.04
5 weeks, 4 groups | 1 426 1 9531 1 6.62 1 0.77
5 weeks, 5 groups | 2 0.16 3 0.12 2 0.39 2 0.18
5 weeks, 6 groups | 1 027 1 0.61 1 065 1 0.09
6 weeks, 3 groups | 2 17.02 3 2735 2 3.83 2 2.51
6 weeks, 4 groups | 2 284 2 170.00 2 21.45 2 1.26
6 weeks, 5 groups | 3 043 3 11.74 3 0.74 3 45.63
6 weeks, 6 groups | 2 0.25 3 024 2 0.78 2 0.10
total | 22 42.65 26 465.80 22  47.53 20 252.13

Figure 6.4: Timing comparison of different solvers on social golfer problems. Per
solver: number of timeouts (in bold), and average time (sec) of solved instances.

CLASP SMODELS SMODELS.. MINISAT(ID)
size 10 0.16 0.16 0.17 0.64
size 20 2.02 2.04 2.08 0.55
size 30 4.19 4.25 4.38 0.59
size 40 | 121.15 121.26 123.45 0.77
size 50 | 112.19 113.00 116.33 12.85
size 60 | >600 >600 >600 12.53
size 70 | >600 >600 >600 50.76
size 80 | >600 >600 >600 27.30

Figure 6.5: Comparison of grounding + solving times (sec) on magic series
problems.

6.5 Conclusions

We have extended syntax and semantics of ID-logic with aggregate expressions,
both in inductive definitions and in FO sentences. The extended semantics
covers aggregate expressions of types that frequently occur in practical problem
domains, such as Min, Max, Card, Sum and Prod.

We use the semantics developed by Pelov (2004); Pelov et al. (2007). This
is the first work to implement propositional model generation algorithms for
recursive aggregate expressions with this semantics. For other semantics of
aggregate expressions in logic programs, we refer to (Van Gelder, 1992; Simons,
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1999; Pelov et al., 2004; Mumick et al., 1990; Kemp and Stuckey, 1991; Niemel4
et al., 1999; Del’Armi et al., 2003; Marek et al., 2004).

We have implemented these algorithms by generalizing the justification se-
mantics results of Chapter 4 and some of the algorithms developed in Chapter 5
to definitions containing aggregate expressions. In particular, we have gener-
alized the two most relevant transition rules concerning inductive definitions:
BwLoop and AddLF, to the transition rules BwAggrLoop and AddAggrLF, to be
used in a stable strategy.

The transition rules presented in Section 6.3.3, and specifically those in Fig-
ure 6.2, perform the same propagations as those for logic programs with weight
constraints by Simons et al. (2002) (in the AtLeast procedure) and disjunctive
logic programs with aggregates by Faber et al. (2008) (in the Deterministic Con-
sequences operator). In the latter case, also the data structures used are highly
similar to ours. The main differences come from the difference in representation
(ECNF definitions versus logic programs that may have several rules with the
same head).

Liu and Truszczyriski (2006) studied logic programs extended with “mono-
tone and convex constraints”: abstractions of propositional aggregate expres-
sions. They allowed such constraints to appear in the heads of rules. Liu and
Truszczynski also defined loop formulas for logic programs extended with con-
straints: in the case of monotone constraints in the bodies of rules, their loop
formulas correspond to our generalized stable loop formulas in the same way as
Lin and Zhao’s (2004) loop formulas for normal logic programs correspond to
our loop formulas for positive loops (cf. Section 4.4.2).
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Chapter 7

A comparison of ID-logic
and Stable logic programs

7.1 Introduction

Answer Set Programming (ASP) is a declarative problem solving paradigm
(Niemeld, 1999; Marek and Truszczyniski, 1999; Gelfond and Leone, 2002; Baral,
2003). In this paradigm, a problem is solved by computing models (“answer
sets”) of a specific theory in some logic £. To this end, a human expert should
model the theory such that its models have a one-to-one correspondence to the
solutions of the problem at hand. The paradigm is associated, in most writings,
with a language £ based on the stable model semantics for normal logic pro-
grams (Gelfond and Lifschitz, 1988). Depending on the author, this language
may include classical negation in addition to negation as failure (Gelfond and
Lifschitz, 1991), disjunction in the head of rules (Przymusinski, 1991), weight
constraints (Niemeld et al., 1999), choice rules (Simons, 1999), and nested ex-
pressions in both body and head of rules (Lifschitz et al., 1999). In this text, we
focus on the fragment common to all of these languages: Stable logic programs,
as defined in Section 2.3.

However, the paradigm of modelling theories such that their models corre-
spond to problem solutions is applicable to other logics as well. Notably, it
is applicable also to ID-logic (as we have illustrated in Chapter 3), or indeed
to any other logic whose semantics is defined in a model theoretic way. This
paradigm can also be implemented in different ways: the computational task
behind it may be Herbrand model generation, or it may be model expansion.

This chapter compares ID-logic to Stable logic programs. There are con-
siderable conceptual differences between these two logics: ID-logic is based on
classical logic, whereas Stable logic programs are based on logic programming
and Herbrand interpretations. But there are important similarities as well: def-
initions in ID-logic use the well-founded semantics of logic programming (Van
Gelder et al., 1991), which is closely related to the stable model semantics (see,
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for instance, Przymusinski, 1990).

In the past decade, the research domain around ASP has thrived. Then,
given the similarities of ID-logic and Stable logic programs, the comparison in
this chapter is easily motivated.

We begin our comparison by providing transformations from ID-logic the-
ories to Stable logic programs and vice versa, in Section 7.2. Particularly the
former transformation yields interesting insights into the different components
of both types of theories, and their relation. These results are also useful for
direct application: one can use them to implement an ID-logic model generator
based on a stable model generator, and vice versa. In Section 7.3 we then in-
vestigate the applicability of the ID-logic modelling principles from Section 3.1
in Stable logic programs. Finally, we compare model expansion and Herbrand
model generation in Section 7.4. We conclude in Section 7.5.

7.2 Transformations

In this section we present equivalence preserving transformations from ID-logic
to Stable logic programs and vice versa. These transformations may introduce
new symbols to the original vocabulary 3: thus the type of equivalence we
obtain is up to X, denoted =yx,. Formally, T =x, T, for theories T} and T with
vocabularies that contain ¥, means that for every vocab(T)-model M; of Ty,
T5 has a vocab(Ty)-model My such that M|z, = Mslx, and vice versa.

To simplify the comparison, we restrict ID-logic to Herbrand models, i.e., we
assume that the Unique Names Axzioms (UNA) (Reiter, 1980) and the Domain
Closure Assumption (DCA) (Reiter, 1982) are implicit. Also, for Stable logic
programs we assume that the Closed World Assumption (CWA) (Reiter, 1977)
is implicit: as such, models of a stable logic program can be compared to other
Herbrand models.*

7.2.1 ID-logic to ASP

We now define an equivalence preserving transformation from ID-logic to Stable
logic programs, for a subset of ID-logic. The work in this section is based on
(Marién et al., 2004).

We present a succession of different transformations, most of which reflect
the syntactic restrictions of normal logic programs. We begin with a transfor-
mation from similarly restricted ID-logic theories to Stable logic programs, and
continue with a number of transformations that transform an ID-logic theory
into another, equivalent one that has extra syntactic restrictions. This first
transformation is based on a transformation from Abductive logic programs to
Stable logic programs by Satoh and Iwayama (1991).

LGelfond and Lifschitz (1991) note that the meaning of stable models of a logic program
depends on the presence of the CWA: if it is not present, models are “belief sets”, which
cannot be compared to Herbrand models.
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Abductive logic programs

Abductive logic programs are normal logic programs that possibly contain in-
tegrity constraints.? An abductive framework is a tuple of an abductive logic
program and a set of abducibles, which are atoms that are not defined in the
program.

