
S KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
AFDELING INFORMATICA
Celestijnenlaan 200A — B-3001 Leuven

TRADING EXPRESSIVITY FOR EFFICIENCY IN STATISTICAL

RELATIONAL LEARNING

Promotor :

Prof. Dr. L. DE RAEDT

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Niels LANDWEHR

February 2009

S KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
AFDELING INFORMATICA
Celestijnenlaan 200A — B-3001 Leuven

TRADING EXPRESSIVITY FOR EFFICIENCY IN STATISTICAL

RELATIONAL LEARNING

Jury :

Prof. Dr. ir. D. Vandermeulen, voorzitter

Prof. Dr. L. De Raedt, promotor

Prof. Dr. ir. H. Blockeel

Prof. Dr. ir. J. Suykens

Prof. Dr. P. Frasconi (Università degli Studi di Firenze, Italy)

Prof. Dr. D. Page (University of Wisconsin, Madison, USA)

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Niels LANDWEHR

U.D.C. 681.3∗I26

February 2009

c©Katholieke Universiteit Leuven – Faculteit Ingenieurswetenschappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke toe-
stemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2009/7515/14
ISBN 978–94–6018–031–6

Abstract

Statistical relational learning (SRL) combines state-of-the-art statistical modeling with
relational representations. It thereby promises to provide effective machine learning tech-
niques for domains that cannot adequately be described using a propositional representa-
tion. Driven by new applications in which data is structured, interrelated, and heteroge-
neous, this area of machine learning has recently received increasing attention.

However, combining statistical modeling and relational representations also poses
new challenges. There is a trade-off between the expressivity of a machine learning for-
malism and its computational efficiency, as a higher expressivity entails a larger search
space during learning. Propositional machine learning techniques are at one end of this
trade-off, while approaches that combine the full power of statistical and relational learn-
ing are at the other end. This thesis presents a collection of simple SRL techniques that
focus on computational efficiency rather than maximum expressivity, and thereby occupy
an intermediate position in the outlined expressivity-efficiency trade-off.

The thesis has three main contributions. We first introduce dynamic propositional-
ization approaches, which provide a simple but principled integration of relational and
statistical learners. Dynamic propositionalization is shown to outperform more tradi-
tional static propositionalization approaches, while maintaining computational efficiency.
A second part presents Markov models for relational sequences, where sequence elements
can be logical atoms or complete logical interpretations. By restricting attention to fully
observable data and employing a Markov assumption, inference and learning in the re-
sulting formalisms is significantly easier than in more general SRL systems. In a final
part, we present two structured probabilistic models that are tailored to particular appli-
cation domains, namely haplotype reconstruction and activity recognition. These two
domains could be modeled using general-purpose statistical relational sequence models;
however, the restriction to a particular domain again allows us to derive more efficient
special-purpose inference and learning algorithms.

The approaches presented throughout the thesis are evaluated in several relational real-
world domains, including structure-activity prediction for chemical compounds, web page
classification, modeling user behavior in mobile phone networks, and modeling massively
multiplayer online games.

i

ii

Acknowledgments

Working on this Ph.D. thesis has been a wonderful and exciting experience. I would not
have been able to do the work I did and successfully finish this project if it had not been for
the help, support, and advice of many people both within the university and beyond. First
and foremost, I would like to thank my supervisor Luc De Raedt for his constant advice
and support during the last four and a half years. He not only helped me with many
technical questions and problems, but, more importantly, also showed me how science
works in general: how to write papers and how to read them, how to give presentations
and collaborate with fellow scientists, what is important and what is not. Whenever I got
bogged down in the technical details of a problem, Luc helped me to concentrate on the
general picture and identify the main issues that needed to be solved. He also actively
encouraged me to develop my own ideas and venture into different subfields of machine
learning, and helped me sort out what I had learned afterwards. Finally, Luc put me in
touch with several other excellent researchers from around the world, with whom a fruitful
collaboration developed.

My colleagues in the machine learning group, initially the smaller group in Freiburg
and later the larger one in Leuven, also influenced and contributed to my work. Specif-
ically, I would like to thank Kristian Kersting for the advice and guidance in particular
during the early phase of my Ph.D. work. Working together with Ingo Thon, Bernd Gut-
mann, and Andreas Karwath has also been both fun and productive, and I am looking for-
ward to continuing these collaborations. Björn Bringmann, Albrecht Zimmermann and
Siegfried Nijssen helped me by giving me a different perspective on the field of machine
learning in many interesting discussions.

A large part of my work has been done in close collaborations with other research
groups from around the world. This has not only given me the opportunity to gather
much new scientific knowledge, but also allowed me to go on enjoyable trips and make
true friends. Specifically, I would like to thank Andrea Passerini and Paolo Frasconi for
all the help they gave me with one of the main projects of the thesis, and many great
evenings enjoying Italian cuisine. A significant part of my work was also done in col-
laboration with the machine learning group in Helsinki, and I would like to thank Taneli
Mielikäinen, Heikki Manila, and Hannu Toivonen for many new insights and a great time
in Helsinki. The collaboration with Matthai Philipose from Intel Research Seattle was
also very fruitful.

iii

iv

Thanks are also due to all members of the general DTAI group in Leuven, specifically
Maurice Bruynooghe, who leads the group, and my office mates Ingo, Kurt, Robby, Laura,
and Martijn; the working environment in Leuven was superb and the size of the group
meant that there was always an interesting presentation or discussion to join. I also thank
Hendrik Blockeel, Johan Suykens, Paolo Frasconi and David Page for serving on my
Ph.D. committee and their excellent comments on the initial version of this thesis text,
and Dirk Vandermeulen for chairing my defense.

I gratefully acknowledge the financial support received for the work performed dur-
ing this thesis from the following organizations: European Union FP6-508861 project
on “Applications of Probabilistic Inductive Logic Programming II”, the research foun-
dation Flanders (FWO-Vlaanderen), the BOF-DOC grant of the K. U. Leuven, and the
GOA/08/008 project on “Probabilistic Logic Learning”.

Last but not least, I thank my family and personal friends for all their support and
encouragement. At times of intensive work, dealing with me was probably not always
easy. Special thanks go to Sybille, who has not only proofread this text but also managed
to drag me away from my desk and cheer me up when it seemed there was nothing in life
except work. Your support during the final months of writing up the text and defending
the thesis was invaluable.

Niels Landwehr
Leuven, Belgium, January 2009

Contents

Overture

1 Introduction 3
1.1 Artificial Intelligence and Machine Learning 3
1.2 Statistical Relational Learning . 5
1.3 Thesis Contributions and Roadmap . 6

2 Statistical and Relational Machine Learning 13
2.1 Statistical Machine Learning . 13
2.2 Relational Learning and Inductive Logic Programming 23
2.3 Statistical Relational Learning: A Brief Overview 34
2.4 A Framework for Integrating ILP and Statistical Learning 41

Part I Efficient SRL for Classification

Outline Part I 49

3 NFOIL: Integrating Naı̈ve Bayes and FOIL 51
3.1 Integrating Naı̈ve Bayes and FOIL: Setting 51
3.2 Integrating Naı̈ve Bayes and FOIL: Learning 55
3.3 TFOIL: Relaxing the Naı̈ve Bayes Assumption 61
3.4 Experimental Evaluation . 63
3.5 Related and Future Work . 75

4 KFOIL: Learning Simple Relational Kernels 77
4.1 Learning Relational Kernels . 78
4.2 The KFOIL Algorithm . 90
4.3 Experimental Evaluation . 95
4.4 Related and Future Work . 112

v

vi CONTENTS

Conclusions Part I 117

Part II Efficient SRL for Sequential Data

Outline Part II 121

5 Markov Chains for Sequences of Atoms 125
5.1 n-grams: Smoothed Markov Chains . 125
5.2 r-grams: Smoothed Relational Markov Chains 126
5.3 Experimental Evaluation . 134
5.4 Related and Future Work . 136

6 Markov Chains for Sequences of Interpretations 139
6.1 CPT-L: A Markov Model for Sequences of Interpretations 140
6.2 Inference and Parameter Estimation . 143
6.3 Experimental Evaluation . 148
6.4 Related and Future Work . 155

Conclusions Part II 157

Part III Embedded SRL: Application-Specific Approaches

Outline Part III 161

7 A Structured Hidden Markov Model for Haplotype Analysis 163
7.1 Population-based Haplotype Reconstruction 164
7.2 A Basic Model for Haplotype Reconstruction 167
7.3 Haplotype Structure Learning . 170
7.4 Experimental Evaluation . 173
7.5 Related and Future Work . 178

8 Interleaved Hidden Markov Models for Activity Recognition 179
8.1 Recognizing Activities of Daily Living 180
8.2 A Model for Interleaved Processes . 181
8.3 Inference and Parameter Estimation . 186
8.4 Experimental Evaluation . 192
8.5 Related and Future Work . 195

Conclusions Part III 199

CONTENTS vii

Finale

9 Summary and Future Work 203
9.1 Thesis Summary . 203
9.2 Future Work . 206

Appendix

A LoHMM Representation of Application-specific Models 211
A.1 LoHMM Representation of Haplotyping Model 211
A.2 LoHMM Representation of Activity Recognition Model 213

Bibliography 215

Publication List 233

Biography 237

viii CONTENTS

List of Figures

1.1 A Bayesian network model for lung cancer diagnosis 4

2.1 A Bayesian network for the Sprinkler domain 17
2.2 A Markov network for the Sprinkler domain 18
2.3 Graphical model representation of Markov and hidden Markov processes 20
2.4 Automaton representation of Markov and hidden Markov processes . . . 21
2.5 A dynamic Bayesian network model for activity recognition 22
2.6 Examples for relational data from three real-world domains 24

3.1 The naı̈ve Bayes and tree augmented naı̈ve Bayes model 62
3.2 ROC curves on the Alzheimer datasets 70
3.3 ROC curves on the Mutagenesis and NCTRER datasets 71

4.1 Effective examples and kernel matrix for three clauses 93
4.2 Effective examples and kernel matrix for four clauses 93
4.3 Learning curve on the NCI datasets. 103
4.4 Examples for clauses learned by KFOIL 106
4.5 Histogram of number of clauses matching examples and average kernel

values . 107
4.6 Kernel matrices learned by KFOIL on the WebKB dataset 108
4.7 Scaling behavior of KFOIL in the NCI domain 110
4.8 Number of effective examples and complexity of incremental scoring in

KFOIL . 111

5.1 Learning curve in the Phone I domain 136

6.1 Graphical representation of a formula as a BDD and ZDD 146
6.2 Convergence and scaling behavior of CPT-L in the blocks-world domain . 150
6.3 High-level view of a partial game state in Travian 151
6.4 Travian game dynamics visualized as changes in the game graph 152
6.5 ROC curve and AUC for CPT-L in the Travian domain 155

ix

x LIST OF FIGURES

7.1 A Markov model over haplotypes . 167
7.2 A hidden Markov model over genotypes 168
7.3 Visualization of the SPAMM structure learning algorithm 172
7.4 Runtime as a function of the number of markers 175
7.5 Reconstruction accuracy as a function of the number of samples 176

8.1 Interleaving in an activity recognition domain 181
8.2 A flattened hidden Markov model for activity recognition 183
8.3 Interleaved mixture of hidden Markov models in dynamic Bayesian net-

work notation . 184
8.4 Factorial hidden Markov model in dynamic Bayesian network notation . . 185
8.5 Log-likelihood and reconstruction accuracy of chainwise Viterbi 194
8.6 Reconstruction accuracy as a function of the amount of training data in

activity recognition . 195

A.1 A LoHMM for haplotype reconstruction 212
A.2 A LoHMM representing an interleaved mixture of hidden Markov models 214

List of Algorithms

1 Generic FOIL algorithm. 32
2 The TFOIL algorithm. 63
3 Algorithm for post-pruning a hypothesis in NFOIL. 74
4 Algorithm for building r-grams from data. 133
5 The level-wise SPAMM learning algorithm. 172
6 Chainwise Viterbi for interleaved mixtures of hidden Markov models . . . 190

xi

xii LIST OF ALGORITHMS

List of Tables

3.1 Datasets used in NFOIL/TFOIL experiments 65
3.2 Accuracy results for NFOIL, TFOIL and related methods 67
3.3 AUC results for NFOIL, TFOIL and related methods 69
3.4 Accuracy gain/loss for two-step propositionalization methods 72
3.5 AUC gain/loss for two-step propositionalization methods 73
3.6 Accuracy results and number of clauses after pruning in NFOIL 74

4.1 Datasets used in KFOIL experiments . 96
4.2 Results for KFOIL in the Mutagenesis, Alzheimer, and NCTRER domains 99
4.3 Results for KFOIL in the Biodegradability domain 100
4.4 Result for KFOIL with KTA scoring and different beam sizes 101
4.5 Result for single-task and multi-task learning in KFOIL 102
4.6 Class statistics for the WebKB dataset. 104
4.7 Predicates employed in the WebKB domain 104
4.8 Results for KFOIL on the WebKB dataset 105
4.9 Number of clauses induced by KFOIL in single-task and multi-task mode 109

5.1 Accuracy of r-grams in the Protein Fold domain 135
5.2 Accuracy comparison of r-grams to n-grams 135

7.1 Reconstruction Accuracy on Yoruba and Daly Data 174
7.2 Average Error for Reconstructing Masked Genotypes on Yoruba-100 . . . 177
7.3 Average Error for Reconstructing Masked Genotypes on Hudson 177

8.1 Accuracy on the ADL dataset . 193

xiii

xiv LIST OF TABLES

List of Symbols

X Random variable

X Set of random variables

P (X) Distribution over random variable X

P (x) Probability of value x

E(X) Expectation of random variable X

X Logical variable

p/k Predicate symbol of arity k

p(t1, ..., tk) Logical atom

Σ First-order alphabet

hb(Σ) Herbrand base of the alphabet Σ

I Herbrand interpretation

θ Logical substitution

q Definite clause

q Random variable over definite clause q

H First-order hypothesis

B First-order background knowledge

L First-order language bias

xv

xvi LIST OF SYMBOLS

x Vector-valued (propositional) example

e Relational example

E Set of training examples

ρ Refinement operator

ϕH,B Propositionalization based on hypothesis H

λ Statistical classifier

Pλ Distribution/probability estimate given by λ

f Margin function of support vector machine

K(·, ·) Propositional kernel function

K(·, ·,H, B) Relational kernel function defined in terms of hypothesis H

〈u, v〉 Scalar product of vectors u and v

〈M,N〉F Frobenius product of matrices M and N

S(Σ) Set of all ground sequences over the alphabet Σ

Sn(Σ) Set of equivalence classes induced on S(Σ) modulo n-congruence

s �θ s′ Sequence s subsumes sequence s′ with substitution θ

σ Selection for a CPT-theory

g Genotype

g[m] Allele pair at marker m on genotype g

h Haplotype

h[m] Allele at marker m on haplotype h

G Set of genotypes

H Set of haplotypes

xvi

Overture

1

Chapter 1

Introduction

1.1 Artificial Intelligence and Machine Learning

Artificial Intelligence, or AI, is often seen as the long-standing dream of building intelli-
gent machines than can perceive, think, and act in similar ways as human beings. While
this dream continues to fascinate and drive research efforts, AI today is also an impor-
tant subfield of computer science with significant real-world applications. It is concerned
with building computer programs that solve problems which would typically require in-
telligence if solved by a human. While the original goal of building machines that exhibit
general human-level intelligence remains elusive, AI as a problem-solving discipline has
been remarkably successful. In fact, computer programs that exhibit intelligence at solv-
ing a particular task are in wide use today, and their capabilities and scope expand con-
tinuously. Examples include control software for robots, face recognition from camera
images, text analysis and information retrieval on the world wide web, systems that auto-
matically process credit applications, detect fraudulent financial transactions, or provide
medical assistance and suggest treatment options based on a patient’s diagnostic record
(Moore, 1990; Lawrence et al., 1997; Chen, 1995; Carter and Catlett, 1987; Fawcett and
Provost, 1997; Magoulas and Prentza, 2001).

A key component of AI is machine learning. Machine learning is usually defined as
the study of how to make computer learn, that is, automatically improve their behavior
with experience (Mitchell, 1997). Machine learning is applicable in situations where hu-
mans are unable—or unwilling—to explicitly program a procedure for solving a given
problem, but example solutions (or a more indirect feedback mechanism) are available.
Consider, for instance, the problem of diagnosing patients with cancer, based on the pa-
tients’ records including information on symptoms, X-ray scans or patient history. It
is hard to explicitly write down a procedure that correctly predicts whether a patient has
cancer or not based on the available information, but many example cases (patient records
for which the correct diagnosis is known) are available. From these examples, machine

3

4 Introduction

Visit to Asia

Tuberculosis

Tuberculosis
or cancer

Positive
X-ray

Lung Cancer

Smoker

Bronchitis

Dyspnoea

Figure 1.1: A Bayesian network model for lung cancer diagnosis, inspired by (Lauritzen
and Spiegelhalter, 1988). The network relates diagnostic information, such as X-ray imag-
ing or patient symptoms, to medical conditions, such as Tuberculosis or Cancer. Arrows
indicate probabilistic influences between variables. See Section 2.1.1 for a more detailed
discussion of Bayesian networks.

learning can automatically infer a model: a formal representation of the structure inherent
in the data, which can, for example, be given by the joint probability distribution of all
domain variables. Presented with a patient record, such a model can be used to predict
the likelihood that this patient suffers from cancer (see Figure 1.1). In a similar manner,
machine learning approaches can be used to learn how to classify email as legitimate or
spam based on text statistics and user feedback, or to drive vehicles autonomously on
public highways based on camera images and observing a human driver (Wu and Vapnik,
1999; Pomerleau, 1989).

A general definition of machine learning can be given as follows (Mitchell, 1997):

Definition 1.1.1 (Machine Learning). A computer program is said to learn from experi-
ence E with respect to some class of tasks T and performance measure P , if its perfor-
mance at tasks in T, as measured by P , improves with experience E.

This definition not only encompasses a simple setup in which a computer program
(or model) is learned once from a fixed set of example cases, but also a setting in which
the program can continuously learn and improve its performance. The second setting has
important applications in areas such as spam filtering, where a filter must continuously
learn to adapt to new types of spam it will encounter over time (Gray and Haahr, 2004).

In addition to providing solutions for problems based on existing data or observations,
machine learning techniques can also yield new insights into the domain under considera-
tion. A learned model often summarizes the data in a helpful way, or uncovers regularities

1.2 Statistical Relational Learning 5

and associations which were previously unknown to the human observer. This process is
often referred to as knowledge discovery. In this sense, machine learning is closely re-
lated to statistics and data analysis techniques such as data mining. Data mining aims
at uncovering regularities in large data collections, such as sets of items appearing fre-
quently together (Han and Kamber, 2001). In contrast to machine learning, data mining
is typically focused more on the characterization of local structure in the data rather than
providing a global model. Nevertheless, there are close connections and significant over-
lap between the two fields.

The rate at which data is collected and stored in our modern world is ever-increasing.
The capacity of digital data storage has increased exponentially for many years (Fayyad
and Uthurusamy, 2002), and the pervasiveness of modern IT infrastructure makes it pos-
sible to collect data at a very low cost. Moreover, modern science also generates vast
amounts of experimental data, for example, in automated high-throughput experiments in
biology. It becomes harder and harder for humans to sift through and understand this data
without automation. There is a risk that data will remain in ”write-only” data storages
and will never be used, or humans can only inspect a small part of the data and important
connections will be missed. Machine learning and related data analysis methods are in-
creasingly important for making sense of large and complex data collections in science,
business, or the world wide web. They can easily surpass human capabilities in the sheer
volume of data that can be analyzed.

To summarize, machine learning can both be used to solve a particular problem (for
example, suggest a treatment for a patient based on a large set of medical records) and
to gain insight into a domain (for example, understand how certain symptoms correlate
with certain diseases). For the latter goal, interpretability of the learned model is of
crucial importance—that is, the learned model should not be a black-box solution, but
human experts should be able to inspect and understand both the model and how it makes
predictions. As an example, consider the Bayesian network shown in Figure 1.1, that
provides insight into the relationship between symptoms and diseases in a lung cancer
diagnosis domain.

1.2 Statistical Relational Learning

Traditional machine learning is concerned with learning from independent examples rep-
resented in an attribute-value (or propositional) format. For instance, in the cancer do-
main described above, attributes are patient symptoms such as dyspnoea or a positive
X-ray scan. Propositional learning has made much progress over the last decades, go-
ing from simple decision-rule induction to sophisticated and rigorous statistical modeling
techniques such as probabilistic graphical models or support vector machines, which yield
accurate models even in the presence of noise or uncertainty in the data (Bishop, 2006).

However, in many complex real-world domains a propositional representation is not
appropriate, as instances are richly structured and/or interrelated. As an example, imagine
that in the cancer diagnosis domain we are not only interested in the symptoms of an

6 Introduction

individual patient, but also in the patient’s family history, as the likelihood of developing
cancer is influenced by certain genetic traits shared with close relatives. In this case
examples cannot be represented as simple attribute-value vectors, as the data exhibits
a complex structure of relationships between patients, family members, and symptoms.
Such relational domains are most easily described by (a subset of) first-order logic or
related formalisms, for example, graphs and networks.

Learning from relational data has been extensively studied in the field of Inductive
Logic Programming (ILP) (Muggleton and De Raedt, 1994). In ILP, logical represen-
tations are used for both the data and the model that is to be inferred from the data.
More specifically, the goal of inductive logic programming is to characterize the data in
terms of a logical theory (see Section 2.2 for more details). Advantages of using such
a representation are that the learned model is easily understood by human experts, and
background knowledge can be used to guide the learning process. ILP approaches have
been successfully applied in a large number of relational domains, most notably in bio-
and chemoinformatics (Bratko and Muggleton, 1995). On the negative side, classical ILP
approaches do not take full advantage of recent advances in statistical machine learning.
Accordingly, ILP methods are often not competitive with statistical modeling techniques
if the available training data is noisy or only partially observable.

It is therefore not surprising that the study of statistical relational learning (SRL),
that is, the combination of statistical modeling techniques with relational learning, has
received much attention recently (Getoor and Jensen, 2000, 2003; Dietterich et al., 2004;
Fern et al., 2006; De Raedt and Kersting, 2003; Getoor and Taskar, 2007; De Raedt et al.,
2008). Statistical relational learning promises to combine the advantages of the two con-
stituent techniques, namely the expressivity and interpretability of ILP with the accuracy
and robustness of statistical learning methods. This has been recognized as one of the
central challenges in machine learning (Getoor and Taskar, 2007).

A large variety of statistical relational learning approaches have been developed re-
cently (see Section 2.3 for a brief overview). A number of successful applications of
SRL have also been reported, which can be attributed to the ability of SRL systems to
model both rich relational structure and uncertainty (De Raedt et al., 2008). However,
the high expressivity in SRL comes at a computational price: there is an inherent trade-
off between expressivity and efficiency in machine learning, as high expressivity leads
to a large search space during learning. SRL approaches that try to combine the full
power of statistical and relational learning can be seen as occupying one extreme in this
expressivity-efficiency trade-off. Propositional learning systems are at the other extreme,
as they are typically much more efficient but cannot handle the relational complexity of
many real-world domains.

1.3 Thesis Contributions and Roadmap

The goal of this thesis is to explore approaches to statistical relational learning that oc-
cupy an intermediate position in the expressivity-efficiency trade-off inherent in machine

1.3 Thesis Contributions and Roadmap 7

learning. Simple statistical relational models will be developed that deliberately restrict
expressivity, and thereby allow for more efficient learning and inference algorithms. This
will extend the applicability of SRL techniques to application domains for which current
approaches are computationally too demanding.

Different directions can be identified in existing approaches to SRL. The simplest cat-
egory of existing approaches are propositionalization techniques. They map the relational
instance space to a propositional space in which each instance is characterized by a fixed
set of attribute-value pairs derived from its relational description, and apply statistical
machine learning techniques in this simpler space (Kramer et al., 2001). Two cases can
be distinguished: instances can be either mapped to a small set of features obtained from
a classical relational learning system, or (implicitly or explicitly) to a very large feature
set. An example for the first case is post-processing of theories returned by ILP systems
using probabilistic models (Pompe and Kononenko, 1995). An example for the second
case are approaches that extract all frequent relational patterns from the data and use these
as features in a statistical classifier (Kramer and De Raedt, 2001), or propositionalization
systems such as Linus (Lavrac and Dzeroski, 1994) that use all features from a pre-defined
language bias.

In both cases, the main drawback of propositionalization is that the construction of
the mapping is decoupled from the actual statistical modeling. The feature set is thus not
specifically optimized for the statistical classifier in which it will be used, and the rela-
tional part of learning cannot take advantage of advanced statistical techniques to effec-
tively handle noise or guard against overfitting. In this sense, propositionalization avoids
the problem of inducing a joint statistical-relational model, by decoupling it into the two
separate steps of relational and statistical learning. Moreover, propositionalization sys-
tems typically need many features for accurate prediction, because the feature set is not
specifically optimized. Therefore, one of the main advantages of relational learning is
lost, namely that the final model is interpretable and yields insight into the domain under
consideration. One of the major contributions presented in this thesis are dynamic propo-
sitionalization techniques that replace the two-step approach in existing (static) proposi-
tionalization systems by an integrated learning procedure, and typically induce small sets
of interpretable first-order features. Such approaches have recently received significant
attention (Landwehr et al., 2005b; Davis et al., 2005a; Landwehr et al., 2007b; Rückert
and Kramer, 2007).

More ambitious approaches to SRL directly define probabilistic models over relational
data, often in a generative fashion. Most prominent are techniques based on knowledge
based model construction (KBMC). Given relational data, they construct a ground prob-
abilistic model by “unrolling” a probabilistic model template. Standard techniques for
inference and (parameter) learning can then be used in the ground network. Examples
for KBMC techniques include Probabilistic Relational Models (Koller, 1999), Bayesian
Logic Programs (Kersting and De Raedt, 2001), Relational Bayesian Networks (Jaeger,
1997) and Markov Logic Networks (Richardson and Domingos, 2006). Furthermore,
probabilistic models over relational data can also be defined via a (probabilistic) proof-

8 Introduction

based semantics, as in Stochastic Logic Programs (Muggleton, 1996) and PRISM (Sato
and Kameya, 1997).

These more ambitious approaches try to combine the full power of statistical and re-
lational modeling. While this allows for great expressivity and powerful probabilistic
inference, their inherent complexity comes at a computational price. This is particularly
relevant when learning models from data, which involves learning both the relational
model structure and the model parameters. For parameter learning, it is relatively straight-
forward to extend standard algorithms for probabilistic models (such as the expectation-
maximization algorithm) to KBMC approaches, but the resulting ground network can
become very large. How structure learning can be addressed in an efficient and statisti-
cally sound way is often unclear. General structure learning algorithms, which take into
account the statistical part of the model, are typically too inefficient to be applicable on
real datasets. At the same time, the high expressivity of these formalisms requires large
amounts of training data to reliably estimate the model structure. In most realistic settings,
the structure therefore has to be pre-defined by the user. If structure learning is performed,
it is typically again decoupled from the statistical modeling, for example, by running a
more traditional ILP algorithm to infer a set of approximately correct rules (Richard-
son and Domingos, 2004). A notable exception is the heuristic approach by (Kok and
Domingos, 2005), in which a simplified form of statistical learning is carried out to score
candidate first-order models. If statistical and relational learning are decoupled, this has
the same drawbacks as the static propositionalization approaches outlined above. As one
promising direction to alleviate these problems, this thesis will discuss KBMC approaches
which are tailored to a particular setting—such as fully observable, sequential data—or
application domain. This significantly reduces expressivity compared to fully-fledged
general-purpose SRL systems, but also yields significant computational savings.

The idea of trading expressivity for efficiency in statistical relational learning will be
explored in different settings throughout the course of the thesis. While there will be a
variety of techniques and problem settings considered, the general theme underlying all
presented approaches is to provide principled but simple solutions for statistical relational
learning problems. Specifically, the thesis is organized into three parts. Part I discusses
statistical relational learning for classification, Part II statistical relational sequence mod-
els, and Part III embedded SRL approaches that are tailored to a particular application
domain. In the following, we give a brief outline of the organization and main contribu-
tions of each part.

Part I proposes dynamic propositionalization techniques for relational classification prob-
lems. Dynamic propositionalization is an approach for tightly integrating statistical and
relational learning, by jointly learning a small, interpretable set of first-order logical fea-
tures and a statistical classifier in which these features are used. This contrasts with
traditional (static) propositionalization approaches, where feature selection and statistical
learning are decoupled. Chapter 3 explores dynamic propositionalization based on prob-
abilistic models. More specifically, we present the NFOIL and TFOIL systems. NFOIL
integrates the simplest probabilistic model, naı̈ve Bayes, with the simplest relational rule

1.3 Thesis Contributions and Roadmap 9

learner, FOIL. TFOIL extends the naı̈ve Bayes model used in NFOIL to tree augmented
naı̈ve Bayes. Chapter 4 explores dynamic propositionalization based on kernels. In the
resulting KFOIL system, a relational kernel function is learned that is defined in terms of
a small set of interpretable first-order features. Different learning settings and objective
functions are discussed. In particular, we show how multi-task learning can be addressed
by sharing the kernel function across tasks.

In both the graphical model and kernel setting, efficient incremental algorithms for
dynamic propositionalization are derived that have little or no computational overhead
compared to equivalent static propositionalization approaches. Empirically, we show
that dynamic propositionalization outperforms both static propositionalization and (non-
statistical) relational learning techniques in challenging real-world domains. Part I is
based on material that has appeared in the following publications:

N. Landwehr, K. Kersting, and L. De Raedt. Integrating naı̈ve Bayes and FOIL,
Journal of Machine Learning Research 8, pp. 481-507, 2007.

N. Landwehr, A. Passerini, L. De Raedt and P. Frasconi. kFOIL: Learning Simple
Relational Kernels, in Proceedings of the 21st National Conference on Artificial In-
telligence (AAAI-2006), Boston, Massachusetts, USA., 2006.

N. Landwehr, K. Kersting, and L. De Raedt. nFOIL: Integrating naı̈ve Bayes and
FOIL, in Proceedings of the 20th National Conference on Artificial Intelligence
(AAAI-2005), Pittsburgh, Pennsylvania, USA., 2005.

Part II deals with probabilistic models for relational sequences. We extend the sim-
plest propositional sequence models, namely Markov chains, to the relational case. Two
settings are considered: sequence elements can be individual logical facts, or complete
logical interpretations. Chapter 5 considers extensions of n-gram models to sequences
of logical facts. n-grams are simple but effective propositional sequence models based on
mixtures of Markov chains. The resulting r-gram model defines a Markov chain where
smoothed distributions can be obtained by decreasing the order of the Markov chain as
well as by relational generalization of the r-gram. To avoid sampling object identifiers
in sequences, r-grams are generative models only at the level of variablized sequences
with local object identity constraints, and thereby abstract away from a particular set of
identifiers occurring in the sequence. Chapter 6 considers Markov chains over sequences
of complete logical interpretations. Transition probabilities are defined using CP-logic,
an expressive probabilistic logic for modeling causality. By restricting CP-logic to the
sequential case, employing a Markov assumption, and requiring fully observable data, in-
ference and learning become more tractable than in general CP-logic. Moreover, efficient
special-purpose algorithms for inference and learning based on binary decision diagrams
are developed.

The models presented in Part II are applied to modeling traces of user behavior in
different domains, such as mobile phone usage and massively multiplayer online games.
Part II is based on material that has appeared in the following publications:

10 Introduction

I. Thon, N. Landwehr and L. De Raedt. A Simple Model for Sequences of Relational
State Descriptions, in Proceedings of the 19th European Conference on Machine
Learning (ECML-2008), Antwerp, Belgium, 2008.

N. Landwehr and L. De Raedt. r-grams: Relational Grams, in Proceedings of the
Twentieth Joint International Conference on Artificial Intelligence (IJCAI-2007), Hy-
derabad, India, 2007.

Part III is concerned with embedded SRL approaches: systems that employ statistical
relational learning principles, but are tailored to a particular application domain. In this
setting, the generality of the underlying SRL framework is sacrificed for a more efficient
system restricted to perform a particular task in a particular domain. We introduce two
application-specific models, namely for the haplotyping and activity recognition prob-
lems. These application domains exhibit a structure that can easily be represented using
relations, although the data under consideration is not explicitly relational. Accordingly,
the two proposed models can be represented as statistical relational models. Specifically,
they are instances of Logical Hidden Markov Models, an SRL framework upgrading hid-
den Markov models to the relational case (Kersting et al., 2006). However, by specializ-
ing to a particular application domain—and thus, a subclass of models—domain-specific
inference and learning algorithms can be derived which are orders of magnitude more
efficient than the general-purpose algorithms employed in LoHMMs.

Specifically, Chapter 7 proposes an application-specific model for the haplotyping
domain based on sparse hidden Markov models. For this model a domain-specific struc-
ture learning algorithm can be derived, which, in contrast to the general-purpose LoHMM
structure learning algorithm, provides efficient structure learning for real-world haplo-
typing datasets. In terms of reconstruction accuracy the resulting system is competi-
tive with state-of-the-art haplotyping systems developed in the bioinformatics commu-
nity. Chapter 8 presents an application-specific structured probabilistic model for activ-
ity recognition. The model is tailored towards recognition of interleaved activities, in
which observations are generated by several interleaving Markov processes. Again, the
model can be represented as a logical hidden Markov model. However, domain-specific
approximate inference techniques are required to achieve the necessary efficiency for real-
world activity recognition scenarios. Specifically, we will employ extensions of the chain-
wise Viterbi algorithm used in factorial hidden Markov models (Ghahramani and Jordan,
1997). Part III is based on material that has appeared in the following publications:

N. Landwehr. Modeling Interleaved Hidden Processes, in Proceedings of the 25th
International Conference on Machine Learning (ICML-2008), Helsinki, Finland,
2008.

N. Landwehr, T. Mielikäinen, L. Eronen, H. Toivonen, and H. Mannila. Constrained
Hidden Markov Models for Population-based Haplotyping, BMC Bioinformatics 8
(Suppl. 2), 2007.

1.3 Thesis Contributions and Roadmap 11

Finally, some of the work that was performed during the course of my Ph.D. research
has not been included in this thesis text. It will be briefly summarized now. In the con-
text of the activity recognition problem discussed in Chapter 8, we also investigated the
use of relational transformation-based tagging approaches to several activity recognition
tasks. This approach was prompted by the observation that activity recognition problems
are similar to tagging problems in natural language processing, as a given sequence of
observations needs to be tagged with an activity label at every point in time. Based on
inductive logic programming principles, we extended the work on transformation-based
tagging by Brill (1995) to deal with relational representations. The approach has been
shown to be competitive with probabilistic methods such as hidden Markov models. More
details can be found in (Landwehr et al., 2008, 2007c). Some additional work was also
performed in the haplotyping domain discussed in Chapter 7, where we investigated how
to combine haplotype reconstructions produced by different haplotyping approaches. This
can be achieved by defining appropriate distance functions between haplotype pairs, and
corresponding algorithms to compute mean or median reconstructions based on these dis-
tances. More details can be found in (Kääriäinen et al., 2007; Landwehr and Mielikäinen,
2008). The work on modeling sequences of interpretations described in Chapter 6 em-
ploys massively multiplayer online games as a benchmark domain. Further experiments
in this domain within a sequence classification setting were carried out using relational
sequence alignments (Karwath et al., 2008). Finally, earlier work on Logistic Model
Trees (see Landwehr et al., 2003) was extended, resulting in the publication (Landwehr
et al., 2005a).

12 Introduction

Chapter 2

Statistical and Relational
Machine Learning

This chapter provides some background on Statistical Relational Learning (SRL). We
roughly categorize existing work in the field, thereby providing a context for the contri-
butions of the thesis. The chapter is organized as follows: we first present a brief review of
(1) the statistical perspective on machine learning and (2) relational learning techniques
in Section 2.1 and Section 2.2. Afterwards, Section 2.3 discusses different classes of ex-
isting SRL techniques: propositionalization, knowledge-based model construction, and
proof-based models. We also outline some of the open questions and challenges in the
field. Finally, we propose a learning setting that extends inductive logic programming
towards a joint statistical-logical model in Section 2.4.

2.1 Statistical Machine Learning

This section will briefly outline some fundamental concepts of statistical machine learn-
ing, and introduce notation and terminology that will be used throughout the thesis.

The general setup in statistical machine learning is as follows. We are given a set E =
{x1, ..., xN} of training examples, which are points in an M -dimensional instance space
X = D1 × ... ×DM , where Di is the domain of the i-th feature or attribute describing
the example. A feature domain Di can be binary, Di = {true, false}, categorical,
Di = {v1, ..., vl} for a fixed set of l distinct values, or continuous, Di = R. E will also
be called the training data and the xi training instances. It is assumed that the xi are
independently drawn from a fixed distribution P (X); thus P (x1, ..., xN) =

∏N
i=1 P (xi).

Such examples are said to be i.i.d., independently drawn from identical distributions.
Unless noted otherwise, we will denote random variables with uppercase letters (such

as X), and values of random variables with lowercase letters (such as x). Note that x can

13

14 Statistical and Relational Machine Learning

be vector-valued, as in the training examples x1, ..., xN . Furthermore, P (x, y) is used as
a short form for P (X = x, Y = y).

Different problem settings can now be formulated. Sometimes, the goal is simply
to estimate the unknown density function P (X), which is called unsupervised learn-
ing. More frequently, we are interested in making predictions about a particular class
attribute y given the remaining attributes; this is called supervised learning. In a su-
pervised learning setting, E is a set of examples {x1, ..., xN} as above, plus a set of
labels {y1, ..., yN} with yi ∈ Y , that is, Y is the domain of the class attribute. Instances
and labels are assumed to be independently drawn from a joint distribution P (X, Y),
such that P (x1, ..., xN , y1, ..., yN) =

∏N
i=1 p(xi, yi). Labels can be binary, categorical,

or continuous. We will mostly focus on classification problems, where labels are binary
or categorical. Supervised learning problems with continuous labels are called regression
problems.

The goal in prediction is to infer from the available data E a model λ : X → Y that
has minimum error on unseen instances x 6∈ E. More formally, we want to minimize the
generalization error

Err(λ) = Ex,y(`(λ(x), y)) =
∫
X

∫
Y

`(λ(x), y)P (x, y)dxdy (2.1)

where Ex,y denotes the expectation with respect to the distribution P (X, Y), and ` is a
loss function that measures the loss of predicting λ(x) if the true label is y. Note that if
the domain of x or y is finite, the corresponding integral is replaced with a finite sum. For
classification problems, `(y′, y) is typically misclassification error given by

`(i, j) =
{

0 : i = j
1 : otherwise .

These considerations can be formalized in the following learning setting:

Problem 2.1.1 (Statistical Learning).

Given

• A set of training instances E ⊂ X × Y ;

• A space of possible classifiers Λ ⊂ {λ | λ : X → Y };

• A loss function ` : Y × Y → R

Find
λ∗ = arg min

λ
Err(λ)

where Err(λ) is defined by Equation (2.1).

2.1 Statistical Machine Learning 15

Unfortunately this is not an operational definition as the true generalization error
Err(λ) of a model λ cannot be determined. Instead, λ is typically selected based on
a combination of the training error

ErrE(λ) =
1
N

N∑
i=1

`(λ(xi), y)

and some bias or regularization term that specifies a preference relation over models in
Λ (see Bishop, 2006, for a more detailed discussion).

Note that so far we have only assumed that the classifier λ returns a class label λ(x) ∈
Y . For several reasons, it can be beneficial if λ returns an estimate Pλ(Y | X = x) of
the conditional distribution P (Y | X = x) over labels given an instance x. First, this
is needed to make rational decisions in the context of varying misclassification costs, as
it enables us to trade off the probability of error and the expected cost of a particular
misclassification. Second, a probabilistic classification provides a confidence value for
any prediction. This is useful in many domains, for instance, to refer ambiguous cases to
a human expert for further inspection.

A natural approach to statistical modeling is estimating the joint distribution P (X, Y)
from E. Given such an estimate Pλ(X, Y), a predictive distribution is obtained by

Pλ(y | x) =
Pλ(x, y)
Pλ(x)

=
Pλ(x, y)∑

y′∈Y Pλ(x, y′)
.

This approach is called generative modeling, and the resulting model λ is called a gener-
ative model:

Definition 2.1.1 (Generative Model). A generative model λ provides an estimate Pλ(X, Y)
of the full joint probability distribution P (X, Y) based on the available training data E.

Generative models thus capture the full probabilistic structure of the domain, and in
particular allow to sample new data from the learned model (that is, they allow to predict
not only labels but also instances that are likely to be encountered). Generative models
are the most widely used statistical models; examples include Bayesian networks, hidden
Markov models, and Markov networks.

An alternative class of models that has received increasing attention recently are dis-
criminative models. The idea behind discriminative modeling is to directly model the
conditional distribution P (Y | X), avoiding the (for prediction unnecessary) effort of
estimating P (X):

Definition 2.1.2 (Discriminative Model). A discriminative model λ provides an estimate
Pλ(Y | X) of the conditional probability distribution P (Y | X) based on the available
training data E.

16 Statistical and Relational Machine Learning

While the relative merits of generative and discriminative modeling are still being dis-
cussed (Ng and Jordan, 2001; Liang and Jordan, 2008), discriminative models have been
shown to outperform generative models empirically in many domains (see, for instance,
the discussion in Nallapati, 2004).

There are also important classes of models which can be statistically motivated, and
will thus be called statistical models in this thesis, but do not explicitly manipulate proba-
bility distributions. The most important class we will be concerned with are many kernel
machines. Kernels generalize the notion of inner product to arbitrary domains, in that the
kernel function corresponds to an inner product in an induced reproducing kernel Hilbert
space (RKHS). Inner product spaces are the basis of principled and powerful classification
algorithms such as the support vector machine, which fits a linear max-margin decision
boundary in the RKHS (Cortes and Vapnik, 1995). Kernel machines will be discussed
in more detail in Chapter 4. Note that while standard kernel machines do not explic-
itly represent probability distributions, there are other kernel-based learning approaches
that do combine kernels with explicit probabilistic frameworks, for example, Gaussian
processes (Rasmussen and Williams, 2005).

2.1.1 Probabilistic Graphical Models
A unifying framework for describing generative probabilistic models are graphical mod-
els. They represent a joint probability distribution over a set of random variables, and
use a graph structure to encode a probabilistic dependency structure (or, equivalently,
a set of independence assumptions). Graphical models have become one of the most
popular tools in statistical machine learning, as they combine a principled, compact, and
intuitive representation language for probability distributions with powerful inference and
learning algorithms. Two classes of graphical models can be distinguished: directed mod-
els (known as Bayesian networks) and undirected models (known as Markov networks).
In this thesis, we will mostly focus on directed graphical models, that is, (variants of)
Bayesian networks:

Definition 2.1.3 (Bayesian Network). A Bayesian network consists of

• a directed acyclic graph structure G over a set X = {X1, .., XM} of nodes repre-
senting random variables;

• for every Xi ∈ X, a specification of the probability distribution P (Xi | pa(Xi)),
where pa(Xi) denotes the set of parent nodes of Xi in G.

Here, a node Xi is called a parent of a node Xj if there is an arc from Xi to Xj in G.
The Bayesian network encodes the independence assumption that every node is condi-
tionally independent of all non-descendant nodes given the state of its parents. The joint
distribution represented by the network thus factorizes to

P (X1, ..., XM) =
M∏
i=1

P (Xi | pa(Xi)). (2.2)

2.1 Statistical Machine Learning 17

Cloudy

Sprinkler

Wet Grass

Rain

S R P(W=F) P(W=T)
F F 1.0 0.0
T F 0.1 0.9
F T 0.1 0.9
T T 0.01 0.99

C P(S=F) P(S=T)
F 0.5 0.5
T 0.9 0.1

C P(R=F) P(R=T)
F 0.8 0.2
T 0.2 0.8

P(C=F) P(C=T)
0.5 0.5

Figure 2.1: A Bayesian network for the Sprinkler domain (inspired by Pearl, 1988).

In the following, we will assume the Xi to be categorical, although extensions to
numerical variables exist (Bishop, 2006). Markov networks implement similar ideas using
undirected graphs:

Definition 2.1.4 (Markov Network). A Markov network consists of

• an undirected graph structure G over a set X = {X1, .., XM} of nodes represent-
ing random variables;

• a set of potential functions Φk, one for each clique k in G. A clique k is a subset of
nodes in G that is fully connected, and a potential function Φk is a mapping from
the joint states of variables in k to non-negative real numbers.

A Markov network encodes the independence assumption that a node is independent of
any other node in the network given the state of all its direct neighbors in the graph (the
Markov blanket). The joint probability distribution is given by

P (X1, ..., XM) =
1
Z

∏
k

Φk (2.3)

where Z is a normalizing constant called the partition function.

18 Statistical and Relational Machine Learning

Cloudy

Sprinkler

Wet Grass

Rain

ΦW,S,R 1.0 0.0 0.1 0.9 0.1 0.9 0.01 0.99

W F T F T F T F T

S F F T T F F T T

R F F F F T T T T

ΦC,S,R 0.2 0.09 0.2 0.01 0.05 0.36 0.05 0.4

C F T F T F T F T

S F F T T F F T T

R F F F F T T T T

Figure 2.2: A Markov network for the Sprinkler domain (inspired by Pearl, 1988).

An important advantage of Bayesian and Markov networks is their ability to represent
full joint distributions in a sparse way by exploiting independence assumptions according
to Equation (2.2) and Equation (2.3). While a naı̈ve specification of the joint distribution
requires a number of parameters exponential in the number of variables, the number of
network parameters is exponential only in the size of the largest set of parents of a node
(Bayesian network) or the size of the largest clique (Markov network). Furthermore, the
graphical representation is intuitive for human users, as arcs basically indicate influences
between random variables. For both Bayesian and Markov networks, sophisticated al-
gorithms exists for learning models from data and for performing inference (probability
calculations), as described, for instance, by Jordan and Weiss (2002).

Figure 2.1 shows a Bayesian network for the toy Sprinkler domain, inspired by Pearl
(1988). The fact that it is Cloudy influences the probability that there is Rain or the
Sprinkler is turned on. Both Rain and Sprinkler influence the probability of observing Wet
Grass. The same joint distribution over the four variables involved can be expressed using
the Markov network given in Figure 2.2. Note that the additional (undirected) dependency
between Sprinkler and Rain needs to be added, as the network would otherwise encode
the assumption that Rain was independent of Sprinkler given information on both Cloudy
and Wet Grass, an assumption not encoded in the Bayesian network. Note furthermore
that the conditional probability distributions in the Bayesian network have been replaced
by two clique potentials ΦC,S,R and ΦW,S,R.

We will encountered Bayesian networks again—as a general probabilistic representa-
tion formalism—in techniques discussed later (in Section 2.1.2, Chapter 3, Chapter 8).

2.1.2 Markov Processes
A further important scenario in statistical learning is the modeling of time series or se-
quential data. Time series models describe the dynamic state of a system over time by
capturing its (statistical) transition behavior. We will be specifically interested in Markov

2.1 Statistical Machine Learning 19

processes, which form the basis of much of our discussion in Part II and Part III of the
thesis.

Assume there is a processR whose state over time is described by a series of random
variables Z1, Z2, Z3, ..., where Zt denotes the state of R at time t. R is called Markov
if P (Zt+1 | Z1, ..., Zt) = P (Zt+1 | Zt), and stationary if this transition distribution is
time-invariant, that is, P (Zt+1 | Zt) = P (Zt+k+1 | Zt+k). A Markov process can thus
be defined as follows:

Definition 2.1.5 (Markov Process). A stationary Markov processR consists of

• a set Z of possible states the process can be in at any point in time;

• an initial-state distribution P (Z1), where the variable Z1 with domainZ represents
the initial state ofR;

• a transition distribution P (Zt+1 | Zt) which determines the probability to transi-
tion from state Zt ∈ Z to Zt+1 ∈ Z , where P (Zt+1 | Zt) = P (Zt | Zt−1) for all
t.

Given T ∈ N, the joint distribution over state variables Z1, ..., ZT is given by

P (Z1, ..., ZT) = P (Z1)
T∏

t=1

P (Zt+1 | Zt). (2.4)

To learn time series models from data, we are given a set E = {s1, ..., sN} of se-
quences that describe the observed behavior of the process. That is, si = zi1, ..., ziTi

for i = 1, ..., N where zit is the observed state of R at time t in sequence si. We will
also assume that sequences are drawn independently from the distribution P (Z1, ..., ZT)
defined byR (Equation (2.4))1. Note that, in contrast to general machine learning setting
described above, the individual states zi1,...,ziTi

are not i.i.d. as they are correlated over
time, while the sequences s1, ..., sN are.

In general, the random variable Zt describing the state of R can be factored into sev-
eral variables that describe different aspects of the current state, that is, Zt can in general
be a set of random variables. A particularly important case is that of Zt = {Xt, Yt},
where Xt is an unobservable internal state ofR, while Yt is some observable indirect ev-
idence of Xt. An important class of models in this setting are hidden Markov processes:

Definition 2.1.6 (Hidden Markov Process). A stationary hidden Markov process R con-
sists of

• a set SX of possible hidden states the process can be in;

• a set SY of possible observations;

1Here, we have not introduced an explicit distribution over the sequence length—this can be implemented,
for example, using sink states from which no further transition is possible.

20 Statistical and Relational Machine Learning

X1 X2 X3 X4 ...

(a) Markov process.

X1 X2 X3 X4 ...

Y1 Y2 Y3 Y4 ...

(b) Hidden Markov process.

Figure 2.3: Graphical model representation of a Markov and hidden Markov process.
Note that the Xi nodes in the hidden Markov model are hidden, meaning that their state
is never directly observable.

• an initial-state distribution P (X1), where the variable X1 with domain SX repre-
sents the initial hidden state ofR;

• a transition distribution P (Xt+1 | Xt) which determines the probability to transi-
tion from hidden state Xt ∈ SX to Xt+1 ∈ SX , where P (Xt+1 | Xt) = P (Xt | Xt−1)
for all t.

• a distribution P (Yt | Xt) for the observational variable Yt given the hidden state
Xt, where P (Yt | Xt) = P (Yt−1 | Xt−1) for all t.

The joint distribution over hidden variables X1, ..., XT and observed variables Y1, ..., YT

is given by

P (X1, ..., XT , Y1, ..., YT) = P (X1)P (Y1 | X1)
T∏

t=1

P (Xt+1 | Xt)P (Yt+1 | Xt+1).

(2.5)

Hidden Markov models are important tools in a wide range of application domains
such as bioinformatics (Winters-Hilt, 2006), speech recognition (Rabiner, 1989), fi-
nance (Bahr, 2004), or activity recognition (Patterson et al., 2005).

Markov and hidden Markov processes can be easily represented using the Bayesian
network formalism introduced above. Figure 2.3 shows the graphical model representa-
tion of a Markov (left) and hidden Markov (right) process. Note that a Markov model
essentially corresponds to a linear chain of variables describing the current process state,
while a hidden Markov model is represented by two chains, one for the hidden state and
one for the observations. Another popular representation for (hidden) Markov processes
is the automaton notation. Figure 2.4 shows examples for a Markov and a hidden Markov
process in this notation. In the automaton notation, nodes indicate possible states the
process can be in, and arrows denote possible transitions and emission for each state.

In general, (hidden) Markov processes can be generalized to complex dynamic
Bayesian networks (DBNs), which are graphical models for time series data that involve
complex structures of interacting variables to describe the state of a process at any given

2.1 Statistical Machine Learning 21

0.2

0.3

0.7 0.8

s1 s2

(a) Markov process.

0.10.6

0.7

0.3

0.2

0.8

0.3
0.8

0.10.1

s2s1

o1 o2 o3 o2 o3o1

(b) Hidden Markov process.

Figure 2.4: Automaton representation of a Markov and a hidden Markov process. The set
of states is SX = {s1, s2}, and the set of observations (for the hidden Markov process)
is SY = {o1, o2, o3}. Transition and emission probabilities are indicated as arrow labels,
for instance, P (Xt+1 = s1 | Xt = s2) = 0.2, and P (Yt = o1 | Xt = s1) = 0.6.

time. More formally, a dynamic Bayesian network defines a Bayesian network template
B which is “unrolled” over time, such that there is one copy B(t) of the template for every
point t in time. The template B defines probabilistic dependencies both between variables
within B (as in a normal Bayesian network) and between time slices. The latter are arcs
Xi

t → Xj
t+1 which connect a variable Xi

t ∈ B(t) to a variable Xj
t+1 ∈ B(t + 1). Param-

eters are shared across time slices, thus DBNs are stationary in the sense outlined above.
As an example for a complex DBN model, Figure 2.5 shows a network for recognition
of interleaved activities. In this network, only nodes of the form Yt (for t = 1, ..., T) are
observable, while Sm

t and Zt are hidden (see Chapter 8 for more details). Note that both
Markov processes and hidden Markov processes are simple instances of DBNs.

From a statistical perspective, three interesting problems can be considered for time
series models:

Problem 2.1.2 (Inference and Learning Tasks for Time Series Models). Let R denote a
time series model over the state variables Z = X ∪Y , where X denotes the set of hidden
state variables and Y denotes the set of observable state variables.

• Inference: Given a sequence of observations y1, ..., yT , where yt denotes the joint
state of variables in Y , find the probability

P (y1, ..., yT | R) =
∑

x1,...,xT

P (x1, ..., xT , y1, ..., yT | R)

of the given sequence of observations.

• Decoding: Given a sequence of observations y1, ..., yT , where yt denotes the joint
state of variables in Y , find the most likely sequence

arg max
x1,...,xT

P (x1, ..., xT | y1, ..., yT ,R)

22 Statistical and Relational Machine Learning

Yt−1 Yt Yt+1

S
(1)
t−1

S
(2)
t−1

S
(3)
t−1 S

(3)
t

S
(2)
t

S
(1)
t

S
(1)
t+1

S
(2)
t+1

S
(3)
t+1

ZtZt−1 Zt+1

Figure 2.5: A dynamic Bayesian network model for recognition of interleaved activities.
Only nodes of the form Yt are observable (see Chapter 8 for a more detailed discussion).

of hidden states to have generated the observations.

• Parameter Learning: Given a set E = s1, ..., sN of sequences of observations with
si = yi1, ..., yiTi , find (new) parameters forR maximizing the likelihood

L(E) =
N∏

i=1

P (yi1, ..., yiTi
| R)

of the observed data.

Time series models and dynamic Bayesian networks in particular will be discussed in
more detail in Chapter 7 and Chapter 8.

Statistical machine learning techniques have been remarkably successful, and a wide
variety of different approaches have been developed in the last two decades. The statis-
tical perspective on machine learning offers thorough mathematical foundations, and a
principled way to deal with uncertainty, noisy, or hidden data. Moreover, statistical ma-
chine learning techniques yield state-of-the-art accuracies in many application domains,
often surpassing more traditional methods such as symbolic rule learners. On the other
hand, drawing on statistics and probability theory means that these approaches are very
much focused on working with data that is represented in the simple vector format intro-
duced in the beginning of this section. It is thus typically not straightforward to upgrade
statistical learning techniques to other, more flexible, data representations. This can be
a severe limitation for several application domains. The next section discusses relational
learning techniques, which can easily deal with complex and flexible data representations.
Finally, in Section 2.3, we will discuss how statistical relational learning approaches try
to combine the advantages of statistical and relational learning.

2.2 Relational Learning and Inductive Logic Programming 23

2.2 Relational Learning and Inductive Logic Program-
ming

This section introduces relational data representations and inductive logic programming
as a general framework for learning from relational data. More specifically, we will start
by introducing and motivating relational representations as a way to cope with the com-
plexity of real-world data collections. Afterwards, we briefly review some logic pro-
gramming concepts, and give an overview of problem settings and algorithmic techniques
employed in the field of inductive logic programming.

2.2.1 Relational Data Representations
Classical machine learning—as discussed in the previous section—assumes that data in-
stances xi are points in an M -dimensional space defined by a set of M features, and that
instances are independently drawn from identical distributions. However, even a cursory
look at the real world shows that most data encountered in practice does not adhere to
this simple attribute-value representation. Instead, data collections are often complex and
structured, and individual data points cannot be considered independently because there
are links or relations, and thus dependencies, between points.

The most ubiquitous example for complex data collections are relational databases
and graphs. The former is the preferred format for large-scale data storage in coopera-
tions, scientific knowledge bases, and public administration. Graph structures are found
whenever data consists of individual entities connected by a link structure. Figure 2.6
shows examples of graph-based data from three real-world domains. The first domain is
concerned with a structure-activity relationship (SAR) problem for chemical compounds.
In SAR problems, the goal is to predict a certain property of interest (for instance, ac-
tivation or blocking of a receptor in the human body, toxicity, or suppression of tumor
growth) given the structure of a molecule (Srinivasan et al., 1994). Such problems are of
central importance in many areas of bio- and chemoinformatics. SAR problems will be
further discussed in Chapter 3 and Chapter 4. The second example is concerned with the
analysis of the hyperlink structure in the world wide web. A possible task would be to
automatically classify web pages based on the words appearing on the page and the hyper-
link neighborhood (see Chapter 4). This can be helpful for solving information retrieval
problems (Slattery and Craven, 1998). The final example visualizes game graphs from a
massively multiplayer online game, which relate game entities such as players, cities, and
alliances (Thon et al., 2008). This domain will be discussed in more detail in Chapter 6.

We now discuss how relational data representations can elegantly account for the
complexity of real-world data. The main idea behind relational representations is to orga-
nize data in relations, that is, sets of tuples. There are two major formalisms: the entity-
relationship (or ER) model from databases and first-order predicate logic. Throughout
this thesis, we will use logic, as is offers a slightly more general framework. To this end,
we will first briefly review key elements of first-order predicate logic.

24 Statistical and Relational Machine Learning
8/27/08 4:09 PMeditor-1.svg

Page 1 of 1file:///Users/niels/Desktop/editor-1.svg

N

C
N

N

N

N

O
O

N O

O

N

O

+

8/27/08 4:10 PMeditor-2.svg

Page 1 of 1file:///Users/niels/Desktop/editor-2.svg

N

N

Cl

Cl

Cl

Cl +

+

8/27/08 4:09 PMeditor.svg

Page 1 of 1file:///Users/niels/Desktop/editor.svg

O

O

O

N

O

O

O

O

OO

O

N

O

8/27/08 4:57 PMeditor-3.svg

Page 1 of 1file:///Users/niels/phd/thesis/mythesis/introduction/molecules_example/editor-3.svg

N
N

O

SO O

O

O

-

(a) Structure-activity relationship prediction for molecules.

(b) Hyperlink graph on the world wide web.

border

border

border

border

Alliance 1

Alliance 2

Alliance 3

Alliance 5

P 2

1081

895
1090

1090

1093

1084

1090

915

1081

1040

770

1077

955

1073

8041054

830

9421087

786

621

P 3

744

748
559

P 5

861

P 6

950

644

985

932

837
871

777

P 7

946

878

864 913

P 9

border

border

border

border

Alliance 1

Alliance 3

Alliance 5

P 2

918
1090

931

779

977

835

781

9581087

808

701

P 3

838

947

1026

1081

833

1002
987

827

994

663

P 5

1032

1026

1024

1049

905

926

P 6

986

712

985

920

877

807

P 7

895

959

P 10

824

border

border

border

border

Alliance 1
Alliance 3

Alliance 5

P 2

938
1090

949

785

987

849

789

9761087

821

724

P 3

888

863

868

1040

1083

896

667

1005
994

883

1002

742

P 5

1046

1046

1040

985

894

1058

879

938

921

807

P 6
P 7

P 10

830

782
829

(c) Game graphs in a massively multiplayer online
game.

Figure 2.6: Examples for relational data from three real-world domains (hyperlink graph
taken from Cothey et al., 2006).

An atom is an expression of the form p(t1, ..., tk) where p/k is a predicate symbol of
arity n and the ti are terms. Terms are either constants (typically denoted by lowercase
letters or identifiers), variables (typically denoted by uppercase letters) or structured terms
of the form f(t1, .., tk), where f/k is a functor symbol of arity k and t1, ..., tk are again
terms. A literal is an atom or its negation. Ground expressions do not contain variables.
Ground atoms will also be called facts. A first-order alphabet Σ is a set of predicate
symbols, constant symbols, and functor symbols. The set of all ground atoms that can be
constructed from Σ is called the Herbrand base of Σ, denoted hb(Σ). A subset I ⊆ hb(Σ)
of the Herbrand base is called a Herbrand interpretation; I defines which of the possible
atomic statements are true in a given situation. A substitution θ = {V1/t1, ..., Vk/tk} is
an assignment of terms ti to variables Vi. Applying θ to a term or atom f simultaneously
replaces all occurrences of the variables V1, ..., Vk by the respective terms t1, ..., tk. The
resulting term or atom will be denoted by fθ.

2.2 Relational Learning and Inductive Logic Programming 25

Example 2.2.1. Consider the domain of natural numbers, represented as 0, s(0), s(s(0)),
s(s(s(0))), etc. A first-order alphabet for this domain is given by the constant 0, the func-
tor s/1 mapping a number to its successor, and predicates even/1 and odd/1 indicating
even and odd numbers. Structured terms of the form s(...s(s(0))..) are built from the
constant 0 and (repeated) application of the functor s/1. The following Herbrand inter-
pretation represents even and odd number of up to size four:

I = {even(0), even(s(s(0)), even(s(s(s(s(0))))), odd(s(0)), odd(s(s(s(0))))}.

The substitution θ = {X/s(s(0))}, applied to the atom f = even(X), yields the fact
fθ = even(s(s(0)).

First-order logic can naturally represent complex structured data, such as graphs and
networks: nodes are represented by constants and edges by ground atoms. Node or edge
labels can also be incorporated using additional predicates or arguments in predicates.

Example 2.2.2. Consider representing the graph structure of a molecule, as in the muta-
genicity experiments presented by Srinivasan et al. (1994).

8/27/08 8:43 PMeditor.svg

Page 1 of 1file:///Users/niels/Desktop/editor.svg

Cl

N

N
O

O

OO

molecule(d26).
mutagenic(d26).
lumo(d26, -2.072).
logp(d26, 2.17).

atm(d26,d26 1,c,22,-0.093).
atm(d26,d26 2,c,22,-0.093).
atm(d26,d26 3,c,22,-0.093).
atm(d26,d26 4,c,22,-0.093).
atm(d26,d26 5,c,22,-0.093).
atm(d26,d26 6,c,22,-0.093).
atm(d26,d26 10,cl,93,-0.163).
atm(d26,d26 11,n,38,0.836).
atm(d26,d26 12,n,38,0.836).
atm(d26,d26 13,o,40,-0.363).
atm(d26,d26 14,o,40,-0.363).
atm(d26,d26 15,o,40,-0.363).
atm(d26,d26 16,o,40,-0.363).

bond(d26,d26 1,d26 2,7).
bond(d26,d26 2,d26 3,7).
bond(d26,d26 3,d26 4,7).
bond(d26,d26 4,d26 5,7).
bond(d26,d26 5,d26 6,7).
bond(d26,d26 6,d26 1,7).
bond(d26,d26 10,d26 5,1).
bond(d26,d26 4,d26 11,1).
bond(d26,d26 2,d26 12,1).
bond(d26,d26 13,d26 11,2).
bond(d26,d26 11,d26 14,2).
bond(d26,d26 15,d26 12,2).
bond(d26,d26 12,d26 16,2).

