
RAMus - a New Lightweight Block Cipher for
RAM Encryption

Raluca Posteuca1 and Vincent Rijmen1,2

1 imec-COSIC, Department of Electrical Engineering (ESAT), KU Leuven, Belgium
{raluca.posteuca, vincent.rijmen}@esat.kuleuven.be

2 Department of Informatics, University of Bergen, Bergen 5020, Norway

Keywords: RAMus· RAM encryption · Branch number · 2S-strategy

Abstract. Over the past decades, there has been a dramatic increase
of the attacks recovering the data from the RAM memory. These have
heightened the need for new solutions and primitives suitable for the
encryption of this information. In this paper we introduce RAMus, a new
tweakable lightweight block cipher whose properties support its usage
for securing the RAM memory. In this sense, RAMus attains all the
requirements provided by the (German) Federal Office of Information
Security (BSI) in the domain of encryption algorithms suitable for RAM
and memory encryption. The design strategy of RAMus is inspired from
the LS-approach. Compared to the literature, in our proposal the linear
layer is replaced by a second Sbox layer. In RAMus, the diffusion is
ensured by the Sbox layers, which use Sboxes with a non-trivial branch
number.

1 Introduction

The security of a personal device, such as a mobile phone or a computer, is
one of the most analyzed topics in the domain of cryptography, security, and
privacy. Even though most of the vulnerabilities arise from the online behavior
of the device’s user, in the last decade special attention was given to the
security of the data stored in the memory of the device. The attacks aiming
at recovering the data from the RAM, such as the cold boot attack (26) or the
direct memory access attack (40), proved the increasing importance of protecting
this information. In order to increase the security of the data stored in the
RAM memory, both the academia and the industry invested their resources in
designing a series of solutions. While the resulted proposals employ different
techniques to ensure the security of the cryptographic secrets, most of them are
based on one of the following block ciphers: AES (23), Prince (19), Qarma (10)
or ASCON (24).

In order to support the development of RAM encryption solutions, The
(German) Federal Office of Information Security (BSI) published, in 2013, a
methodology for cryptographic rating of memory encryption schemes used in
smartcards and similar devices (1). According to this methodology, an algorithm

2 R. Posteuca and V. Rijmen

suitable for memory encryption schemes should exhibit small area for its
implementation, while having high speed, which is translated in our work by both
low latency and high throughput. Furthermore, the methodology recommends
the use of a tweakable block cipher, where the tweak is parameterised with the
memory address of the plaintext. Last but not least, the methodology discusses
the necessary security of a suitable block cipher with respect to the known
attacks. While linear and differential cryptanalysis are considered critical, the
methodology considers less relevant the security against related-key attacks. The
methodology also discusses the impact of side-channel attacks, noting that this
type of attacks could lead to critical vulnerabilities in some particular scenarios.

Our contribution In order to contribute to the efforts of the cryptographic
community in the area of secure memory encryption, we propose RAMus, a new
lightweight tweakable block cipher. The design of RAMus follows the 2S-strategy,
a new design framework introduced in this paper. The cipher satisfies the
constraints imposed by the BSI methodology, while ensuring that its threshold
implementation against side-channel attacks does not have any overheads.
RAMus is a tweakable block cipher, with a tweak space of 264. Therefore, for the
32- and 64-bit systems, it allows the usage of the same symmetric key for the
entire RAM memory, without the vulnerabilities induced by the ECB mode of
operation and the overhead of other modes of operation, such as XEX or XTS.

In order to ensure low area of the implementation of RAMus, the round
function, tweak update function and key schedule use only two basic operations:
one 8-bit Sbox and the XOR addition. To ensure good diffusion through the
cipher, the Sbox was designed such that it has good cryptographic properties,
while having non-trivial linear and differential branch numbers.

The latency of the cipher is closely related to the number of non-linear
operations used for the round function. We note that the chosen Sbox can
be implemented with only 8 non-linear gates, the minimum number of non-
linear gates of an 8-bit Sbox with good cryptographic properties. Moreover, the
strategy used for the design of the Sbox ensures resistance against side-channel
attacks according to the literature (20; 32).

Related work The related work covers two areas. The first one regards the
block ciphers that are used for RAM encryption solutions, while the second one
refers to the design and usage of Sboxes with non-trivial linear and differential
branch number.

Block ciphers suitable for RAM encryption. The most common block ciphers
used to design RAM encryption solutions include AES, Prince, Qarma and
ASCON. Although the security of all these ciphers was subjected to extended
analysis (especially in the case of AES, which was selected as a NIST standard,
and ASCON, which is part of the final portofolio of the CAESAR competition
and a finalist of the NIST Lightweight competition), we remark that none of
these ciphers fulfill all the requirements presented in the BSI methodology. Note

RAMus - a New Lightweight Block Cipher for RAM Encryption 3

that AES, Prince and ASCON are not tweakable, while the Sbox of Qarma does
not lend itself easily to a lightweight side-channel resistant implementation.

Sboxes with non-trivial branch numbers. Through the last decades, the problem
of linear and differential branch numbers of an Sbox caught the attention of the
cryptographic community. The first step in this direction regards the design and
analysis of 4-bit Sboxes with non-trivial differential branch number, such as the
Sboxes of Serpent (15) or PRESENT (18). The natural extension of this field was
proposed in (36), which presents the classification of all 4-bit Sbox equivalence
classes with respect to the differential branch number. The next step of this
research was the design and analysis of 5-bit Sboxes with non-trivial branch
numbers, such as the Sbox of ASCON which has both linear and differential
branch number 3. This work was continued in (37), which proposes new design
strategies for 5-bit and 6-bit Sboxes with non-trivial branch numbers.

Further, (28) introduces the unbalanced-bridge approach, a technique
suitable for the design of 8-bit Sboxes with linear and differential branch number
3. Such Sboxes have good cryptographic properties, while allowing for bit-slice
implementations which use at least 11 non-linear gates. Using this type of
Sboxes, the authors propose the block cipher PIPO, which follows the LS-design
framework. We note that the authors also present a series of 8-bit Sboxes with
differential branch number 4, but with non-linearity 0, concluding that this type
of Sboxes would induce vulnerabilities with respect to linear cryptanalysis.

Structure of the paper The rest of this paper is organized as follows:
in Section 2 we present some terminology regarding linear and differential
cryptanalysis, the branch number of an Sbox and the LS-design framework.
In Section 3 we introduce the 2S-strategy, a new design technique inspired by
the LS-design framework. Section 4 introduces the RAMus block cipher, as a
parameterization of the 2S-strategy, and Section 5 discusses the design rationale
of RAMus. Section 6 presents the security analysis of RAMus with respect to
the most important cryptanalytic techniques, while in Section 7 we discuss the
performance of RAMus in hardware implementations.

2 Preliminaries

Linear cryptanalysis Linear cryptanalysis (31) was introduced in 1993 by
Matsui as an attack against DES (6). This approach aims at finding linear
approximations between the bits of the plaintext and the ciphertext which hold
with a probability different from . In order to exploit such approximations, it is
necessary that the associated probability is different from 0.5, i.e.

