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Abstract: Successfully engaging in social communication requires efficient processing of subtle so-

cio-communicative cues. Voices convey a wealth of social information, such as gender, identity and 

the emotional state of the speaker. We tested whether our brain can systematically and automati-

cally differentiate and track a periodic stream of emotional utterances among a series of neutral 

vocal utterances. We recorded frequency-tagged EEG responses of 20 neurotypical male adults 

while presenting streams of neutral utterances at 4 Hz base rate, interleaved with emotional utter-

ances every third stimulus, hence at 1.333 Hz oddball frequency. Four emotions (happy, sad, angry, 

and fear) were presented as different conditions in different streams. To control the impact of low-

level acoustic cues, we maximized variability among the stimuli and included a control condition 

with scrambled utterances. This scrambling preserves low-level acoustic characteristics but ensures 

that the emotional character is no longer recognizable. Results revealed significant oddball EEG 

responses for all conditions, indicating that every emotion category can be discriminated from the 

neutral stimuli, and every emotional oddball response was significantly higher than the response 

for the scrambled utterances. These findings demonstrate that emotion discrimination is fast, auto-

matic, and is not merely driven by low-level perceptual features. 
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1. Introduction 

The We hear sounds every day, everywhere [1]. Being able to discriminate these 

sounds, contributes to a better understanding of the world around us. The human voice 

is by far the most socially relevant and familiar sound category for human beings [2]. Be-

sides the specific linguistic content, the human voice offers a lot of socio-communicative 

information about the speaker. For instance, in a wink, it gives us an idea about the gen-

der, approximate age, and the emotional state of the speaker [3]–[5]. Additionally, when 

listening carefully, one may even extract more subtle speaker information, such as the 

speaker’s personality (e.g. extravert versus introvert) or the speaker’s demographic origin 

[6], [7]. Efficient processing of all this supra-linguistic information is required to success-

fully engage in social communication. 

1.1. Vocal emotion processing as a gateway to social communication 

While zooming in on vocal emotional processing, speech prosody provides im-

portant cues about the emotional state of our conversational partners. Similar to the visual 

face processing domain [8], it has been postulated that a restricted group of so-called 

“basic” emotions (happy, surprise, angry, fear, sad and disgust) can be universally recog-

nized across different cultures when vocally expressed, even without the presence of lin-

guistic meaning [9]. Supporting this idea of basic emotions, a meta-analysis on the neural 
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correlates of vocal emotion processing revealed that these basic emotions are distinct and 

characterized by particular patterns of brain activity [10]. 

The recognition of vocally expressed emotions happens automatically [11]: we can-

not inhibit recognizing an emotion in a voice, for instance when talking to someone who 

recently got fired or, in contrast, who just got a promotion, we can identify the emotional 

state of this person as sad or happy within a few hundred milliseconds, even without any 

linguistic context. Emotion recognition also happens extremely fast and based on limited 

auditory information. An ERP study demonstrated a neural signature of implicit emotion 

decoding within 200 msec after the onset of an emotional sentence [12], suggesting that 

emotional voices can be differentiated from neutral voices within a 200 msec timeframe. 

Explicit behavioral emotion recognition may take a bit longer, ranging from 266 to 1490 

msec, depending on the paradigm and the particular emotion [13]–[15]. The fast decoding 

of emotion prosody is not only found in humans but is also visible in a variety of other 

animals, which indicates that recognizing emotions from voices is an important evolu-

tionary skill to communicate with conspecific animals [16]. 

Gating paradigms have indicated that different vocal emotions are recognized within 

a different time frame (e.g., fear recognition happens faster than happiness), thereby sug-

gesting that the fast recognition relies on emotion specific low-level auditory features [14]. 

Vocal emotion categories are indeed characterized by particular auditory features. For in-

stance, sad speech is generally lower in pitch, and this is the case across different lan-

guages and cultures [17]. A classical, but almost intrinsically paradoxical challenge in vo-

cal emotional neuroscience, is the demonstration that emotion discrimination is not purely 

driven by low-level acoustic cues. This echoes the broader attempts of demonstrating that 

(emotional) voice processing and the selective neural activity in the so-called temporal 

voice areas is not merely determined by particular spectro-temporal acoustic characteris-

tics, often accomplished by a rigorous matching of vocal versus non-vocal low-level cues 

[18]. Besides determining the basic low-level acoustic cues that characterize and classify 

vocal emotions, there is evidence that threat related vocal signals mostly attract our atten-

tion, even when basic voice acoustics are comparable with non-threat related emotional 

vocalizations [19]. This indicates that low-level cues alone do not fully capture the expe-

rience of the vocally expressed emotions.  

The temporal voice areas are located in the middle part of the auditory brain, these 

areas respond preferentially to voices compared to non-vocal environmental sounds [20]. 