26 Statistical and Relational Machine Learning

The constant d26 identifies the molecule under consideration. Atoms in the molecule are
represented with constants such as d26 1. A fact atom(d26,d26 1,c,22,-0.093)
denotes that atom d26 1 is a carbon atom of type 22 and charge -0.093. A fact
bond(d26,d26 2,d26 3,7) represents a bond of type 7 (aromatic) between atoms d26 2
and d26 3.

However, more general structures such as hypergraphs can also easily be represented.
Furthermore, there is a straightforward mapping from the ER model used in relational
databases to first-order predicate logic (Das, 1992), meaning that any relational database
can be converted to a logical representation. In the following we will refer to the large
class of complex data collections that can be represented this way as relational data, and
distinguish them from simple attribute-value datasets which we will call propositional.

As for propositional data, different machine learning problems such as supervised and
unsupervised learning can be considered for relational data. Typical prediction problems
include classifying whole graphs (such as molecules in structure-activity prediction), or
individual nodes within a graph (such as web pages in a hyperlink structure graph). More-
over, new problems such as link prediction can be considered (Getoor, 2003): predicting
new links in a given (partial) graph based on the available graph structure. As an exam-
ple, consider a model for hyperlink graphs, which could be trained to propose additional
appropriate hyperlinks from a given page to other related pages based on the known graph
structure. As another example for link prediction, we will consider predicting player ac-
tions in a massively multiplayer online game in Chapter 6.

Note that from a logical perspective, these different prediction problems are rather
similar: they all involve the prediction of some target predicate p(X1, ..., Xk); such a
target predicate can represent node or graph labels as well as links or even more complex
structures of interest.

2.2.2 Inductive Logic Programming: Problem Settings
Inductive logic programming (ILP) is a machine learning technique that uses logical rep-
resentations for both the data and the model that is to be inferred from the data. More
specifically, the goal of inductive logic programming in a classification setting is to infer
a hypothesis H in the form of a logic program from a given set of positive (E+) and neg-
ative (E−) examples, which together make up the training data E. The building blocks
of logic programs are definite clauses:

Definition 2.2.1 (Definite Clause). A definite clause q is an expression of the form

h← b1, ..., bn

where h and the bi are atoms, and ”comma” is read as conjunction, that is, b1 ∧ ... ∧ bn.
The atom h is called the head of the clause (denoted head(q)) and b1, ..., bn its body
(denoted body(q)) 2.

2A clause q is called range-restricted if all variables appearing in the head also appear in the body, and we
will limit our attention to range-restricted clauses.

2.2 Relational Learning and Inductive Logic Programming 27

The intuitive semantics of q is that whenever the body b1, ..., bn holds, the head h will
also be true. Note that the definition of a clause subsumes logical facts, as a clause with
an empty body (n = 0) is a fact.

Definition 2.2.2 (Logic Program). A logic program P is a set of definite clauses, that is,
P = {q1, ..., qm} with qi = hi ← bi1, ..., bini for i ∈ {1, ...,m}.

A Herbrand interpretation I is a model of a clause q if and only if for all substitutions
θ such that body(q)θ ⊆ I holds, it also holds that head(q)θ ⊆ I . I is a model of a logic
program P = {q1, ..., qm} if it is a model of all clauses qi ∈ P . A logic program P
entails another logic program P ′, denoted P |= P ′, if and only if every model of P is also
a model of P ′.

We will say that the program P logically entails a fact f , denoted P |= f , if f holds in
any model of P . Algorithmically, this can be determined using SLD resolution, which is
implemented in logic programming languages such as Prolog. The idea in SLD resolution
is to negate the fact f to be proven to form a so-called goal clause {¬f}. SLD resolution
then tries to derive from P ∪ {¬f} the empty clause through a series of resolution steps,
proving that P∪{¬f} is unsatisfiable and thus P |= f . A resolution step basically consist
of unifying a literal l in the current goal clause with the head of a clause q ∈ P using a
substitution θ. The current goal clause is then replaced by a new goal clause in which the
literal l is replaced by the negated literals in the body of q and the substitution θ is applied.
SLD resolution is sound and refutation complete in the sense that starting from P ∪{¬f}
there is a series of resolution steps yielding the empty clause if and only if P |= f . For a
more detailed discussion of logic programming and SLD resolution, the reader is referred
to Flach (1994). The least Herbrand model LH(P) of a logic program P corresponds
to the set of all facts entailed by P: LH(P) = {f ∈ hb(Σ) | P |= f} where Σ is the
first-order alphabet for P . Finally, note that logic programming systems such as Prolog
support reasoning with program clauses, which generalize definite clauses by allowing
atoms in the body to be negated. Thus, a program clause is an expression h ← b1, ..., bn

where the bi are (positive or negative) literals. In Prolog and related systems, negation
is often implemented as negation as failure, meaning that an atom is false if it cannot be
proven to be true (Flach, 1994).

Example 2.2.3. Reconsider the domain of natural numbers introduced above.

28 Statistical and Relational Machine Learning

nat(X)← even(X).
nat(X)← odd(X).

even(s(X))← odd(X).
odd(s(X))← even(X).

even(0).

← nat(s(s(0)))

← even(s(s(0)))

← even(s(0))

← even(0) ← odd(0)

← odd(s(0))

← odd(s(s(0)))

The five definite clauses shown on the left constitute a logic program for this domain.
The program states that natural numbers are either even or odd, the successor of an even
number is odd and vice-versa, and 0 is an even number. The SLD tree shown on the
right summarizes the resolution process for deriving the fact nat(s(s(0))). An edge in
the tree corresponds to a resolution step, and the adjacent nodes show the old and new
goal clause. A successful series of resolution steps corresponds to a branch in the SLD
tree that ends in the empty clause �. There is exactly one such series for this goal clause
(left branch).

In inductive logic programming, the goal of learning is to find a logic program H that
covers all positive and no negative examples, meaning that H should logically entail the
correct classification for all examples. Depending on the exact specification of examples
and the covers relation, this can be realized in different settings, which are discussed in
more detail below. An important feature of learning in logic-based representations is the
possibility to employ background knowledge (Lavrač and Džeroski, 1992). Background
knowledge is any form of prior knowledge relevant for the problem at hand, such as char-
acteristic chemical groups in classification tasks involving molecules (Srinivasan et al.,
1994). More formally, the background knowledge B is again a logic program that is sup-
plied to the learning system by the user, and which is assumed to be correct a priori. In
the presence of background knowledge, the goal of learning is to find a hypothesis H that
together with the background knowledge B covers all positive and no negative examples.
Background knowledge provides a flexible way to influence the process of model induc-
tion, by defining new features and views on the (raw) logical data, which can be used as
building blocks in the logical theory H .

Example 2.2.4. Continuing Example 2.2.2, consider the following background knowl-
edge:

2.2 Relational Learning and Inductive Logic Programming 29

nitro(X,[Atom0,Atom1,Atom2,Atom3]) :-
atm(X,Atom1,n,38,),
bondd(X,Atom0,Atom1,1),
bondd(X,Atom1,Atom2,2),
atm(X,Atom2,o,40,),
bondd(X,Atom1,Atom3,2),
Atom3 @> Atom2,
atm(X,Atom3,o,40,).

bondd(X,Atom1,Atom2,Type) :-
bond(X,Atom1,Atom2,Type).

bondd(X,Atom1,Atom2,Type) :-
bond(X,Atom2,Atom1,Type).

8/28/08 11:44 AMexample_molecule_highlighted.svg

Page 1 of 1file:///Users/niels/Desktop/example_molecule_highlighted.svg

O O

N
O

O

N

Cl

The background predicate bondd(X,Atom1,Atom2,Type) represents an (undi-
rected) chemical bond between atoms Atom1 and Atom2 in terms of the (di-
rected) logical predicate bond(X,Atom1,Atom2,Type). The logical predicate
nitro(X,[Atom0,Atom1,Atom2,Atom3]) represents a nitro group, highlighted in
the molecule structure on the right. Note that clauses are given in Prolog notation, where
h← b1, ..., bn is replaced by h :- b1,...,bn.

The two most important learning settings in ILP are learning from entailment and
learning from interpretations, which will now be discussed in more detail.

Learning from entailment is the most popular setting in inductive logic programming,
and it is implemented in a number of well-known systems such as FOIL (Quinlan, 1990),
GOLEM (Muggleton and Feng, 1990), and PROGOL (Muggleton, 1995). When learn-
ing from entailment, examples are ground facts3. The background knowledge B is a set of
definite clauses, and a hypothesis H covers an example e wrt. the background knowledge
B if and only if B ∪H |= e.

Problem 2.2.1 (Learning from Entailment).

Given

• a background theory B, in the form of a set of definite clauses h← b1, · · · , bn;

• a set of examples E, in the form of ground facts, classified into positive and negative
examples;

• a language of clauses L, which specifies the clauses that are allowed in hypotheses;

• the covers(e,H,B) function defined by covers(e,H,B) if and only if B∪H |= e;

• a score(E,H, B) function, which specifies the quality of the hypothesis H w.r.t.
the data E and the background theory;

3or, more generally, definite clauses—but we will restrict ourselves to the case of ground facts.

30 Statistical and Relational Machine Learning

Find
arg max

H⊂L
score(E,H, B) .

Many well-known learning algorithms in ILP implement this learning setting. They
differ in the choice of the scoring function score(E,H, B), the language bias L and the
way the search for the highest-scoring hypothesis H is carried out (greedy search, branch-
and-bound search, etc).

When learning from entailment, little information is provided at the level of examples
as they are represented by individual facts. In the setting of learning from interpretations,
examples provide more information as they are complete interpretations:

Problem 2.2.2 (Learning from Interpretations).

Given

• a background theory B, in the form of a set of definite clauses h← b1, · · · , bn;

• a set of examples E, in the form of Herbrand interpretations, classified into positive
and negative examples;

• a language of clauses L, which specifies the clauses that are allowed in hypotheses;

• the covers(e,H,B) function defined by covers(e,H,B) if and only if e is a model
of B ∪H , that is, e ∪B ∪H 6|=⊥;

• a score(E,H, B) function, which specifies the quality of the hypothesis H w.r.t.
the data E and the background theory;

Find
arg max

H⊂L
score(E,H, B) .

In addition to the different amount of information contained in the examples, a cru-
cial difference between the two settings is the notion of generality implied by the covers
function.

Definition 2.2.3 (Generality Relation). A hypothesis G is called more general than an-
other hypothesis S, denoted G � S, if all examples covered by S are also covered by
G.

From the definition of coverage in Problem 2.2.1 and Problem 2.2.2 it follows that
when learning from entailment, G is more general than S if and only if G |= S, but when
learning from interpretations, G is more general than S if and only if S |= G.

2.2 Relational Learning and Inductive Logic Programming 31

2.2.3 Inductive Logic Programming: Techniques
Many different learning techniques have been developed in the field of inductive logic
programming. This section briefly discusses some basic concepts to outline the general
principles of ILP algorithms. Moreover, the FOIL algorithm will be presented as a very
simple instance of an ILP rule learning system, which forms the basis for much of the
work presented in later chapters. In general, we are concerned with simple relational
learning techniques to be used as a starting point for efficient statistical relational learning
approaches. A detailed discussion of more advanced topics in ILP is thus beyond the
scope of this thesis; for more information, the reader is referred to De Raedt (2008).

The goal of learning is to find an optimal hypothesis according to some scoring func-
tion, which involves searching through a very large space of possible hypothesesH = 2L

(cf. Problem 2.2.1). A central idea in most ILP systems is to structure the search space
according to generality. The � relation induces a lattice on the space H, and thus pro-
vides a way to systematically search in H. This lattice can be searched either top-down
or bottom up. In the former case, the search starts with the most general hypothesis and
is then specialized; in the latter case it starts from the most specific hypotheses and is
then generalized. There are also some hybrid approaches, for instance, for theory revi-
sion systems (De Raedt and Bruynooghe, 1994). In the following we will mostly discuss
top-down approaches as they are often simpler than bottom-up search strategies.

A key concept for top-down search are refinement operators:

Definition 2.2.4 (Refinement Operator). A refinement operator ρ under θ-subsumption is
a function ρ : L → 2L such that

∀q′ ∈ ρ(q) : q θ-subsumes q′

A clause h → b1, ..., bn θ-subsumes a clause h′ → b′1, ..., b
′
l if and only if there is a

substitution θ such that {h,¬b1, ...,¬bn}θ ⊆ {h′,¬b′1, ...,¬b′l}θ.

A refinement operator thus returns a set of specializations of a given clause h ←
b1, · · · , bn. This is typically realized by either adding a new literal bn+1 to the clause
yielding h← b1, · · · , bn, bn+1 or by applying a substitution θ yielding hθ ← b1θ, · · · , bnθ.
When learning an individual clause, simple top-down search techniques start with the
most general clause and greedily search through the generality lattice using a refinement
operator.

We will now present one of the simplest ILP learners, namely the First Order Inductive
Learning, or FOIL, algorithm (Quinlan, 1990). This serves to outline the general princi-
ples of ILP algorithms, and will also form the basis for work presented later in Chapter 3
and Chapter 4. FOIL, like many inductive logic programming systems, follows a greedy
and incremental approach to induce a hypothesis. Such an algorithm is described in Al-
gorithm 1. It repeatedly searches for clauses that score well with respect to the data set
and the current hypothesis, and adds them to the hypothesis. In the update function, the
set of training examples can be updated after adding a clause to the current hypothesis. In

32 Statistical and Relational Machine Learning

Algorithm 1 Generic FOIL algorithm.
Initialize H := ∅
repeat

Initialize c := p(X1, · · · , Xk)←
repeat

for all c′ ∈ ρ(c) do
compute score(E,H ∪ {c′}, B)

end for
let c be the c′ ∈ ρ(c) with the best score

until stopping criterion
add c to H
E := update(E,H)

until stopping criterion
output H

the inner loop, the algorithm greedily searches for a clause that scores well. To this end,
it employs a general-to-specific hill-climbing search strategy. The search is initialized
with the most general clause p(X1, · · · , Xk)← where p/k is the predicate being learned
and the Xi are different variables. To generate specializations of the current clause q,
a refinement operator ρ under θ-subsumption is employed (Definition 2.2.4). From the
set of refinements ρ(q), the highest-scoring clause is selected and further refined, until a
stopping criterion is met. The algorithm employs a stopping criterion to determine when
to stop adding clauses to the current hypothesis.

This algorithm has been successfully applied to a wide variety of problems in in-
ductive logic programming. In the original FOIL algorithm, the technique is further
simplified to a separate-and-conquer approach: examples that are covered by a learned
clause are removed from the training data, and the score of a clause can be computed
without respect to the current hypothesis; that is, score(E,H ∪ {c′}, B) simplifies to
score(E, c′, B). Many different scoring functions and stopping criteria have been em-
ployed. The original FOIL algorithm uses information gain based on the number of
positive and negative tuples bound to clauses as the scoring function (Quinlan, 1990),
and a stopping criterion based on the minimum description length principle (Rissanen,
1978). MFOIL, a variant of FOIL that was particularly designed to cope with noise in
the training data, uses the m-estimate for scoring clauses and a significance-based stop-
ping criterion (Lavrac and Dzeroski, 1994).

It should be stressed that the search problem in ILP is difficult, and the huge size
of the search space requires heuristic search approaches for most real-world domains.
As in other optimization problems, heuristic search strategies in ILP can suffer from lo-
cal optima and premature convergence. The basic concepts present in FOIL, such as a
search based on a refinement operator under θ-subsumption, also appear in many other
ILP algorithms, and are therefore of general importance in ILP. However, the greedy

2.2 Relational Learning and Inductive Logic Programming 33

search strategy employed by FOIL is only one, simple option, and many more advanced
approaches have been explored in the literature. Other important classes of techniques
include: first-order decision trees, that upgrade propositional tree-based learners to rela-
tional representations (Blockeel and Raedt, 1998); bottom-up approaches, that focus the
search for clauses based on the available examples (Muggleton and Feng, 1990); and ap-
proaches based on branch-and-bound search (Muggleton, 1995). Local optima problems
can also be alleviated by lookahead search techniques, which search several levels ahead
in the refinement lattice for a candidate clause with a higher score. For example, in a level-
one lookahead search all secondary refinements ρ(ρ(q)) of a clause q are considered as
candidate clauses during search.

A further key component of practical ILP systems is the so-called language bias: a
set of definitions that define which subset of all clauses in the first-order alphabet are
syntactically valid. The language bias effectively constrains the search space by reducing
the number of refinements that have to be considered. A popular way of implementing a
language bias is to use a combination of type and rmode declarations. Type declarations
associate a type to every argument of a predicate and functor in the first-order alphabet
Σ. Variables appearing as arguments in predicates and functors take on the respective
argument type. Valid clauses are type-conform, meaning that a variable can assume only
one type. rmode declarations further constrain the valid clauses that can be formed. When
adding a new literal of the form l(X1, ..., Xk) to a clause in the refinement operator, the
rmode declaration defines how the variables X1, ..., Xk are instantiated: they can be new
variables that do not occur in the clause so far, unified with an existing variable (of the
right type), or one of a set of constants defined by the rmode declaration.

Example 2.2.5. Reconsider the mutagenesis domain outlined in Example 2.2.2 and Ex-
ample 2.2.4. A possible language bias for this domain is given below.

type(atm(molecule,atom,element,atomtype,charge)).

type(bond(molecule,atom,atom,bondtype)).

type(bbond(molecule,atom,atom,bondtype)).

type(nitro(molecule,nitro group)).

rmode(atm(+,-,c,22,-0.093)).

...

rmode(atm(+,-,o,40,0.836)).

rmode(atm(+,-,cl,93,-0.163)).

rmode(bbond,+,+,+,1).

rmode(bbond,+,+,+,2).

rmode(bbond,+,+,+,7).

rmode(nitro(+,-)).

The “+” symbol indicates that a new variable is introduced at this position when adding
the respective literal. The “-” symbol indicates that an existing variable—that is, a vari-
able already appearing in the partial clause to be refined—will be used.

The choice of language bias can significantly affect the effectiveness of the overall
hypothesis search. Furthermore, there can be intricate interactions between the search

34 Statistical and Relational Machine Learning

technique, background knowledge, and language bias definition; thus careful design of
these three elements is crucial to obtain good search results.

2.2.4 Inductive Logic Programming: Discussion
Inductive logic programming approaches have been remarkably successful, for example,
in application problems in bio-and chemoinformatics (see Bratko and Muggleton, 1995,
for an overview). These successes can, to a large extent, be explained by the use of
an expressive general purpose representation formalism that can elegantly account for
complex data, the easy incorporation of prior domain knowledge in the learning process,
and the fact that the induced rules are easy to interpret by domain experts.

At the same time, the classical ILP settings and techniques suffer from some signifi-
cant limitations. On the one hand, the use of logic as a unifying representation language
for examples, background knowledge and hypotheses is elegant and flexible. On the other
hand, logic as a representation and reasoning formalism is tailored to domains that are de-
terministic and discrete. In contrast, many domains in which machine learning is applied
are strongly stochastic, and observations often noisy, hidden, or incomplete. In proposi-
tional machine learning, approaches based on sophisticated probabilistic models and sta-
tistical characterizations of data have been receiving increasing attention (Bishop, 2006).
It has been recognized that the inability to (directly) cope with uncertain or probabilistic
information is a major drawback of standard logic, and thus standard ILP approaches (De
Raedt and Kersting, 2003). ILP techniques—by definition—search for a deterministic,
”crisp” logical theory that characterizes the data under consideration. For many domains
this will lead to suboptimal results simply because there exist no hard-and-fast rules to
characterize the data or make predictions.

2.3 Statistical Relational Learning: A Brief Overview

It has been realized that to model large-scale real-world domains, systems need to be able
to handle both inherent uncertainty and relational structure. By restricting their attention
to simple attribute-value representations, propositional machine learning approaches ig-
nore much of the relational complexity of the real world. As an example, consider the task
of building a filter for incoming e-mail. Traditional approaches are able to classify mes-
sages as spam or non-spam or sort them into a small set of pre-defined categories. How-
ever, we might want to detect that a message is not only non-spam but a request from our
supervisor to meet with a number of colleagues in his office to discuss a particular project,
and that this requires immediate attention. Producing and manipulating such structured
representations of objects and relationships is one of the central challenges for machine
learning systems (Getoor and Taskar, 2007). Statistical machine learning easily handles
uncertainty, while inductive logic programming and related techniques address learning in
relational domains. Simply speaking, statistical relational learning (or SRL) is the science
of combining these two streams of research into techniques that perform statistical learn-

2.3 Statistical Relational Learning: A Brief Overview 35

ing and inference in relational domains. Statistical Relational Learning is a relatively
young but burgeoning field, and it has received much attention in recent years (Getoor
and Jensen, 2000, 2003; Dietterich et al., 2004; Fern et al., 2006; De Raedt and Kersting,
2003; Domingos and Richardson, 2004; De Raedt et al., 2008). Moreover, many promis-
ing application domains have been identified that require SRL techniques (De Raedt et al.,
2008).

This thesis is concerned with the integration of statistical and relational learning tech-
niques as described above. In contrast to most approaches described in the literature,
we will specifically focus on relatively simple combinations of statistical and relational
techniques. By deliberately restricting expressivity, the resulting techniques occupy an
intermediate position in the trade-off between propositional techniques and fully fledged
statistical relation learning systems. As shown below, such a restriction has advantages
in terms of computational complexity and in particular allows for efficient and principled
structure learning. Before discussing these contributions in more detail in subsequent
chapters, we briefly review existing, related approaches in the field.

The definition of SRL as the integration of statistical and relational learning is rather
broad, and the problem can be approached from different directions. Accordingly, there
are a number of different perspectives on the field. Two general perspectives are (1) to
start from statistical techniques (such as graphical models) and extend these formalisms
to relational data representations, and (2) to start from relational learning techniques and
extend them with probabilistic elements, which includes probabilistic extensions of logic
programming languages (Sato and Kameya, 1997; Muggleton, 1996). Other directions
include so-called linked data settings (Macskassy and Provost, 2007) where individual
data items are propositional but links make them non-i.i.d., kernels methods for struc-
tured data (Gärtner, 2003), and application-specific techniques such as recommender sys-
tems (Adomavicius and Tuzhilin, 2005). It is therefore not easy to categorize all existing
work in SRL. However, we will briefly review three main approaches that can be distin-
guished, and which, although non-exhaustive, encompass many of the frameworks pro-
posed in statistical relational learning. These are propositionalization, knowledge-based
model construction, and proof-based methods.

2.3.1 Propositionalization

Propositionalization addresses relational learning problems by mapping the original rela-
tional data to a propositional representation, on which standard statistical machine learn-
ing techniques can be applied (Kramer et al., 2001). More specifically, a set of relational
featuresF = {f1, ..., fm} is employed to map a relational example e to an m-dimensional
(binary or numeric) vector

ϕF,B(e) =

 f1(e)
...

fm(e)

 . (2.6)

36 Statistical and Relational Machine Learning

This vector summarizes the original relational structure and possibly links to other in-
stances. Throughout the thesis, we will assume that the features fi are definite clauses of
the form p(X1, ..., Xk) ← b1, ..., bn where p(X1, ..., Xk) is the target predicate. An ex-
ample is mapped onto the vector ϕF,B(e) ∈ {0, 1}m with ϕF,B(e)i = 1 if B∪{fi} |= e.
That is, the vector ϕF,B indicates which of the features covers the example e. To summa-
rize, propositionalization defines a feature map from the space of relational examples to
the space of binary vectors ϕF,B(e) ∈ {0, 1}m. Note that the dimension m of this feature
map is the number of clauses in the logical theory, thus, this dimension will eventually
depend on the model that is learned from data.

Example 2.3.1. Reconsider the mutagenicity domain from Example 2.2.2, and the fol-
lowing set F = {f1, f2, f3} of relational features:

mutagenic(M)← aromatic ring(M, [A0, A1, A2, A3, A4, A5]),

bond(X, A5, A6, 1), atm(M, A6, o, ,)

mutagenic(M)← atm(M, A, o, ,), bond(M, A,, 2)

mutagenic(M)← atm(M, A1, cl, ,), bond(M, A1, A0, 1),

atm(M, A2, cl, ,), bond(M, A2, A0, 1), atm(M, A3, cl, ,), bond(M, A3, A0, 1)

where aromatic ring(M, [A0, A1, A2, A3, A4, A5]) is a background predicate indicat-
ing that M contains an aromatic ring structure involving molecules A0, ..., A5. These
clauses constitute features. Applying these features to a set of molecules yields the fol-
lowing propositionalized dataset:

8/28/08 10:31 PMeditor.svg

Page 1 of 1file:///Users/niels/Desktop/editor.svg

O

OO

OO
OO

8/28/08 10:31 PMeditor-1.svg

Page 1 of 1file:///Users/niels/Desktop/editor-1.svg

OO

OO

ClCl
ClCl

ClCl

9/24/08 1:28 PMeditor.svg

Page 1 of 1file:///Users/niels/phd/thesis/mythesis/introduction/molecules_prpositionalization/editor.svg

OO

OOO

OO
OO

ϕF,B(e1) =

 1
1
0

 ϕF,B(e2) =

 1
0
1

Relational (sub)structures matched by the three features are highlighted in red, blue and
green.

Different propositionalization techniques can be distinguished. In the simplest setting,
there is a fixed user-supplied set of features Fuser that is used to transform the relational
to a propositional problem. This is effectively a data preprocessing step that avoids tack-
ling the full relational learning problem. Alternatively, an existing relational learner (e.g.

2.3 Statistical Relational Learning: A Brief Overview 37

an ILP system or a pattern miner) can be used to infer the set of features F , that is then
used to map examples to a propositional space. This can be seen as a post-processing
step, where the result of the relational learner is post-processed by a statistical classi-
fier. Finally, another class of approaches considers (explicitly or implicitly) all features
within a large feature space Flang defined by a language bias. For instance, many kernel
functions for graph data are based on the idea of (approximately) counting the number of
co-occurring substructures between two graphs (Gärtner, 2003). This can be seen as im-
plicitly constructing a very large feature space on which a propositional kernel is applied.
Propositionalization systems such as 1BC (Lachiche and Flach, 2003) and LINUS (Lavrač
et al., 1991) also essentially follow this strategy. The approach typically results in a very
large feature set, which has the advantage of representing the original relational instances
relatively accurately. On the downside, the mapping is also opaque, and the model will
not yield domain insights because it is too hard to interpret.

Propositionalization approaches have been successfully applied to a variety of prob-
lems. However, from a theoretical perspective the decomposition of the overall learning
problem into a feature construction and a separate statistical modeling step is not appeal-
ing. The main drawback is that the construction of the features is decoupled from the
actual statistical modeling and uses a different selection criterion. Thus, no jointly op-
timal combination of the feature set and statistical classifier will be found. Note that as
statistical classifiers, propositionalization approaches are discriminative (Definition 2.1.2)
because they do not define a distribution over the original relational instance space. More
specifically, let X denote a random variable for relational instances, and Y a random
variable for the corresponding class label. Propositionalization (together with a statistical
classifier built on the propositionalized data) yields a model for the distribution P (Y | X).
Thus, propositionalization avoids the problem of specifying a (generative) distribution
P (X) over the relational data. The latter is a much harder problem because of the size
and complexity of the space of relational instances. We will revisit propositionalization
approaches when discussing simple SRL models for classification in Chapter 3 and Chap-
ter 4.

2.3.2 Knowledge-based Model Construction
Knowledge-based model construction, or KBMC, is an approach to upgrade probabilistic
graphical models to relational domains by dynamically constructing propositional models
to answer probabilistic queries (Wellmann, 1992). The relational structure of the domain
is encoded in a knowledge base which uses some relational representation format (typi-
cally, the ER model or logic). Probabilistic influences between objects and their proper-
ties are specified at an abstract relational level in probabilistic “templates”, which can be
grounded to define probability distributions at the level of actual objects in the domain.
Given a probabilistic query in the relational domain, the knowledge base can then be used
to construct a query-specific graphical model by “unrolling” the probabilistic templates
into a so-called ground network.

For instance, Markov logic networks define a generative model over logical interpreta-

38 Statistical and Relational Machine Learning

tions by combining Markov networks (Definition 2.1.4) with first order logic (Richardson
and Domingos, 2006). A Markov logic network consists of a set of first-order logical for-
mulae H = C1, ..., Cm with associated weights wC1 , ..., wCm

. Given a finite domain Σ
(basically, a set of predicates and constants), the formulae C1, ..., Cm serve as a template
for building a propositional Markov network G. G has a binary node for every ground
atom in the domain, and an edge between two nodes if the corresponding (ground) atoms
appear in a possible grounding of a formula Ci. Clique potentials in G are defined by the
corresponding weights wCi . The probability of an interpretation over Σ is now defined
by

P (I | H) =
1

Z(I)

∏
C∈H

enC(I)wC =
1

Z(I)

∏
C∈H

ΦC(I{C})nC(I)

where nC(I) is the number of true groundings of formula C in I , and I{C} is the state of
the clique formed by the formula C in I .

Example 2.3.2. Consider a domain consisting of the predicates friends(X, Y),
smokes(X), and cancer(X); and the constants anna and bob (taken from Richardson
and Domingos, 2006). Let

∀X : smokes(X)⇒ cancer(X)
∀X, Y : friends(X, Y)⇒ (smokes(X)⇔ smokes(Y))

denote formulae in a Markov logic network. The resulting ground network is as fol-
lows (Richardson and Domingos, 2006):

friends(anne,bob)

smokes(anne)

friends(anne,anne) friends(bob,bob)

smokes(bob)

cancer(anne) cancer(bob)
friends(bob,anne)

It defines a distribution over interpretations I over Σ, as there is a one-to-one mapping
between joint states of the binary nodes in the network and interpretations over Σ: a node
has state true if p ∈ I for the corresponding ground atom p, and false otherwise.

Many SRL approaches that extend probabilistic graphical models to relational do-
mains use KBMC principles. Examples include Markov Logic Networks (MLNs),
Bayesian Logic Programs (BLPs) (Kersting and De Raedt, 2001), Probabilistic Relational

2.3 Statistical Relational Learning: A Brief Overview 39

Models (PRMs) (Koller, 1999) and Relational Bayesian Networks (RBNs) (Jaeger, 1997).
They can be distinguished according to the type of probabilistic model employed (e.g.
undirected as in MLNs vs. directed as in BLPs, PRMs, and RBNs), and their underly-
ing relational framework (e.g. the ER model as in PRMs, or logic-based formalisms as
in BLPs, RBNs, and MLNs). Note that KBMC-based approaches constitute generative
statistical models (Definition 2.1.1), as they specify a full joint distribution over relational
data. Nevertheless, they can be used for prediction; in fact, special-purpose algorithms
for discriminatively training e.g. Markov logic networks have been investigated (Huynh
and Mooney, 2008).

KBMC-based formalisms typically feature powerful probabilistic inference techniques
inherited from the underlying probabilistic graphical model framework. They are also
principled, as they directly define distributions over relational domains. However, the
powerful probabilistic inference comes at a computational cost. In particular, structure
learning (that is, learning the “templates” that define the probabilistic influences in the
domain under consideration) is hard. KBMC approaches have thus been mostly applied
in scenarios where the domain structure is known, and humans can easily define structural
dependencies manually. Parameters can then be learned by lifted versions of standard
algorithms such as expectation-maximization or gradient-based methods. We will revisit
KBMC strategies when discussing Markov models for relational sequences and sequences
of interpretations in Chapter 5 and Chapter 6.

2.3.3 Proof-based Approaches
Finally, proof-based approaches to SRL are rooted in logic programming principles. Their
general idea is to add some probabilistic element to a logic programming formalism, such
as Prolog, and thereby define a probabilistic logical resolution technique. From this, dif-
ferent distributions can be obtained: for example, distributions over derivation and refu-
tations (as in Stochastic Logic Programs, Muggleton, 1996), Herbrand interpretation (as
in PRISM, Sato and Kameya, 1997), or possible worlds (as in ICL, Poole, 1997). Ap-
proaches such as stochastic logic programs can also be seen as an extension of stochastic
context-free grammars to first-order logic. The techniques we derive later on are mostly
influenced by propositionalization and KBMC-based approached to SRL; thus, a detailed
discussion of proof-based approaches is beyond the scope of the thesis. For more details,
the reader is referred to Muggleton (2000).

2.3.4 Statistical Relational Learning: Discussion
Recently, the field of statistical relational learning has matured to a degree where a thor-
ough theoretical understanding, robust implementations of SRL systems, and significant
real-world applications are available (De Raedt et al., 2008). Furthermore, a synthesis of
the different perspectives on and approaches to SRL has started to develop.

By combining statistical and relational learning techniques, SRL has the appealing
potential to combine the advantages of the two underlying frameworks, namely the ro-

40 Statistical and Relational Machine Learning

bustness and accuracy of statistical learning with the representational power of relational
learning. It is widely recognized that this will be needed in order to apply machine learn-
ing techniques to complex and challenging application domains in which data is struc-
tured, linked, or otherwise interrelated.

On the other hand, SRL also poses new challenges. By combining statistical and
relational learning, we also risk combining the complexity of the two underlying frame-
works, as both the relational and the statistical component of the model now need to be
learned from data. For instance, in knowledge-based model construction approaches (see
Section 2.3.2), first-order models need to be grounded into a ground network to perform
inference or parameter learning, and such ground networks can grow quickly in the size
of the model and domain under consideration, making inference and parameter learning
expensive. For structure learning the problem is even more severe, as typically parameter
learning needs to be performed in a large number of candidate first-order models, mean-
ing that a large number of such ground networks need to be built and learned from data.
From a practical perspective, this high computational complexity of most existing SRL
systems is probably one of the main reason still preventing SRL from being widely ap-
plied in large-scale real-world domains, where the benefits of relational models could be
most significant. Reducing the computational complexity of SRL approaches is therefore
one of the most important research directions in the field.

One way of reducing complexity is to explore sophisticated (approximate) algorithms
for inference and learning. There are several promising directions in this area, including
lifted inference (De Salvo Braz et al., 2007) or relational upgrades of variational meth-
ods (Jordan, 1999). While being worthwhile research directions, these approaches are
usually complicated to develop and implement, not always applicable, and their effective-
ness depends strongly on the considered domain.

This thesis will take a different approach to reducing computational complexity of
SRL techniques, namely by considering the expressivity-efficiency trade-off inherent in
all machine learning approaches. Propositional learning techniques, which are relatively
restricted in terms of representational power, but for which efficient learning algorithms
are available, can be seen as occupying one extreme in this trade-off. Existing SRL tech-
niques have mostly tried to combine the full power of statistical and relational learn-
ing, making them very expressive modeling frameworks, but limiting computational ef-
ficiency. They are thus at the other extreme of the expressivity-efficiency trade-off. This
thesis will explore approaches that occupy an intermediate position in the outlined trade-
off, by proposing relatively simple combinations of statistical and relational learning
which are less expressive than more general SRL systems but typically much more effi-
cient. This will be achieved by deliberately restricting modeling power, making assump-
tions that simplify learning and inference (for example, that data is fully observable), or
focusing on particular application domains. We show in subsequent chapters how this ap-
proach can yield principled yet efficient algorithmic techniques for learning and inference,
and good empirical results in several real-world domains.

2.4 A Framework for Integrating ILP and Statistical Learning 41

2.4 A Framework for Integrating ILP and Statistical
Learning

In inductive logic programming, the learning setting involves examples, hypotheses, and
predictions which are discrete and deterministic, as outlined in Section 2.2.2. As a first
step towards integrating logical learning with statistical modeling, this section presents
an adapted learning setting that accounts for a combined statistical-logical model. The
logical part of the model captures the relational domain structure, while the statistical part
of the model accounts for probabilistic aspects of the data. Specifically, we will extend
the classical setting of learning from entailment (Problem 2.2.1) to the setting of learning
from statistical entailment. This extension is closely related to the exposition by De Raedt
and Kersting (2004), where a probabilistic version of entailment is introduced. In the
setting we derive, the probabilistic model employed by De Raedt and Kersting (2004) is
replaced by an arbitrary statistical classifier. This enables us to also naturally consider,
for instance, kernel machines (see Chapter 4), and to tackle classification and regression
problems in a uniform framework.

The key step to achieve the proposed integration is to replace the deterministic cov-
erage function employed in ILP by a statistical model. Traditionally, the covers function
determines how an example e is classified given a logical theory H by employing log-
ical entailment. In learning from statistical entailment, the statistical part of the model
determines how a classification is derived from the logical theory. We will refer to this
process as statistical coverage. Note that the scoring function given in Problem 2.2.1 also
needs to be adapted, to take into account the statistical nature of the overall model. All
other elements, such as the examples, background theory and language of clauses L will
be untouched.

In contrast to standard learning from entailment, learning from statistical entailment
will enable us to naturally address multi-class classification as well as regression prob-
lems. It is therefore useful to introduce a general notation for representing relational
examples and their (classification or regression) labels. For standard binary classification,
there is a target predicate p(X1, ..., Xk), and examples are of the form p(x1, ..., xk) =
true or p(x1, ..., xk) = false, where the variables X1, ..., Xk have been instantiated to
terms x1, ..., xk. Multi-class and regression problems can be represented in logic with
an additional argument giving the class or regression value, as in p(x1, ..., xk, y), where
y ∈ {c1, ..., cl} or y ∈ R (here, l is the number of classes in the multi-class problem).
Merging this setting with the more standard notation typically employed in statistical
learning, we treat the tuple (x1, ..., xk) as an example identifier, and p(x1, ..., xk) as
a label associated to this identifier. Abusing notation, we also say that p(x1, .., xk) ∈
{true, false} for binary classification, p(x1, ..., xk) ∈ {1, ..., c} for multi-class prob-
lems, and p(x1, ..., xk) ∈ R for regression problems. Note that, logically speaking, the
target predicate p(X1, ..., Xk) is instantiated to a particular example label p(x1, ..., xk) by
applying a substitution θ = {X1/x1, ..., Xk/xk}. We shall thus also use θ as an example
identifier and write pθ to denote the label of the example θ.

42 Statistical and Relational Machine Learning

Example 2.4.1. Reconsider the mutagenicity domain outlined in Example 2.2.2. In
the standard binary classification setting, the target predicate to be predicted is
mutagenic(X), which can be true or false.

molecule(d26).

mutagenic(d26).

lumo(d26,-2.072).

...

molecule(d27).

lumo(d27,-2.072).

...

molecule(d28).

mutagenic(d28).

lumo(d28,-2.072).

...

The facts mutagenic(d26) and mutagenic(d28) indicate that the molecules with the
identifiers d26 and d28 are positive examples. Logically speaking, mutagenic(X) is
instantiated to the example d26 by the substitution θ = {X/d26}, and we identify the
example d26 with this substitution. Consider now a multi-class setup in which there are
three levels of mutagenicity: strong, medium, and low. Examples are now represented by

molecule(d26).

mutagenic(d26)=high.

lumo(d26,-2.072).

...

molecule(d27).

mutagenic(d27)=low.

lumo(d27,-2.072).

...

molecule(d28).

mutagenic(d28)=medium.

lumo(d28,-2.072).

...

and we will say that the example θ = {X/d26} has the label pθ = mutagenic(d26) ∈
{low,medium, high}.

To implement statistical coverage in the general form, assume a generic function
λ(θ, H,B); given a hypothesis H = {q1, ..., qm} as a set of clauses qi and the back-
ground knowledge B, λ(·,H, B) : X → Y maps a relational example θ ∈ X to
the label λ(θ, H,B) ∈ Y . For (probabilistic) classification problems, we assume that
Y = [0, 1]l, and y = λ(θ, H,B) gives a distribution over c possible classes and has to
satisfy

∑l
i=1 yi = 1. Other choices for Y are also possible, for instance, Y = R for

regression problems (this is discussed in more detail in subsequent chapters).
The objective of learning is still to maximize a generic scoring function S as in Prob-

lem 2.2.1. However, the scoring function needs to be adapted to account for the statistical
part of the model. Thus, S(E,H, B) is replaced by S(E,H, λ,B), where the function λ
implements statistical coverage. The exact choice of S depends on the model and learning
setting under consideration. Several possible choices will be discussed in detail in Chap-
ter 3 and Chapter 4. The generic maximization problem can now be stated as follows:
find

max
H∈H

max
λ∈ΛH

S(E,H, λ,B) (2.7)

where ΛH is the space of all statistical coverage functions that can be defined given hy-
pothesis H .

Problem (2.7) consists of jointly optimizing the logical hypothesis H and the statisti-
cal coverage function λ(·,H, B). In the following, we will refer to the outer optimization

2.4 A Framework for Integrating ILP and Statistical Learning 43

problem as hypothesis or structure learning, and the inner optimization problem as pa-
rameter or function learning. As discussed in Section 2.2, hypothesis learning implies
searching in a discrete space of candidates, which is a complex task in general. Thus,
heuristic strategies in the spirit of Algorithm 1 will be employed. In contrast, parameter
learning takes place in a continuous space, for which other classes of search techniques
are available (such as expectation-maximization for probabilistic models and convex op-
timization algorithms for kernel machines). It is thus not clear whether the scoring func-
tional employed for function learning is also suitable for hypothesis learning. In fact,
statistical relational learning systems often employ different scoring functions for learn-
ing the logical model structure and the statistical part of the model. Problem (2.7) should
therefore be generalized to the following formulation:

max
H∈H

SO(E,H, arg max
λ∈ΛH

SI(E,H, λ,B), B), (2.8)

where SO and SI are the scoring functions used for hypothesis and parameter learning
respectively. This is a nested optimization problem, in which the outer optimization of the
hypothesis H (according to SO) involves an inner optimization of the statistical coverage
function (according to SI).

To summarize, Problem 2.2.1 can be extended to account for statistical coverage as
follows:

Problem 2.4.1 (Learning from Statistical Entailment).

Given

• a background theory B, in the form of a set of definite clauses h← b1, · · · , bn;

• a set of examples E, in the form of ground facts with associated (classification or
regression) labels;

• a language of clauses L, which specifies the clauses that are allowed in hypotheses;

• for every H ⊂ L, a class of functions ΛH(θ, H,B) to specify the statistical cover-
age functions under consideration;

• an outer scoring function SO(E,H, λ,B), which specifies the quality of the hy-
pothesis H w.r.t. the data E and the background theory;

• an inner scoring function SI(E,H, λ,B), which specifies the quality of a statistical
coverage function λ w.r.t. the data E and the background theory;

Find
max
H∈H

SO(E,H, arg max
λ∈ΛH

SI(E,H, λ,B), B).

44 Statistical and Relational Machine Learning

Example 2.4.2. Assume we want to implement the statistical coverage function λ(·,H, B)
as a naı̈ve Bayes model in a classification setting. Given a hypothesis H = {q1, ..., qm},
we can define a joint probability over clauses in H and class labels according to a naı̈ve
Bayes assumption:

P̂ (q1, ...,qm,p) =
∏

i

P̂ (qi|p)P̂ (p),

where qi denotes a random variable indicating whether clause qi succeeds on an example,
p denotes a random variable denoting the class label, and P̂ is our estimate of the true
joint distribution. The statistical coverage function λ(·,H, B) can now be defined as

λ(θ, H,B) = P̂ (p | q1θ, . . . , qnθ)

where qiθ represents the state of qi for example θ. This approach will be discussed in more
detail in Chapter 3. Conditional likelihood and standard likelihood will be proposed as
outer and inner scoring functions SO and SI .

Let us briefly discuss how the standard setting of (logical) learning from entailment
given by Problem 2.2.1 can be recovered in the presented setting. This is achieved by
fixing λ to be the coverage function,

λ(θ, H,B) =
{

(1, 0)T if H ∪B |= pθ
(0, 1)T otherwise

where H ∪ B |= pθ denotes that H and B together entail a positive classification of the
example θ, and using training set accuracy as the score:

S(E,H, λ,B) = − 1
m

∑
θ∈E

I[prediction(λ(θ, H,B)) = pθ]

prediction(
(

λ1

λ2

)
) =

{
true : λ1 ≥ λ2

false : otherwise

and I[f] is an indicator function which is 1 if f is true and 0 otherwise.
In Chapter 3 and Chapter 4 we propose the NFOIL and KFOIL systems that imple-

ment the proposed setting of learning from statistical entailment. In NFOIL, likelihood
and conditional likelihood are used as inner and outer scoring functions SI and SO. In
KFOIL, hinge loss is used as the inner scoring function, and we discuss different outer
scoring functions such as kernel target alignment, area under the ROC curve, and root
mean squared error.

Note that the formulation of the optimization problem given by Equation (2.8) is rather
general, and many existing statistical relational learning approaches can also be cast in
this framework. Let us briefly review other instantiations of the framework proposed in
the literature. In Bayesian Logic Programs, maximum likelihood is used for both SO

and SI (Kersting and Raedt, 2007). Regularized weighted pseudo-log-likelihood are em-
ployed for SO and SI when learning Markov Logic Networks (Kok and Domingos, 2005).

2.4 A Framework for Integrating ILP and Statistical Learning 45

The SAYU system combines the ILP system ALEPH with a (tree augmented) naı̈ve Bayes
classifier, using maximum likelihood for SI and area under the precision-recall curve for
S0 (Davis et al., 2005a). Structural Logistic Regression (Popescul et al., 2003) upgrades
logistic regression to the relational setting, and employs a general-to-specific search strat-
egy driven by a regularized maximum likelihood measure for both SI and SO. In the
RUMBLE margin-based rule learner, f is a linear combination of rules, the inner score
SI is the difference between the empirical mean and variance of the classification margin
over training examples; while the outer score SO is a generalization bound combining the
margin minus variance with a capacity term (Rückert and Kramer, 2007). Type Exten-
sion Trees (TET) define tree-structured logic formulae, where nodes are conjunctions of
literals, and edges are labeled with sets of variables (Frasconi et al., 2008). TET learning
has been conducted using pseudo-maximum-likelihood for SI , and a generic score such
as the area under the ROC curve for SO (Frasconi et al., 2008).

46 Statistical and Relational Machine Learning

Part I

Efficient SRL for Classification

47

Outline Part I

The second part of the thesis discusses approaches for integrating ILP with statistical
learning according to the framework of learning from statistical entailment (Problem 2.4.1
in Chapter 2). Whereas many approaches in SRL upgrade existing probabilistic learning
schemes to deal with relational or logical data (such as Probabilistic Relational Mod-
els (Getoor et al., 2001) and Stochastic Logic Programs (Muggleton, 1996)), we start
from an inductive logic programming perspective and extend it with statistical techniques.
Specifically, we induce a set of first-order clauses as in ILP, but use these as features in a
statistical classifier.

The general idea of using clauses in a statistical classifier is not new: it has been ex-
plored in a number of propositionalization approaches (see Section 2.3). In traditional
propositionalization, the selection of the clause set (relational learning) and the training
of the classifier (statistical learning) are two separate steps. This can also be described as
a static propositionalization approach, in which the propositionalized problem is learned
using the statistical classifier. In static propositionalization, the chosen clause set is not
optimized for the particular statistical classifier employed. To obtain an accurate final
model, most static propositionalization approaches are therefore forced to use large fea-
ture sets, for instance, all frequent patterns in the data (Kramer and De Raedt, 2001).
However, to preserve interpretability of the final model—one of the most important ad-
vantages of relational learning techniques—the final model should be both compact and
accurate. A compact and therefore interpretable clause set can only be obtained if the
clause set is specifically optimized for use in the statistical classifier.

Prompted by this observation, we propose a dynamic propositionalization strategy that
tightly integrates statistical and relational learning. In dynamic propositionalization, the
search for clauses is driven by the criterion of the statistical classifier, that is, the relational
and statistical model are optimized jointly.

We present dynamic propositionalization approaches based on two different statistical
learning paradigms: probabilistic graphical models (Chapter 3) and kernels (Chapter 4).
According to the setting of learning from statistical entailment, this involves defining
an appropriate statistical coverage function, and the inner and outer scoring functions to
guide the search process (see Problem 2.4.1). Moreover, we have to specify how the
search for a hypothesis with maximum score is carried out. For the sake of simplicity,

49

50

hypothesis search is implemented using variants of the FOIL algorithm (Quinlan, 1990)
for both the graphical model and kernel setting. FOIL is one of the simplest and most
well-known ILP algorithms, and implements a greedy hill-climbing search in the space
of all clauses structured by generality. However, the presented framework could also
accommodate other, more sophisticated ILP search techniques.

Static propositionalization techniques, by taking into account relational structure only
via a fixed set of features, avoid the full complexity of statistical relational learning. In
the expressivity-efficiency trade-off in SRL they are to be seen as particularly simple and
restricted. Dynamic propositionalization approaches extend static propositionalization as
the relational part of the model is learned using statistical principles.

A crucial point in dynamic propositionalization is to maintain computational effi-
ciency. To reduce the effort of evaluating candidate clause sets during search, we propose
to train the statistical classifier incrementally while the set of first-order clauses is in-
duced. This strategy can significantly reduce complexity, as it enables us to re-use results
of previous optimizations in a dynamic programming fashion. Specifically, we discuss
incrementally computing naı̈ve Bayes statistics (Section 3.2.3), incrementally learning
the structure of tree augmented naı̈ve Bayes (Section 3.3), and incrementally computing
kernel matrices, separating max-margin hyperplanes, and kernel target alignments (Sec-
tion 4.2.2).

The resulting SRL systems are evaluated in several challenging real-world domains,
and shown to outperform existing static propositionalization and ILP approaches.

Chapter 3

NFOIL: Integrating Naı̈ve Bayes
and FOIL∗

This chapter presents the NFOIL system as a simple instantiation of the framework of
learning from statistical entailment outlined in Section 2.4. We start with the simplest
approaches from both domains, the inductive logic programming system FOIL (Quinlan,
1990) and naı̈ve Bayes, and integrate them in the NFOIL system. As the strong indepen-
dence assumption of naı̈ve Bayes can be problematic in some domains, we furthermore
investigate a generalization of naı̈ve Bayes known as tree augmented naı̈ve Bayes in the
TFOIL system. Indeed, this methodology could be extended to learning full Bayesian
networks; however, the advantage of combining such simple learning schemes is that the
resulting probabilistic logical or relational model is easier to understand and to learn.

The chapter is structured as follows. Section 3.1 and Section 3.2 present the NFOIL
model and learning algorithm as an instantiation of the framework of learning from sta-
tistical entailment (Problem 2.4.1). Section 3.3 presents the extension to tree augmented
naı̈ve Bayes. In Section 3.4, the proposed method is evaluated in several real-world do-
mains and compared to standard ILP and static propositionalization approaches.

3.1 Integrating Naı̈ve Bayes and FOIL: Setting

Classical ILP approaches induce a set of clauses that defines a disjunctive hypothesis,
as an instance is classified as positive if it satisfies the conditions of one of the rules.
On the other hand, a probabilistic model defines a joint probability distribution over a
class variable and a set of “attributes” or “features”, and the type of model constrains
the joint probability distributions that can be represented. A straightforward but powerful

∗This chapter builds on (Landwehr et al., 2005b, 2007b).

51

52 NFOIL: Integrating Naı̈ve Bayes and FOIL

idea to integrate these two approaches is to interpret the clauses or rules as propositional
“features” over which a joint probability distribution can be defined. Using naı̈ve Bayes as
the probabilistic model, this translates into the statement that “clauses are independent”.

This idea is not really new. It has been pursued by Pompe and Kononenko (1995)
and Davis et al. (2004). However, in these traditional approaches for combining ILP and
naı̈ve Bayes, one learns the model in two separate steps. First, the features or clauses
are generated, for example using an existing inductive logic programming system such
as ILP-R (Pompe and Kononenko, 1995), and then the probability estimates for the naı̈ve
Bayes are determined. This corresponds to a static propositionalization approach, where
the propositionalized problem is learned using naı̈ve Bayes. In this chapter, we will in-
stead follow a dynamic propositionalization approach, in which feature construction is
tightly coupled with naı̈ve Bayes. Such an approach typically yields more accurate mod-
els that still employ small sets of interpretable clauses. Dynamic propositionalization
approaches have received increasing attention recently (Landwehr et al., 2005b; Davis
et al., 2005a; Landwehr et al., 2007b; Rückert and Kramer, 2007).

We will now introduce a simple statistical relational learner by combining naı̈ve Bayes
and FOIL according to the setting of learning from statistical entailment proposed in
Section 2.4. For the case of naı̈ve Bayes and FOIL, this will be accomplished by changing
the FOIL algorithm to drive the feature search by the criterion of naı̈ve Bayes. The
advantage of dynamic propositionalization in this setting is that the generated features set
will be more appropriate for use in naı̈ve Bayes, compared to rule sets generated by static
propositionalization approaches (see Section 3.4).

To implement learning from statistical entailment (Problem 2.4.1), we need to specify
1) the statistical coverage function λ(θ, H,B) and 2) the scoring functions SO and SI for
hypothesis and parameter learning. Statistical coverage will be implemented by a naı̈ve
Bayes model, and as scoring functions we employ conditional likelihood and likelihood
respectively.

3.1.1 Statistical Coverage as a Naı̈ve Bayes Model
Let us now define the statistical coverage function λ(θ, H,B) in terms of a naı̈ve Bayes
model. The key idea is that we interpret the clauses in H together with the example e
as queries or features, as outlined in Section 2.3. More formally, let H contain a set of
clauses {q1, ..., qm} defining the predicate p(X1, ..., Xk). Then we view each clause q of
the form

p(X1, ..., Xk)← b1, · · · , bn

as a boolean feature or attribute. Such a clause covers an example θ ∈ E iff B∪{q} |= pθ.
From a statistical perspective, we will say that the random variable q takes on value
qθ ∈ {true, false} for the example θ. Similarly, we consider the random variable p
denoting the class of an example, which takes on the value pθ for a particular example
θ (note that pθ can be binary or multi-valued as explained in Section 2.4). In analogy to
Section 2.1, we use P (q) to denote the distribution over the random variable q, and use

3.1 Integrating Naı̈ve Bayes and FOIL: Setting 53

the notation P (qθ) as a shorthand for P (q = qθ) to denote the probability of the value qθ
for the random variable q.

Example 3.1.1. Reconsider the mutagenicity problem outlined in Example 2.2.2, assum-
ing the representation of molecules is given in the background knowledge. Let the query
qc be given by

mutagenic(X)← atom(X, A, o, 40, C), bond(X, B,A, 2)

For the example θ = {X/d26}, the instantiated query

mutagenic(d26)← atom(d26, A, o, 40, C), bond(d26, B, A, 2)

succeeds in the background theory, so the boolean random variable q takes on value
qθ = true for this example. As indicated by the fact mutagenic(d26), d26 is a positive
example. Thus, the random variable p takes on the value pθ = true for this example.

To implement the statistical coverage function λ, we need to define a distribution over
possible class labels for a given example θ. This is realized by defining a probabilistic
model λ that specifies a joint distribution Pλ(p,q1, ...,qm) over the random variables p
and q1, ...,qm given H = {q1, ..., qm}. Assume there are l classes {c1, ..., cl}. Define

λ(θ, H,B) =

 π1

· · ·
πl

where

πi = Pλ(p = ci | q1 = q1θ, ...,qm = qmθ)

and

Pλ(p|q1, . . . ,qm) =
Pλ(p,q1, . . . ,qm)
Pλ(q1, . . . ,qm)

.

Here, we employ the usual notation for equality of distributions, representing the equal-
ity of probabilities for all instantiations of the random variables p,q1, ...,qm. Now it
becomes possible to state the naı̈ve Bayes assumption

Pλ(q1, ...,qm|p) =
∏

i

Pλ(qi|p)

and apply it to the statistical coverage function λ:

Pλ(p | q1, ...,qm) =
∏

i Pλ(qi | p) · Pλ(p)
Pλ(q1, · · · ,qm)

(3.1)

54 NFOIL: Integrating Naı̈ve Bayes and FOIL

where

Pλ(q1, · · · ,qm) =
l∑

i=1

Pλ(p = ci,q1, ...,qm)

=
l∑

i=1

m∏
j=1

Pλ(qj | p = ci) · Pλ(p = ci).

Equation (3.1) specifies the parameters of the naı̈ve Bayes model λ, which are the distri-
butions Pλ(qi|p) and the prior class distribution Pλ(p).

Example 3.1.2. Reconsider the mutagenicity example, and assume that the hypothesis is
as sketched before. Then the queries q1 and q2 are

mutagenic(X)← atom(X, A, o, 40, C), bond(X, B,A, 2)
mutagenic(X)← atom(X, A, c, 22, C), atom(X, B,E, 22, 0.02), bond(X, A,B, 7)

and the target predicate p is “mutagenic(X)”. Now assume a naı̈ve Bayes model with
probability distributions Pλ(qi|p), Pλ(p) given as

Pλ(p = t) = 0.6,
Pλ(q1 = t|p = t) = 0.7 , Pλ(q1 = t|p = f) = 0.4,
Pλ(q2 = t|p = t) = 0.2 , Pλ(q2 = t|p = f) = 0.1.

Summing out yields

Pλ(q1 = t,q2 = t) = 0.10, Pλ(q1 = t,q2 = f) = 0.48,
Pλ(q1 = f,q2 = t) = 0.06, Pλ(q1 = f,q2 = f) = 0.36

where t (f) denotes true (false). For the positively labeled example θ = {X/d26}, q1

succeeds and q2 fails: pθ = true, q1θ = true, q2θ = false. Thus,

Pλ(pθ | H,λ,B) =
Pλ(q1θ|pθ) · Pλ(q2θ|pθ) · Pλ(pθ)

Pλ(q1θ, q2θ)
=

0.7 · 0.8 · 0.6
0.48

= 0.7.

3.1.2 Scoring Functions
To complete the specification of the framework given in Section 2.4, we still need to define
the inner and outer scoring functions in NFOIL. We are interested in using a probabilistic
scoring function that reflects the probabilistic nature of the overall model. A natural
choice is to maximize the likelihood of the observed example labels. The likelihood for a
particular example θ is

P (pθ | H,λ,B) = λ(θ, H,B)T ui (3.2)

3.2 Integrating Naı̈ve Bayes and FOIL: Learning 55

where pθ = ci ∈ {c1, ..., cl} is the observed label for example θ, and ui ∈ {0, 1}m is a
vector whose i-th element is 1 and whose other elements are 0.

As outer scoring function SO, we can now employ the likelihood of the observed
labels given the relational description of the examples. Thus,

SO(E,H, λ,B) = P (E | H,λ,B)

=
∏
θ∈E

Pλ(pθ|q1θ, ..., qmθ) (3.3)

where H = {q1, ..., qm}, pθ is the observed label of example θ, Pλ(pθ|q1θ, ..., qmθ) is
defined by Equation (3.1), and we assume that examples are independently and identically
distributed (i.i.d.).

The inner scoring function SI is used to choose the probabilistic model λ (that is, the
naı̈ve Bayes parameters encoding the distributions Pλ(qi|p), Pλ(p)). Here, we employ
the standard likelihood function:

SI(E,H, λ,B) =
∏
θ∈E

Pλ(pθ, q1θ, ..., qmθ) (3.4)

for which efficient closed-form optimization is possible. The choice of scoring functions
is discussed in more detail in Section 3.2.2.

3.2 Integrating Naı̈ve Bayes and FOIL: Learning
The goal of learning is to find a hypothesis H with maximum score. In our case, as in
standard ILP (cf. Section 2.2), the hypothesis space to search is given by a language bias
L, that defines the set of clauses that are admissible in hypothesis. Specifically, we define
L by means of rmode and type declarations (see Section 2.2.3).

Learning in NFOIL involves searching for a combined statistical-logical model.
Roughly speaking, existing approaches pursued by Pompe and Kononenko (1995)
and Davis et al. (2004) have solved this task in a two-step process: First, a hypothesis H is
found (using a standard ILP system, and thus some deterministic score) and fixed; second,
the parameters for the fixed structure are optimized using a probabilistic score (usually,
maximum likelihood). In terms of the inner and outer scoring defined in Section 2.4, this
correspond to an outer scoring function SILP

O (E,H, B) for scoring hypotheses H that is
independent of the probabilistic model λ used in the final statistical relational model:

for all H ∈ candidates(L) do
compute SILP

O (E,H, B)
end for
find H∗ = arg max

H
SILP

O (E,H, B)

find λ∗ = arg max
λ∈ΛH∗

SI(E,H∗, λ,B)

56 NFOIL: Integrating Naı̈ve Bayes and FOIL

The disadvantage of this approach is that the set of clauses is not selected to yield optimal
performance of the statistical model. In contrast, Problem 2.4.1 proposes a joint optimiza-
tion of the logical and statistical model. In the outer loop, a search through the (discrete)
hypothesis space is carried out. An individual hypothesis H is scored by augmenting it
with a statistical classifier λH and then evaluating the performance of the joint model by
a scoring function SO(E,H, λ,B). This translates into the following procedure:

3.2 Integrating Naı̈ve Bayes and FOIL: Learning 57

for all H do
find λH = arg max

λ∈ΛH

SI(E,H, λ,B)

compute SO(E,H, λH , B)
end for
find H∗ = arg max

H
SO(E,H, λH , B)

Thus, the search for the structure is guided directly by the probabilistic objective function.
It still needs to be discussed how the search in the space of candidate hypotheses is carried
out, as this space is clearly too large to be searched exhaustively. The rest of this section
shows how this can be realized by modifying the original search technique used in FOIL.
This will first be presented for learning the basic NFOIL model. An extension of the
learning algorithm that accounts for the tree augmented naı̈ve Bayes structure in TFOIL
will be discussed in Section 3.3.

3.2.1 Adapting FOIL
The generic FOIL algorithm has already been presented in Section 2.2.3. Like FOIL,
NFOIL searches a set of clauses greedily, and a single clause in a general-to-specific
manner using a refinement operator. The main difference in the search technique is that
FOIL can use a separate-and-conquer approach. Because the final model in FOIL is the
disjunction of the learned clauses (where every clause covers a certain subset of exam-
ples), it holds that

1. Examples that are already covered do not have to be considered when learning
additional clauses: update(E,H) = E \ covered(H) .

2. (Non-recursive) clauses already learned do not need to be considered when scoring
additional clauses: score(E,H ∪ {c′}, B) = score(E, {c′}, B).

Here, score(E, {c′}, B) is some accuracy-related measure such as information gain or
the m-estimate. In NFOIL, such a separate-and-conquer approach is not possible be-
cause every clause can affect the likelihood of all examples. Consequently, the NFOIL
algorithm can be obtained from FOIL by changing two components in the generic FOIL
algorithm (see Algorithm 1):

1. The set of examples is not changed after learning a clause: update(E,H) = E.

2. An additional clause c′ has to be scored together with the current model, according
to the outer scoring functional SO:

score(E,H ∪ {c′}, B) = SO(E,H ∪ {c′}, λ∗, B)

where λ∗ = arg max
λ

SI(E,H ∪ {c′}, λ,B) is the optimal statistical coverage

function according to SI .

58 NFOIL: Integrating Naı̈ve Bayes and FOIL

We also have to modify the stopping criterion. The most basic stopping criterion
for FOIL stops when all positive examples are covered. This is replaced in NFOIL by
stopping if the change in score when adding a clause falls below a certain threshold. In
general, this simple criterion might lead to overfitting. We therefore also investigated
post-pruning the learned hypothesis (Section 3.4). In the experiments, however, this basic
stopping criterion worked surprisingly well.

