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BIG-Net: Deep Learning for Grasping with a
Bio-Inspired Soft Gripper

Hui Zhang , Member, IEEE, Yanming Wu , Eric Demeester , Karel Kellens

Abstract—In this letter, a grasping neural network for a bio-
inspired gripper (BIG-Net) trained on a synthetic dataset is
proposed for the picking of novel objects. The grasp feasibility is
evaluated by tracking the deformation of the soft gripping pad
and three types of gripping forces during simulation. Over 420 K
grasp scenes with 4.3 B grasps have been synthesized with stacked
objects to train the neural network, instead of isolated objects in
many existing methods. The BIG-Net takes in a depth image and
provides pixel-wise grasp parameters for a grasp scene. Various
experiments in both simulation and real world indicate that the
BIG-Net grasping method outperforms the traditional and state-
of-the-art methods. It achieves the average grasp success rates of
94% for the random picking of household items in clutter and
86% for adversarial items at real-time speeds (25 ms).

Index Terms—Contact modeling, deep learning in grasping
and manipulation, grasp simulation, perception for grasping and
manipulation.

I. INTRODUCTION

AUTOMATIC grasping of novel objects is an essential
skill for robots and remains challenging due to robot’s

and gripper’s limitations, and environmental uncertainties.
Bio-inspired soft grippers, such as an octopus gripper and
a gecko gripper, have more advantages for flexible grasp-
ing and manipulation than conventional grippers. Unlike a
conventional jaw gripper with antipodal gripping force or a
basic suction cup with vacuum gripping force, bio-inspired
grippers often adapt to target objects via soft gripping pads
and grasp objects with multiple grasp principles. For instance,
Fig. 1 demonstrates the grasp principles of chameleon tongue
and the related gripper that is inspired by the nature of the
chameleon tongue and adopted in this work. It is composed
of a soft gripping pad, which can deform to generate an airtight
contact for a target object, and thus firmly grasp the object by
multiple gripping forces, such as the vacuum gripper force and
wrapping force.
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(a) (b)
Fig. 1. Chameleon tongue and the related bio-inspired soft gripper [9]. (a)
The flexible chameleon tongue that can adapt to the shape and size of a prey
and firmly enclose the prey. (b) The investigated gripper inspired by the nature
of the chameleon tongue.

Many studies report that deep neural networks trained on
plenty of grasp examples can detect robust grasps for novel
objects. However, few relevant works have been published
on bio-inspired grasping based on deep learning, while a
substantial amount of research exists on grasp planning with
traditional jaw grippers and vacuum grippers using various
neural networks [1]–[8].

To further boost the grasping performance and explore
the potential for a bio-inspired gripper with deep learning,
two main challenges have to be addressed: 1) A bio-inspired
gripper could grasp objects with several grasp principles,
hence a robust and effective neural network is required to
learn the principles and estimate critical grasping parameters
for the used gripper. 2) A massive dataset is needed to train
the neural network. This letter addresses these challenges and
proposes a framework for contact modeling, grasp scenario
simulation, dataset collection and neural network development
for a chameleon-tongue inspired soft gripper.

Fig. 2 shows the pipeline of the proposed grasping method,
composed of two modules: the grasp evaluation and the grasp
execution. The proposed neural network BIG-Net takes in a
depth image of a grasp scene I and estimates the critical
parameters for robotic grasping, including the grasp directions
Di, the grasp qualities Qi and the gripping steps Si. A feasible
grasp pose is computed based on the predicted grasp quality
and direction. In addition, the real-time force-torque feedback
of the gripper base is adopted to monitor the grasp status and
optimize robot motion. More details of the grasp parameters
are explained in Section III. The main contributions of this
letter can be summarized as follows:

1) A grasp simulator is proposed for the bio-inspired soft
gripper [9] to evaluate grasp robustness, including con-
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Fig. 2. Pipeline of the proposed grasping method. Note: 1) The images of Di

are visualized in the order of z-channel (at top layer with blue background),
y-channel and x-channel. 2) The metric of Si is mm. 3) Each grasp candidate
is denoted as eight parameters, composed of a grasp pose in SE(3), a grasp
quality and a gripping step. 4) The same visualization order for Di and metric
for Si are used in Fig. 4, Fig. 7 and Fig. 8.

tact modeling, deformation tracking, gripping force esti-
mation, etc. The grasp quality in simulation is estimated
based on both the flatness of a contact surface and the
mass center of a target object. A massive dataset is
generated, containing 420 K synthetic grasp scenes with
more than 4.3 B grasps in dense clutter.

2) A novel end-to-end neural network (BIG-Net) is pro-
posed to estimate the pixel-wise grasp parameters for
the applied bio-inspired gripper, including the grasp
direction, grasp quality and gripping step.