Definition 7.1 (Generalized stable semantics of abductive frameworks). Let
P be a normal logic program with integrity constraints, and A a set of atoms,
none of which occurs in the head of any rule in P. Then (P, A) is an abductive
framework. Let E C A. A generalized stable model M(E) of (P, A) is a stable
model of PU{e :- T |e € E}.

One uses abductive frameworks in abductive reasoning: given a proposition
O which is observed to be true, find an explanation E, a subset of the ab-
ducibles, such that the truth of all atoms in F suffices to infer the truth of
O. Formally, O is said to have an abductive explanation with hypothesis F,
iff (P, A) has a generalized stable model M (E) with O € M(E). Observe that
the explanation atoms E are true in any generalized stable model (since they
are added as facts), whereas the other abducibles A \ E are false in any gen-
eralized stable model (since there are no rules to make them true). Therefore,
finding an abductive explanation for some observation O corresponds to finding
an appropriate interpretation of the abducibles.

Satoh and Iwayama (1991) showed that an abductive framework (P, A) can
be transformed into a Stable logic program. For any a € A, a new atom a’ is
introduced, and two new rules are added to P: a :- nota’, a’ :— nota. These
two rules have the effect that a truth value for a can be chosen to suit the
rest of the theory. If P’ is the program resulting from Satoh and Iwayama’s
transformation on (P, A), then, for any E C A, M(F) is a generalized stable
model of (P, A) iff there is a stable model M’ of P’ with M'|,cap(py = M(E).

Though Satoh and Iwayama proved this result for the propositional case, it
is immediately generalizable to first-order level.

We now use this result to propose a transformation of a small subclass of
ID-logic theories to Stable logic programs. This subclass is defined by a set
of constraints, or properties, the ID-logic theories should satisfy; in subsequent
sections we will lift most of these properties.

Let T be an ID-logic theory with the following properties:

Property 1. it contains at most one definition, A;

Property 2. all definitional rules have a body in the form (L; A...A L), where
the L; are literals, and N a (possibly infinite) natural number;

Property 3. all FO sentences are in the clausal form V(A; A--- A A, D B V
--+V By,), where A;, B; are atomic formulas;

2Some authors allow the integrity constraints to be arbitrary FO formulas; here we consider
them to be normal logic programming constraints.
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Property 4. A is total in the rest of the theory.

Then T can be seen as an encoding of an abductive framework: A is the
encoding of normal logic program rules, the FO sentences the encoding of in-
tegrity constraints, and Open(A) corresponds to the abducibles. We formalize
this encoding and translate it to an ASP theory as follows:

Let ASP(T) be the normal logic program obtained from T by:

1. applying the syntactical conversion of the sentences V(41 A --- A A, D
B;V---V B,,) to integrity constraints : = Ay,..., A,,not By,...,not By,;

“ 7

2. applying the syntactical conversion of “«” to “:=”, “=” to “not”, and
“/\7? tO W,
)

3. applying Satoh and Iwayama’s transformation on a first order level: for
each predicate A/n € Open(A), introduce a new predicate A’/n, and add
the rules A(Z) :- not A'(Z), A'(T) :- not A(T). We will refer to rules of
this type as double negation rules.

Proposition 7.1. Let T be an ID-logic theory that satisfies the above properties.
Then ASP(T) =yocab(r) T

Proof. A is total in the rest of the theory, i.e. it has a two-valued well-founded
model extending any interpretation of Open(A) that satisfies T — A. If a defi-
nition has a two-valued well-founded model, that model is also the definition’s
unique stable model (Van Gelder et al., 1991). Therefore the result from (Satoh
and Iwayama, 1991) is applicable. Here our earlier restriction of ID-logic to
Herbrand models is used (see beginning of Section 7.2). O

Remark 7.1. ID-logic theories often contain domain declarations for the pred-
icates that are non-defined: sentences of the form VZ A(Z) D Ca(T), where
A/n € Open(A) is the non-defined predicate, and C4(Z) a conjunction of lit-
erals called the domain of A/n. For such predicates, we can replace Step 3
of the transformation by a step that adds the double negation rules A(T) :-
C4(T),not P'(T), P'(T) :- Ca(T),not P(T) instead, and removes the domain
declaration from ASP(T). Though theoretically equivalent to the above trans-
formation, this transformation produces smaller groundings and therefore leads
to more efficient model generation.

Example 7.1. Recall from Section 3.3.2 the ID-logic encoding of the Hamil-
tonian circuit problem. Here we replace the constant symbol Start by a unary
predicate symbol Start/1, because of our restriction of ID-logic to Herbrand
models. We also unfold the 3! notation, and because we use untyped ID-logic
here, we explicitly add a predicate symbol Vertex/1 to represent the domain.
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Let Tygm be

Va,y Ham(z,y) D Edge(x,y),
Va,y,z Ham(z,y) AN Ham(z,z) Dy = z,
Va,y,z Ham(y,z) AN Ham(z,z) Dy = z,

Vz (Reached(x) — Ham(y,x)) A Start(y),
Vo (Reached(x) — Jy Ham(y,x) A Reached(y)) [’

Vz Vertex(x) D Reached(x).

We apply the transformation: ASP(Tgam) is the Stable logic program

Ham(z,y) :- Edge(x,y),not NegHam(z,y) (7.1)
NegHam(z, ) := Edge(x,y),not Ham(z,y) (7.2)
- Ham(z,y), Ham(z, z),not (y = z) (7.3)

- Ham(y,z), Ham(y, x),not (y = z) (7.4)

Reached(x) - Ham(y, x), Start(y) (7.5)
Reached(x) : = Ham(y, x), Reached(y) (7.6)

:= Vertex(z),not Reached(x) (7.7)

The double negation rules (7.1)—(7.2) have been formed by taking into account
the domain declaration Vz,y Ham(z,y) D Edge(z,y) (cf. Remark 7.1).

Interestingly, ASP(T#am) corresponds exactly® to the stable logic program
presented by Marek and Truszczynski (1999).

In the following sections we provide ID-logic transformations to generalize
this result also to theories that do not satisfy Properties 1-3. We cannot easily
lift Property 4 though. Example 7.2 shows why this property is required.

Example 7.2. Let T be the ID-logic theory consisting only of this definition:
{P «— —Q, Q <« —P}. Since this definition is not total, T is unsatisfiable.
However, ASP(T) = {P :- not@®, @ :- notP} has two models: {P —

t,Q+— fland {P— f,Q— t}.

Remark 7.2. An abductive reasoning inference system for a subset of ID-logic
was developed by Van Nuffelen (2004). The system offers an implementation of
the SLDNFA proof procedure by Denecker and De Schreye (1998).

Multiple definitions

In this section, we lift Property 1, which states that the theory should contain
at most one definition. Let T be a theory satisfying Properties 2—4, but not
Property 1. Property 4 should now be satisfied for each separate definition of
T.

3With renaming of symbols. Also, Marek and Truszczytiski used explicit constraints of
the form f :- ¢, not f, whereas we use :- .
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An ID-logic theory containing multiple definitions can be transformed to one
that contains exactly one definition. The straightforward approach consists of
merging all definitions into one; however this approach may be erroneous in two
cases:

e when separate definitions define the same predicate, as in Example 7.3;

e when separate definitions depend on each other, as in Example 7.4.
Example 7.3. Consider again the ID-logic theory T3 1 from Example 3.1:

{ Va (Square(z) «— Equilateral(z) A Rectangle(z)) },
{ Va (Square(z) — Orthogonal(z) A Rhombus(z)) }

Recall also that because both definitions of T3; must be satisfied indepen-
dently, T3 logically entails the formula Vz (Equilateral(z) A Rectangle(x) =
Orthogonal(x) A Rhombus(zx)). If the definitions are merged, this formula is no
longer entailed.

