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Deep Learning Reactive Robotic Grasping with a
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Abstract—In this paper, a 6-step approach is proposed to
simulate the grasp and evaluate the grasp quality for a versatile
vacuum gripper by tracking the deformation and force-torque
wrench of the gripping pad. Over 100 K synthetic grasps are
generated for neural network training. Furthermore, a Gripping
Attention Convolutional Neural Network (GA-CNN) is developed
to predict the grasp quality for real-world grasp, running by 15
Hz closed-loop control with the real-time robotic observation
and force-torque feedback. Various experiments in both the
simulation and physical grasps indicate that our GA-CNN can
focus on the crucial region of the soft gripping pad to predict
grasp qualities and perform a lower average error compared
with a same-scale traditional CNN. Additionally, the complexity
of grasping clutters is defined from Level 1 to Level 9. The
proposed grasping method achieves an average success rate of
90.2% for static clutters at Level 1 to Level 8 and an average
success rate of >80.0% for dynamic grasping at Level 1 to Level
7, which outperforms state-of-the-art grasping methods.

Index Terms—Contact modeling, deep learning in robotics and
automation, grasping, reactive and sensor-based planning.

I. INTRODUCTION

ROBOTIC grasping and manipulation of unknown objects
in an unstructured environment remain challenging due

to the limitations in robotic perception and control, including
perception disturbances, control errors, object deformations
and environmental uncertainties.

Two primary research lines can be distinguished for the
robotic grasping of unknown objects. One of them aims to
develop dexterous grippers to fit complex objects. In the
early stage [1], [2], multi-joint fingers were mounted on the
dexterous gripper to increase the Degree of Freedom (DoF). A
large amount of recent research indicated that novel grippers
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become more and more flexible with the help of under-actuated
and adaptable soft gripping pads/fingers [3], [4].

Another line of research on the robotic grasping of unknown
objects is to develop grasping methods based on various
robotic perceptions. Robotic vision has been widely used to
extract the primitive shapes of objects and detect feasible grasp
regions [5]. Moreover, haptic and force-torque perceptions can
be integrated into the grasping method to improve robotic
performances [6], [7]. Most recent research revealed that
neural networks trained on an extensive dataset can learn grasp
principles and detect grasp poses for unknown objects [8],
[9]. Many open-source datasets, including the ACRV Picking
Benchmark (APB) [10] and Cornell Grasping [11], are avail-
able online to train neural networks for grasp planning, which
typically contain millions of RGB-D images with manually-
marked grasp regions, or grasp examples with corresponding
grasp qualities.

These research lines are not contradictory. A robust hy-
brid grasping solution can be developed, combing a versatile
gripper with a neural network. However, most open-source
datasets are merely compatible with traditional parallel-jaw
grippers and vacuum grippers. Unlike a traditional parallel-
jaw gripper, it is not easy to collect grasp examples for a
dexterous gripper by manual labeling [11] or grasp simulation
[12], [13] with human-designed grasp principles due to the
complex deformation of the dexterous gripper during grasping.

Fig. 1 presents the overview of the proposed hybrid grasping
method. This paper extends our previous framework [14], and
makes three contributions:

1) A novel 6-step method is proposed for the grasp sim-
ulation with a versatile vacuum gripper. The method
evaluates grasp quality for a virtual grasp by tracking
the deformation and force-torque wrench of the gripping
pad under quasi-static conditions. The contact surface
is tracked by a set of sub surfaces, instead of contact
points in many existing methods. Over 100 K grasps
are synthesized for neural network training.

2) A GA-CNN is designed to learn grasp principles for
a versatile vacuum gripper, which is a 52-layer linear
regression architecture with gripping attention modules.
It is trained on a massive dataset with synthetic grasps
to predict grasp quality focusing on the crucial region
on the soft gripping pad, which performs a higher pre-
diction accuracy than a traditional CNN with a similar
architecture and the same number of parameters (3.23
M). Moreover, a closed-loop GA-CNN grasping method
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Fig. 1. Overview of the proposed reactive grasping method.

in SE(3) is developed based on the real-time robotic
observation and force-torque wrench, which can grasp
both static and moving objects.

3) The complexity of grasping clutters for vacuum grippers
is defined from Level 1 to Level 9 according to objects’
shapes and distributions. Benchmark experiments for the
proposed grasping method and state-of-the-art methods
are investigated with static scenes, dynamic scenes and
multi-perspective robotic observations at Level 1 to
Level 9.

Benefiting from the adaptability of both the 6-step grasp
simulation and the GA-CNN, the combination of them could
be used for the dataset collection and grasp learning of a novel
soft gripper.

The remainder of this paper is organized as follows: Section
II discusses the related work. In Section III, concepts and
targets of the proposed method are described. Section IV
introduces the grasp simulation in detail. The architecture and
fine-tuning of the GA-CNN are presented in Section V. The
implementation of the GA-CNN grasping method is presented
in Section VI. Section VII demonstrates a series of practical
experiments for the proposed method. Finally, Section VIII
summarizes and concludes the performed work.

II. RELATED WORK

A. Grasping of Unknown Objects
Grasping of unknown objects refers to the grasp detection

and execution for objects without requiring their CAD models.
The current grasping methods for unknown objects can be
classified into three categories according to their basic frame-
works: analytic methods, empirical methods and synthetic
methods.

Analytic methods for unknown objects grasping typically
extract the primitive shapes of objects and take them as

simplified geometries [5], [15], like cubes, cylinders, cones,
to detect feasible grasp poses. For example, Herzog et al.
[16] proposed a shape-template-based matching algorithm for
unknown objects grasping. Analytic methods assume that
similarly shaped objects can be grasped in a similar way.
However, the high-quality grasp for a primitive shape is not
always the same as that for a real object. Hence, these methods
cannot consistently execute successful grasps.

Empirical methods use deep neural networks to learn grasp
principles. The neural networks for grasp pose detection are
generally trained on abundant grasps with manual labels [17].
Reinforcement learning [18], [19] is an alternative approach to
develop a neural network for grasping unknown objects. This
approach collects grasps by physical robotic trials that detect
failed/successful grasps with various sensors [20], [21], such
as a depth camera, a force-torque sensor or a haptic sensor
[22]. Nonetheless, a tedious collection of grasps is required.
For instance, 700 robot hours were consumed to collect 50 K
grasps in the research by Pinto et al. [18]. Levine et al. [23] ran
two months of physical trials with 14 robots to collect 800 K
grasps. The recent research by Dasari et al. [24] reported that
video frames can be used to train a neural network for random
picking. These studies concluded that neural networks trained
on a plenty of grasps can detect grasp poses for unknown
objects with >70.0% success rates.

Synthetic methods can be seen as an evolutionary version of
empirical methods. Instead of collecting grasps by tediously
human labeling or time-consuming robotic trials, synthetic
methods generate datasets in grasp simulation. Typically, a
virtual gripper is defined to grasp 3D models from different
perspectives. Each grasp is recorded by a point cloud [9],
[25] or a depth image [12], [26], with the corresponding
grasp quality evaluated by human-designed metrics, such as
force closure [27], friction closure [28] or Grasp Wrench
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Space (GWS) [29]. Even though a neural network trained on
synthetic grasps can predict the grasp quality for a real-world
grasp, the grasp simulation remains challenging, especially for
a dexterous/versatile gripper.

Furthermore, many of these methods above detect grasp
poses merely based on robotic vision and execute physical
grasping trials with open-loop control. The precise calibration
and control of a robotic system are demanded. Once a grasp
pose is determined, it cannot be pruned anymore. Therefore,
open-loop control is unable to deal with moving objects and
environments where the real-time calibration is difficult to
be implemented. Both of them are typical cases for random
picking on a conveyor belt.