This selective sensitivity for voices is particularly pronounced in the right hemisphere. 

Moreover, these temporal voice areas respond stronger to utterances spoken in an emo-

tional rather than neutral tone [3], [18], [21], [22]. The classical rightward lateralization of 

emotional voice processing was challenged by Kotz et al. (2003)[23] who demonstrated 

that increasing task demands also resulted in an increasing left lateralization. In terms of 

lateralization of processing low-level acoustic features, pitch and slowly fluctuating sig-

nals have been shown to be processed preferentially at the right side whereas shorter and 

faster temporal information is typically processed in the left auditory cortex [24]–[26]. 

Given the critical importance of pitch to differentiate vocal emotion categories, this might 

explain that the majority of studies observe a right side lateralization for emotional voice 

processing [27].  

As outlined above, it is evident that efficient emotion processing - including vocal 

emotion processing - is crucial for social functioning. Many psychiatric disorders are char-

acterized by difficulties in social functioning, including emotion processing abilities, with 

key examples in autism spectrum disorder, schizophrenia, and anxiety and mood disor-

ders (for reviews, see [28]–[31]). Thus, assessing individual differences and deficits in sen-

sitivity for socio-communicative emotional cues is central in clinical practice, but objective 

and reliable diagnostic instruments are lacking, especially those tapping automatic emo-

tional processing. A series of semi-standardized behavioral socio-cognitive tasks have 

been developed, assessing emotion recognition abilities for vocal, facial and bodily ex-

pressive stimuli (e.g., [32]–[34]). Yet, generally, these tasks do not differentiate sensitively 
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between clinical and neurotypical populations, often because they allow the mobilization 

of alternative compensatory perceptual and cognitive strategies [35], [36]. 

Brain imaging studies on the other hand show more robust group differences in vocal 

emotion processing. The auditory mismatch negativity (MMN), for example, is an event 

related potential component that reflects the response to an auditory deviant sound. This 

component is frequently used to investigate group differences in emotion processing. For 

instance, Schirmer et al. (2005) [37] demonstrated reduced MMN responses to emotionally 

deviant sounds in men as compared to women, and Lindström et al. (2018) [38] suggested 

that MMN components could indicate impaired emotional prosody perception in individ-

uals with autism spectrum disorder.  However, MMN studies lack high signal-to-noise 

ratio, thereby necessitating long recording sessions and reducing the utility to characterize 

performance at the individual subject level [39]. This has clear consequences for research 

with clinical populations or even infants.  

Accordingly, there is a need for instruments that allow objective and robust assess-

ment with high signal to noise responses of automatic and implicit emotion processing 

abilities, reliable at the individual subject-level, and preferably within a short timeframe. 

Here, we propose that frequency-tagging EEG in combination with periodic auditory (vo-

cal) stimulation offers this approach, and we present evidence that the brain selectively 

responds to emotional vocal cues embedded within a stream of neutral vocal utterances. 

1.2. Frequency tagging EEG to pinpoint differences in socio-communicative abilities 

Recently, it was demonstrated that fast periodic visual stimulation combined with 

EEG can be used as an implicit neural index of the sensitivity for subtle socio-communi-

cative facial cues, such as facial identity and facial expression [40], [41]. Application of this 

innovative approach in clinical populations (e.g. autism spectrum disorder and velocar-

diofacial syndrome), allowed pinpointing subtle but robust deficits in socio-communica-

tive sensitivity that otherwise remained concealed via classical behavioral face processing 

tasks [42]–[45]. A more recent pioneering study applied this same frequency-tagging EEG 

approach with auditory stimulation, thereby demonstrating that voices can automatically 

be differentiated from both non-vocal environmental sounds and music instruments with 

highly similar low-level features [46]. Proceeding from this seminal study, here, we will 

extend this frequency-tagging EEG approach and apply it for the first time to investigate 

vocal emotion processing. In particular, we will characterize the neural signature of auto-

matically detecting periodic emotional vocal utterances among a stream of neutral vocal 

utterances, and we will explore to what extent this neural discrimination ability is driven 

by the socio-emotional characteristics of the stimuli or by more basic low-level acoustic 

differences between the stimulus categories.   