Pr = #{p ∈ Fn
2 |
⊕
i

pi ⊕
⊕
j

cj = 0}/2n ̸= 0.5,

where pi and cj represent the ith bit of the plaintext and the jth bit of the
ciphertext, respectively. The quality of a linear approximation defines the success

4 R. Posteuca and V. Rijmen

rate of the future attack, and in this paper it is measured by the correlation of
the linear approximation, which is defined as corr = 2 · Pr − 1.

The most common approach to finding such approximations is by using
a divide-and-conquer approach. Matsui’s strategy was to identify linear
approximations between the input and the output of each operation and further
connect them, resulting in the linear trail. The analysis of every operation can
be performed by following the rules of propagation of linear trails introduced in
(14; 21; 22). If the case of the propagation through linear layers can be considered
straightforward, the case of non-linear layers is more involved. In particular,
for the analysis of the Sbox with respect to linear cryptanalysis the standard
approach is to compute the corresponding Linear Approximation Table (LAT).

Definition 1. Let S be an Sbox of size n and "·" be the standard inner product.
Then, the LAT of an Sbox S represents the matrix defined as follows:

LATS [α, β] = #{x|α · x⊕ β · S(x) = 0} − 2n−1.

The maximum absolute value of LATS is called the liniar uniformity of the
Sbox S and it defines the quality of the Sbox with respect to linear cryptanalysis.

Differential cryptanalysis Differential cryptanalysis (16) was introduced
in 1990 by Biham and Shamir, also as an attack on DES. This attack
aims at analysing the propagation of differences from a plaintext pair to the
corresponding ciphertext pair. The approach is similar to the one presented
above, involving the analysis of the propagation through the particular
operations of a cipher and further connect them, resulting in the differential
characteristic. Usually, the difference is considered with respect to the XOR
operation and in this paper we conform to this. While the difference propagation
through the linear layers are straightforward, the analysis of the differences’
propagation through a non-linear layer involves the computation of its
corresponding Differential Distribution Table (DDT).

Definition 2. The DDT of an Sbox S represents the matrix of integers defined
as follows:

DDTS [δ,∆] = #{x|∆ = S(x)⊕ S(x⊕ δ)}.

The maximum value of DDTS is called the differential uniformity of the Sbox
S and it defines the quality of the Sbox with respect to differential cryptanalysis.

Branch number The main criteria in the design of a block cipher is represented
by the properties of confusion and diffusion. In most of the ciphers from
literature, the confusion is ensured by the choice of the non-linear (Sbox) layer,
while the diffusion is often ensured by the linear layer(s) of the cipher. The most
common technique to measure the diffusion of a cipher is given through the
means of the branch number of the underlying operations. For the purposes of
this work, we only discuss the concept of the branch number associated to an
Sbox. Let us denote the Hamming weight of a byte x by wt(x).

RAMus - a New Lightweight Block Cipher for RAM Encryption 5

Table 1. The properties of the DDT and the LAT of an Sbox

Any Sbox Invertible Sbox
If DDT (0,∆) ̸= 0, then ∆ = 0. If DDT (δ, 0) ̸= 0, then δ = 0.
If LAT (α, 0) ̸= 0, then α = 0. If LAT (0, β) ̸= 0, then β = 0.

Definition 3. The differential and linear branch numbers of an Sbox S, denoted
by BNd and BNl respectively, are computed as:

BNd(S) = min{wt(δ) + wt(∆)|DDTS(δ,∆) ̸= 0}
BNl(S) = min{wt(α) + wt(β)|LATS(α, β) ̸= 0}

Note that the LAT and the DDT of an Sbox have the properties described in
Table 1. A consequence of these properties is that the minimum value of the
linear and differential branch number of an invertible Sbox is 2, therefore we
consider this to be the trivial linear and differential branch number. Frequently,
the design of the non-linear layer consists of independent, parallel applications
of one or more Sboxes on partitions of the internal state. In this case, the branch
number of the entire non-linear layer is given by the lowest branch number of
the underlying Sboxes.

Bounds on linear and differential branch number. In (38) the authors present the
bound on linear and differential branch number of permutations. We summarize
their results in Lemma 1.

Lemma 1. Let S : Fn
2 → Fn

2 be a non-linear permutation. Then,

• BNl(S) ≤ n− 1
• if n = 4, BNd(S) ≤ 3
• if n ≥ 5, BNd(S) ≤ ⌈2n

3 ⌉

In particular, the maximum differential branch number for an 8-bit Sbox is 6,
while the maximum linear branch number is 7. (30) presents a technique of
designing non-linear layers with maximum differential branch number. The goal
of this paper was to introduce new non-linear diffusion layers, therefore the
resulting permutations have trivial linear and differential uniformity.

The LS-design framework Nowadays, one of the goals of cryptographers is
to analyse and propose different design strategies meant to ensure the security
of the future symmetric primitives against the most important attacks. In
order to ensure the resistance of a cipher against the two most significant
mathematical attacks, namely linear and differential cryptanalysis, Daemen and
Rijmen proposed the wide-trail strategy (23).

In the last decades, the scientific community focused on analysing the security
of a block cipher against side-channel attacks (27). One of the approaches to
ensure the security of a cipher against such attacks is to implement the so called

6 R. Posteuca and V. Rijmen

masking techniques (34). While these techniques can ensure the needed level of
security, they highly influence the costs of implementing a block cipher. In order
to address this issue, Grosso et al. introduced the LS-design framework (25).

The internal state of a cipher based on the LS-design framework is viewed as
a l × s matrix. The round function, apart from the key and constant addition,
consists of two operations: a non-linear layer defined by the parallel application
of an Sbox on each row of the matrix, and a linear layer in which a linear
function is applied independently on each column. For more details regarding
the properties of these two operations and possible parameterizations we refer
the reader to the original paper.

3 The 2S-strategy

In this paper we introduce the 2S-strategy. The aim of this strategy is to lead
to the design of a tweakable block cipher which is designed only by using non-
linear operations. This design strategy is inspired by the LS-strategy described
in Section 2. In order to ensure the diffusion through the cipher, we design non-
linear layers with non-trivial linear and differential branch numbers.

3.1 Notations

The internal state of a cipher based on the 2S-strategy is viewed as an r × c
matrix of bits. While the values of r and c can be chosen by the designer, in
this paper, we consider r = 8 and c = 8, therefore the internal state contains
64 bits, indexed as described in Figure 1. In this paper we consider the rows
indexed top-to-bottom, while the columns are indexed left-to-right, i.e. the first
row and the first column are the ones containing the bit indexed 1. For the bytes
composition, we use the big-endian order. More specifically, for the first row the
bit in position 8 represents the least significant bit, while in the first column the
bit in position 1 represents the most significant one.

Throughout this paper we would refer to two manners in which a byte array
could be extracted from the 8 × 8 matrix of bits s. We denote by vR(s) the
array containing the bytes composed by the rows of the matrix, while vC(s)
denotes the bytes read at a column level. More precisely, the first value of vR(s)
is the byte composed by the bits indexed from 1 to 8, while the last component
of the vC(s) is represented by the bits indexed by the values multiple of 8. A
description of how the arrays vR(s) and vC(s) are obtained from the internal
state s is described in Figure 1.