3.2.2 Parameter Estimation
To evaluate a set of clauses H = {q1, ..., qm}, one needs to solve the “inner” optimiza-
tion problem of finding an optimal statistical coverage function λ. In the case of NFOIL,
this means estimating parameters for the naı̈ve Bayes model over the random variables
{p,q1, ...,qm}. One possibility is to use the proposed outer scoring function (Equa-
tion (3.3)) as the optimization criterion:

λ∗ = arg max
λ

P (E | H,B)

= arg max
λ

∏
θ∈E

Pλ(pθ|q1θ, · · · , qmθ)

= arg max
λ

∏
θ∈E

∏
j Pλ(qjθ | pθ) · Pλ(pθ)

Pλ(q1θ, ..., qmθ)
. (3.5)

However, these are the parameters maximizing the conditional likelihood of the observed
class labels given the model. Usually, naı̈ve Bayes (as a generative model) is trained to
maximize the likelihood∏

θ∈E

Pλ(pθ, q1θ, ..., qmθ) =
∏
θ∈E

Pλ(pθ|q1θ, · · · , qmθ) · Pλ(q1θ, ..., qmθ) (3.6)

=
∏
θ∈E

∏
j

Pλ(qjθ | pθ) · Pλ(pθ).

Maximum likelihood parameters can be computed easily by

Pλ(qi = qi|p = p) =
n(qi = qi,p = p)

n(p = p)

where n(X) are the counts, that is, the number of examples for which the query X suc-
ceeds. However, there is no closed-form solution for maximum conditional likelihood
parameters, and relatively slow iterative optimization algorithms have to be used.

Could we use the likelihood as defined by Equation (3.6) as the outer scoring function
SO, instead of using the conditional likelihood defined by Equation (3.5)? The problem is
that this term is dominated by Pλ(q1θ, ..., qmθ), the likelihood of the propositional dataset

3.2 Integrating Naı̈ve Bayes and FOIL: Learning 59

that is obtained by evaluating all features. This likelihood is easily maximized for very
non-uniform distributions over the features values. In fact, it can be maximized to 1 if all
features are constant (always succeed or always fail). Such features are of course com-
pletely uninformative with respect to predicting class labels. In contrast, in Equation (3.5)
the likelihood is corrected by the term Pλ(q1θ, ..., qmθ), and in this way informative fea-
tures are selected. Example 3.2.1 illustrates this situation for a single feature. Note that in
the setting of parameter estimation from propositional data this problem does not occur
as the distribution over the attribute values is determined by the (fixed) training data and
cannot be changed by the learning algorithm. However, similar considerations apply to
feature selection problems for (propositional) probabilistic models.

Example 3.2.1. Consider the following queries q1 and q2:

positive(X)← true

positive(X)← perfect-literal(X)

Query q1 succeeds on all examples. Assume that query q2 succeeds on all positive and no
negative examples, and that half of the examples are positive. Given maximum likelihood
parameters, the models H1/H2 consisting of only q1/q2 actually have the same likelihood,
while conditional likelihood correctly favors H2:
For any example θ,

Pλ(pθ, q1θ) = Pλ(q1θ|pθ) · Pλ(pθ) = 1 · 0.5 = 0.5,

Pλ(pθ, q2θ) = Pλ(q2θ|pθ) · Pλ(pθ) = 1 · 0.5 = 0.5

as Pλ(q1θ|pθ) = Pλ(q2θ|pθ) = 1. On the other hand,

Pλ(pθ|q1θ) =
Pλ(q1θ|pθ) · Pλ(pθ)

Pλ(q1θ)
=

1 · 0.5
1

= 0.5,

Pλ(pθ|q2θ) =
Pλ(q2θ|pθ) · Pλ(pθ)

Pλ(q2θ)
=

1 · 0.5
0.5

= 1

as Pλ(q1θ) = 1 but Pλ(q2θ) = 0.5.

A similar problem has been noted by Grossman and Domingos (2004) when learn-
ing the structure of Bayesian networks. There, likelihood maximization leads to over-
connected structures, a problem which is also solved by maximizing conditional likeli-
hood. Because finding maximum conditional likelihood parameters is computationally
too expensive, Grossman and Domingos propose a “mixed” approach: use conditional
likelihood as score, but set parameters to their maximum likelihood values.

For NFOIL, we follow the same approach. Parameters are estimated to maximize
the likelihood (Equation (3.6)), while the conditional likelihood, see Equation (3.5), is
retained as score for selecting the features. Note that if the naı̈ve Bayes assumption is

60 NFOIL: Integrating Naı̈ve Bayes and FOIL

correct, the maximum likelihood estimates of the parameters will approach the maxi-
mum conditional likelihood estimates as the number of training examples goes to infin-
ity. This is because the maximum likelihood estimate Pλ(pθ,q1θ, ...,qmθ) approaches
the true joint probability P (pθ,q1θ, ...,qmθ) which determines the true conditional
P (pθ|q1θ, ...,qmθ) that also maximizes the conditional likelihood (Friedman and Gold-
szmidt, 1996). In this sense, maximizing likelihood can be seen as an approximation to
maximizing conditional likelihood.

3.2.3 Computational Complexity

Compared to the original FOIL algorithm, there is little computational overhead in NFOIL.
To see this, let us first analyze the computational complexity of FOIL. When learning a
new clause (one iteration of the algorithm), FOIL has to evaluate a number of candidate
clauses on the data. This step clearly dominates computational costs. To evaluate a par-
ticular candidate clause q, we need to obtain the sets of positive and negative examples it
covers. From this information, the actual score (accuracy, information gain, or a related
measure) can be computed in linear time. Thus, the main task is to check for every exam-
ple e whether H ∪ {q} |= e. The computational complexity of this step, which basically
involves performing an SLD resolution, strongly depends on the characteristics of the
examples and the clause to be evaluated. Moreover, speedup strategies such as caching
can be employed. We will not discuss this in detail, and only denote the average time
spent on checking whether a clause q covers an example e by sld(L, E, B). Note that
this task needs to be solved for any ILP system including statistical logical learners such
as NFOIL, and the same algorithmic strategies can be employed to speed up this task in
different approaches.

The costs for scoring an individual clause q in FOIL are thus of the order O(|Ê| ·
sld(L, E, B)), where Ê is the set of examples currently under consideration. Note that
in FOIL, the set of examples Ê is reduced at every iteration, as covered examples are
removed. However, the size |Ê| of the current example set is bounded from below by

N−

N++N− |E|, where N+ (N−) are the number of examples in E classified as positive
(negative) by the final theory H . Assuming there are m clauses in the final model, overall
time for learning a model is thus in O(N−

N++N− |E| ·m · sld(L, E, B)). Note that unless
there are vastly more positive than negative examples (an unusual situation in ILP), the
factor N−

N++N− will not affect runtime significantly.
In NFOIL, a similar evaluation of candidate clauses takes place. In contrast to FOIL,

the set of examples under consideration does not change between iterations. Computing
the set of covered examples for every candidate clause encountered during the search will
thus take time O(|E| ·m · sld(L, E, B)) (again, m is the number of clauses in the final
model). To compute the likelihood score of the model defined by H∪{q}, the correspond-
ing naı̈ve Bayes parameters need to be estimated, which are P (q1 | p), ..., P (qa | p) and
P (p) assuming q = qa (for a ≤ m) is the candidate clause being added to the model.
However, parameters of different clauses are independent due to the naı̈ve Bayes assump-

3.3 TFOIL: Relaxing the Naı̈ve Bayes Assumption 61

tion, hence only the distribution P (qa | p) needs to be estimated, which takes time
O(|E| · l) given the set of positive and negative examples covered (where l is the num-
ber of classes). Computing the data likelihood defined by Equations (3.1) and (3.3) takes
time O(|E| ·m · l) for a single candidate clause. Thus, overall time spent on computing
the likelihood takes time O(|E| · m2 · l). The quadratic term m2 can be removed by
incrementally computing the likelihood term as follows. Define

γ[i][a] =
a∏

j=1

Pλ(qj | p = ci),

then
γ[i][a] = γ[i][a− 1]Pλ(qa | p = ci)

can be incrementally computed for all a ∈ {1, ...,m} in overall time O(l · m). The
likelihood of example θ can now be computed using

P (p = ci | q1, ...,qm) =
P (p = ci)γ[i][m]∑l

j=1 γ[j][m]

in time O(l). Thus, overall time spent on computing the likelihood scores is reduced to
O(|E| ·m · l) and overall runtime in NFOIL to O(|E| · l · m · sld(L, E, B)), which is
essentially the same complexity as in FOIL.

Finally, we note that the actual total runtime of FOIL and NFOIL depends on the path
in the search space that is taken by the two algorithms, and the number of clauses learned.
This also depends on the language bias and stopping criterion employed. However, we can
summarize that NFOIL, compared to FOIL, only incurs a small computational overhead.

3.3 TFOIL: Relaxing the Naı̈ve Bayes Assumption
The naı̈ve Bayes model employed in NFOIL corresponds to the strong assumption that
the probability of an example satisfying one query is independent of its probability to
satisfy another query, given the class of the example:

Pλ(q1, ...,qm|p) =
∏

i

Pλ(qi|p). (3.7)

Although it has been shown that naı̈ve Bayes can perform well in practice even if this as-
sumption is violated, better models can sometimes be constructed by relaxing this strict in-
dependence assumption (Friedman and Goldszmidt, 1996). Tree augmented naı̈ve Bayes
(TAN) models generalize naı̈ve Bayes by allowing additional dependencies, but are still
significantly more restrictive than full Bayesian networks. The restriction compared to
a full Bayesian network is that the additional dependencies form a tree (i.e, every query
node has at most one additional parent). This means that the number of parameters of a

62 NFOIL: Integrating Naı̈ve Bayes and FOIL

p

q1 q2 q3 q4

(a) Naı̈ve Bayes.

p

q1 q2 q3 q4

(b) Tree augmented naı̈ve Bayes.

Figure 3.1: Graphical model representation of naı̈ve Bayes and tree augmented naı̈ve
Bayes model. The random variables p and q1, ...,q4 denote the class and features.

TAN model is in O(#nodes) as compared to O(2#nodes) for a full Bayesian network,
and learning them is generally easier. Figure 3.1 shows an example for a tree augmented
naı̈ve Bayes model in graphical model notation, and compares it to the standard naı̈ve
Bayes structure.

In this section, we will discuss the TFOIL algorithm, which extends the NFOIL algo-
rithm presented above to employ tree augmented naı̈ve Bayes. Under the TAN assump-
tion, Equation (3.7) is relaxed to

Pλ(q1, ...,qm|p) =
∏

i

Pλ(qi|p,qpa(i))

where qpa(i) is the additional parent of the node qi in the TAN model. In analogy to
Section 3.1.1, the statistical coverage function can be re-derived as

P (p | q1, ...,qm) =
∏

i Pλ(qi | p,qpa(i)) · Pλ(p)
Pλ(q1, · · · ,qm)

(3.8)

Otherwise, the problem specification outlined in Section 3.1.1 directly carries over to
TFOIL.

In contrast to NFOIL, learning a TFOIL model involves the additional task of se-
lecting a TAN structure over the random variables representing the logical queries. In
general, TFOIL follows the same integrated search strategy as outlined for NFOIL in
Section 3.2. However, when evaluating a set of clauses HC = {q1, ..., qm} in TFOIL,
for every clause qi ∈ HC we have to decide on a qj = qpa(i) ∈ HC for which a de-
pendency qpa(i) → qi is added. Of course, this could be accomplished by running the
standard TAN structure learning algorithm, which finds a maximum-likelihood structure
in polynomial time (Friedman and Goldszmidt, 1996). However, the incremental way in
which a theory H is learned and query nodes are added to the probabilistic model sug-
gests a faster, incremental (though heuristic) way of learning the TAN structure. Rather
than re-learning the TAN graph from scratch every time a new candidate clause qm+1 is
scored, the subgraph over the existing hypothesis H = {q1, ..., qm} is kept fixed, and
all existing clauses qj ∈ H are considered as possible parents for the clause qi. Out of

3.4 Experimental Evaluation 63

Algorithm 2 The TFOIL algorithm.
Initialize H := ∅
repeat

Initialize c := p(X1, · · · , Xk)←
repeat

for all c′ ∈ ρ(c) do
for all q ∈ H do

compute s(c′, q) = score(E,H ∪ {c′}, q → c′, B)
end for
let pa(c′) be the q ∈ H with maximum s(c′, q)

end for
let c be the c′ ∈ ρ(c) with maximum s(c′, pa(c′))

until stopping criterion
add c with dependency pa(c′)→ c′ to H

until stopping criterion
output H

these candidate graph structures, the one maximizing score(E,H, B) is chosen, that is,
the maximum-likelihood extension of the existing graph on H .

This approach is outlined in Algorithm 2. The function score(E,H∪{c′}, q → c′, B)
returns the score of the TAN model over H ∪ {c′}, where q is the additional parent of c′.
For every candidate clause c′, the best parent pa(c′) is identified and the c′ with highest
score is added to H with the dependency pa(c′) → c′. Comparing Algorithm 2 with
the NFOIL algorithm which follows the template of Algorithm parent of a clause that is
added to the model. Note that the computational complexity of scoring the (m + 1)th
clause qm+1 in TFOIL, given we know the set of examples on which the clause succeeds,
is O(|E| ·m · l), as all m existing clauses are considered as possible parents. Thus, the
overall time for computing scores (again excluding coverage computations) in TFOIL is
O(|E| ·m2 · l), adding a factor of m compared to the NFOIL algorithm.

3.4 Experimental Evaluation
This section presents an experimental evaluation of the proposed NFOIL and TFOIL
systems. More specifically, our intention is to investigate how dynamic propositional-
ization compares to static propositionalization approaches that use naı̈ve Bayes only to
post-process the rule set. The experimental study will address the following questions:

(Q3.1) Is there a gain in predictive accuracy of a dynamic propositionalization approach
over its ILP baseline?

(Q3.2) If so, is the gain of dynamic propositionalization over its baseline larger than the
gain of static propositionalization approaches?

64 NFOIL: Integrating Naı̈ve Bayes and FOIL

(Q3.3) Can performance be improved by using a more expressive probabilistic model,
such as tree augmented naı̈ve Bayes?

(Q3.4) Is a dynamic propositionalization based on a simple rule learner competitive with
advanced ILP approaches?

(Q3.5) Relational naı̈ve Bayes methods such as 1BC2 (Flach and Lachiche, 2004) essen-
tially employ all clauses within a given language bias as features in a probabilistic
model and thus perform static propositionalization. Does dynamic propositional-
ization employ fewer features and perform better than these approaches?

In the following two subsections, we will describe the datasets and algorithms used to
experimentally investigate the questions (Q3.1)–(Q3.5). Section 3.4.3 then presents and
discusses the results.

3.4.1 Datasets
We conducted experiments on eight datasets from four domains. Three domains are bi-
nary classification tasks, and one is a multi-class problem. See Table 3.1 for an overview
of the different datasets. Most of the domains are concerned with structure-activity re-
lationship (or SAR) problems. SAR problems are of central importance in many areas
of bio- and chemoinformatics: given information about the chemical structure of a sub-
stance, predict its activity with regard to a certain property of interest. This property
can be to activate or block a receptor in the human body, toxicity, suppression of tumor
growth or more generally activity as a pharmacological agent. The search for substances
with such properties currently relies on screening trials (so-called bioassays), which mea-
sure the activity of hundreds or thousands of chemical compounds. This data is an in-
teresting application area for machine learning, and in particular a good showcase for
learning from structured data. If good models that relate compound structure to activity
can be built, some of the tests currently performed in laboratories could be replaced by
automatic classification, greatly accelerating the screening process.

Mutagenesis is a well-known domain for structure-activity relation prediction (Srini-
vasan et al., 1996). The problem is to classify compounds as mutagenic or not given their
chemical structure described in terms of atoms, bonds, atom charge, and information
about atom and bond types that have been generated by the molecular modeling package
QUANTA. No additional numeric or hand-crafted features of the compounds are used.
The dataset is divided into two sets: a regression friendly (r.f.) set with 188 entries (125
positives, 63 negatives) and a regression unfriendly (r.u.) set with 42 entries (13 positives
and 29 negatives).

For Alzheimer, the aim is to compare 37 analogues of Tacrine, a drug against
Alzheimer’s disease, according to four desirable properties: inhibit amine re-uptake,
low toxicity, high acetyl cholinesterase inhibition, and good reversal of scopolamine-
induced memory deficiency (King et al., 1995). For any property, examples consist of
pairs pos(X, Y)/neg(X, Y) of two analogues indicating that X is better/worse than Y

3.4 Experimental Evaluation 65

Table 3.1: datasets used in NFOIL/TFOIL experiments.

Dataset #Classes #Examples Majority Class #Relations #Facts
Mutagenesis r.f. 2 188 66.5% 4 10324
Mutagenesis r.u. 2 42 69.1% 4 2109
Alzheimer amine 2 686 50.0% 20 3754
Alzheimer toxic 2 886 50.0% 20 3754
Alzheimer acetyl 2 1326 50.0% 20 3754
Alzheimer memory 2 642 50.0% 20 3754
NCTRER 2 232 56.5% 3 9283
Diterpene 23 1530 23.5% 17 33068

w.r.t. the property. The relation is transitive and anti-symmetric but not complete (for
some pairs of compounds the result of the comparison could not be determined).

The NCTRER dataset has been extracted from the EPA’s DSSTox NCTRER
Database (Fang et al., 2001). It contains structural information about a diverse set of
232 natural, synthetic and environmental estrogens and classifications with regard to their
binding activity for the estrogen receptor. In our experiments, only structural informa-
tion, that is, atom elements and bonds are used. Additionally, we provided a relation
linked(A1, A2, E, BT) in the background knowledge that represents that there is a bond
of type BT from atom A1 to atom A2 and A2 is of element E. This was done to reduce
the lookahead problem for greedy search algorithms.

For Diterpene, the task is to identify the skeleton of diterpenoid compounds, given
their C-NMR spectra that include the multiplicities and the frequencies of the skeleton
atoms (Džeroski et al., 1998). Diterpenes are organic compounds of low molecular weight
with a skeleton of 20 carbon atoms. They are of interest because of their use as lead com-
pounds in the search for new pharmaceutical effectors. The dataset contains information
on 1530 diterpenes with known structure. There are in total 23 classes. We use the version
where both relational and propositional information about the NMR spectra are available.

3.4.2 Algorithms and Methodology
We investigate the following learners:

• NFOIL
An implementation of the NFOIL algorithm as outlined in Section 3.2.1. Instead
of a greedy search a beam search with beam size k = 5 is performed. During the
search for a clause, the algorithm also keeps a set C∗ of the k best (partial) clauses
found so far. If this set does not change from one refinement level to the next, the
search is stopped and the best element c ∈ C∗ is returned. The search for additional
clauses is stopped if the change in score between two successive iterations is less

66 NFOIL: Integrating Naı̈ve Bayes and FOIL

than 0.1%. A hypothesis is limited to contain at most 25 clauses and a clause
to contain at most 10 literals. As most other ILP systems, NFOIL can make use
of intensionally specified background knowledge to be used in hypothesis. When
classifying unseen examples, the class receiving the highest probability is returned
(in particular, the default classification threshold of 0.5 is used in the binary case).

• TFOIL
An implementation of the TFOIL algorithm as outlined in Section 3.3. The beam
search and stopping criterion are implemented as for NFOIL.

• MFOIL
MFOIL is a variant of FOIL also employing beam search and different search
heuristics (Lavrac and Dzeroski, 1994). The beam size is set to k = 5, otherwise,
default parameters are used. Note that MFOIL, unlike the other systems considered,
by default allows negated literals in clauses.

• ALEPH
ALEPH is an advanced ILP System developed by Ashwin Srinivasan.1 It is based
on the concept of bottom clauses, which are maximally specific clauses covering
a certain example. The theory is then built from clauses that contain a subset of
the literals found in a bottom clause. We used this standard mode of ALEPH for
the binary domains Mutagenesis, Alzheimer and NCTRER. Additionally, ALEPH
implements a tree learning algorithm, which we used for the multi-class domain
Diterpene. The maximum number of literals in a clause was set to 10 instead of
the default 4. Otherwise, default settings are used except on NCTRER as explained
below.

• 1BC2
1BC2 is a naı̈ve Bayes classifier for structured data (Flach and Lachiche, 2004).
1BC2 was run with a maximum number of 5 literals per clause, as larger values
caused the system to crash. The decision threshold was optimized based on a five
fold cross validation.

It would also be interesting to compare against the MACCENT system (Dehaspe, 1997),
as maximum entropy models and naı̈ve Bayes are somewhat related. Unfortunately, only
an implementation of a propositional version of MACCENT is available, which only han-
dles data in attribute-value (vector) format.2 This version is not directly applicable to the
relational datasets used in our study. We have therefore investigated a static proposition-
alization approach: frequent clauses were extracted from the relational datasets and then
used as features in the propositional MACCENT system. More precisely, we have used
a variant of the frequent pattern miner WARMR (Dehaspe et al., 1998), as WARMR pat-
terns have shown to be effective propositionalization techniques on similar benchmarks in

1More information on ALEPH can be found at http://web.comlab.ox.ac.uk/oucl/research/
areas/machlearn/Aleph/aleph\ toc.html.

2Luc Dehaspe, from personal communication.

3.4 Experimental Evaluation 67

Table 3.2: Cross-validated predictive accuracy results on all datasets. •/◦ indicates that
TFOIL’s mean is significantly higher/lower, and N/M that NFOIL’s mean is significantly
higher/lower (paired sampled t-test, p = 0.05). Bold numbers indicate the best result on
a dataset. Note that the high variance on Mutagenesis r.u. is an artifact of the leave-
one-out cross-validation. For 1BC2, we do not test significance because the results on
Mutagenesis and Diterpene are taken from Flach and Lachiche (2004).

Dataset TFOIL NFOIL MFOIL ALEPH 1BC2
Mutag. r.f. 79.7± 13.0 75.4± 12.3 76.6± 6.7 69.7± 11.9 82.4
Mutag. r.u. 83.3± 37.7 78.6± 41.5 71.4± 45.7 85.7± 35.4 76.2
Alzh. amine 87.5± 4.4 86.3± 4.3 74.2± 5.9 • N 70.9± 5.8 • N 72.3
Alzh. toxic 92.1± 2.6 89.2± 3.4 81.9± 2.9 • N 90.9± 1.4 83.4
Alzh. acetyl 82.8± 3.8 81.2± 5.2 75.2± 2.5 • N 73.9± 3.4 • N 73.4
Alzh. memo. 80.4± 5.3 M 72.9± 4.3 • 60.9± 4.6 • N 69.2± 5.3 • 68.8
NCTRER 78.5± 8.9 78.0± 9.1 70.4± 15.4 52.1± 11.2 • N 64.7
Diterpene 90.9± 2.1 90.8± 3.1 – 85.0± 3.6 • N 81.9

inductive logic programming (Srinivasan et al., 1999). The variant used was c-ARMR (De
Raedt and Ramon, 2004), which removes redundancies amongst the found patterns by fo-
cusing on so-called free patterns. c-ARMR was used to generate free frequent patterns in
the data with a frequency of at least 20%. However, results obtained using this technique
were on average not competitive with those of the other systems, and we decided not to
include them.

To compare the different algorithms, we measure both accuracy and area under the
ROC curve (see Fawcett, 2003), denoted as AUC. Accuracy is determined by a 10-fold
cross-validation on all datasets except the small Mutagenesis r.u., where a leave-one-out
cross validation is used instead. ROC curves and AUC are determined from the cross-
validation by pooling the rankings obtained on the different test folds. All algorithms
were run on the same splits into training/test set for every fold. To test for significant
differences in accuracy, a sampled paired t-test is applied to the results of the different
folds.

3.4.3 Results

Table 3.2 shows the accuracy results for TFOIL, NFOIL, MFOIL, ALEPH and 1BC2 on
all datasets. There is no result for MFOIL on Diterpene as it cannot handle multi-class
problems. Comparing the results for NFOIL/TFOIL and MFOIL, the experiments clearly
show a gain for dynamic propositionalization over the baseline ILP algorithm, giving an
affirmative answer to Question (Q3.1).

The comparison between NFOIL and its tree augmented extension TFOIL shows

68 NFOIL: Integrating Naı̈ve Bayes and FOIL

that—as in the propositional case—relaxing the naı̈ve Bayes assumption can yield more
accurate models in some cases. TFOIL always gains some predictive accuracy, with gains
ranging from very slight (0.1 percentage points) to substantial (7.5 percentage points). Al-
though only one of these gains is significant according to a paired sampled t-test on the
folds, a simple sign test on the results of TFOIL and NFOIL (8/0) shows that TFOIL sig-
nificantly outperforms NFOIL (p < 0.01). This affirmatively answers Question (Q3.3):
performance can be improved by using a more expressive model than naı̈ve Bayes. Fur-
thermore, TFOIL significantly outperforms ALEPH on five datasets, and both a sign test
(7/1) and the average accuracy seem to favor TFOIL and NFOIL over ALEPH. This
shows that relatively simple dynamic propositionalization approaches are competitive
with more advanced ILP systems, giving an affirmative answer to Question (Q3.4). The
NCTRER domain seems to be particularly hard for the ALEPH system. Using standard
settings, ALEPH only accepts rules if they cover no negative examples. In this case, for
most folds it does not return any rules on the NCTRER dataset, and only reaches 43.1%
accuracy. The result reported above was obtained by setting the “noise” parameter to 10
(which means that a rule can cover up to 10 negative examples). The minacc parameter
was left at its default value of 0.

To complement the study of predictive accuracy presented above, we investigate the
performance of the probabilistic classifiers by means of ROC analysis. ROC curves eval-
uate how well the probability estimates produced by classifiers can discriminate between
positive and negative examples (that is, rank examples) without committing to a particu-
lar decision threshold. ROC curves provide more detailed information about performance
than accuracy estimates, for example with regard to possible error trade-offs under vari-
able misclassification costs (Provost et al., 1998). As ROC curves are only well-defined
for binary classification problems, we do not report results for the multi-class dataset
Diterpene. For the ILP systems, ROC curves were produced by clause voting as intro-
duced by Davis et al. (2004). In clause voting, the threshold that is varied is the number
of clauses that have to cover an example before it is classified as positive (the default
threshold being one).

AUC results, shown in Table 3.3, generally confirm the results obtained by accuracy
analysis: TFOIL outperforms NFOIL across the board, and TFOIL/NFOIL generally
produce better rankings than the ILP methods and 1BC2. Note that in some cases dy-
namic propositionalization achieves higher AUC scores than ILP systems even though it
achieves lower accuracy (for instance, compare NFOIL and ALEPH on the Alzheimer
toxic dataset). To investigate this behavior in more detail, ROC curves for the differ-
ent methods on all binary datasets are shown. Figure 3.2 shows curves on the relatively
large Alzheimer amine, Alzheimer toxic, Alzheimer acetyl and Alzheimer memory
datasets. Here, ROC curves clearly fall into two groups: for the ILP systems MFOIL and
ALEPH, the curve has one sharp angle and is otherwise mostly linear, while the curves
for TFOIL, NFOIL and 1BC2 are convex almost across the whole range of the thresh-
old parameter. This means that for the ILP systems there is one (namely, the default)
decision threshold which offers a good trade-off between true positives and false posi-

3.4 Experimental Evaluation 69

Table 3.3: Area under the ROC curve for all binary datasets. Bold numbers indicate
the best result on a dataset. Results for 1BC2 on Mutagenesis are taken from Flach
and Lachiche (2004). Rankings are pooled over the different folds of a 10-fold cross-
validation, except for Mutagenesis r.u. where a leave-one-out cross-validation is used
instead.

Dataset TFOIL NFOIL MFOIL ALEPH 1BC2
Mutagenesis r.f. 0.817 0.809 0.791 0.713 0.816
Mutagenesis r.u. 0.753 0.737 0.645 0.790 0.729
Alzheimer amine 0.945 0.937 0.747 0.708 0.793
Alzheimer toxic 0.983 0.965 0.821 0.912 0.925
Alzheimer acetyl 0.932 0.916 0.759 0.752 0.815
Alzheimer memory 0.913 0.824 0.608 0.696 0.744
NCTRER 0.789 0.760 0.668 0.567 0.636

tives, but ranking below and above this point is relatively poor. At the level of induced
clauses, it indicates that clauses induced by the ILP systems are specific in the sense that
positive examples are typically covered by only one clause—if the decision threshold
in clause voting is set to more than one, the true positive rate drops rapidly. In contrast,
ranking performance for the dynamic propositionalization systems and 1BC2 is more sta-
ble, meaning that these systems also offer good classification performance under varying
misclassification costs (or, equivalently, class skew). This indicates that dynamic propo-
sitionalization approaches can make use of more diverse rule sets, which are helpful in
ranking examples by providing additional information but would produce too many false-
positive classifications if interpreted as a disjunctive hypothesis. We will provide further
evidence for this claim below.

Figure 3.3 shows ROC curves on the three smaller datasets included in our study. On
Mutagenesis r.f. and NCTRER, similar observations hold as noted above, although class
separation is generally poorer and curves behave less well. On the very small Mutagen-
esis r.u. dataset ranking performance is poor for all methods.

To investigate Question (Q3.2), that is, to compare dynamic and static propositional-
ization approaches, two additional experiments were performed:

1. Learning a naı̈ve Bayes or tree augmented naı̈ve Bayes model over a set of clauses
using a two-step approach: First, a set of rules is learned using MFOIL or ALEPH,
and afterwards a (tree augmented) naı̈ve Bayes model is built using these rules.
This is a static propositionalization approach, where the propositionalized data is
used as input for the probabilistic learner. Question (Q3.2) is whether these rules
are less useful when combined with (tree augmented) naı̈ve Bayes than the rules
constructed by a dynamic propositionalization approach (NFOIL/TFOIL). For the
training of the TAN model we used the local score based TAN implementation in
WEKA 3.4.6 (Witten and Frank, 2000), which implements the learning algorithm

70 NFOIL: Integrating Naı̈ve Bayes and FOIL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Alzheimer amine

tFOIL
nFOIL
1BC2

mFOIL
Aleph

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Alzheimer toxic

tFOIL
nFOIL
1BC2

mFOIL
Aleph

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Alzheimer acetyl

tFOIL
nFOIL
1BC2

mFOIL
Aleph

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Alzheimer memory

tFOIL
nFOIL
1BC2

mFOIL
Aleph

Figure 3.2: ROC curves on the Alzheimer amine, Alzheimer toxic, Alzheimer acetyl and
Alzheimer memory datasets for TFOIL, NFOIL, MFOIL, ALEPH and 1BC2. Rankings
are pooled over the different folds of a 10-fold cross-validation.

3.4 Experimental Evaluation 71

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Mutagenesis r. f.

tFOIL
nFOIL
mFOIL
Aleph

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Mutagenesis r. u.

tFOIL
nFOIL
mFOIL
Aleph

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

NCTRER

tFOIL
nFOIL
1BC2

mFOIL
Aleph

Figure 3.3: ROC curves on the Mutagenesis regression friendly, Mutagenesis regression
unfriendly and NCTRER datasets for TFOIL, NFOIL, MFOIL, ALEPH and 1BC2. There
is no curve for 1BC2 on the Mutagenesis datasets because results are taken from Flach
and Lachiche (2004). Rankings are pooled over the different folds of a 10-fold cross-
validation, except for Mutagenesis r.u. where a leave-one-out cross-validation is used
instead.

72 NFOIL: Integrating Naı̈ve Bayes and FOIL

Table 3.4: Gain/loss in cross-validated predictive accuracy for the two-step methods
MFOIL+NB/TAN, ALEPH+NB/TAN and NFOIL/DISJUNCTIVE over their correspond-
ing baselines MFOIL, ALEPH and NFOIL. •/◦ indicates that TFOIL’s mean accuracy
is significantly higher/lower, and N/M that NFOIL’s mean accuracy is significantly high-
er/lower (paired sampled t-test, p = 0.05).

Dataset MFOIL ALEPH
NFOIL/disjunctive+NB +TAN +NB +TAN

Mutag. r.f. ±0.0 • ±0.0 • ±0.0 ±0.0 −8.9 • N
Mutag. r.u. ±0.0 +2.4 ±0.0 ±0.0 −47.6 • N
Alzh. amine −0.5 • N ±0.0 • N ±0.0 • N ±0.0 • N −36.3 • N
Alzh. toxic ±0.0 • N +0.2 • N ±0.0 ±0.0 −39.2 • N
Alzh. acetyl −0.4 • N ±0.0 • N ±0.0 • N +0.1 • N −31.2 • N
Alzh. memory ±0.0 • N ±0.0 • N ±0.0 • ±0.0 • −22.9 • N
NCTRER +2.1 +1.7 +4.3 • N +4.3 • N −21.5 • N
Diterpene – – ±0.0 • N −0.3 • N –

of (Friedman and Goldszmidt, 1996).

2. Using the rules learned by NFOIL as a disjunctive hypothesis Q: For this, every
rule q learned by NFOIL is evaluated on the training set. If it covers more positive
than negative examples, q is added to Q, otherwise not(q). The rule set Q is then
evaluated as a disjunctive hypothesis on the test data. This technique can only be
used for binary classification problems.

Table 3.4 shows the result of these experiments. It displays the average gain/loss of
the two-step methods MFOIL+NB, ALEPH+NB and NFOIL/disjunctive over their corre-
sponding baselines MFOIL, ALEPH and NFOIL. Significantly higher/lower mean accu-
racies of a method as compared to TFOIL/NFOIL are also indicated. On most datasets,
applying naı̈ve Bayes as a method for post-processing the learned rule set of MFOIL or
ALEPH does not yield any improvement, with the exception of small gains on the NC-
TRER and Mutagenesis r.u. datasets for MFOIL. ALEPH+NB/TAN only improves
on the original result of ALEPH on NCTRER by always predicting the majority class.
Furthermore, NFOIL/TFOIL significantly outperform MFOIL+NB and MFOIL+TAN
on the same datasets on which they significantly outperform MFOIL. In ROC space,
post-processing rules with (tree augmented) Naı̈ve Bayes can increase or decrease the
performance depending on the dataset (Table 3.5). However, AUC scores of the static
propositionalization approaches are on average much lower than those of dynamic propo-
sitionalization approaches.

Using the (possibly negated) rules learned by NFOIL as a disjunctive hypothesis
strongly degrades performance. This is because NFOIL can make use of rules which have
a very low accuracy individually but still help as additional features in the naı̈ve Bayes. If

3.4 Experimental Evaluation 73

Table 3.5: Gain/loss in area under ROC curve for the two-step methods MFOIL+NB/TAN
and ALEPH+NB/TAN over their corresponding baselines MFOIL and ALEPH. Rankings
are pooled over the different folds of a 10-fold cross-validation, except for Mutagenesis
r.u. where a leave-one-out cross-validation is used instead.

Dataset MFOIL ALEPH
+NB +TAN +NB +TAN

Mutagenesis r.f. +0.045 +0.036 +0.011 −0.034
Mutagenesis r.u. −0.183 −0.183 −0.175 −0.063
Alzheimer amine +0.001 +0.007 −0.013 −0.012
Alzheimer toxic +0.003 +0.011 +0.006 +0.005
Alzheimer acetyl +0.002 −0.003 −0.006 −0.010
Alzheimer memory −0.010 −0.016 −0.010 −0.027
NCTRER +0.054 +0.048 −0.095 −0.099

these rules are used for disjunctive classification, they produce many false-positive clas-
sifications. In fact, on some domains (e.g, Alzheimer) all examples in the test set are
always classified as positive. This shows that NFOIL uses significantly different rule sets
to ILP approaches. Thus, we can answer (Q3.2) as follows:

A dynamic propositionalization approach that selects rules based on the cri-
terion of the probabilistic model performs better than static propositional-
ization approaches that post-process a rule set using a probabilistic learner.
This is because dynamic propositionalization can make use of different/addi-
tional rules that are not considered by traditional ILP systems as they would
produce too many false-positive classifications.

It remains to answer Question (Q3.5), that is, to compare dynamic propositionalization
approaches to relational naı̈ve Bayes methods such as 1BC2 in terms of accuracy and
the number of features they employ. With respect to predictive accuracy and AUC score,
sign tests prefer TFOIL over 1BC2 (at 7/1 and 8/0, respectively). Theory complexity is
hard to compare because of the different representations. For TFOIL/NFOIL and 1BC2,
one complexity measure is the number of probability values attached to clauses. There are
#classes probability values attached to each clause in NFOILand 1BC2, and 2 ·#classes
in TFOIL (#classes denotes the number of classes). Additionally, we have to specify the
prior distribution over the class variable. The overall number of probability values to be
specified is thus of the order ofO(#clauses), and it is sufficient to compare the number of
clauses. In the experiments, 1BC2 uses an order of magnitude more clauses than NFOIL.
More precisely, 1BC2 uses more than 400 (in some cases even more than 1000) clauses
whereas NFOIL is limited to using 25 clauses. This clearly shows that (Q3.5) can be
answered affirmatively as well.

We furthermore investigated whether the proposed dynamic propositionalization ap-
proach sometimes constructs too many clauses and overfits the training data, as the stop-

74 NFOIL: Integrating Naı̈ve Bayes and FOIL

Algorithm 3 Algorithm for post-pruning a hypothesis in NFOIL.
Initialize H := NFOIL(E,B)
repeat

for all c ∈ H do
s(c) := cross-validate-accuracy(H \ {c}, E, B)

end for
c∗ := arg max

c∈H
s(c)

H := H \ {c∗}
until cross-validated accuracy decreases
output H

Table 3.6: Cross-validated predicative accuracy results and average number of clauses in
the final model for NFOIL and NFOIL/pruning. Bold numbers indicate the best result on
a dataset. The are no significant differences in mean accuracy between the two methods
(paired sampled t-test, p = 0.05).

Dataset NFOIL NFOIL/pruning
Accuracy #clauses Accuracy #clauses

Mutagenesis r.f. 75.4± 12.3 25.0 73.9± 12.1 17.7
Mutagenesis r.u. 78.6± 41.5 23.1 85.7± 35.4 1.4
Alzheimer amine 86.3± 4.3 24.7 85.0± 4.5 20.1
Alzheimer toxic 89.2± 3.4 22.4 87.8± 3.6 16.6
Alzheimer acetyl 81.2± 5.2 25.0 80.8± 4.2 20.5
Alzheimer memory 72.9± 4.3 24.9.5 74.5± 4.3 20.4
NCTRER 78.0± 9.1 15.4 79.3± 9.7 4.5
Diterpene 90.8± 3.1 25.0 90.7± 3.1 23.4

ping criterion is based on the training set score. We therefore tried post-pruning a learned
hypothesis. Post-pruning is more easily realized for NFOIL than for TFOIL, as the addi-
tional TAN structure in the TFOIL model prevents removal of rules which are parents of
other rules. Rule post-pruning was carried out using the greedy algorithm outlined in Al-
gorithm 3. The procedure cross-validate-accuracy(H,E,B) cross-validates the naı̈ve Bayes
model on the training data for a fixed set H of clauses and returns an accuracy estimate.
The algorithm greedily drops clauses from H as long as this does not decrease the cross-
validated accuracy estimate. Table 3.6 lists the accuracies of NFOIL and NFOIL/pruning
which incorporates this rule post-pruning algorithm. There is some gain in accuracy on
the small Mutagenesis r.u. and the NCTRER domain, although no differences in accu-
racy are significant at the p = 0.05 level. On these two datasets the number of features
is also greatly reduced, while few or no features are pruned for the other datasets. To
summarize, a clear overfitting behavior can not be observed except possibly on the very

3.5 Related and Future Work 75

small Mutagenesis r.u. dataset.
We conclude that our experimental study affirmatively answers Questions (Q3.1)–

(Q3.5). The dynamic propositionalization approaches NFOIL and TFOIL yield more
accurate models than simple ILP rule learning and static propositionalization approaches,
and also compare favorably to the first order naı̈ve Bayes system 1BC2 and one of the
most advanced ILP systems, namely ALEPH.

3.5 Related and Future Work

The approaches that combine statistical learning with inductive logic programming tech-
niques for addressing classification can be divided into three categories.

A first class of techniques are static propositionalization approaches. They start by
generating a set of first order features and then use these features as attributes in a prob-
abilistic model. Probabilistic models of different expressivity have been used, ranging
from naı̈ve Bayes (Pompe and Kononenko, 1995; Flach and Lachiche, 2004), to tree aug-
mented naı̈ve Bayes or full Bayesian networks (Davis et al., 2004). The set of features is
obtained either by taking all features within a pre-defined language bias, as in the 1BC
system (Flach and Lachiche, 2004), or by running a traditional ILP algorithm (Pompe and
Kononenko, 1995; Davis et al., 2004). Furthermore, aggregation-based feature construc-
tion methods such as RELAGGS (Krogel and Wrobel, 2001) and ACORA (Perlich and
Provost, 2006) that search a relational feature space using aggregation operators fall into
this group. In this class of techniques the feature construction and the statistical learning
steps are performed consecutively and independent of one another, whereas in NFOIL
and TFOIL they are tightly integrated. However, an initial step beyond static proposi-
tionalization has been taken in the work by Pompe and Kononenko (1997), where rules
generated by an ILP system are post-processed by splitting and merging clauses in order
to find a rule set that satisfies the naı̈ve Bayes assumption.

A second class of techniques employs a rich probabilistic-relational model, such as
Markov Logic Networks Richardson and Domingos (2006), Bayesian Logic Programs (Ker-
sting and De Raedt, 2001) and Probabilistic Relational Models (Getoor et al., 2001). In
contrast to the approaches presented here, these formalisms try to combine the full power
of statistical and relational learning. While this allows for great representational power,
learning these models is computationally much more challenging, in particular if the re-
lational structure needs to be learned from data.

A third class of techniques (Popescul et al., 2003; Dehaspe, 1997) indeed integrates
the inductive logic programming step with the statistical learning step. Whereas the dy-
namic propositionalization methods presented in this chapter employ the simplest possible
statistical model, namely naı̈ve Bayes, and are focused on computational efficiency, those
approaches use more advanced (and hence computationally more expensive) statistical
models such as logistic regression and maximum entropy modeling, which does seem to
limit the application potential. For instance, Popescul et al. (2003) report that—in their
experiments—they had to employ a depth limit of 2 when searching for features. The

76 NFOIL: Integrating Naı̈ve Bayes and FOIL

work on NFOIL and TFOIL is similar in spirit to these two approaches but is much more
simple and therefore computationally more efficient.

The most closely related line of research is the work on the SAYU system of Davis
et al. (2005a), which has been developed in parallel with NFOIL. The basic SAYU sys-
tem uses a “wrapper” approach where (partial) clauses generated by the refinement search
of the ILP system Aleph are proposed as features to a (tree augmented) naı̈ve Bayes, and
incorporated if they improve performance. This means that feature learning and naı̈ve
Bayes are tightly coupled as in our approach. Differences between SAYU and NFOIL
include that NFOIL uses a more simple greedy search algorithm, and likelihood scoring
for both clause and parameter search. In SAYU, clauses are scored according to the area
under the precision-recall curve, while parameters are optimized according to likelihood.
Furthermore, clause selection is based on a separate tuning set. Another difference is
that SAYU does not support multi-class classification, while NFOIL and TFOIL han-
dle multi-class problems as naturally as naı̈ve Bayes does. The SAYU system has re-
cently been extended into several directions. One interesting direction is view learning, a
predicate-invention mechanism that adds new views on the data defined by clauses found
during the learning process (Davis et al., 2005b, 2007b). Another direction are regression
settings, for instance, to solve quantitative structure-activity relationship problems (Davis
et al., 2007a).

Finally, there is also the approach of Craven and Slattery (2001) who combine several
naı̈ve Bayes models with FOIL. The decisions of naı̈ve Bayes models are viewed as truth
values of literals occurring in clauses. This work can be regarded as the inverse of the
approach presented in this chapter in that NFOIL/TFOIL employ naı̈ve Bayes on top
of logic, whereas Craven and Slattery employ naı̈ve Bayes as a predicate in the logical
definitions.

There are several directions for future work. On the one hand, the underlying ILP
algorithm FOIL could be replaced by a more powerful system such as ALEPH. On the
other hand, the probabilistic formalisms could be extended, for instance, by taking into
account priors on the parameters or the tree augmented naı̈ve Bayes structure. A more
general direction for future work is to explore dynamic propositionalization based on
other statistical learning frameworks. We will follow this direction by discussing dynamic
propositionalization based on kernels in the next chapter.

Chapter 4

KFOIL: Learning Simple
Relational Kernels∗

The previous chapter has introduced a dynamic propositionalization approach based on an
integration of probabilistic models (specifically, tree augmented naı̈ve Bayes) and FOIL.
In fact, most of the work in statistical relational learning has focused on extensions of
various probabilistic models to relational data. In this chapter, we discuss dynamic propo-
sitionalization approaches based on an alternative paradigm, namely that of kernel meth-
ods. Kernel methods have so far received less attention in the statistical relational learning
community (but see Passerini et al., 2006).

Kernel methods are based on learning linear functions in a suitable reproducing kernel
Hilbert space (RKHS), mostly by means of convex optimization procedures. This frame-
work offers remarkable advantages, including the simplicity due to the uniqueness of the
solution, the efficiency of well understood optimization procedures, the ability to control
overfitting by means of regularization, and the flexibility of abstracting away the type of
the data points via implicit feature mappings. One of the limitations of the kernel-based
framework is that the kernel function needs to be carefully designed for the problem at
hand. Within a statistical relational learning context, significant efforts have been de-
voted to devising effective kernels for structured and relational data types (Gärtner, 2003;
Gärtner et al., 2004; Leslie et al., 2002; Lodhi et al., 2002). Designing the right ker-
nel, however, requires a sufficient understanding of the application domain so that one
can figure out the relevant features for the problem at hand. While it is possible to de-
fine “universal” kernels defining arbitrarily complex hypothesis spaces (Micchelli et al.,
2006; Caponnetto et al., 2008), and such kernels often give good results on a wide range
of application problems, kernels that are customized to a particular application domain
typically outperform universal kernels. Ideally, the kernel function, or the set of relevant

∗This chapter builds on (Landwehr et al., 2006b).

77

78 KFOIL: Learning Simple Relational Kernels

features, should be learned from data, rather than designed by hand. Research on kernel
learning, however, has mainly focused on methods for combining existing kernel matri-
ces with appropriate weights (Argyriou et al., 2007), rather than on learning the kernel
function from data.

Learning the kernel function arguably stands at a higher level of abstraction, as com-
pared to function learning in a given RKHS. In a statistical relational learning context,
the relationship between kernel learning and function learning shares similarities to the
relationship between structure and parameter learning in SRL approaches based on proba-
bilistic models. In fact, this chapter shows how relational kernel learning can be naturally
performed in the setting of learning from statistical entailment presented in Section 2.4
if kernel methods are used to represent the statistical part of the model. In this setting,
learning the relational model structure corresponds to inferring a suitable (relational) ker-
nel function for the problem at hand, while parameter learning corresponds to function
learning in the RKHS.

Specifically, we present the KFOIL system, which follows a similar methodology as
the NFOIL system discussed in the previous chapter, but employs kernel methods instead
of probabilistic models. As in the propositional case, kernel methods can produce more
expressive and more accurate classifiers than simple models such as naı̈ve Bayes. On
the other hand, kernel machines are typically computationally more expensive, leading to
new computational challenges in KFOIL.

This chapter is organized as follows. We start from the setting of learning from statis-
tical entailment introduced in Section 2.4, and show how kernel-based techniques can be
employed in this framework. In particular, we discuss different scoring functions that can
be used with kernel machines. One of the major challenges is to find principled scoring
functions that can be evaluated efficiently. Moreover, a straightforward “wrapper” ap-
proach where each candidate clause is evaluated separately will prove to be computation-
ally infeasible; instead, incremental optimization procedures are needed that exploit the
similarity of repeated optimization problems encountered during clause search. We also
discuss how the KFOIL methodology can be extended to naturally deal with multi-task
learning problems by learning a joint kernel function for all tasks. Finally, experimental
results show that KFOIL yields competitive accuracies compared to NFOIL, ILP, and
static propositionalization approaches.

4.1 Learning Relational Kernels

This section discusses how kernel machines can be incorporated into the setting of learn-
ing from statistical entailment introduced in Section 2.4. As in the previous chapter, this
involves specifying the statistical coverage function λ(θ, H,B), and the inner and outer
scoring functions SI and SO.

4.1 Learning Relational Kernels 79

4.1.1 Statistical Learning and Kernels
Statistical learning with kernels has received widespread attention, and has proven to be
one of the most competitive approaches for solving challenging real-world problems. A
kernel is a positive semi-definite symmetric function1 that generalizes the notion of inner
product to arbitrary domains. An inner product defines a concept of distance between
points in a space. Inner product spaces are the basis of principled and powerful classifi-
cation algorithms such as the support vector machine (Cortes and Vapnik, 1995).

Kernels generalize inner products by means of a reproducing kernel Hilbert space
(RKHS): the kernel function K(x, x′) between two examples x, x′ ∈ X corresponds to
taking an inner product in some (typically high-dimensional) feature space into which
instances from X are embedded. As long as a classifier only needs access to inner prod-
ucts in all calculations, this feature mapping never has to be computed explicitly, but is
implicit in the kernel function (so-called “kernel trick”).

Different kernel-based classifiers exist. In this thesis, we will mostly be interested
in support vector machines. A support vector machine model f is a hyperplane in the
RKHS. Generally speaking, model estimation for SVMs involves solving the following
generic Tikhonov regularized problem:

f∗ = arg min
f∈F

C

N∑
i=1

`(yi, f(xi)) + ‖f‖2K (4.1)

where x1, ..., xN are training examples with labels y1, ..., yN (see Section 2.1), F the
space of hyperplanes under consideration, `(y, f(x)) is a positive function measuring the
loss incurred in predicting f(x) when the target is y, C is a positive regularization con-
stant, and ‖ · ‖K is the norm in the RKHS of K. The solution of the above optimization
problem can be expressed as a linear combination of kernel computations between indi-
vidual training examples xi and x using the representer theorem:

f(x) =
N∑

i=1

ciK(x, xi), (4.2)

where f(x) is proportional to the (signed) distance of x to the hyperplane represented
by f , and is also called the “margin”. More specifically, for classification problems the
margin function f can be expressed as

f(x) =
N∑

i=1

αiyiK(x, xi) + b (4.3)

where we generalize Equation (4.2) to include a bias term b. Similarly, for regression

1A symmetric function K : X × X 7→ IR is called a positive semi-definite kernel iff ∀m ∈
IN, ∀x1, . . . , xm ∈ X , ∀ a1, . . . , am ∈ IR,

Pm
i,j=1 aiajK(xi, xj) ≥ 0.

80 KFOIL: Learning Simple Relational Kernels

problems one obtains

f(x) =
N∑

i=1

(αi − α∗i)K(x, xi) + b (4.4)

by means of an ε-tube regression (see Vapnik, 1995, for details). Note that from Equa-
tion (4.3), we can obtain a simple classification decision by

class(x) =
{

positive: f(x) > 0
negative: f(x) ≤ 0 , (4.5)

or a probability for class(x) being positive by fitting a sigmoid function to a previously
trained support vector machine:

P (class(x) = positive | x) = σ(af(x) + b) (4.6)

where
σ(z) =

ez

1 + ez

is the sigmoid function and the parameters a, b are fit to minimize cross-entropy (see
Platt, 1999, for details). To avoid explicit computation of the feature map to the RKHS,
the problem of Equation (4.1) is typically solved in a dual (Lagrangian) formulation. This
optimization problem will be discussed in more detail in the context of scoring functions
in Section 4.1.4.

4.1.2 Logical Kernel Machines
Our goal is to use kernel machines in the setting of learning from statistical entailment
introduced in Section 2.4. Equation (4.2) suggests a natural way to combine kernels and
statistical logical learning by means of a logical kernel function K(θ, θ′,H, B) where
θ, θ′ are relational examples: following the representer theorem, a margin function f for
relational examples will be expressed as

f(θ, H,B) =
∑
θ′∈E

cθ′K(θ, θ′,H, B). (4.7)

The only prerequisite at this point is a kernel function K(·, ·,H, B) : X × X → R for a
relational example space X . How such a kernel function can be defined in terms of a set
of clauses H will be discussed in the next section.

Given f , a statistical coverage function λ as introduced in Section 2.4 can be obtained
for (probabilistic) classification problems as given by Equation (4.5) and Equation (4.6),
and regression problems can be directly modeled using Equation (4.4). For instance, in a
two-class classification problem, define

λ(θ, H,B) =

(
σ(af(θ, H,B) + b)

1− σ(af(θ, H,B) + b)

)
. (4.8)

4.1 Learning Relational Kernels 81

It is also possible to tackle multi-class classification problems in this setting, either us-
ing standard techniques for multi-class SVMs (Crammer et al., 2001), or by treating
multi-class problems in a multi-task framework. This will be discussed in more detail
in Section 4.1.5.

We will continue with a discussion of how kernel functions can be defined by logical
theories in the next section. Section 4.1.4 then explores the important issue of scoring
functions to complete the specification of statistical logical learning with kernels.

4.1.3 Kernel Functions Based on Definite Clause Sets
The simplest way to introduce kernels K(θ1, θ2,H, B) based on a set H of definite
clauses is to propositionalize the examples θ1 and θ2 using H and B and employ ex-
isting kernels on the resulting vectors. We will thus map each example θ onto a vector
ϕH,B(θ) over {0, 1}m with H = {q1, ..., qm}, with i-th component

ϕH,B(θ)i =
{

1 : B ∪ {qi} |= pθ
0 : otherwise.

In other words, we have defined an m-dimensional feature map from the original rela-
tional example space to the space {0, 1}m of binary vectors. Note that m = |H| is the
number of clauses in the logical theory H . Thus, the dimension of the defined feature
map will eventually be learned from data.

Example 4.1.1. Reconsider Example 2.3.1 in Chapter 2. Assume the theory H consists
of the clauses in the relational feature set F given in Example 2.3.1, and molecules e1, e2

are as given in that example. For e1 and e2 the corresponding mapping to R3 is

ϕH,B(e1) =

 1
1
0

 ϕH,B(e2) =

 1
0
1

 .

Let us now look at the effect of defining kernels on the propositionalized representation.
A simple linear kernel KL would give the following results:

KL(e1, e2,H, B) = 〈ϕH,B(e1), ϕH,B(e2)〉 = 1
KL(e1, e1,H, B) = 〈ϕH,B(e1), ϕH,B(e1)〉 = 2
KL(e2, e2,H, B) = 〈ϕH,B(e2), ϕH,B(e2)〉 = 2

where 〈·, ·〉 denotes the scalar product. This kernel can be interpreted as the number of
clauses in H that succeed on both examples.

The linear kernel introduced in the above example can be formalized in terms of log-
ical entailment:

KL(θ1, θ2,H, B) = #entH,B(pθ1 ∧ pθ2) (4.9)

82 KFOIL: Learning Simple Relational Kernels

where, for a first-order formula r, #entH,B(r) = |{q ∈ H|B ∧ {q} |= r}| denotes the
number of clauses in H that together with B logically entail r.

To derive Equation (4.9), note that the feature representation of an example e is a
binary vector ϕH,B(θ). Let ϕH,B(θ)i denote the i-th component of this vector. Now
ϕH,B(θ)i = 1 if and only if the i-th clause in H matches the example θ, that is, B∧{qi} |=
pθ where H = {q1, ..., qm}. Moreover, for the linear kernel defined on the binary vectors
it holds that

〈ϕH,B(θ1), ϕH,B(θ2)〉 = |{i | ϕH,B(θ1)i = 1, ϕH,B(θ2)i = 1}|
= |{i | B ∧ {qi} |= pθ1, B ∧ {qi} |= pθ2}|
= |{i | B ∧ {qi} |= pθ1 ∧ pθ2}|
= |{q | B ∧ {q} |= pθ1 ∧ pθ2}|

proving Equation (4.9). Intuitively, this implies that two examples are similar if they share
many structural features. The structural features to look at when computing similarities
are encoded in the hypothesis H .

If a linear kernel is used as in the example above, the corresponding feature map
is m-dimensional and directly given by ϕH,B . Note that this feature map is explicit as
the binary vectors are obtained directly by evaluating how clauses match on relational
examples. However, the formalism can also be generalized to standard polynomial (KP)
and Gaussian (KG) kernels. This is achieved by using the corresponding propositional
kernels on the binary vectors resulting from the explicit feature map ϕH,B . For example,
a polynomial kernel can be defined as

KP (θ1, θ2,H, B) = (KL(θ1, θ2,H, B) + 1)d

= (〈ϕH,B(θ1), ϕH,B(θ2)〉+ 1)d

= (#entH,B(pθ1 ∧ pθ2) + 1)d.

Note that for the polynomial kernel, the resulting feature map can be decomposed into
two steps: relational examples are first mapped to an m-dimensional space of binary
features (by ϕH,B), and the polynomial kernel then maps these vectors to an higher-
dimensional feature space in which all products of up to d of these binary features are
considered. Further note that while the first part of the feature map is explicit, the second
part induced by the polynomial kernel does not have to be computed explicitly. Logically
speaking, a polynomial kernel amounts to considering conjunctions of up to d clauses
which logically entail the two examples, this can easily be shown by a similar derivation
as for Equation (4.9).

As for the polynomial case, we can also use a propositional Gaussian kernel on top of
the binary vectors resulting from ϕH,B . This turns out to implement the relational kernel
function

KG(θ1, θ2,H, B) = exp

(
−#entH,B((pθ1 ∨ pθ2) ∧ ¬(pθ1 ∧ pθ2))

2σ2

)
,

4.1 Learning Relational Kernels 83

which can again be derived in a similar fashion as Equation (4.9) by starting from ϕH,B

and the propositional Gaussian kernel . Logically speaking, the argument of entH,B can
be interpreted as a kind of symmetric difference between the two examples, as

entH,B((pθ1 ∨ pθ2) ∧ ¬(pθ1 ∧ pθ2))

counts the number of features that match on one of the examples but not on the other. As
for the standard Gaussian kernel, the exponential function then computes a kernel/simi-
larity value which is high if this difference is low. Moreover, again as for the standard
Gaussian kernel, the parameter σ controls how quickly the similarity drops as the differ-
ence between examples increases.

4.1.4 Scoring Functions
We still need to specify the inner and outer scoring functions SI and SO. As for the
NFOIL system presented in Chaper 3, the choice of inner and outer scoring function
involves a certain trade-off between the optimization objective and computational conve-
nience. On the one hand, jointly optimizing the statistical classifier λ and the hypothesis
H according to one scoring function, that is, setting SI = SO, is appealing. On the
other hand, the two optimization problems are rather different (discrete clause search vs.
smooth numeric parameter spaces), and a scoring function that is computationally conve-
nient for one problem might not be appropriate for the other.

We will first review scoring functions and the optimization problem in the propo-
sitional case, that is, for standard support vector machines, and derive SI from these
considerations. To simplify the exposition, a binary classification problem is assumed.
Extensions of support vector machines to multi-class classification and regression are
well-known (see Crammer et al., 2001; Vapnik, 1995) but will not be discussed in detail
here. Afterwards, different options for SO will be discussed.

The basic principle of SVM optimization is to fit a maximum margin separating hy-
perplane in the RKHS, which is given by an (implicit) feature map φ : X → φ(X) where
X is the original space of examples and φ(X) the RKHS. The max-margin solution is
obtained by minimizing

1
2
‖w‖2 subject to yif(xi) ≥ 1, i = 1, ..., N

where
f(x) = 〈w, φ(x)〉+ b

(w is the normal vector of the decision hyperplane and b its bias), and yi are the class
labels of examples xi. However, data are not always separable, and even if they are, a
classifier that tries to fit all training instances perfectly is prone to overfitting. Thus, the
problem is typically relaxed by means of slack variables ξ1, ..., ξN that allow an example
xi to lie within the margin, or even on the wrong side of the decision boundary. The

84 KFOIL: Learning Simple Relational Kernels

relaxed optimization problem is to minimize

C

N∑
i=1

ξi +
1
2
‖w‖2 subject to yif(xi) ≥ 1− ξi, ξi ≥ 0, i = 1, ..., N

where C is a constant that controls the trade-off between regularization and fit of the
training data. In a binary classification setting, this optimization problem can be cast into
the generic Tikhonov regularization problem defined by Equation (4.1): it is equivalent to
minimizing

C ′
N∑

i=1

[1− yif(xi)]+ + ‖f‖2 (4.10)

where [·]+ = max(·, 0), ‖f‖ = ‖w‖ is the norm of the normal vector of the hyperplane
defining f , and [1− yif(xi)]+ is called the hinge loss error function.

To avoid explicit computation of the feature map (and thus be able to work with any
feature embedding implicitly defined by a kernel function), this so-called primal opti-
mization problem is typically replace by a dual (Lagrangian) formulation of the form:
maximize

N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi, xj) (4.11)

subject to 0 ≥ αi ≥ C and
N∑

i=1

αiyi = 0.

This is a convex optimization problem, which can be solved exactly and relatively ef-
ficiently using special-purpose quadratic programming techniques. Popular algorithms
include chunking strategies (Kaufman, 1999) or sequential minimal optimization (Platt,
1998). The fact that model fitting can be solved efficiently and without local optima
problems is considered to be one of the most important advantages of the support vector
machine framework.

In order to retain these advantages of convex optimization and make use of existing
optimized algorithms and software packages, we will use the loss function defined by
Equation (4.10) as the (negative) inner scoring function SI to train the support vector
machine. Thus, we define for a given hypothesis H

SI(E,H, λ,B) = −

(
C

N∑
i=1

[1− yif(xi)]+ + ‖f‖2
)

(4.12)

where f is the linear function in the RKHS that implements the statistical coverage func-
tion λ according to Equation (4.8).

The choice of the outer scoring function SO is less obvious. By optimizing Equa-
tion (2.8), we jointly learn a relational kernel function and solve the corresponding sup-
port vector machine problem. In a purely statistical learning setting, joint learning of

4.1 Learning Relational Kernels 85

kernels and function parameters has been addressed by learning combinations of sim-
pler kernel functions, whose coefficients are learned by gradient descent (Chapelle et al.,
2002), semidefinite programming (Lanckriet et al., 2004; Ong et al., 2005) or regulariza-
tion (Micchelli and Pontil, 2005). In a hybrid statistical-logical setting like the one we
propose here, a constructive approach has to be pursued instead, trading optimality for
expressiveness and interpretability of the learned relational rules.

Note that using the score defined by Equation (4.12) as outer scoring function SO is
not an option. It turned out in preliminary experimentation that hinge loss, while an effec-
tive scoring function for SI , does not lead to stable search in the hypothesis space. This
is because different candidate hypotheses H give rise to different kernel functions on the
training examples. The hinge loss function is appropriate for determining an optimal sep-
arating hyperplane (in the max-margin sense), but it is not meant for comparing different
kernel functions which lead to different feature embeddings and thus different proposi-
tional optimization problems. Moreover, the computational advantages of the hinge loss
for fitting an SVM model (convexity, efficiency) do not carry over to the discrete clause
search in the hypothesis space in any case. A straightforward solution is thus to employ
as SO directly the loss function we are ultimately interested in. For binary classification
problems, the most common choices are 0-1 loss (accuracy) or area under the ROC curve
(AUC). In our setting, 0-1 loss is defined as follows:

Definition 4.1.1 (Accuracy). The 0-1 loss, or accuracy, of a statistical-logical model
given by H and λ on a set E of examples is

SAcc
O (E,H, λ,B) =

∑
θ∈E

I[prediction(λ(θ, H,B)) = pθ]

where

prediction(
(

λ1

λ2

)
) =

{
true : λ1 ≥ λ2

false : otherwise

and I[f] is an indicator function which is 1 if f is true and 0 otherwise.