3) A BIG-Net grasping method is presented and various
experiments are implemented in both simulation and real
world, including benchmarking tests with state-of-the-
art methods for the random picking of novel objects in
dense clutter. The proposed grasping framework works
well for the chameleon-tongue inspired gripper.

The remainder of this letter is organized as follows: The
related work is introduced in Section II. In Section III,
concepts and construction of the proposed grasping method
are described, followed by the elaborate procedures of the
grasp simulation and network training in Section IV. Section V
demonstrates extensive experiments with the proposed method
and several baseline grasping methods. Finally, Section VI
summarizes the performed work.

II. RELATED WORK

A. Grasping with Bio-Inspired Soft Grippers

In the early stage, the research on grasping with bio-inspired
grippers focused on developing multi-joint anthropomorphic
hands and other grippers inspired by biological principles, such
as the gecko-inspired adhesive [10], octopus-sucker effect [11]
and chameleon tongue-sucker effect [9]. Novel bio-inspired
grippers become more and more flexible with the development
of shape-adaptive materials and under-actuated fingers [12].

Nevertheless, the grasping algorithms for bio-inspired grip-
pers were improved slowly, despite various research on bio-
inspired gripper designs being found. A lot of research in-
vestigated multi-sensor fusion and bio-inspired grasping, for

instance, tactile sensing and object slip detection [13], but
few focused on automatic grasping methods for bio-inspired
grippers.

B. Deep Learning for Grasping

Automatic grasping methods have significantly evolved,
resulting from the breakthrough technologies of both robotic
perception and artificial intelligence in the last decades.

Abundant research reveals that neural networks trained on
a large-scale dataset can learn to grasp. Neural networks with
a 2D encoder-decoder architecture are able to detect feasible
grasp poses effectively, benefiting from their abilities to take
in a whole grasp scene and provide a global prediction of the
grasp robustness. As an example, a GG-CNN was proposed
by Morrison et al. [3], which runs a 50 Hz reactive grasping
method. Similar frameworks include the GR-ConvNet [1]
and SuctionNet-1Billion [7]. Furthermore, researchers reported
that a neural network can learn to simplify the control scheme
of a grasping task for a soft gripper [14]. Liu et al. [15]
presented a deep reinforcement learning framework for mul-
tistage hybrid grasping with a novel soft gripper, achieving
three grasping modes to deal with various objects.

C. Grasping Dataset

Huge grasping datasets are demanded to train neural
networks for grasp planning, which can be generated by
manual labeling [16]. Tedious work is needed to manually
mark grasp examples. Alternatively, grasp examples can be
collected by physical robots with various sensors to detect
failed/successful grasps. However, a lot of robots and time are
required in this approach [17].

In recent years, collecting synthetic grasping datasets in
simulation has become popular [4], [5], [18]. The synthetic
grasp examples are generated with virtual grippers and 3D
meshes of objects in simulation, instead of physical robots and
real-world objects. Numerous open-source synthetic datasets
are available online to train a neural network for grasping,
such as the Jacquard dataset [18] for parallel-jaw grippers and
the Dex-Net 3.0 [6] for basic vacuum grippers. Furthermore,
Lu et al. proposed a hybrid approach that collects grasp scenes
by a physical camera and generates datasets in a simulator.
These authors released two datasets for parallel-jaw grippers
and vacuum grippers, named the GraspNet-1Billion [2] and
SuctionNet-1Billion [7], respectively.

Nevertheless, many released datasets are merely compatible
with traditional parallel-jaw grippers and vacuum grippers.
Moreover, it is not easy to collect grasp examples for a bio-
inspired soft gripper by manual labeling due to the flexible
deformation of the soft gripping pad. Hence, collecting grasp
examples by simulation is a proper method to generate a
dataset for a bio-inspired gripper. Many existing simulation
methods with simple human-designed grasp principles [7],
[18] are not competent to create datasets for soft grippers,
due to more complex contact surfaces than traditional grippers
during grasping.

To address the problems above, a simulator is developed
based on a previous framework of the authors [19], which
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Fig. 3. (a) Main structure of the used gripper [9]. (b) Air pressure in the
second chamber of the gripper pin, grasp direction dr , gripping step si, and
gripping forces Fvac, Fwrap and Finfl.

evaluates the grasp feasibility by tracking both the surface
deformation and gripping force of the soft gripping pad in
grasp scenes with stacked objects. The contact model in
simulation is analyzed by a set of sub surfaces, instead of
contact points in some published methods [6], [7].

III. PROBLEM FORMULATION

In this work, the problem of robotic grasping is defined as
predicting both the grasp feasibility and pose for novel objects
from the depth image of a grasp scene and executing the grasp.