We also introduce the inverse operations of vR and vC , which take a byte
array as input and return an 8× 8 matrix, as follows:

sR(vR(s)) = s, sC(vC(s)) = s

3.2 The round function

The round function of the cipher is described by two Sbox layers, one tweak
and one key addition. More precisely, the round function assumes the following

RAMus - a New Lightweight Block Cipher for RAM Encryption 7

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

vR(s)[1]

vC(s)[8]

Fig. 1. The indexes of the internal state
and the vR(s) and vC(s) functions’
application.

Key Plaintext Tweak

Sbox Sbox

Sbox Sbox Sbox

SboxSbox

Sbox

Fig. 2. Two consecutive rounds of the
cipher. The lying rectangles represent the
first non-linear layer, while the standing
rectangles represent the second one.

operations: first, an Sbox S is applied on every row of the internal state; secondly,
the round tweak is added to the internal state by the use of bitwise XOR;
thirdly, the same Sbox S is applied on every column of the internal state; finally,
the round key is added to the internal state. The description of the first two
rounds of such a cipher is depicted in Figure 2. We underline that, depending
on the use case, more than one Sbox could be used in order to design a block
cipher based on the 2S-strategy. However, the use of multiple Sboxes could have
several drawbacks. Firstly, the chosen Sboxes must be designed such that they
exhibit non-trivial linear and differential branch numbers, while having non-
trivial uniformities. Secondly, the use of different Sboxes leads to an increase in
the area needed for the implementation of the cipher.

The Sbox layers The diffusion of most ciphers in the literature is ensured
by using linear layers with non-trivial branch numbers. In the case of the 2S-
strategy, both the confusion and the diffusion of the cipher are ensured by using
two non-linear layers in each round of the cipher. Both layers assume the parallel
application of an Sbox on partitions of the internal state. For the first layer,
denoted SBR, the Sbox is applied on each row independently, while for the
second layer, denoted SBC , the Sbox is applied on each column. The index
denotes the manner in which the inputs were chosen, where the indexes “R” and
“C” marks the appliance of the Sbox on rows and columns, respectively. Figure 3
and Figure 4 describe the manner in which the non-linear layers SBR and SBC

are applied. We note that the two layers are affine equivalent functions, defined
by the relation SBR(s) = SBC(s

T)T , where sT denotes the transposition of the
matrix s.

8 R. Posteuca and V. Rijmen

Sbox

Sbox

Sbox

Sbox

Sbox

Sbox

Sbox

Sbox

Fig. 3. The layer SBR.

Sb
ox

Sb
ox

Sb
ox

Sb
ox

Sb
ox

Sb
ox

Sb
ox

Sb
ox

Fig. 4. The layer SBC .

In order to ensure the security of a cipher based on the 2S-strategy, the
chosen Sboxes need to have good cryptographic properties, such as good linear
and differential uniformity. Moreover, in order to ensure the diffusion through
the non-linear layer, the Sboxes must also have non-trivial linear and differential
branch numbers. In Section 5 we propose a parameterization for the Sbox S, we
discuss the properties of an Sbox suitable for the 2S-strategy and we describe a
design strategy that leads to the design of an Sbox with the suitable properties.

Key schedule and tweak update function In order to ensure a small area of
the hardware implementation of a cipher based on the 2S-strategy, we designed
the key schedule and the tweak update function by using the same non-linear
layers as the round function. The choices of these two functions determine the
efficiency of the cipher in practice, in the use scenario. Usually, the encryption
of the RAM data is performed using the same symmetric key, therefore the key
derivation function can be performed only once, in the initialization phase of the
system. In this phase, all the round keys can be computed and stored in a secure
register or device.

In order to ensure a higher resistance of a cipher based on the 2S-strategy
against linear, differential and related-key attacks, we designed the key schedule
and the tweak update function by using one non-linear layer in each round.
Moreover, we designed these functions such that in two consecutive rounds
different non-linear layers are applied.

The tweak update function is designed as follows: in the odd indexed rounds,
the Sbox is applied on each row of the current tweak, while in the even numbered
rounds, the Sbox is applied on every column. Note that the first round is indexed
by 1. A pseudocode of this function is given in Algorithm 1.

Algorithm 1: The tweak
update function for round r

Result: The round tweak
if ((r % 2) == 1) then

tweakr = SBR(tweakr−1);
else

tweakr = SBC(tweakr−1);
end

Algorithm 2: The key
schedule for the round r
Result: The round key
if ((r % 2) == 0) then

keyr = SBR(keyr−1);
else

keyr = SBC(keyr−1);
end

RAMus - a New Lightweight Block Cipher for RAM Encryption 9

A similar approach is used for designing the key schedule, where the
operations on the even and odd rows are performed in reverse. More precisely,
in the odd indexed rounds, the Sbox is applied on the columns of the current
key, while in the even indexed rounds the Sbox is applied on the rows.

A pseudocode of the key schedule algorithm is described in Algorithm 2.

Round constants The round constants could be added either on the round
function, the tweak update function or the key schedule, depending on the goals,
in terms of performance, of the new designed block cipher. While in Section 4
we propose an algorithm for the generation of the round constants, we entrust
the future designers to create personalized algorithms which accomplish this
purpose.

4 The description of RAMus

The RAMus cipher represents a practical parameterization of the 2S-strategy.
RAMus is a tweakable lightweight block cipher with 64 bit block and 128
bit key and 17 rounds. The cipher attains all the requirements provided by
the (German) Federal Office of Information Security (BSI) in the domain of
encryption algorithms suitable for RAM and memory encryption.

The Sbox layers As mentioned in Section 3.2, an Sbox suitable for the 2S-
strategy needs to have good cryptographic properties, together with non-trivial
linear and differential branch numbers. In Section 5 we propose a design strategy
which could be used to generate Sboxes that fulfill all the necessary properties.
By following this strategy, we designed an Sbox which has differential branch
number 4 and linear branch number 3, while both the linear and differential
uniformities are 64. To the best of our knowledge, this is the first published
Sbox with differential branch number 4 and non-trivial linear and differential
uniformities.

Moreover, given the use case of RAMus, in the design of the Sbox S we used a
supplementary constraint regarding the optimization of Sbox’s implementation
with respect to the number of non-linear gates. We discuss the design rationale
of the Sbox in Section 5, while the full description of the Sbox, given through a
look-up table, is given in the Appendix, in Table 4.

Key schedule, tweak and round constants addition The 2S-strategy
defines a key schedule in which the key has the same length as the block - in the
case of RAMus 64 bits. In order to design a block cipher with a master key of
length 128, we use the same approach introduced by the authors of the Prince
cipher (19). More precisely, we split the 128-bit master key k into k = (k0, k1),
where k0 and k1 represents the first and the last 64 bits of the key, respectively.
The key is then extended from 128 bits to 192 bits as follows:

(k0, k1) → (k0, (k0 ≫ 1)⊕ (k0 ≫ 63), k1),

10 R. Posteuca and V. Rijmen

Key
rc1

Sbox Sbox

Sbox Sbox

rk1

rc2

rk2

Fig. 5. The first two rounds of the key
schedule of RAMus.

F1 F2

L

x0 x1 x2 x3 ∥ x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7

Fig. 6. The SPN design strategy for
Sboxes

where x ≫ y defines the circular shift of the 64-bit word x with y positions.
The first two keys are used for the initial and final whitening, while the key k1
represents the input of the key schedule of RAMus.