To investigate if our brain can systematically track a stream of emotional vocal utter-

ances within a standard stream of neutral vocal utterances, we designed a Fast Periodic 

Auditory Stimulation (FPAS) paradigm and combined it with scalp EEG recordings. The 

basic principle of this frequency-tagging approach is that the periodicity of the electro-

physiological response on the human scalp corresponds exactly with the periodicity (fre-

quency) of the auditory stimulation. We used an oddball paradigm where standard 

sounds were presented at a base rate frequency of 4 Hz and oddball sounds were inserted 

periodically into the sequence every third sound. In particular, neutral voices were pre-

sented at 4 Hz base rate and emotional voices (angry, sad, happy, and fearful, in separate 

paradigms) were presented at 1.333 Hz oddball rate. Whenever a change (i.e., discrimina-

tion between the neutral and the emotional utterances) is perceived, in addition to the 

periodic response to the base rate, a periodic response corresponding to the presentation 

frequency of the emotional voices (i.e. 4/3=1.333 Hz) is also observed. The main ad-

vantages of using this FPAS approach are: (a) The response can be measured implicitly, 

i.e. without an explicit behavioral task; (b) The response can be identified objectively since 

it occurs at a predefined frequency; (c) It can be quantified directly by comparing the re-

sponse at that frequency (signal) with responses at neighboring frequencies (noise); (d) 
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The technique is extremely robust, since it is immune to artefacts and yields high signal-

to noise ratio (SNR) responses in a short amount of time which makes it suitable for clin-

ical populations (for a review, see [47] 

2. Materials and Methods 

2.1. Participants 

We recruited 20 male participants for this study (mean age = 25.19 years, SD = 4.08, 

range = 19-34, all right-handed), sample size was based on previous fast periodic auditory 

stimulation studies (e.g. [46]). We only included male participants to avoid gender effects 

in the recognition of vocally expressed emotions [48]. All subjects reported intact hearing 

ability, which was confirmed by pure tone audiometry (average PTA hearing loss below 

25 dB HL for every participant). Subjects were Dutch native speakers and received a mon-

etary reward for participating. No one reported any history of psychiatric or neurological 

disorders. Before the start of the experiment all subjects signed an informed consent form 

approved by the Medical Ethics Committee UZ/KU Leuven (reference S62969). 

2.2. Stimuli: Design of the Emotional Voices and Identity Database (EVID) 

For the FPAS trials we created a new, large, and well-controlled voice segments da-

tabase, incorporating all the stimulus features that are relevant for our research objectives. 

We aimed for short clips with a recognizable emotional value, while also demonstrating 

large variability across other sound features such as pitch, harmonic ratio, phonetic con-

tent, and speech rate. All voice segments were extracted from the Crowd Sourced Emo-

tional Multimodal Actors Dataset [49], which encompasses audio and video recordings of 

13 short sentences, spoken by 48 male and 43 female actors, according to 6 emotional states 

(neutral, happy, angry, sad, fear and disgust). We extracted 3960 short 250 msec utterances 

from these emotionally pronounced sentences (20 actors x 33 utterances x 6 emotions). 

Utterances were cut at the beginning of a randomly chosen phoneme. Thus, depending 

on speech rate, word length and phoneme position, these 250 ms utterances resulted in 

words (e.g. get) and non-words (e.g. ge). Each utterance started and ended with a linear 

fade in and fade out of 10 msec to avoid clipping of the sounds. All utterances were equal-

ized in overall energy (RMS). We validated the stimuli behaviourally in a separate sample 

of 40 healthy young adults (age = 18 - 35 years old) to examine which stimuli are catego-

rized best in terms of emotion, and we maintained a subset of 500 stimuli that are catego-

rized most consistently. The subset contains a set of 10 speakers (5 female and 5 male 

speakers), each pronouncing 10 different phonetic utterances of 250 msec with a 10 msec 

fade in/out according to 5 emotion categories (neutral, happy, angry, sad and fear). Note 

that these utterances were not the same over all emotions as we selected the utterances 

with the highest recognition rate. See Figure 1 for the confusion matrix. We refer to this 
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newly designed and validated emotional stimulus set as the EVID (Emotional Voices and 

Identity Database), which is available upon request by the first or senior author. 

Figure 1. Top: Confusion matrix of the 500 emotional vocal stimuli. The rows indicate the presented 

emotional stimulus category (correct), the columns indicate the provided response(answer). The 

numbers indicate the proportional responses, averaged across the 40 participants. The diagonal 

shows the proportion of correct answers for each emotion. Below: Matrix of the stimuli used for the 

FPAS paradigms 

2.3. Procedure and equipment 

For each of the emotions (i.e. happy, angry, sad and fear), we created an oddball par-

adigm where the emotional utterance was periodically presented in a stream of neutral 

utterances. The 250 msec duration of the utterances naturally leads to the 4 Hz base 
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frequency of the sound presentation, and the emotional utterances were interleaved every 

third stimulus, leading to an oddball frequency of 1.333 Hz (i.e. NNENNENNE…, see 

Figure 2A). For every condition (i.e. emotion), we created six sequences, each uttered by 

a different speaker (including three sequences with a female speaker and three with a 

male speaker). For each condition we used the speakers with best recognition rate for the 

emotion in question, see Figure 1 for confusion matrix of the used utterances in this study. 

Note that in every sequence the same speaker was used for the neutral and for the emo-

tional utterances. The sequences were 64 sec and had a linear fade in/out of 2 sec. 