AUC can be defined in terms of ranks as follows, as it essentially counts the number
of pairs of examples that are ranked correctly:

Definition 4.1.2 (Area Under the ROC Curve). Let E denote a set of N examples, let
ri ∈ {1, ..., N} denote the rank assigned to the examples in E by λ(·,H, B), and N+

the number of positive and N− the number of negative examples. Let furthermore r+
j ,

j = 1, ..., N+, denote the ranks of the positive examples, and r−j , j = 1, ..., N−, the
ranks of the negatives. Then the area under the ROC curve of a statistical-logical model
given by H and λ is

SAUC
O (E,H, λ,B) =

1
N+N−

N+∑
i=1

N−∑
j=1

I[r+
i > r−j]

86 KFOIL: Learning Simple Relational Kernels

(note that this quantity can be computed in time O(N log N) by sorting examples accord-
ing to ranks).

For regression problems, the most common scoring function is the root mean squared
error:

Definition 4.1.3 (Root Mean Squared Error). The root mean squared error of a statistical-
logical model given by H and λ is

SRMSE
O (E,H, λ,B) =

√
1
N

∑
θ∈E

(λ(θ, H,B)− pθ)2.

AUC and Hinge Loss Optimization

For classification problems, choosing AUC as the outer scoring function SO is particularly
appealing. First, there are general arguments preferring AUC over classification accuracy,
as AUC is less sensitive to skewed class distributions (Provost et al., 1998). Second, there
are theoretical arguments (discussed below) that AUC and the (negative) regularized hinge
loss used as SI are closely related. From a theoretical perspective, maximizing one joint
score in both the hypothesis and function learning problem is appealing. Unfortunately,
training the support vector machine to maximize AUC (rather than minimizing the reg-
ularized hinge loss of Equation (4.10)) is computationally too demanding, and therefore
only approximate methods are available (Brefeld and Scheffer, 2005). However, the close
relationship between hinge loss and AUC means that hinge loss minimization can be seen
as an approximation to maximizing AUC also in the SVM training.

It has been repeatedly observed that standard SVMs that minimize hinge loss achieve
very good AUC values, indicating that the two optimization criteria are closely re-
lated (Rakotomamonjy, 2004). More recently, this has been supported also by a theo-
retical analysis. Steck (2007) introduced a ranking version of the standard hinge loss
function called the hinge rank loss. The hinge rank loss is defined as

Lν =
N∑

i=1

[
1
2
− yi(ri − ν)

]
+

(4.13)

where ν is the ranking threshold (the rank from which on examples would be classified as
positive). Steck (2007) has shown that the following proposition holds:

Proposition 4.1.1. The AUC is related to the hinge rank loss and the number of false
negatives as follows:

AUC = 1− Lν̄ − constD,ν̄ −Nfn
ν̄

N+N− and AUC ≥ 1− Lν̄ − constD,ν̄

N+N− (4.14)

4.1 Learning Relational Kernels 87

where ν̄ = ν − 1
2 ; Nfn

ν̄ =
∑N+

j=1 I[r+
j ≤ ν̄] is the number of false negatives; and

constD,ν̄ =

(

N− − ν̄ + 1
2

)
: N− ≥ ν̄(

ν̄ −N−

2

)
: otherwise;

that is, constD,ν̄ is a constant given the data and the ranking threshold ν̄.

Furthermore, Steck (2007) proved that:

Proposition 4.1.2. The lower bound in Equation (4.14) is tight in the asymptotic limit
N →∞ under the assumption that N+/N → const+D, where 0 < const+D < 1 is a
constant.

Thus, minimizing hinge rank loss coincides with maximizing AUC in the limit. In
the experimental evaluation presented in (Steck, 2007), it is shown that for most datasets,
optimizing standard hinge loss instead of hinge rank loss (or AUC directly) provides near-
optimal solutions in terms of AUC performance.

Note that the situation for KFOIL is very similar to the situation discussed for NFOIL
in Section 3.2.2. In NFOIL, standard likelihood is used as the inner scoring function
because it is closed-form computable given simple “counts” of feature and class values
on the training data. However, likelihood needs to be replaced by conditional likelihood
in the outer scoring function. As it is computationally too demanding to also optimize
parameters according to conditional likelihood, we employed standard likelihood as an
approximation to conditional likelihood in parameter learning.

Similarly, hinge loss is computationally efficient as inner scoring in KFOIL, but not
effective as an outer scoring function. AUC is a natural outer scoring function but too
expensive to optimize as the inner scoring function. However, with the arguments given
above, optimization of the standard hinge loss as inner score can be seen as a computa-
tionally efficient approximation to maximizing AUC.

Direct Optimization of the Kernel Function

Following the definition of learning from statistical entailment (Problem 2.4.1), we have
so far assumed that computing the score of a candidate hypothesis H involves estimating
the statistical model λ. In KFOIL, this step involves training a support vector machine,
and clearly constitutes the computational bottleneck during learning.

We now consider an alternative approach which avoids solving the SVM optimization
problem while scoring a candidate hypothesis. In KFOIL, a given hypothesis H directly
defines a kernel function. This function already contains valuable information concerning
the potential performance of a learning machine using it, and can be employed to assess
the quality of H . More specifically, kernel target alignment (KTA) provides a principled
way of assessing the quality of a given kernel function with regard to the target concept

88 KFOIL: Learning Simple Relational Kernels

represented by the training labels (Lanckriet et al., 2004; Cristianini et al., 2002). In a
binary classification setting, KTA is defined as the normalized Frobenius product between
the kernel matrix and the matrix representing pairwise target products:

Definition 4.1.4 (Kernel Target Alignment). Let K be an N × N kernel matrix for ex-
amples e1, ..., eN , and let y ∈ {−1, 1}N denote the example labels. The kernel target
alignment of K with y is

KTA(K,y) =
〈K,yyT 〉F√

〈K, K〉F 〈yyT ,yyT 〉F
(4.15)

where
〈M,N〉F =

∑
ij

MijNij

is the Frobenius product between M and N .

The alignment of a kernel matrix is also related to bounds on the maximum perfor-
mance of a classifier using this kernel (in terms of generalization error) (Cristianini et al.,
2002). It is thus reasonable to treat the alignment score of a kernel function as an indica-
tion of the actual performance of a support vector machine using this kernel, and use this
criterion to drive the search for features. This yields the alternative outer scoring function

SKTA
O (E,H, λ,B) = KTA(K,y) (4.16)

where K is the kernel matrix defined by the hypothesis H as in Equation (4.9) and y ∈
{−1, 1}N is a vector representing the class labels pθ for θ ∈ E (note that this score is
actually independent of λ). A naı̈ve computation of the kernel target alignment as given in
Equation (4.15) has complexity O(N2) where N is the number of examples. However, in
Section 4.2.2 incremental approaches to computing KTA scores for all candidate clauses
encountered during clause search will be discussed, which yield significant computational
savings. Section 4.3 will show empirically that in this setting learning in KFOIL can be
performed in linear time in the number of examples.

4.1.5 Multi-task Learning
Multi-task learning is a technique for solving multiple, related tasks in a given domain
by learning a joint model for all tasks (Caruana, 1997). The rationale behind multi-task
learning is the following. Given limited training data for each individual task, there are
typically many (single-task) models that fit the data equally well, and the learner has
to rely on its built-in bias to choose between them. By learning a joint model for all
tasks, an additional bias is introduced, as the model now has to fit the observed data
from all tasks simultaneously. This can significantly alleviate problems associated with
sparse training data such as overfitting and unstable search. In fact, it has been shown

4.1 Learning Relational Kernels 89

that multi-task learning often leads to significantly improved generalization on unseen
examples (Caruana, 1997).

Multi-task learning is traditionally addressed by learning a common representation of
the example for different tasks. For instance, in feedforward neural networks this can
be achieved by sharing the hidden layers across tasks. In KFOIL, we explicitly learn a
feature representation, and thus a kernel function, by means of the induced hypothesis
H . A natural approach for multi-task learning in the spirit of Caruana (1997) is there-
fore to share this representation (or, equivalently, the kernel function) across tasks. This
can be achieved by an appropriate multi-task scoring functional, which is obtained as a
combination of single-task scoring functionals on the different individual tasks. Assume
that SO(E,H, λ,B) is an (outer) scoring functional as introduced in Section 4.1.4, and
that E1, ..., ET are the available training data for T tasks T1, ..., TT . A simple but effec-
tive multi-task scoring functional is obtained by averaging single-task scores, that is, by
replacing Equation (2.8) with

max
H∈H

1
T

T∑
t=1

SO(E,H, arg max
λ∈Λ

SI(Et,H, λ, B), Et, B). (4.17)

Experimental results presented in Section 4.3 show three advantages of multi-task
learning in the KFOIL setting. First, they show a consistently improved generalization
performance, confirming the advantages of multi-task learning observed in the litera-
ture (Caruana, 1997). Second, in our setting learning a shared clause set for multiple
tasks leads to a more compact representation of the learned concept, as the multi-task
clause set is significantly smaller than the union of the task-specific clause sets. In terms
of the similarity/kernel function learned, this yields a generic definition of similarity that
is shared between tasks and should be easier to interpret than a number of task-specific
similarity functions. Third, learning a model for multiple tasks simultaneously also results
in significant computational savings, as discussed in more detail in Section 4.3.8.

Finally, traditional approaches to multi-class learning with support vector machines
can be considered from a multi-task perspective. Traditionally, multi-class classification
in SVMs is performed by solving several binary classification tasks, either in a one-vs-
one or one-vs-rest setup, using a shared representation for the examples which is fixed
in advance. Test examples are then classified into the class with the highest margin. In
such a setting, we propose to pursue a multi-task approach, by jointly learning the shared
representation of examples which best fits all binary tasks. In this case, the average of
single-task scoring functions (Eq. (4.17)) can also be replaced by multi-class accuracy.
Multi-class accuracy can thus be seen as an additional multi-task scoring function in this
setting. Section 4.3 shows that also for multi-class classification, multi-task approaches
can improve over standard single-task (i.e., one-vs-all) approaches.

90 KFOIL: Learning Simple Relational Kernels

4.2 The KFOIL Algorithm
We now present KFOIL as a simple learning algorithm within the proposed framework of
learning from statistical entailment with kernels. As the NFOIL algorithm presented in
the previous chapter, KFOIL employs an adaptation of the well-known FOIL algorithm
(Quinlan, 1990) to learn the hypothesis H and thus the kernel function. FOIL, pre-
sented in Section 2.2.3, essentially implements a straightforward separate-and-conquer
rule learning algorithm in a relational setting, and is one of the most basic and widely
used ILP algorithms

4.2.1 From FOIL to KFOIL
Search in FOIL is based on the notion of logical coverage: the goal is essentially to cover
all positive and no negative examples. In the setting of learning from statistical entailment
considered here, coverage is replaced by a kernel machine λ. As in the previous chapter,
this implies that Algorithm 1 needs to be adapted to account for the joint statistical-logical
model. First, the scoring function score(E,H ∪ {c′}, B) is replaced by the outer scoring
function SO given in Problem 2.4.1:

score(E,H ∪ {c′}, B) = SO(E,H, arg max
λ∈ΛH

SI(E,H, λ,B), B). (4.18)

For classification problems, SO can be 0-1 loss (Definition 4.1.1), the area under the
ROC curve (Definition 4.1.2), or kernel target alignment (Definition 4.1.4); for regression
problems, SO is root mean squared error (Definition (4.1.4)).

Second, KFOIL cannot use a separate-and-conquer approach. Because the final
model in FOIL is the logical disjunction of the learned clauses, (positive) examples that
are already covered by a learned clause can be removed from the training data (in the
update(E,H) function in Algorithm 1, Chapter 2). In KFOIL, this notion of coverage
is lost, and the training set is not changed between iterations. Therefore, update(E,H)
returns E. Finally, FOIL stops when it fails to find a clause that covers additional positive
examples. As an equally simple stopping criterion, learning in KFOIL is stopped when
there is no improvement in score between two successive iterations.

Adapting Algorithm 1 in this way yields a “wrapper” approach in which candidate
clauses are successively evaluated according to the scoring function SO. This is similar
in spirit to hypothesis search in the NFOIL system presented in the previous chapter. By
replacing a generative statistical model with a consistent discriminative one, KFOIL im-
proves over its predecessor NFOIL, as shown in Section 4.3.3, while retaining most of
the interpretability inherent in selecting a small set of relevant features. However, a dis-
advantage of KFOIL in comparison to NFOIL is the increased computational complexity
of the search procedure. If the outer scoring function is 0-1 loss or area under the ROC
curve, evaluating SO involves training a support vector machine. If the outer score is ker-
nel target alignment, Equation (4.15) (in Definition 4.1.4) needs to be solved instead. In
both cases, in a naı̈ve implementation of the algorithm outlined so far, scoring candidate

4.2 The KFOIL Algorithm 91

clauses will have a computational complexity at least quadratic in the number of training
examples. In contrast, the naı̈ve Bayes statistics needed for scoring in NFOIL can be
updated in linear time (see Section 3.2.3).

Computational complexity can be reduced significantly if the wrapper approach is
replaced by an incremental learning procedure. The key idea is to exploit similarities in
the optimization problems that need to be solved during search. Rather than solving an
optimization problem from scratch for any new candidate clause encountered, solutions
or intermediate results of previous optimizations can be reused to speed up the current
optimization. In fact, Section 4.3 will show empirically that for kernel target alignment
with incremental optimization, learning in KFOIL can be performed in linear time in the
number of examples.

4.2.2 Computational Complexity and Incremental Optimization
The computational bottleneck in KFOIL learning is the successive evaluation of candidate
clauses. Assume the current theory is H with |H| = n. Candidate clauses are obtained
as refinements of the currently best clause c (see Algorithm 1). Thus, assume the goal is
to evaluate a candidate clause c′ ∈ ρ(c), and let H ′ = H ∪ {c′} denote the hypothesis
including c′. Evaluation consists of the following three steps:

1. ∀x ∈ E, compute the feature space representation ϕH′,B(x) of x.

2. Compute the kernel matrix M : ∀θ, θ′ ∈ E compute K(θ, θ′,H ′, B).

3. Compute score(E,H ′, B). Here, two cases have to be distinguished.

3 a) S is a scoring functional that requires training a support vector machine, such
as 0-1 loss or AUC. In this case, a (soft margin) SVM optimization needs to
be performed. In binary classification, for instance, this amounts to solving
the maximization problem given by Equation (4.11).

3 b) S is defined by kernel target alignment. In this case, we have to compute the
alignment A(K, y) between the kernel K = K(·, ·,H ′, B) and the examples
as defined by Definition 4.1.4.

In the following, we will show how significant computational savings can be obtained in
all of the outlined steps by incrementally updating the relevant pieces of information.

Incrementally Computing the Feature Space Representation

In order to compute the feature space representation ϕH′,B(e) for every example e ∈ E,
KFOIL has to first retrieve the set of examples cov(c′) covered by the clause c′, a task
that typically has to be carried out in any ILP system. This task can be solved more
efficiently in an incremental way. First, we compute cov(c) for the current best clause
c before evaluating coverage of all refinements c′ ∈ ρ(c). As c′ is a refinement of c,

92 KFOIL: Learning Simple Relational Kernels

cov(c′) ⊆ cov(c). Thus, coverage of c′ only has to be checked on examples e ∈ cov(c).
Second, coverage calculations in KFOIL are sped up additionally by remembering for
every free variable V in c and every example e ∈ cov(c) the set of constant bindings

const(V, e) = {a ∈ A | cθ covers e, θ = {V/a}}

making c cover the example e, where A is the set of all (type-conform) constants that can
be bound to V . Assume that c′ is obtained from c by adding literal l, that is, c′ = c, l,
and V1, ..., Vr are the shared variables between l and c. Now, c′ can only cover e if
there is a tuple (a1, ..., ar) ∈ const(V1, e) × ... × const(Vr, e) such that lθ covers e for
substitution θ = {V1/a1, ..., Vr/ar}. As shown empirically in Section 4.3, this can yield
significant computational savings. Similar strategies have been used in other ILP systems,
for instance, the original FOIL algorithm also keeps track of tuple assignments satisfying
clauses (Quinlan, 1990).

A further major speedup can be obtained from the way the kernel function in KFOIL
is defined in terms of a set of clauses. Note that the complex relational example set E
is mapped to the much simpler (feature) space ϕH′,B(E) ⊆ {0, 1}m in which the kernel
function is computed. Two examples e, e′ ∈ E of the same class are indistinguishable
in the feature space representation if ϕH,B(e) = ϕH,B(e′), that is, they exhibit the same
structural features. Thus, a hypothesis H partitions E into clusters of examples that share
the same feature space representation. For the subsequently employed kernel method, the
examples in one cluster can be merged to one example with a weight corresponding to the
cluster size.

We will refer to the number m̄ of clusters as the effective number of examples, because
this number determines the complexity of the kernel method (including the size of the
kernel matrix). A detailed empirical analysis of the computational savings achievable in
this way is presented in Section 4.3.8.

Incrementally Computing the Kernel Matrix

A lower-triangular representation of the kernel matrix M is kept in memory, and incre-
mentally updated as clauses are added to the current hypothesis H . Note that the size of
the kernel matrix is quadratic only in the number of effective examples m̄.

Initially, H = ∅, m̄ = 1 and K(e, e′,H, B) = 0 for all e, e′ ∈ E. For scoring
a candidate clause c′, its contribution to the kernel function is computed and a number
of cells in M need to be incremented. If the clause does not cause any cluster in E to
be split, that is, it does not change m̄, this can be done in time O(|ϕ(cov(c))|2), where
|ϕ(cov(c))| is the effective number of examples covered by c. If c splits a cluster in E,
the dimensionality m̄ of the kernel matrix increases, and some of the cells need to be
split. Splitting an effective example i implies: adding a row of length m̄ + 1 to the lower
triangular representation of the kernel matrix; copying m̄ + 1 kernel values into it, setting
Mm̄j ← Mij for j ∈ [0, m̄ − 1] and Mm̄m̄ ← Mii; updating the number of effective
examples m̄ ← m̄ + 1; incrementing the row entries corresponding to covered effective

4.2 The KFOIL Algorithm 93

e1 e2 e3 e4 e5 e6 e7 e8

c1 1 1 1 1 1 0 0 0

c2 1 1 1 0 0 0 0 0

c3 0 0 0 0 0 1 1 1{ {

w(ê1) = 3

w(ê2) = 2

w(ê3) = 3{

ê1 ê2 ê3

Clause/Example Coverage Matrix

ê1 ê2 ê3

ê1 2 1 0

ê2 1 0

ê3 1

Kernel Matrix (Effective Examples)
e1 e8

e1

e8

2

1

0

Figure 4.1: Effective examples and kernel matrix for three clauses.

e1 e2 e3 e4 e5 e6 e7 e8

c1 1 1 1 1 1 0 0 0

c2 1 1 1 0 0 0 0 0

c3 0 0 0 0 0 1 1 1

c4 0 0 0 1 1 1 1 0{

ê1 ê2 ê3

{ { {

ê4

w(ê1) = 3

w(ê2) = 2

w(ê3) = 2

w(ê4) = 1

Clause/Example Coverage Matrix

ê1 ê2 ê3 ê4

ê1 2 1 0 0

ê2 2 1 0

ê3 2 1

ê4 1

Kernel Matrix (Effective Examples)

2

1

0

e1 e8

e1

e8

Figure 4.2: Effective examples and kernel matrix for four clauses.

examples by one. A single split can thus be done in O(m̄) time, and a full update in
time O(|ϕ(cov(c))|m̄), where m̄ is the number of effective examples after all splits. Note
that this number will typically be much smaller than the overall number of examples, and
Section 4.3.8 empirically shows that it indeed grows with its square root in a real world
domain.

Example 4.2.1. Consider a dataset containing examples e1, ..., e8, and a current hypoth-
esis consisting of the three clauses c1, c2, c3 as visualized in Figure 4.1. Assume further

94 KFOIL: Learning Simple Relational Kernels

that the coverage of clauses is as given in the “Clause/Example Coverage Matrix” in
Figure 4.1. For instance, example e1 is covered by clauses c1 and c2. This yields three ef-
fective examples, or clusters, ê1, ê2, ê3, with weights w(ê1) = 3, w(ê2) = 2, w(ê3) = 3.
The resulting kernel matrix is a 3 × 3 lower-diagonal matrix, also shown in Figure 4.1.
At the level of original examples e1, ..., e8, this yields a relatively coarse kernel function,
as kernel values are identical for all examples falling into one cluster.

Figure 4.2 visualizes the situation after adding a (candidate) clause c4. Note that
the cluster represented by ê3 in Figure 4.1 has been split into two new clusters ê3 and
ê4. Accordingly, the resulting kernel matrix has one more row and one more column. At
the level of the original examples e1, ..., e8, the kernel function has been refined and now
represents a more detailed structure of similarity.

Incremental SVM optimization

If S is a scoring functional that requires training a support vector machine during clause
evaluation, efficiently solving the optimization problem given by Equation (4.11) is cru-
cial. Well-known algorithms for this problem include sequential minimal optimiza-
tion (Platt, 1998) or other chunking techniques (Joachims, 1999), and more recently intro-
duced online optimization approaches such as LaSVM (Bordes et al., 2005) or stochastic
gradient descent (Shalev-Shwartz et al., 2007). Optimization in the KFOIL implementa-
tion is carried out using the SVMlight package, which is based on the technique described
by Joachims (1999) (see Section 4.3). Assume we have already solved the optimization
problem for the currently optimal clause c, and are evaluating a refinement c′ ∈ ρ(c).
That is, we have maximized Equation (4.11) for the feature space representation resulting
from the hypothesis H ∪{c}. Let α0 denote an optimal solution. Typically, the optimiza-
tion problem resulting from the hypothesis H ∪ {c′} will be very similar: in the feature
space representation of the data, only one of the attributes has been changed, and only on
a subset of the examples (as only one feature has been refined). One can thus expect that
also the optimal solution α∗ for the new problem will be close to the old solution α0. A
straightforward but effective approach to incremental optimization is thus to restart the
optimization at the old maximum α0, and continue optimizing until the new optimality
criterion (Karush-Kuhn-Tucker conditions) is met. Intuitively, this corresponds to starting
from the old separating hyperplane and slightly adapting it until it defines the max-margin
solution of the new optimization problem. Section 4.3 will show significant benefits of
this technique compared to re-starting the optimization procedure from scratch.

Incrementally Computing Kernel Target Alignment

Finally, also the kernel target alignment score (Definition 4.1.4) can be computed incre-
mentally. The key observation is that as a clause c is added to H , it produces an additional,
incremental contribution to the kernel matrix M . This contribution can be propagated to
the three Frobenius norms from which KTA is computed (see Equation (4.15) in Defini-
tion 4.1.4). For all examples covered by the candidate clause c, their contribution to the

4.3 Experimental Evaluation 95

previously computed norms should be first removed, and then replaced with the contribu-
tion due to their updated kernel values.

4.3 Experimental Evaluation
This section presents an experimental evaluation of the proposed KFOIL algorithm in
several domains. The goal of the experimental study is two-fold. In a first part, KFOIL is
compared to several related systems that employ inductive logic programming and propo-
sitionalization approaches. In a second part, we present a detailed analysis of the perfor-
mance of KFOIL in different learning settings and with different scoring functions. More
specifically, we compare multi-task and single-task learning, explore the relative merits
of different scoring functions with regard to accuracy of inferred models and computa-
tional cost, and present experiments in a multi-class domain using different approaches
to multi-class classification. Finally, the computational complexity and scaling behav-
ior of KFOIL will be investigated, and the clause sets returned by the algorithm will be
inspected.

4.3.1 Experimental Domains and Datasets
Table 4.1 gives an overview of the different datasets used in the experimental evalua-
tion. As in the previous chapter, we mostly focus on structure-activity relationship (or
SAR) problems, which are of central importance in many areas of bio- and chemoinfor-
matics (see Section 3.4.1). Large quantities of experimental SAR data have been gen-
erated, which are stored in centralized, easily accessible public databases such as Pub-
Chem2 (Wheeler et al., 2008). Note that SAR problems are not only an interesting appli-
cation for relational learning in general, but also a natural application area for multi-task
learning: often substances have been tested for several related properties, and thus come
with several class labels. Jointly building a model for all properties can yield increased
predictive accuracy, as will be shown below.

The individual datasets will now be described in more detail, and their use in the study
will be motivated. The Mutagenesis datasets are concerned with predicting the muta-
genicity of small molecules based on their chemical structure (Srinivasan et al., 1996).
For Alzheimer, the aim is to compare analogues of Tacrine, a drug against Alzheimer’s
disease, according to four desirable properties: inhibit amine re-uptake, low toxicity,
high acetyl cholinesterase inhibition, and good reversal of scopolamine-induced mem-
ory deficiency (King et al., 1995). The NCTRER dataset contains structural information
(atoms and bonds) for a diverse set of natural, synthetic and environmental estrogens, and
classifications with regard to their binding activity for the estrogen receptor (Fang et al.,
2001). For more details on Mutagenesis, Alzheimer, and NCTRER, see Section 3.4.1.

In the Biodegradability domain the task is to predict the biodegradability of chemical
compounds based on their molecular structure and global molecular measurements(Blockeel

2http://pubchem.ncbi.nlm.nih.gov/sources/

96 KFOIL: Learning Simple Relational Kernels

Table 4.1: Overview of all datasets used in experiments, including the number of classes,
number of available examples, accuracy of majority class predictor, number of relations
that are used in rules, and the number of facts in the Prolog database.

Dataset #Classes #Examples Maj. Class #Rel. #Facts
Mutagenesis r.f. 2 188 66.5% 4 10324
Mutagenesis r.u. 2 42 69.1% 4 2109
Alzheimer amine 2 686 50.0% 20 3754
Alzheimer toxic 2 886 50.0% 20 3754
Alzheimer acetyl 2 1326 50.0% 20 3754
Alzheimer memory 2 642 50.0% 20 3754
NCTRER 2 232 56.5% 3 9283
BioDeg – classification 2 328 56.4% 36 27236
BioDeg – regression n.a. 328 n.a. 36 27236
NCGC BJ (AID 421) 2 1285 96.2% 29 89929
NCGC Jurkat (AID 426) 2 1242 89.1% 29 89929
NCGC Hek293 (AID 427) 2 1250 94.1% 29 89929
NCGC HepG2 (AID 433) 2 1282 96.1% 29 89929
NCGC MRC5 (AID 434) 2 1289 96.2% 29 89929
NCGC SK-N-SH (AID 435) 2 1281 93.3% 29 89929
MTDP E.coli (AID 365) 2 206 51.2% 23 23734
MTDP Human (AID 366) 2 206 79.5% 23 23734
MTDP HIV-2 (AID 367) 2 206 73.7% 23 23734
NCI BT 549 2 2778 50.4% 30 283612
NCI HCC 2998 2 3177 56.8% 30 283612
NCI HS 578T 2 2870 54.0% 30 283612
NCI SR 2 3006 62.2% 30 283612
NCI T 47D 2 2909 53.3% 30 283612
WebKB 6 1089 51.2% 6 86392

et al., 2004). The original (numeric) target variable is the half-life for aerobic aquenous
biodegradation of the particular chemical compound. Alternatively, the problem can be
treated as a classification task by thresholding this target variable. The Mutagenesis,
Alzheimer, NCTRER and Biodegradability domains were included in the study because
they are well-known benchmark datasets for ILP and more generally relational learning
methods. Furthermore, Alzheimer can be cast as a multi-task domain, with tasks corre-
sponding to the four properties of interest.

The following additional SAR problem domains were chosen because they are natural
test-cases for multi-task learning. The NCGC datasets contain results of high throughput
screening assays to determine in vitro cytotoxicity of small molecules. Experiments have
been performed multiple times with cell lines derived from different tissue types: BJ cell

4.3 Experimental Evaluation 97

line (human foreskin fibroblasts), Jurkat cell line (human T cell leukemia), Hek293 cell
line (human embryonic kidney cells), HepG2 cell line (hepatocellular carcinoma), MRC5
cell line (human lung fibroblasts) and SK-N-SH cell line (human neuroblastoma). Test re-
sults for different cell lines will typically be different but related, thus it is natural to treat
them as different prediction tasks in a multi-task learning setting. The MTDP datasets
contain results of enzymatic assays for inhibition of ribonuclease H activity. Individual
datasets represent assay results for ribonuclease H enzymes from different organisms: E.
coli ribonuclease H, human ribonuclease H1, and HIV-2 ribonuclease H. Again, these re-
sults can be treated as different but related prediction tasks. Both the NCGC and MTDP
datasets have been extracted from the PubChem database. Compound descriptions and
class labels, as well as more details about the experimental protocol, are available from
this database by looking up the bioassay ID (denoted AID XXX in Table 4.1). Finally,
the NCI datasets provide screening results for the ability of compounds to suppress or
inhibit the growth of tumor cells (Swamidass et al., 2005). Screening results are available
for 60 different cell lines; however, not all compounds have been tested against all cell
lines. We selected five cell lines (BT 549, HCC 2998, HS 578T, SR, T 47D) that result
in relatively small datasets but together contain test results for almost all compounds used
in the study. As for the NCGC domain, test results for different cell lines correspond to
different prediction tasks. The NCI datasets are also significantly larger than the other
domains considered (both in terms of number of examples and number of facts, that is,
size of the logical database), and thus serve as a good benchmark to test computational
efficiency and scaling behavior of KFOIL. Note that the number of facts in the logical
database mainly affect the complexity of the logical part of learning (the effort of match-
ing clauses on examples), and, as in standard ILP, is only limited by the performance of
the underlying logic programming system. In contrast, the number of individual examples
will mainly affect the complexity of the statistical part of learning.

WebKB is a multi-class domain which has a somewhat different background and will
be discussed in more detail in Section 4.3.6.

4.3.2 KFOIL Implementation and Experimental Setup

The KFOIL algorithm, with computational improvements as discussed in Section 4.2.2
and support for multi-task learning as described in Section 4.1.5 has been implemented
based on YAP Prolog3 and the support vector machine package SVMlight4.

A polynomial kernel of degree d = 2 is used in all experiments, and a beam size of
5 is used unless noted otherwise. A model in KFOIL is refined as long as the training
score improves (even by a small margin), see Section 4.2.1. To avoid overfitting, we per-
form model selection to choose the regularization parameter C by (repeatedly) splitting
the available training data into a training and a validation set. Evaluation of algorithms
is performed by cross-validation or more generally multiple splits into train/test data. As

3http://www.dcc.fc.up.pt/∼vsc/Yap/
4http://svmlight.joachims.org/

98 KFOIL: Learning Simple Relational Kernels

KFOIL can produce a ranking (via example margins in the SVM model), area under the
ROC curve (AUC) can be computed on the test data. For binary classification problems,
performance is mostly evaluated by AUC, except when directly comparing against accu-
racy results from the literature. The motivation for using AUC instead of accuracy is that
some of the datasets used in the study are very unbalanced, and there are in general argu-
ments for preferring AUC over accuracy as an evaluation measure (Provost et al., 1998).
For regression problems, performance is evaluated by root mean squared error (RMSE).

The following sections present a comprehensive evaluation of the proposed KFOIL
algorithm, addressing different aspects such as effectiveness, efficiency, and interpretabil-
ity of the learned model. Specifically, we set up experiments to answer the following
questions:

(Q4.1) Does KFOIL improve over its predecessor NFOIL employing naı̈ve Bayes?

(Q4.2) Does multi-task learning provide advantages over single-task learning in the KFOIL
setting?

(Q4.3) Is the approach of solving multi-class problems in a multi-task formulation (see
Section 4.1.4) effective and efficient?

(Q4.4) Are the first-order kernel functions learned by KFOIL interpretable for human
experts?

(Q4.5) Does learning in KFOIL scale up to large datasets when using kernel target align-
ment scoring and incremental learning algorithms?

4.3.3 Comparison to ILP and Propositionalization Approaches
We begin by comparing KFOIL to other relational learning approaches. More specif-
ically, we considered the following systems. The NFOIL system, presented in Chap-
ter 3, combines naı̈ve Bayes and FOIL in a similar spirit as KFOIL combines kernels
and FOIL. ALEPH is a state-of-the-art ILP system developed by Ashwin Srinivasan.5 It
is based on the concept of bottom clauses, which are maximally specific clauses cover-
ing a certain example. Furthermore, we consider a static propositionalization baseline.
More specifically, a variant of the relational frequent query miner WARMR (Dehaspe
et al., 1998) was used for static propositionalization as WARMR patterns have shown
to be effective propositionalization techniques on similar benchmarks in inductive logic
programming (Srinivasan et al., 1999). The variant used was c-ARMR (De Raedt and
Ramon, 2004), which removes redundancies amongst the found patterns by focusing on
so-called free patterns. c-ARMR was used to generate all free frequent patterns in the data
sets where the frequency threshold was set to 20%. We used at most 5000 of the gener-
ated patterns as features to generate (binary) propositional representations of the datasets.

5http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
aleph toc.html.

4.3 Experimental Evaluation 99

Table 4.2: Average predictive accuracy on Mutagenesis, Alzheimer and NCTRER for
KFOIL with accuracy scoring, NFOIL, ALEPH and static propositionalization. A poly-
nomial kernel of degree d = 2 was used for KFOIL in all experiments. On Mutagenesis
r.u. a leave-one-out cross-validation was used (which, combined with the small size of
the dataset, explains the high variance of the results), on all other datasets a 10 fold cross-
validation. • indicates that the result for KFOIL is significantly better than for other
method (paired two-sided t-test, p = 0.05).

Dataset KFOIL NFOIL ALEPH C-ARMR
Muta. r.f. 77.0± 14.5 75.4± 12.3 73.4± 11.8 73.9± 11.2
Muta. r.u. 85.7± 35.4 78.6± 41.5 85.7± 35.4 76.2± 43.1
Alz. amine 89.8± 5.7 86.3± 4.3 70.2± 7.3• 81.2± 4.5•
Alz. toxic 90.0± 3.85 89.2± 3.4 90.9± 3.5 71.6± 1.9•
Alz. acetyl 90.6± 3.4 81.2± 5.2• 73.5± 4.3• 72.4± 3.6•
Alz. mem. 80.5± 6.2 72.9± 4.3• 69.3± 3.9• 68.7± 3.0•
NCTRER 78.5± 9.3 78.0± 9.1 50.9± 5.9• 65.1± 13.2•

On the propositionalized datasets, a cross-validation of a support vector machine was
then performed6. Table 4.2 presents cross-validated accuracy results for KFOIL, NFOIL,
ALEPH and C-ARMR. To facilitate comparison to previously published results, perfor-
mance is evaluated according to classification accuracy, and KFOIL is run with accuracy
scoring. Results clearly show that KFOIL outperforms ALEPH and static proposition-
alization. Moreover, it consistently improves upon its predecessor NFOIL, indicating
that in a hybrid statistical-logical setting kernel methods can improve over a simple naı̈ve
Bayes model. This affirmatively answers Question (Q4.1).

Table 4.3 compares KFOIL to the relational tree induction algorithms TILDE and S-
CART on the Biodegradability classification and regression datasets. KFOIL has been
run with accuracy (classification problem) and RMSE (regression problem) scoring. As
in the experiments reported by Blockeel et al. (2004), results are averaged over five runs
of a ten-fold cross-validation, and the same splits into training and test sets have been
used. KFOIL clearly outperforms the other two approaches in the regression setting,
while yielding comparable accuracy in the classification setting.

4.3.4 Evaluation of Different Scoring Functions

As discussed in Section 4.1.4, different scoring functions can be considered for classifi-
cation problems. From a computational perspective, the main difference is between 0-1
loss or AUC on the one hand and kernel target alignment on the other hand. The former
scores require to solve the SVM optimization problem (Equation (4.11)), while kernel

6Note that this methodology puts this approach at a slight advantage and might yield over-optimistic results.

100 KFOIL: Learning Simple Relational Kernels

Table 4.3: Average cross-validated accuracy (Classification) and root mean squared error
(Regression) on the Biodegradability dataset. The results for Tilde and S-CART have
been taken from Blockeel et al. (2004). 5 runs of 10 fold cross-validation have been
performed, on the same splits into training and test set as used by Blockeel et al. (2004).
For classification, average accuracy is reported, for regression, root mean squared error. •
indicates that the result for KFOIL is significantly better than for other method (unpaired
two-sided t-test, p = 0.05).

Dataset KFOIL TILDE S-CART
Classification
BioDeg GR 73.4± 1.63 73.6± 1.1 72.6± 1.1
BioDeg GP1P2R 73.5± 0.95 72.9± 1.1 71.3± 2.3
Regression
BioDeg GR 1.139± 0.036 1.265± 0.033• 1.290± 0.038•
BioDeg GP1P2R 1.182± 0.038 1.335± 0.036• 1.301± 0.049•

target alignment can be directly computed given the kernel matrix (see Definition 4.1.4),
which is typically much more efficient.

Table 4.4 compares KTA scoring to accuracy scoring on the first nine datasets listed
in Table 4.1. Results show that if the standard beam size of 5 is used, KTA is substantially
less accurate. There are two possible explanations for this result: either kernel target
alignment is generally not a good scoring function in our context, or it does not work
well together with the greedy search strategy employed in KFOIL. In the latter case, the
clause set truly maximizing KTA would result in a good joint model, but only a (strongly)
suboptimal clause set is found during search. To test this hypothesis, the system was
run with increased beam sizes (10, 20, and 30). This improves relative performance,
indicating that the weak results for beam size 5 are at least partly due to local search
issues. For the rest of the experimental study, we thus use a beam size of 20 rather than
the standard 5 for KFOIL with KTA scoring. Even with the increased beam size KTA
scoring is typically more efficient than accuracy or AUC scoring (detailed results are
presented in Section 4.3.8).

4.3.5 Single-task vs. Multi-task Learning

For the four multi-task domains (Alzheimer, NCGC, MTDP and NCI), the benefits of si-
multaneously learning a joint model for all tasks were explored. In these domains, there
are between three and six different target labels available, although not all labels are nec-
essarily known for all examples (cf. Table 4.1). We compare a multi-task (MT) approach
against a single-task (ST) approach using the following methodology. All examples avail-
able in a given domain are first split into a training set (80%) and test set (20%). In the
MT approach, a joint model is built from the training set using the technique described in

4.3 Experimental Evaluation 101

Table 4.4: Average cross-validated prediction accuracy of KFOIL with accuracy scoring
and standard beam size 5 (Acc[5]) and KFOIL with KTA scoring and beam sizes 5, 10,
20 and 30 (KTA[5], KTA[10], KTA[20], KTA[30]).

Dataset Acc[5] KTA[5] KTA[10] KTA[20] KTA[30]
Mutag. r.f. 77.0± 13.7 74.9± 12.1 74.4± 12.0 77.7± 11.7 78.8± 6.6
Mutag. r.u. 85.7± 35.0 83.3± 37.3 83.3± 37.3 85.7± 35.0 85.7± 35.0
Alzh. amine 89.8± 5.4 72.7± 6.3 75.5± 5.8 82.5± 6.1 83.1± 5.2
Alzh. toxic 90.0± 3.7 80.9± 4.3 88.9± 4.1 92.3± 1.6 93.7± 1.1
Alzh. acetyl 90.6± 3.2 74.7± 3.6 75.0± 3.0 81.7± 4.3 83.2± 3.5
Alzh. memory 80.5± 5.9 66.8± 8.0 63.9± 7.6 75.1± 4.2 77.4± 3.9
NCTRER 78.5± 8.8 78.5± 8.8 78.5± 8.8 78.0± 9.3 77.6± 8.9
BioDeg GR 73.4± 1.6 63.5± 1.7 64.8± 0.8 65.1± 1.9 69.1± 1.6
BioDeg GP1P2R 73.5± 0.9 68.1± 2.1 68.5± 1.1 68.6± 2.1 68.6± 2.0

Section 4.1.5. In the ST approach, one model is built for each task using those examples
for which label information for that task is available. For every example in the test set,
both approaches return a predicted class label for every task. This prediction is compared
to the true label for that task if it is known, and resulting area under the ROC curve (AUC)
is computed. To obtain reliable estimates, results are averaged over 50 randomly chosen
splits into training and test set.

Table 4.5 shows average AUC results on Alzheimer, NCGC, MTDP and NCI for
KFOIL in the single-task and multi-task setting, using KTA and AUC scoring. For the
NCI datasets, only 25% of the available training data was used to infer a model to reduce
the total computational cost of experiments. Results indicate that multi-task learning
provides small but consistent improvements in test set AUC over single-task learning.
This is particularly evident on the NCGC, MTDP and NCI datasets, while the result for
the Alzheimer datasets is less clear. A likely explanation is that the different tasks in
Alzheimer—predicting a compounds amine re-uptake, toxicity, acetyl cholinesterase in-
hibition, and reversal of memory deficiency—are not as strongly related as for the other
domains. Moreover, results confirm the earlier observation that evaluating clause sets by
the performance of the corresponding support vector machine (in this case, by its AUC)
yields slightly better results than evaluating them by kernel target alignment.

We furthermore investigate how the gains from multi-task learning depend on the
amount of training data available. Figure 4.3 shows average AUC of KFOIL in the single-
task and multi-task learning setting for different numbers of training examples on NCI, av-
eraged over the five available tasks. The system has been run with KTA scoring and beam
size 5 to achieve maximum computational efficiency for these larger datasets. To obtain
stable AUC estimates, the following methodology was used. A 5-fold cross-validation
is performed. However, for each fold, 10 models are built on bootstrapped samples of

102 KFOIL: Learning Simple Relational Kernels

Table 4.5: Average AUC± standard deviation on Alzheimer, NCGC, MTDP and NCI for
KFOIL with KTA and AUC scoring, using a single-task (ST) or multi-task (MT) learning
setting. Results are averaged over 50 random 80%/20% train/test splits of the data. For
NCI, models are learned from only 25% of the available training data in every split. Bold
font indicates whether single-task or multi-task learning yielded better results.

Dataset KFOIL
KTA Scoring AUC Scoring

ST MT ST MT
Alzheimer amine 91.1± 2.4 90.1±2.8 93.9± 3.6 95.6±2.2
Alzheimer toxic 98.1± 0.8 98.3±0.7 95.9± 3.4 96.6±2.0
Alzheimer acetyl 89.8± 2.2 90.0±2.6 92.1± 4.6 93.8±1.9
Alzheimer memory 82.5± 5.0 86.3±2.7 86.5± 5.8 85.1±4.8
NCGC BJ 68.0± 9.3 69.9±9.9 72.4± 10.0 72.2±8.7
NCGC Jurkat 64.7± 5.3 66.2±5.6 69.9± 6.0 71.7±5.6
NCGC Hek293 67.2± 7.6 68.7±7.2 71.0± 7.7 72.0±6.8
NCGC HepG2 71.5± 8.7 74.6±8.8 74.2± 8.8 77.6±8.2
NCGC MRC5 65.3± 10.0 68.8±9.4 67.0± 9.6 69.8±9.3
NCGC SK-N-SH 63.6± 7.1 66.0±7.8 66.4± 7.4 67.2±7.0
MTDP E.coli 61.5± 9.3 62.6±8.0 61.8± 8.0 64.5±7.0
MTDP Human 56.8± 9.7 61.2±10.5 62.5± 11.7 66.7±10.7
MTDP HIV-2 58.8± 8.8 61.7±8.8 61.0± 10.1 63.5±10.1
NCI BT 549 25% 69.7± 2.3 71.1±2.2 70.5± 2.6 71.8±2.5
NCI HCC 2998 25% 65.3± 2.5 65.8±2.1 64.1± 2.5 67.5±2.6
NCI HS 578T 25% 70.5± 2.2 71.1±2.2 70.3± 2.5 71.9±2.6
NCI SR 25% 70.3± 3.1 71.2±2.4 69.9± 2.9 71.3±2.4
NCI T 47D 25% 71.1± 2.3 72.2±2.1 70.9± 3.0 72.5±2.5

the fold’s training set, and their results on the fold’s test set are averaged. As in standard
cross-validation, this yields one datapoint (AUC result) per fold. Figure 4.3 also reports
one-standard-deviation error bars, and for every fraction of training data the significance
of the difference between single- and multi-task learning according to a paired two-sided
t-test on the fold results. Results again indicate an advantage of multi-task (MT) over
single-task (ST) learning. More specifically, MT learning from 50% of the available
training data reaches about the same accuracy as ST learning from the whole dataset. The
difference between MT and ST learning is significant or borderline significant for small
training set sizes, but becomes less pronounced if more training data is available. Overall,
this indicates a positive answer to Question (Q4.2).

4.3 Experimental Evaluation 103

 60

 62

 64

 66

 68

 70

 72

 74

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
U

C

Fraction Training Data Used

0.072

0.002

0.077

0.015
0.005 0.018 0.101 0.005 0.053 0.123

kFOIL/KTA ST
kFOIL/KTA MT

Figure 4.3: Learning curve for KFOIL with KTA scoring and beam size 5 in a single-task
and multi-task learning setting on the NCI datasets (test set AUC as a function of training
set size). Results are averaged over a 5-fold cross-validation, and over individual tasks.
For each fold, 10 models are built on bootstrapped samples of the fold’s training set and
their results on the test set averaged (see text).

4.3.6 Multi-class Problems
As a relational multi-class problem, we consider the “University Computer Science De-
partment”, or WebKB, dataset. This dataset consists of web pages collected from four
computer science departments: Cornell University, University of Texas, University of
Washington and University of Wisconsin. Web pages are classified into six categories:
course, department, faculty, research project, staff and student.
Pages not belonging to any of these classes are assigned to a default other class. Ta-
ble 4.6 reports class statistics for each of the four Universities. We relied on a relational
version of the dataset which includes hyperlink and anchor word information (Slattery
and Craven, 1998). Table 4.7 reports the predicates we employed in our experimental
evaluation7. In order to decrease class skew and to obtain simpler and more readable

7All predicates where taken from Slattery and Craven (1998) apart for dirs after tilde in url/2
which was our addition.

104 KFOIL: Learning Simple Relational Kernels

Table 4.6: Class statistics for the WebKB dataset.

Class Cornell Texas Washington Wisconsin
course 44 38 77 85
department 1 1 1 1
faculty 34 46 31 42
research project 20 18 21 25
staff 21 3 10 12
student 128 148 126 156
other 619 573 940 946

Table 4.7: Description of the relational predicates employed for the ”University Computer
Science Department” dataset.

Predicate Description
has word(page,word) word is contained in the page

text
has anchor word(anchor,word) word is contained in the

anchor text
all words capitalized(anchor) all words in the anchor text

are capitalized
has alphanumeric word(anchor) the anchor text contains an al-

phanumeric word
linktopage(page1,page2,anchor) anchor identifies a link from

page1 to page2
dirs after tilde in url(page,num) The URL of page contains a

tilde followed by num directo-
ries

models, we removed the other class in all experiments. In a preprocessing phase, we
furthermore selected for each training set the first 50 words and 50 anchor words with
highest information gain, and restricted clauses to only contain these informative words.

As outlined in Section 4.1.5, multi-class problems can be cast in the multi-task setting
by identifying classes with tasks. We compare a single-task approach (that is, a standard
one-vs-rest setup) against multi-task approaches using average single-task scores or multi-
class accuracy. Table 4.8 reports experimental results for these three settings and different
scoring functions, in a leave-one-university-out cross-validation (that is, web pages of one
university are classified using a model trained on the remaining three universities). The
evaluation measure on the test set is multi-class accuracy. Results confirm the advantage
of multi-task learning with respect to single-task, as multi-task scoring functions achieve
better results in all cases. It is interesting to note that while multi-task KTA achieves the

4.3 Experimental Evaluation 105

Table 4.8: Leave-one-university out results for the ”University Computer Science Depart-
ment” dataset. Evaluation measure is multi-class accuracy, while scoring measures are
single- and multi-task accuracy, AUC and KTA, and multi-class accuracy.

Test University Accuracy AUC KTA Multi-Class
ST MT ST MT ST MT Accuracy

Cornell 69.8 75.4 77.4 77.4 31.9 75.8 72.6
Texas 74.8 75.2 80.7 81.9 34.6 83.1 81.1
Washington 75.2 74.4 68.8 74.4 75.2 70.3 70.7
Wisconsin 78.2 82.9 78.8 84.1 76.3 80.4 78.8
Micro Average 74.7 77.3 76.5 79.7 56.2 77.5 75.9

overall best results, its single-task counterpart performs very badly for the two Universi-
ties with the least number of examples, Cornell and Texas. This performance degradation
is due to a very low recall on the student class, which is mostly predicted as course
and faculty in the Cornell and Texas cases. Note also that directly using multi-class
accuracy as a scoring function does not improve over average accuracy.

To answer Question (Q4.3), we note that solving the WebKB multi-class problem in a
multi-task formulation indeed yields an effective classification method. Note furthermore
that the multi-task formulation will typically be more efficient than training independent
models in a one-vs-rest setup, as only one clause set is learned and thus significant com-
putational cost of computing clause coverage is saved (confer the analysis of multi-task
efficiency in Section 4.3.8).

4.3.7 Interpreting Learned Models

A major advantage of the proposed methodology for learning relational kernels compared
to other relational kernel-based approaches (such as pre-defined kernels for structured
data, cf. Gärtner, 2003) is that it retains some of the interpretability of its underlying in-
ductive logic programming approach. After training, KFOIL returns a relatively small
set of first-order logical clauses that define a similarity measure between examples in
the given domain. These clauses are typically easy to read by human experts, especially
as they can build on human-supplied background knowledge such as known functional
groups for chemical compounds. Figure 4.4 shows example clauses learned in the NC-
TRER, NCI and WebKB domains, and visualizes how these clauses match on examples.

The key part in understanding a final learned model is to understand the similarity
function defined by the kernel. The kernel function k(e1, e2) is defined by the number
of clauses that match both e1 and e2, or some non-linear transformation thereof (cf. Sec-
tion 4.1.3). That is, the kernel counts how many structural features are shared by the two
examples. Examples that share a large number of features will be considered similar, and
are thus likely to receive the same classification. If clauses are understandable to the hu-

106 KFOIL: Learning Simple Relational Kernels
6/4/08 12:16 PMtest4.svg

Page 1 of 1file:///Users/niels/Desktop/test4.svg

O O

OO

H

H

6/4/08 12:21 PMtest5.svg

Page 1 of 1file:///Users/niels/Desktop/test5.svg

N

O

OO

HH

H

H

← atm(B, o), bd atm(B,C, c,−), bd atm(C,D, c,=), bd atm(C,E, c,−),
bd atm(E,F, c, =), bd atm(G, D, c,−), bd atm(F,H, I,−)

6/4/08 11:51 AMtest2.svg

Page 1 of 1file:///Users/niels/Desktop/test2.svg

N

N

O

N

N

6/4/08 11:57 AMtest3.svg

Page 1 of 1file:///Users/niels/Desktop/test3.svg

O
N

O

N

OO
N

O

N

N

H

H

H

← three linear rings(A,B), benzene(A,C, D)

A

D

B

austin

research
group

← linktopage(B,A, C), anchor word(C, research), anchor word(C, group),
linktopage(B,D,E), anchor word(E, austin))

Figure 4.4: Examples for bodies of clauses learned by KFOIL on the NCTRER (up-
per), NCI (middle) and WebKB (lower) data sets. Additionally, examples on which the
clauses match are shown, with the sub-structure defined by the clauses highlighted in red.
Note that for NCTRER, only low-level atom/bond structure is given, and the algorithm
automatically infers that aromatic rings with a phenol group are relevant for the classifi-
cation problem at hand. For NCI a library of high-level chemical structures was supplied
as background knowledge, such that small clauses can encode relatively complex sub-
structures.

4.3 Experimental Evaluation 107

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

N
um

be
r

of
 e

xa
m

pl
es

Number of matching clauses

Number of examples

(a) Number of clauses matching example

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30

N
um

be
r

of
 k

er
ne

l m
at

rix
 e

le
m

en
ts

Value of kernel matrix element

Number of kernel matrix elements

(b) Kernel matrix value

Figure 4.5: Histogram representation of the average number of clauses matching an ex-
ample, and the average number of features shared between a pair of examples, that is,
value of the corresponding kernel matrix element. Note the logarithmic scale in the sec-
ond plot. Statistics are collected from NCI-BT 549 (25%), building a model on all of the
training data, AUC scoring.

man experts, the resulting similarity function will be understandable as well as long as the
number of features shared between two examples is not overwhelmingly large. Figure 4.5
shows a histogram representation of the average number of clauses matching an example,
and the average number of features shared by a pair of examples. It can be observed that
for most pairs of examples the number of shared features is very small, thus it will be
easy to manually inspect their similarity. Figure 4.6 visualizes a learned kernel function
on the WebKB dataset, for the single-task (left) and multi-task (right) case respectively.
In the single-task case, student is the positive class, as it leads to the most balanced
task. Lighter colors correspond to larger kernel values. Examples are grouped accord-
ing to classes, and classes ordered so to maximize similarity between neighboring ones.
Within each class, examples are sorted according to their principal component, in order
to cluster together similar examples. In the single-task case, it can be observed that pos-
itive examples (bottom left) are roughly grouped together into block-like clusters by the
structural features they exhibit. Negative examples have lower kernel values in general,
meaning that the predictor tends to rather model the positive class, a common behavior
when negative examples come from many possible sources. Anyhow, a slight tendency
for negative examples to cluster together on a per-class basis can still be recognized. In

108 KFOIL: Learning Simple Relational Kernels

Figure 4.6: Visualization of learned kernel functions on the WebKB dataset, in a single-
task (left) and multi-task (right) learning setting. Kernel values are shown for web pages
at Cornell University for a model trained on the remaining three universities (Washington,
Wisconsin, and Texas). In the single-task case, student is the positive class as it leads to
the most balanced task. Examples are grouped by class, classes are sorted so to maximize
similarity between pairwise ones. Examples within each class are sorted by their principal
component, in order to cluster together similar ones.

the multi-task case, on the other hand, two main differences can be observed: first, the
matrix exhibits a coarser grain structure, with larger clusters on average, as smaller clause
sets are learned in the multi-task setting. Second, even if the student class is still much
more represented, being by far the majority one (see Table 4.6), other classes are modeled
as well, and their clusters are more evident than in the single-task case. However, note
that there is a tendency for staff and faculty classes to share a common representa-
tion, and to share features with some of the student examples. This is quite intuitive
considered that all such classes represent personal homepages.

Table 4.9 shows the number of clauses obtained on the Alzheimer, EPA, MTDP, NCI,
and WebKB datasets for single-task and multi-task learning. Results show that multi-
task learning yields a more compact representation than single-task learning: the set of
clauses obtained is significantly smaller than the union of the task-specific clause sets.
This indicates that it is possible to infer a clause set (and thus, similarity measure) that
generalizes over the individual tasks. Interpreting such a generalized representation will
typically be easier than looking at all task-specific clause sets individually.

To summarize, the results show that 1) KFOIL learns a relatively small number of

4.3 Experimental Evaluation 109

Table 4.9: Number of clauses obtained for single-task and multi-task learning on the
Alzheimer, NCGC, MTDP, NCI, and WebKB datasets (AUC scoring). The clause set for
single-task learning is the union of the clause set obtained on the individual tasks (that is,
duplicate clauses have been removed). For Alzheimer, NCGC, MTDP, and NCI, results
are averaged over a 50 train-test splits as in Table 4.5. For WebKB, results are averaged
over a leave-one-university-out cross-validation as in Table 4.8.

Dataset Number of Clauses
ST MT

Alzheimer 79.5 34.7
NCGC 195.7 76.0
MTDP 84.0 59.7
NCI 414.5 175.3
WebKB 127.5 37.8

first-order clauses and 2) relatively few clauses are typically shared between any pair of
examples. Moreover, multi-task learning provides more compact models than single-task
learning. This indicates an affirmative answer to questions (Q4.2) and (Q4.4).

4.3.8 Computational Complexity

Computational complexity in KFOIL is dominated by the evaluation of candidate clauses
within the greedy top-down refinement search (cf. Algorithm 1). More specifically, for
every candidate clause under consideration it has to be determined (1) which examples
are covered by the clause and (2) how adding the clause to the current model affects the
score. Task (1) consists of running a Prolog query against the current database that holds
the description of the examples and the background knowledge. This is a standard task
that has to be carried out in ILP systems, and thus constitutes a “computational baseline”
in the sense that it is the minimum effort any system has to perform. Task (2) is the
additional effort required to score the hybrid statistical-logical model defined by KFOIL,
and thus constitutes the computational “overhead” compared to a purely logical approach.
Note that the complexity of the second task will strongly depend on the particular scoring
function used.

Figure 4.7 shows the scaling behavior of KFOIL with AUC scoring (beam size 5) and
KTA scoring (beam sizes 5 and 20). Complexity is broken down into time spent on Task
(1) and Task (2). Results clearly show that KTA scoring scales better than AUC scoring,
even taking into account the larger beam size. For KTA scoring coverage calculations
clearly dominate overall runtime, and computing kernel target alignment for a candidate
clause only constitutes a small overhead. In contrast, for AUC scoring the actual score
update strongly dominates the total computational effort. Overall, KFOIL with KTA
scoring scales roughly linear in the number of examples, while AUC scoring exhibits

110 KFOIL: Learning Simple Relational Kernels

 1

 10

 100

 1000

 10000

 1600 800 400 200

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of training examples

kFOIL/KTA-5

Coverage
Scoring
Overall

 1

 10

 100

 1000

 10000

 1600 800 400 200

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of training examples

kFOIL/KTA-20

Coverage
Scoring
Overall

 1

 10

 100

 1000

 10000

 1600 800 400 200

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of training examples

kFOIL/AUC-5

Coverage
Scoring
Overall

Figure 4.7: Runtime in seconds for building a single model on NCI-BT 549 as a function
of the number of training instances for different scoring functions and beam sizes. Graphs
show (1) time spent on determining the coverage of a clause (“Coverage”), (2) time spent
to determine the score of the combined model given the coverage (“Scoring”), and (3)
overall time spent in the evaluation of the clause (“Overall”). Results are averaged over
50 random samples for each dataset size.

clearly non-linear scaling. Note that scoring by classification accuracy has essentially the
same complexity as scoring by AUC, as in both cases the full SVM model has to be built.

Additional computational savings are obtained in a multi-task setting: coverage com-
putations only have to be carried out once (as only one clause set is learned). For KTA
scoring, where coverage calculations dominate computational cost, multi-task learning
thus yields significant computational savings compared to building an individual model
for every task.

The linear scaling behavior of KFOIL with KTA scoring is surprising, as even the
incremental algorithm for computing the alignment of a clause set involves operations
which are non-linear in the number of examples. However, note that the relevant factor
is the number of effective examples, that is, that are mapped to different propositional
vectors by the clause set (see Section 4.2.2). Figure 4.8, left plot, shows the number of

4.3 Experimental Evaluation 111

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 e
ffe

ct
iv

e
ex

am
pl

es

Fraction of training examples

Fraction of effective examples
x**0.5187

x
 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 10 20 30 40 50 60 70

C
um

ul
at

iv
e

R
un

tim
e

(s
ec

on
ds

)

Algorithm Iteration

Standard Optimization
Incremental Optimization

Figure 4.8: Left plot: number of effective examples as a function of the overall number
of examples for KFOIL with KTA scoring and beam size 5. Both axis are normalized
to the interval [0, 1], that is, values are divided by their corresponding maximum. A
least-squares curve fit of the function f(x) = xa yields a constant a ≈ 0.5187. Results
are averaged over all tasks in NCI and 50 random splits into training (80%) and test
(20%) data. Right plot: Cumulative runtime of KFOIL training as a function of the
algorithm iteration for AUC scoring, with and without incremental optimization of the
support vector machine.

effective examples as a function of the overall number of examples. A least-squares curve
fit of the function f(x) = xa to the (normalized) curve yields a ≈ 0.5187. Thus, the
number of effective examples grows approximately with the square root of the total num-
ber of examples, explaining the overall linear scaling behavior observed in Figure 4.7.
These results indicate that KFOIL using kernel target alignment scoring and incremen-
tal optimization scales well to reasonably large datasets, giving an affirmative answer to
question (Q4.5).

4.3.9 Summary of Experimental Results

KFOIL has been shown to compare favorably against well-known ILP systems and static
propositionalization approaches.

With respect to the comparison between AUC and accuracy scoring on the one hand
and alignment scoring on the other hand, experimental results indicate a classical accuracy-
efficiency trade-off. Alignment scoring yields slightly lower accuracy, but offers a much
better scaling behavior, making the proposed algorithm practical for large-scale relational
learning problems. According to our experiments, linear scaling can be expected—a sur-

112 KFOIL: Learning Simple Relational Kernels

prising result. The explanation is that the number of effective examples that are fed to
the support vector machine only grows with the square root of the original number of
examples.

Multi-task learning has been shown to offer three key benefits compared to single-task
learning. First, our experiments confirm the observation that multi-task learning can offer
advantages in terms of generalization performance (Caruana, 1997). Second, the result-
ing representation of the learned model in terms of a clause set is more compact, as the
joint clause set is smaller than the union over the task-specific clause sets induced. Fi-
nally, together with alignment scoring multi-task learning offers additional computational
benefits, as coverage calculations are shared between tasks.

4.4 Related and Future Work

KFOIL is directly related to several other statistical relational learning systems. More-
over, the proposed approach also touches upon work in other areas, most notably kernel
learning and multi-task learning.

4.4.1 Statistical Relational Learning based on Kernels
The use of kernel functions for relational learning is not new; several approaches have
been proposed in the literature. A popular method are static propositionalization ap-
proaches as discussed in Section 3.1: a set of features is first generated using an ILP
system (as in Muggleton et al., 2005) or a pattern miner (as in Kramer and De Raedt,
2001), and an SVM model is built on this feature set. The approach is particularly appeal-
ing for feature sets generated from pattern mining, as SVMs can typically cope with very
large feature sets easily. However, as outlined above, it has the disadvantage that the fea-
ture set is not optimized with respect to the particular SVM model employed. Moreover,
the interpretability of large feature sets (as returned by a pattern miner) is very limited.

In contrast, we propose a dynamic propositionalization approach, in which the feature
set defining the kernel and the statistical classifier are optimized jointly. The approach
is related to other dynamic propositionalization systems such as SAYU (Davis et al.,
2005a, 2007b), the NFOIL system presented in Chapter 3, and Structural Logistic Regres-
sion (Popescul et al., 2003), but relies on kernel methods instead of probabilistic models.
This enables us to tackle different learning tasks such as classification or regression in a
uniform framework. Also, the resulting KFOIL system has been shown to improve upon
NFOIL in terms of predictive accuracy in our experimental study. As an alternative direc-
tion for solving regression problems, Davis et al. (2007a) propose to combine the SAYU
system with a (multi-instance) linear regression model. Comparing these two approaches
experimentally is an interesting direction for future work.

Trading interpretability and efficiency for effectiveness, the RUMBLE margin-based
rule learner uses a large set of features encoded by mathematical expressions, frequent
substructures, definite clauses and their combinations, adding them one at a time, and

4.4 Related and Future Work 113

keeps the subset achieving the best results, removing features with low weight (Rückert
and Kramer, 2007). On the other hand, KFOIL aims at keeping a simple and parsimonious
approach, that can be easily applied to other ILP systems.

Finally, dynamic approaches to propositionalization have also been addressed in the
graph mining community, where the goal is to learn a set of subgraphs that proposition-
alize graph data. In this context, Saigo et al. (2009) consider a boosting approach to
collect a set of informative patterns, which can be seen as a dynamic propositionalization
approach combining graph patterns and kernel machines.