B. Grasping with Dexterous Grippers

Dexterous grippers have been widely applied for the ma-
nipulation under shape uncertainties [30]. Unlike traditional
parallel-jaw and vacuum grippers, dexterous grippers have
more DoFs to fit an object and resist external disturbances.
Early research on multi-finger grasping engaged in finding
feasible contact points considering force closure [31] and
kinematic constraints [32]. Bohg et al. [33] developed a grasp
planning algorithm for multi-finger grippers, which detects the
optimal grasp pose by matching real-world grasp scenes to pre-
analyzed 3D models, and thus only works with known objects.

In recent years, under-actuated grippers and soft grippers
have been attracting great research. The relevant studies in-
volve both the devising and grasp planning of novel dexterous
grippers. Due to the high flexibility of a dexterous gripper,
the contact surface is often simplified into a set of contact
points [34], [35], and the grasp quality is evaluated based
on the contact stiffness, hand kinematics, dynamic frictions,
etc., in a projected low-dimension space. However, the contact
surface for a versatile gripper with soft gripping pads consists
of several sub surfaces, instead of points. As a result, the
simplified model with contact points only works well for
grippers with rigid gripping pads/fingers. Some latest studies
explored the contact modeling and simulation for deformable
grippers by tracking nonplanar contact surface [36], [37]. They
contributed more on grasp simulation, but relatively less on
physical random picking in dense clutters.

In this paper, the authors address the grasp quality eval-
uation for a soft gripper by tracking the deformation of
the contact surface with both the geometric and physical
restrictions in grasp simulation. The contact surface is tracked
by a set of sub surfaces, instead of contact points (Section IV).
Besides, the proposed grasp evaluation method can be easily
adjusted to fit other soft grippers. A deep neural network is
investigated based on the grasp simulation to predict grasp
quality for real-world random picking (Section V).

C. Robotic Grasping with Multi-Sensor Perceptions

A significant advantage of closed-loop grasping is the ability
to adjust the robotic motion in a dynamic environment. Visual
feedback is a popular solution to optimize the robotic motion
towards a desired pose [38]. Morrison et al. [39] presented
a reactive grasp pose detection approach for random picking,

which built the closed-loop control with a wrist-mounted depth
camera.

Actually, the vision-based reactive grasping is limited, as
not every grasp status can be monitored via robotic vision.
For instance, the in-hand deformation and slip for a soft object
are difficult to be measured with a camera, and multi-sensor
fusion is necessary for the grasping with a flexible gripper [40].
The fusion of robotic vision and 6-DoF gripper force-torque
wrench is a proper solution to detect the grasp status and
control the robotic motion in a dynamic scene [41]. Xiong et
al. proposed a novel AMDL method, which first explored the
force correlations among multiple fingers via tactile sensors
and significantly improved the grasping state recognition of
multi-finger grasping [42]. Besides, Huh et al. proposed a
haptic sensing method to optimize the grasping performance of
a multi-chamber vacuum gripper via a LSTM neural network
[43].

In this paper, the authors present a reactive grasping method
with a versatile vacuum gripper (Section VI). The real-time
point cloud and gripper force-torque wrench are integrated
into the closed-loop control to detect feasible grasp poses and
monitor the grasp status. The real-time feedback enables the
robot to grasp unknown objects in dynamic scenes.

D. Benchmarks for Robotic Grasping

Numerous benchmarks are available online for grasp simu-
lation and physical tests. On the one hand, some researchers
developed open-source simulators, for example, GraspIt! [44],
OpenGRASP [45] and SynGrasp [46], for flexible grasp simu-
lations based on physical principles. On the other hand, Calli et
al. released the YCB grasp benchmarks [47], containing recon-
structed 3D meshes and authentic RGB-D images sampled by
physical depth cameras from different perspectives. The simi-
lar open-source datasets involve the KIT object database [48],
Cornell Grasping, Dex-Net dataset [12] and APB. More recent
work, like the Jacquard dataset [13], has collected millions of
grasps with synthetic marks for parallel-jaw grippers, which
can be directly used to train a neural network and liberate the
follow-up researchers from tedious marking work [49].

Nevertheless, existing training datasets mainly aim to train
neural networks for traditional parallel-jaw grippers, because it
is challenging to manually mark graspable regions in 3D point
clouds or depth images for a versatile gripper. Consequently,
training a neural network on synthetic grasps for a versatile
gripper is a practicable approach. The subsequent problem is
that many released grasp simulators synthesize grasps by a
simplified virtual gripper with several contact points, which is
not precise enough for a soft gripper with deformable gripping
pads/fingers. Also, the computational complexities of existing
simulators are not favorable to generate a massive dataset.

In addition, many items from the benchmarks above do
often not fit the investigated grippers in the aspects of sizes,
weights, roughness, rigidity, etc. New items are usually needed
for the physical tests with a novel gripper, causing an unfair
comparison between different robotic grasping methods.

To address these issues, the authors propose a 6-step
method to track the deformation and simulate the grasp for
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Fig. 2. Coordinate systems for grasp planning. Red, green and blue lines are
the x, y, z axes of the used coordinate systems.

a soft gripper (Section IV). Furthermore, over one hundred
3D objects from the YCB, KIT and Dex-Net datasets are
evaluated to define a metric for the complexity of the object’s
shape based on the normalized surface-area-to-volume ratio
(NSVR) (Section VII-B). The complexity of picking clutters
with vacuum grippers is defined from Level 1 to Level 9,
considering the complexity and distribution of objects. New
objects and clutters can be defined with similar principles.

III. PROBLEM STATEMENTS

As shown in Fig. 1, given a 3D point cloud from a robotic
observation, the grasp planning problem is to select a set
of grasp candidates, evaluate their grasp qualities and find a
robust grasp pose to pick up the object. In this paper, the
problem can be described by the following processes: grasp
simulation, grasp quality prediction and grasp execution.

A. Coordinate Systems

Four coordinate systems are built for the grasp simulation
and physical grasp, named Camera Coordinate System (CCS),
World Coordinate System (WCS), Robot Coordinate System
(RCS) and Gripper Coordinate System (GCS). The details of
them are shown in Fig. 2, and there are CCS1 and CCS2 listed
for the static and wrist-mounted cameras, respectively.

B. Grasp Simulation

The primary task of the grasp simulation is to synthesize
grasps using a virtual gripper and 3D meshes of objects. The
grasp simulation digitizes the grasp quality by a numerical
value relevant to the properties of the used gripper and 3D
objects, and records the grasp with a point cloud.

In the grasp simulation, the 3D mesh of an object O is lo-
cated with a random pose PO in SE(3) to simulate a randomly
stacked object in the real world. A virtual versatile gripper G
tries to grasp the object with a pose PG in SE(3). The grasp
quality q is evaluated by human-designed principles, named
q = Q(PO,PG , SGO), where SGO is a set of parameters
to describe grasp states, such as the coefficient of friction
µ between the gripper and the object, physical features and
limitations of the gripper and the object. A virtual camera C
is deployed at the pose PC to render the grasp scene. Each
grasp candidate g(P, q) is represented by the grasp observation
P in GCS and the corresponding grasp quality q. An in-depth

description of the proposed 6-step grasp simulation can be
found in Section IV.

C. Grasp Quality Prediction

The goal of the grasp quality prediction q̂ = QΘ(P) is to
learn grasp principles via the GA-CNN to predict the quality
value q̂ when the grasp observation P is given in a real-
world grasping trial, where Θ defines the parameters of the
proposed neural network. The GA-CNN is trained on millions
of synthetic grasps g(P, q), which is described in Section V.