In order to minimize the storing space and the latency of the cipher, we chose
to add the round constants to the key schedule, instead of adding them to the
round function. The constants are generated depending to the current round
index, and they are obtained after applying one Sbox layer. A pseudocode of the
key schedule is described in Algorithm 3. We note that, for the first round, the
key rkr−1 represents the master key of the cipher.

In each round i, the constants rci are added to 4 different and consecutive
rows or columns, depending on the round index. More precisely, in the odd
indexed round 2·r+1, the constants are added to the columns r, r+1, r+2, r+3,
while in the rounds 2 · r, the constants are added to the rows r, r+1, r+2, r+3.
Therefore, in every round, four constant bytes are added to the internal state of
the key schedule. These bytes are computed by applying the Sbox on the values
4 · r, 4 · r+1, 4 · r+2 and 4 · r+3. Figure 5 describes the first two rounds of the
key schedule of RAMus.

The tweak update function follows accurately the corresponding description
of the 2S-strategy, which is described in Section 3.2 and in Algorithm 1.

5 Design rationale

Linear vs. non-linear layers The linear layer is considered a core component
of the ciphers based on the SPN, LS or ARX strategies. Many papers aimed at
introducing different strategies for the design of the linear layer, both from a
security and efficiency perspective (e.g. (23), (7)). The general goal of the linear
layer is to ensure the diffusion through the round function. Usually, the design
of optimal linear layers assumes the search of linear functions that have a high
branch number, while allowing for an efficient implementation. Recent works

RAMus - a New Lightweight Block Cipher for RAM Encryption 11

Algorithm 3: The key schedule - computing the key for the rth round
Input: The (r − 1)th round key rkr−1

Output: The rth round key rkr
xr = r/2;
// Defining the round constants’ associated initial array RC[8]
for i = 0 to 3 do

RC[(xr + i)%8] = 4 · xr + i;
end
// Computing the round constant rcr and the round key rkr
if ((r % 2) == 1) then

rcr = SBR(s
R(RC));

rkr = SBR(rkr−1)⊕ rcr;
else

rcr = SBC(s
C(RC));

rkr = SBC(rkr−1)⊕ rcr;
end

such as (28; 35) introduced methods to design Sboxes with non-trivial linear
and differential branch number. The non-linear layer of RAMus represents a
trade-off between the constraints of a good linear and a good non-linear layer,
allowing for a design following the 2S-strategy (with no linear layers).

Sboxes with non-trivial branch number The design of the Sbox S followed
three main goals. The first goal of our design strategy was to optimize the linear
or the differential branch number of an Sbox, while ensuring the fact that the
linear and differential uniformities are non-trivial. The second goal was to ensure,
by design, the resistance of RAMus against power analysis, i.e. to ensure that
RAMus has an efficient masked implementation. The third goal was to ensure
the low latency of the cipher, in the masked implementation, therefore we aimed
at optimising the number of non-linear gates of S. In order to ensure these
three goals, our approach was to identify the design strategies for designing an
Sbox with a known, masking-friendly, design strategy, as the ones presented in
(20; 32). The Sbox S follows the SPN Sbox design strategy, which is depicted in
Figure 6.

The main idea of this strategy is to divide the 8-bit input into two equal
parts of 4 bit each, i.e. x = x1||x2. Then x1 and x2 are used as inputs for two
4x4 non-linear functions F1 and F2, respectively, resulting in y = F1(x1)||F2(x2).
The result y is then used as an input for an 8-bit linear layer L. Formally, the
Sbox S can be described as S(x1||x2) = L(F1(x1)||F2(x2)).

While the SPN Sbox design strategy facilitates the design of Sboxes with
resistance against power analysis, it has an important drawback: the linear and
differential uniformities of the resulting Sbox are determined by the properties of
F1 and F2. Let us denote by δf and lf the differential and linear uniformity of the
function f , respectively. Then: δS = 16 ·max{δF1

, δF2
}, lS = 16 ·max{lF1

, lF2
}.

12 R. Posteuca and V. Rijmen

Therefore, by using this approach the lowest linear and differential uniformity
of S is 64.

Since one of the goals of our design strategy was to optimize the differential
branch number, we analysed the properties of the non-linear functions F1 and
F2, together with the properties of the linear layer L. Our design strategy is
based on the following observation.

Observation 1 Let L be the identity function. Then

BNd(S) = min{BNd(F1), BNd(F2)}

According to the literature (36), the highest differential branch number for
a 4-bit Sbox is 3. Therefore, Observation 1 provides us a method to design 8-bit
Sboxes with the non-trivial differential branch number 3.

In order to design S such that it is also optimised with respect to the number
of necessary non-linear gates, we parameterize the functions F1 and F2 with
the PRESENT Sbox, which can be implemented with only 4 non-linear gates,
according to (33). Note that this is in fact the minimum number of non-linear
gates that can be used in the implementation of any 4-bit Sbox with good
cryptographic properties. Moreover, according to (17; 33), the Present Sbox also
allows for a 3-share TI implementation.

For the design of the linear function L, we opted for a particular function
with branch number 4 such that will ensure that the final differential branch
number of S is 4. The linear function L was designed using three rotations, as
follows L(x) = rot(x, 1)⊕ rot(x, 2)⊕ rot(x, 5), where by rot(x, i) we denote the
circular left shift of the byte x by i positions. By using this design strategy, with
different parameterizations for the non-linear function F1 and F2 and for the
linear function L, different Sboxes with similar properties can be designed.

6 Security analysis of RAMus

Our analysis included a series of adversarial models, depending on the
capabilities of the adversary. Depending on the attack scenario, the adversary can
control the plaintext or the plaintext and the tweak (known- or chosen-plaintext
attack), or he can even control the master key (related-key attack).

Given the use case of RAMus (RAM encryption solutions), the most suitable
adversarial model is the one in which the adversary can fully control the
plaintext. While the tweak value cannot be fixed, the adversary can choose the
tweak difference, since the tweak represents the memory address associated to
the plaintext. We consider less relevant the related-key scenario in this use case,
since all the encryptions are performed using the same, fixed, master key.

6.1 Theoretical proven bound

In order to compute the theoretical upper bound of any differential characteristic
or linear trail, we use the method introduced by the wide trail strategy. We

RAMus - a New Lightweight Block Cipher for RAM Encryption 13

SBC

SBC

SBR

SBR

λ1

λ1

γ1

γ1

γ2

γ2

λ2

λ2

B1 B2B = +

γ1λ1γ1

γ2λ2γ2

Fig. 7. The two associations between SBR and SBC to the γ and λ functions

bound the number of active Sboxes by using The 2-round Propagation Theorem
provided by Daemen and Rijmen in (23).

Theorem 1 (The 2-Round Propagation Theorem). For a key-alternating
block cipher with a γλ structure, the number of active bytes of any two round
trail is lower bounded by the (branch) number of λ.

In (23), γ represents a local non-linear transformation, in which any output
bit is influenced only by a set of input bits, while λ represents a linear mixing
transformation with high diffusion. Classically, the γ function is represented by
an Sbox layer, in which the Sbox is applied on partitions of the input bits, while
the λ function is designed such that it has a high branch number. We underline
that, since the number of active Sboxes is not influenced by the γ function,
Theorem 1 in fact computes the number of active Sboxes of the γλγ function.
According to Section 5, the non-linear layer of RAMus satisfies both criteria: it
represents a local non-linear transformation, while it has a non-trivial linear and
differential branch number.

