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Woord vooraf

In het najaar van 2003 begon ik als wetenschappelijk medewerker van de
Katholieke Universiteit Leuven aan een nieuw onderzoeksproject. Een eerste
opdracht was eenvoudig, zo leek althans: “Bereken automatisch de cardio-
thoracale ratio uit een radiografie van de thorax”. Het was maar een eerste
kleine opdracht in het ganse project. Ik hoefde maar een methode uit de lite-
ratuur toe te passen die automatisch de longen kon aflijnen en het probleem
zou opgelost zijn. Echter, door (of beter gezegd dankzij) de ligging van ons
labo, namelijk binnen de muren van het Universitaire Ziekenhuis Gasthuis-
berg, kreeg ik te maken met echte patiëntenbeelden in plaats van met ideale
data zoals die in de academische wereld vaak verondersteld wordt. De meest
performante methodes uit de literatuur faalden en daardoor moest ik op zoek
naar een oplossing. Mijn gepassioneerde zoektocht naar een geschikte methode
was de drijfveer voor dit doctoraat.
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Abstract

Local graph-based probabilistic representation

of object shape and appearance for model-based

medical image segmentation

Image segmentation is the process of partitioning a digital image into regions
originating from different objects in the scene. The segmentation of anatomi-
cal objects is indispensable for the analysis of medical images. It enables the
assessment of anatomical measurements and it is a possible means towards
diagnosis, therapy planning and visualization.
As anatomical objects appear in medical images with high variability, the con-
struction of a model that incorporates prior knowledge about these objects
is essential during segmentation. A popular and very effective approach is to
represent the shape as a set of landmark points, and learn the shape varia-
tions from a set of example shapes. Whereas conventional methods build a
global point distribution model that considers correlations between all points
in the set, this thesis presents a localized model that captures statistical prior
shape information as a concatenation of multiple local shape models into a
deformable graph configuration. The method has a strong theoretical basis
as the model construction and model fitting are formulated from a probabil-
ity point of view. Its validity and highly generic nature are illustrated for
the segmentation of multiple anatomical structures, both from two- as three-
dimensional images. A comparison to methods that use a global model shows
that the presented approach, thanks to its localized nature, is able to fit more
accurately to unseen objects.
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vi Abstract

Lokale graafgebaseerde probabilistische represen-

tatie van beeldobjecten voor modelgebaseerde

segmentatie van medische beelden

Beeldsegmentatie is het process waarbij een beeld ingedeeld wordt in regio’s
afkomstig van verschillende objecten. De segmentatie van medische beelden
laat toe om anatomische metingen te maken, maar het kan ook de nodige stap
zijn voor het stellen van een diagnose, voor het plannen van een therapie of
voor de visualisatie van anatomische structuren.
Omdat anatomische objecten zich in medische beelden met een grote verschei-
denheid manifesteren, is het noodzakelijk om een maximum aan voorkennis
over deze objecten te gebruiken bij het segmenteren ervan. Een populaire
en effectieve strategie stelt het object voor als een verzameling gemarkeerde
punten, en leert de typische vormvariaties uit een verzameling voorbeelden.
Conventionele methodes bouwen een globaal punt distributie model dat cor-
relaties tussen alle punten van de vorm beschouwt. Deze thesis daarente-
gen, stelt een gelokaliseerd model voor, dat vormkennis beschrijft als een aan-
eenschakeling van meerdere lokale statistische modellen geconfigureerd in een
graafstructuur. De methode heeft een sterke theoretische basis doordat zowel
het bouwen van het model als het toepassen van het model geformuleerd zijn
vanuit de waarschijnlijkheidstheorie. De kracht en het generische karakter
van de segmentatiemethode worden geillustreerd aan de hand van meerdere
anatomische structuren, zowel in twee- als driedimensionale beelden. Een ver-
gelijkende studie met methodes die een globaal model gebruiken leert dat deze
strategie, dankzij zijn gelokaliseerde karakter, toelaat om ongeziene objecten
nauwkeuriger te segmenteren.
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1 Inleiding