D. Grasp Execution

During physical grasping, the real-time 3D point clouds of
grasp scenes are captured in CCS. A number of sub point
clouds P = {P1,P2, · · · ,Pi, · · · ,Pu} are randomly sampled
and transformed into GCS for the grasp quality prediction. The
central pose of Pi is transformed into RCS to give a robotic
pose PR(Pi, q̂i,MF ) in SE(3), according to the predicted
grasp quality q̂i and the real-time force-torque wrench of the
gripper baseMF . The grasp execution is thoroughly presented
in Section VI.

IV. GRASP SIMULATION

Grasp simulation plays a fundamental role in synthesizing
a large-scale grasp dataset. In this paper, a 6-step grasp simu-
lation is proposed to estimate the grasp quality for a versatile
soft gripper. The grasp simulation is implemented with three
assumptions to simplify the computational complexity:

1) All forces and torques are calculated based on Quasi-
static physics with Coulomb friction.

2) Each target object has an airtight surface and a rigid
body.

3) The weights of the target objects and the torques on the
x, y axes are ignored.

The six steps in the simulation are summarized into:
1) Build a geometric model for the gripper.
2) Define geometric restrictions for the gripper.
3) Track the deformation of the virtual gripper.
4) Calculate GWS vectors for the contact surface.
5) Define physical restrictions for grasping.
6) Optimize the GWS vectors and estimate the grasp qual-

ity.
The following subsections IV-A to IV-G present the elab-

orate procedures of the grasp simulation considering the
characteristics of the adopted gripper shown in Fig. 3 [50].

A. Geometric Model

The used versatile gripper G consists of a base frame and
a soft gripping pad supported by an air-permeable cushion
with a granulate filling. The functional principle of G is
based on the gripping by vacuum and form closure, and the
shape adaptation and solidification of the gripping cushion by
airflow. The gripper cushion can freely deform or completely
solid to fit a complex surface as presented in Fig. 3 (b).

Assuming that the gripping pad contacts an object with an
airtight surface, part of the gripping pad will be located on
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(a) (b)
Fig. 3. Versatile vacuum gripper and its grasping demonstration [50]. (a) A
FORMHAND high-adaptability vacuum gripper with a radius of 75 mm. (b)
Soft cushion and gripping pad of the gripper.
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Fig. 4. Virtual gripper in the grasp simulation. (a) Soft gripping pad. (b)
Vertices in the cylindrical system. (c) Triangles on the gripping pad. (d) A
4-DoF force-torque wrench. Note: 1) ∆d restricts the euclidean distance for
the neighbor points vk and vk+1. 2) This figure simplifies the vertices and
triangles on the gripping pad for visualization, and more triangles (about 600)
are tracked in the practical grasp simulation.

the contact surface. A geometric model of the gripping pad is
built in Fig. 4 to track the deformation, following the gripper
base with a radius of rG and a height of H in a cylindrical
coordinate system. The orthogonal normal of the cylindrical
coordinate system is defined as nr, nθ and nz in (1). A set of
points V = {v1, · · · ,vk, · · · ,vm} with k = 1, 2, · · · ,m can
be found on the gripping pad by the radial step ∆r and the
rotation step ∆θ, wherein each point is defined as vk(r, θ, z).
The whole gripping pad is simplified by a set of triangular
planes T = {t1, · · · , tj , · · · , tn}, T 6= ∅ with 3-neighbor
vertices, as presented in Fig. 4 (c)-(d). Notably, the sets V and
T do not always contain certain elements during grasping, as
part of the gripping pad could not contact the object surface.
The neighbor points with the same rotation angle are defined
by vk(rk, θ, zk), vk+1(rk+1, θ, zk+1) and rk+1 > rk in the
following equations.

B. Geometric Restrictions

The gripping pad is deformable under the constraints of the
gripper cushion. Given a contact surface, the projection of the
gripping pad should always keep in a round shape on the plane∏

(r, θ, 0), as described in (2)-(3).
Moreover, the green region Reg.V on the gripping pad, as

marked in Fig. 4 (a), is the most meaningful region to make
an air-pressure differential p between the gripping pad and the
atmosphere for grasping. The radius of Reg.V is a constant rv
on the 3D surface. Therefore, the cover area Acov between the
object and Reg.V is not larger than the area of Reg.V at the
static status, which can be restricted by the neighbor points
and surface area in (4)-(5).

In addition, the radial step ∆r > 0 and the distance
step ∆d > 0 constrain neighbor points to avoid unrealistic
deformation, as listed in (6)-(7).

nr = (1, 0, 0), nθ = (0, 1, 0), nz = (0, 0, 1) (1)
0 ≤ r ≤ rG , 0 ≤ θ < 2π,−H ≤ z ≤ 0 (2)
0 ≤ vk · nr ≤ rG (3)∑
‖vk+1(rk+1, θ, zk+1)− vk(rk, θ, zk)‖ = rv,

vk,vk+1 ∈ Reg.V
(4)

Acov =
∑

Atj ≤ AReg.V = πr2
v, tj ∈ Reg.V (5)

0 ≤ (vk+1(rk+1, θ, zk+1)− vk(rk, θ, zk)) · nr ≤ ∆r (6)
‖vk+1(rk+1, θ, zk+1)− vk(rk, θ, zk)‖ ≤ ∆d (7)

C. Deformation Tracking

Tracking the deformation for the gripping pad is the pre-
requisite to compute the force-torque wrench and estimate the
grasp quality.

The soft gripping pad of G can freely deform to fit various
non-flat contact surfaces. Given an object O with a random
pose PO in SE(3), an upper surface point c(x, y, z) and a grasp
direction dG are randomly selected to build a GCS and define
a grasp pose PG in SE(3). When the gripper G contacts the
object at the point c(x, y, z), the sets V and T are re-mapped
into new coordinates to track the deformation of the gripping
pad. The points set V is projected on the contact surface under
the restrictions shown in (2)-(7), and only the points located
on the contact surface are considered for further processing.
The triangles in T are re-collected based on new 3-neighbor
points. Fig. 5 exhibits three examples of deformation tacking
for the gripping pad in the simulation and real world.

D. GWS Vector Calculation

Force-torque wrench has been widely investigated as a
GWS vector to evaluate the grasp robustness in simula-
tion. Generally, a force-torque wrench consists of the forces
Fx, Fy , Fz and the torques Tx, Ty , Tz in the GCS.
A simplified GWS vector of a grasp is defined as a 4D
wrench [‖Fx‖, ‖Fy‖, ‖Fz‖, ‖Tz‖]T in Fig. 4 (d), regarding
the assumptions mentioned before Section IV-A. The GWS
vector is analyzed by a set of sub force-torque wrenches
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

(k)

(k) (l)
Fig. 5. Three grasps in the simulation. (a)-(c) Virtual grasps. (d)-(f) Tracking
of the sets V and T. (g)-(i) The corresponding point clouds. (j)-(l) The
corresponding deformations with the similar objects in the real world. Note:
1) All grasps are visualized in GCS. 2) Green triangles are located on Reg.V,
and yellow triangles are out of Reg.V. 3) This figure simplifies the tracking of
vertices and triangles for visualization, and more triangles (around 600) are
tracked in the practical grasp simulation.

on the triangular gripping pads in T as described in (8)-
(9), where wj is the weight value of a triangle tj , and
[‖f tjx ‖, ‖f tjy ‖, ‖f tjz ‖, ‖τ tjz ‖]T is the force-torque wrench of
tj .