In addition to the four emotion category conditions (happy, angry, sad and fear), we 

created a scrambled control condition with similar low-level acoustic characteristics but 

without the emotional content. We scrambled the sounds of the four emotion categories 

and the neutral emotion category based on the method of Dormal et al. (2018)[50], which 

results in sounds with equal frequency content and spectral-temporal structure as the 

original sounds, but with a different harmonicity. This ensures that the emotion category 

is no longer recognizable in the scrambled sounds, while the low-level acoustic cues are 

largely preserved. We created six scrambled control sequences with three male and three 

female speakers, covering the four emotion categories. 

Figure 2B provides an overview of the acoustic characteristics of the vocal stimuli 

included in the experiment, illustrating that all stimulus categories are highly hetero-

genous in terms of pitch and harmonic ratio, and that the differences within an emotion 

category are much larger than the average differences between the emotion categories. 

Pitch is defined as the fundamental frequency (f0) of the utterance, and refers to the per-

ception of the sound as relatively high or low.  Here, it has been calculated by means of 

the MATLAB function pitch(audioIn,fs). Harmonic ratio involves the ratio of the funda-

mental frequency's power to the total power in an audio fragment and refers to the degree 

of harmonicity contained in a signal.  Here, it has been calculated by means of the 

MATLAB function harmonicRatio(audioIn,fs). Yet, as expected and in spite of our at-

tempts to induce as much natural variability as possible, neutral and emotional utterances 

are not perfectly matched for low-level acoustic features. To further investigate the impact 

of these low-level features on the periodic neural oddball responses, we applied the fol-

lowing procedure: (a) we entered the wav-file of the entire acoustic 6x64 sec sequences in 

MATLAB and calculated the harmonic ratio using 100 msec rectangular windows with 50 

msec overlap and pitch (Normalized Correlation Function for estimation of pitch) with a 

window length of 52 msec with 42 msec overlap, and (b) we transformed the continuous 

temporal signal from the temporal to the frequency domain by Fourier transformation to 

investigate the periodicity of these acoustic features (cf. [51]). As displayed in Figure 2C, 

one can see that in spite of the massive variation of the heterogenous stimuli, characteristic 

low-level features were still somehow periodically preserved in the stimulation se-

quences. Importantly, this low-level acoustic periodicity was not only preserved in all the 

vocal emotional sequences, but also in the control sequences with the scrambled stimuli. 

We used an ActiveTwo Biosemi system with 64-Ag/AgCl electrodes and two addi-

tional electrodes as reference and ground electrodes (Common Mode Sense active elec-

trode and Driven Right Leg passive electrode). Sound sequences were created and pre-

sented in a random order via a custom-built MATLAB script. Sounds were presented via 

a calibrated RME Fireface UC with Etymotic Research ER-1 insert earphones to make sure 

all sounds were presented at an equal intensity of 60 dB SPL. Participants listened to the 

sound sequences with eyes closed.  

To ensure that participants stayed focused on the sound sequences, we included an 

orthogonal behavioural task which was non-periodic and unrelated to the emotional 

value of the stimuli. This task involved detecting short 500 msec silence periods in the 

sounds stream, occurring randomly four times in every sequence (not in the first and last 

5 sec, and at least 5 sec apart from each other). Participants had to press a button whenever 

they detected this silence 
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Figure 2. 2A: Schematic representation of the paradigm. Showing the base rate frequency of 4 Hz, 

with emotional stimuli being interleaved every third stimulus, hence at 1.333 Hz. 2B: Low-level 

features of the vocal utterances. Low-level features are plotted for every single stimulus of every 

emotion condition. On the left the pitch (f0) is plotted and on the right harmonic ratio (hr in %). 

Note the large variability within every stimulus category. 2C: Periodicity. The periodicity of the 

low-level features across the entire acoustic sequence. The first box represents a symbolic preview 

of the first 10s of a sequence and shows the presence of the emotional oddball stimuli in the time 

domain (sec) and in the frequency domain (Hz), with the clear 4 Hz peak indexing base rate and the 

1.333 Hz peak indexing the emotional oddball stimuli (in black). Next, we plotted for all sequences 

of every emotion category as well as for the scrambled control condition the variability in harmonic 

ratio and pitch in the time domain and the frequency domain. This analysis reveals that -in spite of 

inducing a huge amount of acoustic variability- for all conditions (including the scrambled one) the 

low-level features are periodically preserved in the frequency domain, both at the base and at the 

oddball rate. 

2.4 EEG analysis 

2.4.1 Pre-processing 

We used the Letswave6 Toolbox running on MATLAB 2019b (the MathWorks) for 

the EEG analyses. We started with pre-processing the data by applying a fourth-order 

Butterworth band-pass filter (0.1 -100 Hz) on the segmented data of 68 sec per segment, 

hence 2 sec before and after sequence onset. Afterwards we down sampled the data to 256 

Hz and re-referenced the channels to a common average of all electrodes. Note that there 

was no need for eye-blink removal as the participants closed their eyes while listening to 

the sounds. 