To clarify the second case, we need a notion of definitional dependency.

Definition 7.2 (Definitional dependency graph). Let T be an ID-logic the-
ory, and Aq,...,A, the definitions in T. Then T'’s definitional dependency
graph is the graph with nodes {Ay,...,A,} and edges {(A;, A;) | Open(A;) N
Def(A;) # 0}

Example 7.4. Let Ay = {P —« QV R, Q < P}, Ay ={R < Q}. Then
the definitional dependency graph of T' = [Aq, Ag] is A : A, , because
Open(A1) N Def(As) = {R}, Open(As) N Def(Ay) ={Q}.

Whereas T has 2 models, M; = {P,Q, R} and My = {-P,~Q,—~R}, the
definition resulting from merging A; and Ay, i.e. Ay e ={P—QVR, Q<
P, R« Q}, hasonly M> as a model. This difference stems from the fact that
T’s definitional dependency graph is cyclic.

The solution to both of these problems is the same: renaming defined pred-
icates. Let A be a definition of T', and P/n € Def(A), such that either T’s
definitional dependency graph has a cycle that passes though A, or T' contains
a definition A’ with also P/n € Def(A’). Then introduce a new predicate
P’ /n, replace all occurrences of P/n in A by P’/n, and add the sentences
vz P(z) D P'(z),VZ P'(Z) D P(T) to T.*

Apply this renaming technique until the resulting definitional dependency
graph is acyclic, and each predicate is defined in at most one definition. Then
replace all definitions Aq,..., A, by one definition: A ={r € A; |1 <i <n}.
Let Lift-1(T) be the resulting ID-logic theory.

Example 7.5. Example 7.3 continued. Lift-1(T) =
Vx (Square(z) «— Equilateral(x) A Rectangle(x)),
{ Va (Square’ (z) « Orthogonal(x) A Rhombus(x)) } ’
Vo Square(z) O Square’(z),
YV Square’(z) D Square(z)

4This is equivalent to adding Vz P(Z) = P’(%), but also complies with Property 3.
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Proposition 7.2. Let T be an ID-logic theory such that each definition A € T
is total with respect to T — A. Then Lift-1(T) =yocan(r) T-

Proof. Let T' be the intermediate theory of the transformation: the result of
introducing the new predicates and the equivalences, before the merging of the
definitions. We first prove that 7" =,,cqp(7) T, and then prove that Lift-1(T) =
T

Let A be a definition of T, and P/n € Def(A), for which a new predicate
P’/n has been introduced. Let A’ be the result of replacing all occurrences of
P/n by P'/n. T’ does not contain A, but instead A’, as well as the sentences
VT P(Z) D P'(z), V& P'(T) D P(Z). Observe that Open(A) = Open(A’').
Consider an vocab(T)-model I of T'. Let Iy fn, = wima ({|open(a)) and I, ¢, =
wima/ (I{open(ary); since I = T, we have that I is an extension of I,fm. By
definition of A’ we have that {d € dom"(I) | d € Plwim} = {d € dom™(I) |
d € P"urm}. Hence, both the sentences VZ P(Z) D P'(Z) and VT P'(T) D
P(7), and A’, are satisfied in the interpretation I' = T U I} ... Thus I' =1T".
Conversely, consider a vocab(T’)-model I' of T'. Then because I’ = A’ and
I' = Vz P(T) = P'(7), and again by definition of A’, we find that I'|,ocapa) =
wima (I'|[open(a)). Hence I'|,ocanry = T

The second part of the proof, that Lift-1(T) = T, is by application of the
modularity theorem of (Denecker and Ternovska, 2008, Theorem 5.20). There,
the notion of a reduction partition {Aq,...,A,} of a definition A is introduced;
it would take us too far to redefine it here, but suffice it to say that after the
renamings in Lift-1, the set {Aq,...,A,} is a reduction partition of A = {r €
A; | 1 <4 < n}. The modularity theorem states for a reduction partition
{A1,...,A,} of adefinition A, T =AM T EALU---UA,. O

Arbitrary rule bodies

In this section we lift Property 2, which requires rules bodies to be conjunctions
of literals. This can be done by the following transformation on rule bodies:

1. push negation inside to the level of literals;

2. apply the following replacements until the resulting definition is in normal
logic programming form:
(a) replace V (H < @1V 2) by V (H «— ¢1), V (H < p2);
(b) replace VT (H «+ 1 A 37 p2) by VZVY (H «— o1 A p2);°

(c) replace VT (H «— Vg ¢[y]) by V& (H < @[y/Di] A--- A ¢[y/Dy)),
where Dy, ..., D, are all tuples of size |[y| of the domain;°

(d) if none of 2a—2c is applicable, then for any nested subformula ¢,
introduce a new predicate P, replace ¢ by P,, and introduce a new
rule P, < ¢.

5We assume, without loss of generality, that 7 does not contain free variables of H or (1.
SRecall that we have assumed the domain to be the finite Herbrand Universe.
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Rules 2a and 2b in this transformation also occur in the Lloyd and Topor
(1984) transformation, but the rest of that transformation is not equivalence
preserving for ID-logic definitions. Also, it may yield an exponentially bigger
theory (because of the distribution of V over different rules); rule 2d here pre-
vents a similar explosion. We call the process of replacing a subformula ¢ by a
newly defined predicate Tseitin predicate introduction, and the new symbols P,
Tseitin predicates, after Tseitin’s (1968) transformation from arbitrary propo-
sitional logic theories to CNF theories. Van Gelder (1993) introduced the same
transformation as Tseitin predicate introduction. Note that correct application
of the Tseitin predicate introduction rule (Rule 2d) requires that negation is
pushed to the literal level first.

Let Lift-2(A) be the result of applying the above transformation on A.

Proposition 7.3. For any ID-logic definition A, Lift-2(A) =,ocab(a) A-

Proof. Each of the rules 1-2c preserves the behaviour of rules of a well-founded
sequence (cf. Definition 2.1) on A. The Tseitin predicate introduction rule,
Rule 2d, satisfies the conditions of our predicate introduction theorem in (Wit-
tocx et al., 2006, Theorem 2). Therefore each of the transformation rules pre-
serves the well-founded model. O

Example 7.6. Consider the following definition of the transitive closure of a
relation R:

A7 ={ Vz,y (TC(z,y) — R(z,y)V (32 TC(z,2) A R(z,y))) }.
Then L’Lft—2(A76) =

{ Voy (TC(x,y) — R(z,y)), }
Vo,y,z (TC(z,y) — TC(z,2) AR(2,y)) |-

Rule 2c replaces a universal quantifier by a conjunction over all tuples of do-
main elements, i.e., it performs a local grounding. We discuss some alternatives
for this rule that avoid such a replacement.

e The Lloyd and Topor transformation replaces VI (H « Vg ¢) by VT (H «
-P.,), VaVy (P-, < —), where P-, is a new predicate. This is the sim-
plest of transformations, however, it is only correct for ID-logic definitions
if there is no recursion over H through ¢. Example 7.7 provides an exam-
ple where this transformation is not correct.

o Wittocx et al. (2006); Vennekens et al. (2007a) introduced a very gen-
eral notion of predicate introduction. Based on this notion, we proposed
a method of V elimination based on a “domain iterator”; this proposal
assumes a totally ordered domain to be given.