In order to compute the lower bound of the number of active Sboxes in
2 rounds of RAMus we apply Theorem 1 twice, with different correspondence
between the γ and λ functions and the two non-linear layers SBR and SBC .

In order to compute the number of active Sboxes of the first non-linear layer,
we identify γ to SBR and λ with SBC . According to the theorem, the number of
active Sboxes of SBR, in two rounds of RAMus is given by the branch number
of SBC . Accordingly, the number of active Sboxes of the second non-linear layer
is bounded by the branch number of SBR. Figure 7 describes these associations.

Therefore, the minimum number of active Sboxes in two rounds of
RAMus can be computed as B = B1 + B2, where B1 and B2 represent the
branch number of SBR and SBC respectively.

Since the branch number of both SBR and SBC are equal to the branch
number of the Sbox S, the number of active Sboxes in two rounds of RAMus is
equal to twice the branch number of S. Therefore, for 2 rounds of RAMus, the
minimum number of active Sboxes is 8 for differential cryptanalysis and 6 for
linear cryptanalysis. This analysis is performed in the fixed tweak scenario, in
which the attacker can control both the plaintext and the tweak.

14 R. Posteuca and V. Rijmen

Table 2. The minimum number of active Sboxes, in different scenarios

Round nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fixed tweak
Diff sk 2 8 10 16 18 24 26 32 34 40 42 48 50 56 58 64 66
Diff rk 1 6 9 14 17 22 25 30 33 38 41 46 49 54 57 62 65

Lin 2 6 8 12 14 18 20 24 26 30 32 36 38 42 44 48 50

Not fixed tweak
Diff sk 2 6 10 15 18 22 26 31 34 38 42 47 50 54 58 63 66
Diff rk 1 6 9 14 17 22 25 30 33 38 41 46 49 54 57 62 65

Lin 3 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

6.2 SAT-based analysis

The second step of our analysis was to use SAT-based methods to evaluate the
security of RAMus against linear and differential cryptanalysis. In our analysis
we used the ARXpy tool (11).

We performed our analysis in two main scenarios, depending on the
capabilities of the adversary to control the tweak input. Therefore, in our first
scenario the tweak is constant in all the encryptions, while for the second scenario
the tweak is different, but the adversary can observe the values of the tweaks,
and, therefore, their difference. For these scenarios, we analysed the propagation
of differences in the single key (Diff sk) and related-key (Diff rk) scenarios,
together with the propagation of the linear masks (Lin). The results are presented
in Table 2. We note that the table presents the minimum number of possible
active Sboxes after applying any number of rounds of RAMus between 1 and 17.

Moreover, we mention that all our experiments were performed by using a
generic implementation table of the Sbox S, which does not represent a real Sbox,
but imposes the constraints that its properties, such as the linear and differential
branch numbers and uniformities, are the same as the Sbox S presented in
Section 5. We stress that our experiments did not take into account neither the
particular LAT, nor the DDT of the Sbox S. Therefore, the results obtained by
using this approach represent only a lower bound of the number of active bits.
In practice, the minimum number of active Sboxes could be higher.

The attentive reader will notice that, while the number of active Sboxes in
the two scenarios are similar with respect to differential cryptanalysis, in the case
of linear cryptanalysis the number of active Sboxes is quite different (favouring
our use case). The reason for this difference can be explained by the different
propagation of linear approximations through the XOR operation.

The number of active Sboxes, together with the particular cryptographic
properties of the associated Sbox, leads to an estimation of the security level
of the cipher against linear and differential cryptanalysis. In our analysis, we
evaluate the security of RAMus by using the assumption that all the Sboxes are
independent. From this point of view, our analysis follows the same approach
used to assess the security of the CS-cipher (39; 42). Moreover, we mention that
this assumption is also used to assess the security of a series of permutation-based
algorithms, such as the NIST LWC submissions SpoC (8) or SPIX (9).

Resistance of RAMus against differential cryptanalysis. The most common
approach in the security evaluation of a cipher against differential cryptanalysis

RAMus - a New Lightweight Block Cipher for RAM Encryption 15

is to upper bound the probability p of any differential characteristic. If the bound
is smaller than 2−k, where k denotes the size of the key, then an attack based
on differential cryptanalysis is not feasible. Under the independence assumption,
the probability p is computed by p = psS , where s represents the number of active
Sboxes and pS is the highest probability associated to an active Sbox. Note that
pS can be computed using the differential uniformity δS .

In the particular case of RAMus, pS = 2−2 and, according to Table 2, s > 64
in all the scenarios based on differential cryptanalysis. Therefore

p < (2−2)64 ⇒ p < 2−128

Therefore, an attack based on differential cryptanalysis against RAMus is
unfeasible, thus we consider RAMus to be secure against the attacks based on
differential cryptanalysis, in both the single-key and the related-key scenario.

Resistance of RAMus against linear cryptanalysis. In general, in order to
distinguish a linear trail with correlation c, an adversary needs to encrypt at
least c−2 plaintexts. According to (14; 31), the larger the size of the data sample,
the more accurate the results are. In the case of RAMus, the full codebook
contains up to 2128 (plaintext, tweak) pairs. Therefore, RAMus can be considered
vulnerable against an attack based on linear cryptanalysis only if the absolute
value of the correlation of its best linear trail is higher than 2−64.

The correlation of the best linear trail of a cipher is computed as c = csS ,
where cS represents the best correlation associated to one active Sbox and s is
the number of active Sboxes. In the particular case of RAMus, cS = ±2−1 and,
according to Table 2, s > 64 in Scenario 2. Therefore

|c| < (2−1)64 ⇒ |c| < 2−64.

Hence, an attack based on linear cryptanalysis against RAMus is unfeasible,
thus RAMus is secure against such an attack.

6.3 The security of RAMus against integral cryptanalysis and the
division property attacks

Integral cryptanalysis. Integral cryptanalysis, also known as the square
attack or the saturation attack, was introduced by Knudsen in (29). An integral
attack exploits the existence of an integral distinguisher defined as follows. An
adversary chooses a set of plaintexts such that a set of the bits are constant,
while the remaining bits (called active bits) vary through all possible values.
The goal of the adversary is to find an indexing of the active bits such that the
XOR sum of the corresponding ciphertexts equals to zero in some particular
indexes, with probability 1. The set of plaintexts for which this property holds
is called an integral distinguisher.

To design such distinguishers, the most common approach is to analyse the
propagation of different properties of parts of the internal states, such as whether
they are “constant” (C), “active” (A), “balanced” (B) or with the “unknow”

16 R. Posteuca and V. Rijmen

property (U) (i.e. a property different from the previous three ones). Note that,
if components of the ciphertexts are “constant”, “active” or “balanced”, the XOR
sum of these components results in a 0 value with probability 1. Opposed to this
scenario, in the case in which components of the ciphertext have the “unknow”
property, the XOR sum will be 0 with a probability less than 1.