2.4.2. Frequency-domain analysis 

Next, we segmented the pre-processed data again starting after the 2 sec fade-in and 

ending right before the fade-out, at 59.27 sec leading to an integer number of oddball 

(1.333 Hz) cycles (15,172 time bins). We averaged the six trials per condition (Fear, Angry, 

Happy, Sad, and Scrambled condition) for each participant separately in the time domain 

to reduce EEG activity not in phase with the auditory stimulation (e.g. noise). We trans-

formed these averages into the frequency domain using a fast Fourier transformation 

(FFT) and the amplitude spectrum was computed with a high spectral resolution (0.0167 

Hz).  

The base rate of the voices (4 Hz) and the oddball presentation of emotions (1.333 Hz) 

and their integer multiples (harmonics) are present in the EEG signal. Responses at these 

frequencies and their harmonics reflect besides the response to the stimulus presentation 

also the overall noise. Therefore, we used two measures to describe the response in rela-

tion to the noise level: signal-to-noise ratio (SNR) and baseline-corrected amplitudes [40], 

[41]. SNR was computed at each frequency bin as the amplitude value at a given bin di-

vided by the average amplitude of the 20 surrounding frequency bins (i.e. 12 bins on each 

side, 24 bins, but excluding the 2 directly adjacent bins and the local minimum and maxi-

mum). Baseline-corrected amplitude was computed in a similar way, but here we sub-

tracted the average amplitude of the surrounding bins instead of dividing.  

Z-score spectra on group-level data were computed to define the harmonics that 

were significantly above noise level per stimulation frequency (Z > 1.65 or p > .05). The z-

scores were significant until the 2nd harmonic for the base rate (4 Hz) and until the 4th 

harmonic for the oddball frequency (1.333 Hz). Those harmonics of the oddball frequency 

that corresponded to the base frequency (3.999 and 7.998 Hz), were excluded thus the 

neural responses for oddball stimulation were quantified by summing up the baseline-

corrected responses for 3 harmonics (1.333 Hz, 2.666 Hz and 5.333 Hz). We used all con-

ditions to determine the number of significant harmonics.  

As this is a new paradigm, we wanted to objectively select the regions of interest 

(ROIs) based on the data of all the subjects. We determined the ROIs separately for the 

base frequency (4 Hz) and the oddball frequency (1.333 Hz) as we expected different 
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patterns of activation for the different frequencies. We incorporated all conditions includ-

ing the scrambled one for the ROI delineation. Hence, we calculated the baseline-sub-

tracted amplitude across all subjects for each condition and each electrode, and we 

summed across the significant harmonics (4 Hz and 8 Hz for the base frequency, and 1.333 

Hz, 2.666 Hz and 5. 333 Hz for the oddball frequency). All electrodes for which the base-

line-subtracted amplitude of the response was significantly higher than the mean re-

sponse (Bonferroni corrected) were retained and grouped in an ROI based on their loca-

tion on the scalp.  

2.4.3. Statistical analyses 

Separately for the base rate and oddball responses, a series of linear repeated-

measures mixed-models (LMM) were calculated. First, we zoomed in on the contrast be-

tween emotion conditions versus scrambled condition across all the electrodes included 

in the significant ROIs. Hence, condition (Fear, Angry, Happy, Sad and Scrambled) and 

ROI (all significant ROIs) were entered as fixed within-subject factor and participant as 

random factor. Next, we investigated the lateralization of the neural responses comparing 

all the emotion conditions. Thus, emotion condition (Fear, Angry, Happy and Sad), ROI 

(all ROIs including the corresponding contralateral homologue), and emotion x ROI in-

teraction were entered as fixed within-subject factors and participant as random factor. 

Post-hoc t-tests corrected via Holms correction were calculated to assess the significance 

of particular contrasts. 

3 Results 

3.1 Orthogonal Task 

We first checked if participants were able to perform the orthogonal task to make 

sure they were paying attention to the sound streams. The high accuracy of 96.3% (SD = 

9.7%) indicated that the participants had no difficulty with the task. Important to note is 

that there was no significant difference between the conditions in the accuracy of the im-

plicit task, we tested this with a LMM with condition as fixed factor and participant as 

random factor (F(4,76) = 0.31, p = .86). 