The adopted gripper G consists of a base frame and a
double-acting cylinder filled with compressed air, as shown
in Fig. 3 (a). The second chamber is fitted with a soft silicone
gripping pad, which equates to the chameleon tongue. The
piston is fastened to the silicone cap and closely separates the
two chambers from each other. During the gripping procedure,
the gripping pad touches an object and wraps the object with
the moving of the piston, resulting in an airtight form fit and
a strong holding force, as illustrated in Fig. 3 (b).

Instead of using a grasp representation based on the grasp
center, tool rotation along the z-axis and required gripper
width in [1], [3], this work denotes the grasp candidate in a
robotic frame as an 8-parameter representation gr in (1), where
the grasp center pr and the grasp direction dr represent a
grasp pose in SE(3), qr ⊆ (0,1] is the grasp quality to indicate
the grasp robustness, sr > 0 is the gripping step to ensure a
tight contact between the gripping pad and the object surface,
and their corresponding parameters in the image coordinate
system (ICS) are denoted as gi, pi, di, qi, and si in (1).
More details about these parameters are demonstrated in Fig. 3
(b) and further explained in Section IV-A. Similarly, all grasp
candidates in the same grasp scene are described in (2), where
Tiw converts pixels from the ICS to the world coordinate
system (WCS), and Twr is the transform matrix between the
WCS and the robot coordinate system (RCS). Given a grasp
scene I ∈ R1×hi×wi with a size of hi × wi, the pixel-wise
grasp candidates can be defined by (3) with Gi ∈ R8×hi×wi ,
Pi ∈ R3×hi×wi , Di ∈ R3×hi×wi , Qi ∈ R1×hi×wi and
Si ∈ R1×hi×wi . In the matrices Gi, Pi, Di, Qi and Si, each
element separately denotes the parameters gi, pi, di, qi, and
si at the corresponding pixel in the grasp scene I .

Learning the end-to-end grasp robustness function BIG-Net
in (4) is the main issue addressed in this paper, as the use of
the force-torque feedback in Fig. 2 has been presented in our
published work [8].
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Fig. 4. Pipeline of the grasp simulation and dataset collection.

gr = (pr,dr, qr, sr), gi = (pi,di, qi, si) (1)
Gr = (Pr,Dr, Qr, Sr) = Twr(Tiw(Gi)) (2)
Gi = (Pi,Di, Qi, Si) (3)
(Di, Qi, Si) = BIG-Net(I) (4)

IV. LEARNING AN END-TO-END GRASP ROBUSTNESS
FUNCTION

The grasp robustness function BIG-Net aims to estimate
Di, Qi and Si when a depth image I is given. The following
subsections address two fundamental processes of the BIG-Net
grasping method, including the collection of synthetic grasp
scenes and the development of the BIG-Net.

A. Collection of Synthetic Grasp Scenes

The dataset for grasp estimation contains numerous depth
images I with the corresponding “images” Di, Qi, Si and
the binary mask images M that mark the foreground and
background of I and are used to calculate the loss function
during the network training.

Fig. 4 presents the pipeline of the grasp simulation to
collect synthetic grasp scenes, working with three main steps:
the contact modeling, the gripping force estimation and the
grasp scene rendering. The following grasp simulation is
implemented with two assumptions: 1) the target object O has
an airtight surface and a rigid body with uniformly-distributed
mass, 2) the gripping force is calculated based on Quasi-static
physics with Coulomb friction.

1) Contact Modeling: Contact modeling and deformation
tracking for G are the essential prerequisites to estimate the
grasp feasibility in the simulation. The geometric dimension of
G is defined as a frustum with the parameters rG , RG , H and
l in Fig. 5 (a), where rG and RG respectively denote the head
radius and the bottom radius of the gripping pad, H means
the altitude of the frustum, and l represents the slant height of

the frustum, named l =

√
(RG − rG)

2
+H2.

When the gripping pad contacts an object O, part of the
gripping pad will be located on the contact surface. The
complex contact surface is simplified into a set of triangular
sub surfaces T = {t1, · · · , tj , · · · , tn}, T 6= ∅ and the
corresponding vertices V = {v1, · · · ,vk, · · · ,vm}. Each
vertex is defined as vk(r, θ, z) in the cylindrical coordinate
system, considering the gripper base with a round frame. The
model resolution is decided by the rotation step ∆θ > 0 and
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Fig. 5. Parameters of the used soft gripper. (a) Geometric dimension of the
used gripper. (b) Coordinate system and parameters for the contact model.
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Fig. 6. Three virtual grasp trials and their contact models. Note: This figure
simplifies the triangles for visualization, and more triangles are tracked for
the dataset collection, depending on the parameters ∆d, ∆θ , etc.