Another way of employing kernels on relational data is to pre-define a kernel function
without any additional relational learning phase. For instance, many kernel functions for
graph data are based on the idea of (approximately) counting the number of co-occuring
substructures between two graphs (Gärtner, 2003). From our perspective, this can be seen
as implicitly constructing a very large (even infinite) feature space, where one feature
represents a substructure that could be shared between two graphs. Counting co-occuring
structures then means applying a standard propositional kernel in this space. A number
of other logical and relational kernels have been developed recently. Cumby and Roth
(2003) described a family of relational kernels defined using a simple description logic.
Gärtner et al. (2004) defined kernels over complex individuals using higher order logic.
Passerini et al. (2006) introduced the notion of visiting predicates that are used to explore
relational objects given background knowledge, and they defined kernel between objects
as similarities between proof trees obtained for the visitor predicates. Declarative kernels
rely on topological and parthood relations to define object similarity in terms of parts
and connections between parts (Frasconi et al., 2005). Recently, Wachman and Khardon
(2007) proposed a kernel on relational data by upgrading walk-based graph kernels to
hypergraphs. Complementary research has focused on defining distances in a relational
setting, see (Ramon and Bruynooghe, 1998; Kirsten et al., 2001) or (Ramon, 2002) for an
extensive treatment.

While retaining much of the expressivity granted by logic, these approaches need to
pre-define an appropriate kernel function or distance measure for the domain at hand. In
contrast, the kernel we introduced here defines similarity in terms of a small set of clauses
that are learned from data by leveraging ILP-style search techniques.

4.4.2 Kernel Learning
The technique we propose can also be seen as a kernel learning approach, in that it con-
structs the kernel based on the available data. Joint learning of kernels and function
parameters has been addressed in a purely statistical setting by learning combinations of
simpler kernel functions, whose coefficients are learned by gradient descent (Chapelle
et al., 2002), semidefinite programming (Lanckriet et al., 2004; Ong et al., 2005) or reg-
ularization (Micchelli and Pontil, 2005). Ong et al. (2005) propose a general framework
where kernels are chosen from a hyper-RKHS induced by hyperkernels based on an ap-
propriately regularized scoring functional. These approaches are typically more prin-
cipled than our approach (as they learn the kernel by solving well-posed optimization

114 KFOIL: Learning Simple Relational Kernels

problems). However, the formulation by which the kernel is obtained as a convex com-
bination of other kernel functions would be difficult or impossible to apply in the context
of dynamic feature construction in a fully-fledged relational setting. Furthermore, to the
best of the authors’ knowledge, KFOIL is the first system that can learn kernels defined
by small sets of interpretable first-order rules.

4.4.3 Multi-task Learning

Multi-task learning is traditionally addressed by learning a common representation of
an example for different tasks. For instance, in feedforward neural networks this can
be achieved by sharing the hidden layers across tasks. Multi-task learning with kernel
machines was first introduced by Evgeniou et al. (2005) by including in the regularization
term a matrix which encodes the relation between tasks. This work showed how to convert
the resulting problem into an equivalent single task problem via an appropriate multi-task
kernel function. However, this method requires to explicitly encode task relationships,
which have to be known in advance. Multi-task kernel learning was later introduced using
a generalization of single-task 1-norm regularization (Obozinski et al., 2006; Argyriou
et al., 2007), which minimizes the number of non-zero features across tasks, or relying
on maximum entropy discrimination (Jebara, 2004).

The setting considered in this chapter is different, as we are learning a hybrid statistical-
logical model. We propose to exploit multi-task information for learning the relational
model structure, by constructing a relational kernel function that is shared across tasks.
As shown in Section 4.3, this leads not only to better generalization but also yields a more
compact representation of the learned concept. To the best of the authors’ knowledge,
multi-task kernel learning has never been addressed in a statistical relational learning
context before. Indeed, multi-task structure learning itself has received little attention in
the statistical relational learning setting, a notable exception being a recent work by Desh-
pande et al. (2007) on learning multi-task probabilistic relational rule sets.

Multi-task learning has also received attention in the ILP community, in the form of
learning several related concepts simultaneously. Different approaches have been pur-
sued. Related to our approach is the work by Reid (2004), where the assessment of
candidate clauses on the primary task is augmented with the performance of similar rules
on a secondary task. Furthermore, a scenario resembling multi-task learning has been
studied by Datta and Kibler (1993), where (sub)structures of concepts already learned are
used as building blocks when learning a new concept. A further related scenario is that of
repeat learning and multiple predicate learning (Khan et al., 1998; De Raedt et al., 1993),
where an ILP learner has to discover a series of related concepts drawn from some (ini-
tially unknown) distribution. Moreover, predictive clustering trees have been used in an
ILP setting. These trees can be used in a multi-task setting, where predictions for several
tasks are made at every leaf (Blockeel et al., 1998, 2004).

4.4 Related and Future Work 115

4.4.4 Future Work
KFOIL can be extended in a number of directions. Greedy search, for instance, produces
a small but suboptimal set of features, and more complex strategies such as bottom-up
search (Muggleton and Feng, 1990) could be employed. Such search techniques can
sometimes avoid the problems with local optima and premature convergence that are as-
sociated with greedy search strategies.

Concerning multi-task learning, while KFOIL currently learns a feature space repre-
sentation which is common across tasks, it is possible to extend it with task-specific com-
ponents accounting for the specificity of each task, as is done with hierarchical Bayesian
models (see, for example, Deshpande et al., 2007).

With respect to the multi-class learning strategy proposed in Section 4.1.5, it would
be interesting to verify if the advantage we observed addressing multi-class classification
as a multi-task problem is confirmed with different multi-task learning algorithms.

116 KFOIL: Learning Simple Relational Kernels

Conclusions Part I

Part I of the thesis has introduced dynamic propositionalization techniques based on prob-
abilistic models and kernels. In contrast to static propositionalization, relational and sta-
tistical learning in dynamic propositionalization are tightly coupled. This results in more
accurate models using a smaller number of interpretable first-order rules.

The NFOIL system presented in Chapter 3 combines the simplest approaches from
statistical and relational learning, namely naı̈ve Bayes and FOIL. This yields a simple but
very efficient SRL systems with little computational overhead compared to its relational
baseline algorithm FOIL. Nevertheless, NFOIL was shown to be competitive in terms
of accuracy with static propositionalization and ILP systems on a number of benchmark
datasets. We also discussed extending the simple naı̈ve Bayes model used in NFOIL to
tree augmented naı̈ve Bayes (TAN), and introduced an incremental algorithm for learning
the TAN structure.

As an alternative framework, Chapter 4 has discussed dynamic propositionalization
approaches based on kernels. Advantages of kernels methods in propositional learn-
ing include state-of-the-art accuracy in many domains, the efficiency and effectiveness
of convex optimization, and the ability to handle classification and regression problems
in a uniform framework. One of the challenges of using kernel methods—especially
with complex and structured data—is that an appropriate kernel function needs to be pre-
defined by the user. Using kernel methods in dynamic propositionalization naturally leads
to a framework for learning a relational kernel function from data. The resulting KFOIL
system was shown to be more accurate than its predecessor NFOIL, and can handle both
classification and regression problems. On the negative side, the use of kernels in dynamic
propositionalization poses new computational challenges. To reduce computational com-
plexity, we proposed to directly score the kernel defined by a clause set using kernel target
alignment. Moreover, incremental computation of the kernel matrix, max-margin sepa-
rating hyperplane, and kernel target alignment can significantly reduce computational
complexity. Finally, we investigated multi-task learning in the KFOIL framework. An
extensive experimental evaluation has proven the advantage of the multi-task learning
approach over its single-task counterpart, both in efficiency and effectiveness.

The dynamic propositionalization approaches presented in this part of the thesis im-
prove over static propositionalization while retaining computational efficiency. They are

117

118 KFOIL: Learning Simple Relational Kernels

thus a step towards simple but principled statistical relational learning, while avoiding the
complexity of more powerful and general approaches proposed in the literature. Despite
their simplicity, the resulting systems have been shown to be surprisingly accurate. How-
ever, the greedy search strategy implemented in the underlying FOIL algorithm is only
one simple alternative. Note that dynamic propositionalization can easily be combined
with more advanced ILP methods and search strategies. This is an interesting direction
for future work.

Part II

Efficient SRL for Sequential Data

119

Outline Part II

This part of the thesis introduces simple statistical relational models for sequential data.
Statistical sequence models occupy an important position within the field of machine
learning. They are not only theoretically appealing but have also proven to provide ef-
fective learning algorithms across many application areas, ranging from natural language
processing to bioinformatics and robotics. In traditional sequence models, sequences are
strings s = w1 . . . wT over a (finite) alphabet Σ. Typically, the goal is to estimate the joint
distribution P (S) over all possible sequences. Given P (S), several tasks can be solved,
including sequence classification, sampling, or predicting the next state in a sequence
given a history of preceding states (cf. Section 2.1.2).

Recent technological advances and progress in artificial intelligence have led to the
generation of structured data sequences. One example is that of the smart phone, where
communication events of many phone users have been logged during extended periods of
time (Raento et al., 2006). Other ones are concerned with logging the activities and loca-
tions of persons (Liao et al., 2005b), or visits to websites (Anderson et al., 2002). Finally,
in bioinformatics, sequences often contain structural information (Durbin et al., 1998).
These developments, together with the interest in statistical relational learning, have mo-
tivated the development of probabilistic models for relational sequences. For instance, the
Relational Markov Model (RMM) approach by Anderson et al. (2002) extends traditional
Markov models to deal with relational sequences, while Logical Hidden Markov Mod-
els (LOHMMs) by Kersting et al. (2006) upgrade traditional HMMs towards relational
sequences and also allow for logical variables and unification.

The setting that has received most attention in the SRL literature is that where se-
quence elements are individual atoms. It can be formally defined as follows:

Definition 5.0.1 (Learning from Sequences of Atoms). In the setting of learning from
sequences of atoms, examples are sequences s = p1, ..., pm where pi ∈ hb(Σ) are ground
facts over a first-order alphabet Σ (cf. Chapter 2).

Example 5.0.1. The following are example sequences of atoms from different domains:

outcall(11651, fail), outcall(11651, fail), incall(11651, succ), outtxt(21344), . . .

121

122

mkdir(rgrams), ls(rgrams), emacs(rgrams.tex), latex(rgrams.tex), . . .

strand(sa, plus, short), helix(right, alpha,medium), strand(blb, plus, short),
helix(right, f3to10, short), strand(sa,minus, long), strand(blb, plus, short) . . .

The first domain describes incoming and outgoing calls and text messages for a mobile
phone user. For instance, outcall(11651, fail) represents that a user has tried to reach
phone number 11651 but failed. In the second domain, Unix shell commands executed
by a user are described in terms of command names and arguments. In the third domain,
helices and strands as protein secondary structure elements are defined in terms of their
orientation, type, and length.

The setting of learning from sequences of atoms is appropriate whenever sequence
elements can be represented as atomic states. However, in some cases it is useful to
consider a more general setting. For instance, one of the current challenges in artificial
intelligence is the modeling of dynamic environments that change due to actions and
activities people or other agents take. As one example, consider a model of the activities
of a cognitively impaired person (Pollack, 2005). Such a model could be used to assist
persons, using common patterns to generate reminders or detect potentially dangerous
situations, and thus help to improve living conditions. As another example and one to
which we will return in Chapter 6, consider a model of the environment in a massively
multiplayer online game (MMOG). These are computer games that support thousands
of players in complex, persistent, and dynamic virtual worlds. They form an ideal and
realistic testbed for developing and evaluating artificial intelligence techniques and are
also interesting in their own right (cf. also Laird and van Lent, 2000).

In such domains, states are characterized by a variable number of objects and relations
amongst them. Thus, individual states—and therefore, sequence elements—are most eas-
ily represented as logical interpretations:

Definition 5.0.2 (Learning from Sequences of Interpretations). In the setting of learning
from sequences of interpretations, examples consist of sequences s = I1, ..., Im where
Ii ⊆ hb(Σ) are logical interpretations over a first-order alphabet Σ (cf. Chapter 2).

Example 5.0.2. As a simple example for a sequence of interpretations, consider the fol-
lowing sequence of observed world states and actions in the blocks world domain (see,
for example, Slaney and Thiébaux, 2001):

on(a, floor).
on(b, a).
on(c, floor).
move(b, c).

,

on(a, floor).
on(b, c).
on(c, floor).
move(a, b).

,

on(a, b).
on(b, c).
on(c, floor). , ...

123

In the blocks world, blocks such as a or b can be on top of another block, indicated by
on(a, b), or on the floor. Moreover, a block can be moved on top of another block by
an action such as move(a, b). The state sequence denotes a sequence of actions (and
resulting world states) in which blocks are re-stacked such that block a eventually is on
top of block b.

As a more complex example for the setting of learning from sequences of interpreta-
tions, consider the discussion of the Travian MMOG domain in Section 6.3.2.

In the following, we introduce approaches for learning from sequences of atoms in
Chapter 5 and sequences of interpretations in Chapter 6. In both settings, we start from
the simplest—and also computationally most efficient—propositional sequence model,
namely a Markov process (Definition 2.1.5, see Chapter 2). Choosing such a simple
framework will allow us to obtain tractable models also in a relational setting.

The material in this part of the thesis is organized as follows. In Chapter 5, a simple
model for learning from sequences of atoms is derived by upgrading n-gram models to the
relational case. n-grams are amongst the most widely used sequence models for large-
scale application domains, for instance, in natural language processing. In an n-gram
model, Markov processes of different order are mixed to obtain smoothed distribution es-
timates. This provides more expressivity than a standard first-order Markov process, but at
the same time maintains computational efficiency and avoids overfitting and data sparse-
ness problems. In the relational r-gram model, smoothed distributions can be obtained by
decreasing the order of the Markov process as well as by relational generalization of the
r-gram. The relational grams are applied to user data collected in a Unix and Smartphone
environment, and to a protein classification problem.

In Chapter 6, a Markov model for sequences of complete relational state descriptions,
that is, complete logical interpretations, is introduced. Transition probabilities are de-
fined using CP-logic, an expressive causal probabilistic logic recently introduced by Ven-
nekens et al. (2006). However, by restricting CP-logic to the sequential case, employing a
Markov assumption, and requiring fully observable data, inference and learning in CPT-L
are significantly easier than in full CP-logic. The resulting CPT-L model thus occupies
an intermediate position in the expressivity-efficiency trade-off inherent in statistical rela-
tional learning: it is able to model sequences of complex state descriptions, but employs
a more restricted setting than more general approaches such as full CP-logic. We will
present efficient inference and learning algorithms based on binary decision diagrams
that are specifically tailored to the more restricted setting employed in CPT-L. The result-
ing system scales well to relatively large datasets. The efficiency and effectiveness of the
system are evaluated in a massively multiplayer online game domain.

124

Chapter 5

Markov Chains for Sequences of
Atoms∗

This chapter introduces r-grams, which implement the setting of learning from se-
quences of atoms. The chapter is organized as follows. We start by reviewing n-grams
as a simple but effective model for propositional sequences in Section 5.1. Afterwards,
we derive the r-gram model as a relational extension of n-grams in Section 5.2. Finally,
Section 5.3 reports on experiments using the proposed technique.

5.1 n-grams: Smoothed Markov Chains
n-grams are a simple but widely used probabilistic model for sequential data. They define
a distribution over sequences w1...wm of length m by an order n−1 Markov assumption:

P (w1...wm) =
m∏

i=1

P (wi | wi−n+1...wi−1), (5.1)

where wi−n+1...wi−1 should be interpreted as a shorthand for wmax(1,i−n+1)...wi−1 for
i < n. The name n-gram derives from the fact that all statistics needed to employ
n-gram models can be computed from so-called “gram” counts C(w1...wk), where the
gram w1, ..., wk is a sequence of states wi ∈ Σ and C(w1...wk) is the number of times
w1, ..., wk appears as a subsequence in any of the training sequences E = {s1, ..., sN}
given to the learner. In the most basic case, the conditional probabilities are estimated
from a set E of training sequences as relative frequencies:

Pn(wi | wi−n+1 . . . wi−1) =
C(wi−n+1 . . . wi)

C(wi−n+1 . . . wi−1)
. (5.2)

∗This chapter builds on (Landwehr and De Raedt, 2007).

125

126 Markov Chains for Sequences of Atoms

This is the estimate maximizing the likelihood

P (E) =
N∏

i=1

P (si)

=
N∏

i=1

mi∏
j=1

P (wi,j | wi,j−n+1...wi,j−1)

where si = wi,1, ..., wi,mi and P (s) is defined by Equation (5.1).
The gram order n defines the trade-off between reliability of probability estimates

and discriminatory power of the model. Rather than selecting a fixed order n, perfor-
mance can be increased by combining models of different order which are discriminative
but can still be estimated reliably (Manning and Schütze, 1999). The two most popular
approaches are back-off and interpolation estimates. In this chapter, we focus on the lat-
ter approach, which defines conditional distributions as linear combinations of models of
different order:

P (wi | wi−n+1 . . . wi−1) =
n∑

k=1

αkPk(wi | wi−k+1 . . . wi−1) (5.3)

where the α1, ..., αn are suitable weights with
∑n

k=1 αk = 1, and the lower-order dis-
tributions Pk(wi | wi−k+1 . . . wi−1) are estimated according to maximum likelihood
(Equation (5.2)). Several more advanced smoothing techniques have been proposed (cf.
Manning and Schütze, 1999), but are beyond the scope of this chapter.

5.2 r-grams: Smoothed Relational Markov Chains
Let us now discuss how to extend n-gram models to sequences of logical atoms. Before
defining the actual r-gram model, we have to discuss a special characteristic of such
sequences, namely the occurrence of object identifiers. These are constants that identify
a particular object in the domain. Object identifiers will be treated differently from other
constants, as it is typically not appropriate to define a generative distribution over them.
Accordingly, r-grams are generative models at the level of variablized sequences with
local object identity constraints. These sequences define equivalence classes of ground
sequences, in which elements are identical up to local identifier renaming.

5.2.1 Relational Sequences and Object Identifiers
An atom p(t1, . . . , tk) is a relation p of arity k that is followed by k terms ti (cf. Chap-
ter 2). In this chapter, we will work with three kinds of terms: constants (in italic font,
such as fail), identifiers (in bold roman font, such as rgrams.tex) and variables
(starting with an upper case character, such as X). That is, structured terms that are built

5.2 r-grams: Smoothed Relational Markov Chains 127

up from functors will be excluded. Furthermore, we will assume that relations are typed:
for each argument position i of the relation p, one can either have constants or identifiers.
Note that the distinction between constants and identifiers will need to be made by the
user, and the corresponding information be supplied to the system as part of its language
bias. Variables may appear at any position. We shall also distinguish constant-variables
from identifier-variables; the former can be instantiated to constants, the latter to identi-
fiers. They will be written in italic or bold roman font respectively. For instance, the
relation outcall has identifiers at the first position, and constants at the second one. There-
fore, outcall(11651, fail) is type-conform. The types, constants, identifiers, variables
and relations together specify the first-order alphabet Σ, that is, the set of type-conform
atoms. Σ̄ ⊆ Σ is the set of atoms that do not contain identifiers. A sequence of atoms
is then a string s = w1, . . . , wm in Σ∗. Example sequences will typically be ground, cf.
Example 5.0.1.

Notice that constants typically serve as attributes describing properties of the rela-
tions, and identifiers identify particular objects in the domain. Identifiers have no special
meaning and they are only used for sharing object identity between events. Moreover,
there is no fixed vocabulary for identifiers which is known a priori, rather, new identifiers
will appear when applying a model to unseen data. Therefore, it is desirable to distin-
guish ground sequences only up to identifier renaming, which motivates the following
definition.

Definition 5.2.1 (Sequence Congruence). Two sequences of atoms p1 . . . pm, q1 . . . qm

are n-congruent if for all i ∈ {1, . . . ,m− n} the subsequences pi . . . pi+n−1,
ri . . . ri+n−1 are identical up to identifier renaming. Two sequences s1, s2 are identi-
cal up to identifier renaming if there exist a one-to-one mapping ϕ of the identifiers in s1

to those in s2 such that s1 equals s2 after replacing the identifiers according to ϕ.

Example 5.2.1. The sequences r(x)p(a,y)r(y)p(b,x) and r(z)p(a,w)r(w)p(b,u) are
3-congruent (but not 4-congruent).

m-congruent sequences are identical up to identifier renaming. For n < m, the def-
inition takes into account a limited history: two sequences are congruent if their object
identity patterns are locally identical. Finally we note that n-congruence defines an equiv-
alence relation, that is, it is reflexive, symmetric and transitive.

Let us now define a generative model for sequences of atoms. It should not sample
actual identifier values, but rather equivalence classes of congruent sequences. This yields
the following definition:

Definition 5.2.2 (Generative Model for Sequences of Atoms). Let Σ be a relational al-
phabet. Let S(Σ) be the set of all ground sequences of length m over Σ, and let Sn(Σ)
be the set of equivalence classes induced on S(Σ) by n-congruence. Then a generative
model of order n over Σ defines a distribution over Sn(Σ).

Such a generative model can be learned from a set of ground sequences and the alpha-
bet Σ. In its simplest form, the learning problem can be stated as maximum likelihood
estimation:

128 Markov Chains for Sequences of Atoms

Problem 5.2.1 (Maximum-Likelihood Learning from Sequences of Atoms).

Given

• a relational alphabet Σ

• a set E of ground sequences over Σ

• n ∈ N

• a family Λ of generative models of order n over Σ,

Find a model λ ∈ Λ that maximizes

P (E | λ) =
∏
s∈E

P ([s] | λ)

where [s] denotes the equivalence class of s with regard to n-congruence. A simple in-
stance of such a family of generative models will be introduced next.

5.2.2 The r-gram Model
Consider ground sequences of atoms of the form g1 . . . gm ∈ S(Σ). The key idea behind
r-grams is a Markov assumption

P (g1...gm) =
m∏

i=1

P (gi | gi−n+1...gi−1). (5.4)

However, defining conditional probabilities at the level of ground grams does not make
sense in the presence of object identifiers. Thus, ground grams will be replaced by gener-
alized ones. Generality is defined by a notion of subsumption:

Definition 5.2.3 (Subsumption). A sequence of atoms l1, . . . , lk subsumes another se-
quence k1, . . . , kn with substitution θ, notation l1, . . . , lk �θ k1, . . . , kn, if and only if
k ≤ n and ∀i, 1 ≤ i ≤ k : liθ = ki. A substitution is a set {V1/t1, . . . , Vl/tl} where
the Vi are different variables and the ti are terms, and we require that no identifier or
identifier variable occurs twice in {t1, ..., tl}.

The restriction on the allowed substitutions implements the object identity subsump-
tion of Semeraro et al. (1995). The notion of sequence subsumption is due to Lee and De
Raedt (2003). It can be tested in linear time.

Example 5.2.2. Let Y,Z,U,V be identifier variables.

r(X)p(a,Y)r(Y) �θ1 r(w)p(a,u)r(u)
r(X)p(a,Y)r(Z) �θ2 r(W)p(a,U)r(V)

5.2 r-grams: Smoothed Relational Markov Chains 129

but

r(X)p(a,Y)r(Z) 6� r(W)p(a,U)r(U).

with θ1 = {X/w,Y/u} and θ2 = {X/W,Y/U,Z/V}.

We can now refine Equation (5.4) to take into account generalized sequences. This
will be realized by defining

P (g1...gm) =
m∏

i=1

P (li | li−n+1...li−1)

where li−n+1...li �θ gi−n+1...gi. This generalization abstracts from identifier values and
at the same time yields smoothed probability estimates, with the degree and characteristic
of the smoothing depending on the particular choice of li−n+1...li. This is formalized in
the following definition.

Definition 5.2.4 (r-gram Model). An r-gram model R of order n over an alphabet Σ is
a set of relational grams

l1n ∨ ... ∨ ldn ← l1...ln−1

where

1. ∀i : l1...ln−1l
i
n ∈ Σ̄∗;

2. ∀i : lin contains no constant-variables;

3. ∀i : lin is annotated with the probability values
Pr(lin | l1...ln−1) such that

∑d
i=1 Pr(lin | l1...ln−1) = 1

4. ∀i 6= j : l1...ln−1l
i
n 6� l1...ln−1l

j
n; that is, the heads are mutually exclusive;

5. there are no two grams in R with identical bodies.

Example 5.2.3. The following is an example of an order 2 relational gram in the mobile
phone domain (see Example 5.0.1).

0.3 outtxt(X)
0.05 outtxt(Y)
0.2 outcall(X, fail)
...

0.05 intxt(Y)

← outcall(X, fail)

It states that after not reaching a person a user is more likely to write a text message to
this person than to somebody else.

We still need to show that an r-gram model R defines a distribution over sequences
of atoms. We first discuss a basic model by analogy to an unsmoothed n-gram, before
extending it to a smoothed one in analogy to Equation (5.3).

130 Markov Chains for Sequences of Atoms

A Basic Model

In the basic r-gram model, for any ground sequence g1...gn−1 there is exactly one gram
l1n ∨ ... ∨ ldn ← l1...ln−1 with l1...ln−1 �θ g1...gn−1. Its body l1...ln−1 is the most spe-
cific sequence in Σ̄∗ subsuming g1...gn−1. Note that this implies that the gram can only
contain identifier variables, but no constant variables. According to Equation (5.4), we
start by defining a probability PR(g | g1...gn−1) for any ground atom g given a sequence
g1...gn−1 of ground literals. Let g be a ground literal and consider the above gram r sub-
suming g1...gn−1. If there is an i ∈ {1, ..., d} such that l1...ln−1l

i
n �θ g1...gn−1g it is

unique and we define

PR(g | g1...gn−1) = Pr(g | g1...gn−1)
= Pr(lin | l1...ln−1).

Otherwise, PR(g | g1...gn−1) = 0. From PR(g | g1...gn−1), a probability value
PR(g1...gm) can be derived according to Equation (5.4). Note that this is not a distri-
bution over all ground sequences of length m, as the model does not distinguish between
n-congruent sequences. Instead, the following holds:

Lemma 5.2.1. Let R be an order n r-gram over Σ, and s, s′ ∈ S(Σ) be sequences of
atoms with s n-congruent to s′. Then PR(s) = PR(s′).

Proof. Let s = g1, ..., gm and s′ = g′1, ..., g
′
m. Because

PR(g1...gm) =
m∏

i=1

PR(gi | gi−n+1...gi−1),

PR(g′1...g
′
m) =

m∏
i=1

PR(g′i | g′i−n+1...g
′
i−1)

it suffices to show that for i ∈ {1, ...,m} PR(gi | gi−n+1...gi−1) = PR(g′i |
g′i−n+1...g

′
i−1). Because s and s′ are n-congruent, there is a mapping ϕ from identi-

fiers in s to those in s′ such that s equals s′ after replacing identifiers according to ϕ
(see Definition 5.2.1). This means that the gram r = l1n ∨ ... ∨ ldn ← l1...ln−1 subsum-
ing gi−n+1...gi−1 also subsumes g′i−n+1...g

′
i−1, as l1...ln−1 does not contain any ground

identifiers (because of li...ln−1 ∈ Σ̄∗), and therefore matches irrespective of any identi-
fier renaming. Similarly, if there is a head literal lkn with l1...ln−1l

k
n �θ gi−n+1...gi−1g it

also holds that l1...ln−1l
k
n �θ g′i−n+1...g

′
i−1g

′, and if there is no such literal no ljn fulfills
l1...ln−1l

j
n �θ g′i−n+1...g

′
i−1g. Thus, if a matching lkn exists,

PR(gi | gi−n+1...gi−1) = Pr(lkn | ln+1...l1)
= PR(g′i | g′i−n+1...g

′
i−1),

and if not, PR(gi | gi−n+1...gi−1) = PR(g′i | g′i−n+1...g
′
i−1) = 0.

5.2 r-grams: Smoothed Relational Markov Chains 131

Let us define PR([s]) := PR(s) for any [s] ∈ Sn(Σ), which is well-defined according
to Lemma 5.2.1. It is now also easy to see that

∑
[s]∈Sn(Σ) PR([s]) = 1 in direct analogy

to the propositional case. Therefore, we have

Theorem 5.2.1. An order n r-gram over Σ is a generative model over Σ.

Proof. Let m ∈ N be the length of the sequences under consideration. Let furthermore Σ
be a relational alphabet, and R be an order n r-gram as in Definition 5.2.4. To prove that∑

[s]∈Sn(Σ) PR([s]) = 1, we define a ground r-gram model Rg such that sequences that
can be sampled from Rg correspond to equivalence classes [s] ∈ Sn(Σ) with PR([s]) > 0.
Because a ground r-gram model is a (propositional) n-gram, it is clear that the probabili-
ties over sequences of length m sampled from Rg sum to one.

Let var(r) denote the set of all variables occurring in a gram r ∈ R, and K =
max{|var(r)| | r ∈ R}. We now introduce a set of K constants C = {c1, ..., cK}. Let
ground(r) = {rθ | θ : var(r) → C} be all groundings of r using variables in C, where
substitutions θ respect object identity. ground(r) is not an r-gram model, as there can
be grams h ← b, h′ ← b in ground(R) with the same body but different heads. Let Rg

denote the r-gram model in which such ambiguities are removed by arbitrarily choosing
one h ← b for every b. Rg is a finite, propositional n-gram, and therefore defines a
distribution over sequences of length m. Now it holds that 1) for any ground sequence
sg over constants in C we have PRg

(sg) = PR([sg]); 2) for sg, s
′
g sampled from Rg with

sg 6= s′g we have [sg] 6= [s′g]; and 3) for all [s] ∈ Sn(Σ) with PR([s]) > 0 a ground
sequence sg can be sampled from Rg with [s] = [sg]. This proves the theorem.

Example 5.2.4. Consider the r-gram model R with grams

p(a,X) ∨ p(b,X)← r(X)
r(X)← p(b,X)

r(X) ∨ r(Y)← p(a,X)
r(X)← ε

and uniform distributions over head literals. Here, ε is an artificial start symbol
that only matches at the beginning of the sequence. The ground sequence g1...g5 =
r(u)p(a,u)r(v)p(b,v)r(v) has probability PR(g1...g5) = 1 · 0.5 · 0.5 · 0.5 · 1 = 0.125.

Smoothing r-grams

In the basic model, there was exactly one gram r ∈ R subsuming a ground subsequence
g1...gn−1, namely the most specific one. As for n-grams, the problem with this approach
is that there is a large number of such grams and the amount of training data needed
to reliably estimate all of their frequencies is prohibitive unless n is very small. For n-
grams, grams are therefore generalized by shortening their bodies, that is, smoothing with
k-gram estimates for k < n (Equation (5.3)).

132 Markov Chains for Sequences of Atoms

The basic idea behind smoothing in r-grams is to generalize grams logically, and mix
the resulting distributions:

PR(g | g1...gn−1) =
∑
r∈R̂

αr

α
Pr(g | g1...gn−1)

where Pr(g | g1...gn−1) is the probability defined by r as explained above, R̂ is the subset
of grams in R subsuming g1...gn−1, and α is a normalization constant with α =

∑
r∈R̂ αr.

The more general r, the more smooth the probability estimate Pr(g | g1...gn−1) will be.
The actual degree and characteristic of the smoothing is defined by the set of matching
r-grams together with their relative weights αr.

By analogy with n-grams, additional smoothing can be obtained by also considering
relational grams r ∈ R with shorter bodies l1...lk−1, k < n. However, there is a subtle
problem with this approach: Relational grams of order k < n define a probability distri-
bution over Sk(Σ) rather than Sn(Σ). Thus, the sequences are partitioned into a smaller
number of equivalence classes. However, this can be taken care of by a straightforward
normalization, which distributes the probability mass assigned to an equivalence class
modulo k equally among all subclasses modulo n.

Example 5.2.5. Consider the r-gram model R with grams r,q given by

r : r(X) ∨ r(Y)← r(X)
q : r(X)←

uniform distribution over head literals and αr = αq = 0.5. We expect PR(r(u) | r(v))+
PR(r(v) | r(v)) = 1. However, when directly mixing distributions

PR(r(u) | r(v)) = αrPr(r(Y) | r(X)) + αqPq(r(X)) = 0.75

PR(r(v) | r(v)) = αrPr(r(X) | r(X)) + αqPq(r(X)) = 0.75,

as the r-gram q does not distinguish between the sequences r(x)r(x) and r(x)r(y).
Instead, we mix by

PR(r(x) | r(y)) = αrPr(r(X) | r(X)) +
1
γ

αqPq(r(X))

where γ = 2 is the number of subclasses modulo 2-congruence of the class [r(X)].

The ultimate level of smoothing can be obtained by a relational gram r of the form
l1n ∨ ... ∨ ldn ← where the lin are fully variablized (also for non-identifier arguments). For
this gram

Pr(g | g1...gn−1) = Pr(lin)
a∏

j=1

P (Xj = xj)

where X1, ..., Xa are the non-identifier arguments of lin and x1, ..., xa their instantiations
in g. This case corresponds to an out-of-vocabulary event (observing an event that was
not part of the training vocabulary) for n-grams.

5.2 r-grams: Smoothed Relational Markov Chains 133

Algorithm 4 Algorithm for building r-grams from data.
1: procedure r-GRAMS((input: sequences E; alphabet: Σ; parameters: γ, n))
2: B := {l1 . . . lk−1 ∈ Σ̄∗|C(l1 . . . lk−1) > 0 and k ≤ n}
3: for all l1 . . . lk−1 ∈ B do
4: let {l1k . . . ldk} contain all maximally specific literals lik ∈ Σ̄ such that

C(l1 . . . lk−1l
i
k) > 0

5: add r = l1k∨· · ·∨ ldk ← l1 . . . lk−1 to R with Pr(lik|l1 . . . lk−1) = C(l1...lk−1lik)
C(l1...lk−1)

6: L(r) :=
∏

g1...gn−1g∈S(r) Pr(g | g1...gn−1).
7: t := |S(r)|
8: αr := L(r)

γ
t

9: end for
10: return R
11: end procedure

5.2.3 Building r-grams From Data

To learn an r-gram from a given set E of training sequences, we need to 1) choose the
set R of relational grams; 2) estimate their corresponding conditional probabilities; and
3) define the weights αr for every r ∈ R. Before specifying our algorithm, we need to
define counts in the relational setting:

C(l1 . . . lk) = |{i|s1 . . . sm ∈ S and l1 . . . lk �θ si . . . si+k}|. (5.5)

Our algorithm to learn r-grams is specified in Algorithm 4. In Line 2 of the algorithm,
one computes all r-grams that occur in the data. Notice that no identifiers occur in these
r-grams (cf. Σ̄∗). This can be realized using either a frequent relational sequence miner,
such as MineSeqLog (Lee and De Raedt, 2003), or using an on-the-fly approach. In the
latter case, a relational gram with body l1...lk is only built and added to R when and if it
is needed to evaluate PR(g | g1...gn−1) with l1...lk � g1...gk on unseen data. In Line 4,
all possible literals lik are sought that occur also in the data. They are maximally specific,
which means that they do not contain constant-variables (cf. condition 2 of Definition
5.2.4). Line 5 then computes the maximum likelihood estimates and Lines 6–8 the weight
αr. Here S(r) denotes the set of all ground subsequences g1...gn−1g appearing in the
data which are subsumed by r. The likelihood L(r) of r defined in Line 5 is a measure
for how well the distribution defined by r matches the sample distribution. The αr as in
Line 7 is then defined in terms of |S(r)| and the parameter γ, which controls the trade-
off between smoothness and discrimination. Highly discriminative (specific) rules have
higher likelihood than more general ones as they are able to fit the sample distribution
better, and thus receive more weight if γ > 0.

134 Markov Chains for Sequences of Atoms

5.3 Experimental Evaluation
This section reports on an empirical evaluation of the proposed method in several real-
world domains. More specifically, we seek to answer the following questions:

(Q5.1) Are r-grams competitive with other state-of-the-art approaches for relational se-
quence classification?

(Q5.2) Is relational abstraction, especially of identifiers, useful?

Experiments were carried out on real-world sequence classification problems from three
domains. In the Unix Shell domain (Greenberg, 1988; Jacobs and Blockeel, 2003), the
task is to classify users as novice programmers or non-programmers based on logs of 3773
shell sessions containing 94537 commands (constants) and their arguments (identifiers).
To reproduce the setting used by Jacobs and Blockeel (2003), we sampled 10 subsets of
50/1000 instances each from the data, measured classification accuracy on these using 10-
fold cross-validation, and averaged the results. In the Protein fold classification domain,
the task is to classify proteins as belonging to one of five folds of the SCOP hierarchy
(Hubbard et al., 1997). Strand names are treated as identifiers, all other ground terms
as constants. This problem has been used as a benchmark before (Kersting et al., 2006;
Kersting and Gärtner, 2004), and we reproduce the experimental setting used in this earlier
work: the same 200 examples per fold are used for training, and the remaining examples
as the test set. In the Context Phone domain, data about user communication behavior
has been gathered using a software running on Nokia Smartphones that automatically logs
communication and context data. In our study, we only use information about incoming
and outgoing calls and text messages. Phone numbers are identifiers, other ground terms
constants. The task in Phone I is to discriminate between real sequences of events and
”corrupted” ones, which contain the same sequence elements but in random order. For k ∈
{20, 40, 60, 80, 100}, 5 subsets of size k were sampled randomly, 5-fold cross-validation
performed and averaged for each k. In Phone II, the task is to classify communication
logs as belonging to one of three users, based only on their communication patterns but
without referring to actual phone numbers in the event sequence.

In all domains sequence classification is performed by building an r-gram model
RC for each class C and labeling unseen sequences s with the class that maximizes
PC(s)P (C). We used bigram models in the Phone II domain and trigram models for
all other domains, and the smoothing parameter γ was set to 1 in all experiments. Learn-
ing the r-gram model was done on-the-fly as explained in Section 5.2.3.

Table 5.1 compares the classification accuracy of r-grams with accuracy results from
the literature in the Protein Fold and Unix Shell domains. In the Protein Fold domain,
a hand-crafted Logical Hidden Markov Model achieves 74% accuracy (Kersting et al.,
2006). This has been improved to 82.4% by a fisher kernel approach, in which the gra-
dient of the likelihood function of the Logical Hidden Markov Model is used as input in
a support vector machine (Kersting and Gärtner, 2004). The Unix Shell log classification
problem was originally tackled using a k-nearest neighbor method based on customized

5.3 Experimental Evaluation 135

Table 5.1: Comparison of classification accuracy of r-grams to Logical Hidden Markov
models and Fisher kernels in the Protein Fold domain, and to k-nearest neighbor and C4.5
in the Unix Shell domain. For protein fold prediction, a single split into training and test
set is used. In the Unix Shell domain, 10 subsets of 50/1000 examples each are randomly
sampled, accuracy determined by 10-fold cross-validation and averaged.

Domain r-grams LOHMM LOHMM + FK
Protein 83.3 74.0 82.7
Domain r-grams kNN C4.5
Unix-50 93.8± 2.7 91.0 88.8
Unix-1000 97.2± 0.4 95.3 94.7

Table 5.2: Accuracy comparison of r-grams to n-grams, and to n-grams w/o IDs. For
Protein/Unix domains settings are as before. For the Phone I domain, 5 subsets of size
100 have been sampled from the data, a 5-fold cross-validation is performed on each set
and results are averaged. For Phone II, results are based on one 5-fold cross-validation.
Results for n-grams are based on one sample only.

Domain r-grams n-grams n-grams w/o IDs
Protein 83.3 79.7 83.3
Unix-50 93.8± 2.7 74.4 95.6± 2.7
Unix-1000 97.2± 0.4 76.3 97.1± 0.4
Phone I 95.0± 2.0 30.0 86.8± 3.3
Phone II 93.3± 14.9 33.3 86.7± 18.3

sequence similarity (Jacobs and Blockeel, 2003). In the same paper, the authors present
results for a C4.5 decision tree learner using a bag-of-words representation. In both cases,
r-grams yield competitive classification accuracy, which is a positive answer to question
(Q5.1). Furthermore, we note that even using a naı̈ve implementation r-grams are com-
putationally efficient. Times for building an r-gram model ranged from 3 to 240 seconds
in the presented experiments1.

In a second set of experiments, the effect of using relational abstraction was examined
in more detail. More precisely, r-grams were compared to n-grams which implement non-
relational smoothing as outlined in Section 5.1, treating the atoms in Σ as flat symbols.
For these experiments, we tried keeping identifiers in the events (n-grams) or removing
them from the data (n-grams w/o IDs). Accuracy results for the Protein Fold, Unix Shell
and Context Phone domains are given in Table 5.2. If identifiers are treated as normal con-
stants, accuracy is reduced in all cases, especially for the identifier-rich Unix and Context
Phone domains. This is not surprising, as most identifiers appearing in the test data have

1All experiments were run on standard PC hardware with 3.2GHz processor and 2GB of main memory.

136 Markov Chains for Sequences of Atoms

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

Number of examples

r-grams
n-grams w/o IDs

Figure 5.1: Accuracy for different training set sizes ranging from 20 to 100 examples
in the Phone I domain. For each size, 5 sets are sampled, a 5-fold cross-validation is
performed and the result averaged.

never been observed in the training data and thus the corresponding event has probability
zero. When identifiers are removed from the data, performance is similar as for r-grams
in the Protein Fold and Unix Shell domain, but worse in the Context Phone domains. On
Phone I, r-grams significantly outperform n-grams w/o IDs (unpaired sampled t-test, p =
0.01). The other differences in accuracy in Table 5.2 are not significant. Figure 5.1 shows
more detailed results on Phone I for different numbers of training examples. It can be
observed that relational abstraction is particularly helpful for small numbers of training
examples. To summarize, there are domains where it is possible to ignore identifiers in
the data, but in other domains relational abstraction is essential for good performance.
Therefore, question (Q5.2) can be answered affirmatively as well.

5.4 Related and Future Work

The r-grams formalism is related to other work on analyzing relational and logical se-
quences. This includes most notably, the RMMs by Anderson et al. (2002) who presented
a relational Markov model approach, and the LOHMMs by Kersting et al. (2006) who in-
troduced Logical Hidden Markov Models. RMMs define a probability distribution over
ground sequences of atoms without identifiers. Furthermore, they do not employ unifica-
tion (or variable propagation) but realize shrinkage through the use of taxonomies over the
constant values appearing in the atoms and decision trees to encode the probability val-
ues. RMMs only consider first order Markov models (the next state only depends on the
previous one), so RMMs do not smooth over sequences of variable length. RMMs have
been applied to challenging applications in web-log analysis. Whereas RMMs upgrade
Markov models, LOHMMs upgrade HMMs to work with logical sequences. As r-grams,
they allow for unification and offer also the ability to work with identifiers. In addition,
they enable one to work with structured terms (and functors). However, as RMMs, they

5.4 Related and Future Work 137

only consider first order Markov models. Furthermore, they do not smooth distributions
using models of different specificity. Finally, MineSeqLog (Lee and De Raedt, 2003) is
a frequent relational sequences miner that employs subsumption to test whether a pattern
matches a sequence. One might consider employing it to tackle the first step in the r-gram
algorithm.

There are several directions for further work. In the current r-gram model, structured
first-order terms including functors are not considered. The formalism could be extended
to include functors, further extending its applicability to complex domains. Moreover,
different smoothing techniques could be considered. For instance, back-off smoothing
is a popular smoothing technique for propositional grams. The basic idea behind back-
off smoothing is to revert to a lower-order gram if counts for the full n-gram are below
a certain threshold, as this can imply imprecise probability estimates. Such techniques
could in principle also be applied in the r-gram formalism. Perhaps most importantly, it
is interesting to apply the work to further challenging artificial intelligence applications.

138 Markov Chains for Sequences of Atoms

Chapter 6

Markov Chains for Sequences of
Interpretations∗

After presenting a simple model for learning from sequences of atoms in the previous
chapter, we now discuss an extended setting in which sequence elements are full logical
interpretations. Specifically, we introduce the CPT-L system, a simple extension of the
Markov chain framework to logical interpretations.

As a motivating application domain—that will also be used to evaluate our method
empirically, see Section 6.3—we will consider massively multiplayer online games
(MMOGs). As discussed above, such games are characterized by complex state descrip-
tions including multiple agents and relations between them, and thus constitute a natural
test-bed for approaches that learn from sequences of interpretations.

One challenge in such games is to build a dynamic probabilistic model of high-level
player behavior, such as players joining or leaving alliances and concerted actions by
players within one alliance. Such a model of human cooperative behavior in this type
of world can be useful in several ways. Analysis of in-game social networks is not only
interesting from a sociological point of view but could also be used to visualize aspects
of the gaming environment or give advice to inexperienced players (for instance, which
alliance to join). More ambitiously, the model could be used to build computer-controlled
players that mimic the cooperative behavior of human players, form alliances and jointly
pursue goals that would be impossible to attain otherwise. Mastering these social aspects
of the game will be crucial to building smart and challenging computer-controlled oppo-
nents, which are currently lacking in most MMOGs. Finally, the model could also serve to
detect non-human players in todays MMOGs — accounts which are played by automatic
scripts to give one player an unfair advantage, and are typically against game rules.

∗This chapter builds on joint work with Ingo Thon, published in (Thon et al., 2008).

139

140 Markov Chains for Sequences of Interpretations

6.1 CPT-L: A Markov Model for Sequences of Interpre-
tations

To work towards an efficient model for sequences of interpretations, let us start with a
simple Markov model approach as used in the previous section. In the new setting, a
first-order Markov assumption entails

P (I0, ..., IT) = P (I0)
T∏

t=1

P (It | It−1, ..., I0)

= P (I0)
T∏

t=1

P (It | It−1).

where I0, ..., IT is an observed sequence of interpretations over a first-order alphabet Σ,
that is, It ⊆ hb(Σ) (cf. Example 5.0.2). The crucial challenge in this approach is to define
the conditional distribution P (It | It−1) for arbitrary logical interpretations It, It−1. Note
that, in contrast to propositional models, a naı̈ve representation of the conditional by
a “table” with one entry for any pair (It, It−.1) of interpretations is infeasible, as the
number of interpretations is exponential in the size of the logical language considered.

In the rest of this section, we show how such conditional distributions can be realized
by employing CP-logic (Vennekens et al., 2006), a recent expressive logic for modeling
causality. More specifically, we discuss the CPT-L framework, which adapts CP-logic to
the sequential setting. The semantics of CPT-L is based on CP-logic, a probabilistic first-
order logic that defines probability distributions over interpretations (Vennekens et al.,
2006). CP-logic has a strong focus on causality and constructive processes: an interpre-
tation is incrementally constructed by a process that adds facts which are probabilistic
outcomes of other already given facts (the causes). CPT-L combines the semantics of CP-
logic with that of (first-order) Markov processes. Causal influences only stretch from It

to It+1 (Markov assumption), are identical for all time-steps (stationarity), and all causes
and outcomes are observable. Models in CPT-L are also called CPT-theories, and can be
formally defined as follows:

Definition 6.1.1 (CPT-Theory). A CPT-theory is a set of rules of the form

r = (h1 : p1) ∨ . . . ∨ (hn : pn)← b1, . . . , bm

where the hi are logical atoms and the bi are literals over Σ, and pi ∈ [0, 1] probabilities
s.t.
∑n

i=1 pi = 1.

It will be convenient to refer to b1, ..., bm as the body body(r) of the rule and to
(h1 : p1) ∨ . . . ∨ (hn : pn) as the head head(r) of the rule. We shall also assume that
the rules are range-restricted, that is, that all variables appearing in the head of the rule
also appear in its body. Rules define conditional probabilistic events: the intuition be-
hind a rule is that whenever b1θ, ..., bmθ holds for a substitution θ in the current state It,

6.1 CPT-L: A Markov Model for Sequences of Interpretations 141

exactly one of the hiθ in the head will hold in the next state It+1. In this way, the rule
models a (probabilistic) causal process as the condition specified in the body causes one
(probabilistically chosen) atom in the head to become true in the next time-step.

Example 6.1.1. Consider the following CPT-rule for the blocks world domain introduced
in Example 5.0.2:

(on(a, floor) : 0.9) ∨ (on(a, c) : 0.1)← free(a), on(a, c),move(a, floor).

which represents that we try to move a block A from block C to the table. This action
succeeds with a probability of 0.9. Note that free/1 is a background predicate (see
below).

We now show how a CPT-theory defines a distribution over sequences I0, ..., IT of
relational interpretations over a first-order alphabet Σ. Let us first define the concept of
the applicable ground rules in an interpretation It ⊆ hb(Σ). From a CPT-theory, the rule
(h1 : p1θ) ∨ . . . ∨ (hn : pnθ)← b1θ, . . . , bmθ is obtained for a substitution θ. A ground
rule r is applicable in It if and only if body(r) = b1θ, . . . , bmθ is true in It, denoted
It |= b1θ, . . . , bmθ.

One of the main features of CPT-theories is that they are easily extended to in-
clude background knowledge. The background knowledge B can be any logic program,
cf. (Bratko, 1990). In the presence of background knowledge, a ground rule is applicable
in an interpretation It if b1θ, . . . , bmθ can be logically derived from It together with the
logic program B, denoted It |=B b1θ, . . . , bmθ.

Example 6.1.2. To illustrate the use of background knowledge, reconsider the blocks-
world domain introduced in Example 5.0.2. A possible background theory B for this
domain is given by the two clauses

free(floor)←
free(B)← ¬on(X, B)

indicating that a block is free if there is no other block stacked on top of it, and the floor
is always free.

The set of all applicable ground rules in state It will be denoted as Rt. Each ground
rule applicable in It will cause one of its head elements to become true in It+1. More
formally, let Rt = {r1, ..., rk}. A selection σ is a mapping {(r1, j1), ..., (rk, jk)} from
ground rules ri to indices ji denoting that head element hiji ∈ head(ri) is selected. The
probability of a selection σ is

P (σ) =
k∏

i=1

pji , (6.1)

where pji
is the probability associated with head element hiji

in ri. In the stochastic
process to be defined, It+1 is a possible successor for the state It if and only if there is a

142 Markov Chains for Sequences of Interpretations

selection σ such that It+1 = {h1σ(1), ..., hkσ(k)}. We shall say that σ yields It+1 in It,
denoted It

σ→ It+1, and define

P (It+1|It) =
∑

σ:It
σ→It+1

P (σ). (6.2)

Example 6.1.3. Consider the theory

r1 = a : 0.2 ∨ b : 0.8← ¬a,¬b
r2 = a : 0.5 ∨ b : 0.5← a
r3 = a : 0.7 ∨ nil : 0.3← a

Starting from It = {a} only the rules r2 and r3 are applicable, so Rt = {r2, r3}. The set
of possible selections is

{(r2, j2), (r3, j3) | j2, j3 ∈ {1, 2}}.

The possible successor states It+1 are therefore

I1
t+1 = {a} with P (I1

t+1 | It) = 0.5 · 0.7 + 0.5 · 0.3 = 0.5

I2
t+1 = {b} with P (I2

t+1 | It) = 0.5 · 0.3 = 0.15

I3
t+1 = {a, b} with P (I3

t+1 | It) = 0.5 · 0.7 = 0.35

As for propositional Markov processes, the probability of a sequence I0, ..., IT given
an initial state I0 is defined by

P (I0, ..., IT) = P (I0)
T∏

t=0

P (It+1 | It). (6.3)

We now have—in direct analogy to the propositional case—that by Equation (6.3) a CPT-
theory defines a distribution over sequences of interpretations:

Theorem 6.1.1 (Semantics of a CPT theory). Given an initial state I0, a CPT-theory de-
fines a discrete-time stochastic process, and therefore for T ∈ N a distribution P (I0, ..., IT)
over sequences of interpretations of length T .

Proof. The theorem follows directly from the semantics of CP-logic (Vennekens et al.,
2006) and the way a Markov process defines a distribution over all sequences of a fixed
length T . According to the semantics of CP-logic, it holds that∑

It+1⊆hb(Σ)

P (It+1 | It) = 1,

6.2 Inference and Parameter Estimation 143

that is, CPT-L defines a distribution over the next ground state It+1 ⊆ hb(Σ) given the
current ground state It ⊆ hb(Σ) by means of Equation (6.2). Thus, a CPT-L theory
defines a ground Markov process, and it follows that∑

s=I0,...,IT

P (s) = 1,

where It ⊆ hb(Σ) for t = 1, ..., T .

It is instructive to compare the semantics given by Theorem 6.1.1 with that of the r-
gram model given by Theorem 5.2.1. r-grams do not directly define a distribution over
ground sequences, but variablized sequences with local object identifier constraints. This
is a flexible way to deal with identifiers in sequences, which typically cannot be modeled
explicitly. For CPT-L, we avoid these complications by only modeling a distribution
over sequences given an initial state I0 (cf. Theorem 6.1.1). When modeling real-world
domains in CPT-L, this initial state can contain all identifiers appearing in the sequence,
thus we again do not need to sample them. However, the approach pursued in r-grams is
slightly more flexible as it does not require us to list all identifiers a priori in I0. Exploring
identifier abstraction for CPT-L is an interesting direction for future work.

6.2 Inference and Parameter Estimation

As for other probabilistic models, we can now ask several questions about the introduced
CPT-L model (confer Problem 2.1.2):

• Sampling: how to sample sequences of interpretations I0, ..., IT from a given CPT-
theory T and initial interpretation I0?

• Inference: given a CPT-theory T and a sequence of interpretations I0, ..., IT , what
is P (I0, ..., IT | T)?

• Parameter Estimation: given the structure of a CPT-theory T and a set of se-
quences of interpretations, what are the maximum-likelihood parameters of T ?

• Prediction: Let T be a CPT-theory, I0, ..., It a sequence of interpretations, and
F a first-order formula that constitutes a certain property of interest. What is the
probability that F holds at time t + d, P (It+d |=B F | T , I0, ..., It)?

Sampling from a CPT-theory T given an initial interpretation I0 is straightforward due to
the causal semantics employed in CP-logic. For t ≥ 0, It+1 can be constructed from It

by finding all groundings rθ of rules r ∈ T , and sampling for each rθ a head element to
be added to It+1. Algorithmic solutions for solving the inference, parameter estimation,
and prediction problem are presented in turn in the rest of this section.

144 Markov Chains for Sequences of Interpretations

6.2.1 Inference
Because of the Markov assumption (Equation (6.3)), the crucial task for solving the in-
ference problem is to compute P (It+1 | It) for given It+1 and It. According to Equa-
tion (6.2), this involves summing the probabilities of all selections yielding It+1 from
It. However, the number of possible selections σ is exponential in the number of ground
rules |Rt| applicable in It, so a naı̈ve generate-and-test approach is infeasible. Instead, we
present an efficient approach for computing P (It+1 | It) without explicitly enumerating
all selections yielding It+1, which is strongly related to the inference technique discussed
by De Raedt et al. (2007). The problem is first converted to a DNF formula over boolean
variables such that assignments to variables correspond to selections, and satisfying as-
signments to selections yielding It+1. The formula is then compactly represented as a
binary decision diagram (BDD), and P (It+1 | It) efficiently computed from the BDD
using dynamic programming. Although finding satisfying assignments for DNF formulae
is a hard problem in general, the key advantage of this approach is that existing, highly
optimized BDD software packages can be used.

The conversion of a given inference problem to a DNF formula f is realized as fol-
lows:

1. Initialize f := true

2. Compute applicable ground rules

Rt = {rθ|body(rθ) is true in It}

3. For all rules (r = (p1 : h1, ..., pn : hn)← b1, ..., bm) in Rt do:

(a) f := f ∧ (r.h1 ∨ ... ∨ r.hn), where r.h denotes the proposition obtained by
concatenating the name of the rule r with the ground literal h resulting in a
new propositional variable r.h (if not hi = nil).

(b) f := f ∧ (¬r.hi ∨ ¬r.hj) for all i 6= j

4. For all facts l ∈ It+1

(a) Initialize g := false

(b) for all r ∈ Rt with p : l ∈ head(r) do g := g ∨ r.l

(c) f := f ∧ g

Boolean variables of the form r.h represent that head element h was selected in rule r1.
The second step of the algorithm computes all applicable rules, the third step assures
that selections are obtained, and the final step assures that the selection generates the
interpretation It+1. It is easily verified that the satisfying assignments for the formula f
correspond to the selections yielding It+1.

1Variables r.h are standardized apart in case head elements coincide after grounding.

6.2 Inference and Parameter Estimation 145

Example 6.2.1. The following formula f is obtained for the transition {a} → {a, b} and
the CPT-theory given in Example 6.1.3.

(r2.a ∨ r2.b)︸ ︷︷ ︸
3.a

∧ (¬r2.a ∨ ¬r2.b) ∧ (¬r3.a ∨ ¬r3.nil)︸ ︷︷ ︸
3.b

∧ (r2.a ∨ r3.a) ∧ r2.b︸ ︷︷ ︸
4

The parts of the formula are annotated with the steps in the construction algorithm that
generated them.

From the formula f , a reduced ordered binary decision diagram (BDD) (Bryant,
1986) is constructed. Let x1, ..., xn denote an ordered set of boolean variables (such
as the r.h contained in f). A BDD is a rooted, directed acyclic graph, in which nodes are
annotated with variables and have out-degree 2, indicating that the variable is either true
or false. Furthermore, there are two terminal nodes labeled with 0 and 1. Variables along
any path from the root to one of the two terminals are ordered according to the given
variable ordering. The graph compactly represents a boolean function f over variables
x1, ..., xn: given an instantiation of the xi, we follow a path from the root to either 1 or
0 (indicating f is true or false). Furthermore, the graph must be reduced, that is, it must
not be possible to merge or remove nodes without altering the represented function (cf.
Bryant, 1986, for details). Figure 6.1, left, shows an example BDD.

From the BDD graph, P (It+1 | It) can be computed in linear time using dynamic
programming. This is realized by a straightforward modification of the algorithm for
inference in ProbLog theories (De Raedt et al., 2007). The algorithm exploits that paths
in the BDD from the root node to the 1-terminal correspond to satisfying assignments
for f , and thus selections yielding It+1. By sweeping through the BDD from top to
bottom contributions from all such selections are summed up (Equation (6.2)) without
explicitly enumerating all paths. The efficiency of this method crucially depends on the
size of the BDD graph, which in turn depends strongly on the chosen variable ordering
x1, ..., xn. Unfortunately, computing an optimal variable ordering is NP-hard. However,
existing implementations of BDD packages contain sophisticated heuristics to find a good
ordering for a given function in polynomial time.

Interestingly, it is possible to further reduce complexity for the particular problem
we are interested in by adapting a different semantics in the BDD. A zero-suppressed
binary decision diagrams (or ZDD) is an alternative form of graphical representation in
which variables appear in a path only if their positive branch is not directly connected to
the terminal 0 (Minato, 1993). Figure 6.1 shows example BDD and ZDD structures that
represent the same function. We now show that a reduced ZDD representation of f will
always be smaller than (or identical to) the corresponding BDD representation for CPT-L:

Theorem 6.2.1. Let f be a formula resulting from the conversion of a CPT-L inference
problem, G its BDD representation, and G′ its ZDD representation (for a fixed variable
ordering). Then size(G′) ≤ size(G).

146 Markov Chains for Sequences of Interpretations

 player(8614,2,6049) 0.994

 nil 0.006

 conquest(7899,8614) 0.002

 nil 0.998

 conquest(7899,8614) 0.001

 nil 0.999

 conquest(7899,8614) 0.039

 nil 0.961

 conquest(7899,8614) 0.011

 nil 0.989

 nil 0

 city(7899,9,85,8614,huge) 0

 city(7899,9,85,8614,small) 0.683

 city(7899,9,85,8614,huge) 0.273

 city(7899,9,85,8614,normal) 0.044

c8

c7

0

c6

c5bf

c4be

bcbd c3

c2bb

ba b9 c1

b8 c0

b6b7

b5

b4

b1 b3

b0 b2

af

1

(a) BDD representation

 player(8614,2,6049) 0.994

 conquest(7899,8614) 0.002

 nil 0.998

 conquest(7899,8614) 0.001

 nil 0.999

 conquest(7899,8614) 0.039

 nil 0.961

 conquest(7899,8614) 0.011

 nil 0.989

 city(7899,9,85,8614,huge) 0

 city(7899,9,85,8614,huge) 0.273

8b

8a

0

89

83 88

82

81

87

86

80

7f

85

84

7e

7d

7c

1

(b) ZDD representation

Figure 6.1: Graphical representation of a formula f resulting from the conversion of a
CPT-L inference problem represented as a BDD and ZDD.

Proof. We first show that in G every path Q from the root to the 1-terminal contains all
variables appearing in f . Assume r.h1 6∈ Q, and let r.h2, ..., r.hl denote the variables
corresponding to the other head elements of rule r. Because of the constraint added in
step 3. of the conversion, f can only be true if exactly one of the r.h1, ..., r.hl is true.
However, this cannot be verified by looking at any subset of the variables, and therefore
they must all be contained in the path. Because all variables appear in every path from
the root to 1, the graph structure G is also a faithful representation of f under the ZDD
semantics. If G as a ZDD is fully reduced, G = G′ because reduced ZDDs, as BDDs,
are a canonical representation. Otherwise, G can be further reduced to the ZDD G′ with
size(G′) < size(G).

Typically a ZDD representation of f will be more compact than the BDD representa-
tion, as shown in Figure 6.1.

6.2 Inference and Parameter Estimation 147

6.2.2 Parameter Estimation
Assume the structure of a CPT-theory is given, that is, a set T = {r1, ..., rk} of rules of
the form

ri = (hi1 : pi1) ∨ . . . ∨ (hin : pin)← bi1, . . . , bim,

where π = {pij}i,j are the unknown parameters to be estimated from a set of
training sequences D. A standard approach is to find max-likelihood parameters
π∗ = arg maxπ P (D | π). To determine a model parameter pij , we essentially need to
know the number of times head element hij has been selected in an application of the
rule ri in the training data, which will be denoted by κij . However, the quantity κij is
not directly observable. To see why this is so, first consider a single transition It → It+1

in one training sequence. We know the set of rules Rt applied in the transition; how-
ever, there are in general many possible selections σ of rule head elements yielding It+1.
The information which selection was used, that is, which rule has generated which fact in
It+1, is hidden. We now derive an efficient Expectation-Maximization algorithm in which
the unobserved variables are the selections used at every transition, and κij the sufficient
statistics. To keep the notation uncluttered, we present the expectation step E[κij | π,D]
for a single transition τ = It → It+1; contributions from different transitions and dif-
ferent training sequences simply sum up. Let Γ = {σ | It

σ→ It+1} denote the set of
selections yielding τ . The expectation is

E[κij | π, τ] =
∑

σ

P (δij | σ, π, τ)

=
∑

σ

P (δij | σ)P (σ | π, τ)

=
∑
σ∈Γ

P (δij | σ)
P (σ | π)∑

σ′∈Γ P (σ′ | π)
(6.4)

where δij is an indicator variable representing that head hij was selected in rule ri. Note
that P (δij | σ) is simply 1 if the head is selected in σ and 0 otherwise, and P (σ | π) is
defined by Equation (6.1). Given the expectation, the maximization step is

p
(new)
ij =

E[κij | π,D]∑
j E[κij | π,D]

.

The key algorithmic challenge is to compute the expectation given by Equation (6.4)
efficiently. As outlined above, the set Γ of selections yielding the observed transitions can
be compactly represented as the set of paths from the root to the 1-terminal in a (possibly
zero-suppressed) decision diagram.