3.2. Region of interests  

The explorative investigation of regions of interests resulted in the delineation of 11 

significant electrodes for the base frequency (FC6, FT8, Iz, Oz, P10, P7, P9, PO7, T8, TP7, 

TP8) and 10 significant electrodes for the oddball frequency (F1, Fz, Iz, O1, O2, Oz, P7, P9, 

PO7, PO8). We divided the significant electrodes in 4 ROIs based on the location of the 

electrodes, three for the base responses: ROI Left Parietal (LP: P7, P9, PO7, TP7), ROI Me-

dial Occipital (MO: O1, O2, Iz, Oz) and ROI Right Temporal (RT: T8, FC6, FT8); and three 

for the oddball responses: ROI Left Parietal, ROI Medial Occipital, ROI Medial Frontal 

(MF: Fz, F1). In addition, to investigate possible lateralization effects and to include all 

significant electrodes, we also included the corresponding contralateral homologue brain 

areas in our analyses, thus ROI Right Parietal (RP: P8, P10, PO8, TP8) and ROI Left Tem-

poral (LT: T7, FC5, FT7). Note that O1 and O2 were not significant for the base frequency 

and TP7 not for the oddball frequency and we still included these electrodes in the ROIs 

to delimit the number of ROIs needed for the analyses. See Figure 3 for ROI placement for 

base and oddball separately with contralateral ROIs included. 
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Figure 3. ROIs locations with electrode names for base and oddball separately. 

3.3 SNR and topographies 

To define the harmonics that were significantly above noise level, we computed Z-

score spectra on group-level data for each condition for the base and oddball frequency. 

We averaged the FFT amplitude spectra across electrodes in the significant regions-of-

interest (ROIs) based on the ROI determination and transformed these values into Z-

scores. When we look at the signal-to-noise ratio (SNR), we see clear base responses re-

lated to the stimulus presentation at the first and second harmonic for every condition (Z 

> 1.65 or p > .05). At the oddball frequency we find clear oddball responses at the first, 

second and fourth harmonic for each of the emotion conditions (Z > 1.65 or p > .05), but 

only at the second harmonic for the scrambled control condition. See Figure 4 for the SNR 

spectra and the topographies of each condition.  

Based on visual inspection, for base rate synchronization we see higher activation at 

the right side of the brain for the emotion conditions but not for the scrambled control 

condition. For oddball discrimination, the response was more lateralized to the left side 

of the brain for the emotion conditions, but no clear response was observable for the 

scrambled condition. 
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Figure 4. Left: Topographies of all conditions showing summed baseline-subtracted averages of the 

significant harmonics, being 4 Hz and 8 Hz for the baseline and 1.333 Hz, 2.666 Hz, and 5.333 Hz 

for the oddball frequency. Right: SNR spectra of all conditions, with the blue spectrum representing 

the responses in the base frequency ROIs (LT, MO and RT) and the yellow spectrum displaying 

responses in the oddball frequency ROIs (LP, MO and MF). 

3.4 Contrasting emotion-specific responses versus responses for the scrambled condition 

First, we compared the emotion conditions with the scrambled condition to investi-

gate to what extent low-level acoustic features versus high-level emotional characteristics 

explained the oddball effect. Figure 5 displays base rate and oddball rate neural responses 

for the five conditions averaged across the core ROIs yielding significant responses.  

An LMM on the base rate responses with condition, ROI and their interaction as fixed 

factors and participants as random factor, revealed a significant main effect of condition 

(F(4,266) = 16.97, p = 2.08e-12, partial η2 = 0.20, 95% CI [0.13, 1]), with post-hoc paired t-

testing demonstrating significantly lower responses for the Sad condition as compared to 

all other conditions (t(59) > 5.20, p < .0001 for all contrasts). We also found a significant 

main effect of ROI (F(2,266) = 6.60, p = 0.002, partial η2 = 0.05, 95% CI [0.01, 1]) and a sig-

nificant condition by ROI interaction effect (F(8,266) = 4.52, p = 3.57e-05, partial η2 = 0.12, 

95% CI [0.05, 1]). The interaction effect revealed that the amplitudes were equally distrib-

uted over the different ROIs for fear, angry and happy (t(19) < 2.23, p > .110 for all con-

trasts) but that for the sad condition and the scrambled condition the pattern differed. For 

the sad condition we found that ROI RT had higher responses in comparison with ROI 

MO (t(19) > 3.12, p < .017). The scrambled condition showed a different lateralization and 

we found lower responses at the right, at ROI RT in comparison with the other ROIs (t(19) 

> 5.44, p < 7.6e-05 for both contrasts).  

A similar LMM on the oddball discrimination responses revealed an extreme main 

effect of condition (F(4, 266) = 41.28, p < 2e-16, partial η2 = 0.38, 95% CI [0.31, 1]), but no 

effect of ROI (F(2,266) = 2.26, p = .106, partial η2 = 0.02, 95% CI [0, 1]) nor condition by ROI 

interaction effect (F(8,266) = 0.33, p = .95, partial η2 = 9.84e-03, 95% CI [0, 1]). Here, post-

hoc testing indicated that the amplitude for the scrambled condition was significantly 

lower than all emotional conditions (t(59) > 6.88, p < .0001 for all contrasts), and the ampli-

tude for the fear condition was significantly higher than all other conditions (t(59) > 3.86, 

p < .001 for all contrasts). 