As a result, the grasp matrix of a grasping trial is de-
noted as G ∈ R4×n, wherein each column is the GWS
vector [‖f tjx ‖, ‖f tjy ‖, ‖f tjz ‖, ‖τ tjz ‖]T for a sub triangular grip-
ping pad tj . The weight matrix is formulated as W =
[w1, w2, · · · , wj , · · · , wn]T .

Fx =

n∑
j=1

wjf
tj
x , Fy =

n∑
j=1

wjf
tj
y , Fz =

n∑
j=1

wjf
tj
z (8)

Tz =

n∑
j=1

wjτ
tj
z (9)

E. Physical Restrictions

Physical restrictions mainly define the range of the force-
torque wrench for the used gripper and ensure all forces and
torques in the simulation to follow real-world physical princi-
ples. The force-torque wrench [‖Fx‖, ‖Fy‖, ‖Fz‖, ‖Tz‖]T for
a soft contact model is restricted by the elliptical equation
[28]. Furthermore, the weight value wj is also limited by the

physical properties of a gripper. All formulas of the physical
restrictions are listed in (22)-(28) in the Appendix.

F. Grasp Quality Estimation

In the ideal case, a perfect GWS vector in (10) is conducted
when the gripper contacts a flat surface with the maximum
value of p. The minimum Euclidean norm between the GWS
vector of an actual grasping trial and that of the ideal grasping
trial is a suitable reference to evaluate the grasp quality, named
min‖GW −Λ‖. A normalized grasp quality q ⊆ (0.0, 1.0] is
defined based on min‖GW − Λ‖ as depicted in (11)-(12),
where s is a constant to normalize to the GWS vector. The
nature of q = e−min‖s(GW−Λ)‖ is more sensitive for high-
quality grasp candidates when the value of q nears 1.0 but less
sensitive for low-quality grasp candidates, which is helpful for
grasp predictions in the real world.

Λ =


‖Fx‖
‖Fy‖

max‖Fz‖
‖Tz‖

 =


0
0

max(p) ·AG
0

 (10)

q = Q(PO,PG , SGO) = e−min‖s(GW−Λ)‖ (11)

s =
1

AG
=

1

πr2
G

(12)

Combing (8)-(12), the value of q is calculated by assign-
ing appropriate weight values in the matrix W to minimize
‖GW − Λ‖. The minimization of ‖GW − Λ‖ is subjected
to a series of physical restrictions in Section IV-E, which
can be solved by Quadratic Programming (QP). The elaborate
procedures of the QP are demonstrated in the Appendix.

G. Point Cloud Sampling

A sub point cloud P is demanded to record the grasp
example when the grasp quality has been evaluated. As shown
in Fig. 5 (g)-(i), a virtual camera C is deployed at the pose PC
in WCS, then a set of virtual structured lights are projected
towards the contact surface to render a point cloud in CCS.
Finally, the point cloud P is transformed into GCS as the grasp
observation. To improve the neural network learning efficiency
[11], only a desampled 24×24 point cloud around the gripper
is taken to record the grasp example, which is denoted as a
3×24×24 array with the 24×24 data from the x, y and z
channels, separately.

H. Grasp Example Generation

In summary, the pseudo code to synthesize a grasp example
is presented in Algorithm 1. Considering the average size of
the 3D meshes, the virtual gripper is defined with rv = 20 mm,
rG = 25 mm, and H = 30 mm, which keeps the same shape
but is smaller than a real gripper. The points set V is sampled
by steps ∆θ = 0.045π, ∆r ≤ 2 mm, and ∆d ≤ 2 mm. Both
PO and PG are in SE(3) for each grasp. The grasp quality
is evaluated by solving the QP within 100 iterations, and the
sub point cloud is desampled into 24×24 points around the
contract surface. Additionally, random noises with σC = 2 mm
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are implemented on sub point clouds to simulate the use of
a physical depth camera. 35 high-resolution 3D meshes were
selected from the YCB dataset, and their sizes were rescaled to
simulate grasp scenarios with various objects. 1 K∼10 K valid
grasps were randomly sampled for each 3D mesh, depending
on the size of the mesh. Over 100 K grasps were synthesized,
running 200 hours on the PC introduced in Section VII. When
the gripper G cannot contact the object O, a low-quality grasp
will be synthesized with q = e−min‖s(0−Λ)‖ = e−1 = 0.368
based on (11). Hence, the grasps with q ≤ 0.3 are believed
as extremely low-quality grasps and are not used for neural
network training. Besides, all synthetic grasps are archived
with an object-wise separation to ensure the objects used for
the GA-CNN training are excluded from the testing dataset.

Algorithm 1 Synthesize a Grasp Example.
Assumptions:

A-1. Quasi-static physics with Coulomb friction.
A-2. The object has an airtight surface and a rigid body.
A-3. Ignore the weight of a target object and the torques

on the x, y axes.
Input:

3D mesh of the object O, virtual gripper G, virtual
camera C.

Output:
Grasp quality q, point cloud P .

Steps:
S-1.01: PO = RandomSet(O) in SE(3).
S-1.02: Build a geometric model for G in GCS by

parameters rG , V, T...
S-1.03: Set geometric restrictions by r, θ, z, ∆r, ∆θ...
S-1.04: c = RandomPoint(O).
S-1.05: dG = RandomSet(c,G).
S-1.06: PG = RandomSet(c,dG) in SE(3).

for k ← 1 to m do:
S-1.07: Track V← {v1, · · · ,vk, · · · ,vm}.

end for
S-1.08: Update T = {t1, · · · , tj , · · · , tn} ← V.

for j ← 1 to n do:
S-1.09: Compute f tjx , f tjy , f tjz and τ tjz .

end for
S-1.10: G← {f tjx , · · · ,f tjy , · · · ,f tjz , · · · , τ tjz , · · · }.
S-1.11: Set physical restrictions for µ, p, Fx, Fy , Fz ,

Tz ...
S-1.12: Solve q = e−min‖s(GW−Λ)‖ by QP.
S-1.13: PC = Set(C) in WCS.
S-1.14: Render P in CCS.
S-1.15: P = Desample(Disturb(Transform(P))).

V. GA-CNN

A. Architecture of GA-CNN

The GA-CNN can be considered as a function q̂ = QΘ(P)
to learn grasp principles and to replace the function q =
Q(PO,PG , SGO) for the quality prediction when a sub point
cloud P is given during a physical grasping trial.

Unlike many grasp detection networks consisting of tradi-
tional shallow-layer CNNs [9], [25], the GA-CNN is defined
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Fig. 6. The architecture of the proposed GA-CNN.

by a deep CNN architecture illustrated in Fig. 6, which is a
pyramid topology containing a 2-layer CNN and 4 Convolu-
tional Block Attention Modules (CBAMs) [51] with the classic
ResNet [52]. GA-CNN takes in a 24×24 array from the z-
channel data of a point cloud and provides a quantitative value
q̂ > 0 as output. The CBAMs in the GA-CNN are expected
to concentrate more on Reg.V in Fig. 4 when evaluating the
grasp quality.

B. Training of GA-CNN

95 K synthetic grasps were selected to train the GA-CNN,
and extra 5 K synthetic grasps were used for tests. Assuming a
batch size of b is defined during the training, the Mean Squared
Error (MSE) loss function is defined in (13) as the criterion to
optimize the parameters using an Adam optimizer [53] with
an initial learning rate of 0.000005.

L(q, q̂) =
1

b

b∑
i=1

(qi −QΘ(Pi))2 (13)

The PC introduced in Section VII was used for the GA-
CNN training. More than 50 similar networks were trained
to find the optimal architecture for the GA-CNN regarding
both the prediction error and computational complexity. For
each grasp example in the testing dataset, the prediction error
of the GA-CNN is denoted as |q̂ − q|abs. Fig. 7 presents the
average prediction error and execution time affected by the
jointly varying channels and depths of CBAMs in the GA-
CNN. In detail, the depth of the GA-CNN varies from 18
layers to 102 layers with four different combinations of the
CBAM channels.