the distance step ∆d > 0 in Fig. 5 (b). Neighbor points
with the same rotation angle are defined by vk(rk, θ, zk),
vk+1(rk+1, θ, zk+1) and rk+1 > rk in the subsequent equa-
tions. When the gripper is moving along the -z direction
in Fig. 5 (b) to wrap an object, the soft gripping pad is
deformable under the constraints of its geometric and physical
features, like the size, shape, and elasticity of the gripping
pad. More than 10 rules are implemented to restrict the
deformation of the gripping pad, and the main constraints are
described in (5)-(8). Specifically, the equations (5)-(6) define
the coordinate system and the dimension of the gripping pad in
the simulation. The maximum distance between two neighbor
points vk(rk, θ, zk) and vk+1(rk+1, θ, zk+1) is constrained by
(7), to avoid unrealistic deformation on the gripping pad. When
the gripping pad touches the contact surface, the slope of the
deformed gripping pads is never allowed to be larger than its
slope at non-contact status, which is restricted by (8). Fig. 6
demonstrates three virtual grasps and their contact models.

nr = (1, 0, 0), nz = (0, 0, 1), 0 ≤ θ < 2π (5)
0 ≤ vk · nr ≤ RG , −H ≤ vk · nz ≤ 0 (6)
||vk+1(rk+1, θ, zk+1)− vk(rk, θ, zk)|| ≤ ∆d (7)

0 < vk(rk, θ, zk) · nr ≤ rG +
−zk
H

(RG − rG), if rk ≥ rG
(8)

2) Gripping Force Estimation: The grasp feasibility is
related to the geometric and physical characteristics of a
gripper. As for the applied gripper G in Fig. 3 (b) and Fig.
5 (b), it generates the gripping force Fz based on three main
principles: 1) a vacuum gripping force Fvac exists, attributed
to the airtight contact between the gripping pad and the object
surface, 2) a wrapping force Fwrap holds the object due to
the friction on the wrapping surface, and 3) an inflation force

Finfl is generated towards the contact surface, resulting from
the air pressure in the second chamber of G.

Let pair > 0 be the air pressure of atmosphere, pin > 0 be
the air pressure in the second chamber of the gripper, and µ >
0 be the coefficient of friction on the contact surface. Briefly,
the maximum gripping force max(Fz) can be estimated by
(9)-(12). Although it is difficult to conduct the peak values of
Fvac, Fwrap and Finfl in the same grasping trial, max(Fz)
is a substantial reference to evaluate the grasp robustness.

max(Fvac) = pairπR
2
G (9)

max(Fwrap) = µpinπl(rG +RG) (10)
max(Finfl) = 0 (11)
max(Fz) = max(Fvac) +max(Fwrap) +max(Finfl)

(12)

Fz can be analyzed by a set of sub forces on the sub gripping
pads. Taking the sub surface tj ∈ T as an example in Fig. 5
(b), (n

tj
x , n

tj
y , n

tj
z ) is the surface normal of tj , and Atj is the

area of tj . Then, the vacuum gripping force, wrapping force
and inflation force of tj are respectively denoted as f tjvac, f tjwrap

and f
tj
infl in (13)-(15) with Quasi-static physics. As a result,

Fz is the summary of all sub forces f tjvac, f tjwrap and f tjinfl in
(16), which are related to flatness of a contact surface. Notably,
the inflation forces f tjinfl and Finfl always oppose the gripping
force Fz based on the coordinate system in Fig. 5 (b). Hence,
max(Finfl) = 0 and f tjinfl < 0 are respectively concluded in
(11) and (15).

f tjvac = pairA
tjntjz (13)

f tjwrap = µpinA
tj

√
(n

tj
x )

2
+ (n

tj
y )

2
(14)

f
tj
infl = −pinAtjntjz (15)

Fz =
∑

(f tjvac + f tjwrap + f
tj
infl), tj ∈ T (16)

q = e−(1−
Fz

max(Fz)
), q ⊆ (0, 1] (17)

The grasp quality metric is extremely important in the grasp
simulation. Some existing work defines a threshold for the
force-torque wrenches of grasping trials to evaluate good/bad
grasps and predicts the grasp robustness via neural networks
with classification architectures for real-world grasping. How-
ever, the threshold between “good grasp” and “bad grasp” is
often unclear. It is hard to predict the grasp success when the
force-torque wrench of a grasping trial nears the threshold.
Therefore, the grasp feasibility is more appropriate to be
calculated based on a quantitative metric.