In order to analyse the security of RAMus against integral cryptanalysis, we
analyse the behaviour of the internal states in different scenarios, depending on
the choice of the “active” bits. The best distinguisher identified in our analysis
covers 3 rounds of RAMus. In this scenario, we consider the sets of plaintexts
such that all the bits in a row have the A property. For simplicity and without
loss of generality, we assume that the “active” bits are in the first row. Moreover,
we impose the additional constraint that the tweak is equal to the plaintext. In
this case, after the appliance of the first non-linear layer and the tweak addition,
all the internal states are “constant” and each position equals to 0 (due to the
cancellation between the internal state and the round tweak). After the appliance
of the second non-linear layer, the state will have a “constant” value equal to
SBC(0)⊕key, where 0 represents the state with all 0 positions and key represents
the round key. Furthermore, after the appliance of the following SBR function,
all the internal states would still have the C property.

By looking only at the tweak update function, we notice that, for the first
non-linear layer, the “active” row will propagate to another “active” row, while
the remaining part will be “constant”. In the second round of the tweak update
function, since the Sboxes are applied on a column level, each active bit will
influence the properties of each corresponding column. In particular, the bits in
positions 3, 4, 5, 6 will have the B property, while the remaining positions will
be “constant”. Therefore, the addition of the tweak in the second round would
transfer the properties from the tweak to the internal state. At the end of the
second round, each position of the internal state will be “balanced”, a property
which is also preserved through the third round. The first appliance of the non-
linear layer of the 4th round will determine that all the positions of the internal
state will have the “unknow” property. Therefore, in this scenario, a 3-round
distinguisher could be designed, as depicted in Figure 9 in the Appendix. Thus,
even if the key-recovery phase of the attack could cover another 4 rounds, we
consider that RAMus is resistant to integral cryptanalysis.

The division property As a new distinguishing property against block
ciphers, the division property was introduced by Todo in (41) and it represents
a generalization of both the integral attack and the higher-order differential
cryptanalysis. In (43), the authors introduce a division property analysis
technique based on the Mixed-Integer Linear Programming (MILP) problem.
Since publication, this tool was used to analyse the resistance against the attacks
based on the division property of several modern block ciphers, such as Princev2
(19) or GIMLI (13). By employing the same technique, we searched for the
existence of integral distinguishers based on the division property for RAMus.
The best distinguisher that we found covers 3.5 rounds and the data complexity

RAMus - a New Lightweight Block Cipher for RAM Encryption 17

required for an attack based on this distinguisher is 263 plaintexts. Note that
our analysis covered both the fixed-tweak and the variable-tweak scenarios.

7 Performance

In this section we present the results of our measurements or estimates regarding
the performance of the hardware implementation of RAMus and we compare
them with the performance of PRINCEv2 (19), QARMA-64 (10), PRESENT
(18) and SKINNY (12). We excluded from this comparison the other two
block ciphers which are frequently used in RAM encryption solutions, AES and
ASCON, due to the difference in their parameters’ lengths.

Setup of the experiments Depending on the application, a dedicated
hardware implementation is performed usually on Field-Programmable Gate
Arrays (FPGA) or Application-Specific Integrated Circuits (ASIC). While
ASICs are designed for a sole purpose, and the implementation is permanently
drawn into silicon, the FPGAs can be reprogrammed to satisfy different
purposes sequentially. Due to the versatility of the latter, all of our hardware
implementations were run on the FPGA of the ZedBoardTM development kit,
which uses the Xilinx Zynq®-7000 All Programable SoC (APSoC).

The first step was to identify an approach which facilitates the comparison
of the hardware performance between the five targeted ciphers. In this sense, we
chose to use Xilinx’s Vivado High-Level Synthesis (HLS), an automated tool
which transforms a high-level functional specification (such as a C or C++
implementation) into an optimized register-transfer level (RTL) descriptions,
which contains the hardware implementation of the initial C/C++ code.
While for RAMus we use our own C implementation, for PRINCEv2, Qarma,
PRESENT and SKINNY we used the public C implementations provided by (3),
(4), (2) and (5) respectively. Note that for PRINCEv2 and SKINNY we used
the reference implementation provided by the authors of the ciphers.

After generating the RTL module, we used Xilinx’s Vivado IP integrator
to configure the hardware design, by connecting default modules (such as the
Zynq architecture) with the previously generated custom one. Finally, we used
Xilinx Software Development Kit (SDK), which allows for the development of
embedded software applications for the hardware design formerly created.

Latency vs. throughput The performance of a hardware implementation
can be evaluated with respect to several different criteria: the latency of the
implementation (the speed of one encryption), its throughput (the amount of
data processed in a fixed period of time), the area needed for the implementation
or the power consumption.

In a sequential approach, the relation between the latency and the throughput
of an implementation is given by the following formula: N/l = t, where N
represents the amount of data to be processed, and l and t represent the

18 R. Posteuca and V. Rijmen

R0 R1 R2 R0 R1 R2 R0 R1 R2

pipeline→ R0 R1 R2R0 R1 R2

R0 R1 R2

R0 R1 R2

Fig. 8. The pipeline implementation of three encryptions of a 3-round block cipher.
Note that the pipeline implementation is similar to a 5-round encryption.

latency and throughput, respectively. The most common approach to increase
the throughput of an implementation is to use parallelization, therefore using
multiple threads which perform, in parallel, the same process. This type of
parallelism increases the throughput, but, in the same time, it increases the
resource (CPU or area) consumption.

On the other hand, the parallelism of an FPGA, called pipelining, involves
the usage of the hardware components in an optimal manner in which several
instructions are overlapped during execution. The main idea behind pipelining is
that a process can be divided into a set of instructions such that the output of one
instruction is the input of the next one and each instruction is implemented on an
independent hardware component. As soon as an instruction finishes processing
an input, it is ready for the next one. Therefore, different instructions could be
performed simultaneously.

For simplicity, let Enc represent a block cipher with 3 rounds, denoted
R0, R1 and R2. An intuitive description of the pipelining parallelism over
three encryption instances can be depicted from Figure 8. In a sequential
implementation the second encryption instance will start after the first one
finishes. In contrast, in the case of a pipelined implementation, the output of
R0 is transmitted as an input for R1, while R0 can be used in parallel for the
encryption of the second plaintext. Assuming that all three rounds have the
same latency, performing the encryption of three plaintexts in the pipelined
implementation will have the same latency as an encryption with 5 rounds in
the classical implementation.

The results of our experiments In our work, we used the pipeline
parallelization in two different manners. Firstly, we used the pipeline pragma
provided by Vivado HLS for generating the pipelined implementation of all three
targeted ciphers. We note that for the pipelined implementation of PRINCEv2
we modified the prince_s_layer function such that it will not be parameterized
with the corresponding Sbox. Secondly, we used the pipeline pragma to estimate
the throughput of the three targeted ciphers. In this sense, we measured the
latency of a single pipelined round of the corresponding ciphers and we computed
the total number of rounds that need to be performed for the processing of 128
encryptions (1 KB of data). Then we computed the throughput as t = 128/(l·nr),
where t and l represent the throughput and the latency, respectively, while nr

represent the total number of rounds.

RAMus - a New Lightweight Block Cipher for RAM Encryption 19

Table 3. The performance comparison between the five targeted block ciphers. LUT,
FF and BRAM stands for LookUp Table, FlipFlops and Block RAM, respectively.