With the increase of the depth and channels, the com-
putational complexity of GA-CNNs consistently grows, but
their prediction errors do not constantly decrease. Especially
when a GA-CNN has more than 80 layers or 32-64-128-256
channels, the prediction error often enlarges due to overfitting.
Consequently, the 52-layer GA-CNN with 64-128-256-512
channels keeps satisfying performance in the aspects of both
the average error and computational complexity. The final GA-
CNN is constructed by a 2-layer CNN with a 3×3 kernel, and
4 CBAMs with 64, 128, 256 and 512 channels respectively
(Fig. 6), containing 3.23 M parameters. It reports an average



8 IEEE TRANSACTIONS ON ROBOTICS

Fig. 7. Performance of the GA-CNN with different channels and depths of CBAMs. Note: Change the depths of CBAMs to get GA-CNNs with different
layers, and green bars mark the selected architecture.

error of 0.049 and spends 0.27 ms for each synthetic grasp in
the test dataset.

VI. CLOSED-LOOP GRASPING

A closed-loop grasping method outperforms an open-loop
one owing to its ability to utilize real-time robotic perceptions
and adjust grasp strategies. The proposed reactive grasping
method integrates the real-time point cloud of robotic obser-
vation and the 6-DoF force-torque wrench of the gripper base
to develop the closed-loop control, as shown in Fig. 1.

The role of the real-time force-torque has been explained
in our published work [14]. It is mainly utilized to monitor
the grasp status, like collision and grasp success, optimize the
robotic motion, and minimize the moments on the gripper base
during grasping.

Different from the previous work [14], the real-time point
cloud P is evaluated at each timestep in the closed-loop
control. Besides, the proposed reactive grasping method is
able to detect feasible grasp poses in SE(3). As mentioned
in Section III-D, a number of sub point clouds P =
{P1,P2, · · · ,Pi, · · · ,Pu} are randomly sampled and trans-
formed into GCS for the grasp quality prediction. The grasp
direction of Pi is calculated based on its average surface
normal.

Furthermore, grasping objects from a dense clutter re-
quires robust strategies to overcome visual occlusions. Multi-
viewpoint grasping based on visual fusion improved the suc-
cess rates for parallel-jaw grippers by 10.0% in previous
research [39], [54]. Accordingly, multi-perspective grasping
is developed for the proposed grasping method. The role
of force-torque feedback keeps the same in both single-
perspective and multi-perspective grasping, and the difference
exists in using visual information with hybrid strategies for
multi-perspective grasping. Specifically, the proposed multi-
perspective grasping method merges more than one point cloud
from multiple viewpoints, for example, the static and wrist-
mounted cameras in Fig. 2, to acquire a global point cloud
and detect a globally optimized grasp pose before grasping.
Afterward, the robot adjusts the gripper pose towards the
globally optimized grasp pose. Then the wrist-mounted camera

keeps activated to observe the clutter in a local scope, optimize
grasp pose and prune the grasp motion during grasping. The
local scope is typically set with a rectangle region double
the size of the applied gripper pad. A multi-viewpoint point
cloud ensures that the robot can overcome visual occlusions
and adapt the poses of the gripper and wrist-mounted camera
before grasping. The use of a multi-perspective point cloud
prevents the GA-CNN from missing a feasible grasp region
that is invisible in a single-viewpoint point cloud before the
robot adapts the poses of the gripper and wrist-mounted
camera. The single-viewpoint point clouds during grasping
ensure the proposed grasping method runs with 15 Hz real-
time speed when the robot approaches a target object.

VII. EXPERIMENTS

This section describes extensive experiments to evaluate
the performance of the proposed grasping method both in
simulation and on a physical robot. A computer running
Ubuntu 20.04 OS was used in the experiments, which consists
of a multi-kernel 3.5 GHz Intel Core i9-9920X CPU, 64 GB of
dynamic system memory (DRAM), and two Nvidia GeForce
RTX 2080Ti graphics cards.

A. Experiments on Simulation

This subsection describes experiments with synthetic grasps,
aiming to verify the robustness of the GA-CNN and visualize
the gripping attention of the GA-CNN in grasp quality pre-
diction. The virtual gripper is defined by rv = 20 mm, rG =
25 mm, and H = 30 mm in the subsequent tests.

1) Prediction Error: First, the robustness of the GA-CNN
was validated by synthetic point clouds with different noise
levels. As mentioned in Section IV-H, the grasps with 0.3
< q ≤ 1.0 were used for the GA-CNN training. Fig. 8 shows
the grasp qualities of over 2,400 synthetic point clouds with
random noises σP = 2 mm, 4 mm and 8 mm, respectively.
In this figure, the grasp qualities are ranked by ascending
order based on their standard values q, then the predicted
values q̂ under different noise levels are separately fitted using
polynomial regression. The coefficient of determination R2
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(a) (b) (c)

Fig. 8. Grasp quality predictions for synthetic point clouds under different noise levels. (a) σP =2 mm, R2 =0.904. (b) σP = 4 mm, R2 =0.893. (c) σP =
8 mm, R2 =0.812.

was computed to indicate the divergence of q̂ from q. Each
fitted curve is monotonically increasing when σP is a constant,
revealing that the GA-CNN predicts grasp qualities with low
errors for synthetic point clouds. The GA-CNN achieves an
average prediction error of ≤ 0.053 when 0.3 < q ≤ 1.0 and
σP ≤ 4 mm. Thousands of tests in the simulation indicated
that the grasp candidates with 0 < q ≤ 0.3 were not robust
to conduct a successful grasp. These grasp candidates often
contained large non-flat regions that the gripping pad cannot
touch, which will never be selected as the final grasp pose in
a physical grasping trial.

The robustness and applicability of the GA-CNN are further
evaluated on a physical robot in Section VII-B.

2) Grasp Quality Visualization: Given a synthetic grasp
scenario with a randomly-posed object and a pre-defined grasp
pose, the gripping attention of the GA-CNN was compared
with a traditional CNN having a similar architecture and
the same number of parameters. Fig. 9 (a)-(c) show three
synthetic grasp scenarios with the grasp centers c, including
two adversarial items from the Dex-Net dataset in Fig. 9 (b)-
(c). Fig. 9 (d)-(f) and Fig. 9 (g)-(i) respectively present the
gripping attention of the CNN and GA-CNN via the Class
Activation Map (CAM) [55], wherein the regions with warm
color own larger weight values and more substantial attention.
The CAMs of the GA-CNN in Fig. 9 (g)-(i) focus on Reg.V
more than those of the CNN in Fig. 9 (d)-(f). Significantly,
Reg.V can deform to fit non-flat contact surfaces Scon that
cannot entirely match the gripping pad, like the grasp scenes
in Fig. 9 (b)–(c). In such cases, the Reg.V on a CAM is
no longer a round region as in Fig. 9 (g), and thus the
grasp quality prediction becomes challenging for the CNN,
as demonstrated in Fig. 9 (e)-(f). In contrast, the CAMs of
the GA-CNN still pay more attention to the Reg.V located on
Scon. Furthermore, the predicted values q̂ via the GA-CNN
are more accurate, since CBAMs can find the crucial gripping
region and extract its features for the grasp quality prediction.
The feature refinement of CBAMs eventually leads the GA-
CNN to utilize features better than the CNN.