 

Figure 5. Comparison of the neural responses for the four conditions with emotional utterances and 

for the scrambled condition. Left: Base rate responses with standard error of the mean as error bar. 

Summed baseline-corrected amplitudes at significant base rate harmonics (4 Hz and 8 Hz) and 
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averaged across LP, MO and RT ROIs reveal that sequences with sad utterances yield lower ampli-

tudes. Right: Oddball responses with standard error of the mean as error bar. Summed baseline-

corrected amplitudes at oddball frequencies (1.333 Hz, 2.666 Hz and 5.333 Hz) averaged across LP, 

MO and MF ROIs reveal that fear discrimination yields the highest amplitudes, and that automatic 

vocal emotion discrimination is significantly hampered by scrambling the stimuli. 

3.5 Investigating lateralisation patterns of emotion-specific responses 

To investigate lateralisation patterns of emotion-specific responses we additionally 

included the contralateral homologue ROIs in our analyses. Figure 6 displays ROI-specific 

base rate and oddball rate neural responses for the various emotional conditions. An LMM 

on the base frequency responses with emotion condition (Fear, Angry, Happy and Sad), 

ROI (all base rate ROIs including the corresponding contralateral homologue), and emo-

tion condition x ROI interaction as fixed within-subject factors and participant as random 

factor revealed a main effect of condition (F(3, 361) = 8.44, p = 1.96e-05, partial η2 = 0.07, 

95% CI [0.03, 1]) and a main effect of ROI (F(4, 361) = 12.45, p = 1.97e-09, partial η2 = 0.12, 

95% CI [0.07, 1]), but no significant condition by ROI interaction (F(12, 361) = 1.55, p = .10, 

partial η2 = 0.05, 95% CI [0, 1]). As expected, the main effect of condition was driven by 

the lower amplitudes for sad as compared to all other emotions (t(99) > 3.52, p < .003). Post-

hoc testing for the main effect of ROI indicated that ROI LT had lower amplitudes than 

the other significant ROIs (t(79) >3.96, p < .001 for all contrasts) and that ROI LP had higher 

amplitudes than ROI MO (t(79) = 3.05, p = .019). 

   

Figure 6. Comparison of the neural responses for the four conditions with emotional utterances as 

a function of spatial location with standard error of the mean as error bar (ROI). Top: Base rate 

synchronization. Summed baseline-corrected amplitudes at base rate harmonics reveal that the sad 

condition yields the lowest responses, and that ROI right temporal (RT) hosts the highest responses. 

Bottom: Oddball discrimination. Summed baseline-corrected amplitudes at oddball frequencies re-

veal that fear and angry yield the highest amplitudes and that ROIs left parietal (LP) and medial 

occipital (MO) show higher activation than the other ROIs. 
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A similar condition by ROI LMM on the oddball responses revealed a main effect of 

condition (F(3, 285) = 7.20, p < .0001, partial η2 = 0.17, 95% CI [0.11, 1]),) and a main effect 

of ROI (F(3,285) = 19.62, p = 1.36e-11, partial η2 = 0.07, 95% CI [0.02, 1]), but no ROI by 

condition interaction effect (F(9, 285) = 0.412, p = .92, partial η2 = 0.01, 95% CI [0, 1]). The 

pairwise comparisons revealed that the amplitudes for fear were higher than any other 

condition (t(79) > 4.26, p < .0001 for all contrasts), and angry had higher amplitudes than 

sad (t(79) = 2.88, p = .015). Pairwise contrasts for the effect of ROI indicated that ROI LP 

and ROI MO had both higher amplitudes than ROI RP and ROI MF (t(79) > 2.75, p > .022). 

4. Discussion 

We found clear base and oddball responses for every emotion category, indicating 

that the brain is able to synchronize with the presentation rate of vocal stimuli and to 

systematically detect and discriminate subtle vocal emotional utterances from neutral ut-

terances. To ensure that this effect was not purely driven by systematic low-level acoustic 

differences, we preselected highly heterogeneous vocal stimuli with a high variability in 

pitch and harmonic ratio, which are important low-level features for emotional voice pro-

cessing. Yet, in spite of this huge random variability, pitch and harmonic ratio still varied 

in a periodic way in the neutral-emotional sound streams, as indicated in Figure 2C. 