In the proposed pipeline, a quantitative metric is defined
for the grasp quality. It is related to the flatness of a contact
surface and the distance between the grasp center and mass
center of a target object. First, a basic grasp quality q for
the contact model is denoted in (17), which is a normalized
function of Fz . In this definition, a stronger Fz concludes a
higher value of q. The nature of (17) is more sensitive when
the value of q nears 1.0 but less sensitive for a low value of
q. When this function is applied to collect a synthetic dataset,
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the BIG-Net trained on the dataset is more sensitive to detect
high-quality grasp regions, which is helpful for grasping in
the real world. Then, the final grasp quality metric qi in grasp
scenes is further explained by (20) in Section IV-A3.

3) Grasp Scene Rendering: Each grasp scene in the dataset
consists of a depth image I with the corresponding “images”
Di, Qi, Si and M . Over 50 3D meshes of objects from the
YCB [20] and KIT [21] datasets are selected for the grasp
simulation. Unlike many existing methods simulating each
grasp scene with an isolated 3D mesh [5], [18], our simulator
renders grasp scenes with stacked objects in clutter.

In detail, a virtual table T is defined on the plane
∏

(x, y, 0)
in the WCS of a simulated grasp scene. Several 3D meshes
are randomly selected, and their stable-pose sequences [4] are
calculated. The 3D meshes are deployed on the virtual table
with random stable poses from their pose sequences. Then,
the subsequent batch of 3D meshes is randomly put upon the
previous scene. To simulate a set of randomly stacked objects,
the size of T is restricted, and a intersection-checking principle
is followed for the interactions of the stacked objects.

A virtual camera C is deployed to render depth images
I . In a depth image, each pixel I(u, v) in the foreground
is considered as the grasp center, named pi(u, v). The cor-
responding grasp direction, grasp quality and gripping step
are respectively denoted as di(u, v) ∈ Di, qi(u, v) ∈ Qi

and si(u, v) ∈ Si. Specifically, the grasp direction di(u, v) is
computed based on the average normal of the contact surface,
and the gripping step si(u, v) depends on the boundary of
the contact surface, as depicted in (18)-(19). The final grasp
quality qi(u, v) is evaluated based on both the basic quality
value q in (17) and the distance between pi(u, v) and the mass
center of the target object cO(u, v) in I . A closer distance
contributes to a higher value of qi(u, v), which is more
favorable to indicate the grasp robustness than many existing
methods ignoring mass centers of objects. Let pO(u, v) be a
random point on the target object O in the ICS, and qi(u, v)
is formulated by (20).

di(u, v) =
1√∑
(Atj )2

∑
Atj (ntjx , n

tj
y , n

tj
z ), tj ∈ T (18)

si(u, v) = −min(vk · nz), vk ∈ V (19)

qi(u, v) = q(u, v) · (1− ||pi(u, v)− cO(u, v)||
max||pO(u, v)− cO(u, v)||

) (20)

Based on the equations (5)-(20), plenty of grasp scenes
with I , Di, Qi, Si and M are generated in the simulator.
The 3D meshes of objects were rescaled with the factors
of 0.5, 0.75 and 1.0 to simulate more objects with various
sizes. More configurations of the simulator can be found
in the supplemental material. Finally, 420 K depth images
with randomly stacked objects were rendered and collected,
containing over 4.3 B synthetic grasps (Fig. 4). Random noises
with σI= 2 mm were added to the synthetic depth images
to simulate the disturbances of a physical depth camera. 150
hours were consumed for the dataset collection on the PC
mentioned in Section V-A. Table I compares basic information
of the BIG-Net dataset and state-of-the-art grasping datasets,

TABLE I
BASIC INFORMATION OF THE PROPOSED DATASET AND FIVE

STATE-OF-THE-ART DATASETS

Dataset Modality Method Object’s Image Graspstatus
Dex-Net 2.0 [4] Depth Sim. Isolated 6.7 M 6.7 M

GPD [5] Depth Sim. Isolated 340 K 340 K
Jacquard [18] RGB-D Sim. Isolated 54 K 1.1 M

SuctionNet RGB-D Sim., Multiple 97 K 1.1 B-1Billion [7] real
BIG-Net Depth Sim. Stacked 420 K 4.3 B

Note: Sim. is the abbreviation of Simulation.
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Fig. 7. Architecture of the BIG-Net. Note: The 3-layer encoder is composed
of a 128-channel CNN with the 9×9 kernel, a 64-channel CNN with the 3×3
kernel and a 32-channel CNN with the 3×3 kernel. The decoders are defined
with the same parameters by reverse order.

revealing that the proposed dataset is more similar to the real-
world grasp scenes and contains more grasp examples.

B. Development of Neural Network

1) Architecture: The function of the BIG-Net is to learn
grasp principles and predict the grasp parameters during a
physical grasping trial, named (Di, Qi, Si) = BIG-Net(I).
An encoder-decoder neural network is implemented for end-
to-end grasp estimation, which takes in a depth image I ∈
R1×240×240 and provides three “images”, named Di ∈
R3×240×240, Qi ∈ R1×240×240 and Si ∈ R1×240×240.