Example 7.7. This is a simplified version of a theory from (Balduccini and
Gelfond, 2003); the same example is used also in (Wittocx et al., 2006). In this
theory, causal rules r are considered; such rules have a certain property p as
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effect (represented by Head(r) = p), and have other properties ¢ as precondition
(represented by Prec(r,q)). A causal theory of which properties hold under
which circumstances then looks like this:

Ay ={ Holds(p) < 3r Head(r) = p A (Vq Prec(r,q) D Holds(q)) },

stating that p holds if it is the effect of some causal rule r, the preconditions of
which all hold. Applying the Lloyd and Topor transformation on A; yields

As = Holds(p) « 3r Head(r) = p A = Pprec>Holds (1),
2= PPrecDHolds (’I’) — P’I’GC(ﬁ Q) A _‘HOst(q) ’

A; and A, are not equivalent when there are cyclic causal rules. E.g. in an
interpretation I with Head! = {Ry — P, Ry — Q}, Prec! = {(R1,Q), (Rs, P)},
A; has a model M with Holds™ = (), i.e., neither of the properties P or Q are
caused. A, is non-total, and has no model extending I.

Arbitrary FO sentences

To lift Property 3, we have to transform arbitrary FO sentences to clausal form,
V(AN -ANA, D B1V---VBy,). The technique of Tseitin predicate introduction
presented in previous paragraph suffices to this end. In this case, each new
Tseitin predicate P, is defined by a definition with one rule. Note that such a
new definition is automatically total, because it is not recursive. Furthermore,
there cannot be recursion over a universal quantifier in the body, hence we can
apply the Lloyd and Topor transformation in such cases: replace a subformula
VT ¢ with free variables i by —P.,, and add { VZVy (P, < —¢) }. Also
note that clausal form includes formulas with n = 0, i.e., implications whose
antecedent is T.

Let Lift-3(T) be the theory resulting from this transformation on a theory
T.

Proposition 7.4. Lift-3(T) =yocavr T-

Example 7.8. Recall from Section 3.1.3 the two ID-logic (FO) encodings of
the statement “there is a final timepoint after which no moves are made”; one
without and one with a given constant F' to represent the final timepoint:

vt (t' >t D —(Im Move(m,t'))), (7.8)
Vt (t > F D —(3m Move(m,1))).

We slightly rephrase (7.8):
3t ~3¢" (' =t A (3m Move(m,t'))), (7.10)

and apply the transformation on sentence (7.10). First, we apply Tseitin pred-
icate introduction on the subformula 3¢’ (¢ > t A (Im Move(m,t'))), in-
troducing the Tseitin predicate SomeMoveAfter/1. The resulting formula,
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It ~SomeMoveAfter(t), is also not in clausal form, so we replace it by the
Tseitin predicate Final/0. The resulting ID-logic theory is

Final
{ Vt (Final — —SomeMoveAfter(t)) } (7.11)
{ vt,t" (SomeMoveAfter(t) — t' >t A Move(m,t')) }.

If we further apply the definition-merging transformation, and the transforma-
tion to Stable logic programs, we obtain the logic program”

:- not Final
Final :- not SomeMoveA fter(t) (7.12)
SomeMoveAfter(t) :—t' >t, Move(m,t).

Applying the transformation on formula (7.9) yields the following Stable
logic program:”

:=t > F, AnyMove(t) (713)

AnyMove(t) := Move(m,t). '
Notice how versions (7.12) and (7.13) look completely different, even though
expressions (7.8) and (7.9) in ID-logic have a shared structure.

Overview

The overall transformation first (Lift-3) transforms a theory with arbitrary FO
assertions into a theory where all FO sentences are in clausal form. This theory
may contain new definitions. Next (Lift-2), all definitions in the theory are
transformed to definitions with only conjunctions of literals in rule bodies. Then
(Lift-1) all definitions are merged, whereby possibly some additional clausal
sentences are added. Finally (ASP) the result is transformed into a Stable logic
program, by adding the appropriate double negation rules.

Theorem 7.1. Let T be an ID-logic theory. Let each definition A in T be total
inT — A. Then ASP(Lift-1(Lift-2(Lift-3(T)))) =vocan(r) T

Proof. By propositions 7.1-7.4. O
Remark 7.3. If T contains no rules with recursion over a universal quantifier in

the body, then the size of ASP(Lift-1(Lift-2(Lift-3(T)))) is linear in the size
of T.

"For simplicity, we leave out the double negation rules for Move/2 here.
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7.2.2 Stable logic programs to ID-logic

The reverse transformation, from Stable logic programs to ID-logic theories,
is much simpler; it is due to East and Truszczyriski (2006). It is equivalence
preserving for all Stable logic programs.

Let T be an arbitrary Stable logic program. Then the ID-logic theory
ID-logic(T) can be obtained from 7' by:

1. applying the syntactical conversion of “:-” to “~” and “” to “A”;

2. applying the syntactical conversion of integrity constraints : = Aq,..., A,,
not By, ...,not B,, to FO sentences V(A; A--- A A, D By V---V B,);%

3. for every predicate symbol P/n, if there is an occurrence of not P, replac-
ing all those occurrences by a newly introduced symbol nP/n, and adding
a sentence VZ nP(T) = ~P(T);

4. for every predicate symbol P/n that does not occur in the head of any
rule of T', add a sentence VI —P(Z);

5. grouping all rules together in one ID-logic definition, which is added as a
sentence.

Proposition 7.5 (East and Truszczynski 2006). T' =,ocqp(r) ID-logic(T).

Remark 7.4. This transformation always produces negation-free definitions;
negation only occurs in the FO part of the resulting theory.

7.3 Applicability of ID-logic modelling princi-
ples in Stable logic programs

Recall the methodological principles of modelling in ID-logic from Section 3.1:

— represent definitional knowledge by definitions;

— represent definitions as separate modules;

— represent non-definitional knowledge by FO sentences;

— represent each “case” of an informal definition by one rule in the formal
definition;

— use function symbols whenever the represented concept is clearly a function.
In this section we investigate whether, or to what extent, these principles

are applicable also to Stable logic programs.

8We defined the semantics of integrity constraints :- C' by a translation to a normal rule
f = C,not f, where f represents false. Naturally, the transformation to ID-logic theories
presented here works also on such translations.
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Represent definitional knowledge by definitions

According to this principle, definitional knowledge should be represented by a
definition, i.e., a set of rules.

Observe that mathematically well-defined definitions are total, and that for
total definitions the stable model semantics and the well-founded semantics co-
incide. Hence it is possible to apply the methodological principle of representing
definitional knowledge by a set of rules in Stable logic programs.

In Stable logic programs as occurring in the literature, we observe that
this methodology is applied in practice. Examples include the Hamiltonian
circuit encoding by Marek and Truszczynski (1999), the planning system for
decision support for the space shuttle by Nogueira et al. (2001), the block’s
world encoding by Lifschitz (2002), and the diagnostic reasoning framework by
Balduccini and Gelfond (2003), to name just a few.

Recall also that it is part of the ID-logic modelling methodology to use
the definition construct ezclusively for the purpose of representing definitional
knowledge. We investigate when, or whether, the rules occurring in Stable logic
programs can be considered as definitional rules.

We consider ID-logic theories that are modelled according to our method-
ological principles from Section 3.1. The Stable logic programs obtained by
applying the transformation of Section 7.2.1 on them yield (constraints and)
three types of rules: a) rules that originate from a definitional rule in ID-logic,
b) auxiliary rules, used to define subformulas, and ¢) double negation rules.

Rules of type a or b can clearly be considered definitional rules. Rules of
type ¢ that express the openness of predicates are in practice often represented
using the syntactic sugar of choice rules (Simons, 1999).