Against this background, it may have been not too surprising to also observe this same 

periodicity, including the oddball responses, in the EEG spectrum. To further control the 

relative importance of low-level acoustic features for automatic emotion processing, we 

also included a scrambled version of the vocal sound streams. This scrambling procedure 

preserved the low-level spectro-temporal acoustic structure of the sound but ensured that 

stimuli were no longer recognizable as voices, let alone that the emotional content would 

have been identified. Preservation of some of the acoustic structure and its periodicity 

along the vocal sound stream is again demonstrated in Figure 2C. Yet, crucially and im-

portantly, in contrast with the emotion conditions, for the scrambled control condition we 

only found an EEG base rate response and no selective oddball discrimination responses 

for the first harmonic (cf. Figure 4). Accordingly, together, these results clearly indicate 

that periodicity of low-level acoustic features by itself does not suffice to induce robust 

oddball EEG responses, but meaningful high-level emotional categories are needed.  

For the base rate frequency, we found a main effect of Condition with reduced base 

responses for the sad condition. It appears that sad utterances are confused and misinter-

preted often with neutral utterances (16%) and it might be that habituation occurs more 

pronounced in the sad condition in comparison with the other conditions due the similar-

ity of the neutral and sad utterances leading to lower responses in the EEG data (Polich, 

1989). However, with regard to the confusion matrix of the used stimuli (Figure 1), happy 

utterances were confused with neutral utterances as much as sad utterances (16%) but did 

not show reduced base responses in comparison with the other conditions. Although, 

happy also had the lowest accuracy of all emotions, which is also supported by other vocal 

emotion studies [15].  

While comparing the oddball response between the different emotions, we observed 

the highest response for the detection and discrimination of fearful and angry voices. This 

echoes the general observation that threat-related emotions, such as fear and anger, may 

be important from an evolutionary perspective to survive unknown situations, and may 

therefore most easily be detected and attract our attention [19]. This finding neatly aligns 

with a similar observation showing the highest frequency-tagged EEG discrimination re-

sponses for visually presented emotional expressions of fearful and angry faces in a con-

tinuous stream of neutral faces [44]. In this study, in spite of the difference in modality, a 

similar pattern of emotion discrimination responses was observed, with fearful and angry 

expressions eliciting the strongest response, happy expressions an intermediate response, 

and sad facial expressions the lowest response.  

We did not observe a condition (fear, angry, happy and sad) by ROI interaction effect, 

nor for the base rate responses nor for the oddball responses, suggesting the presence of 
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a similar neural activation pattern for all emotions used in the experiment. However, note 

that EEG, as compared to MRI, is not the most sensitive method to detect small spatial 

differences in activation patterns. For the base frequency, which indices the periodic 

presentation of voices, we found a main effect of ROI, revealing a right-side lateralisation 

of activity at the temporal cortex. Importantly, the scrambled condition, which involved 

the presentation of non-recognizable artificial sounds, did not display this right laterali-

sation at base frequency. This echoes the general literature that voice processing, and cer-

tainly emotional voice processing, is right lateralised [20], [21]. On the other hand, the 

absence of a right lateralization for the 4 Hz base rate of the scrambled condition does not 

corroborate the asymmetric temporal sampling in time theory of Poeppel and colleagues 

[24], which postulates that slower oscillations (~200 ms) are preferentially processed by 

the right auditory cortex.  

In response to the oddball frequency, we found a different lateralisation pattern, re-

vealing higher amplitudes at the left side of the brain, in particular in the left parietal 

cortex. The left lateralisation of these emotional voice discrimination responses may be 

related to the higher difficulty level of the task, as differentiating emotions is harder than 

simple voice processing, and studies have demonstrated more left lateralized brain acti-

vation for tasks that are more difficult [23], [52]. For both the base and the oddball re-

sponses we also found activation in posterior occipital regions and even some medial 

frontal activation for the oddball response. This pattern may originate from activity in 

auditory cortex and posterior STS projecting towards the posterior and anterior regions 

of the scalp because of the particular folding of the gyri. However, to pinpoint the exact 

spatial location and source of these responses, methods with a higher spatial resolution 

would be required. 

5. Conclusions 

Overall, we demonstrated that we can track the discrimination and categorization of 

complex vocal emotional utterances with frequency tagging EEG and that these emotion-

selective responses are at least partially independent from low-level acoustic features (see 

also [46]). This fast, straightforward and double-objective approach offers a unique and 

powerful tool to quantify the implicit sensitivity for subtle vocal emotional cues at the 

individual subject-level, without any overt behavioral processing. This opens up the way 

to apply this paradigm to investigate emotion processing abilities in young children and 

infants that are unable to understand instructions or provide explicit responses, and to 

investigate particular clinical populations that are characterized by atypical emotion pro-

cessing abilities, such as autism spectrum disorder, schizophrenia, frontotemporal de-

mentia, anxiety disorder, etc. Also at a more fundamental level, it paves the way for im-

plementing other complex sound categorization frequency-tagging paradigms (pinpoint-

ing for instance vocal identity discrimination), thereby contributing to an advanced un-

derstanding of human auditory categorization in general. 
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