Fig. 7 presents the architecture of BIG-Net. The BIG-
Net extracts features from the input image via a 3-layer
CNN encoder, followed by a series of 32-channel ResNets
to encode the input image and learn the grasp principles in
the middle layers. To decrease the BIG-Net parameters and
train a condensed network, the middle layers involve three
shared ResNet layers and three independent branches for the
prediction of Di, Qi and Si. Notably, the branch of Di in the
middle layers is composed of revised CBAMs [22] to improve
the robustness, while other branches consist of traditional
ResNets. Finally, the three branches are separately decrypted
by 3-layer CNN decoders for the output of Di, Qi and Si.

2) Training and Fine-Tuning: 400 K synthetic grasp scenes
were used for the BIG-Net training, and 20 K grasp scenes
were contained in the test dataset. Besides, the prediction error
on the foreground of I , instead of the whole image, was taken
into account for the backward propagation. The Mean Squared
Error (MSE) loss function of the BIG-Net is defined as LBIG-Net
in (21), where λD, λQ and λS denote the weights of loss
function at each branch. LD, LQ and LS are the MSE loss
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functions of Di, Qi and Si formulated in (22)-(24). After a
few training trials, the learning rate was set as 0.0005, and
a batch size of 80 was used. λD = λQ = λS = 1.0 often
reported better performance.

LBIG-Net = λDLD + λQLQ + λSLS (21)

LD = MSE(D̂i ·M −Di ·M) (22)

LQ = MSE(Q̂i ·M −Qi ·M) (23)

LS = MSE(Ŝi ·M − Si ·M) (24)

εd = arccos||d̂i · di||, εq = |q̂i − qi|, εs = |ŝi − si| (25)

The network was fine-tuned by adjusting layers and chan-
nels of the sub modules in the BIG-Net. More than 40 similar
networks were trained to find the optimal architecture for the
grasp estimation, regarding the computational complexity tI ,
and average prediction errors of the grasp direction, quality
value and gripping step at the pixel wise in the foreground,
named εd, εq and εs in (25), wherein di, qi and si are the
standard values in simulation (Section IV-A), and d̂i, q̂i and
ŝi are the predicted values via the BIG-Net.

Finally, the network model in Fig. 7 reported the best
performance. It contains 2.41 M parameters and estimates the
grasp robustness with tI = 6.34 ms for a 240×240 depth
image.

V. EXPERIMENTS

A. Setup

The proposed grasping method was assessed in both simu-
lation and real environments with the setup shown in Section 1
of the supplemental material. The robotic system is composed
of a 6-DoF cobot (KUKA LBR IIWA 14 R820), a bio-inspired
soft gripper (FESTO DHEF-20-A), a wrist-mounted camera
(Intel RealSense L515) and a PC. The PC running Ubuntu
20.04 OS was used in the experiments, which consists of a
multi-kernel 3.5 GHz Intel Core i9-9920X CPU, 64 GB of
dynamic system memory (DRAM), and two Nvidia GeForce
RTX 2080Ti graphics cards.

B. Experiments in Simulation

This subsection demonstrates the experiments with synthetic
grasp scenes. The di, qi, si, Di, Qi and Si in simulation
are considered as the standard values and compared with the
predicted values d̂i, q̂i, ŝi, D̂i, Q̂i and Ŝi via the BIG-Net.

1) BIG-Nets Trained on Different Datasets: First, the per-
formance of BIG-Nets was assessed at the pixel level. These
tests aim to evaluate the robustness of BIG-Nets trained on
different datasets and their performance for grasp scenarios
with various sizes and objects’ distributions. A new dataset
containing 4.3 B grasps for isolated objects were rendered
to train the BIG-Net I, using the pre-analyzed 3D meshes in
Section IV-A. The BIG-Net II was trained on the grasp scenes
with stacked objects mentioned in Section IV-A3. Both the
BIG-Net I and BIG-Net II were trained on grasp scenes of
240×240 pixels. Table II lists two BIG-Nets and their average
prediction errors in 10 K grasp scenes with stacked objects,

TABLE II
PREDICTION ERRORS OF TWO BIG-NETS

Grasp scenario Scenario 1 Scenario 2 Scenario 3
Size of I (pixels) 240×240 480×480 480×480

Size of grasp scene (m2) 0.35×0.35 0.70×0.70 0.70×0.70
Number of objects 20 40 80

Distribution (objects/m2) 163 82 163
εd 17.3◦ 12.9◦ 17.4◦

BIG-Net I εq 0.192 0.166 0.200
εs 0.6 mm 0.4 mm 0.4 mm
εd 6.86◦ 6.29◦ 6.87◦

BIG-Net II εq 0.085 0.083 0.083
εs 0.3 mm 0.4 mm 0.3 mm

Note: The BIG-Net I and BIG-Net II were trained on synthetic grasp
scenes with isolated objects and stacked objects, respectively.

named εd, εq and εs denoted in (25). The 10 K grasp scenes
with 102 M grasps were also synthesized with the pre-analyzed
3D meshes, which can be classified into three scenarios based
on the size of a grasp scene and objects’ distribution. Note
that although the BIG-Nets were trained only with scenes of
240×240 pixels, images of Scenario 2 and Scenario 3 in the
test dataset have a resolution of 480×480 pixels.