This naturally raises the question of whether in general, (non-choice) rules
in Stable logic programs are always of definitional nature. The answer is no. For
instance, Niemela (1999) describes “a knowledge representation technique based
on rules with exceptions”. Rules with exceptions are neither double negation
rules, nor are they of definitional nature. Consider the following example.

Example 7.9. Example 3.2 continued. The following Stable logic program
encoding of the graph colouring problem is taken from (Niemeld, 1999). The
predicates Vitxz/1 and Clr/1 are so-called domain predicates and serve the same
purpose as types in the ID-logic encoding.

Colour(v,c) := Vitx(v), Clr(c),not OtherColour (v, c) (7.14)
OtherColour(v,c) := Vta(v), Clr(c), Clr(d), c # d, Colour (v, d) (7.15)
1= Edge(v1,v2), Clr(c), Colour(vy, ), Colour(vs, ¢) (7.16)

Expression (7.16) expresses the basic problem statement (cf. (3.12) in the ID-
logic modelling). But rules (7.14) and (7.15) illustrate an interesting practice:
they simultaneously declare the predicate symbol C'olour to represent a function,
and open the search space—i.e., declare Colour to be open. These are rules with
exceptions: rule (7.14) expresses that vertex v is assigned colour ¢ unless there
is some exception, which is specified by rule (7.15).
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Represent definitions as separate modules

According to this principle, one should provide separate definitions whenever
possible. Stable logic programs offers no syntactical means of doing so, hence
this principle is not applicable to it.

However, the desire to obtain in Stable logic programs a modularity simi-
lar to that of ID-logic is evident from the work of, amongst others, Oikarinen
and Janhunen (2006); Oikarinen (2006). A logic program module is defined by
Oikarinen (2006) as a tuple (A, I,0), where A is a set of logic program rules,
I and O are disjoint sets of predicate symbols, and Def(A)NT =@: I and O
constitute the input and output of the module. It is then defined what are stable
models of such modules, and how they can be used in Stable logic programs.
An example module from (Oikarinen, 2006) is ({4 :- B}, {B},{A}), which has
() and {A, B} as stable models.

It is clear that such modules behave like ID-logic definitions, albeit with
stable models instead of well-founded models. When the rules in the module
form a total definition, the semantics of the module is the same as the semantics
of the corresponding ID-logic definition.

Represent non-definitional knowledge by FO sentences

According to this principle, non-definitional knowledge should be represented
by FO sentences, and such that their declarative reading is as close as possible
to the natural language reading of the knowledge being expressed. FO sentences
cannot be expressed in Stable logic programs, hence this principle is not directly
applicable.

However, constraints can be expressed in Stable logic programs; as our trans-
formation in Section 7.2.1 shows, these correspond to FO sentences in clausal
form.

As Example 7.8 illustrates, clausal form is not sufficient to express certain
statements (e.g. existentially quantified statements) in a declarative way.

Represent each “case” of an informal definition by one rule in the
formal definition

According to this principle, every rule in a definition should correspond to one
“if” case in the natural language statement of the definition. Since this some-
times requires more general rule bodies than conjunctions of literals, the prin-
ciple cannot be applied in Stable logic programs.

Note that the “auxiliary rules” of type b above violate the principle.

Use function symbols whenever the represented concept is clearly a
function

According to this principle, one should represent a concept that clearly is a func-
tion by a function symbol. Since Stable logic programs have Herbrand models,
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function symbols cannot be interpreted freely in Stable logic programs. Fur-
thermore, theories that contain non-constant function symbols have an infinite
Herbrand universe: this severely restricts the applicability of function symbols,
and hence of this methodological principle.

7.4 A comparison of model expansion and Her-
brand model generation

In this section we compare two problem solving tasks that fit in the ASP
paradigm: (parameterized) model expansion and Herbrand model generation.
Both of these computational tasks are applied to make model generation in the
context of a finite domain possible. In Section 7.4.1 we give a general intro-
duction to the comparison; in Section 7.4.2 we provide problem transformations
between model expansion and Herbrand model generation problems.

Remark 7.5. We reflect on the relation of these computational tasks to Stable
logic programs.

Stable logic programs are interwoven with the use of Herbrand models to
a considerable extent. For instance, the original definition of the stable model
semantics by Gelfond and Lifschitz (1988) is defined only for Herbrand models,
and the use of ground theories is inherent to the Gelfond-Lifschitz operator. For
these reasons, Stable logic programs are traditionally used only for the task of
Herbrand model generation.

In order to use Stable logic programs with model expansion, one must first
define classical (non-Herbrand) stable models, as in, e.g., (Denecker, 1993).

7.4.1 General introduction

Recall from Section 3.2 that parameterized model expansion generalizes finite
model generation: finite model generation is model expansion with an empty
input vocabulary. In case the Herbrand universe is finite (i.e. the function free
case), Herbrand model generation is a special case of finite model generation,
hence, is also generalized by model expansion.

The Herbrand universe is finite iff there are no function symbols except con-
stants. However, also for some classes of theories with an infinite Herbrand
universe, it is possible to generate Herbrand models. This is the case if all
Herbrand models demonstrably have a finite set of true domain atoms. The
following simple ID-logic theory is an example of a theory with an infinite Her-
brand universe, but whose only Herbrand model has a finite interpretation for
its predicate symbols:

{ P(x) «xz=F(A) } (7.17)

Its only Herbrand model I has domain dom(I) = {4, F(A), F(F(A)),...}, and
interpretation P! = {F(A)}.

To ensure that Herbrand models are finite in this sense even when the Her-
brand universe is infinite, syntactical restrictions have to be applied. Syrjanen
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(2001) developed such a restriction, called omega restriction, which is used in
ASP. It involves a stratification of the symbols used, and as such may be less
then straightforward to use.

The advantages of model expansion as a framework for declarative problem
solving have been adequately pointed out by Mitchell and Ternovska (2005).
Here we recall two that have an impact on the methodology of modelling.

Representation of data

Parameterized M X makes a conceptual difference between a problem descrip-
tion (represented by the parameters (T, o): a given problem encoding and input
vocabulary) and a problem instance (represented by an input interpretation),
i.e., both are independent of one another.

In Herbrand model generation, by contrast, a problem instance (i.e., data)
is usually given as facts that are part of the theory of which a Herbrand model
is to be found—and that are therefore methodologically indistinguishable of it.

The use of function symbols

The M X task requires a finite input interpretation—and therefore a finite do-
main—to be given. Hence, function symbols will have a finite interpretation in
all expansion models. Therefore function symbols can be used freely in theories
that are intended for use with the M X task. Note that many typical constraint
problems, such as the graph colouring problem, have a function as their solution.

In contrast, the use of Herbrand model generation places a severe restriction
on the use of function symbols.

7.4.2 Problem transformations

In this section, we show how to transform a specific instance of a parameterized
ID-logic-M X problem into a Herbrand model generation problem, and vice
versa.

Let T be an ID-logic theory, o C vocab(T') an instance vocabulary, and I, a
finite o-interpretation. We construct a new theory 7" from T and .

e First make the new theory function free by removing all occurrences of
function symbols, as in Section 3.5.

e Add a new predicate symbol D/1 to o, representing the domain D of I,
and interpret it by D/17> = D. (If the theory contains multiple types,
add a new domain predicate for each type.)

e Next, add a new definition Ap/,, for every P/n € o, and add to it the
facts P(d) « T for every d € P/nl-.

e Finally, add the UNA and DCA.