The performance of the GA-CNN was further investigated
with the grasp scenario in Fig. 9 (c), assuming the grasp
direction is fixed. Fig. 10 shows the 2D quality maps of the
target object, where each 2D quality map was generated by the
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(i)
Fig. 9. Gripping attention of three synthetic grasp scenarios. (a) Grasping a
disk with a radius of 25 mm. (b) Grasping a complex object with a dimension
of 110 mm×75 mm×54 mm. (c) Grasping a complex object with a dimension
of 105 mm×80 mm×73 mm. (d)-(f) CAMs of the CNN. (g)-(i) CAMs of the
GA-CNN.

pixels q(x, y) or q̂(x, y) on the object surface. A 2D Gaussian
filter with a 5×5 kernel was applied to smooth the 2D quality
maps in Fig. 10.

The quality map Q in Fig. 10 (a) acquired from the grasp
simulation (Section IV) is believed as a baseline and compared
with the quality maps predicted via the CNN and GA-CNN.
In Fig. 10 (a), the high-quality region is often located on
the convex surface of the target object, where an airtight
contact can be conducted. Fig. 10 (b) visualizes the predicted
quality map using the CNN, named Q̂CNN. Briefly, inaccurate
prediction is reported on the region of x ⊆ [−2 cm, 2 cm]∩y ⊆
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Fig. 10. 2D Grasp quality maps for the synthetic grasp in Fig. 9 (c). (a) Baseline 2D quality map Q acquired from the grasp simulation. (b) 2D quality map
based on the CNN, named Q̂CNN. (c) 2D quality map based on the GA-CNN, named Q̂GA-CNN.

[−1 cm, 1 cm] in Q̂CNN, and the average prediction error
of Q̂CNN is 0.065 compared with Q, which is calculated by
|q̂−q|abs for all foreground pixels in Q and Q̂CNN. In contrast,
the predicted quality map of the GA-CNN, named Q̂GA-CNN,
performs better and is more similar to the baseline map Q,
although it often overestimates low-quality regions, such as
the regions of x ⊆ [−4 cm,−2 cm] ∩ y ⊆ [0 cm, 2 cm] and
x ⊆ [1 cm, 3 cm] ∩ y ⊆ [2 cm, 4 cm] in Q̂GA-CNN. Finally,
Q̂GA-CNN reports an average error of 0.041 based on the same
metric |q̂ − q|abs.

Notably, the grasping trials in both Fig. 9 and Fig. 10
were conducted with a top-down grasping assumption in SE(2)
for randomly-posed objects, which are insufficient to indicate
the GA-CNN is competent for the real-world grasp quality
estimation in SE(3). Hence, the GA-CNN grasping method
has been thoroughly assessed in the subsequent real-world
experiments in Section VII-B.

B. Experiments on Physical Robotic Grasping

This subsection presents the performance of the GA-CNN
with physical setups for static grasping, dynamic grasping
and multi-perspective grasping. The robotic system is depicted
in Fig. 11. It is composed of a 6-DoF robot (KUKA LBR
IIWA 14 R820), a versatile vacuum gripper with a radius of
75 mm (FORMHAND FH-R150) that is much larger than
the virtual gripper in simulation, a static camera (Microsoft
Kinect Version 2), a wrist-mounted camera (Intel RealSense
L515) and a PC, linked via ROS nodes [56]. Notably, the
force-torque wrench in the closed-loop control is projected
from the joint torque sensors on the KUKA IIWA, and
necessary configurations and calibration are needed for the
robot regarding the weights of the used gripper, wrist-mounted
camera and flange.

1) Clutter Levels: Despite the fact that abundant benchmark
objects are available online for robotic grasping tests, many
items from the benchmarks are not always suitable for the
investigated grippers in the aspects of sizes, weights and
rigidity. A fair criterion is needed to benchmark clutters in
physical grasping. In this paper, the complexities of grasp
scenes are defined with nine-level metrics for the random
picking with vacuum grippers.

In this research, the complexity of the object’s shape is
defined based on the NSVR in (14), where Asur and Vobj
are the surface area and volume of the object. Definitely, it is

Static camera

Robot

Flexible vacuum 
gripper

Wrist-mounted
camera

Fig. 11. Robotic setup for the experiments.

a property of the object and not related to any gripper. The
NSVR keeps the same when an object is rescaled.

NSVR =

√
Asur

3
√
Vobj

(14)

Fig. 12 lists some objects and their NSVRs from the Dex-
Net [12], KIT [48] and YCB [47] grasping databases. The
NSVRs of more than one hundred 3D meshes from these
databases were calculated, and the complexities of objects can
be divided into three categories based on NSVRs: Basic (0 <
NSVR < 2.6), Typical (2.6 ≤ NSVR < 3.5), and Complex
(3.5 ≤ NSVR). With these criteria, any real-world object can
be classified based on the NSVR of its reconstructed 3D model
as exhibited in Fig. 13 (a)-(c).

Moreover, the distribution of objects in a grasp scene can
be classified into three levels: isolated, multiple and stacked,
as shown in Fig. 13 (d)-(f). In a grasp scene with isolated
objects, the objects are manually deployed with random poses
on the table in SE(2), and the minimum gap between each
object and its neighbors is not smaller than 5 cm. Similarly, a
grasp scene with multiple objects is manually deployed on the
table in SE(2), where the maximum gap between each object
and its neighbors is within 1 cm. As a comparison, stacked
objects in a grasp scene stay with random poses in SE(3) and
touch each other, which can be deployed following the method
in the existing work [9].

Therefore, the complexities of grasping clutters are divided
into nine levels in Table I. Fig. 13 (d)-(f) illustrate part of
the items for the subsequent physical experiments, including 5
adversarial objects from the Dex-Net dataset. In the subsequent
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TABLE I
THE COMPLEXITY LEVELS OF GRASPING CLUTTERS.

Comp.

Level Dist.
Isolated Multiple Stacked

Basic 1 2 3
Typical 4 5 6

Complex 7 8 9

Note: 1) Comp. is the abbreviation of “Complexity.” 2) Dist. is the
abbreviation of “Distribution.”

(a) (b) (c) (d)
Fig. 12. Several 3D models from benchmark datasets and their NSVRs. (a)
NSVR = 2.22. (b) NSVR = 2.42. (c) NSVR = 2.63. (d) NSVR = 3.87.

(a) (b) (c)

(d) (e) (f)
Fig. 13. Examples of objects’ complexities and distributions. (a) A set of
basic objects. (b) A set of typical objects. (c) A set of complex objects. (d)
A set of isolated objects. (e) Multiple objects on the table in SE(2). (f) A set
of stacked objects.

physical experiments, every clutter consisted of 10 randomly
distributed objects, and five clutters were deployed for the test
at each level (50 objects in total).

2) Static Grasping: The real-world grasping experiments
start with the pre-analysis of grasp scenes with isolated ob-
jects. For instance, Fig. 14 (a) briefly demonstrates a grasping
trial with the GA-CNN grasping method in SE(3). 5 K
grasp candidates were randomly selected from the point cloud
to evaluate the grasp robustness. The corresponding grasp
directions estimated by the average surface normal and 3D
quality map predicted via the GA-CNN are shown in Fig. 14
(b)-(c). A similar grasping trial is separately presented in Fig.
14 (d)-(f). As a conclusion, the high-quality grasp regions on
the quality maps almost correspond with relatively wide, flat
surfaces on the real-world objects in Fig. 14 (a) and (d), which
are consistent with human intuition and experience.