Briefly, BIG-Nets often achieve similar prediction errors for
grasp scenes with the same density of objects’ distribution,
e.g., Scenario 1 and Scenario 3, and they have better prediction
accuracy when objects are less stacked in grasp scenes, e.g.,
Scenario 2. The BIG-Net I has lower accuracy in the aspects of
d̂i and q̂i. On the contrary, the BIG-Net II can learn more about
the grasp prediction from clutters and improve the robustness
to deal with grasp scenes containing many covered objects. It
reports the lower prediction errors of εd < 7.0◦, εq < 0.09
and εs ≤ 0.4 mm, which outperforms the BIG-Net I. The εd
of Scenario 2 is relatively lower, resulting from the sparser
objects than in other scenarios. Additionally, the prediction of
si is a fairly easy task, so εs does not significantly increase in
Scenario 1 and Scenario 3. Consequently, the BIG-Net II has
higher prediction accuracy in dense clutter, and it is used by
default in the subsequent experiments.

2) Grasp Estimation for Synthetic Grasp Scenes: The error
distribution of the BIG-Net II prediction was evaluated with
synthetic depth images. Fig. 8 illustrates three synthetic grasp
scenes with stacked objects from the test dataset (Section
IV-B2) and their prediction errors εD, εQ and εS that are
calculated with the similar principles in (25).

As shown in Fig. 8, the BIG-Net II typically reports low
prediction errors on εD, εQ and εS when pixels are located on
top-layer objects and far away from objects’ boundaries, since
the features of them are clearly presented in a depth image, and
the BIG-Net II can effectively predict the grasp robustness. For
the same reason, the BIG-Net II has poor performance on the
boundaries between stacked objects and on lower-layer objects
that are partly covered by others.

Fortunately, the inaccurate prediction of the BIG-Net II on
the boundaries and covered objects does not cause a trouble for
real-world grasping, because a feasible grasp pose with a high
value of qi in the real world is often located near to an object
center. Furthermore, the grasping sequence for a clutter usually
starts with a top-layer object by implementing a simple grasp
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Fig. 8. Three synthetic grasp scenes and the corresponding εD , εQ and εS .

scene segmentation algorithm [8]. Once the top-layer objects
are removed, the residual objects will become uncovered.

C. Experiments in Real World

This subsection demonstrates several benchmark experi-
ments with the BIG-Net II and state-of-the-art grasping meth-
ods for real-world grasping. A dataset of 49 rigid, non-
porous and novel objects were selected for physical grasping
experiments. The objects are separated into two categories: 1)
common household items (including 35 objects) [1], [3], [6],
[7], and 2) adversarial items (including 14 objects from the
Dex-Net dataset [4]). The random clutters for the experiments
were deployed following the method proposed by ten Pas et
al. [5], as presented in the supplemental material.

1) Picking with Different Grasping Principles: Fig. 9 il-
lustrates four robotic grasp examples with different grasping
principles for the related soft gripper. Fig. 9 (a) presents a
flat object with an airtight surface, which is too large to
be wrapped by the gripping pad. The BIG-Net II detects an
optimized grasp pose at the center of the object surface, and
the gripper picks up the object due to Fvac on the airtight
contact surface. Furthermore, the BIG-Net II can find feasible
grasp poses for objects without flat surfaces and conclude
successful grasping trials by Fwrap and Finfl, e.g., Fig. 9
(b) and (d). With the varying of object poses, the BIG-Net
II evaluates the object surface and decides the final grasp
pose with different grasping principles. For instance, Fig. 9 (c)
presents a coffee cup grasped by Fvac, and Fig. 9 (d) shows
the same cup with another random pose, which is grasped by
Fwrap and Finfl. All successful cases above indicate that the
three gripping forces Fvac, Fwrap and Finfl in Section IV-A

(a) (b) (c)
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Fig. 9. Robotic grasping of four objects. (a) A flat object grasped by Fvac.
(b) An adversarial object from the Dex-Net dataset grasped by Fwrap and
Finfl. (c) A coffee cup grasped by Fvac. (d) The coffee cup in the subfigure
(c) grasped by Fwrap and Finfl.

are essential and functional for the used soft gripper, and the
BIG-Net II can learn the grasping principles effectively.