Non-pipelined Pipelined Throughput
(KB/sec)

Latency
(µs) Area Power

(mW)
Latency

(µs) Area Power
(mW)

PRINCEv2 12.1
1991 LUT

14 4.772
5730 LUT

1705 7.292395 FF 4756 FF
0 BRAM 0 BRAM

Qarma-64 29.8
2353 LUT

35 0.873
1050 LUT

1682 7.953281 FF 1498 FF
3 BRAM 0 BRAM

PRESENT 25.6
1096 LUT

17 9.1*
1096 LUT*

1693* 6.75*1320 FF 1320 FF*
1.5 BRAM 1.5 BRAM*

SKINNY 163
1210 LUT

17 1.695
1211 LUT

1686 7.631443 FF 1770 FF
2 BRAM 1 BRAM

RAMus 46.3
1038 LUT

13 1.059
5065 LUT

1669 8.001285 FF 5228 FF
2 BRAM 0 BRAM

*the PRESENT implementation contained several functions that could not be pipelined

Note that both PRINCEv2 and Qarma-64 have a self-reflection property,
thus the rounds are not identical. In order to estimate the throughput for these
two ciphers we individually measured all the individual rounds. We measured
the middle rounds in both cases as a single round. Our estimates use the round
with the highest latency, due to the fact that the processing through a lower
latency round will start after the high latency one finishes.

In our experiment, we measured the latency, area and power consumption of
both the pipelined and non-pipelined implementations of all five ciphers and we
estimated the throughput as presented above. Table 3 presents the results of our
experiments. While the results for latency, power consumption and throughput
can be easily inferred from Table 3, the area of a hardware implementation is
more involved. In an FPGA, a LookUp Table (LUT) stores a custom truth table
which is set to simulate logic gate combinations. A flip-flop (FF) is used to store
the results of LUTs, while a block RAM (BRAM) is a larger bank of RAM which
is used for storing higher amounts of data inside the FPGA.

As depicted in Table 3, in the scenario of non-pipelined implementations,
RAMus exhibits the lowest area and the lowest power consumption, whereas in
the case of pipelined implementations, RAMus has the lower power consumption,
a higher latency than PRINCEv2 and SKINNY while the area is lower than the
one of PRINCEv2. Moreover, from our estimates, the throughput of RAMus is
comparable with the one of Qarma-64, both being above the throughput of the
other three ciphers.

Throughout performing these experiments we were surprised by the high
latency of the pipelined implementation of PRINCEv2. Nonetheless, we did not
find any argument which could invalidate the correctness of our experiments.

Bibliography

[1] Methodology for cryptographic rating of memory encryption schemes
used in smartcards and similar devices. https://www.bsi.bund.de/
SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/
AIS_46_MEGuide_e_pdf.pdf, accessed: 2022-02-20

[2] Present C implementation. https://github.com/kurtfu/present,
accessed: 2022-02-23

[3] PRINCEv2 C implementation. https://github.com/rub-hgi/princev2/
tree/main/code, accessed: 2021-11-14

[4] Qarma-64 C implementation. https://github.com/Phantom1003/
QARMA64, accessed: 2021-11-14

[5] Skinny C implementation. https://docs.
google.com/viewer?a=v&pid=sites&srcid=
ZGVmYXVsdGRvbWFpbnxza2lubnljaXBoZXJ8Z3g6NTEwY2I1MGFkZGNjMDU0MQ,
accessed: 2022-02-23

[6] FIPS Publication 46-3, Data Encryption Standard (DES). https:
//csrc.nist.gov/csrc/media/publications/fips/46/3/archive/
1999-10-25/documents/fips46-3.pdf

[7] Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın,
T.: Block Ciphers – Focus on the Linear Layer (feat. PRIDE). In: Garay,
J.A., Gennaro, R. (eds.) Advances in Cryptology – CRYPTO 2014. pp.
57–76. Springer Berlin Heidelberg (2014)

[8] AlTawy, R., Gong, G., He, M., Jha, A., Mandal, K., Nandi, M., Rohit,
R.: SpoC:An Authenticated Cipher Submission to the NIST LWC
Competition (2019), https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/spec-doc-rnd2/
spoc-spec-round2.pdf

[9] AlTawy, R., Gong, G., He, M., Mandal, K., Rohit, R.: Spix:
An Authenticated Cipher Submission to the NIST LWC
Competition (2019), https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/
spix-spec.pdf

[10] Avanzi, R.: The QARMA Block Cipher Family. Almost MDS Matrices over
Rings with Zero Divisors, Nearly Symmetric Even-Mansour Constructions
with Non-involutory Central Rounds, and Search Heuristics for Low-latency
S-boxes. IACR Transactions on Symmetric Cryptology pp. 4–44 (2017)

[11] Azimi, S.A., Ranea, A., Salmasizadeh, M., Mohajeri, J., Aref, M.R., Rijmen,
V.: A Bit-vector Differential Model for the Modular Addition by a Constant.
In: International Conference on the Theory and Application of Cryptology
and Information Security. pp. 385–414. Springer (2020)

[12] Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki,
Y., Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its
low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) Advances

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_MEGuide_e_pdf.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_MEGuide_e_pdf.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_MEGuide_e_pdf.pdf
https://github.com/kurtfu/present
https://github.com/rub-hgi/princev2/tree/main/code
https://github.com/rub-hgi/princev2/tree/main/code
https://github.com/Phantom1003/QARMA64
https://github.com/Phantom1003/QARMA64
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxza2lubnljaXBoZXJ8Z3g6NTEwY2I1MGFkZGNjMDU0MQ
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxza2lubnljaXBoZXJ8Z3g6NTEwY2I1MGFkZGNjMDU0MQ
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxza2lubnljaXBoZXJ8Z3g6NTEwY2I1MGFkZGNjMDU0MQ
https://csrc.nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf
https://csrc.nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf
https://csrc.nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/spix-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/spix-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/spix-spec.pdf

RAMus - a New Lightweight Block Cipher for RAM Encryption 21

in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 9815, pp. 123–153. Springer
(2016)

[13] Bernstein, D.J., Kölbl, S., Lucks, S., Massolino, P.M.C., Mendel, F., Nawaz,
K., Schneider, T., Schwabe, P., Standaert, F.X., Todo, Y., Viguier, B.:
Gimli : A Cross-Platform Permutation. In: Fischer, W., Homma, N. (eds.)
Cryptographic Hardware and Embedded Systems – CHES 2017. pp. 299–
320. Springer International Publishing (2017)

[14] Biham, E.: On Matsui’s linear cryptanalysis. In: Workshop on the Theory
and Application of of Cryptographic Techniques. pp. 341–355. Springer
(1994)

[15] Biham, E., Anderson, R., Knudsen, L.: Serpent: A New Block Cipher
Proposal. In: International Workshop on Fast Software Encryption. pp. 222–
238. Springer (1998)

[16] Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like
Cryptosystems. Journal of CRYPTOLOGY 4(1), 3–72 (1991)

[17] Bilgin, B., Meyer, L.D., Duval, S., Levi, I., Standaert, F.: Low AND depth
and efficient inverses: a guide on s-boxes for low-latency masking. IACR
Trans. Symmetric Cryptol. 2020(1), 144–184 (2020)

[18] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A.,
Robshaw, M.J., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-lightweight
Block Cipher. In: International Workshop on Cryptographic Hardware and
Embedded Systems. pp. 450–466. Springer (2007)