To evaluate the performance of the GA-CNN for random
picking in static scenes, benchmark grasping trials were for-
mulated on static clutters with the following six baseline
methods: 1) a grasp pose on the clutter’s center in SE(3),
2) a minor-revised Dex-Net 3.0 in SE(3) [57], 3) the CNN

(a)

(a)

(a)

(b)

0.3

0.8

(c)

(a)

(d)

(a)

(e)

0.3

0.8

(f)
Fig. 14. Two physical grasping trials in SE(3). (a), (d) Target objects. (b),
(e) Part of grasp directions estimated by the average surface normal. (c), (f)
3D grasp quality maps predicted via the GA-CNN.

grasping method in SE(2) with a top-down grasp direction, as
mentioned in Section VII-A, 4) the CNN grasping method in
SE(3), 5) the GA-CNN grasping method in SE(2) with a top-
down grasp direction, and 6) the GA-CNN grasping method
in SE(3). Only the static camera in Fig. 11 was used for the
static grasping. Besides, a collision-avoidance algorithm [14]
was integrated into the benchmark grasping methods to avoid
potential collisions on the robotic moving path.

Table II presents the success rates of the six grasping
methods above. Apparently, most grasping methods achieve
high success rates at Level 1 to Level 4, proving that the
versatile vacuum gripper can fit objects well with the soft
gripping pad, and the grasping methods are not very important
at those levels. The traditional grasping method based on
clutter’s center reports low success rates for the clutters at
Level 5 to Level 9. Because a feasible grasp pose for a
complex object or dense clutter is not always located at its
geometric center. The minor-revised Dex-Net 3.0 shows low
success rates for the objects in clutters, especially at Levels 6,
8 and 9. Also, the minor-revised Dex-Net 3.0 is not good at
grasping relatively small objects. Because the Dex-Net 3.0 is
developed for the typical use cases of basic vacuum grippers
and trained on a dataset containing plenty of grasp scenarios
with relatively large objects. Given a small and complex
object, the Dex-Net 3.0 could not find a feasible grasp region
that fits the soft gripping pad of the adopted gripper and covers
the crucial region Reg.V. It is concluded that the Dex-Net 3.0 is
a robust grasping method for a basic vacuum gripper, but it is
not competent for the grasp planning with a versatile vacuum
gripper. The traditional CNN trained on our synthetic dataset
performs an average success rate of 93.5% at Level 1-Level
4. Nonetheless, the performance shows a relevant decrease at
Level 5 to Level 9, revealing that the traditional CNN has
difficulties to learn the grasp principles for a versatile vacuum
gripper. As a comparison, the GA-CNN can learn the grasp
principles of the adopted gripper and detect feasible grasp
poses that fit the soft gripping pad and wrap Reg.V as much as
possible for various objects. The GA-CNN grasping in SE(3)
consistently works better than others and achieves an average
success rate of 90.2% at Level 1 to Level 8 for the grasping
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TABLE II
RESULTS OF THE BENCHMARK EXPERIMENTS FOR STATIC GRASPING.

Method

S.R. Level
1 2 3 4 5 6 7 8 9

Center 100.0 64.1 46.3 83.3 - - 59.5 - -
Dex-Net 3.0 100.0 90.9 80.6 84.7 67.6 51.0 66.7 48.1 -
CNN, SE(2) 100.0 92.6 82.0 92.6 72.5 60.2 73.5 59.5 48.5
CNN, SE(3) 100.0 96.2 83.3 94.3 73.5 61.7 76.9 61.7 49.0

GA-CNN, SE(2) 100.0 100.0 94.3 96.2 84.7 71.4 90.9 74.6 63.3
GA-CNN, SE(3) 100.0 100.0 96.2 96.2 86.2 73.5 92.6 76.9 64.1

Note: 1) S.R. is the abbreviation of “Success Rate.” 2) Results marked with “-” mean that the corresponding success rates are <33.3%.

Object 1
Obje

ct
 2

Slipping

Ver�cal axisGrasp axis

Approaching
angle

(a) (b)
Fig. 15. Limitations of the grasping in SE(3). (a) Slipping of the target
objects. (b) Deformation of the granulate filling in the gripper cushion.

in SE(3), which is significantly higher than other methods.
In addition, the grasping methods in SE(3) with the CNN

and GA-CNN do not considerably outperform the grasping in
SE(2), attributed to the limitations of the used setup. On the
one hand, the approaching angle of the gripper in Fig. 15 (a)
is often limited by the ranges of the robotic joints, friction on
the table, and so on. A large approaching angle could result
in the slipping of target objects. Also, the granulate filling
inside the gripper cushion will move due to the gravity and
be accumulated at the bottom of the cushion before grasping,
and thus the soft gripping pad and flexible cushion cannot fit
the contact surface well, as shown in Fig. 15 (b). On the other
hand, if the approaching angle of the gripper is too small,
the advantage of a grasp pose in SE(3) will not be apparent,
compared with a top-down grasp pose in SE(2).

3) Dynamic Grasping: Grasping moving objects is a typical
application for a robot. Closed-loop control is demanded to
monitor the grasp status for dynamic grasping. Morrison et
al. [39] measured the offset for a moving clutter by the grids
on the table. However, it is not easy to keep the same moving
speed and offset for clutters in several tests. In this research,
the clutters stayed with static poses and the moving objects
were simulated by the random disturbance of robotic motion.
The GA-CNN method in SE(2) was implemented for dynamic
grasping to simplify the experiments, as Table II has concluded
that the GA-CNN method in SE(3) cannot significantly im-
prove the grasping performance. Given a desired robotic pose
PR = [x, y, z, α, β, γ]T to grasp an object, an random offset
Pσ = [xσ, yσ, 0, 0, 0, 0]T was added to PR at each timestep
in the closed-loop control to simulate the moving objects, as
formulated in (15).

P ′R = PR + Pσ, ||Pσ|| =
√
x2
σ + y2

σ (15)

0

||𝑷𝜎 || = 0.00
||𝑷𝜎 || = 0.67
||𝑷𝜎 || = 1.33
||𝑷𝜎 || = 2.67
||𝑷𝜎 || = 5.33

Fig. 16. Success rates of the GA-CNN grasping method for dynamic grasping
in SE(2).

The dynamic grasping was conducted at Level 1 to Level
9 with a robotic speed of vR = 250 mm/s, and ||Pσ|| =
0.00 mm, 0.67 mm, 1.33 mm, 2.67 mm and 5.33 mm at each
control loop, and only the wrist-mounted camera in Fig. 11
was activated for the subsequent tests. As illustrated in Fig. 16,
the grasp success rates do not dramatically reduce compared
with the static grasping at the same levels when ||Pσ|| ≤ 1.33
mm, especially for the clutters at Level 1 to Level 7. Hence,
the 15 Hz closed-loop control enables the GA-CNN grasping
method to track and pick up moving objects. However, the GA-
CNN grasping method performs lower and lower success rates
with the increase of ||Pσ|| and hardly works when ||Pσ|| ≥
5.33 mm.

4) Multi-Perspective Grasping: This subsection conducts
static grasping of the GA-CNN method with multi-perspective
robotic observations, taking full advantage of the static and
wrist-mounted cameras, as mentioned in Section VI.

Fig. 17 compares the success rates of the GA-CNN grasping
method in SE(3) for static objects in single-perspective and
multi-perspective robotic observations. The multi-perspective
observation remarkably improves the GA-CNN performance
for the random picking at Levels 5, 6, 8 and 9, by 4.7%, 9.8%,
3.7% and 4.4% respectively. In other words, a multi-viewpoint
observation becomes necessary with the increasing complexity
of grasping clutters. Because the point cloud acquired from
multiple perspectives contains surface features in both the top
and side of a clutter, which cannot be acquired merely from a
single viewpoint. Hence, the GA-CNN grasping method can
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Fig. 17. Success rates of the GA-CNN grasping in SE(3) for static objects
in single-perspective and multi-perspective robotic observations. Note: The
coordinates of the y axis start from 60.0% to visualize the difference in the
success rates.

detect a better grasp candidate based on more features from a
multi-perspective point cloud.