2) Random Picking of Novel Objects: The performance of
BIG-Nets was in-depth investigated with traditional grasping
methods. Four metrics were used to detect the grasp pose, as
listed in Table III: 1) a random grasp point on a clutter, 2)
a grasp point nearest to the clutter’s center, 3) the BIG-Net I
, and 4) the BIG-Net II. Table III shows that the traditional
centroid grasping merely works well for grasp scenes with
isolated objects. It reports a relatively lower success rate for
adversarial items, because the feasible grasp region of an
adversarial item is often not at its center, e.g., Fig. 9 (b).
As a comparison, the BIG-Net grasping methods perform an
average success rate of > 80% for objects in clutter, which
typically consume 25 ms to detect a feasible grasp pose for a
real-world grasp scene with a size of 40 cm×40 cm. Although
the BIG-Net I performs the highest success rates for both
isolated household and adversarial items, another one trained
on stacked objects accomplishes the success rates of 94%
for stacked household items and 86% for stacked adversarial
items, respectively.

Furthermore, Table IV demonstrates a series of benchmark-
ing tests with the BIG-Net II and state-of-the-art methods. In
the revised Dex-Net 3.0 and SuctionNet-1Billion in this table,
their neural network were not re-trained to avoid skewing the
results. The main idea of revisions is to adjust their configu-
rations to fit the dimension and parameters of the investigated
bio-inspired gripper. For instance, the gripping step sr is not
provided by either the Dex-Net 3.0 or SuctionNet-1Billion
framework, but it is necessary for the bio-inspired gripper.
In the revised versions, sr is estimated based on the depth
values of the selected grasp region in the depth image I , and
optimized according to the real-time force-torque feedback on
the gripper base measured by the KUKA IIWA [8].

Table IV indicates that the BIG-Net II with the bio-inspired
gripper conducts higher grasp success rates, since the bio-



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2022

TABLE III
SUCCESS RATES OF THE BIG-NET GRASPING METHODS AND

TRADITIONAL METHODS

Approach S.R. (household, %) S.R. (adversarial, %)
Isolated / Stacked Isolated / Stacked

Random 65 / <50 <50 / <50
Centroid 98 / <50 87 / <50

BIG-Net I 100 / 87 97 / 83
BIG-Net II 100 / 94 96 / 86

Note: S.R. is the abbreviation of Success Rate.

TABLE IV
SUCCESS RATES OF THE BIG-NET II AND STATE-OF-THE-ART GRASPING

METHODS FOR THE GRASPING OF STACKED OBJECTS

Approach Gripper S.R. (%) S.R. (%)
Household Adversarial

Dex-Net 3.0 Vacuum 82 81
SuctionNet-1Billion Vacuum 81 -
Revised Dex-Net 3.0 Bio-inspired 85 67
Revised SuctionNet Bio-inspired 89 72-1Billion

BIG-Net II Bio-inspired 94 86

inspired gripper has a flexible gripping pad to fit an object,
especially an adversarial object. The revised Dex-Net 3.0 and
SuctionNet-1Billion can estimate the grasp quality Qi for the
bio-inspired gripper, because the vacuum gripping force Fvac

is one of the grasp principles for the gripper. However, the
success rates of the revised Dex-Net 3.0 and SuctionNet-
1Billion decrease for adversarial items and are lower than the
BIG-Net I in Table III, as the bio-inspired gripper grasps an
object with two extra forces, named Fwrap and Finfl, which
cannot be estimated via either the Dex-Net 3.0 or SuctionNet-
1Billion. In contrast, the BIG-Net trained on stacked objects
outperforms others in two grasp cases and concludes an
average success rate of 90% in more than 300 grasping trials.
Failure cases and limitations of the BIG-Net grasping method
have to be reported in the supplemental document.

VI. CONCLUSION
In this letter, an automatic grasping method has been pro-

posed for the chameleon-tongue inspired soft gripper, includ-
ing grasp scenario simulation, dataset collection and neural
network development. More than 420 K grasping scenes with
4.3 B grasps are collected in the simulation with stacked
objects. The BIG-Net is developed based on an encoder-
decoder architecture and CBAMs to learn the grasp principles.
The proposed grasping method typically consumes 25 ms to
detect a feasible grasp pose in the real world, and it achieves
the success rates of 94% for the random picking of household
items and 86% for that of adversarial items, which outperforms
traditional and state-of-the-art methods.

Future work will include the improvement of the BIG-Net
to estimate more parameters for robotic grasping. Moreover,
the performed framework will be extended to fit more types
of bio-inspired grippers.
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