There is a one-to-one correspondence between expansion models of M X (7 5y (I5)
and Herbrand models of T".
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Example 7.10. Consider again the graph colouring problem from Example 3.2.
Let T7.19 be the theory

types: Vitz, Clr
input vocabulary o: Edge(Vtz, Vir)
expansion vocabulary: Colour(Vtz) : Clr
YuiVoe Edge(vi,ve) D (Colour(vy) # Colour(vs)).

Let I, be as in Example 3.3: the domains are Viz = {a,b,c} and Clr =
{R, G, B}, and Edge’~ is {(a,b), (b,c), (c,a)}.

We apply the transformation on M X 7 ,y(I,). First, we replace the function
Colour(Vitz) : Clr by a predicate Colour(Vtxz, Clr). We obtain the theory

types: Vix,Clr
input vocabulary o: Edge(Vitx,Vitx)
expansion vocabulary: Colour(Vtz,Clr)

Yui1Vog Edge(vi,ve) D =(3c Colour(vy, ) A Colour(vs,c)).

We further add the domain predicates Vita(Vitx) and Clr(Clr), and add defini-
tions to represent Vtzls, Clrls, and Edge’s, and we obtain 17" =

types: Viz,Clr
vocabulary: Viz(Vitx), Clr(Clr), Edge(Vitx, Vitz), Colour(Vix, Clr)
Yu1Vue Edge(vy,v2) D —=(3e Colour(vy, ) A Colour(va,c)),
{ Vtz(a) = T, Viz(b) < T, Vix(c)—T },
{ Clr(R) T, Cir(G) T, Clr(B)«—T },
{ Edge(a,b) — T, Edge(b,c) — T, Edge(c,a)—T }.

The UNA, (a#b)A(a#c)A---AN(G#B), and the DCA,Vz x =aVuz =
bve=cvVz=RVz=GVzx =B, can be left implicit, as is customary in
Herbrand model generation.

The reverse transformation simply transforms the Herbrand model genera-
tion problem for a theory T into a parameterized M X problem M X ,y(I5),
where 0 = (), and I, is the interpretation with the Herbrand universe as domain.
This is only a valid M X problem when vocab(T) contains no function symbols
except constants, so that the Herbrand universe is finite.

7.5 Conclusion

In this chapter, we have compared Stable logic programs and ID-logic from the
viewpoint of the ASP paradigm. It should be noted that both logics may have
merits as a useful knowledge representation language also for other paradigms or
other computational tasks, such as deductive reasoning. Since ID-logic is based
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on FO, the extensive body of work on deductive reasoning (theorem proving)
for classical logic can serve as a basis for deductive systems for ID-logic. Hou
et al. (2007) introduces foundational work for such a deductive system.

We have provided transformations from ID-logic to Stable logic programs
and vice versa. The ID-logic to Stable logic programs transformation consists of
a number of inter-ID-logic transformations that simplify the theory to a format
closely resembling normal logic programs, followed by a step that introduces
double negation rules for non-defined symbols. The reverse transformation,
from Stable logic programs to ID-logic, moves all negations outside the scope of
inductive definitions and creates a negation-free inductive definition.

We have investigated the applicability of the ID-logic modelling principles
from Section 3.1 in Stable logic programs. Finally, we have compared model
expansion and Herbrand model generation in Section 7.4.

In conclusion of this comparison, we believe that ID-logic is a better knowl-
edge representation language than Stable logic programs.
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Chapter 8

Conclusion

This text studied the topic of model generation for ID-logic . We summarize its
contributions and provide some directions for future work.

8.1 Summary of contributions

We have studied methodological principles of modelling in ID-logic, given ex-
amples, and presented the IDP system for model expansion for ID-logic.

We have made a semantical study of PC(ID), giving alternative characteri-
zations of the models of propositional inductive definitions (IDs). In particular,
we have proven Theorems 4.1 and 4.2, which characterized IDs by means of
justification graphs and loop formulas, respectively. The second result offers the
first vocabulary-preserving reduction of IDs to propositional calculus.

We have made an algorithmic study of SAT(ID), presenting various strategies
for solving SAT(ID) problems, and providing algorithms for several of these
strategies. In particular, Figures 5.3 and 5.4 offer various transition rules for
SAT(ID) algorithms, and Algorithms 5.2, 5.3, and 5.4 offer implementations
for the most important of these rules. Algorithm 5.3 is the first algorithm
to implement the A-Propagate transition rule, which can reasonably be called
the most general propagation rule for deriving literals possible for IDs. This
algorithmic study made heavy use of the semantical characterization presented
in earlier sections.

Also, we have implemented the MINISAT(ID) system, a SAT(ID) solver, as
an extension of an existing SAT solver, discussed its strategy (cf. Figures 5.8
and 5.9) and implementation, and demonstrated that its performance is state-
of-the-art.

We have also made a semantical and algorithmic study of an extension of
PC(ID) with aggregate expressions, and its associated satisfiability problem.
In particular, Figures 6.1 and 6.2 offer transition rules for non-recursive ag-
gregate expressions, and Algorithms 6.2-6.5 extend Algorithms 5.2 and 5.4 to
recursive aggregate expressions. They provide the first implementation of the
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well-founded semantics for aggregates developed by Pelov et al. (2007). This
study was based on, and extended, the work on justifications presented in earlier
sections.

Finally, we have made a comparison of ID-logic and Stable logic programs,
by providing transformations between them, by investigating to what extent
ID-logic’s methodological principles of modelling are applicable in Stable logic
programs, and by comparing Herbrand model generation to model expansion.

8.2 Future work

There are many ways in which this work could be extended.

First, the semantical analysis of Chapter 4 can be expanded. For instance,
it could be studied whether a minimal set £ of loops such that A = comp(A) U
Arcrs LFA(L) can be characterized. Such a characterization might shed impor-
tant light on the optimal strategy for a SAT(ID) solver to follow. The charac-
terization of elementary loops in this work is but a first step in that direction.

The characterization of PC(ID) using loop formulas may be used as a basis to
define new language extensions. In particular, inductive definitions can be seen
as a least fizpoint construct, and accordingly, loops containing an atom must
get external justification. It seems possible to define a similar greatest fixpoint
construct, and modify the loop formula characterization: for a greatest fixpoint
expression, loops containing a negative literal must get external justification. In
fact, such a study is being conducted in our research group.

The study of algorithms for the SAT(ID) problem in Chapter 5 can be
strengthened in different ways.

First, a more in-depth study of the FwLoop transition rule could be made.
Our Algorithm 5.3 implements this rule (and slightly generalizes it), but it is
naive in its choices. A thorough investigation may reveal whether more intelli-
gent choices can be made.

Second, the study of repetitive application of the BwlLoop transition rule
can be deepened. For instance, the order of processing different cycle sources
potentially has a big impact on the loops being derived, their sizes, etcetera.

Third, since experimental results indicate that, for best performance, the
choice of strategy should be tuned to the type of problem being solved, it could
be investigated whether dynamic strategy-choosing techniques may automate
this tuning. The adaptive strategy implemented in MINISAT(ID) is but the
first of wide range of possibilities for such dynamic behaviour.

Fourth, preprocessing techniques for PC(ID) should be researched. Such
techniques yield great payoff in SAT; the question is whether model-preserving
and semantics-preserving preprocessing techniques may yield the same payoff in
model generation for PC(ID).

Finally, an implementation is never ready; details of MINISAT(ID)’s imple-
mentation can be improved upon in various ways.

In Chapter 6, the most obvious item of future work is to generalize all results
concerning loop formula semantics to definitions with aggregate expressions.
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Also here, the algorithms and their implementation may be fine-tuned in various
ways.
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Appendix A

Extended Clausal Normal
Form (ECNF)

In this appendix, we define the Ascii syntax for ECNF theories. For the formal
definition of the logical syntax of ECNF theories, we refer to Sections 4.2.2,
5.2.4 and 6.2.2.