By analogy to the inference problem, the summation given by Equation (6.4) can be
performed in linear time given the BDD (ZDD) structure. This is realized by a dynamic
programming algorithm similar to the forward-backward algorithm in hidden Markov
models (Rabiner, 1989) that sweeps through the BDD structure twice to accumulate the

148 Markov Chains for Sequences of Interpretations

sufficient statistics κij . Details of the algorithm are straightforward but somewhat in-
volved, and omitted for lack of space. Note that the presented Expectation-Maximization
algorithm, by taking the special structure of our model into account, is significantly more
efficient than general-purpose parameter learning techniques employed in CP-logic.

6.2.3 Prediction
Assume we are given a (partial) observation sequence I0, ..., It, a CPT-theory T , and a
property of interest F (represented as a first-order formula), and would like to compute
P (It+d |=B F | I0, ..., It, T). For instance, a robot might like to know the probability
that a certain world state is reached at time t + d, given its current world model and
observation history. Note that the representation as a first-order formula enables one
to express richer world conditions than queries on (sets of) atoms, as they are typically
supported in statistical relational learning systems. In CPT-L,

P (It+d |=B F | I0, ..., It, T) = P (It+d |=B F | It, T)

as the world model is Markov. Powerful statistical relational learning systems are in
principle able to compute this quantity exactly by “unrolling” the world model into a
large dynamic graphical model. However, this is computationally expensive as it requires
to marginalize out all (unobserved) intermediate world states It+1, ..., It+d−1. In contrast,
inference in CPT-theories draws its efficiency from the full observability assumption.

As an alternative approach, we propose a straightforward sample-based approxima-
tion to P (It+d |=B F | It, T). Given It, independent samples can be obtained from the
conditional distribution P (It+1, ..., It+d | It, T) by simply sampling according to T from
the initial state It. Ignoring It+1, ..., It+d−1 and checking F in It+d yields independent
samples of the boolean event It+d |=B F from the distribution P (It+d |=B F | It, T).
The proportion of positive samples of this variable will thus quickly approach the true
probability P (It+d |=B F | It, T).

6.3 Experimental Evaluation
This section presents a preliminary evaluation of the proposed CPT-L system. The main
goal of the evaluation is to prove that CPT-L can handle sequences of interpretations of
reasonable complexity, and scales well to the number of objects present in the domain.
More specifically, we seek to answer the following two questions:

(Q6.1) Are the learning and inference techniques proposed for CPT-L in Section 6.2
effective and efficient?

(Q6.2) Can the CPT-L model capture the relational structure in a real-world domain?

To answer questions (Q6.1) and (Q6.2), CPT-L has been evaluated in two domains.
First, we discuss experiments in a stochastic version of the well-known blocks world

6.3 Experimental Evaluation 149

domain, an artificial domain that enables us to perform controlled and systematic experi-
ments, for example, with regard to the scaling behavior of the proposed algorithms. Sec-
ond, the model is evaluated on real-world data collected from a live server of a massively
multi-player online strategy game. Experiments in these two domains are now presented
in turn.

6.3.1 Experiments in a Stochastic Blocks World Domain
As an artificial test bed for CPT-L, we performed experiments in a stochastic version of the
well-known blocks world domain. The domain was chosen because it is truly relational
and also serves as a popular artificial world model in agent-based approaches such as
planning and reinforcement learning. Application scenarios involving agents that act and
learn in an environment are one of the main motivations for CPT-L. In such scenarios
world-transition dynamics typically stem from actions carried out by the agents according
to some policy. In the blocks-world domain discussed in this section, we assume that the
policy of the agent is known and the task is to probabilistically model transition dynamics
given the policy. It is straightforward to represent such conditional world models in CPT-
theories by including the policy as part of the background knowledge.

World Model

The blocks world we consider consists of a table and a number of blocks. Every block
rests on exactly one other block or the table, denoted by a fact on(A,B). Blocks come in
different sizes, denoted by size of(A,N) with N ∈ {1, ..., 4}. A predicate free(B) ←
not(on(A,B)) is defined in the background knowledge. Additionally, a background pred-
icate stack(A,S) defines that block A is part of a stack of blocks, which is represented by
its lowest block S. Actions derived from the policy are of the form move(A,B). If both
A and B are free, the action moves block A on B with probability 1− ε, with probability
ε the world state does not change. Furthermore, a stack S can start to jiggle, represented
by jiggle(S). A stack can start to jiggle if its top block is lifted, or a new block is added
to it. Furthermore, stacks can start jiggling without interference from the agent, which is
more likely if they contain many blocks and large blocks are stacked on top of smaller
ones. Stacks that jiggle collapse in the next time-step, and all their blocks fall on the table.
Two example rules from this domain are

(jiggle(S) : 0.2) ∨ (nil : 0.8)← move(A,B), stack(A,S)

(jiggle(S) : 0.2) ∨ (nil : 0.8)← move(A,B), stack(B,S),

they describe that stacks can start to jiggle if blocks are added to or taken from a stack.
Furthermore, we consider a simple policy that tries to build a large stack of blocks by
repeatedly stacking the free block with second-lowest ID on the free block with lowest
ID. This strategy would result in one large stack of blocks if the stack never collapsed.

150 Markov Chains for Sequences of Interpretations

-10000
-9000
-8000
-7000
-6000
-5000
-4000
-3000
-2000
-1000

 0 2 4 6 8 10

Lo
g-

Li
ke

lih
oo

d

Iterations of the EM-Algorithm

10 blocks
25 blocks
50 blocks

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50

ru
nt

im
e

[m
in

ut
es

] f
or

 1
0

ite
ra

tio
ns

Number of blocks

runtime

Figure 6.2: Left graph: per-sequence log-likelihood on the training data as a function of
the EM iteration. Right graph: Running time of EM as a function of the number of blocks
in the world model.

Results in the Blocks-World Domain

In a first experiment, we explore the convergence behavior of the EM algorithm for CPT-
L. The world model together with the policy for the agent, which specifies which block
to stack next, is implemented by a (gold-standard) CPT-theory T , and a training set of 20
sequences of length 50 each is sampled from T . From this data, the parameters are re-
learned using EM. Figure 6.2, left graph, shows the convergence behavior of the algorithm
on the training data for different numbers of blocks in the domain, averaged over 15 runs.
It shows rapid and reliable convergence. Figure 6.2, right graph, shows the running time
of EM as a function of the number of blocks. The scaling behavior is roughly linear,
indicating that the model scales well to reasonably large domains. Absolute running times
are also low, with about 1 minute for an EM iteration in a world with 50 blocks2. This is
in contrast to other, more expressive modeling techniques which typically scale badly to
domains with many objects. The theory learned (Figure 6.2) is very close to the ground
truth (”gold standard model”) from which training sequences were generated. On an
independent test set (also sampled from the ground truth), log-likelihood for the gold
standard model is -4510.7, for the learned model it is -4513.8, while for a theory with
randomly initialized parameters it is -55999.4 (50 blocks setting). Manual inspection of
the learned model also shows that parameter values are on average very close to those in
the gold-standard model.

The experiments presented so far show that relational stochastic domains of substan-
tial size can be represented in CPT-L. The presented algorithms for inference and learning
are effective and efficient, and scale well with the size of the domain. This affirmatively

2All experiments were run on standard PC hardware, 2.4GHz Intel Core 2 Duo processor, 1GB memory.

6.3 Experimental Evaluation 151

border

border

border

border

Alliance 1

Alliance 2

Alliance 3

Alliance 4

Alliance 5

Alliance 6

Alliance 7
Alliance 9

Alliance 10

Alliance 11

P 1

733

885

857

948

690

628

637

667

593

P 2

1010

994

977

788

P 3

1021

857

1000

974

P 5

885

979

632

927

936

1032

P 6

1032

1022

675

670

707

P 7

974

855

818

921

920

926

818

990

778

837

680

844

721

613

P 8

968

942

961

963

P 12

1000

1005

850

P 14

792

685

643

707

P 15

883

958

740

947

P 16

985

717

P 17

986

911

978

818

P 18

943

910

924929

947

1001

869

892

P 19

1045

1005

959

740

799

817

P 21

737

766

912

931

P 22

813

771

878

623

P 24

935 898

634

882823

581

832

P 26

753

P 28

908

P 30

932

841

P 33

853803

P 34

1018

797

P 36

904

1003

1028 1036

972 976

982

920

823

783

717

P 37

1017

911

879

751

P 38

693

817

P 40

690

626

P 41

905

947

759

P 42

756606

P 43

762

863

P 45

695

P 46

1001

833

P 47

991

833

638

P 50

882

857

864

P 51

951

1023

735

873

P 52

863720

651

649

P 55

635

596

P 56

1042

1047

802

978

1043

984

P 57

996

936

928

924

1030

819

934

1007

9961004

842

P 59

640

901 529

P 61
994

702

801

600

837

P 63

959

1031

811

P 64

934 907

835

863

P 66

888

847934

871

776

671

577

P 67

538

430

P 68

651

626

585

P 70

934823

940

795

P 72

782

664

P 74

808

790

999

835

927

744683
P 75

1083

961

794

1000

P 76

973

768

P 77

904994

657

P 78

947

529

P 79

800

583

P 81

1017

978

928

820

1028

1044

870

1045

916

732

900

801

P 82

764

P 83

748

P 84

780

P 85

546

548

P 86

748

713

768

P 88

849

793730 692

P 89

834

576

P 91

1035

836

P 92

488

P 95

744

966

937

961

P 97

931 P 98

990

P 99

880

P 100

823 1000

794

P 101

854810

765

P 105

904

831

736

830

786

P 106

752

P 107

730

P 111

977

991

823

440

736

614 489

P 116

1002

986

550

P 120

880

933

940

867

768

743

P 121

1049

1013

968

986

942

748

P 122

1060

908886

973

783

P 123

799

P 124

9891060

926

920

P 125

812

858

913

620

P 126

1190

849

612

803

799

P 127

776

892

825

833

607

P 128

899

P 129

634

1001

650

P 132

736

546

436

P 134

744

880

P 135

948

825P 136

720

839

952

807

P 137

665

850

677

863

751

756

761

674

P 138

985

728

789

724

932

P 139

960

590

P 140

954

944

1020

996

986

770

P 141

859

892526

P 142

967

P 143

1040

1055

P 145

693

P 146

1106

1068

P 150

1005

773

793

P 153

919

969

783

905

991

954

946

910

884804

594

P 154

892 855

P 156

943

P 157

863

742 641

P 158

897

P 159

920

P 167

843

712

798

790

739635

P 168

913

P 172

834

588

591

696

970

P 174

483541

607

P 176

581

P 177

639

742 719

P 179

717

882842

542

P 180

958

999

P 181

1000

1035

985

1035 1060

1063

598

576

997

1003

P 183

896

852

699

P 185

937

936

958

812

P 186

973

895

P 187

911

P 189

1001

722

874

974

786

986

1014

780

P 191

888

830

P 193

718

P 195

753

P 199

966

950

P 201

713

606

P 202

905

953

861

952

872

848

703

801

784

898

832

805

P 203

761

775

P 205

854

892

509

899

867

700

643

P 212

921

517688

690

560 577

P 213

613

P 217

985

953

1068

969

1008

1060

894

P 220

918

902

738

P 221

794

864

780

692

612

579

P 222

875

773

P 223

774

P 224

901

791

477

P 228

667583

630

P 230

818

P 231

793

879

826

705

P 233

746

P 234

747

P 235

972

889

788

P 236

1228

579

784

578

614

P 238

505

P 239

946

903

1030

976

925

799

865

P 240

1046

1055

1059

1029

1005

916

814

P 242

1066

891

928

1056 880

923

1029

797

884

1059

1034

939

992

831 773

915

955

740

904

P 244

705

685

770

679

P 246

757

775

759

921

839

Figure 6.3: High-level view of a (partial) game world in Travian. Circular nodes indicate
cities, shown in their true positions on the game’s grid-map. Diamond-shaped nodes in-
dicate players, and are connected to all cities currently owned by the player. Rectangular
nodes indicate alliances, and are connected to all players currently members of the al-
liance. Moreover, players and cities are color-coded according to their alliance affiliation.

answers Question (Q6.1).

6.3.2 Experiments in a Massively Multi-player Online Game
We consider the MMOG Travian, a commercial, large-scale strategy game with a player
community of about 3.000.000 players worldwide3. In Travian, players are spread over
several independent game worlds, with approximately 20.000–30.000 players interacting
in a single world. Travian game play follows a classical strategy game setup. A game
world consists of a large grid-map, and each player starts with a single city located on
a particular tile of the map. During the course of the game, players harvest resources
from the environment, improve their cities by construction of buildings or research of
technologies, or found new cities on other (free) tiles of the map. Additionally, players
can build different military units which can be used to attack and conquer other cities on
the map, or trade resources on a global marketplace.

In addition to these low-level game play elements, there are high-level aspects of game
play involving multiple players, which need to cooperate and coordinate their playing to
achieve otherwise unattainable game goals. More specifically, in Travian players dynam-
ically organize themselves into alliances, for the purpose of jointly attacking and defend-

3www.travian.com; www.traviangames.com

152 Markov Chains for Sequences of Interpretations

border

border

border

border

Alliance 1

Alliance 2

Alliance 3

Alliance 5

P 2

1081

895
1090

1090

1093

1084

1090

915

1081

1040

770

1077

955

1073

8041054

830

9421087

786

621

P 3

744

748
559

P 5

861

P 6

950

644

985

932

837
871

777

P 7

946

878

864 913

P 9

border

border

border

border

Alliance 1

Alliance 3

Alliance 5

P 2

918
1090

931

779

977

835

781

9581087

808

701

P 3

838

947

1026

1081

833

1002
987

827

994

663

P 5

1032

1026

1024

1049

905

926

P 6

986

712

985

920

877

807

P 7

895

959

P 10

824

border

border

border

border

Alliance 1

Alliance 3

Alliance 5

P 2

923
1090

941

784

983

844

786

9661087

815

711

P 3

864

986

842

1032

1083

868

712

1002
1000

858

996

696

P 5

1039

1037

1030

1053

826

933

P 6

985

807

P 7

894

963

P 10

829

781
828

border

border

border

border

Alliance 1
Alliance 3

Alliance 5

P 2

938
1090

949

785

987

849

789

9761087

821

724

P 3

888

863

868

1040

1083

896

667

1005
994

883

1002

742

P 5

1046

1046

1040

985

894

1058

879

938

921

807

P 6
P 7

P 10

830

782
829

border

border

border

border

Alliance 1

Alliance 3

P 2

948

951

786

990

856

795

980

828

730

P 3
898

803

860

964

1037

1085

925

689

1005
1007

899

1005

760

P 5

1051

1051

1040

860

774

1061

886

944

844

945

713

P 10

839

796
838

Figure 6.4: Travian game dynamics visualized as changes in the game graph (for t =
1, 2, 3, 4, 5). Bold arrows indicate conquest attacks by a player on a particular city.

ing, trading resources or giving advice to inexperienced players. Such alliances constitute
social networks for the players involved, where diplomacy is used to settle conflicts of
interests and players compete for an influential role in the alliance. In the following, we
will take a high-level view of the game and focus on modeling player interaction and co-
operation in alliances rather than low-level game elements such as resources, troops and
buildings. Figure 6.3 shows such a high-level view of a (partial) Travian game world,
represented as a graph structure relating cities, players and alliances which we will refer
to as a game graph. It shows that players in one alliance are typically concentrated in
one area of the map—traveling over the map takes time, and thus there is little interaction
between players far away from each other.

We are interested in the dynamic aspect of this world: as players are acting in the
game environment (for example, by conquering other players’ cities and joining or leav-
ing alliances), the game graph will continuously change, and thereby reflect changes in
the social network structure of the game. As an example for such transition dynamics,
consider the sequence of game graphs shown in Figure 6.4. Here, three players from the
red alliance launch a concerted attack against territory currently held by the yellow and
blue alliances, and partially conquer it.

From a machine learning perspective, domains such as Travian pose three main chal-
lenges: 1) world state descriptions are inherently relational, as the interaction between
(groups of) agents is of central interest, 2) the transition behavior of the world is strongly
stochastic, and 3) a relatively large number of objects and relations is needed to build
meaningful models, as the defining element of environments such as MMOGs are interac-
tions among large sets of agents. Thus, we need an approach that is both computationally
efficient and able to represent complex relational state descriptions and stochastic world
dynamics.

6.3 Experimental Evaluation 153

Data Collection and Preprocessing

The data used in the experiments was collected from a “live” Travian server with approx-
imately 25.000 active players. Over a period of three months (December 2007, January
2008, February 2008), high-level data about the current state of the game world was col-
lected once every 24 hours. This included information about all cities, players, and the
alliance structure in the game. For cities, their size and position on the map are avail-
able; for players, the list of cities they own; and for alliances the list of players currently
affiliated with that alliance. From all available data, we extracted 30 sequences of local
game world states. Each sequence involves a subset of 10 players, which are tracked over
a period of one month (10 sequences each for December, January and February). Player
sets are chosen such that there are no interactions between players in different sets, but a
high number of interactions between players within one set. Cities that did not take part
in any conquest event were removed from the data, leaving approximately 30–40 cities
under consideration for every player subset.

World Model

The game data was represented using predicates city(C,X, Y, S, P) (city C of size
S at coordinates X, Y held by player P), allied(P,A) (player P is a member of
alliance A), conq(P,C) (indicating a conquest attack of player P on city C) and
alliance change(P,A) (player P changes affiliation to alliance A). A predicate
distance(C1, C2, D) with D ∈ {near,medium, far} computing the (discretized) dis-
tance between cities was defined in the background knowledge. The final state descrip-
tions (game graphs) on average contain approximately 50 objects (nodes) at every step in
time, and relations between them. Sequences consists of between 29 and 31 such state
descriptions.

We defined a world model in CPT-L that expresses the probability for player actions
such as conquests of cities and changes in alliances affiliation, and updates the world
state accordingly. Player actions in Travian—although strongly stochastic—are typically
explainable from the social context of the game: different players from the same alliance
jointly attack a certain territory on the map, there are retaliation attacks at the alliance
level, or players leave alliances that have lost many cities in a short period of time. From
a causal perspective, actions are thus triggered by certain (relational) patterns that hold in
the game graph, which take into account a player’s alliance affiliation together with the
actions carried out by other alliance members. Such patterns can be naturally expressed
in CPT-L as bodies of rules which trigger actions encoded in the head of the rule. We
manually defined a number of simple rules capturing such typical game patterns. As an
example, consider the rules

conq(P,C) : 0.039 ∨ nil : 0.961 ←
conq(P,C ′), city(C ′, , , , P ′), city(C, , , , P ′)

conq(P,C) : 0.011 ∨ nil : 0.989 ←
city(C, , , , P ′′), allied(P,A), allied(P ′, A), conq(P ′, C ′), city(C ′, , , , P ′′)

154 Markov Chains for Sequences of Interpretations

The first rule encodes that a player is likely to conquest a city of a player he already
attacked in the previous time-step. The second rule generalizes this pattern: a player P is
likely to attack a city C of player P ′′ if an allied player has attacked P ′′ in the previous
time-step.

Moreover, the world state needs to be updated given the players’ actions. After a
conquest attack conq(P,C), the city C changes ownership to player P in the next time-
step. If several players execute conquest attacks against the same city in one time-step,
one of them is chosen as the new owner of the city with uniform probability (note that
such simultaneous conquest attacks would not be observed in the training data, as only
one snapshot of the world is taken every 24 hours). Similarly, an alliance change(P,A)
event changes the alliance affiliation of player P to alliance A in the next time-step.

Results in the Travian Domain

We consider the task of predicting the “conquest” action conq(P,C) based on a learned
generative model of world dynamics. The collected sequences of (local) game states were
split into one training set (sequences collected in December 2007) and two test sets (se-
quences collected in January 2008 and sequences collected in February 2008). Maximum-
likelihood parameters of a hand-crafted CPT-theory T as described above were learned
on the training set using EM. Afterwards, the learned model was used to predict the player
action conq(P,C) on the test data in the following way. Let S denote a test sequence with
states I0, ..., IT . For every t0 ∈ {0, ..., T − 1}, and every player p and city c occurring in
S, the learned model is used to compute the probability that the conquest event conq(p, c)
will be observed in the next world state, P (It0+1 |= conq(p, c) | T , I0, ..., It0). This
probability is obtained from the sampling-based prediction algorithm described in Sec-
tion 6.2. The prediction is compared to the known ground truth (whether the conquest
event occurred at that time in the game or not). Instead of predicting whether the player
action will be taken in the next step, we can also predict whether it will be taken within
the next k steps, by computing

P (It0+1 |= conq(p, c) ∨ ... ∨ It0+k |= conq(p, c) | T , I0, ..., It0).

This quantity is also easily obtained from the prediction algorithm for CPT-L. Figure 6.5,
left, shows ROC curves for this experiment with different values k ∈ {1, 2, 3, 4, 5}, eval-
uated on the first test set (January 2008). Figure 6.5, right, shows the corresponding AUC
values as a function of k for both test sets. The achieved area under the ROC curve is
substantially above 0.5 (random performance), indicating that the learned CPT-theory T
indeed captures some characteristics of player behavior and obtains a reasonable ranking
of player/city pairs (p/c) according to the probability that p will conquer c. Moreover,
the model is able to predict conquest actions several steps in the future, although AUC is
slightly lower for larger k. This indicates that uncertainty associated with predictions ac-
cumulates over time. Finally, predictions for the first test set (January 2008) are slightly
more accurate than for the second test set (February 2008). This is not surprising as

6.4 Related and Future Work 155

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tr
ue

 p
os

iti
ve

 r
at

e

false positive rate

CPT-L, k = 1
CPT-L, k = 2
CPT-L, k = 3
CPT-L, k = 4
CPT-L, k = 5

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 1 2 3 4 5

A
re

a
un

de
r

R
O

C
 c

ur
ve

Number of steps predicted (k)

January 2008
February 2008

Figure 6.5: Left figure: ROC curve for predicting that a city C will be conquered by a
player P within the next k time-steps, for k ∈ {1, 2, 3, 4, 5}. The model was trained
on 10 sequences of local game state descriptions from December 2007, and tested on 10
sequences from January 2008. Right figure: AUC as a function of the number k of future
time-steps considered in the same experiment. Additionally, AUC as a function of k is
shown for 10 test sequences from February 2008.

the model has been trained from sequences collected in December 2007, and indicates a
slight change in game dynamics over time. In summary, we conclude that player actions
in Travian are indeed to some degree predictable from the social context of the game, and
CPT-L is able to learn such patterns from the data. This indicates an affirmative answer
to Question (Q6.2).

Parameter learning for the CPT-L theory T on the training set takes approximately 30
minutes, and the model needed 5 iterations of EM to converge. Predicting the probability
of conq(p, c) for all player/city pairs and the next k time-steps starting from a particular
world state takes approximately 1 minute.

6.4 Related and Future Work
There are relatively few existing approaches that can probabilistically model sequences
of relational state descriptions. CPT-L can be positioned with respect to them as fol-
lows. First, statistical relational learning systems such as Markov Logic (Richardson
and Domingos, 2006), CP-logic (Vennekens et al., 2006), Probabilistic Relational Mod-
els (Getoor et al., 2001) or Bayesian Logic Programs (Kersting et al., 2006) can be used
in this setting by adding an extra time argument to predicates (then called fluents). How-
ever, inference and learning in these systems is computationally expensive: they support
very general models including hidden states, and are not optimized for sequential data. A
second class of techniques, for instance (Zettlemoyer et al., 2005), uses transition models
based on (stochastic) STRIPS rules. This somewhat limits the transitions that can be ex-
pressed, as only one rule “fires” at every point in time, and it is difficult to model several

156 Markov Chains for Sequences of Interpretations

processes that change the state of the world concurrently (such as an agent’s actions and
naturally occurring world changes). In contrast, such scenarios are naturally modeled in
CP-logic and thus CPT-L. Another approach designed to model sequences of relational
state descriptions are relational simple-transition models (Fern, 2005). In contrast to CPT-
L, they focus on domains where the process generating the data is hidden, and inferring
these hidden states from observations. This is a harder setting than the fully observable
setting discussed here, and typically only approximate inference is possible (Fern, 2005).

Finally, there is also the recent work on aligning sequences of interpretations by Kar-
wath et al. (2008). While alignments do not provide a generative model for such se-
quences, they can be used for tasks such as sequence classification, by comparing align-
ments to positive and negative training sequences.

CPT-L can be seen as the simplest extension of the Markov model framework to se-
quences of interpretations. The main direction for future work is to further evaluate the
trade-off between representational power and scaling behavior in the proposed frame-
work, and to explore how the model can be extended without sacrificing efficiency. One
possible extension concerns the modeling of hidden states, that is, facts in an interpreta-
tions that are not observable in the given training and test sequences. Another possible
extension would be to consider (logical) constraints on the interpretations that are allowed
to be sampled from the model. Note that such constraints, by rendering some interpre-
tations invalid, lead to the loss of probability mass. Thus, the model would have to be
accordingly normalized. We are currently exploring how this can be done efficiently, us-
ing similar dynamic programming approaches as those used for inference and learning in
CPT-L today.

Conclusions Part II

Part II of the thesis has discussed statistical models for sequences of logical atoms (in
Chapter 5) and complete logical interpretations (in Chapter 6). Compared to modeling
traditional sequences over a finite alphabet of fixed symbols, the relational setting is sig-
nificantly harder, as the number of possible sequence elements is exponential in the size
of the logical alphabet considered (or even infinite in the presence of functors). Conse-
quently, traditional approaches to sequence modeling cannot directly be applied in the
relational setting, as they would suffer from data sparseness and efficiency problems.

Relational modeling approaches control this complexity by relational abstraction and
possibly further restrictions on the probability distributions that can be represented. The
two approaches presented in Chapter 5 and Chapter 6 are based on the well-known Markov
model framework. Markov models employ two simplifying assumptions: that data is
fully observable and that the future is independent of the past given the present (Markov
assumption). These assumptions significantly reduce complexity compared to more ex-
pressive approaches such as hidden Markov models and dynamic Bayesian networks.

Specifically, Chapter 5 has introduced r-grams, which extend n-grams to the relational
case. n-grams extend traditional Markov models by mixing Markov chains of different
order. This increases expressivity compared to a simple first-order Markov chain, but
still allows n-grams to be applied to large-scale application domains (for instance, natural
language corpora with hundreds of thousands of words (Manning and Schütze, 1999)).
In r-grams, distributions can be smoothed both by lowering the order of the gram and
by relational generalization. Furthermore, relational generalization enables us to abstract
away from identifiers appearing in the data, further reducing model complexity.

Chapter 6 has introduced the CPT-L model for the more general setting of modeling
sequences of complete logical interpretations. CPT-L is again based on the Markov model
framework. However, in this more general setting, the Markov process transitions from
the interpretation at time t—a set of logical atoms—to a new interpretation at time t + 1.
To model such transitions between sets of atoms, CPT-L employs CP-logic, an expressive
probabilistic causal logic (Vennekens et al., 2006). However, by restricting CP-logic to
fully observable sequential data, the resulting inference and learning problems in CPT-
L are more tractable than for general CP-logic. We showed how these problems can be
solved efficiently using dynamic programming in data structures based on binary decision

157

158 Markov Chains for Sequences of Interpretations

diagrams.
To summarize, this part of the thesis has shown that modeling sequences of relational

data items is an interesting problem setting that is relevant in various application domains.
At the same time, the combinatorial explosion in possible sequence elements renders tra-
ditional, propositional techniques inapplicable. We have contributed two simple statistical
relational modeling techniques for relational sequences that deliberately restrict expres-
sivity compared to more general SRL modeling techniques, and thereby maintain compu-
tational efficiency. This efficiency is essential in many real-life application domains.

The approaches discussed in this part assume that training data is fully observable.
While this assumption makes inference and learning easier, it is not always realistic. An
interesting direction for future work is thus to extend the presented approaches towards
models for partially observable data.

Part III

Embedded SRL:
Application-Specific Approaches

159

Outline Part III

Statistical relational learning aims at creating general and expressive modeling frame-
works that are applicable in a wide variety of application domains. Such frameworks
are useful as they enable us to employ principled and well-developed systems quickly
in new application areas, without having to re-develop a new system for every new do-
main encountered. However, in most real-world applications we are only interested in
solving relatively specific inference and learning problems. This part of the thesis dis-
cusses “downgrading” general SRL techniques to an application-specific, more restricted
problem setting. The resulting systems will be less expressive and general than their
underlying formalism, but typically more efficient and effective at solving the particular
tasks encountered in the application domain.

The domains we consider are structured in a way that is not easy to capture using stan-
dard propositional modeling techniques. Even if this structure is not explicitly relational,
it is typically easy to model in a relational formalism. Statistical relational frameworks
can thus serve as a guideline and motivation for developing more application-specific
structured statistical models. We will refer to such models as embedded SRL, as they
embed more general SRL frameworks into specific application domains. Embedded SRL
can be seen as one way of improving efficiency at the cost of generality and expressivity.

Part III of the thesis discusses two such embedded SRL models, namely for the hap-
lotyping and activity recognition domains. Both models are based on the hidden Markov
model (HMM) framework discussed in Section 2.1.2. The structure of the models can be
represented using, for instance, logical hidden Markov models (LoHMMs), a framework
upgrading traditional HMMs to sequences of atoms (Kersting et al., 2006). However,
only a small part of the representational power of LoHMMs is needed in these applica-
tions, and it is thus easier to directly specify structured probabilistic models which are not
explicitly relational.

Chapter 7 discusses a structured probabilistic model for the haplotyping application.
Haplotyping is the task of inferring the phase in diploid genotype measurements, and
constitutes an important intermediate step in so-called gene mapping studies that seek
to uncover the genetic basis of complex diseases. We begin by defining the problem
of population-based haplotype reconstruction as a statistical inference task. Afterwards,
a basic structured HMM for haplotype reconstruction is introduced. Expressivity can

161

162

be increased by extension to a higher-order model, however, as for standard (hidden)
Markov models, this entails a combinatorial explosion in the number of parameters. We
introduce sparse higher-order models that only include evolutionarily preserved haplotype
fragments, which greatly reduces complexity. An application-specific structure learning
algorithm is presented to learn such sparse models. An empirical evaluation on artificial
and real haplotype data shows that the resulting haplotyping system is competitive with
state-of-the art approaches developed in the bioinformatics community.

Chapter 8 discusses a structured probabilistic model for the activity recognition prob-
lem. In the domain we consider, the goal is to infer the activity of a user from a stream
of RFID sensor observations indicating the sequence of objects a user has been inter-
acting with. The activities under consideration are hierarchically structured: an activity
consist of several substeps that are typically executed in a certain order. Moreover, users
typically interleave activities in time. We present a model which explicitly takes this do-
main structure into account. Specifically, we derive the simplest extension of the hidden
Markov model framework that takes into account several interleaved hidden processes—
the activities—which together generate the observable sequence. Unfortunately, exact
inference even in this simple extension is NP-hard. We develop a problem-specific ap-
proximate inference algorithm that is tractable and yields near-optimal results in the do-
main under consideration. Empirical results show that the resulting activity recognition
system is superior to a standard (unstructured) hidden Markov model approach.

Chapter 7

A Structured Hidden Markov
Model for Haplotype Analysis∗

This chapter is concerned with the problem of haplotype reconstruction. Haplotype re-
construction is an important intermediate step in gene association studies, and collect-
ing and analyzing haplotype data has received much attention recently (The International
HapMap Consortium, 2005). We propose a structured probabilistic model for haplotype
reconstruction based on the hidden Markov model framework (see Section 2.1.2), and
introduce a domain-specific structure learning algorithm to identify conserved haplotype
fragments in the population under consideration.

The data encountered in haplotype analysis consists of sequences of pairs. Such se-
quences are not easily represented using a propositional alphabet of flat symbols, as this
would conceal the underlying inner structure in a pair. However, sequences of pairs are
easily represented as sequences of logical atoms, and thus haplotyping is subsumed by
the setting of learning from sequences of logical atoms. In this sense, haplotyping can
be seen as an (extremely restricted) instance of sequential statistical relational learning.
The model we present in this chapter will not be explicitly relational, but rather tailored
to the setting of modeling sequences of pairs. However, it is a special case of a logical
hidden Markov model (LoHMM), a general sequential SRL framework extending HMMs
to sequences of logical atoms (Kersting et al., 2006). While standard LoHMMs could be
applied to haplotyping directly, the domain-specific model we develop in this chapter can
be implemented more efficiently. Moreover, we present a domain-specific structure learn-
ing algorithm for our model, as the general-purpose LoHMM structure learner is clearly
not applicable.

The chapter is organized as follows. We begin with an introduction to haplotyping and
some relevant biological background. Section 7.2 describes our domain-specific model

∗This chapter builds on (Landwehr et al., 2006a, 2007a; Landwehr and Mielikäinen, 2008).

163

164 A Structured Hidden Markov Model for Haplotype Analysis

for the haplotyping problem. Section 7.3 discusses structure learning in the proposed
framework. Finally, an empirical evaluation of the proposed method on real-world haplo-
type data is presented in Section 7.4.

7.1 Population-based Haplotype Reconstruction

Analysis of genetic variation in human populations is critical to the understanding of
the genetic basis for complex diseases. Most studied differences in DNA are single-
nucleotide variations at particular positions in the genome, which are called single nu-
cleotide polymorphisms (SNPs). The positions are also called markers and the different
possible values alleles. A haplotype is a sequence of SNP alleles along a region of a chro-
mosome, and concisely represents the (variable) genetic information in that region. In
the search for DNA sequence variants that are related to common diseases (so-called gene
mapping studies), haplotype-based approaches have become a central theme (The Interna-
tional HapMap Consortium, 2005). This is because knowledge of the haplotype structure
allows the selection of relatively few “tag” SNPs to distinguish sequence variants, which
can improve efficiency of genome-wide association studies.

In diploid organisms such as humans there are two homologous (almost identical)
copies of each chromosome, namely the maternal and the paternal chromosome. Ac-
cordingly, there are two haplotypes. As it does not matter whether a haplotype has been
inherited from the mother or the father, the haplotype information for an individual is
an unordered pair. Current practical laboratory measurement techniques produce a geno-
type—for m markers, a sequence of m unordered pairs of alleles. The genotype reveals
which two alleles are present at each marker, but not their respective chromosomal ori-
gin. In order to obtain haplotypes from genotype data, the hidden order of the two alleles
needs to be reconstructed. This hidden order is also called the phase information. That
is, we need to obtain an unordered pair of sequences (the haplotypes) from a sequence of
unordered pairs (the genotypes) by assigning alleles to the respective haplotype.

More formally, a haplotype h is a sequence of alleles in markers i = 1, . . . ,m, and
will be denoted by h = h[1], ..., h[m]. In most cases, only two alternative alleles occur
at an SNP marker, so we can assume that h ∈ {0, 1}m. A genotype g is a sequence
of unordered pairs g[i] = {h1

g[i], h
2
g[i]} of alleles in markers i = 1, . . . ,m. Hence,

g ∈ {{0, 0}, {1, 1}, {0, 1}}m where we represent unordered pairs as multisets. A marker
with alleles {0, 0} or {1, 1} is homozygous whereas a marker with alleles {0, 1} is het-
erozygous.

Example 7.1.1. Consider the genotype information depicted below (left part of figure).
There are five SNP markers, each with two possible alleles 0, 1. Markers two and four
are measured as homozygous, the other markers as heterozygous. Note that the genotype
information is a sequence of unordered pairs of alleles. There are four possible pairs of
haplotypes corresponding to this genotype observation (right part of figure).

7.1 Population-based Haplotype Reconstruction 165

{ , }
{ , }
{ , }

Genotype Measurement

SNP 1

SNP 2

SNP 3

0 1
0 0

1

1
{ , }SNP 4 1
{ , }SNP 5 1

0

0

0 1

0 0

0

1

0

1

1

1

0 1

0 0

0

1

0

1

1

1

0 1

0 0

0

1

0

1

1

1

0 1

0 0

0

1

0

1

1

1

Possible Haplotype Pairs

maternal haplotype paternal haplotype

Note that it is not directly observable which of these is the true underlying haplotype pair
for the given genotype observation. The problem of haplotype reconstruction is concerned
with finding this true haplotype pair for a given genotype.

There are two alternative approaches for obtaining haplotype pairs from genotypes.
If family trios are available (that is, genotype measurements from each individual and
its two parents), most of the ambiguity in the phase can be resolved analytically. If no
family trio information is available, population-based computational methods have to be
used to estimate the haplotype pair for each genotype. They basically try to infer the
most likely haplotype pairs based on statistical models of the haplotypes in a population.
Because trios are more difficult to recruit and more expensive to genotype, population-
based approaches are often the only cost-effective method for large-scale studies. Con-
sequently, the study of such techniques has received much attention (see Salem et al.,
2005; Halldórsson et al., 2004, for comprehensive literature reviews on population-based
haplotyping approaches).

Given only one genotype observation, there is in general no argument for preferring
any of the 2m′−1 possible haplotype pairs as the “most likely” one (where m′ is the
number of heterozygous markers). However, if a set of genotype observations for different
individuals in a population is given, it is possible to indirectly identify “likely” haplotypes
in the population from the genotype observations and use this information to solve the
haplotype reconstruction problem. Formally, this problem can be defined as follows:

Problem 7.1.1 (Population-based Haplotype Reconstruction).

Given

• a set of SNP markers {M1, ...,Mm};

• a multiset G of genotypes in markers M1, ...,Mm;

Find a mapping H∗ : G → {0, 1}m × {0, 1}m associating each g ∈ G with a pair

166 A Structured Hidden Markov Model for Haplotype Analysis

〈
h1

g, h
2
g

〉
of haplotypes such that

H∗ = arg max
H consistent

P (H | G)

= arg max
H consistent

∏
g∈G

P (
〈
h1

g, h
2
g

〉
| G)

where a reconstructionH is consistent iff

∀g ∈ G,∀i = 1, . . . ,m : g[i] = {h1
g[i], h

2
g[i]}

and we have assumed that genotypes are sampled independently from identical distribu-
tions. It is also usually assumed that the sample G is in Hardy-Weinberg equilibrium,
meaning that

P (
〈
h1

g, h
2
g

〉
| G) = P (h1

g | G)P (h2
g | G)

for a distribution P (h | G) over haplotypes.

The key to haplotype reconstruction is thus to accurately estimate the distribution
P (H | G) over haplotypes h, given the available genotype information G. This can be
achieved as follows. We will define a structured probabilistic model λ for the distribution
P (G, H1

g ,H2
g) over genotype observations g and underlying haplotypes h1

g, h
2
g that ex-

plicitly takes into account the domain structure given by haplotype-genotype consistency
and the assumption of Hardy-Weinberg equilibrium. Note that only the genotype g will
be observable, while the corresponding haplotype pair h1

g, h
2
g is hidden. The model λ

can be learned from the available genotype observations G. Afterwards, the haplotype
reconstruction

〈
h1

g, h
2
g

〉
of a genotype g ∈ G can be obtained by a hidden state inference:〈
h1

g, h
2
g

〉
= arg max

〈h1,h2〉
Pλ(h1, h2 | g)

= arg max
〈h1,h2〉

Pλ(g, h1, h2)∑
h̄1,h̄2 Pλ(h̄1, h̄2, g)

(7.1)

where Pλ is the probability estimate given by the learned λ (that is, based on G).
The genetic variation in SNPs is mostly due to two causes: mutation and recombi-

nation. Mutations are relatively rare, they occur with a frequency of about 10−8. While
SNPs are themselves results of ancient mutations, mutations are usually ignored in sta-
tistical haplotype models due to their rarity. Recombination introduces variability by
breaking up the chromosomes of the two parents and reconnecting the resulting segments
to form a new and different chromosome for the offspring. Because the probability of a
recombination event between two markers is lower if they are near to each other, there
is a statistical correlation (so-called linkage disequilibrium) between markers which de-
creases with increasing marker distance. Statistical approaches to haplotype modeling are
based on exploiting such patterns of correlation.

7.2 A Basic Model for Haplotype Reconstruction 167

H[1] H[2] H[3] H[4] H[5]

Figure 7.1: A left-to-right Markov model over haplotypes (for m = 5). Random variables
H[i] represent the allele at marker i ∈ {1, ...,m}.

7.2 A Basic Model for Haplotype Reconstruction

We first discuss modeling the probability distribution over haplotypes, that is, we define
a model µ for a distribution P (H). This will later be extended to a model λ for the
joint distribution over haplotypes and genotypes, that is, for P (G, H1

g ,H2
g). Motivated

by the observation that linkage disequilibrium is stronger between markers that are close
together, we model the distribution over haplotypes by a left-to-right Markov model. It
defines a chain of random variables H[1], ...,H[m], where a random variable H[i] repre-
sents the allele h[i] ∈ {0, 1} at marker i ∈ {1, ...,m}1. The defined distribution is

Pµ(H) = Pµ(H[1], ...,H[m])

= Pµ(H[1])
m∏

i=2

Pµ(H[i] | H[i− 1])

where the distributions Pµ(H[1]) and Pµ(H[i] | H[i − 1]) will be estimated from data.
The model is depicted in Figure 7.1 (for m = 5) in standard graphical model notation,
confer Section 2.1.1. At this point, an important distinction needs to made compared to
the definition of a stationary Markov process made in Chapter 2 (Def. 2.1.5). Stationary
Markov processes model the development of a process over time, and we can naturally
assume that transition probabilities do not depend on the current time step, so P (Xt+1 |
Xt) = P (Xt+i+1 | Xt+i). In haplotyping, this assumption is not appropriate, because
patterns of linkage disequilibrium will be different for different marker positions. Thus,
P (h[t] | h[t− 1]) 6= P (h[t + i] | h[t + i− 1]) in general.

The model µ is not directly applicable in haplotype reconstruction, because in real-
ity only genotypes are observed whereas the phase information is hidden. We propose
the following structured probabilistic model for P (G, H1

g ,H2
g), taking into account the

relationship between haplotypes and genotypes and the assumption of Hardy-Weinberg
equilibrium. The model (depicted in Figure 7.2 for m = 5) consists of three chains of vari-
ables. The chain H1

g [1], ...,H1
g [m] represents the allele values along h1

g , H2
g [1], ...,H2

g [m]
represents the allele values along h2

g , and G[1], ..., G[m] represents the unordered allele
pairs corresponding to the genotype observations. Note that for the corresponding values
h1

g[i], h
2
g[i] ∈ {0, 1}, while g[i] ∈ {{0, 0}, {0, 1}, {1, 1}} is a multiset corresponding to

1as in Section 2.1, we use upper-case letters to denote random variables and lower-case letter to denote their
values.

168 A Structured Hidden Markov Model for Haplotype Analysis

H
1

g [1] H
1

g [2] H
1

g [3] H
1

g [4] H
1

g [5]

H
2

g [5]H
2

g [4]H
2

g [3]H
2

g [2]H
2

g [1]

G[1] G[2] G[3] G[4] G[5]

Figure 7.2: A structured probabilistic model over haplotypes and genotypes.

an unordered pair. The defined distribution is

Pλ(G, H1
g ,H2

g) = Pλ(G[1], ..., G[m],H1
g [1], ...,H1

g [m],H2
g [1], ...,H2

g [m])

= Pλ(H1
g [1])Pλ(H2

g [1])Pλ(G[1] | H1
g [1],H2

g [1])
m∏

i=2

Pλ(H1
g [i] | H1

g [i− 1])Pλ(H2
g [i] | H2

g [i− 1])Pλ(G[i] | H1
g [i],H2

g [i]).

We now discuss how the domain structure is incorporated into the proposed model.
First, the genotype observation—an unordered pair of the form {0, 0},{0, 1}, or {1, 1}—
is a deterministic function of the two haplotype alleles:

P (g[i] | h1
g[i], h

2
g[i]) =

{
1 : g[i] = {h1

g[1], h2
g[1]}

0 : otherwise. (7.2)

Thus, the distribution Pλ(G[i] | H1
g [i],H2

g [i]) is fixed to the deterministic function given
by Equation (7.2). Furthermore, we need to account for the Hardy-Weinberg equilibrium
assumption. This means that h1

g , h2
g are sampled independently from one distribution

P (H) over haplotypes. In fact, this distribution is naturally given by the model µ outlined
above. Thus, we define

Pλ(h1
g[1]) = Pλ(h2

g[1]) = Pµ(h[1]) (7.3)

and
Pλ(h1

g[i] | h1
g[i− 1]) = Pλ(h2

g[i] | h2
g[i− 1]) = Pµ(h[i] | h[i− 1]) (7.4)

for i ∈ {2, ...,m}. In other words, parameters for the chains H1
g [1], ...,H1

g [m] and
H2

g [1], ...,H2
g [m] are enforced to be identical (“parameter tying”). To summarize, all pa-

rameters of λ have been re-expressed as parameters of the model µ on haplotypes outlined
above.

7.2 A Basic Model for Haplotype Reconstruction 169

Note that the model depicted in Figure 7.2 can be seen as a structured extension of
the hidden Markov model framework discussed in Section 2.1.2: haplotypes correspond
to hidden states and genotypes to observations. The model is also closely related to the
factorial hidden Markov model (fHMM) introduced by Ghahramani and Jordan (1997).
The differences are that 1) transition distributions in our model are tied for the two chains
representing the haplotypes, while in fHMMs chains have independent transition distri-
butions; 2) parameters in an fHMM are tied over time (stationarity); and 3) in our model
the distribution P (G[i] | H1

g [i],H2
g [i]) takes the special form given by Equation (7.2).

Let us now return to the haplotype reconstruction problem (Problem 7.1.1). As out-
lined above, the task is to first estimate the probability distribution P (H | G) over hap-
lotypes given the available genotype information, and then use this information to find
the most likely haplotype pair for each genotype in G. These two steps are now straight-
forward to implement. First, λ can be trained directly from the genotype observations
G using the EM algorithm (Dempster et al., 1977). In fact, the resulting algorithm is a
straightforward extension of the well-known forward-backward algorithm implementing
EM in hidden Markov models (Rabiner, 1989). By training λ, we (implicitly) estimate
the distribution P (H) over haplotypes. Second, once λ is trained, finding the most likely
haplotype pair for a given genotype corresponds to solving the hidden state inference
problem given by Equation (7.1). In the proposed model this problem is naturally solved
by an extension of the Viterbi algorithm used for computing the most likely hidden state
sequence in HMMs (Rabiner, 1989). Note that the consistency constraint is automatically
enforced in λ, as inconsistent combinations of haplotype and genotype observations have
probability zero according to Equation (7.2).

7.2.1 Logical Hidden Markov Model Representation
Logical hidden Markov models (LoHMMs) upgrade traditional hidden Markov models
to deal with sequences of logical atoms (Kersting et al., 2006). The key idea under-
lying LoHMMs is to employ logical atoms as structured (output and state) symbols.
More specifically, LoHMMs define abstract states such as s(A,B) where s is the state
name and A,B are logical variables. An abstract state represents a set of ground states,
namely all ground states logically subsumed by the abstract state. For instance, s(1, 0)
is a possible ground state for the abstract state s(A,B). Abstract transitions such as
s(X, Y) → s′(1, Y) describe how the model transitions between abstract states, and
variable unification is used to share information between different states and observa-
tions. Variants of the Expectation-Maximization and Viterbi algorithms used with stan-
dard HMMs can be derived for learning and inference in LoHMMs.

LoHMMs are a powerful and general representation formalism for statistical rela-
tional sequence models. In fact, the model outlined in the previous section was derived as
a special case of a LoHMM model we had designed for the problem initially. Basically,
we used LoHMMs as a rapid prototyping language to experiment with several different
model architectures. After an effective representation was found in LoHMMs, we trans-
lated this representations to the propositional model outlined above. In the propositional

170 A Structured Hidden Markov Model for Haplotype Analysis

model, inference and learning algorithms can be designed to be much more efficient. As
an illustration, and to emphasize the relationship of this work to more general SRL frame-
works, we now briefly outline the original LoHMM model for haplotyping.

First, note that genotypes are easily encoded as sequences of logical atoms by a pred-
icate pair(X, Y), which can be grounded to pair(0, 0) (homozygous 0), pair(1, 1) (ho-
mozygous 1), and pair(0, 1) (heterozygous). Using logical variables and unification, the
two individual alleles in the pair can be accessed. Second, the two (ordered) haplotype
alleles underlying the pair can be represented by an internal hidden state st(H1,H2) for
t ∈ {1, ...,m}. The mapping from a hidden state st(H1,H2) to a genotype observation
pair(X, Y) (given by Equation 7.2 in our model) is easily defined using logical unifica-
tion: the model outputs pair(X, X) if the current state is subsumed by the abstract state
s(X, X), and pair(0, 1) otherwise. Finally, the assumption of Hardy-Weinberg equilib-
rium requires that a new state st+1(H ′

1,H
′
2) is sampled from the current state st(H1,H2)

by independently sampling H ′
1 and H ′

2 from the same distribution (based on the respec-
tive current state). This sampling process can be implemented by a “sampling” state that
is traversed twice, where the variable to be re-sampled is first bound to H1 and afterwards
to H2.

Although conceptually simple, the full specification of the LoHMM model is some-
what involved and beyond the scope of this chapter. It is included in Appendix A.1 for the
interested reader. Applying the standard EM and Viterbi algorithm for LoHMMs in this
model coincides with EM and Viterbi in the propositional model depicted in Figure 7.2.
However, initial experiments using the standard XANTHOS engine for LoHMMs2 showed
that the computational overhead due to the general-purpose framework used in LoHMMs
reduced the computational efficiency of the model significantly: the domain-specific
propositional model is several orders of magnitude more efficient.

7.3 Haplotype Structure Learning

The main limitation of the model presented so far is that it only takes into account depen-
dencies between adjacent markers. Expressivity of the model can be increased by taking
into account higher-order marker dependencies. However, this leads to an explosion in
the number of parameters. We thus propose to learn a sparse high-order model structure
that takes long-range marker dependencies into account, but prunes the model to only
represent haplotype fragments that are frequent in the population under consideration.

7.3.1 Higher-order Models and Sparse Distributions
Expressivity of Markov-chain based haplotype models can be increased by using a Markov
model of order k > 1 for the underlying haplotype distribution (Eronen et al., 2004). Re-
call that the model λ is characterized by a distribution Pλ(H) = Pµ(H) over haplotypes,

2http://people.csail.mit.edu/kersting/profile/

7.3 Haplotype Structure Learning 171

as given by Equation (7.3) and Equation (7.4). This distribution can be generalized to a
k-order Markov chain by

Pλ(H) =
m∏

t=1

Pλ(H[t] | H[t− 1], ...,H[t− k]),

where H[t− 1], ...,H[t− k] is a shorthand for H[t− 1], ...,H[max{1, t− k}]. Unfortu-
nately, the number of parameters in such a model increases exponentially with the history
length k. Fortunately, observations on real-world data (as in Daly et al., 2001) show that
only few conserved haplotype fragments from the set of 2k possible binary strings of
length k actually occur. This can be exploited by modeling sparse distributions, where
fragment probabilities which are estimated to be very low are set to zero. More precisely,
let p = Pλ(h[t] | h[t− 1], ..., h[t− k]) and define for some small ε > 0 new probabilities

P̂λ(h[t] | h[t− 1], ..., h[t− k]) =

 0 if p ≤ ε;
1 if p > 1− ε;
p otherwise

corresponding to a regularized model.
This defines a sparse distribution, which can be represented using fewer parameters.

In the regularized distribution, it holds that P (h[i] | h[t − 1], ..., h[t − k]) = 1 for
some histories h[t − 1], ..., h[t − k]. This case represents that the only way of extend-
ing h[t− k], ..., h[t− 1] as a haplotype fragment is by h[i]. One can usually assume that
the number of haplotype fragments of length k actually appearing in a population is rela-
tively small, at least compared to the exponential number sk of binary strings of length k.
If the cut-off value ε is chosen correctly, the regularized distribution will thus be orders
of magnitude more compact than the full distribution which involves O(2k) parameters.
Note that to capture long-range dependencies, we are interested in models with relatively
large k (k = 30 was used in our experiments). The corresponding sparse Markov model,
in which transitions with probability 0 are removed, will reflect the pattern of conserved
haplotype fragments present in the population. The learning and inference algorithms
discussed in the previous section can be adapted to directly work on this sparse structure,
greatly reducing computational complexity. How such a sparse model structure can be
learned without ever constructing the prohibitively complex distribution non-regularized
distribution P will be discussed in the next section.

7.3.2 SPAMM: A Level-wise Structure Learning Algorithm
To construct the sparse order-k model structure, we propose a learning algorithm—called
SPAMM for Sparse Markov Modeling—that iteratively refines structured models λ of
increasing order (Algorithm 5). More specifically, the idea of SPAMM is to identify
conserved fragments using a level-wise search, that is, by extending short fragments (in
low-order models) to longer ones (in high-order models), and is inspired by the well-
known Apriori data mining algorithm (Agrawal et al., 1996). The algorithm starts with a

172 A Structured Hidden Markov Model for Haplotype Analysis

Algorithm 5 The level-wise SPAMM learning algorithm.
Initialize k := 1
λ1 := INITIAL-MODEL()
λ1 := EM-TRAINING(λ1)
repeat

k := k + 1
λk := EXTEND-AND-REGULARIZE(λk−1)
λk := EM-TRAINING(λk)

until k = kmax

Figure 7.3: Visualization of the SPAMM Structure Learning Algorithm. Sparse models
λ1, ..., λ4 of increasing order learned on the Daly dataset are shown. Black/white nodes
encode more frequent/less frequent allele in population. Conserved fragments identified
in λ4 are highlighted.

first-order Markov model λ1 where initial parameters are set to Ṗλ1(h[t] | h[t−1]) = 0.5
for all t ∈ {1, ...,m}, h[t], h[t − 1] ∈ {0, 1}. The model λ1 is then trained from the
available genotype data (method EM-TRAINING(λ1) in Algorithm 5).

The function EXTEND-AND-REGULARIZE(λk−1) takes as input a model of order k−1
and returns a model λk of order k. In λk, initial transition probabilities are set to

Ṗλk+1(h[t] | h[t− k, t− 1]) =

 0 if Pλk
(h[t] | h[t− k + 1, t− 1]) ≤ ε;

1 if Pλk
(h[t] | h[t− k + 1, t− 1]) > 1− ε;

0.5 otherwise.

Thus, transitions are removed if the probability of the transition conditioned on a shorter
history is smaller than ε. This procedure of iteratively training, extending and regularizing
Markov models of increasing order is repeated up to a maximum order kmax.

Figure 7.3 visualizes the sparse model structure learned in the first 4 iterations of the
SPAMM algorithm on a real-world dataset. The set of all haplotypes that have positive

7.4 Experimental Evaluation 173

probability according to the model is given by all paths from left to right through the graph
structure. Note that in the initial model λ1 all 2m haplotypes are possible. For the later
models many transitions are pruned, conserved fragments are isolated and the number of
states in the final model is significantly smaller than for a full model of that order.

After the models of increasing order have been trained, they can be used to solve
the actual haplotype reconstruction problem. For a given genotype g, a reconstructed
haplotype pair 〈h1

g, h
2
g〉k can be obtained from every model λk. At the same time, the

Viterbi algorithm computes Pλk
(〈h1

g, h
2
g〉k | g), an estimate of the confidence of the

reconstruction. In SPAMM, the reconstruction 〈h1
g, h

2
g〉k∗ with the highest confidence is

returned as the final solution:

k∗ = arg max
k∈{1,...,kmax}

Pλk
(〈h1

g, h
2
g〉k | g).

7.4 Experimental Evaluation

The proposed method was implemented in the SPAMM haplotyping system3. This section
evaluates SPAMM by comparing it against well-established haplotyping systems devel-
oped in the bioinformatics community in term of effectiveness and efficiency. Specifically,
the experimental evaluation will address the following questions:

(Q7.1) Is SPAMM competitive with other haplotyping systems in terms of reconstruction
accuracy?

(Q7.2) Is SPAMM competitive for the related task of reconstructing masked genotypes?

(Q7.3) Does SPAMM scale well to long marker maps?

The following other state-of-the art haplotype reconstruction systems were in-
cluded in the experimental study: PHASE version 2.1.1 (Stephens and Scheet, 2005),
FASTPHASE version 1.1 (Scheet and Stephens, 2006), GERBIL as included in GEVALT
version 1.0 (Kimmel and Shamir, 2005), HIT (Rastas et al., 2005) and HaploRec (variable
order Markov model) version 2.0 (Eronen et al., 2006). All methods were run using their
default parameters. Default parameters for SPAMM are ε = 0.1 and kmax = 30. The
FASTPHASE system, which also employs EM for learning a probabilistic model, uses
a strategy of averaging results over several random restarts of EM from different initial
parameter values. This reduces the variance component of the reconstruction error and
alleviates the problem of local minima in EM search. As this is a general technique appli-
cable also to our method, we list results for FASTPHASE with averaging (FASTPHASE)
and without averaging (FASTPHASE-NA).

The methods were compared using publicly available real-world datasets, and larger
datasets simulated with the Hudson coalescence simulator (Hudson, 2002). As real-world

3Implementation available from http://www.cs.kuleuven.be/∼niels/haplotyping.html

174 A Structured Hidden Markov Model for Haplotype Analysis

Table 7.1: Reconstruction Accuracy on Yoruba and Daly Data. Normalized switch error
is shown for the Daly dataset, and average normalized switch error over the 100 datasets
in the Yoruba-20, Yoruba-100 and Yoruba-500 dataset collections.

Method Yoruba-20 Yoruba-100 Yoruba-500 Daly
PHASE 0.027 0.025 n.a. 0.038
FASTPHASE 0.033 0.031 0.034 0.027
SpaMM 0.034 0.037 0.040 0.033
HAPLOREC 0.036 0.038 0.046 0.034
FASTPHASE-NA 0.041 0.060 0.069 0.045
HIT 0.042 0.050 0.055 0.031
GERBIL 0.044 0.051 n.a 0.034

data, we used a collection of datasets from the Yoruba population in Ibadan, Nigeria (The
International HapMap Consortium, 2005), and the well-known dataset of Daly et al (Daly
et al., 2001), which contains data from a European-derived population. For these datasets,
family trios are available, and thus true haplotypes can be inferred analytically.

For the Yoruba population, we sampled 100 sets of 500 markers each from distinct
regions on chromosome 1 (Yoruba-500), and from these smaller datasets by taking only
the first 20 (Yoruba-20) or 100 (Yoruba-100) markers for every individual. There are 60
individuals in the dataset after preprocessing, with an average fraction of missing values
of 3.6%. For the Daly dataset, there is information on 103 markers and 174 individu-
als available after data preprocessing, and the average fraction of missing values is 8%.
The number of genotyped individuals in these real-world datasets is rather small. For
most disease association studies, sample sizes of at least several hundred individuals are
needed(Wang et al., 2005), and we are ultimately interested in haplotyping such larger
datasets. Unfortunately, we are not aware of any publicly available real-world datasets of
this size, so we have to resort to simulated data. We used the well-known Hudson coa-
lescence simulator (Hudson, 2002) to generate 50 artificial datasets, each containing 800
individuals (Hudson datasets). The simulator uses the standard Wright-Fisher neutral
model of genetic variation with recombination. To come as close to the characteristics of
real-world data as possible, some alleles were masked (marked as missing) after simula-
tion.

The accuracy of the reconstructed haplotypes produced by the different methods was
measured by normalized switch error. The switch error of a reconstruction is the mini-
mum number of recombinations needed to transform the reconstructed haplotype pair into
the true haplotype pair. To normalize, switch errors are summed over all individuals in
the dataset and divided by the total number of switch errors that could have been made.
For more details on the methodology of the experimental study, confer (Landwehr et al.,
2007a).

7.4 Experimental Evaluation 175

 1

 10

 100

 1000

 10000

 100000

 400 200 100 50 25

R
un

tim
e

(s
ec

on
ds

)

Number of Markers

SpaMM
fastPHASE

fastPHASE-NA
PHASE

Gerbil
HaploRec

HIT

Figure 7.4: Runtime as a Function of the Number of Markers. Average runtime per dataset
on Yoruba datasets for marker maps of length 25 to 500 for SPAMM, FASTPHASE,
FASTPHASE-NA, PHASE, GERBIL, HAPLOREC, and HIT are shown (logarithmic
scale). Results are averaged over 10 out of the 100 datasets in the Yoruba collection.

Table 7.1 shows the normalized switch error for all methods on the real-world datasets
Yoruba and Daly. For the dataset collections Yoruba-20, Yoruba-100 and Yoruba-500
errors are averaged over the 100 datasets. PHASE and GERBIL did not complete on
Yoruba-500 in two weeks4. Overall, the PHASE system achieves highest reconstruction
accuracies. After PHASE, FASTPHASE with averaging is most accurate, then SPAMM,
and then HAPLOREC. Figure 7.4 shows the average runtime of the methods for marker
maps of different lengths. The most accurate method PHASE is also clearly the slow-
est. FASTPHASE and SPAMM are substantially faster, and HAPLOREC and HIT very
fast. GERBIL is fast for small marker maps but slow for larger ones. For FASTPHASE,
FASTPHASE-NA, HAPLOREC, SPAMM and HIT, computational costs scale linearly
with the length of the marker map, while the increase is superlinear for PHASE and
GERBIL, so computational costs quickly become prohibitive for longer maps.

4All experiments were run on standard PC hardware with a 3.2GHz processor and 2GB of main memory.

176 A Structured Hidden Markov Model for Haplotype Analysis

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 800 400 200 100 50

N
or

m
al

iz
ed

 S
w

itc
h

E
rr

or

Number of Individuals

SpaMM
fastPHASE

PHASE
HaploRec

Figure 7.5: Reconstruction Accuracy as a Function of the Number of Samples Available.
Average normalized switch error on the Hudson datasets as a function of the number of
individuals for SPAMM, FASTPHASE, PHASE and HAPLOREC is shown. Results are
averaged over 50 datasets.

Performance of the systems on larger datasets with up to 800 individuals was evalu-
ated on the 50 simulated Hudson datasets. As for the real-world data, the most accurate
methods were PHASE, FASTPHASE, SPAMM and HAPLOREC. Figure 7.5 shows the
normalized switch error of these four methods as a function of the number of individu-
als (results of GERBIL, FASTPHASE-NA, and HIT were significantly worse and are not
shown). PHASE was the most accurate method also in this setting, but the relative ac-
curacy of the other three systems depended on the number of individuals in the datasets.
While for relatively small numbers of individuals (50–100) FASTPHASE outperforms
SPAMM and HAPLOREC, this is reversed for 200 or more individuals. We can conclude
that SPAMM yields a competitive trade-off of reconstruction accuracy and computational
efficiency on the datasets under consideration, and scales well to long marker maps. This
indicates an affirmative answer to questions (Q7.1) and (Q7.3).

A problem closely related to haplotype reconstruction is that of genotype imputation.
Here, the task is to infer the most likely genotype values (unordered allele pairs) at marker

7.4 Experimental Evaluation 177

Table 7.2: Average Error for Reconstructing Masked Genotypes on Yoruba-100. From
10% to 40% of all genotypes were masked randomly. Results are averaged over 100
datasets.

Method 10% 20% 30% 40%
FASTPHASE 0.045 0.052 0.062 0.075
SpaMM 0.058 0.066 0.078 0.096
FASTPHASE-NA 0.067 0.075 0.089 0.126
HIT 0.070 0.079 0.087 0.098
GERBIL 0.073 0.091 0.110 0.136

Table 7.3: Average Error for Reconstructing Masked Genotypes on Hudson. From 10%
to 40% of all genotypes were masked randomly. Results are averaged over 50 datasets.