1.1 Medische beeldvorming

Door de ontdekking van X-stralen in 1895 [1] werd de mens zich bewust
van de mogelijkheid om de binnenkant van het menselijk lichaam in beeld
te brengen. Deze elektromagnetische golven, ook wel eens Röntgenstralen
genaamd, dringen doorheen het menselijk weefsel en verzwakken geleidelijk
afhankelijk van het weefseltype. Menselijk bot bijvoorbeeld, absorbeert de
stralen meer dan zacht weefsel. Radiografie maakt gebruik van deze eigen-
schap om een beeld te vormen van de menselijke anatomie. Een bundel X-
stralen, gevormd in een Röntgenbuis, wordt door het lichaam gestuurd en de
overblijvende fotonen worden opgevangen op een film of een digitale receptor.
Röntgens historische experiment stond aan de wieg van de radiologie. Dit is het
deel van de geneeskunde dat zich bezig houdt met de acquisitie van medische
beelden voor de diagnose en behandeling van ziektes. De uitvinding van de
tomografie was een tweede doorbraak. Deze techniek laat toe om een dwarse
doorsnede van het lichaam in beeld te brengen. De CT-scanner (Computed
Tomography), voor het eerst commercieel beschikbaar in de jaren 1970 [2],
genereert een volumetrisch beeld van het lichaam als een reeks beelden die
elk een doorsnede op een bepaalde positie van het lichaam tonen. Hierdoor is
het mogelijk om met beeldvorming de ware driedimensionale vorm van anato-
mische structuren te bestuderen.
Vandaag de dag gebruikt de moderne beeldvorming niet enkel X-stralen, maar
verschillende fysische principes [3]. Zo worden bijvoorbeeld magnetische velden
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gebruikt door MR-scanners (Magnetic Resonance) en maakt PET-beeldvorming
(Positron Emission Tomography) gebruik van radioactiviteit.

1.2 Segmentatie van anatomische structuren

Door de opkomst van de driedimensionale (3D) beeldmodaliteiten en de digi-
talisering van de radiografie, onstond een nieuw domein in de computerweten-
schappen: medische beeldverwerking. Onderzoekers in dit domein ontwikkelen
methodes voor de quantitatieve analyse en visualisatie van medische beelden.
Registratiemethodes zoeken het geometrische verband tussen twee of meerdere
beelden en maken het mogelijk om op die manier informatie uit meerdere
beelden te combineren en samen te visualiseren. Bijvoorbeeld bij het opvol-
gen van longkanker vergelijkt de radioloog twee CT-scans die op verschillende
tijdstippen werden opgenomen. Om na te gaan of een bepaalde nodule of
een tumor al dan niet gegroeid is, is het noodzakelijk dat de twee beelden
gealigneerd worden vooraleer ze aan visuele inspectie te onderwerpen.
Een andere belangrijke groep algoritmes tracht een beeld te segmenteren in
betekenisvolle regio’s. Algemeen is beeldsegmentatie gedefinieerd als het par-
titioneren van een beeld in regio’s die afkomstig zijn van verschillende objecten.
Soms doelt de term segmentatie op het groeperen van pixels in verschillende
labels, maar het kan ook duiden op het aflijnen van specifieke objecten in het
beeld. Segmentatie heeft heel wat toepassingen in de radiologie. Het laat toe
om anatomische metingen te maken, maar het kan ook de nodige stap zijn
voor het stellen van een diagnose, voor het plannen van een therapie of voor
de visualisatie van anatomische structuren.
Deze thesis behandelt de segmentatie van anatomische objecten met een consis-
tente geometrie. Dit betekent dat anatomisch corresponderende punten kun-
nen gedefinieerd worden tussen verschillende instanties van hetzelfde object.
De longen en de lever bijvoorbeeld, voldoen aan deze voorwaarde, in tegen-
stelling tot bijvoorbeeld pathologische structuren die een minder consistente
vorm hebben.
Anatomische objecten vertonen typisch een heel grote variabiliteit in medische
beelden. De vorm is vaak heel complex en bovendien bestaan er ook grote
verschillen tussen meerdere instanties van dezelfde structuur. Ook vertoont
de fotometrie van de beelden een grote variabiliteit, zowel binnen één beeld,
als tussen meerdere subjecten. Dit gegeven bemoeilijkt de automatische seg-
mentatie van anatomische structuren uit medische beelden, en maakt het
noodzakelijk om een maximum aan voorkennis over deze objecten te modelle-
ren vooraleer deze structuren te segmenteren.
Segmentatie met active shape models (ASM) [4], een populaire en effectieve
strategie, stelt het object voor als een verzameling gemarkeerde punten (merk-
punten), en leert de typische vormvariaties uit een verzameling voorbeelden.
Het vormmodel (punt distributie model) bestaat uit de gemiddelde vorm samen
met de belangrijkste modes van vormvariatie. Om het object te segmenteren
in een nieuw ongezien beeld, wordt een lineaire combinatie van deze modes
van variatie gezocht, zodat de vorm optimaal past op de fotometrische ken-
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merken van het beeld. Ondanks het succes van deze aanpak, werden in de
literatuur een aantal tekortkomingen (vb., [5, 6]) blootgelegd. Het gebruik
van een globaal model maakt het moeilijk om het globale optimum te vin-
den. De gebruikte optimalisatie-algoritmes komen vaak in een lokaal optimum
terecht. Bovendien is vaak een te grote leerverzameling nodig om ervoor te
zorgen dat het model nauwkeurig nieuwe ongeziene vormen kan reconstrueren.
Waar conventionele methodes een globaal punt distributie model (PDM) bou-
wen, dat correlaties tussen alle punten van de vorm beschrijft, wordt in deze
thesis een gelokaliseerd model voorgesteld. De vormkennis wordt beschreven
als een aaneenschakeling van meerdere lokale statistische modellen geconfigu-
reerd in een graafstructuur.
Het gelokaliseerde karakter van dit model zorgt voor een verhoogde flexibiliteit
om nieuwe objecten nauwkeuriger te kunnen reconstrueren. Deze hypothese
zal worden onderzocht aan de hand van de segmentatie van meerdere anato-
mische objecten, zowel uit twee- als driedimensionale beelden.
In de volgende paragrafen wordt uitgelegd hoe het model wordt opgebouwd,
vervolgens hoe het model wordt gebruikt om nieuwe beelden te segmenteren
en tenslotte worden een aantal concrete toepassingen beschreven.