[19] Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M.,
Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C.,
et al.: PRINCE–a Low-latency Block Cipher for Pervasive Computing
Applications. In: International Conference on the Theory and Application
of Cryptology and Information Security. pp. 208–225. Springer (2012)

[20] Boss, E., Grosso, V., Güneysu, T., Leander, G., Moradi, A., Schneider, T.:
Strong 8-bit Sboxes with Efficient Masking in Hardware Extended Version.
Journal of Cryptographic Engineering 7, 1–17 (06 2017)

[21] Chabaud, F., Vaudenay, S.: Links between Differential and Linear
Cryptanalysis. In: Workshop on the Theory and Application of of
Cryptographic Techniques. pp. 356–365. Springer (1994)

[22] Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: Preneel,
B. (ed.) Fast Software Encryption. pp. 275–285. Springer Berlin Heidelberg,
Berlin, Heidelberg (1995)

[23] Daemen, J., Rijmen, V.: The Design of Rijndael. Springer-Verlag, Berlin,
Heidelberg (2020)

[24] Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: ASCON v1. 2.
Submission to the CAESAR Competition (2016)

[25] Grosso, V., Leurent, G., Standaert, F.X., Varıcı, K.: LS-Designs: Bitslice
Encryption for Efficient Masked Software Implementations. vol. 8540 (03
2014)

22 R. Posteuca and V. Rijmen

[26] Gruhn, M., Müller, T.: On the Practicability of Cold Boot Attacks. In:
2013 International Conference on Availability, Reliability and Security. pp.
390–397 (2013)

[27] Joy Persial, G., Prabhu, M., Shanmugalakshmi, R.: Side Channel Attack-
survey. Int J Adva Sci Res Rev 1(4), 54–57 (2011)

[28] Kim, H., Jeon, Y., Kim, G., Kim, J., Sim, B.Y., Han, D.G., Seo, H., Kim, S.,
Hong, S., Sung, J., et al.: A New Method for Designing Lightweight S-boxes
with High Differential and Linear Branch Numbers, and Its Application.
IACR Cryptol. ePrint Arch. 2020, 1582 (2020)

[29] Knudsen, L., Wagner, D.: Integral Cryptanalysis. In: International
Workshop on Fast Software Encryption. pp. 112–127. Springer (2002)

[30] Liu, Y., Rijmen, V., Leander, G.: Nonlinear Diffusion Layers. Designs, Codes
and Cryptography 86(11), 2469–2484 (2018)

[31] Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Workshop on
the Theory and Application of of Cryptographic Techniques. pp. 386–397.
Springer (1993)

[32] Meyer, L.D., Varici, K.: More Constructions for Strong 8-bit S-boxes with
Efficient Masking in Hardware (2017)

[33] Mourouzis, T.: Optimizations in Algebraic and Differential Cryptanalysis.
Ph.D. thesis, UCL (University College London) (2015)

[34] Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations
Against Side-channel Attacks and Glitches. In: International Conference on
Information and Communications Security. pp. 529–545. Springer (2006)

[35] Ruisanchez, C.P.: A New Algorithm to Construct S-boxes with High
Diffusion. International Journal of Soft Computing, Mathematics and
Control (IJSCMC) 4(3) (2015)

[36] Saarinen, M.J.O.: Cryptographic Analysis of All 4× 4-bit S-boxes. In:
International Workshop on Selected Areas in Cryptography. pp. 118–133.
Springer (2011)

[37] Sarkar, S., Mandal, K., Saha, D.: On the Relationship Between Resilient
Boolean Functions and Linear Branch Number of S-Boxes. In: International
Conference on Cryptology in India. pp. 361–374. Springer (2019)

[38] Sarkar, S., Syed, H.: Bounds on Differential and Linear Branch Number
of Permutations. In: Australasian Conference on Information Security and
Privacy. pp. 207–224. Springer (2018)

[39] Stern, J., Vaudenay, S.: Cs-cipher. In: Vaudenay, S. (ed.) Fast Software
Encryption, 5th International Workshop, FSE ’98, Paris, France, March 23-
25, 1998, Proceedings. Lecture Notes in Computer Science, vol. 1372, pp.
189–205. Springer (1998)

[40] Stewin, P., Bystrov, I.: Understanding DMA Malware, isbn = 978-3-642-
37299-5 (07 2012)

[41] Todo, Y.: Structural Evaluation by Generalized Integral Property. In:
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 287–314. Springer (2015)

[42] Vaudenay, S.: On the security of cs-cipher. In: Knudsen, L.R. (ed.) Fast
Software Encryption, 6th International Workshop, FSE ’99, Rome, Italy,

RAMus - a New Lightweight Block Cipher for RAM Encryption 23

March 24-26, 1999, Proceedings. Lecture Notes in Computer Science,
vol. 1636, pp. 260–274. Springer (1999)

[43] Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP Method to Searching
Integral Distinguishers Based on Division Property for 6 Lightweight Block
Ciphers. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology –
ASIACRYPT 2016. pp. 648–678. Springer Berlin Heidelberg (2016)

Appendix 1. The byte description of the Sbox S

Table 4. The Sbox S. The output associated to the hexadecimal input xy can be
depicted from the intersection of the row x0 and the column 0y. For example, S(c2) =
5d.

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 33 24 4e c1 8d 9a e7 15 f0 7f 59 ab 02 68 bc d6

10 42 55 3f b0 fc eb 96 64 81 0e 28 da 73 19 cd a7

20 e4 f3 99 16 5a 4d 30 c2 27 a8 8e 7c d5 bf 6b 01

30 1c 0b 61 ee a2 b5 c8 3a df 50 76 84 2d 47 93 f9

40 d8 cf a5 2a 66 71 0c fe 1b 94 b2 40 e9 83 57 3d

50 a9 be d4 5b 17 00 7d 8f 6a e5 c3 31 98 f2 26 4c

60 7e 69 03 8c c0 d7 aa 58 bd 32 14 e6 4f 25 f1 9b

70 51 46 2c a3 ef f8 85 77 92 1d 3b c9 60 0a de b4

80 0f 18 72 fd b1 a6 db 29 cc 43 65 97 3e 54 80 ea

90 f7 e0 8a 05 49 5e 23 d1 34 bb 9d 6f c6 ac 78 12

a0 95 82 e8 67 2b 3c 41 b3 56 d9 ff 0d a4 ce 1a 70

b0 ba ad c7 48 04 13 6e 9c 79 f6 d0 22 8b e1 35 5f

c0 20 37 5d d2 9e 89 f4 06 e3 6c 4a b8 11 7b af c5

d0 86 91 fb 74 38 2f 52 a0 45 ca ec 1e b7 dd 09 63

e0 cb dc b6 39 75 62 1f ed 08 87 a1 53 fa 90 44 2e

f0 6d 7a 10 9f d3 c4 b9 4b ae 21 07 f5 5c 36 e2 88

Appendix 2. The integral distinguisher described in
Section 6.3

We recall that, for this distinguisher, the first row is “active”, with the additional
constraint that the tweak is equal to the plaintext.

24 R. Posteuca and V. Rijmen

Fig. 9. The 3-round integral distinguisher described in Section 6.3.

	RAMus - a New Lightweight Block Cipher for RAM Encryption