Method 10% 20% 30% 40%
FASTPHASE 0.035 0.041 0.051 0.063
SpaMM 0.017 0.023 0.034 0.052
FASTPHASE-NA 0.056 0.062 0.074 0.087
HIT 0.081 0.093 0.108 0.127
GERBIL 0.102 0.122 0.148 0.169

positions where genotype information is missing, based on the observed genotype infor-
mation. With the exception of HAPLOREC, all haplotyping systems included in this study
can also impute missing genotypes. To test imputation accuracy, between 10% and 40%
of all markers were masked randomly, and then the marker values inferred by the sys-
tems were compared to the known true marker values. Table 7.2 shows the accuracy of
inferred genotypes for different fractions of masked data on the Yoruba-100 datasets and
Table 7.3 on the simulated Hudson datasets with 400 individuals per dataset. PHASE
was too slow to run in this task as its runtime increases significantly in the presence of
many missing markers. Evidence from the literature (Scheet and Stephens, 2006) sug-
gests that for this task, FASTPHASE outperforms PHASE and is indeed the best method
available. In our experiments, on Yoruba-100 FASTPHASE is most accurate, SPAMM
is slightly less accurate than FASTPHASE, but more accurate than any other method (in-
cluding FASTPHASE-NA). On the larger Hudson datasets, SPAMM is significantly more
accurate than any other method. This answer Question (Q7.2) affirmatively.

To summarize, our experimental results confirm PHASE as the most accurate but also
computationally most expensive haplotype reconstruction system (Scheet and Stephens,
2006; Stephens and Scheet, 2005). If more computational efficiency is required, FAST-
PHASE yields the most accurate reconstructions on small datasets, and SPAMM is prefer-
able for larger datasets. SPAMM also infers missing genotype values with high accuracy.
For small datasets, it is second only to FASTPHASE; for large datasets, it is substantially
more accurate than any other method in our experiments.

178 A Structured Hidden Markov Model for Haplotype Analysis

7.5 Related and Future Work
The proposed haplotyping method is related to a number of other haplotype reconstruc-
tion approaches, most notably HAPLOREC (Eronen et al., 2004), HIT (Rastas et al.,
2005), and FASTPHASE (Scheet and Stephens, 2006). HIT also determines conserved
fragments of haplotypes, and HIT and FASTPHASE use similar probabilistic modeling,
parameter learning, and haplotype inference strategies.

Specifically, the idea of embedding a model on haplotypes into a model on genotypes
in which the genotype phase is the hidden state information, and learning this model
using EM, is related to the methodology used in the HIT (Rastas et al., 2005) and FAST-
PHASE (Scheet and Stephens, 2006) systems. In HIT, haplotypes are modeled as re-
combinations of a set of “founder” haplotypes, that is, haplotypes of an assumed small
population of “founder” individuals from which the current population developed. An
instance of the EM algorithm is derived to directly estimate the founders from genotype
observations. In FASTPHASE, haplotypes are modeled using local clusters, and cluster
membership of a haplotype is determined by a hidden Markov model. Again, an in-
stance of the EM algorithm for estimating the clusters directly from genotype data can
be derived. Moreover, the idea of using frequent fragments to build Markov models for
haplotypes has also been used in the HAPLOREC method (Eronen et al., 2004). In HAP-
LOREC, a set of fragments (of any length) that are frequent according to the current model
is kept, and updated after each iteration of the EM algorithm.

Furthermore, we performed related work on combining haplotype reconstructions ob-
tained from different haplotyping systems. This was achieved by defining appropriate
distance functions between haplotype pairs, and employing dynamic programming algo-
rithms to compute mean or median reconstructions based on these distances. More details
on combinations of haplotype reconstructions can be found in (Kääriäinen et al., 2007;
Landwehr and Mielikäinen, 2008).

More generally, the presented method is also related to sequential statistical relational
learning frameworks, such as RMMs by Anderson et al. (2002), LoHMMs presented by
Kersting et al. (2006), and the r-gram and CPT-L approaches presented in Chapter 5 and
Chapter 6 of this thesis.

The most interesting direction for future work is to employ similarly structured mod-
els in related application areas. Haplotype data yields insight into the organization of
the human genome: how individual markers are inherited together, the distribution of
variation in the genome, or regions which have been evolutionary conserved (indicating
locations of important genes). At the data analysis level, we are therefore interested in
analyzing the structure in populations—to determine, for example, the difference in the
genetic make-up of a case and a control population—and the structure in haplotypes.
Understanding these underlying structures, rather than focusing on the haplotype recon-
struction problem only, should be an important field in which structured and relational
learning techniques can be beneficial. Moreover, an important direction to explore is how
existing prior knowledge can best be used in such problem settings.

Chapter 8

Interleaved Hidden Markov
Models for Activity Recognition∗

Activity Recognition is the problem of inferring the activity a user is currently perform-
ing based on sensor data collected in the user’s environment. The ability to recognize
human activities from sensory information is essential in many application domains. For
instance, smart systems must be able to recognize the current context of a user and the
activity she is performing in order to suggest or take actions in an intelligent manner.
This chapter introduces a structured probabilistic model for the recognition of interleaved
activities, and domain-specific techniques for learning such models from data and per-
forming activity inference.

The specific problem considered in this chapter is activity of daily living, or ADL,
recognition (Wang et al., 2007). The activities of daily living we consider have two char-
acteristics: (1) they are hierarchically structured, meaning that an activity consists of
several substeps, and (2) activities are typically interleaved in time as a user is switching
back and forth between different tasks. Taken together, these characteristics present sig-
nificant challenges for standard (unstructured) approaches such as propositional hidden
Markov models. In existing approaches to activity modeling the hierarchical structure in
activities is therefore often ignored.

We develop a domain-specific structured probabilistic model that takes into account
hierarchical structure and activity interleaving explicitly. The model can be seen as the
simplest generalization of a hidden Markov model to represent multiple, interleaved pro-
cesses. As for the haplotyping model discussed in the previous section, the model turns
out to be representable in the logical hidden Markov model framework. Unfortunately,
exact inference in the proposed model can be proven to be NP-hard. However, we present
a tractable and effective domain-specific inference algorithm that builds on the chain-

∗This chapter builds on (Landwehr, 2008).

179

180 Interleaved Hidden Markov Models for Activity Recognition

wise Viterbi algorithm used in factorial hidden Markov models (Ghahramani and Jordan,
1997).

The chapter is organized as follows. ADL recognition will be discussed in more detail
in the next section. In Section 8.2 the model will be presented, and we will briefly sketch
how it can be represented as a logical hidden Markov model. Section 8.3 discusses infer-
ence and learning. Section 8.4 presents experimental results, and Section 8.5 discusses
related work.

8.1 Recognizing Activities of Daily Living
The specific activity recognition scenario considered in this chapter is as follows. Assume
a user is performing some activity of daily living (such as making breakfast). Assume
further that the objects typically used in the activity under consideration are equipped
with small radio frequency identification (RFID) tags, and the user is wearing a mobile
RFID sensor in a bracelet around the wrist. The sensor identifies objects which are close
(approximately 10–15 cm) to the wrist of the user; thereby, we observe the sequence
of objects a user has been touching while performing the activity. The task is to infer
the current activity from this stream of sensor data. In the light of recent advances in
RFID technology, which allow tags to be cheaply mass-produced and readers to be made
wearable, such application scenarios are attracting increasing research interest from both
academia and industry (Wang et al., 2007).

Example 8.1.1. Let the activities under consideration be toast bread, add flavor to toast,
boil water, and add flavor to tea. A possible sequence of observed objects (sensor read-
ings), together with true activity labels, could then be as follows:

N. Landwehr, B. Gutmann, I. Thon, M. Philipose, L. De Raedt / Relational Transformation-based Tagging 5

Relational
Representation

tag(w1, toastBread) tag(w2, toastBread) tag(w3, toastBread) ...
tag(w4, f lavorToast) tag(w5, f lavorToast) tag(w6, f lavorToast) ...
sensor(w1, toast) sensor(w2, toaster) sensor(w3, toast) ...
sensor(w4, knife) sensor(w5, butter) sensor(w6, toast) ...
time(w1, 1, 2) time(w2, 3, 6) time(w3, 7, 8) ...
time(w4, 9, 11) time(w5, 12, 13) time(w6, 14, 15) ...

Background
Knowledge

Activity Tag ToastBread FlavorToast BoilWater FlavorTea

Sensor
Reading

01
to

as
t

02
to

as
t

03
to

as
te

r
04

to
as

te
r

05
to

as
te

r
06

to
as

te
r

07
to

as
t

08
to

as
t

09
kn

ife
10

kn
ife

11
kn

ife
12

bu
tte

r
13

bu
tte

r
14

to
as

t
15

to
as

t
16

kn
ife

17
kn

ife
18

ja
m

19
ja

m
20

w
at

er
21

w
at

er
22

w
at

er
23

st
ov

e
24

st
ov

e
25

cu
p

26
sp

oo
n

27
sp

oo
n

28
su

ga
r

29
su

ga
r

30
cu

p

Fig. 2. Relational representation of the ADL recognition problem. While a person is perform-
ing activities of daily living (such as preparing breakfast), a stream of object interaction data is
generated from a wearable RFID reader (“sensor reading”). This can be represented in a rela-
tional form by collapsing identical sensor readings to one sequence element wi, and encoding
the starting point and duration of the observation in another predicate. Furthermore, additional
background knowledge can be used to encode prior knowledge about the domain.

The task is to recover the activity currently performed from the stream of sensor data,
that is, to tag the sequence of object interactions with activities.

It is obvious that this kind of data is less rigidly structured than natural language
data: there are no “grammatical rules” which determine the exact sequence of touching
knife, toast, butter and jam when adding flavor to a toast. Nevertheless, context informa-
tion can help determine the right tag. For instance, using a spoon can indicate activities
FlavorTea or EatCereals. This ambiguity can be resolved by looking at the context: the
observation of a spoon closely followed by sugar indicates activity FlavorTea, while
observation of a spoon after milk and cereals indicates activity EatCereals.

Furthermore, the stream of object data obtained from the sensor has some internal
structure, as an object observation has a starting point and duration in time. A repre-
sentation in first-order logic allows to capture this structure, and to express flexible rule
conditions such as object x has (not) been observed less than t seconds before/after
the current time-step or the most frequent (currently estimated) tag around the current
time-step is t using manually defined background knowledge.

At the same time, activity recognition can be seen as a data stream mining task—the
analysis of a continuous, potentially infinite stream of data. In this context, issues such
as online learning (with only one pass through the data necessary) are of considerable
interest. However, we will not address these issues in the paper, and instead assume that
a limited amount of training data is given a priori. Extending the proposed methods to
an online-learning scenario is an interesting direction for future work.

The next section will discuss the formal learning setting for relational transformation-
based tagging, before discussing learning algorithms and experimental results.

Figure 2. Relational representation of the ADL recognition problem. While a person is performing activities of
daily living (such as preparing breakfast), a stream of object interaction data is generated from a wearable RFID
reader (“sensor reading”). This can be represented in a relational form by collapsing identical sensor readings to
one sequence element wi, and encoding the starting point and duration of the observation in another predicate.
Furthermore, additional background knowledge can be used to encode prior knowledge about the domain.

object-interaction data in the so-called ADL (“Activities of Daily Living”) problem [6, 11], which will
be described in more detail below.

3. Relational Transformation-based Tagging

The general motivation for our work on relational transformation-based tagging is to apply the
transformation-based tagging methodology to complex datastreams, which are generated, for instance,
by sensors or sensor networks in ubiquitous computing environments. For such complex domains it
is not always possible to represent all available information as flat (or propositional) symbols from a
fixed alphabet. This problem can be overcome by using a more expressive relational representation
for sequence elements. We will therefore extend the template-based rule language traditionally used in
transformation-based learning to a more flexible relational rule language, which can take advantage of
such richer representations for sequence elements. Furthermore, it is easy in this case to incorporate
domain-specific background knowledge into the learning process. Analyzing such relational sequences
has received considerable attention recently, for instance, with relational extensions of Hidden Markov
Models [9] or n-gram models [12].

Example 3.1. As an example, consider the ADL (“Activities of Daily Living”) recognition problem,
which is visualized in Figure 2. In ADL recognition, objects used in activities of daily living such as
making breakfast are equipped with small RFID tags that can be picked up by a wearable reader while a
person performs an activity [6]. The task is to recover the activity currently performed from the stream
of sensor data, that is, to tag the sequence of object interactions with activities.

It is obvious that this kind of data is less rigidly structured than natural language data: there are no
“grammatical rules” that determine the exact sequence of touching knife, toast, butter and jam when

N. Landwehr, B. Gutmann, I. Thon, M. Philipose, L. De Raedt / Relational Transformation-based Tagging 5

Relational
Representation

tag(w1, toastBread) tag(w2, toastBread) tag(w3, toastBread) ...
tag(w4, f lavorToast) tag(w5, f lavorToast) tag(w6, f lavorToast) ...
sensor(w1, toast) sensor(w2, toaster) sensor(w3, toast) ...
sensor(w4, knife) sensor(w5, butter) sensor(w6, toast) ...
time(w1, 1, 2) time(w2, 3, 6) time(w3, 7, 8) ...
time(w4, 9, 11) time(w5, 12, 13) time(w6, 14, 15) ...

Background
Knowledge

Activity Tag ToastBread FlavorToast BoilWater FlavorTea

Sensor
Reading

01
to

as
t

02
to

as
t

03
to

as
te

r
04

to
as

te
r

05
to

as
te

r
06

to
as

te
r

07
to

as
t

08
to

as
t

09
kn

ife
10

kn
ife

11
kn

ife
12

bu
tte

r
13

bu
tte

r
14

to
as

t
15

to
as

t
16

kn
ife

17
kn

ife
18

ja
m

19
ja

m
20

w
at

er
21

w
at

er
22

w
at

er
23

st
ov

e
24

st
ov

e
25

cu
p

26
sp

oo
n

27
sp

oo
n

28
su

ga
r

29
su

ga
r

30
cu

p

Fig. 2. Relational representation of the ADL recognition problem. While a person is perform-
ing activities of daily living (such as preparing breakfast), a stream of object interaction data is
generated from a wearable RFID reader (“sensor reading”). This can be represented in a rela-
tional form by collapsing identical sensor readings to one sequence element wi, and encoding
the starting point and duration of the observation in another predicate. Furthermore, additional
background knowledge can be used to encode prior knowledge about the domain.

The task is to recover the activity currently performed from the stream of sensor data,
that is, to tag the sequence of object interactions with activities.

It is obvious that this kind of data is less rigidly structured than natural language
data: there are no “grammatical rules” which determine the exact sequence of touching
knife, toast, butter and jam when adding flavor to a toast. Nevertheless, context informa-
tion can help determine the right tag. For instance, using a spoon can indicate activities
FlavorTea or EatCereals. This ambiguity can be resolved by looking at the context: the
observation of a spoon closely followed by sugar indicates activity FlavorTea, while
observation of a spoon after milk and cereals indicates activity EatCereals.

Furthermore, the stream of object data obtained from the sensor has some internal
structure, as an object observation has a starting point and duration in time. A repre-
sentation in first-order logic allows to capture this structure, and to express flexible rule
conditions such as object x has (not) been observed less than t seconds before/after
the current time-step or the most frequent (currently estimated) tag around the current
time-step is t using manually defined background knowledge.

At the same time, activity recognition can be seen as a data stream mining task—the
analysis of a continuous, potentially infinite stream of data. In this context, issues such
as online learning (with only one pass through the data necessary) are of considerable
interest. However, we will not address these issues in the paper, and instead assume that
a limited amount of training data is given a priori. Extending the proposed methods to
an online-learning scenario is an interesting direction for future work.

The next section will discuss the formal learning setting for relational transformation-
based tagging, before discussing learning algorithms and experimental results.

Figure 2. Relational representation of the ADL recognition problem. While a person is performing activities of
daily living (such as preparing breakfast), a stream of object interaction data is generated from a wearable RFID
reader (“sensor reading”). This can be represented in a relational form by collapsing identical sensor readings to
one sequence element wi, and encoding the starting point and duration of the observation in another predicate.
Furthermore, additional background knowledge can be used to encode prior knowledge about the domain.

object-interaction data in the so-called ADL (“Activities of Daily Living”) problem [6, 11], which will
be described in more detail below.

3. Relational Transformation-based Tagging

The general motivation for our work on relational transformation-based tagging is to apply the
transformation-based tagging methodology to complex datastreams, which are generated, for instance,
by sensors or sensor networks in ubiquitous computing environments. For such complex domains it
is not always possible to represent all available information as flat (or propositional) symbols from a
fixed alphabet. This problem can be overcome by using a more expressive relational representation
for sequence elements. We will therefore extend the template-based rule language traditionally used in
transformation-based learning to a more flexible relational rule language, which can take advantage of
such richer representations for sequence elements. Furthermore, it is easy in this case to incorporate
domain-specific background knowledge into the learning process. Analyzing such relational sequences
has received considerable attention recently, for instance, with relational extensions of Hidden Markov
Models [9] or n-gram models [12].

Example 3.1. As an example, consider the ADL (“Activities of Daily Living”) recognition problem,
which is visualized in Figure 2. In ADL recognition, objects used in activities of daily living such as
making breakfast are equipped with small RFID tags that can be picked up by a wearable reader while a
person performs an activity [6]. The task is to recover the activity currently performed from the stream
of sensor data, that is, to tag the sequence of object interactions with activities.

It is obvious that this kind of data is less rigidly structured than natural language data: there are no
“grammatical rules” that determine the exact sequence of touching knife, toast, butter and jam when

In the training data, sequences would be labeled with the true activity at every point in
time by a human observer. For test sequences, the sensor reading is observed and the task
is to predict the correct activity label for every point in time.

Many different approaches have been developed for activity recognition problems.
They are based on different classes of sensors, such as cameras (Harville and Li, 2004),
pressure mat sensors (Orr et al., 2000), RFID tags (Wang et al., 2007), body-worn ac-
celerometers (Bao and Intille, 2004), or GPS data (Liao et al., 2005a). Most activ-
ity recognition systems employ probabilistic models, including HMMs (Patterson et al.,
2005) or more complex models such as dynamic Bayesian networks (Wang et al., 2007)
or conditional random fields (Liao et al., 2005a). They have also focuses on modeling

8.2 A Model for Interleaved Processes 181

Interleaved Activities

getNews
makeJuice
makeToast

makeToast: toastBread
makeToast: addFlavor
makeToast: eat

makeJuice: pourJuice
makeJuice: drink

getNews: obtainNewspaper
getNews: readNewspaper

Sensor Observations

nil
toaster
plate
knife
glass
juice

...

Figure 8.1: Interleaving in an activity recognition domain. Three high-level activities
(makeToast, makeJuice, getNews) with corresponding basic activities are interleaved in
time as a user switches between them. Different activities can produce identical sensor
observations, and therefore neither the interleaving nor the actual activities are directly
observable from the sensor data.

different aspects of human activity, such as object usage (Patterson et al., 2005), activity
duration (Duong et al., 2005), or hierarchical activities (Riesenhuber and Poggio, 1999).

The approach discussed in this chapter is focused on recognizing interleaved activi-
ties, that is, scenarios in which users often switch between executing different tasks. More
specifically, we take into account two aspects of real-world environments that complicate
the simple activity recognition setting outlined above. First, activities are often hierarchi-
cally structured, as sets of basic activities can be grouped into high-level activities. For
instance, there could be a high-level activity make toast that consists of basic activities
toast bread, flavor toast, and eat. It is useful to take this structure into account: the like-
lihood of activity flavor toast being performed now depends on whether we (indirectly)
observed the activity toast bread at an earlier point in time. Second, high-level activities
are often interleaved in time as a user is switching back and forth between different tasks,
as illustrated in Figure 8.1. In this example, a user is having breakfast, which consists
of high-level activities make toast, make juice, and get news with corresponding basic
activities.

8.2 A Model for Interleaved Processes

A popular simple approach for activity recognition are hidden Markov models: each
(atomic) activity is modeled as a hidden state in the HMM, and this hidden state emits
a certain subset of object tags typically associated with the activity. This approach is ap-
plicable if there is one set of atomic activities without hierarchical structure. The activities
we consider are hierarchically structured, that is, every activity consists of a number of
substeps. In this case, it is natural to model each activity as one HMM, where hidden states
correspond to the substeps within the activity, and emit the object tags associated with this
substep. However, now the resulting set of HMMs needs to be matched against the given
sequence of object tags during activity recognition. That is, we need to determine which

182 Interleaved Hidden Markov Models for Activity Recognition

observations have been generated by which activity. This can be accomplished, for in-
stance, using particle filters.

Example 8.2.1. Consider high-level activities make toast and make juice with basic ac-
tivities toast bread, add flavor, eat toast and pour juice, drink respectively. This situation
can be represented by two hidden Markov models as follows:

to
as

t
to

as
t

to
as

te
r

to
as

te
r

to
as

t
to

as
t

pl
at

e
kn

ife ja
m

ja
m

kn
ife

kn
ife

pl
at

e
pl

at
e

pl
at

e

gl
as

s
ju

ice
ju

ice
gl

as
s

gl
as

s
gl

as
s

pl
at

e
gl

as
s

gl
as

s
gl

as
s

toast

toaster

...

jam

knife

toast

... plate

knife

toastBread

addFlavor

eatToast

juice

glass

... glass

X

plate

pourJuice drink

Note that the hidden Markov models are given in automaton notation, as introduced in
Section 2.1.2. Each node corresponds to one state the hidden state variable can take on,
and arrows between nodes indicate possible transitions from one state to another (for
example, from state toastBread to state addFlavor). Actual probability values have been
omitted.

The use of a set of HMMs in this way is appropriate if activities are carried out se-
quentially. However, the approach is not directly applicable if activities interleave as in
Figure 8.1. The interleaved scenario can be modeled with one standard HMM by “flatten-
ing” the three activities shown in Figure 8.1 into one process with 7 states (as in Patterson
et al., 2005). This model is shown in Figure 8.2. It can account for interleaved activi-
ties as transitions from any low-level activity to any other low-level activity are possible.
However, part of the problem structure is lost, and the number of parameters represent-
ing transition probabilities is inflated. In this chapter, we instead propose to model the
activities as three different processes which interleave in time. This has the advantage
of decoupling transition dynamics within one high-level activity from the interleaving
behavior, yielding a more concise representation of the overall dynamics.

We now present a structured probabilistic sequence model in which observations are
generated by multiple, interleaved hidden processes. More specifically, we will pursue
the simplest generalization of a hidden Markov model to multiple processes: individual
processes are characterized by first-order Markov chains, and the switching mechanism
by which they interleave is again Markov. Note that this is the most restricted model that
can capture the particular domain structure we are interested in. We deliberately avoid the
expressivity—and associated complexity—of more general models.

Let the random variables Y1, ..., YT denote a sequence of observations, where the
Yt take on one of D discrete values. A hidden Markov model µ defines a sequence

8.2 A Model for Interleaved Processes 183

pourJuice

drinkJuice

obtainNewspaper

readNewspaper

toastBread addFlavor eatToast

Figure 8.2: A HMM for the activity recognition domain in which all low-level activities
are collapsed into one process with 7 states (no emissions are shown to improve readabil-
ity).

X1, ..., XT of hidden state variables, with Xt ∈ {1, ...,K} and K the number of different
states the hidden process can take on (cf. Section 2.1.2). To simplify notation, assume
that there is a special start state 0 the process is in at time t = 0, that is, X0 = 0. The first
transition is from X0 to X1 ∈ {1, ...,K}, and afterwards the first output Y1 is emitted.
The HMM is characterized by initial state probabilities a0i = P (X1 = i | X0 = 0), state
transition probabilities aij = P (Xt = j | Xt−1 = i) for t ≥ 2 and emission probabilities
bil = P (Yt = l | Xt = i) for t ≥ 1. The joint distribution of observations Y = Y1, ...YT

and hidden states X = X1, ..., XT is given by

P (X,Y) =
T∏

t=1

P (Xt | Xt−1)P (Yt | Xt).

We will also refer to X as the hidden process that generated the observations Y.
We propose a model for multiple, interleaved hidden processes as follows. Intuitively,

an additional switching process controls a token that is handed from process to process,
and determines which of the processes is active at a particular point t in time. The active
process transitions to a new state and outputs the observation Yt, while all other processes
remain “frozen” in time. More formally, let µ1, ..., µM be hidden Markov models with
initial state probabilities a

(m)
0i , transition probabilities a

(m)
ij and emission probabilities

b
(m)
il . For ease of notation, we assume the number of states K is identical for all µm,

but the model trivially generalizes to processes with state spaces of different size. Let
furthermore µ̄ be a Markov process with states {1, ...,M}, initial state probabilities d0i

and transition probabilities dij . Let Zt denote a random variable representing the state
of µ̄ at time t, and S

(m)
t denote random variables representing the state of process µm at

time t for 1 ≤ m ≤ M . Zt ∈ {1, ...,M} determines the active process at time t, and we
will refer to µ̄ as the switching process. At every step t in time, a new active process is
sampled from µ̄ with probability P (Zt = j | Zt−1 = i) = dij . Afterwards, the states of

184 Interleaved Hidden Markov Models for Activity Recognition

Yt−1 Yt Yt+1

S
(1)
t−1

S
(2)
t−1

S
(3)
t−1 S

(3)
t

S
(2)
t

S
(1)
t

S
(1)
t+1

S
(2)
t+1

S
(3)
t+1

ZtZt−1 Zt+1

Figure 8.3: Interleaved mixture of hidden Markov models in dynamic Bayesian network
notation (for M = 3).

µ1, ..., µM are updated according to

P (S(m)
t = j | S(m)

t−1 = i, Zt = k) =
{

a
(m)
ij k = m;

δij k 6= m,
(8.1)

where δii = 1 and δij = 0 for i 6= j. In other words, a process µm transitions to a new
state with probability given by its transition matrix if it is active at time t, and stays in its
old state otherwise. Finally, the probability of emitting symbol Yt is

P (Yt = l | S(1)
t = i1, ..., S

(M)
t = iM , Zt = k) = b

(k)
ikl (8.2)

That is, it is given by the emission probability of the process that is active at time t. Let
St = S

(1)
t , ..., S

(M)
t , Z = Z1, ..., ZT and S = S1, ...,ST . Then

P (Z,S,Y) =
T∏

t=1

P (Zt | Zt−1)P (Yt | St, Zt)
M∏

m=1

P (S(m)
t | S(m)

t−1 , Zt) (8.3)

We will refer to this model as an interleaved mixture of hidden Markov models. It is rep-
resented by the dynamic Bayesian network structure given in Figure 8.3. The model is
structurally related to a factorial hidden Markov model (Ghahramani and Jordan, 1997),
shown in Figure 8.4. However, the structure is extended by the additional chain of Zt

nodes that determine the currently active process. Note that although the structure is
densely connected, the set of parameters is simply the union of the parameter sets of

8.2 A Model for Interleaved Processes 185

Yt−1 Yt Yt+1

S
(1)
t−1

S
(2)
t−1

S
(3)
t−1 S

(3)
t

S
(2)
t

S
(1)
t

S
(1)
t+1

S
(2)
t+1

S
(3)
t+1

Figure 8.4: Factorial hidden Markov model in dynamic Bayesian network notation (for
M = 3).

the constituent HMMs µ1, ..., µM and the switching process µ̄ (Equation (8.3) and Equa-
tion (8.2)).

The following alternative interpretation of the model can be given. Let z denote an
interleaving1 and let tm1 , ..., tmT m denote the sequence positions for which zt = m for m ∈
{1, ...,M}. That is, Y↓µm = Ytm

1
, ..., Ytm

T m
is the projection of Y to elements generated

by µm, and S↓µm = S
(m)
tm
1

, ..., S
(m)
tm
T m

the corresponding hidden state variables. It is easily
verified that

P (z,S,Y) = P (z)
M∏

m=1

Pµm(Y↓µm ,S↓µm),

where Pµm(Y↓µm ,S↓µm) is the joint distribution of hidden states S↓µm and observations
Y↓µm in the original HMM µm. This reformulation gives rise to an intuitive approach
for sampling from Y: first sample an interleaving pattern z from µ̄, and afterwards Y↓µm

from µm for 1 ≤ m ≤M .

8.2.1 Logical Hidden Markov Model Representation
To illustrate the relationship of the domain-specific structured model introduced in the
previous section to more general SRL approaches, let us briefly discuss how the model
can be represented in the logical hidden Markov model framework (Kersting et al., 2006).
The key observation for realizing this is that the current state of the model in Figure 8.3
is determined by the joint state of the variables S

(1)
t , ..., S

(M)
t and Zt. That is, it is de-

termined by the states of the constituent processes and the switching process. This joint

1As introduced in Section 2.1, we denote random variables with upper-case letters, and their instantiations
with lower-case letters.

186 Interleaved Hidden Markov Models for Activity Recognition

state is easily represented by a predicate p(S(1)
t , ..., S

(M)
t , Zt). Two important domain

properties now need to be enforced. First, in the transition from p(S(1)
t , ..., S

(M)
t , Zt)

to a new joint state p(S(1)
t+1, ..., S

(M)
t+1 , Zt+1) only the state S

(a)
t+1 of the active process is

re-sampled (that is, Zt+1 = a), while for k 6= m, it holds that S
(k)
t+1 = S

(k)
t . This

“selective sampling” can be compactly represented in LoHMMs based on abstract states
such as p(s(1)

t , S
(2)
t , ..., S(M), 1): this state subsumes all ground states in which the first

process is active and is in state s
(1)
t . We then need to transition to an abstract state

p′(s(1)
t+1, S

(2)
t , ..., S(M), 1), in which s

(1)
t has been re-sampled to s

(1)
t+1, and all other pro-

cess states are left unchanged according to the variable bindings. Second, the output sym-
bol needs to be sampled from the currently active state. Again, this can be achieved using
abstract states such as q(s(1)

t , S
(2)
t , ..., S(M), 1) subsuming all ground states in which the

first process is active and is in state s
(1)
t (and the states of all other processes are ignored).

The full specification of the LoHMM model involves states for 1) re-sampling the
switching chain, 2) re-sampling the currently active process, and 3) emitting the corre-
sponding output symbol. It is described in more detail in Appendix A.2.

Note that the logical hidden Markov models should be seen as one way of imple-
menting structured probabilistic sequence models such as the proposed interleaved mix-
tures of HMMs, factorial hidden Markov models, or related approaches. While a custom
implementation of the propositional model will typically be much more efficient, more
general SRL formalism such as LoHMMs can be helpful for developing the structure of
the propositional model and as a language for rapid prototyping. Once a suitable way
of modeling the domain has been found, the model can be grounded into a propositional
implementation such as the one described in the previous section.

8.3 Inference and Parameter Estimation

A key task in the activity recognition domains we have in mind is hidden state inference:
find

(z∗, s∗) = arg max
z,s

P (z, s | y) (8.4)

for a given sequence y of observations (cf. Problem 2.1.2 in Chapter 2). In contrast
to a standard HMM, hidden state inference in the proposed structured model involves
simultaneously finding a segmentation of y into subsequences y↓µm generated by µm

(the z∗), and most likely hidden states for y↓µm in µm (the s∗).

8.3.1 Exact Inference
Two special cases of the problem are trivial. For M = 1, the model coincides with a
hidden Markov model, and the Viterbi algorithm returns the most likely hidden states in
time O(K2T) (Rabiner, 1989). Moreover, if the output symbol sets of µ1, ..., µM are

8.3 Inference and Parameter Estimation 187

disjoint, the interleaving z is directly observable, and s can be obtained by running M
instances of Viterbi in time O(MK2T).

The more interesting case of M ≥ 2 and non-disjoint output symbol sets is inherently
more difficult due to its combinatorial nature—the M constituent chains are coupled via
the switching process and observations, and thus cannot be handled independently. Ac-
cordingly, exact graphical model inference (for example, with the junction tree algorithm)
applied to the model in Figure 8.3 has costs exponential in M , because the cliques at Yt

are of size O(M). In fact, for general graphical model structures of this form there is no
tractable inference algorithm available (Dagum and Chavez, 1993). However, the condi-
tional distributions P (Yt | St, Zt) have a particularly simple form, which could make the
problem easier. Unfortunately, this is not the case:

Theorem 8.3.1. Exact inference for interleaved mixtures of hidden Markov models is
NP-hard.

The theorem is proved by reduction from the strongly NP-hard 3-partition prob-
lem (Garey and Johnson, 1975):

Problem 8.3.1 (3-Partition Problem). Let S be a multiset of M = 3N positive integers.
Is there a partition of S into subsets S1, ..., SN of size three each such that the sum over
the integers in each subset is the same?

Proof of Theorem 8.3.1. In order to define the reduction, assume we are given a 3-partition
problem, with a multiset S = {n1, ..., nM} of positive integers. The problem has a solu-
tion if there is partition of S into N = M/3 subsets of size three each such that the sum
over the integers in each subset is B = 1

N

∑M
i=1 ni.

We now define an interleaved mixture of HMMs λ and an observation sequence y
such that P (y | λ) > 0 iff there is a solution to the underlying 3-partition problem.
The model λ has M processes, one for each integer ni ∈ S. The process corresponding
to integer ni has states start,s1, ..., sni ,end,and nil. It deterministically transitions from
start through s1, ..., sni , to end and then to nil. The process then stays in nil indefinitely.
Furthermore, it has deterministic emission which are 0 for the state start, s for the states
s1, ..., sni , 1 for the state end, and x for the state nil. The process is depicted below in
automaton notation:

...

0 1s xs...

start s1 stop nilsni

States

Emissions

Initial state and transition probabilities for the switching process in λ are uniform. Now
consider the following sequences y∗ and y:

{

B

{

N

y
∗

= 000s...s111 y = y
∗
...y

∗

188 Interleaved Hidden Markov Models for Activity Recognition

It is easy to see that P (y∗ | λ) > 0 iff there are three integers ni1 , ni2 , ni3 ∈ S such
that ni1 + ni2 + ni3 = B. Similarly, it is clear that P (y | λ) > 0 iff there are N
disjoint subsets S1, ..., SN ⊆ S of three integers each such that

∑
ni∈Sk

ni = B for
k ∈ {1, ..., N}. Thus, the original 3-partition problem has a solution iff P (y | λ) > 0.

Note that the size of λ is polynomial in the size of M and the numbers n1, ..., nM .
However, n1, ..., nM can be exponential in M . Thus, a crucial point is the strong NP-
hardness of the 3-partition problem: the problem is NP-hard even if numbers in the input
are given in unary notation (or, equivalently, if integers in S are polynomially bounded in
M).

8.3.2 Approximate Inference

Approximate inference in graphical models has received much attention, and a variety
of techniques are available (see Jordan and Weiss, 2002, for an overview). The simplest
class of methods are Markov chain Monte Carlo (MCMC) approaches. The idea behind
MCMC is that while it might not be feasible to compute expectations or maximizing val-
ues for a particular distribution p(x), it can be possible to obtain (approximate) samples
from it, and then compute sample-based approximations to the desired quantities. For-
mally, an MCMC method defines a Markov chain whose state space is the joint state of
all variables involved in the distribution p(x) to be estimated, and whose stationary dis-
tribution coincides with p(x). Samples drawn from the Markov chain for large enough t
thus approximate samples from p(x).

In Gibbs sampling, for instance, iterative conditional resampling of random variables
in the network defines a Markov process whose stationary distribution—under certain
conditions—will be the conditional distribution in Equation (8.4). However, Gibbs sam-
pling is not an effective inference method in our case, because the Markov process defined
by the Gibbs sampler is not ergodic. There can be two state configurations with positive
probability that cannot be transformed into each other by single-variable changes with-
out passing through an invalid (probability zero) configuration, such as any configuration
with S

(m)
t−1 6= S

(m)
t but Zt 6= m. This effectively traps the Gibbs sampler in a subspace of

all configurations and prevents MCMC convergence.
The problem is that Gibbs sampling, by updating only one variable at a time, ignores

the specific model structure. Instead, we have to resort to approximate inference meth-
ods that better exploit model structure. Examples include structured variational approx-
imations (Ghahramani and Jordan, 1997) and an iterative approximate inference method
known as the chainwise Viterbi algorithm (Saul and Jordan, 1999). These algorithms are
used in factorial HMMs for computing EM statistics and hidden state inference. In the
rest of the Section, we present an extension of chainwise Viterbi for solving the problem
given by Equation (8.4).

The idea behind chainwise Viterbi is to repeatedly solve tractable sub-problems of the
(intractable) global optimization problem. For factorial hidden Markov models, the natu-

8.3 Inference and Parameter Estimation 189

ral sub-problem to solve is to optimize hidden states in one chain S(m) = S
(m)
1 , ..., S

(m)
T

conditioned on the current states of the other chains:

s(m)
new =arg max

s(m)
P (s(m) | {s(l) : l 6= m},y)

=arg max
s(m)

P (s(1), ..., s(M),y).

In the dynamic Bayesian network representing an interleaved mixture of HMMs (Fig-
ure 8.3), there are two different types of hidden chains: the chains S(1), ...,S(M) repre-
senting the constituent processes µ1, ..., µM and the chain Z representing the switching
process µ̄. Assume first that Z is kept fix, and the goal is to conditionally optimize a chain
S(m). This is straightforward: for a given interleaving pattern, the chains S(1), ...,S(M)

become independent given Z and Y due to the special form of the conditional distribu-
tions P (Yt | St, Zt), cf. Equation (8.2). They can thus be optimized independently with
standard Viterbi.

We therefore focus on the task of optimizing Z given S(1), ...,S(M). A straightforward
update

znew = arg max
z

P (z, s(1), ..., s(M),y)

is not very effective: as a process µm can only change state at time t if it is active, we
know from S

(m)
t 6= S

(m)
t−1 that Zt = m. Thus, the joint state of S(1), ...,S(M) essentially

determines Z. To change the state of Zt from m to n, it is necessary to also update S
(m)
t

and S
(n)
t to reflect that µn is now active at time t. The solution is to jointly optimize two

constituent chains S(m), S(n) and the switching chain Z by

(s(m)
new, s(n)

new, znew) = arg max
s(m),s(n),z

P (s,y, z). (8.5)

Intuitively speaking, this update makes it possible to re-assign observations that have
so far been attributed to process µm to process µn, by changing some Zt from m to n
and updating S(m) and S(n) accordingly. If it is repeatedly applied with different process
indices m,n, the interleaving can be arbitrarily revised. Algorithm 6 describes this chain-
wise update scheme in pseudocode. The method consistent-configuration(M) initial-
izes the states of the hidden variables to some positive-probability configuration2. When
choosing m,n ∈ {1, ...,M} different strategies are possible; we assume the algorithm re-
peatedly cycles through all pairs n 6= m. If the update step (8.5) is implemented exactly,
P (s, z,y) will increase unless the hidden state configuration is left unchanged. Thus, the
algorithm will always converge (though not necessarily to the true global optimum).

An efficient implementation of the update step (8.5) is crucial for fast inference. This
can be achieved by dynamic programming in the spirit of the Viterbi algorithm (Rabiner,
1989). Moreover, the particularly restrictive form of the model (basically, that only the

2This is trivial if observation probabilities are always non-zero, as, for instance, in Laplace-smoothed models.

190 Interleaved Hidden Markov Models for Activity Recognition

Algorithm 6 Chainwise Viterbi for interleaved mixtures of hidden Markov models
Input: modelM, observations Y
(S,Z) := consistent-configuration(M)
while not converged do

choose m,n ∈ {1, ...,M},m 6= n
let (S(m),S(n),Z) := arg max

S(m),S(n),Z

P (S,Z,Y)

end while
return S,Z

active chain changes state at any point in time) can be exploited. This yields a much faster
inference algorithm than for general graphical models with the DAG structure given in
Figure 8.3, as will be briefly outlined now.

To simplify notation, assume that n = 1 and m = 2. In analogy to the Viterbi
algorithm, define

δijk[t] =

max
D

P (D, S
(1)
t = i, S

(2)
t = j, Zt = k,Y,S(3), ...,S(M))

with
D = {S(1)

1 , ..., S
(1)
t−1, S

(2)
1 , ..., S

(2)
t−1, Z1, ..., Zt−1}.

Initialization of δijk[1] is straightforward. For the recursive definition of δijk[t], let

C[k] =
M∏

m=3

P (S(m)
t = s

(m)
t | S(m)

t−1 = s
(m)
t−1, Zt = k),

where s
(m)
t−1, s

(m)
t for m ≥ 3 denote the current values of the fixed chains µ3, ..., µM .

Now two cases have to be considered. If k ≥ 3, chains 1, 2 cannot have changed state,
and

δijk[t] = max
k′=1,...,M

δijk′ [t− 1]dk′kb(k)
sy C[k]

with s = S
(k)
t and y = Yt. This quantity can be computed in time O(M). If k ∈ {1, 2},

we have to take into account state changes on the chains being optimized. Assume without
loss of generality that k = 1. Now

δij1[t] = max
k′=1,...,M

max
i′=1,...,K

δi′jk′ [t− 1]dk′1a
(1)
i′i b

(1)
iy C[1],

with y = Yt. This quantity can be computed in time O(KM). There are O(K2MT)
values of the form δijk[t] to compute. However, time for computing all values is bounded
by O(K2M(M + K)T), as the case k ∈ {1, 2} only appears O(K2T) times.

8.3 Inference and Parameter Estimation 191

The maximum probability of a hidden state configuration is

max
s(1),s(2),z

P (s, z,y) = max
ijk

δijk[T],

and a maximizing configuration is found by keeping track of where maxima occur in
backtrace variables.

It is instructive to compare the complexity of the outlined chainwise Viterbi algo-
rithm to inference in an HMM where hidden states are ”flattened” into a single process.
This HMM has a state space of size KM , and standard Viterbi has thus complexity
O(K2M2T), similar to the O(K2M(M + K)T) for a single update step in chainwise
Viterbi. However, several such update steps will be needed before convergence.

8.3.3 Parameter Estimation
As for the other models discussed in the this thesis, an interesting question is how we can
learn the proposed interleaved mixture of Markov chains from data. As for normal hidden
Markov models, we assume that the basic structure of the domain is known, that is, we
know how many processes exist and what their hidden states are. The task then becomes
to learn the parameters of the model from data:

Problem 8.3.2 (Parameter Learning for Interleaved Mixtures of Hidden Markov Models).

Given

• a number M of hidden processes;

• for every m ∈ {1, ...,M} the number of states Km of the m-th process3;

• a set S = {s1, ..., sN} of observation sequences;

Find

arg max
Θ

P (S | Θ) =
N∏

i=1

P (si | Θ)

where Θ is the set of all parameters in the processes µ1, ..., µM and the switching process
µ̄, and P (si | Θ) is the likelihood of the observation sequence si under the model with
parameters Θ as defined by Equation (8.3).

There are different possible settings for this parameter learning problem. In the ac-
tivity recognition setting discussed in Section 8.4, both sensor observations and activities
are given for the training set. That is, the observed sequences s1, ..., sM contain not
only sensor observations but also the corresponding (normally hidden) activity informa-
tion. In this fully observable case, maximum-likelihood model parameters can essentially

3Note that here we slightly generalize the model to allow for differently sized state spaces in the different
processes

192 Interleaved Hidden Markov Models for Activity Recognition

be determined by counting. More generally, if the interleaving is known for the train-
ing data (that is, we know which part of each sequence has been generated by which
process), the problem reduces to independently estimating the parameters of µ1, ..., µM

with the standard Baum-Welch algorithm (Rabiner, 1989). In an unsupervised learn-
ing setting, expectation-maximization including the unknown interleaving Z is a natural
choice. However, for the same reasons as discussed in Section 8.3, exact computation of
the expectation step will be infeasible. In factorial hidden Markov models, this problem
is solved elegantly by a structured variational approximation, and exploring variational
inference methods for the interleaved mixture model presented in this chapter is an inter-
esting direction for future work. A simple alternative is to employ hard EM: instead of
computing exact expectations, hidden states are set to their max-likelihood values given
the observations, and expectations determined by counting. Together with the chain-
wise Viterbi algorithm discussed in Section 8.3.2 this yields a tractable method which is
straightforward to implement.

8.4 Experimental Evaluation

The proposed model has been evaluated in an activity of daily living (ADL) recognition
domain, where the goal is to infer a user’s activity from a stream of dense RFID sensor
data. The dataset has been collected in a real RFID environment at Intel Research Seat-
tle4. Objects are equipped with small RFID tags, and the user is wearing a lightweight
RFID reader in a bracelet around the wrist. Whenever the reader comes close (10–15
centimeters) to a tagged object, the object tag is recorded. The sequence of observed tags
thus indicates the objects a user has been interacting with while performing the activity.

We recorded activities involved in making breakfast at home, as this domain show-
cases the kind of interleaving behavior we are interested in (cf. Figure 8.1). The dataset
consists of 20 sequences of RFID tag observations collected from 5 different persons hav-
ing breakfast. Sequences are hand-labeled with the true current activity based on a human
observer. There are 18 basic activities organized into 6 high-level activities, 24 different
classes of tagged objects (including nil if no object was observed), and a total of 4597
timepoints to be classified. Timepoints at which no activity is taking place and activities
with a coverage of less than 1% were removed, leaving 14 activities and 3545 timepoints
in the dataset. The average number of segments into which a high-level activity is bro-
ken up because of interleaving is 3.95. There is significant overlap between observations
associated with different activities, either because the same object is used in different ac-
tivities or noise in the sensor data. More specifically, the average overlap in the set of
observations associated with two different activities is 40.6%.

A standard approach in ADL recognition is based on HMMs: each basic activity cor-
responds to a hidden state, and sensor data to observations. In the described domain this
means that all activities are “flattened” into one hidden process, and their hierarchical

4http://www.intel-research.net/seattle/

8.4 Experimental Evaluation 193

Table 8.1: Average cross-validated accuracy for MAJORITY, MAJORITY/OBSERVATION,
HMM, HMMMIX and HMMMIX* on the ADL dataset. • indicates that result for HMM-
MIX is significantly better than result for other method (paired two-sided t-test, p = 0.05).

Method Accuracy
MAJORITY 21.2± 25.4•
MAJORITY/OBSERVATION 71.4± 10.3•
HMM 84.0± 9.8•
HMMMIX 86.0± 8.6
HMMMIX* 86.0± 8.6

structure is lost. This approach will serve as a baseline, denoted by HMM. Alternatively,
high-level activities can be modeled as separate hidden processes using the model de-
scribed in Section 8.2. Here we consider a slight extension of this model: state transition
probabilities in the active hidden process µZt

depend not only on the previous state but
also on whether or not the process has just become active; that is, Zt 6= Zt−1. The mo-
tivation for this extension is that high-level activities are typically interrupted at a point
where the basic activity changes as well. It is straightforward to generalize the model and
algorithms discussed in Section 8.2 and Section 8.3 to include this dependency.

Each high-level activity A is represented as a process µA, and the state space of µA

are the basic activities associated with A. Note that the method, when applied to a given
observation sequence, will automatically chose the (approximately) most likely subset of
high-level activities that explains the observations. This model, together with the approx-
imate inference technique discussed in Section 8.3.2 will be denoted as HMMMIX. In the
chainwise Viterbi algorithm, hidden states are initialized to the most likely activity given
the current sensor observation (as observed in the training data). Furthermore, a version
with exact inference (denoted HMMMIX*) is run for comparison.

The experimental study seeks to answer the following two questions:

(Q8.1) Does reconstruction accuracy increase if high-level activities are modeled as sep-
arate processes?

(Q8.2) Does the approximate inference algorithm for HMMMIX yield results similar to
exact inference?

The rationale behind (Q8.1) is that modeling high-level activities as separate processes
will capture transition dynamics more concisely, as it decouples dynamics within a high-
level activity from the switching dynamics. This is reflected in the number of model
parameters: The “flattened” HMM representation requires O((MK)2) = O(M2K2)
parameters to specify transition dynamics, while HMMMIX only requires O(M2+MK2)
parameters.

194 Interleaved Hidden Markov Models for Activity Recognition

-2

-1.8

-1.6

-1.4

-1.2

-1

 0 5 10 15 20 25
 0.5

 0.6

 0.7

 0.8

 0.9

 1

N
or

m
al

iz
ed

 lo
g-

lik
el

ih
oo

d

A
cc

ur
ac

y

Iteration of chainwise Viterbi

normalized log-likelihood
reconstruction accuracy

Figure 8.5: Normalized log-likelihood and reconstruction accuracy of the current hidden
state configuration as a function of the number of iterations in chainwise Viterbi. Results
are averaged over all test sequences.

To evaluate the different approaches, we performed a leave-one-sequence-out cross-
validation. On the respective training set, models are estimated from fully observable
training data, that is, information on both sensor observations and activities is available.
Given a test sequence, the most likely joint state of hidden variables in the model is de-
termined, yielding a prediction of the current basic activity at every point in time. This
is compared to the known true activity, and average prediction accuracy is computed. Ta-
ble 8.1 shows reconstruction accuracy for HMM, HMMMIX and HMMMIX*. Addition-
ally, accuracy for always predicting the most frequent activity (MAJORITY), and the most
frequent activity given a particular sensor observation (MAJORITY/OBSERVATION) are
shown. HMMMIX significantly outperforms HMM (paired two-sided t-test, p = 0.05),
and predictions made by HMMMIX and HMMMIX* are identical in this experiment. This
affirmatively answers questions (Q8.1) and (Q8.2). Figure 8.5 shows the convergence be-
havior of chainwise Viterbi. The normalized log-likelihood of the current configuration
of hidden states and the reconstruction accuracy given by this configuration are plotted as
a function of the algorithm iteration. As expected, both likelihood and accuracy increase
as the algorithm repeatedly revises the current interleaving. Furthermore, convergence
occurs after a small number of iterations.

There are two sources of information for predicting the activity at a point t in time:
the current sensor observation, and transition dynamics for activities (which capture the
influence of past and future observations on the current prediction). The MAJORITY/OB-
SERVATION approach already performs well; this indicates that much information is ob-
tained simply from the current sensor observation. To further investigate the influence of

8.5 Related and Future Work 195

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

ur
ac

y

Fraction of training data used

HMM
HMMmix*
HMMmix

Figure 8.6: Reconstruction accuracy as a function of the fraction γ of training sequences
used to estimate model transition parameters, while emission probabilities are estimated
from all available training data. Results are averaged over 5 runs of cross-validation.

transition dynamics on reconstruction accuracy, the following experiment was carried out.
When estimating a model from data, only a randomly selected fraction γ of the training
sequences is used to estimate transition probabilities, while all available data is used to
estimate emission probabilities. Figure 8.6 shows reconstruction accuracy as a function of
γ. The experiment confirms that HMMMIX outperforms HMM, and that approximate in-
ference gives solutions very close to those of exact inference (solutions differ slightly, but
the curves for HMMMIX and HMMMIX* in Figure 8.6 are indistinguishable). Moreover,
the difference between HMM and HMMMIX is most pronounced if only 20% to 40% of
training sequences are used to estimate transition parameters. This supports the hypothe-
sis that the more concise representation of transition dynamics in HMMMIX (with fewer
model parameters) explains its superior performance, as a concise representation matters
most if training data is sparse.

8.5 Related and Future Work

Although there exists a large body of related work, to the best of our knowledge the partic-
ular setting of data generated from interleaved processes has not been addressed before. A
simplified version has been discussed in (Batu et al., 2004); however, tractable inference
algorithms are not explored in this work. Simplicial mixtures of Markov chains, which
employ a generative semantics similar to latent Dirichlet allocation, also address a similar
problem (Girolami and Kabán, 2003). However, they restrict the constituent processes to
be Markov rather than hidden Markov. A further class of models assumes several hidden
processes that run in parallel, and that observations stem from their joint state. Examples

196 Interleaved Hidden Markov Models for Activity Recognition

include factorial hidden Markov models (Ghahramani and Jordan, 1997), hidden Markov
decision trees (Jordan et al., 1996), coupled hidden Markov models (Brand, 1997) and
mixed hidden Markov models (Altman, 2007). In contrast to our approach, these mod-
els focus on factorizing complex state spaces into cross-products of simpler components,
rather than modeling interleaved processes. Another related technique are switching state-
space models (SSSMs) (Ghahramani and Hinton, 1998), in which several processes run
in parallel and an additional switch variable selects one active process from which the
current observation is generated. SSSMs are different in that processes run concurrently,
while an interleaving of processes is characterized by the fact that an inactive process is
stopped and only resumes when it becomes active again. This creates additional depen-
dencies between processes which cannot be modeled in a SSSM. Finally, hierarchical
hidden Markov models model hierarchical structure within the hidden process that gen-
erates the observations (Fine et al., 1998). However, the component processes cannot
interleave, and thus the model is not appropriate in our domain.

As a structured probabilistic model the presented approach is more generally also re-
lated to sequential SRL techniques such as LoHMMs (Kersting et al., 2006) or the r-gram
and CPT-L model presented in Chapter 5 and Chapter 6. In particular, there exist ex-
tensions of LoHMMs to model hierarchical processes which have been applied to similar
activity recognition problems (Natarajan et al., 2008). These Logical Hierarchical Hidden
Markov Models (LoHiHMMs) focus on modeling hierarchies in activities (such as goal-
subgoal decomposition), and perform inference based on particle filters. In contrast to the
approach presented in this chapter, LoHiHMMs are a relatively general SRL formalism in
that they are still directly based on first-order logic, while our model has been grounded
to a particular application domain.

Furthermore, related work includes activity recognition approaches based on HMMs
such as (Patterson et al., 2005) and (Zhang et al., 2007) or dynamic Bayesian net-
works (Wang et al., 2007). The proposed method not only labels sequence positions
but returns a structured parse of the sequence in terms of a set of hidden processes. Thus,
it is also related to segmentation models, grammar-based approaches, and more generally
models for predicting structured data (see Bakir et al., 2007, for an overview).

More generally, the approach presented in this chapter is also related to an-
other approach we developed to solve activity recognition problems, namely re-
lational transformation-based tagging (Landwehr et al., 2007c, 2008). Relational
transformation-based tagging employs inductive logic programming principles to upgrade
the transformation-based tagging algorithm of Brill (1995) to the relational case. In con-
trast to the method described in this chapter, the approach employs a fully relational data
representation, making it possible to supply background knowledge to the learner. How-
ever, it does not make use of statistical modeling techniques. For a more detailed discus-
sion of relational tagging in activity recognition, see (Landwehr et al., 2007c, 2008).

There are two main directions for future work. One is to consider semi- and unsuper-
vised learning settings, in which only a few or no activity labels are available at the time
of learning. As discussed in Section 8.3.3, this scenario could be addressed using either a

8.5 Related and Future Work 197

“hard” EM approach that is relatively straightforward to implement, or, more ambitiously,
using variational inference method. Another interesting direction for future work is to ap-
ply the proposed model to other application domains that exhibit a similar interleaving
structure as the activity recognition domain considered in this chapter.

198 Interleaved Hidden Markov Models for Activity Recognition

Conclusions Part III

Part III of the thesis has discussed two specific application problems, namely haplotype
reconstruction and activity recognition. Both of these domains contain significant struc-
ture; traditional propositional models such as hidden Markov models are thus not easily
applicable. Expressive and general SRL frameworks could be used to model this struc-
ture. However, we have instead presented two domain-specific structured probabilistic
models, which are both based on the hidden Markov model framework. Compared to
more general SRL frameworks, the resulting systems are less widely applicable but more
efficient at solving the particular task encountered in the application domain. They can
thus be seen as one way of “downgrading” more general SRL frameworks towards more
efficiency at the cost of reduced generality. Nevertheless, we also showed how the two
application domains can be modeled using logical hidden Markov models (LoHMMs),
an expressive and general SRL framework for sequential data (Kersting et al., 2006). In
fact, for the haplotype application we started by designing a LoHMM model, and later
translated it into a domain-specific propositional model to improve efficiency.

The haplotyping problem is concerned with reconstructing the hidden phase informa-
tion in diploid genotype measurements. The proposed method, called SPAMM for sparse
Markov modeling, was compared to several other state-of-the-art haplotyping systems on
real-world genotype datasets with 60–100 individuals and larger simulated datasets with
up to 800 individuals. In the experimental study, the well-established PHASE system
was the most accurate, but also computationally most demanding haplotype reconstruc-
tion method. SPAMM is slightly less accurate but much faster, and scales well to long
marker maps. SPAMM was particularly accurate for datasets with several hundred geno-
type samples. As large datasets are ultimately needed for successful disease association
studies, the presented method is a promising alternative to existing approaches.

The activity recognition problem is concerned with inferring a user’s activity from a
stream of RFID sensor observations indicating the objects the user has been interacting
with. The key challenge in the considered activity recognition scenario is that activities
are hierarchically structured and interleave in time. Consequently, we proposed a struc-
tured model, which explicitly takes activity hierarchies and interleaving into account. An
empirical evaluation using real-world activity data confirmed that the model is superior to
an approach based on flat (propositional) HMMs. Note that the proposed structured prob-

199

200 Interleaved Hidden Markov Models for Activity Recognition

abilistic model should be applicable not only in activity recognition, but in all situations
where only the interleaved output of several independent processes can be observed. Sev-
eral other potential application domains can be identified. Consider, for instance, a log of
web server requests, and assume we have no definite knowledge about which request has
been issued by which user (for example, because of proxy use). Clearly, there is no sin-
gle hidden Markov process that accounts for the sequence of observed requests. Instead,
there are multiple processes, one per user, which interleave to generate the sequence of
observations. Other application areas in which interleaving occurs are intrusion detec-
tion scenarios, in which legitimate network traffic is interleaved with a series of harmful
requests, or intron/exon detection in gene identification.

Finale

201

Chapter 9

Summary and Future Work

This chapter summarizes the main contributions presented in the thesis, draws some con-
clusions, and discusses important directions for future work.

9.1 Thesis Summary

Statistical Relational Learning (SRL) is a relatively young research area at the intersec-
tion of probabilistic modeling, relational and logic-based representations, and machine
learning. Interest in SRL has continuously increased, as machine learning techniques are
increasingly being applied in application domains where data is complex, structured, and
heterogeneous. Examples for such domains include areas in bioinformatics that are con-
cerned with structured entities such as molecules, proteins, or pathways; networked data
from the world wide web; user data collected in scenarios where different (human or arti-
ficial) agents interact; or relational databases which are widely used in business domains.
Accordingly, the development of effective SRL techniques has been identified as one of
the most important challenges in machine learning and artificial intelligence (Getoor and
Taskar, 2007; De Raedt et al., 2008; Kersting, 2006).

SRL frameworks are often developed by combining relational learning techniques,
such as inductive logic programming, with elements from statistical modeling. Rela-
tional learning has been successfully employed in many application domains, for exam-
ple in bio- and chemoinformatics (Bratko and Muggleton, 1995). Advantages of relational
learning include the ability to model complex, structured domains; the ability to incorpo-
rate background knowledge; and the interpretability of the resulting models. However,
relational learning approaches do not handle noise and uncertainty as effectively as sta-
tistical modeling techniques. By combining statistical and relational learning techniques,
SRL promises to combine the expressivity and interpretability of relational representa-
tions with the robustness and accuracy of statistical learners.

Unfortunately, such combinations also combine the complexity of statistical and rela-

203

204 Summary and Future Work

tional representations when learning models from data. As an example, consider structure
learning in knowledge-based model construction approaches (see Chapter 2). Here, learn-
ing requires a search through relational model structures as in relational learning, but in
order to evaluate a structure in a principled way a statistical learning problem such as
likelihood maximization needs to be solved. Depending on the domain and model space,
this can become infeasible. If it is, the structure needs to be pre-defined by the user, or
must be obtained from a different learning method that is run independently of the actual
statistical-relational learner, as in (Richardson and Domingos, 2004). In general, there
is a trade-off involved between the expressivity and generality of a formalism and the
efficiency of performing inference and learning, as a higher expressivity entails a larger
search space for these problems. Propositional learning techniques, which are typically
efficient but limited in their representational power, are at one extreme of this trade-off.
SRL systems that try to combine the full power of statistical and relational models are at
the other extreme.

This thesis has explored statistical relational learning techniques of limited expressiv-
ity, which occupy an intermediate position in the outlined expressivity-efficiency trade-
off. The resulting systems have been shown to be both efficient and effective at solving
challenging problems in a variety of application domains. Specifically, the idea has been
explored in three different settings: 1) relational classification problems, 2) relational se-
quence models, and 3) embedded SRL methods that are tailored to a particular application
domain. We now briefly summarize the key contributions from each of these three parts.

In Part I, dynamic propositionalization approaches for relational classification prob-
lems were introduced. Propositionalization is one of the simplest and most restricted
approaches to statistical relational learning (Kramer and De Raedt, 2001). In contrast to
traditional (static) propositionalization approaches, dynamic propositionalization tightly
couples relational learning with statistical modeling, leading to the selection of better rule
sets. Dynamic propositionalization has been explored based on probabilistic graphical
models (in the NFOIL system, Chapter 3) and kernel methods (in the KFOIL system,
Chapter 4). For both approaches, we have presented incremental learning algorithms,
which make the systems computationally efficient enough to deal with reasonably large
real-world problems. It was shown empirically that dynamic propositionalization out-
performs static propositionalization and (non-statistical) relational learning techniques.
Dynamic propositionalization can also naturally be applied in a multi-task setting, which
further increases the accuracy and efficiency of the approach (Chapter 4).

Part II of the thesis has discussed upgrading simple probabilistic sequence models to
the relational case. Specifically, we have proposed upgrades of Markov chains to learn
from sequences of logical atoms and sequences of logical interpretations. Markov chains
are one of the most basic and most efficient probabilistic sequence models, and thus serve
as a natural starting point for developing efficient models for relational sequences. For
learning from sequences of atoms, n-gram models were extended to the relational case.
In the resulting r-grams, smoothed distributions can be obtained by relational general-
ization of the gram, or shortening grams as in the propositional case (Chapter 5). For

9.1 Thesis Summary 205

learning from sequences of interpretations, we introduced the CPT-L system, which com-
bines the Markov model framework with CP-logic (Chapter 6). CP-logic is a recently
proposed causal probabilistic logic, and can naturally define transition distributions for
complete logical interpretations. r-grams and the CPT-L model deliberately restrict ex-
pressivity by requiring fully observable data and employing a Markov assumption. This
leads to increased computational efficiency compared to more powerful techniques that
can model hidden states or non-Markovian processes. For CPT-L we also introduced ef-
ficient inference and learning algorithms based on binary decision diagrams, which have
been shown to scale well to large domain sizes.

Part III of the thesis has explored a different way of trading expressivity for efficiency
in SRL, namely by developing domain-specific models. The resulting embedded SRL sys-
tems are based on general statistical relational modeling principles, but tailored to perform
a particular task in a particular domain. In this setting, more efficient domain-specific in-
ference and learning algorithms can be developed. Specifically, we have proposed struc-
tured probabilistic models for the haplotype reconstruction and activity recognition do-
mains. Both models are based on the hidden Markov model framework, and their structure
can be represented relationally as a Logical hidden Markov model (LoHMM) (Kersting
et al., 2006). However, the specialization to a particular application domain leads to sys-
tems which are much more computationally efficient than general LoHMMs. We have
proposed domain-specific learning and inference algorithms, such as a structure learning
algorithm in the haplotype domain to discover conserved haplotype fragments (Chap-
ter 7), and an algorithm for hidden state inference in the context of interleaved activities
(Chapter 8). The resulting systems were shown to be competitive with established ap-
proaches for the respective domain.

To summarize, this thesis has contributed a number of SRL approaches that are fo-
cused on computational efficiency. Such approaches should extend the practical applica-
bility of SRL in domains that are computationally too challenging for existing systems.
Efficiency was achieved by restricting approaches to a particular problem setting or appli-
cation domain, and developing special-purpose algorithms that exploit these restrictions.
The resulting systems thus occupy an intermediate position in the expressivity-efficiency
trade-off inherent in machine learning systems.