2 Modelleren van beeldobjecten

De automatische segmentatie van anatomische structuren vereist voorkennis
over enerzijds de vorm van het object, en anderzijds over de typische fotometrie
van de beelden. Een beschrijving van de vorm wordt een vormmodel genoemd
en het intensiteitsmodel beschrijft de voorkennis over de fotometrie.
De vorm- en intensiteitsmodellen worden geschat uit een leerverzameling. Deze
verzameling bestaat uit intensiteitsbeelden I met bijbehorende correct geseg-
menteerde objecten l. Zowel het beeld I als de vorm l van het anatomische
object worden beschouwd als het resultaat van een toevalsproces. Segmen-
tatie kan worden geinterpreteerd als de oplossing van volgend maximum-a-
posteriori-probleem:

max
l

p(l|I) = max
l

p(l)p(I|l)
p(I)

= max
l

p(l)p(I|l)

In woorden betekent dit: zoek de meest waarschijnlijke vorm die bij het
gegeven beeld past. Het bouwen van een model concretiseert zich nu in het
schatten van de kansverdelingen p(l) (vormmodel) en p(I|l) (intensiteitsmodel)
uit de leerverzameling. Dit is het onderwerp van deze paragraaf. Het oplossen
van het maximalisatie probleem komt in de volgende paragraaf aan bod.

2.1 Vormmodel

Het object wordt voorgesteld als een graaf

G = (V , E)
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waar de knopen V = {1, . . . , n} refereren naar merkpunten l1, . . . , ln die op con-
sistente plaatsen op de vorm zijn gedefinieerd. De verbindingen E bevatten t
ongeordende paren van knopen {i, j}. Als alternatief kan men de verbindingen
beschrijven aan de hand van de omgevingsverzameling N = {Ni | ∀i ∈ V}
waaring Ni de buren van knoop i bevat. Fig. 1 toont een aantal voorbeelden
van anatomische objecten die worden beschreven als een graaf.
Om het vormmodel op te bouwen is het nodig om de kansverdeling p(l) te
schatten. Om onze vooropgestelde eis om meer flexibiliteit (t.o.v. globale
PDMs) in te bouwen, wordt de veronderstelling gemaakt dat de vorm zich
gedraagt als een Markov random veld (MRF). Dit betekent dat de ligging
van een punt enkel rechtstreeks gecorreleerd is met de ligging van zijn buren.
Wiskundig wordt dit uitgedrukt als:

p(li|lV−{i}) = p(li|lNi
)