The syntax is derived from the DIMACS syntax for CNF theories. In this
syntax, the following conventions are used:

e atoms are represented by strictly positive integers;
e the negation of an atom NV is represented by —N;

e clauses are represented by whitespace-separated lists of literals, and are
terminated by a 0.

The syntax further allows comments: lines that start (first symbol on a new

[{P))

line) by a “c”. It further contains a notation for a problem statement: a line
that starts by “p cnf”, and further contains two positive integers, representing
respectively the largest atom that occurs (positively or negatively) in the theory,
and the number of clauses in the theory. This problem statement should occur
before any clauses (but potentially after some comments). In practice, most con-
temporary SAT solvers disregard this information, which is furthermore difficult
to produce for a grounder.

Example A.1. The CNF theory

x1V xg V 3,
sl \/332,
—x3 VT,

x1 VIV —xs3,

can be represented in DIMACS CNF as follows:
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c This is a comment.
p cnf 3 4

1-230

-1 20

3-10

12-30

Apart from the comment and problem statement line, a DIMACS CNF file
contains only integers and whitespace. In the following, will will implicitly
assume any list and any separately mentioned item to be whitespace-separated,
and literals to be represented as in DIMACS CNF.

We begin by modifying the problem statement: the problem statement of an
ECNF theory starts by “p ecnf”, and is followed by a (whitespace-separated)
list of extensions that are used in the theory.

if definitions occur, “def” must be in the list;

if aggregate expressions occur, “aggr” must be in the list;

if exists-unique expressions occur, “eu” must be in the list;

if at-most-one expressions occur, “amo” must be in the list.

A.1 Definitions

An ECNF theory may contain one definition that is in DefNF normal form.
Recall that a DefNF definition contains exactly one rule for each defined atom,
and that each rule body is either a disjunction or a conjunction of literals.

We represent a disjunctively defined rule by “D”, and a conjunctively defined
rule by “C”. This declaration is then followed first by the atom being defined,
next by a list of body literals, and finally, terminated by a 0. Note in particular
that both the empty disjunctive body (false) and the empty conjunctive body
(true) can be represented, by following the atom being defined by an empty list
of body literals.

Example A.2. We represent the ECNF theory

1V T2 vV s,

T < T2 V s,

XTo — X1 N\ XT3
in this format:

p ecnf def
1-230
D1-230
c2130

There is no requirement that a set of rules be represented contiguously; other
expressions, such as clauses, may be interspersed.
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A.2 Aggregate expressions

An ECNF theory may contain declarations of sets and weighted sets as follows:

e a set is declared by “Set”, followed by a positive integer that uniquely
denotes the set (note that this integer is of another category than atoms;
thus the same number may be used both to denote an atom and a set),
followed by a list of literals in the set, terminated by a O;

e a weighted set is declared by “WSet”, followed by a positive integer that
uniquely denotes the weighted set (whereby the category of sets and
weighted sets is the same), followed by a list of pairs of the form l=w,
where [ is a literal, and w an integer weight, and terminated by a 0.

Such sets and weighted sets must be non-empty.
An aggregate expression of the form d «— lwr < Aggr(S) < upr is repre-
sented as follows:

e first, a declaration of the type Aggr: respectively “Card”, “Sum”, “Prod”,
“Min”’ or “Max77;

e next, the atom d;

e followed by the integer denoting the set or weighted set S. This (weighted)
set must have been declared before; the type of set (weighted or not) must
correspond to the aggregate type (Card requires a normal set, the others
a weighted set);

e followed by the integers lwr and upr, and terminated by a 0.

Example A.3. The ECNF theory

S1 = {(mh 5)7 (_‘$27 3)}a

x3 — 1 < Sum(S7) <7,
x4 — 4 < Sum(S1) <5

can be represented by

A.3 Exists-unique and at-most-one expressions

An expression of the form EU(S), where S is a set of literals, is represented
by “EU”, followed by a list of the literals in S, terminated by 0. Likewise, an
expression of the form AMO(S) is represented by “AM0”, followed by a list of
the literals in S, terminated by 0. In both cases, S must be a non-empty set.



200 APPENDIX A. EXTENDED CLAUSAL NORMAL FORM (ECNF)

Example A.4. The ECNF theory

EU({I‘h _|£L‘2,I3})7
AMO({—\Il, Zo, _\1‘3}),

1V T2
can be represented by

EU1-230
AMO -1 2 -3 0
120



Appendix B

Problem encodings

We give the IDP encoding of the problems from Sections 3.3, 5.7 and 6.4.

B.1 Hamiltonian circuit

In IDP, using inductive definitions:

Given:
type Vtx
Edge (Vtx,Vtx)

Find:
Hc (Vtx,Vtx)

Satisfying:
! x y z : He(x,y) & He(x,z) =>y = z
! xyz : He(y,x) & He(z,x) =>y =

declare Reached(Vtx).
{ Reached(x) <- Hc(MIN,x).
Reached(x) <- Reached(y) & Hc(y,x).
}
! x : Reached(x).

In IDP, using only inductive definitions that depend on instance vocabulary:

Given:
type Vtx
Edge (Vtx,Vtx)

Find:
Hc (Vtx,Vtx)
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Declare:
Map (Vtx,Vtx)
Next (Vtx,Vtx)
Path(Vtx,Vtx)

Satisfying:

{Next (MAX,MIN) .
Next (u,v) <- SUCC(u,v).
}

// Path(z,n) iff there is a path of length ezactly n from MIN to z.
{Path (MIN,MIN) .

Path(y,npl) <- Path(x,n) & SUCC(n,npl) & Edge(x,y).

}

// Each vertex gets a unique "mapping number",
// which must be possible according to Path.
Map (MIN,MIN) .

! x: 71 n: Map(x,n).

! n: 71 x: Map(x,n).

! x n: Map(x,n) => Path(x,n).

// Consecutively mapped vertices should have an ezisting edge.
! u v nl n2: Map(u,nl) & Map(v,n2) & Next(nl,n2) => Edge(u,v).

// Now define the Hamiltonian edges as the edges between any
// two consecutive vertices according to the mapping.

! u v nl n2: Map(u,nl) & Map(v,n2) & Next(nl,n2) => Hc(u,v).

! u v: Hc(u,v) => 7 nl n2: Map(u,nl) & Map(v,n2) & Next(nl,n2).

B.2 Sokoban puzzle

Given:

type {

int Step

int Row

int Col

Block
}
Square (Row, Col)
Goal (Row, Col)
InitManX : Row
InitManY : Col
InitBlockX (Block) : Row
InitBlockY (Block) : Col
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MaxStep : Step

Find:
Move  (Step) : Block
MoveTo (Step,Row,Col)

Declare:
Block (Step, Block, Row, Col)
Man (Step, Row, Col)

Reachable (Step, Row, Col)
NoBlock (Step, Row, Col)
FreeX (Step, Row, Row, Col)
FreeY (Step, Row, Col, Col)
NextTo (Row, Col, Row, Col)

Satisfying:
// neighbour positions
{ NextTo(xl,yl,x2,y2) <- abs(x1-x2) + abs(yl-y2) =1
& Square(x1,y1)
& Square(x2,y2).
}

// free positions at each timestep
{ NoBlock(t,x,y) <- Square(x,y) & “(? b : Block(t,b,x,y)).
}

// rTeachable positions at each timestep
{ Reachable(t,x,y) <- Man(t,x,y).
Reachable(t,x,y) <- Reachable(t,x1,yl)
& NoBlock(t,x,y)
& NextTo(x,y,x1,yl1).
}

// one move per timestep

't x1 y1 x2 y2 : MoveTo(t,x1,yl) & MoveTo(t,x2,y2) =>
x1=x2 & yl=y2.