C. Failed Trials and Limitations

There are four typical failure grasp cases about the proposed
grasping method.

First, Fig. 18 (a) reports a failed grasp for a transparent
object, since the structured light of the depth camera is unable
to be reflected on a transparent surface, and the robot fails to
detect the object.

Second, Fig. 18 (b) shows a failed grasp for two neighbor
objects with the same height. The flat boundary cannot be
detected due to the limited resolution of the depth camera. Im-
plementing a segmentation algorithm before the grasp quality
prediction is a potential solution for this problem. However,
the segmentation [58] and tracking [59] of unknown objects
in a clutter are still complicated.

Moreover, the proposed grasping method has mediocre per-
formance for the random picking of slim objects, as illustrated
in Fig. 18 (c)-(d). Specifically, while the GA-CNN grasping
method detects the feasible grasp regions for both grasping
trials, a failed grasp is still reported in Fig. 18 (d) when
two slim objects are near-distributed and the neighbor object
inhibits the soft gripping pad from fitting the target object.
The grasp success is affected by the dimensions of objects
and gripper.

Additionally, the closed-loop GA-CNN grasping merely
runs within 15 Hz on the used PC due to the deep architecture
of the GA-CNN. The decrease in grasping performance can
be seen if objects move too fast. This is the reason why the
success rates are pretty low for the dynamic grasping with
||Pσ|| ≥ 2.67 mm presented in Fig. 16.

In consequence, the applicability of the proposed closed-
loop grasping method is also related to physical setups and
target objects. Essential adjustments are needed to fit different
use cases. For instance, an appropriate gripper’s size should
be decided regarding the objects’ sizes in physical grasping
trials.

(a) (b)

(c) (d)
Fig. 18. Some failed grasping trials. (a) Grasping trial for a transparent object.
(b) Grasping trial for two flat objects with a similar height. (c) Successful
grasping trial for a single and slim object. (d) Failed grasping trial for two
near-distributed and slim objects.

VIII. CONCLUSION

In this paper, the authors present a flexible grasping method
for the random picking of unknown objects. A 6-step approach
is proposed to simulate the grasp and evaluate the grasp quality
for a versatile vacuum gripper, which tracks the deformation
and force-torque wrench of the gripping pad and computes
the grasp quality under quasi-static conditions. Over 100 K
synthetic grasps are generated for neural network training. A
52-layer GA-CNN is proposed to learn the grasp principles
for the versatile gripper, combing the CBAMs and traditional
ResNets. The proposed closed-loop GA-CNN grasping method
is a 15 Hz reactive grasping approach and detects grasp poses
in SE(3), which reports satisfying performance in both the
simulation and physical grasping trials. Additionally, failure
modes of the GA-CNN grasping method are discussed.

Future research is scheduled in two aspects. First, a more
versatile grasping simulator will be developed to model the
object’s weight in the grasping wrench. The novel simulator
will record the force-torque feedback for each virtual grasp.
A neural network can be trained on the sequence of force-
torque feedback to detect the grasp status and optimize the
grasping performance, which could be based on an architecture
of RNN, LSTM [43] or Transformer. The main challenge
exists in the weight estimation, regarding a real-world object
and its 3D mesh. Second, the metric of objects’ distribution
in a grasp scene will be further improved for benchmark tests.
For example, a random grasp scene with isolated, multiple or
stacked objects can be synthesized in a simulator [60] with
the reconstructed 3D meshes of real-world objects, and then a
similar real-world grasp scene can be deployed with the same
objects from the synthetic grasp scene. This method succeeds
on some datasets of 3D models but remains challenging on
real-world data.
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APPENDIX
QP FOR GRASP QUALITY ESTIMATION

To calculate the force-torque wrench in Fig. 4 (d), a set
of orthogonal normal is formulated in (16). Let p > 0 be
the air-pressure differential between the gripping pad and the
atmosphere, and µ > 0 be the coefficient of friction between
the gripping pad and the target object. In this paper, the
coefficient of friction is set with a value of µ = 0.5, which
is a typical constant for the contact of a rubber gripping pad
and unknown objects [12], [25], [57]. Nevertheless, how to
estimate the air-pressure differential p in the grasp simulation
remains challenging. The value of p in the real world depends
on the operating curve of the fan type, the geometry of the tub-
ing, the power of pump and so on, which is a computationally
expensive problem in the simulation involving Computational
Fluid Dynamics (CFD). Hence, the value of p is estimated by
the monotonically increasing function in (17).

Given a triangle tj , r
tj
z is the moment arm for the geometric

center of tj towards the z axis, (n
tj
x , n

tj
y , n

tj
z ) is the surface

normal of tj , and Atj is the area of tj . Then the sub force-
torque wrench is computed by (18)-(21).

nx = (1, 0, 0), ny = (0, 1, 0), nz = (0, 0, 1) (16)

p = (

∑
Atj

AReg.V )2, tj ∈ Reg.V, p ⊆ [0, 1] (17)

f tjx = (pAtjntjx + µpAtjntjx )nx (18)
f tjy = (pAtjntjy + µpAtjntjy )ny (19)

f tjz = (pAtjntjz )nz (20)
τ tjz = rtjz × (f tjx + f tjy ) (21)

Fv = pAGnz =

n∑
j=1

pAtjnz (22)

|Fx · nx| = |
n∑
j=1

wjf
tj
x nx| ≤

√
3

3
µFv · nz (23)

|Fy · ny| = |
n∑
j=1

wjf
tj
y ny| ≤

√
3

3
µFv · nz (24)

0 ≤ Fz · nz =

n∑
j=1

wjf
tj
z nz ≤ Fv · nz (25)

|Tz · nz| = |
n∑
j=1

wjτ
tj
z nz| ≤

√
3

3
µrGFv · nz (26)

n∑
j=1

wj = n (27)

1− σW ≤ wj ≤ 1 + σW , σW = 0.1 (28)
LW ≤ l, JW = n (29)

A force-torque wrench for a soft contact model is restricted
by the elliptical equation [28]. Therefore, the limitations of
[‖Fx‖, ‖Fy‖, ‖Fz‖, ‖Tz‖]T can be calculated by (22)-(26),
where Fv is the vacuum force on the whole gripping pad.

Furthermore, the weight value wj of each sub gripping
pad is also limited by the physical properties of the used
gripper. Specifically, the air-pressure differential p on the
contact surface is generated from a unique air-flow tube on the
gripper base, and thus differential of weight values wj cannot
be too large, which can be briefly restricted in (27)-(28).

Given a weight matrix W = [w1, w2, · · · , wj , · · · , wn]T ,
all restrictions in (22)-(28) can be combined and converted
into a formula in (29), wherein the restriction matrices L ∈
R(8+n)×n and l ∈ R(8+n)×1 are converted from (22)-(26) and
(28), and J ∈ R1×n is an all-ones matrix to reformulate the
constraint in (27). In other words, the physical restrictions of
[‖Fx‖, ‖Fy‖, ‖Fz‖, ‖Tz‖]T are converted into the limitations
of W .

According to (11)-(12) in Section IV-F, it is derived that
q = e−min‖s(GW−Λ)‖ ∝ −min‖GW −Λ‖ ∝ −min‖GW −
Λ‖2 ∝ −min(0.5WTGW − ΛTGW ). Therefore, the grasp
quality estimation in this paper can be seen as the minimization
of 0.5WTGW −ΛTGW subjected to the conditions in (29),
which is solved by QP.
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