The idea of restricting expressivity was taken furthest in the embedded approaches
that are tailored to a particular application problem. The resulting models are basically
propositional, but their structure is motivated by SRL principles such as the abstraction
from ground to first-order states. Such abstractions entail constraints, for instance, on
the parameterization of the local probability distributions in the model. The methodology
employed here is to see statistical relational learning as a general framework for thinking
about domain structure, rather than the science of building ever more powerful systems
that can be applied off-the-shelf in any domain. At the same time, general systems are
still valuable for demonstrating the general principles underlying a solution, and rapid
prototyping. Once the domain structure and how it can modeled is well-understood, the
model can—and often should—be specialized to a particular application domain.

206 Summary and Future Work

As an example for this methodology, consider the haplotyping problem discussed in
Chapter 7. We initially modeled this domain using the Logical Hidden Markov Model
described in Appendix A.1, before later translating the LoHMM to a propositional model
which is orders of magnitude more efficient. Another example is given by graph-mining,
tree-mining, and sequence-mining approaches, which specialize more general first-order
mining systems to increasingly problem-specific and efficient techniques (Yan and Han,
2002; Zaki, 2002; Li et al., 1998). This is a worthwhile direction because graphs, trees
and sequences are (nested) subclasses of general first-order representations that occur in
many application areas.

9.2 Future Work

The statistical relational learning systems presented throughout this thesis have mostly
been kept deliberately simple in order to emphasize their underlying general principles.
Some of the presented methods could be extended by using more advanced combinations
of statistical and relational learning techniques, to further increase their effectiveness and
efficiency. For instance, the dynamic propositionalization algorithms we have discussed
are based on the simple FOIL algorithm. While this has worked remarkably well in our
experiments, a more effective search could be obtained in some cases by using advanced
ILP search techniques such as bottom-up search (Muggleton and Feng, 1990). More
advanced statistical modeling techniques could also be employed. For instance, priors
could be incorporated to learn the parameters and/or structure of the tree augmented naı̈ve
Bayes model in TFOIL (Chapter 3), and Gaussian or exponential kernels could be used
within KFOIL (Chapter 4).

Another natural direction for future work is to consider more general learning set-
tings. For example, for the probabilistic relational sequence models discussed in Part II
we assumed that data is fully observable. While this assumption makes inference and
learning much easier, it will not be realistic in some domains. It would be interesting to
explore how learning from partially observable data can be performed without sacrificing
computational efficiency. For the models presented in Part II we also did not discuss the
structure learning problem: for r-grams, all grams within a human-defined language bias
were employed, and for CPT-L the model structure needed to be pre-defined by the user.
How learning can be performed if no pre-defined structure is available is another interest-
ing question to be addressed in future work. Furthermore, we are currently investigating
an extension of the CPT-L system in which constraints can be placed on valid interpre-
tations. Note that by declaring certain interpretations invalid, some probability mass is
lost, which requires the computation of a normalizing factor. However, this normaliza-
tion can also be computed efficiently from the binary decision diagram structures used for
inference and learning.

For the application-specific models discussed in Part III, an interesting direction for
future work is to investigate similarly structured domains in which these models could
also be applied. This is particularly appealing for the activity recognition model: it should

9.2 Future Work 207

be applicable whenever the final sequence of observations is generated from several in-
terleaved hidden processes. Such interleaving patterns also appear in a number of other
application areas. For instance, in intrusion detection (Lee et al., 1999) and user dis-
ambiguation problems (Girolami and Kabán, 2003) data consists of network traffic from
different sources that is interleaved in time. Another example is gene finding in bioinfor-
matics, where coding and non-coding regions are interleaved in a DNA sequence (Korf,
2004).

More generally, we plan to further explore the presented methodology of upgrading
and downgrading SRL approaches according to the requirements of particular application
domains. In this thesis, we have developed relatively specific models for several scenar-
ios. More ambitiously, one could try to develop a general framework for building such
specific models: a framework that makes it easy to incorporate, and algorithmically ex-
ploit, restrictions that are known to hold in a particular domain. This would require a
flexible language for formalizing such restrictions, such that appropriate models and al-
gorithms can be automatically synthesized from a domain description given by the human
user. As a less ambitious alternative, one can consider creating a library or toolkit of prob-
abilistic and relational modeling, inference, and learning techniques, which can be used
as building blocks to quickly create domain-specific SRL systems.

Finally, much work still needs to be done on applying SRL systems to challenging,
and, in particular, large-scale application problems. Only the application of SRL tech-
niques in realistic environments can further clarify how much expressivity and how much
efficiency is really needed to effectively solve real-world problems, and thus help to bet-
ter understand the trade-off between expressivity and efficiency that is at the heart of this
thesis.

208 Summary and Future Work

Appendix

209

Appendix A

LoHMM Representation of
Application-specific Models

This appendix shows how the haplotyping model introduced in the Section 7.2 and the
activity recognition model introduced in Section 8.2 can be represented as a logical hidden
Markov model.

A.1 LoHMM Representation of Haplotyping Model

The haplotyping model can be represented as follows. In the domain-specific model pre-
sented in Figure 7.2, a genotype is sampled by sampling two haplotypes independently
and from the same distribution, cf. Equation (7.3) and Equation (7.4) in Chapter 7. This is
the crucial property that needs to be expressed also in the LoHMM model. As the proposi-
tional model, the LoHMM is organized as a left-to-right model with layers t = 1, . . . ,m.
At every layer t, one component of the model encodes the distribution P (h[t + 1] | h[t]).
This component is traversed twice for sampling the two new alleles h1[t + 1], h2[t + 1]
based on their respective histories h1[t], h2[t]. Afterwards, the unordered pair correspond-
ing to the new allele pair is emitted.

More specifically, Figure A.1 shows a single layer (at marker t) of the LoHMM model,
in the standard automaton notation used for LoHMMs defined by Kersting et al. (2006).
For sampling two new markers h1[t + 1], h2[t + 1] at position t + 1 based on the markers
h1[t], h2[t] at position t, we start at state mt(X, Y) with h1[t], h2[t] bound to X and
Y . The model then transitions to the state st(X, Y, x) to sample the first new marker
h1[t+1]. The multiple transitions from state st to state s′t encode the distribution P (h[t+
1] | h[t]). In s′t(A

′, B, x), the new marker h1[t + 1] has been sampled and is bound
to A′. Afterwards, the same path is traversed again to sample the second marker, with
arguments in state st swapped. This effectively samples the new marker h2[t+1] based on

211

212 LoHMM Representation of Application-specific Models

GF ED@A BCmt(X, Y)
ε : 1

//GF ED@A BCst(X, Y, x)

��GF ED@A BCst(A,B, M)

���
�
�

))SSSSSS
GF ED@A BCst(B,A′, y)oo

GF ED@A BCst(0, B, M)

ε : 0.7
��

ε : 0.3
))SSSSSSSSSSSS
GF ED@A BCst(1, B, M)

ε : 0.4
��

ε : 0.6
uukkkkkkkkkkkk

GF ED@A BCs′t(0, B, M)

��

GF ED@A BCs′t(1, B, M)

uuGF ED@A BCs′t(A
′, B, M) //_________________

))SSSSSS

##G
G

G
G

G
G

G
G

G
G

G

��;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
GF ED@A BCs′t(A

′, B, x)

ε : 1

OO

GF ED@A BCs′t(A
′, B, y)

pair(0, 1) : 1
//GF ED@A BCmt+1(B,A′)

))GF ED@A BCs′t(0, 0, y)
pair(0, 0) : 1

//GF ED@A BCmt+1(0, 0) //GF ED@A BCmt+1(X, Y)

GF ED@A BCs′t(1, 1, y)
pair(1, 1) : 1

//GF ED@A BCmt+1(1, 1)

55

Figure A.1: A LoHMM model for haplotype reconstruction. One layer at marker position
t is shown. The standard syntax for visualizing LoHMMs is used: solid arrows represent
abstract transitions, dashed arrows the “more general than” relation, and dotted arrows
“must follow” links. For a more detailed description of LoHMMs, confer Kersting et al.
(2006).

h2[t] independently and from the same distribution as desired. Finally, the unordered pair
corresponding to the two new markers is emitted in the transition from s′t to mt+1. This
is can be easily accomplished using the logical generality ordering on abstract states in
LoHMMs: if the more specific abstract states for homozygous markers match the ground
state a homozygous pair is emitted, otherwise, an (unordered) heterozygous pair. Note
that this model only has 2 free parameters per layer, in contrast to a naive first-order HMM
model on the the joint state of the two haplotypes, which would have 12 free parameters
per layer.

A.2 LoHMM Representation of Activity Recognition Model 213

A.2 LoHMM Representation of Activity Recognition
Model

The structured probabilistic model for activity recognition presented in Section 8.2 can
also be represented using the logical hidden Markov model framework. The model has
abstract states of the form p/(M +1), p1/(M +1), ..., pM+1/(M +1), and out/(M +2).
Figure A.2 shows a graphical representation of the model structure for the case M =
3,K = 2 in the standard automaton notation used for LoHMMs (for more details see
Kersting et al., 2006).

The state p(S(1)
t , ..., S

(M)
t , Zt) represents the current state of the constituent processes

and the switching process at time t. From p(S(1)
t , ..., S

(M)
t , Zt) at time t, the model first

transitions to a state p1(S
(1)
t , ..., S

(M)
t , Zt+1) sampling a new state Zt+1 of the switch-

ing chain based on its history Zt. Afterwards, in the states p2(S
(1)
t+1, S

(2)
t , S

(3)
t , Zt+1),

p3(S
(1)
t+1, S

(2)
t+1, S

(3)
t , Zt+1), and p4(S

(1)
t+1, S

(2)
t+1, S

(3)
t+1, Zt+1) new states for the constituent

processes are sampled. Note that only the chain a ∈ {1, 2, 3} that is active (Zt+1 = a) ac-
tually changes state. Finally, in a transition to the state out(Ot+1, S

(1)
t+1, ..., S

(M)
t+1 , Zt+1)

the model outputs an observation Ot+1 based on the currently active process. For ease of
exposition, emissions are assumed to be deterministic, but it is straightforward to gener-
alize this part of the model to probabilistic transitions.

214 LoHMM Representation of Application-specific Models

p(S(1)
t

, S
(2)
t

, S
(3)
t

, 3)

p(S(1)
t

, S
(2)
t

, S
(3)
t

, Zt) p(S(1)
t

, S
(2)
t

, S
(3)
t

, 2)

p(S(1)
t

, S
(2)
t

, S
(3)
t

, 1)

p(S(1)
t+1, S

(2)
t+1, S

(3)
t+1, Zt+1) out(o11, 1, S

(2)
t+1, S

(3)
t+1, 1)

out(o12, 2, S
(2)
t+1, S

(3)
t+1, 1)

out(o21, S
(1)
t+1, 1, S

(3)
t+1, 2)

out(o22, S
(1)
t+1, 2, S

(3)
t+1, 2)

out(o31, S
(1)
t+1, S

(2)
t+1, 1, 3)

out(o32, S
(1)
t+1, S

(2)
t+1, 2, 3)

out(O,S
(1)
t+1, S

(2)
t+1, S

(3)
t+1, Zt+1)

o11

o12

o21

o22

o31

o32

p1(S
(1)
t

, S
(2)
t

, S
(3)
t

, Zt+1)

p1(S
(1)
t

, S
(2)
t

, S
(3)
t

, 1)

p1(S
(1)
t

, S
(2)
t

, S
(3)
t

, 3)

p1(S
(1)
t

, S
(2)
t

, S
(3)
t

, 2)

p1(1, S
(2)
t

, S
(3)
t

, 1) p1(2, S
(2)
t

, S
(3)
t

, 1)

p1(S
(1)
t+1, S

(2)
t

, S
(3)
t

, Zt+1)

p2(1, S
(2)
t

, S
(3)
t

, 1) p2(2, S
(2)
t

, S
(3)
t

, 1)

p2(S
(1)
t+1, S

(2)
t

, S
(3)
t

, Zt+1)

p2(S
(1)
t+1, 1, S

(3)
t

, 2) p2(S
(1)
t+1, 2, S

(3)
t

, 2)

p2(S
(1)
t+1, S

(2)
t+1, S

(3)
t

, Zt+1)

p3(S
(1)
t+1, S

(2)
t+1, S

(3)
t+1, Zt+1)

p3(S
(1)
t+1, 1, S

(3)
t

, 2) p3(S
(1)
t+1, 2, S

(3)
t

, 2)

p4(S
(1)
t+1, S

(2)
t+1, S

(3)
t+1, Zt+1)

p3(S
(1)
t+1, S

(2)
t+1, S

(3)
t

, Zt+1)

p3(S
(1)
t+1, S

(2)
t+1, 1, 3) p3(S

(1)
t+1, S

(2)
t+1, 2, 3)

p4(S
(1)
t+1, S

(2)
t+1, 2, 3)p4(S

(1)
t+1, S

(2)
t+1, 1, 3)

p4(S
(1)
t+1, S

(2)
t+1, 1, 3)

p4(S
(1)
t+1, S

(2)
t+1, 2, 3)

p4(S
(1)
t+1, 1, S

(3)
t+1, 2)

p4(S
(1)
t+1, 2, S

(3)
t+1, 2)

p4(1, S
(2)
t+1, S

(3)
t+1, 1)

p4(2, S
(2)
t+1, S

(3)
t+1, 1)

Figure A.2: Logical hidden Markov model representing an interleaved mixture of hidden
Markov models (for M = 3,K = 2). To simplify notation, one (deterministic) output
symbol omi for state i of process m is assumed. It is straightforward to generalize the
model to probabilistic emissions.

Bibliography

Adomavicius, G. and Tuzhilin, A. (2005). Toward the Next Generation of Recommender
Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions
on Knowledge and Data Engineering, 17(6), 734–749.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A. (1996). Fast
Discovery of Association Rules. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages
307–328. AAAI/MIT Press.

Altman, R. M. (2007). Mixed hidden Markov models: An extension of the hidden Markov
model to the longitudinal data setting. Journal of the American Statistical Association,
102, 201–210.

Anderson, C., Domingos, P., and Weld, D. (2002). Relational Markov Models and
their Application to Adaptive Web Navigation. In D. Hand, D. Keim, O. Zaı̈ne, and
R. Goebel, editors, Proceedings of the 8th ACM-SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2002), pages 143–152. ACM Press.

Argyriou, A., Evgeniou, T., and Pontil, M. (2007). Multi-Task Feature Learning. In
B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Pro-
cessing Systems 19, pages 41–48. MIT Press, Cambridge, MA.

Bahr, R. (2004). Hidden Markov Models: Applications to Financial Econometrics. Ad-
vanced Studies in Theoretical and Applied Econometrics. Springer.

Bakir, G. H., Hofmann, T., Schölkopf, B., Smola, A. J., Taskar, B., and Vishwanathan, S.
V. N. (2007). Predicting Structured Data. The MIT Press.

Bao, L. and Intille, S. S. (2004). Activity Recognition from User-Annotated Acceleration
Data. In A. Ferscha and F. Mattern, editors, Pervasive Computing, Second International
Conference, 2004, Vienna, Austria, April 21-23, 2004, Proceedings, volume 3001 of
Lecture Notes in Computer Science. Springer.

Batu, T., Guha, S., and Kannan, S. (2004). Inferring Mixtures of Markov Chains. In
Proceedings of the 17th Annual Conference on Learning Theory (COLT-2004).

215

216 BIBLIOGRAPHY

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Blockeel, H. and Raedt, L. D. (1998). Top-down Induction of First Order Logical Deci-
sion Trees. Artificial Intelligence, 101(1-2), 285–297.

Blockeel, H., De Raedt, L., and Ramon, J. (1998). Top-down Induction of Cluster-
ing Trees. In Proceeding of the 15th International Conference on Machine Learning
(ICML-1998), Madison, Wisconsin, USA.

Blockeel, H., Dzeroski, S., Kompare, B., Kramer, S., Pfahringer, B., and Laer, W. (2004).
Experiments In Predicting Biodegradability. Applied Artificial Intelligence, 18(2), 157–
181.

Bordes, A., Ertekin, S., Weston, J., and Bottou, L. (2005). Fast Kernel Classifiers with
Online and Active Learning. Journal of Machine Learning Research, 6, 1579–1619.

Brand, M. (1997). Coupled hidden Markov models for modeling interactive processes.
Technical Report 405, MIT Media Lab.

Bratko, I. (1990). Prolog Programming for Artificial Intelligence. Addison-Wesley. 2nd
Edition.

Bratko, I. and Muggleton, S. (1995). Applications of Inductive Logic Programming.
Communications of the ACM, 38(11), 65–70.

Brefeld, U. and Scheffer, T. (2005). AUC maximizing support vector learning. In Work-
shop on ”ROC Analysis in Machine Learning” at the 22nd International Conference
on Machine Learning.

Brill, E. (1995). Transformation-based error-driven learning and natural language pro-
cessing: A case study in part-of-speech tagging. Computational Linguistics, 21(4),
543–565.

Bryant, R. E. (1986). Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers, 35(8), 677–691.

Caponnetto, A., Micchelli, C., Pontil, M., and Ying, Y. (2008). Universal kernels for
multi-task learning. Journal of Machine Learning Research, 9, 1615–1646.

Carter, C. and Catlett, J. (1987). Assesing Credit Card Applications Using Machine
Learning. IEEE Expert, 2(3), 71–79.

Caruana, R. (1997). Multitask Learning. Machine Learning, 28(1), 41–75.

Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S. (2002). Choosing multiple
parameters for support vector machines. Machine Learning, 46(1–3), 131–159.

BIBLIOGRAPHY 217

Chen, H. (1995). Machine learning for information retrieval: neural networks, symbolic
learning, and genetic algorithms. Journal of the American Society for Information
Science, 46, 194–216.

Cortes, C. and Vapnik, V. (1995). Support Vector Networks. Machine Learning, 20, 1–25.

Cothey, V., Aguillo, I., and Arroyo, N. (2006). Operationalising ”Websites”: lexically,
semantically or topologically? International Journal of Scientometrics, Infometrics
and Bibliometrics, 10.

Crammer, K., Singer, Y., Cristianini, N., Shawe-taylor, J., and Williamson, B. (2001). On
the algorithmic implementation of multiclass kernel-based vector machines. Journal of
Machine Learning Research, 2, 265–292.

Craven, M. and Slattery, S. (2001). Relational Learning with Statistical Predicate Inven-
tion: Better Models for Hypertext. Machine Learning, 43(1–2), 97–119.

Cristianini, N., Shawe-Taylor, J., Elisseef, A., and Kandola, J. (2002). On Kernel-Target
Alignment. In T. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural
Information Processing Systems 14. MIT Press, Cambridge, MA.

Cumby, C. M. and Roth, D. (2003). On Kernel Methods for Relational Learning. In
Proceedings of the 20th International Conference on Machine Learning, pages 107–
114, Washington, DC, USA.

Dagum, P. and Chavez, R. (1993). Approximating probabilistic inference in Bayesian
belief networks. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(3), 246–255.

Daly, M., Rioux, J., Schaffner, S., Hudson, T., and Lander, E. (2001). High-Resolution
Haplotype Structure in the Human Genome. Nature Genetics, 29, 229–232.

Das, S. K. (1992). Deductive Databases and Logic Programming. Addison-Wesley.

Datta, P. and Kibler, D. F. (1993). Concept Sharing: A Means to Improve Multi-Concept
Learning. In Proceedings of the 10th International Conference on Machine Learning,
pages 89–96.

Davis, J., Vı́tor Santos Costa, I. O., Page, D., and Dutra, I. (2004). Using Bayesian Clas-
sifiers to Combine Rules. In Working Notes of the Third Workshop on Multi-Relational
Data Mining (MRDM-2004) in conjunction with the Tenth ACM SIGKDD International
Conference on Knowlege Discovery and Data Mining (KDD-2004), Seattle, Washing-
ton, USA.

Davis, J., Burnside, E., de Castro Dutra, I., Page, D., and Costa, V. S. (2005a). An Inte-
grated Approach to Learning Bayesian Networks of Rules. In J. Gama, R. Camacho,

218 BIBLIOGRAPHY

P. Brazdil, A. Jorge, and L. Torgo, editors, Proceedings of the Sixteenth European Con-
ference on Machine Learning (ECML-2005), volume 3720 of Lecture Notes in Com-
puter Science, pages 84–95. Springer.

Davis, J., Burnside, E., Dutra, I., Page, D., Ramakrishnan, R., Costa, V. S., and Shavlik,
J. (2005b). View Learning for Statistical Relational Learning: With an Application to
Mammography. In Proceedings of the 19th International Joint Conference on Artificial
Intelligence.

Davis, J., Costa, V. S., Ray, S., and Page, D. (2007a). An Integrated Approach to Feature
Construction and Model Building for Drug Activity Prediction. In Proceedings of the
24th International Conference on Machine Learning.

Davis, J., Ong, I., Struyf, J., Burnside, E., Page, D., and Costa, V. S. (2007b). Change of
Representation for Statistical Relational Learning. In Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence.

De Raedt, L. (2008). Logical and Relational Learning. Springer-Verlag.

De Raedt, L. and Bruynooghe, M. (1994). Interactive Theory Revision. In R. Michal-
ski and G. Tecuci, editors, Machine Learning: a Multistrategy Approach, Volume IV .
Morgan Kaufmann.

De Raedt, L. and Kersting, K. (2003). Probabilistic Logic Learning. SIGKDD Explo-
rations, 5(1), 31–48.

De Raedt, L. and Kersting, K. (2004). Probabilistic Inductive Logic Programming. In
S. Ben-David, J. Case, and A. Maruoka, editors, Proceedings of the Fifteenth Interna-
tional Conference on Algorithmic Learning Theory (ALT-2004), volume 3244 of Lec-
ture Notes in Computer Science, pages 19–36. Springer.

De Raedt, L. and Ramon, J. (2004). Condensed Representations for Inductive Logic
Programming. In Proceedings of the 9th International Conference on the Principles of
Knowledge Representation and Reasoning.

De Raedt, L., Lavrac, N., and Dzeroski, S. (1993). Multiple Predicate Learning. In Pro-
ceedings of the 13th International Joint Conference on Artificial Intelligence, Cham-
bery, France, pages 1037–1043.

De Raedt, L., Kimmig, A., and Toivonen, H. (2007). ProbLog: A Probabilistic Prolog
and Its Application in Link Discovery. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence, pages 2462–2467.

De Raedt, L., Frasconi, P., Kersting, K., and Muggleton, S., editors (2008). Probabilis-
tic Inductive Logic Programming - Theory and Applications, volume 4911 of Lecture
Notes in Computer Science. Springer.

BIBLIOGRAPHY 219

De Salvo Braz, R., Amir, E., and Roth, D. (2007). Lifted First-Order Probabilistic In-
ference. In L. Getoor and B. Taskar, editors, Introduction to Statistical Relational
Learning. The MIT press.

Dehaspe, L. (1997). Maximum Entropy Modeling with Clausal Constraints. In N. Lavrač
and S. Džeroski, editors, Proceedings of the Seventh International Workshop on In-
ductive Logic Programming (ILP-1997), volume 1297 of Lecture Notes in Computer
Science, pages 109–124. Springer.

Dehaspe, L., Toivonen, H., and King, R. (1998). Finding Frequent Substructures in Chem-
ical Compounds. In Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining (KDD-1998), New York City, New York, USA. AAAI
Press.

Dempster, A., Laird, N., Rubin, D., et al. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, 39(1), 1–38.

Deshpande, A., Milch, B., Zettlemoyer, L., and Kaelbling, L. (2007). Learning Proba-
bilistic Relational Dynamics for Multiple Tasks. In Proceedings of the 23rd Conference
on Uncertainty in Artificial Intelligence (UAI-07), pages 83–92.

Dietterich, T., Getoor, L., and Murphy, K., editors (2004). Working Notes of the ICML-
2004 Workshop on Statistical Relational Learning and its Connections to Other Fields
(SRL-04).

Domingos, P. and Richardson, M. (2004). Markov Logic: A Unifying Framework for Sta-
tistical Relational Learning. In Proceedings of the ICML-2004 Workshop on Statistical
Relational Learning and its Connections to Other Fields, pages 49–54.

Duong, T., Phung, D., Bui, H., and Venkatesh, S. (2005). Efficient Coxian Duration Mod-
elling for Activity Recognition in Smart Environments with the Hidden semi-Markov
Model. In Proceedings of the Second Conference on Intelligent Sensors, Sensor Net-
works and Information Processing, Melbourne, Australia, pages 277–282.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press.

Džeroski, S., Schulze-Kremer, S., Heidtke, K., Siems, K., Wettschereck, D., and Bloc-
keel, H. (1998). Diterpene Structure Elucidation from13C NMR Spectra with Induc-
tive Logic Programming. Applied Artificial Intelligence, Special Issue on First-Order
Knowledge Discovery in Databases, 12, 363–383.

Eronen, L., Geerts, F., and Toivonen, H. (2004). A Markov Chain Approach to Recon-
struction of Long Haplotypes. In Pacific Symposium on Biocomputing (PSB-2004),
pages 104–115.

220 BIBLIOGRAPHY

Eronen, L., Geerts, F., and Toivonen, H. (2006). HaploRec: Efficient and Accurate Large-
Scale Reconstruction of Haplotypes. BMC Bioinformatics, 7, 542.

Evgeniou, T., Micchelli, C. A., and Pontil, M. (2005). Learning Multiple Tasks with
Kernel Methods. Journal of Machine Learning Research, 6, 615–637.

Fang, H., Tong, W., Shi, L., Blair, R., Perkins, R., Branham, W., Hass, B., Xie, Q., Dial,
S., Moland, C., and Sheehan, D. (2001). Structure-Activity Relationships for a Large
Diverse Set of Natural, Synthetic, and Environmental Estrogens. Chemical Research
in Toxicology, 14(3), 280–294.

Fawcett, T. (2003). ROC Graphs: Notes and Practical Considerations for Data Mining
Researchers. Technical Report HPL-2003-4, Hewlett Packard Laboratories.

Fawcett, T. and Provost, F. (1997). Adaptive Fraud Detection. Data Mining and Knowl-
edge Discovery, 1(3), 291–316.

Fayyad, U. and Uthurusamy, R. (2002). Evolving data into mining solutions for insights.
Commun. ACM, 45(8), 28–31.

Fern, A. (2005). A Simple-Transition Model for Relational Sequences. In Proceedings of
the 19th International Joint Conference on Artificial Intelligence, Edinburgh, Scotland,
UK, pages 696–701.

Fern, A., Getoor, L., and Milch, B., editors (2006). ICML Workshop on Open Problems
in Statistical Relational Learning, Pittsburgh, PA, USA.

Fine, S., Singer, Y., and Tishby, N. (1998). The hierarchical hidden Markov model:
analysis and applications. Machine Learning, 32, 41–62.

Flach, P. (1994). Simply Logical: Intelligent Reasoning by Example. John Wiley.

Flach, P. and Lachiche, N. (2004). Naive Bayesian classification of structured data. Ma-
chine Learning, 57(3), 233–269.

Frasconi, P., Passerini, A., Muggleton, S., and Lodhi, H. (2005). Declarative Kernels. In
S. Kramer and B. Pfahringer, editors, Inductive Logic Programming, 15th International
Conference, ILP 2 005, Late-Breaking Papers, pages 17–19.

Frasconi, P., Jaeger, M., and Passerini, A. (2008). Feature Discovery with Type Exten-
sion Trees. In Proceedings of the 18th International Conference on Inductive Logic
Programming.

Friedman, N. and Goldszmidt, M. (1996). Building Classifiers Using Bayesian Networks.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI-
1996), Vol. 2, pages 1277–1284, Portland, Oregon, USA. AAAI Press / The MIT Press.

BIBLIOGRAPHY 221

Garey, M. R. and Johnson, D. S. (1975). Complexity Results for Multiprocessor Schedul-
ing under Resource Constraints. SIAM Journal Comp., 4(4), 397–411.

Gärtner, T. (2003). A survey of kernels for structured data. SIGKDD Explor. Newsl., 5(1),
49–58.

Gärtner, T., Lloyd, J., and Flach, P. (2004). Kernels and Distances for Structured Data.
Machine Learning, 57(3), 205–232.

Getoor, L. (2003). Link mining: a new data mining challenge. SIGKDD Explorations,
5(1), 84 – 89.

Getoor, L. and Jensen, D., editors (2000). Working Notes of the AAAI-2000 Workshop on
Learning Statistical Models from Relational Data (SRL-00).

Getoor, L. and Jensen, D., editors (2003). Working Notes of the IJCAI-2003 Workshop on
Learning Statistical Models from Relational Data (SRL-03).

Getoor, L. and Taskar, B., editors (2007). Statistical Relational Learning. MIT press.

Getoor, L., Friedman, N., Koller, D., and Pfeffer, A. (2001). Learning Probabilistic Rela-
tional Models. In S. Džeroski and N. Lavrač, editors, Relational Data Mining. Springer.

Ghahramani, Z. and Hinton, G. E. (1998). Switching State-Space Models. Technical
report, Department of Computer Science, University of Toronto.

Ghahramani, Z. and Jordan, M. I. (1997). Factorial Hidden Markov Models. Machine
Learning, 29(2-3), 245–273.

Girolami, M. and Kabán, A. (2003). Simplicial Mixtures of Markov Chains: Distributed
Modelling of Dynamic User Profiles. In Proceedings of the 17th Annual Conference
on Neural Information Processing Systems.

Gray, A. and Haahr, M. (2004). Personalised, collaborative spam filtering. In Proceedings
of the First Conference on Email and Anti-Spam (CEAS-2004).

Greenberg, S. (1988). Using Unix: Collected Traces of 168 Users. Technical report,
Department of Computer Science, University of Calgary, Alberta.

Grossman, D. and Domingos, P. (2004). Learning Bayesian Network Classifiers by
Maximizing Conditional Likelihood. In Proceedings of the Twenty-First International
Conference on Machine Learning (ICML-2004), pages 361–368, Banff, Canada. ACM
Press.

Halldórsson, B., Bafna, V., Edwards, N., Lippert, R., Yooseph, S., and Istrail, S. (2004).
A Survey of Computational Methods for Determining Haplotypes. In Computational
Methods for SNPs and Haplotype Inference, volume 2983 of Lecture Notes in Com-
puter Science, pages 26–47.

222 BIBLIOGRAPHY

Han, J. and Kamber, M. (2001). Data Mining: Concepts and Techniques. Academic
Press.

Harville, M. and Li, D. (2004). Fast, Integrated Person Tracking and Activity Recognition
with Plan-View Templates from a Single Stereo Camera. In Proceedings of the 2nd
IEEE Computer Society Conference on Computer VIsion and Pattern Recognition.

Hubbard, T., Murzin, A., Brenner, S., and Chotia, C. (1997). SCOP: a Structural Classi-
fication of Proteins Database. Nucleic Acids Res., 27(1), 236–239.

Hudson, R. (2002). Generating Samples Under a Wright-Fisher Neutral Model of Genetic
Variation. Bioinformatics, 18, 337–338.

Huynh, T. and Mooney, R. (2008). Discriminative structure and parameter learning for
Markov logic networks. In Proceedings of the 25th Annual International Conference
on Machine Learning (ICML 2008), pages 416–423.

Jacobs, N. and Blockeel, H. (2003). User Modeling with Sequential Data. In Proceedings
of the 10th Conference on Human Computer Interaction, pages 557–561.

Jaeger, M. (1997). Relational Bayesian Networks. In D. Geiger and P. Shenoy, editors,
Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI-97), pages 266–273, Providence, Rhode Island, USA. Morgan Kaufmann.

Jebara, T. (2004). Multi-task feature and kernel selection for SVMs. In Proceedings of
the twenty-first international conference on Machine learning, page 55, New York, NY,
USA. ACM.

Joachims, T. (1999). Making large-scale support vector machine learning practical. Ad-
vances in kernel methods: support vector learning, pages 169–184.

Jordan, M. I. (1999). An Introduction to Variational Methods for Graphical Models.
Machine Learning, 37, 183–233.

Jordan, M. I. and Weiss, Y. (2002). Graphical models: probabilistic inference. In M. Ar-
bib, editor, Handbook of neural networks and brain theory. MIT Press.

Jordan, M. I., Ghahramani, Z., and Saul, L. K. (1996). Hidden Markov Decision Trees.
In Proceedings of the 9th Conference on Advances in Neural Information Processing
Systems.

Kääriäinen, M., Landwehr, N., Lappalainen, S., and Mielikäinen, T. (2007). Combining
haplotypers. Technical Report Technical Report C-2007-57, University of Helsinki,
Department of Computer Science.

Karwath, A., Kersting, K., and Landwehr, N. (2008). Boosting relational sequence align-
ments (short paper). In Proceedings of the 8th IEEE International Conference on Data
Mining (ICDM 2008).

BIBLIOGRAPHY 223

Kaufman, L. (1999). Solving the quadratic programming problem arising in support vec-
tor classification. In Advances in kernel methods: support vector learning, pages 147–
167. MIT Press.

Kersting, K. (2006). An inductive logic programming approach to statistical relational
learning: Thesis. AI Commun., 19(4), 389–390.

Kersting, K. and De Raedt, L. (2001). Bayesian Logic Programs. Technical Report 151,
University of Freiburg, Institute for Computer Science.

Kersting, K. and Gärtner, T. (2004). Fisher Kernels for Logical Sequences. In Proceedings
of the 15th ECML, volume 3201 of Lecture Notes in Computer Science, pages 205–216.
Springer.

Kersting, K. and Raedt, L. D. (2007). Bayesian Logic Programming: Theory and Tool. In
L. Getoor and B. Taskar, editors, Introduction to Statistical Relational Learning. The
MIT Press.

Kersting, K., De Raedt, L., and Raiko, T. (2006). Logical Hidden Markov Models. Jour-
nal of Artificial Intelligence Research, 25, 425–456.

Khan, K., Muggleton, S., and Parson, R. (1998). Repeat Learning Using Predicate Inven-
tion. In Proceedings of the 8th International Workshop on Inductive Logic Program-
ming, Madison, Wisconsin, USA, volume 1446 of Lecture Notes in Computer Science,
pages 165–174.

Kimmel, G. and Shamir, R. (2005). A Block-Free Hidden Markov Model for Genotypes
and Its Applications to Disease Association. Journal of Computational Biology, 12(10),
1243–1259.

King, R., Srinivasan, A., and Sternberg, M. (1995). Relating Chemical Activity to Struc-
ture: an Examination of ILP Successes. New Generation Computing, 13(2,4), 411–433.

Kirsten, M., Wrobel, S., and Horváth, T. (2001). Distance based approaches to relational
learning and clustering. In Relational Data Mining, pages 213–230. Springer.

Kok, S. and Domingos, P. (2005). Learning the structure of Markov logic networks. In
Proceedings of the 22nd international conference on Machine learning, pages 441–
448, New York, NY, USA. ACM.

Koller, D. (1999). Probabilistic Relational Models. In S. Džeroski and P. Flach, edi-
tors, Proceedings of the 9th International Workshop on Inductive Logic Programming,
volume 1634 of Lecture Notes in Artificial Intelligence, pages 3–13. Springer-Verlag.
Invited paper.

Korf, I. (2004). Gene finding in novel genomes. BMC Bioinformatics, 5(59), 1471–2105.

224 BIBLIOGRAPHY

Kramer, S. and De Raedt, L. (2001). Feature Construction with Version Spaces for Bio-
chemical Applications. In Proceedings of the Eighteenth International Conference on
Machine Learning, pages 258–265. Morgan Kaufmann Publishers Inc.

Kramer, S., Lavrac, N., and Flach, P. (2001). Propositionalization Approaches to Rela-
tional Data Mining. In S. Džeroski and N. Lavrač, editors, Relational Data Mining,
pages 262–291. Springer-Verlag.

Krogel, M. and Wrobel, S. (2001). Transformation-based Learning Using Multirelational
Aggregation. In C. Rouveirol and M. Sebag, editors, Proceedings of the Eleventh
International Conference on Inductive Logic Programming (ILP-2001), volume 2157
of Lecture Notes in Computer Science. Springer.

Lachiche, N. and Flach, P. A. (2003). 1BC2: a true first-order Bayesian classifier. In
S. Matwin and C. Sammut, editors, Proceedings of the 12th International Conference
on Inductive Logic Programming, volume 2583 of Lecture Notes in Artificial Intelli-
gence, pages 133–148. Springer-Verlag.

Laird, J. E. and van Lent, M. (2000). Human-Level AI’s Killer Application: Interactive
Computer Games. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelli-
gence.

Lanckriet, G. R. G., Cristianini, N., Bartlett, P., Ghaoui, L. E., and Jordan, M. I. (2004).
Learning the Kernel Matrix with Semidefinite Programming. Journal of Machine
Learning Research, 5, 27–72.

Landwehr, N. (2008). Modeling interleaved hidden processes. In Proceedings of the 25th
International Conference on Machine Learning, Helsinki, Finland, June 5-9, 2008, vol-
ume 307 of ACM International Conference Proceeding Series, pages 520–527. ACM.

Landwehr, N. and De Raedt, L. (2007). r-grams: Relational Grams. In Proceedings of
the 20th International Joint Conference on Artificial Intelligence (IJCAI-2007), Hyder-
abad, India, January 6-12, 2007, pages 907–912.

Landwehr, N. and Mielikäinen, T. (2008). Probabilistic Logic Learning from Haplotype
Data. In L. D. Raedt, P. Frasconi, K. Kersting, and S. Muggleton, editors, Probabilis-
tic Inductive Logic Programming - Theory and Applications, volume 4911 of Lecture
Notes in Computer Science, pages 263–286. Springer.

Landwehr, N., Hall, M., and Frank, E. (2003). Logistic Model Trees. In Proceedings of
the 14th European Conference on Machine Learning (ECML-03).

Landwehr, N., Hall, M., and Frank, E. (2005a). Logistic Model Trees. Machine Learning,
59(1-2), 161–205.

BIBLIOGRAPHY 225

Landwehr, N., Kersting, K., and De Raedt, L. (2005b). nFOIL: Integrating Naive Bayes
and FOIL. In Proceedings of the 20th National Conference on Artificial Intelligence
(AAAI-2005), pages 795–800.

Landwehr, N., Mielikäinen, T., Landwehr, L. N., Mielikäinen, T., Eronen, L., Toivonen,
H., and Mannila, H. (2006a). Constrained Hidden Markov Models for Population-
based Haplotyping (Extended Abstract). In Proceedings of the Workshop on Proba-
bilistic Modeling and Machine Learning in Structural and Systems Biology (PMSB).

Landwehr, N., Passerini, A., De Raedt, L., and Frasconi, P. (2006b). kFOIL: Learning
Simple Relational Kernels. In Proceedings of the Twenty-First National Conference on
Artificial Intelligence July 16-20, 2006, Boston, Massachusetts, USA.

Landwehr, N., Mielikäinen, T., Eronen, L., Toivonen, H., and Mannila, H. (2007a). Con-
strained Hidden Markov Models for Population-based Haplotyping. BMC Bioinfor-
matics, 8 (Suppl 2).

Landwehr, N., Kersting, K., and De Raedt, L. (2007b). Integrating Naı̈ve Bayes and
FOIL. Journal of Machine Learning Research, 8, 481–507.

Landwehr, N., Gutmann, B., Thon, I., Philipose, M., and De Raedt, L. (2007c). Relational
Transformation-based Tagging for Human Activity Recognition. In Working Notes of
the 6th Workshop on Multi-Relational Data Mining (MRDM-07) at ECML/PKDD-07.

Landwehr, N., Gutmann, B., Thon, I., Philipose, M., and De Raedt, L. (2008). Relational
Transformation-based Tagging for Activity Recognition. Fundamenta Informaticae,
89, 111–129.

Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local Computations with Probabilities
on Graphical Structures and Their Application to Expert Systems. Journal of the Royal
Statistical Society, 50(2), 157–224.

Lavrac, N. and Dzeroski, S. (1994). Inductive Logic Programming: Techniques and Ap-
plication. Ellis Horwood.

Lavrač, N. and Džeroski, S. (1992). Background knowledge and declarative bias in in-
ductive concept learning. In K. Jantke, editor, Proceedings 3rd International Workshop
on Analogical and Inductive Inference, pages 51–71. Springer-Verlag. (Invited paper).

Lavrač, N., Džeroski, S., and Grobelnik, M. (1991). Learning Nonrecursive Definitions
of Relations with LINUS. In Y. Kodratoff, editor, Proceedings of the 5th European
Working Session on Learning, volume 482 of Lecture Notes in Artificial Intelligence,
pages 265–281. Springer-Verlag.

Lawrence, S., Giles, C. L., Tsoi, A. C., and Back, A. D. (1997). Face recognition: a
convolutional neural-network approach. IEEE Transactions on Neural Networks, 8(1),
98–113.

226 BIBLIOGRAPHY

Lee, S. and De Raedt, L. (2003). Mining Logical Sequences Using SeqLog. In Database
Technology for Data Mining, volume 2682 of Lecture Notes in Computer Science.
Springer.

Lee, W., Stolfo, S., and Mok, K. (1999). A data mining framework for building intru-
sion detection models. In Security and Privacy, 1999. Proceedings of the 1999 IEEE
Symposium on, pages 120–132.

Leslie, C. S., Eskin, E., and Noble, W. S. (2002). The Spectrum Kernel: A String Kernel
for SVM Protein Classification. In Pacific Symposium on Biocomputing, Lihue, Hawaii,
USA, pages 566–575.

Li, C., Yu, P., and Castelli, V. (1998). MALM: a framework for mining sequence database
at multiple abstraction levels. In Proceedings of the 7th International Conference on
Information and Knowledge Management (ICIKM-1998), pages 267–272.

Liang, P. and Jordan, M. I. (2008). An Asymptotic Analysis of Generative, Discrim-
inative, and Pseudolikelihood Estimators. In Proceedings of the 25th International
Conference on Machine Learning (ICML-08).

Liao, L., Fox, D., and Kautz, H. (2005a). Hierarchical conditional random fields for
GPS-based activity recognition. In Proceeding of the 12th International Symposium of
Robotics Research (ISRR 2005). Springer Verlag. Springer.

Liao, L., Fox, D., and Kautz, H. (2005b). Location-based Activity Recognition using Re-
lational Markov Networks. In Proceedings of the 19th International Joint Conference
on Artificial Intelligence, pages 773–778.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., and Watkins, C. (2002). Text
classification using string kernels. The Journal of Machine Learning Research, 2, 419–
444.

Macskassy, S. and Provost, F. (2007). Classification in Networked Data: A Toolkit and a
Univariate Case Study. Journal of Machine Learning Research, 8, 935–983.

Magoulas, G. D. and Prentza, A. (2001). Machine Learning in Medical Applications. In
Machine Learning and Its Applications, volume 2049 of Lecture Notes in Computer
Science, pages 300–307. Springer.

Manning, C. and Schütze, H. (1999). Foundations of Statistical Natural Language Pro-
cessing. The MIT Press.

Micchelli, C., Xu, Y., and Zhang, H. (2006). Universal Kernels. The Journal of Machine
Learning Research, 6, 2651–2667.

Micchelli, C. A. and Pontil, M. (2005). Learning the Kernel Function via Regularization.
Journal of Machine Learning Research, 6, 1099–1125.

BIBLIOGRAPHY 227

Minato, S. (1993). Zero-suppressed BDDs for set manipulation in combinatorial prob-
lems. In DAC ’93: Proceedings of the 30th international conference on Design au-
tomation, pages 272–277, New York, NY, USA. ACM.

Mitchell, T. (1997). Machine Learning. McGraw-Hill.

Moore, A. (1990). Efficient Memory-based Learning for Robot Control. Technical report,
Computer Laboratory, University of Cambridge, Cambridge, UK.

Muggleton, S. (1995). Inverse Entailment and Progol. New Generation Computing, Spe-
cial Issue on Inductive Logic Programming, 13, 245–286.

Muggleton, S. (1996). Stochastic logic programs. In L. D. Raedt, editor, Advances in
Inductive Logic Programming, pages 254–264. IOS Press.

Muggleton, S. (2000). Learning stochastic logic programs. Electronic Transactions in
Artificial Intelligence, 4(041).

Muggleton, S. and De Raedt, L. (1994). Inductive Logic Programming : Theory and
Methods. Journal of Logic Programming, 19, 629–679.

Muggleton, S. and Feng, C. (1990). Efficient Induction of Logic Programs. In Pro-
ceedings of the First Conference on Algorithmic Learning Theory (ALT-1990), pages
368–381, Tokyo, Japan. Springer.

Muggleton, S., Amini, A., and Sternberg, M. (2005). Support Vector Inductive Logic Pro-
gramming. In Proceedings of the 8th International Conference on Discovery Science,
pages 163–175.

Nallapati, R. (2004). Discriminative models for information retrieval. In Proceedings of
the 27th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 64–71. ACM.

Natarajan, S., Bui, H. H., Tadepalli, P., and Kersting, K. (2008). Logical hierarchical
hidden markov models for modeling user activities. In Proceedings of the 18th Inter-
national Conference on Inductive Logic Programming (ILP-2008).

Ng, A. Y. and Jordan, M. I. (2001). On Discriminative vs. Generative classifiers: A
comparison of logistic regression and naive Bayes. In Advances in Neural Information
Processing Systems 14.

Obozinski, G., Taskar, B., and Jordan, M. (June, 2006). Multi-task feature selection.
Technical report, Dept. of Statistics, UC Berkeley.

Ong, C. S., Smola, A. J., and Williamson, R. C. (2005). Learning the Kernel with Hyper-
kernels. Journal of Machine Learning Research, 6, 1043–1071.

228 BIBLIOGRAPHY

Orr, J., R., Abowd, and D., G. (2000). The smart floor: a mechanism for natural user
identification and tracking. In Proceedings of the 2nd ACM CHI 2000 Conference on
Human Factors in Computing Systems, pages 275–276.

Passerini, A., Frasconi, P., and De Raedt, L. (2006). Kernels on Prolog Proof Trees:
Statistical Learning in the ILP Setting. Journal of Machine Learning Research, 7, 307–
342.

Patterson, D., Fox, D., Kautz, H., and Philipose, M. (2005). Fine-Grained Activity Recog-
nition by Aggregating Abstract Object Usage. In Proceedings of the 9th IEEE Interna-
tional Symposium on Wearable Computers, Osaka.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann.

Perlich, C. and Provost, F. (2006). Distribution-based Aggregation for Relational Learn-
ing with Identifier Attributes. Machine Learning, 62, 65–105.

Platt, J. (1998). Sequential Minimal Optimization: A Fast Algorithm for Training Support
Vector Machines. Technical Report MSR-TR-98-14, Microsoft Research.

Platt, J. (1999). Probabilities for SV Machines. Advances in Neural Information Process-
ing Systems 12, pages 61–74.

Pollack, M. E. (2005). Intelligent Technology for an Aging Population: The Use of AI to
Assist Elders with Cognitive Impairment. AI Magazine, 26(2), 9–24.

Pomerleau, D. A. (1989). Alvinn: An Autonomous Land Vehicle in a Neural Network.
Technical Report CMU-CS-89-107, Pittsburgh, PA: Carnegie Mellon University.

Pompe, U. and Kononenko, I. (1995). Naive Bayesian Classifier within ILP-R. In Pro-
ceedings of the Fifth International Workshop on Inductive Logic Programming (ILP-
1995), pages 417–436, Tokyo, Japan.

Pompe, U. and Kononenko, I. (1997). Probabilistic First-Order Classification. In
N. Lavrač and S. Džeroski, editors, Proceedings of the Seventh International Work-
shop on Inductive Logic Programming (ILP-1997), volume 1297 of Lecture Notes in
Computer Science, pages 235–242. Springer.

Poole, D. (1997). The Independent Choice Logic for Modelling Multiple Agents Under
Uncertainty. Artificial Intelligence, 94(1-2), 7–56.

Popescul, A., Ungar, L., Lawrence, S., and Pennock, D. (2003). Statistical Relational
Learning for Document Mining. In Proceedings of the Third IEEE International Con-
ference on Data Mining (ICDM-2003), pages 275–282, Melbourne, Florida, USA.
IEEE Computer Society.

BIBLIOGRAPHY 229

Provost, F., Fawcett, T., and Kohavi, R. (1998). The Case Against Accuracy Estimation
for Comparing Induction Algorithms. In Proceeding of the Fifteenth International
Conference on Machine Learning (ICML-1998), Madison, Wisconsin, USA. Morgan
Kaufmann.

Quinlan, J. (1990). Learning Logical Definitions from Relations. Machine Learning, 5,
239–266.

Rabiner, L. (1989). A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proceedings of the IEEE, 77(2), 257–286.

Raento, M., Oulasvirta, A., Petit, R., and Toivonen, H. (2006). ContextPhone - A Proto-
typing Platform for Context-aware Mobile Applications . IEEE Pervasive Computing,
4(2), 51–59.

Rakotomamonjy, A. (2004). Optimizing area under ROC curve with SVMs. In First
Workshop on ROC Analysis in AI, at the 16th European Conference on Artificial Intel-
ligence.

Ramon, J. (2002). Clustering and instance based learning in first order logic. Ph.D.
thesis, Katholieke Universiteit Leuven, Belgium.

Ramon, J. and Bruynooghe, M. (1998). A Framework for Defining Distances Between
First-Order Logic Objects. In Proceedings of the 8th International Conference on In-
ductive Logic Programming, pages 271–280.

Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian Processes for Machine Learn-
ing (Adaptive Computation and Machine Learning). The MIT Press.

Rastas, P., Koivisto, M., Mannila, H., and Ukkonen, E. (2005). A Hidden Markov Tech-
nique for Haplotype Reconstruction. In Proceedings of the 5th Workshop on Algorithms
in Bioinformatics (WABI-2005), Mallorca, Spain, pages 140–151.

Reid, M. D. (2004). Improving Rule Evaluation Using Multitask Learning. In Pro-
ceedings of the 14th International Conference on Inductive Logic Programming, Porto,
Portugal, volume 3194. Springer.

Richardson, M. and Domingos, P. (2004). Markov Logic Networks. Technical report,
Dept. Computer Science and Engineering, University of Washington, Seattle.

Richardson, M. and Domingos, P. (2006). Markov Logic Networks. Machine Learning,
62, 107–136.

Riesenhuber, M. and Poggio, T. (1999). Hierarchical models of object recognition in
cortex. Nature Neuroscience, 2, 1019–1025.

Rissanen, J. (1978). Modeling by Shortest Data Description. Automatica, 14, 465–471.

230 BIBLIOGRAPHY

Rückert, U. and Kramer, S. (2007). Margin-Based First-Order Rule Learning. Machine
Learning, 70(2-3), 189–206.

Saigo, H., Nowozin, S., Kadowaki, T., Kudo, T., and Tsuda, K. (2009). gBoost: a mathe-
matical programming approach to graph classification and regression. Machine Learn-
ing (to appear).

Salem, R., Wessel, J., and Schork, N. (2005). A Comprehensive Literature Review of
Haplotyping Software and Methods for Use with Unrelated Individuals. Human Ge-
nomics, 2, 39–66.

Sato, T. and Kameya, Y. (1997). PRISM: A symbolic-statistical modeling language.
In Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI-97), pages 1330–1339. Morgan Kaufmann.

Saul, L. K. and Jordan, M. I. (1999). Mixed Memory Markov Models: Decomposing
Complex Stochastic Processes as Mixtures of Simpler Ones. Machine Learning, 37,
75–87.

Scheet, P. and Stephens, M. (2006). A Fast and Flexible Statistical Model for Large-
Scale Population Genotype Data: Applications to Inferring Missing Genotypes and
Haplotypic Phase. The American Journal of Human Genetics, 78, 629–644.

Semeraro, G., Esposito, F., and Malerba, D. (1995). Ideal Refinement of Datalog Pro-
grams. In Proceedings of the 5th LOPSTR, volume 1048 of Lecture Notes in Computer
Science. Springer.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. (2007). Pegasos: Primal Estimated sub-
GrAdient SOlver for SVM. Proceedings of the 24th International Conference on Ma-
chine Learning, Corvallis, Oregon, USA, pages 807–814.

Slaney, J. and Thiébaux, S. (2001). Blocks World revisited. Artificial Intelligence, 125(1-
2), 119–153.

Slattery, S. and Craven, M. (1998). Combining Statistical and Relational Methods for
Learning in Hypertext Domains. In Proceedings of the Eighth International Conference
on Inductive Logic Programming.

Srinivasan, A., Muggleton, S., King, R., and Sternberg, M. (1994). Mutagenesis: ILP
experiments in a non-determinate biological domain. In Proceedings of the 4th Inter-
national Workshop on Inductive Logic Programming, pages 217–232.

Srinivasan, A., Muggleton, S., King, R., and Sternberg, M. (1996). Theories for Muta-
genicity: a Study of First-Order and Feature-Based Induction. Artificial Intelligence,
85, 277–299.

BIBLIOGRAPHY 231

Srinivasan, A., King, R., and Bristol, D. (1999). An Assessment of ILP-Assisted Models
for Toxicology and the PTE-3 Experiment. In S. Dzeroski and P. Flach, editors, Pro-
ceedings of the Ninth Internatinal Workshop on Inductive Logic Programming (ILP-
1999), volume 1634 of Lecture Notes in Computer Science. Springer.

Steck, H. (2007). Hinge Rank Loss and the Area Under the ROC Curve. In Proceedings
of the 18th European Conference on Machine Learning, Warsaw, Poland.

Stephens, M. and Scheet, P. (2005). Accounting for Decay of Linkage Disequilibrium in
Haplotype Inference and Missing-Data Imputation. The American Journal of Human
Genetics, 76, 449–462.

Swamidass, S. J., Chen, J., Bruand, J., Phung, P., Ralaivola, L., and Baldi, P. (2005).
Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer
activity. Bioinformatics, 21(1), 359–368.

The International HapMap Consortium (2005). A Haplotype Map of the Human Genome.
Nature, 437, 1299–1320.

Thon, I., Landwehr, N., and De Raedt, L. (2008). A Simple Model for Sequences of
Relational State Descriptions. In Proceedings of the 19th European Conference on
Machine Learning (ECML-2008).

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer.

Vennekens, J., Denecker, M., and Bruynooghe, M. (2006). Representing Causal Informa-
tion About a Probabilistic Process. In Logics In Artificial Intelligence, volume 4160 of
Lecture Notes in Computer Science, pages 452–464.

Wachman, G. and Khardon, R. (2007). Learning from interpretations: a rooted kernel for
ordered hypergraphs. In Proceedings of the 24th International Conference on Machine
Learning, Corvalis, Oregon, pages 943–950.

Wang, S., Pentney, W., Popescu, A.-M., Choudhury, T., and Philipose, M. (2007). Com-
mon Sense Based Joint Training of Human Activity Recognizers. In Proceedings of
the 20th International Joint Conference on Artificial Intelligence (IJCAI-2007).

Wang, W., Barratt, B., Clayton, D., and Todd, J. (2005). Genome-wide Association Stud-
ies: Theoretical and Practical Concerns. Nature Reviews Genetics, 6, 109–118.

Wellmann, M. (1992). From Knowledge Bases to Decision Models. Knowledge Engi-
neering Review, 7, 35–53.

Wheeler, D. L. L., Barrett, T., Benson, D. A. A., Bryant, S. H. H., Canese, K., Chetvernin,
V., Church, D. M. M., Dicuccio, M., Edgar, R., Federhen, S., Feolo, M., Geer, L. Y. Y.,
Helmberg, W., Kapustin, Y., Khovayko, O., Landsman, D., Lipman, D. J. J., Madden,
T. L. L., Maglott, D. R. R., Miller, V., Ostell, J., Pruitt, K. D. D., Schuler, G. D. D.,

232 BIBLIOGRAPHY

Shumway, M., Sequeira, E., Sherry, S. T. T., Sirotkin, K., Souvorov, A., Starchenko, G.,
Tatusov, R. L. L., Tatusova, T. A. A., Wagner, L., and Yaschenko, E. (2008). Database
resources of the National Center for Biotechnology Information. Nucleic Acids Res,
33, 39–45.

Winters-Hilt, S. (2006). Hidden Markov Model Variants and their Application. BMC
Bioinformatics, 7 (Suppl. 2).

Witten, I. and Frank, E. (2000). Data Mining: Practical Machine Learning Tools and
Techniques with Java Implemenations. Morgan Kaufmann.

Wu, H. D. D. and Vapnik, V. (1999). Support Vector Machines for Spam Categorization.
IEEE Transactions on Neural Networks, 10(5), 1048–1054.

Yan, X. and Han, J. (2002). gSpan: Graph-based substructure pattern mining. In Pro-
ceedings of the 2002 IEEE International Conference on Data Mining (ICDM-2002).

Zaki, M. (2002). Efficiently mining frequent trees in a forest. In Proceedings of the 8th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD-2002), pages 71–80.

Zettlemoyer, L. S., Pasula, H., and Kaelbling, L. P. (2005). Learning Planning Rules in
Noisy Stochastic Worlds. In Proceedings of the 20th National Conference on Artificial
Intelligence (AAAI-05), pages 911–918.

Zhang, W., Chen, F., Xu, W., and Cao, Z. (2007). Decomposition in hidden Markov
models for activity recognition. In Multimedia Content Analysis and Mining, volume
4577 of Lecture Notes in Computer Science.

Publication List

Journal Articles

• N. Landwehr, B. Gutmann, I. Thon, M. Philipose, and L. De Raedt. Relational
Transformation-based Tagging for Activity Recognition. Fundamenta Informaticae
89, pp. 111-129, 2008.

• N. Landwehr, T. Mielikäinen, L. Eronen, H. Toivonen, and H. Mannila. Con-
strained Hidden Markov Models for Population-based Haplotyping. BMC Bioin-
formatics 8 (Suppl. 2) : S9, 2007.

• N. Landwehr, K. Kersting, and L. De Raedt. Integrating Naı̈ve Bayes and FOIL.
Journal of Machine Learning Research 8, pp. 481-507, 2007.

• N. Landwehr, M. Hall, and E. Frank. Logistic Model Trees. Machine Learning 59
(1-2), pp. 161-205, 2005.

Conferences and Workshops, Published in Proceedings

• A. Karwath, K. Kersting and N. Landwehr. Boosting Relational Sequence Align-
ments (Short Paper). In Proceedings of the 8th IEEE International Conference on
Data Mining (ICDM-2008), Pisa, Italy, 2008.

• I. Thon, N. Landwehr and L. De Raedt. A Simple Model for Sequences of Relational
State Descriptions. In Proceedings of the 19th European Conference on Machine
Learning (ECML-2008), Antwerp, Belgium, 2008, volume 5212 of Lecture Notes
in Computer Science, pp. 506–521, Springer.
Shorter versions of this paper also appeared at the 6th International Workshop on
Mining and Learning with Graphs (MLG-2008), and in the Proceedings of the 18th
International Conference on Inductive Logic Programming (ILP-2008, Late Break-
ing Papers).

233

• N. Landwehr. Modeling Interleaved Hidden Processes. In Proceedings of the 25th
International Conference on Machine Learning (ICML-2008), Helsinki, Finland,
2008.

• N. Landwehr, B. Gutmann, I. Thon, M. Philipose, and L. De Raedt. Relational
Transformation-based Tagging for Human Activity Recognition. In Proceedings of
the 6th Workshop on Multi-Relational Data Mining (MRDM-2007) at the 18th Eu-
ropean Conference on Machine Learning (ECML-2007), Warsaw, Poland.
A different version of this paper also appeared in the Proceedings of the Interna-
tional Workshop on Knowledge Discovery from Ubiquitous Data Streams (IWK-
DUDS) at ECML-2007.

• N. Landwehr and L. De Raedt. r-grams: Relational Grams. In Proceedings of the
Twentieth Joint International Conference on Artificial Intelligence (IJCAI-2007),
Hyderabad, India, 2007.

• N. Landwehr, A. Passerini, L. De Raedt and P. Frasconi. kFOIL: Learning Simple
Relational Kernels. In Proceedings of the 21st National Conference on Artificial
Intelligence (AAAI-2006), Boston, Massachusetts, USA, 2006.
A shorter version of this paper also appeared in the Proceedings of the 16th Inter-
national Conference on Inductive Logic Programming (ILP-2006, Short Papers).

• N. Landwehr, T. Mielikäinen, L. Eronen, H. Toivonen, and H. Mannila. Con-
strained Hidden Markov Models for Population-based Haplotyping (Extended Ab-
stract). In Proceedings of the Workshop on Probabilistic Modeling and Machine
Learning in Structural and Systems Biology, Tuusula, Finland, 2006.

• N. Landwehr, K. Kersting, and L. De Raedt. nFOIL: Integrating naı̈ve Bayes and
FOIL. In Proceedings of the 20th National Conference on Artificial Intelligence
(AAAI-2005), Pittsburgh, Pennsylvania, USA, 2005.
A shorter version of this paper also appeared in the Proceedings of the 15th Inter-
national Conference on Inductive Logic Programming (ILP-2005, Late Breaking
Papers).

• N. Landwehr, M. Hall, and E. Frank. Logistic Model Trees. In Proceedings of
the 14th European Conference on Machine Learning (ECML-2003), Dubrovnik,
Croatia, 2003, volume 2837 of Lecture Notes in Computer Science, pp. 241–252,
Springer.

Book Chapters
• N. Landwehr and T. Mielikäinen. Probabilistic Logic Learning from Haplotype

Data. In L. De Raedt, P. Frasconi, K. Kersting and S. Muggleton (Eds.): Proba-
bilistic Inductive Logic Programming, Springer, 2008.

• K. Kersting, L. De Raedt, B. Gutmann, A. Karwath and N. Landwehr. Relational
Sequence Learning. In L. De Raedt, P. Frasconi, K. Kersting and S. Muggleton
(Eds.): Probabilistic Inductive Logic Programming, Springer, 2008.

• K. Kersting and N. Landwehr. Scaled Conjugate Gradients for Maximum Likeli-
hood: An Empirical Comparison with the EM Algorithm. In J. A. Gmez, S. Moral
and A. Salmern (Eds.): Advances in Learning Bayesian Networks, Springer, 2004.

Technical Reports
• M. Kääriänen, N. Landwehr, S. Lappalainen and T. Mielikäinen. Combining Hap-

lotypers, Technical Report C-2007-57, University of Helsinki, Department of Com-
puter Science, 2007.

Biography

Niels Landwehr was born on February 22, 1977 in Kiel, Germany. He went to school
at the Freie Waldorfschule in Kiel, from where he graduated (with “Abitur”) in July
1996. After studying mathematics at the Christian-Albrechts-University in Kiel for one
semester, and one year of compulsory civil service, he started studying computer science
at the Albert-Ludwigs-University in Freiburg, Germany, in October 1998. In October
2000 he obtained a “Vordiplom”, and in July 2003 a “Diplom” in computer science from
this university. Afterwards, he spent 6 months as an intern in a software company in
Buenos Aires, supported by a grant from “Capacity Building International”, Germany, a
human resources development organization. In June 2004 he joined the machine learning
group at the Albert-Ludwigs-University Freiburg and started work on a Ph.D. in the area
of statistical relational learning, supervised by Luc De Raedt. In April 2007 he moved
with Luc De Raedt to the DTAI (Declarative Talen en Artificiële Intelligentie) group at
the Katholieke Universiteit Leuven, Belgium. In February 2009 he will defend his Ph.D.
thesis on “Trading Expressivity for Efficiency in Statistical Relational Learning” at the
Katholieke Universiteit Leuven.

237