! x y : “MoveTo(MaxStep,x,y).

' t : Step(t) & t < MaxStep => 7 x y : MoveTo(t,x,y).

// move only to squares
' t xy : MoveTo(t,x,y) => Square(x,y).

// the block moves over a free line

't bxy: MoveTo(t,x,y) & Move(t)=b =>
(? y_old : Block(t,b,x,y_old) & FreeY(t,x,y,y_old)) |
(? x_old : Block(t,b,x_old,y) & FreeX(t,x,x_old,y)).

// the block to be moved must be reachable
' t b x x_0ld y : MoveTo(t,x,y) & Move(t)=b
& Block(t,b,x_old,y) & x<x_old =>
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(? z : z = x_old+1 & Reachable(t,z,y)).
't bx x_old y : MoveTo(t,x,y) & Move(t)=b

& Block(t,b,x_o0ld,y) & x>x_old =>

(? z : z = x_old-1 & Reachable(t,z,y)).
't bxyy_old : MoveTo(t,x,y) & Move(t)=b

& Block(t,b,x,y_old) & y<y_old =>

(? z : z = y_old+1l & Reachable(t,x,z)).
't bxyy_old : MoveTo(t,x,y) & Move(t)=b

& Block(t,b,x,y_old) & y>y_old =>

(? z : z = y_old-1 & Reachable(t,x,z)).

// free lines
{ FreeX(t,x_new,x_old,y) <- x_new < x_old
& (! x : x_new =< x & x < x_old =>
Square(x,y) & NoBlock(t,x,y)).
FreeX(t,x_new,x_old,y) <- x_new > x_old
& (! x : x_new > x & x > x_old =>
Square(x,y) & NoBlock(t,x,y)).
}
{ FreeY(t,x,y_new,y_old) <- y_new < y_old
& (' y : y_new =< y & y < y_old =>
Square(x,y) & NoBlock(t,x,y)).
FreeY(t,x,y_new,y_old) <- y_new > y_old
& (' y : y_new >=y & y > y_old =>
Square(x,y) & NoBlock(t,x,y)).
}

// position of the man and the blocks
{ Man(0,InitManX,InitManY).
Man(t+1,x+1,y) <- MoveTo(t,x,y) & Move(t)=Db
& Block(t,b,x_o0ld,y) & x<x_old.
Man(t+1,x-1,y) <- MoveTo(t,x,y) & Move(t)=b
& Block(t,b,x_old,y) & x>x_old.
Man(t+1,x,y+1) <- MoveTo(t,x,y) & Move(t)=b
& Block(t,b,x,y_old) & y<y_old.
Man(t+1,x,y-1) <- MoveTo(t,x,y) & Move(t)=Db
& Block(t,b,x,y_old) & y>y_old.

Block(0,b,InitBlockX(b) ,InitBlockY (b)) .
Block(t+1l,b,x,y) <- Move(t)~=b & Block(t,b,x,y).
Block(t+1,b,x,y) <- Move(t)=b & Block(t,b,x,y)
& (! xx yy : “MoveTo(t,xx,yy)).
Block(t+1l,b,x,y) <- Move(t)=b & MoveTo(t,x,y).
}

// goal
! x y b : Block(MaxStep,b,x,y) => Goal(x,y).
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B.3 Hitori puzzle

Given:
type {
int Xpos
int Ypos
int Number
}
State (Xpos,Ypos,Number)

Find:
Black(Xpos,Ypos)

Satisfying:
declare NextTo(Xpos,Ypos,Xpos,Ypos).
{ NextTo(xl,yl1,x2,y2) <- abs(xl - x2) + abs(yl - y2) = 1.
}
! x1 y1 x2 y2 : NextTo(xl,yl,x2,y2) => ~(Black(xl,yl) & Black(x2,y2)).

! x1 x2 y n : State(xl,y,n) & State(x2,y,n)

& “Black(xl,y) & "“Black(x2,y) => xl1 = x2.
! x y1 y2 n : State(x,yl,n) & State(x,y2,n)
& “Black(x,y1) & “Black(x,y2) => yl = y2.

declare Reachable(Xpos,Ypos).

{ Reachable(1,1) <- “Black(i,1).
Reachable(1,2) <- Black(1,1).
Reachable(x,y) <- NextTo(x,y,rx,ry)

& “Black(x,y)
& Reachable(rx,ry).

! x y : Xpos(x) & Ypos(y) & “Black(x,y) => Reachable(x,y).

B.4 Transitive opening

Given:
type Vtx
TC(Vtx,Vtx)

Find:
R(Vtx,Vtx)

Satisfying:
{ TC(x,y) <- R(x,y).
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TC(x,y) <- TC(x,z) & R(z,y).

declare RelTC(Vtx,Vtx,Vtx,Vtx).

{ RelTC(x,y,u,v) <- R(x,y) & ~(x=u & y=v).
RelTC(x,y,u,v) <- ?z: RelTC(x,z,u,v) & RelTC(z,y,u,v).

}

! x y : R(x,y) => "RelTC(x,y,X,y).

B.5 Social golfer

Given:
type {
Players
Groups
Weeks
int Size
}

GroupSize : Size

Find:
Plays (Weeks,Groups,Players)

Satisfying:
// Each golfer plays in exactly ome group every week.
!'pw: 7?1 g : Plays(w,g,p).

// The number of players in each group is equal to groupsize.
''wg: #{ p : Plays(w,g,p) } = GroupSize.

// Each pair of players meets at most once.
' pl p2 : pl <p2 =>#{ w : ? g : Plays(w,g,pl) & Plays(w,g,p2) } =< 1.

B.6 Magic series
Given:
type int Num

Find:
E1(Num) : Num

Satisfying:
''x : El(x) =#{y : El(y) = x }.
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Appendix C

Complete version of the
BwLoop algorithm

In this appendix, we give the version of the BwlLoop algorithm (Algorithm 5.2) as
it is implemented in MINISAT(ID). It is given by Algorithm C.1. This algorithm
differs from Algorithm 5.2 in two aspects:

e it uses a system of guards for conjuctively defined literals;

e it removes other cycle sources than the given cycle source cs from the set
of cycle sources C'S.

We use the same symbols as in Sections 5.4 and 5.5.
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Algorithm C.1: Justifying a cycle source cs

1 Let HP := {l | has a path to c¢s in Jg through non-false literals};
2 if ¢cs ¢ HP then CS := CS\ {cs}; return 0;
3 Let L:=Q := {es};
4 while Q # () do
5 Pop literal [ from @Q;
6 if | € Dyys then
7 if 3’ € Bd; such thatl' ¢ HP and M(I') # f then
8 | dy, (1) :=1; Justify (D);
9 else
10 foreach I’ € Bd; such that M(I') # f and !’ ¢ L do
11 L | Add ! to Q and to L;
12 else
13 if =3I’ € Bd; N HP then
14 | Justify(D);
15 else
16 if 3" € Bd; N L then guard(l) :=1';
17 L else Choose some I’ € Bd; N HP; guard(l) :=1'; Add I’ to Q
and to L;

18 return L;

19 function Justify [

20 Remove [ from HP, L and Q;

21 if [ € CS then CS :=CS\ {l};

22 if [ = cs then return 0;

23 foreach I’ € L with guard(l') =1 do
24 L Push !’ on Q;

25 foreach ' € L N Dy with | € Bdy do
26 L dy (') :==1; Justify(I');

27 end function
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