Als de ligging van de buren van een punt li gekend zijn, dan levert de kennis
over de ligging van alle andere (verderop gelegen) punten geen extra informatie
op voor de kansverdeling van li.
Een kansverdeling p(l) kan in de log-ruimte worden uitgedrukt:

p(l) =
1

Zl

exp

(

−1

2
El(l)

)

met El(l) de zogenaamde vormenergie. Dit impliceert dat een vorm met een
hoge energie onwaarschijnlijk is en omgekeerd, een vorm met een lage energie
heeft een grote kansdichtheid.
Het Hammersley-Clifford theorema [7] drukt uit dat de energie van een Markov
random veld kan geschreven worden als een som van lokale potentiaalfuncties
over alle mogelijke klieks in de graaf. Een kliek is een deelverzameling van de
graaf, waarbij elke knoop in de deelverzameling verbonden is met alle andere
knopen in die verzameling. Zo zal bijvoorbeeld de vormenergie van een con-
tour kunnen geschreven worden als een som van lokale functies van maximaal
twee variabelen en bevat de energie van een triangulatie ook derdegraadspo-
tentiaalfuncties.
In deze thesis wordt een tweedegraadsbenadering gemaakt. Daardoor kan de
vormenergie van eender welke graaf worden uitgedrukt als een som van tweede-
graadsenergieën:

El(l) =
n− 1

2t

n
∑

i=1

∑

j∈Ni

dij(li, lj)

met dij(li, lj) de energie van de verbinding tussen de punten li en lj . Deze
drukt de waarschijnlijkheid uit van de ligging van lj ten opzichte van li. De
onbekende parameters in deze potentiaalfuncties worden geschat aan de hand
van de leerverzameling.
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Figuur 1: De vorm van een anatomisch object kan worden voorgesteld als een
graaf.

2.2 Intensiteitsmodel

Het intensiteitsmodel p(I|l) drukt de waarschijnlijkheid uit om een beeld I
te observeren gegeven de ligging l van het object. Bij het schatten van dit
kansmodel maken we twee vereenvoudigingen.

1. Ten eerste wordt verondersteld dat de vorm l enkel invloed heeft op de
fotometrie f in de buurt van l. Deze lokale fotometrie f wordt bere-
kend door de lokale intensiteitspatronen fi rond de merkpunten li uit
het beeld te onttrekken: fi = F (I, li). Dus, voor elk merkpunt wordt een
kenmerkenvector uit het beeld berekend die het lokale intensiteitspatroon
rond dit punt bevat.

2. Een tweede veronderstelling drukt uit dat de patronen fi van de ver-
schillende merkpunten statistisch onafhankelijk zijn. Hierdoor kunnen
we schrijven dat

p(I|l) ∝
n
∏

i=1

p(fi)
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met p(fi) de kans dat rond het merkpunt li de lokale beeldstructuur fi
wordt waargenomen.

Het schrijven van deze kansverdeling in de log-ruimte of de enerieruimte:

p(fi) =
1

Zfi

exp

(

−1

2
di(fi)

)

laat toe om met energieën in plaats van met kansdichtheden te rekenen. De
parameters in deze intensiteitspotentialen kunnen geschat worden aan de hand
van de leerverzameling. Een punt ltest in het beeld I met een lage intensiteits-
energie di(F (I, ltest)) heeft een lokaal beeldpatroon dat gelijkaardig is aan de
beeldpatronen in de leerverzameling rond ditzelfde merkpunt.
Het globale intensiteitsmodel kan nu geschreven worden als

p(I|l) =
1

ZI|l
exp

(

−1

2
Ef (I, l)

)

met ZI|l een normalisatieconstante en Ef (I, l) de globale intensiteitsenergie

Ef (I, l) =

n
∑

i=1

di(F (I, li))

Deze energie drukt uit hoe goed een vorm op de fotometrische kenmerken van
het beeld past.
Er zijn verschillende mogelijkheden om de intensiteitsdescriptor F (I, l) te ont-
werpen. In deze thesis wordt de volgende strategie gevolgd.

1. Eerst worden een aantal kenmerkenbeelden uit het originele beeld afgeleid.
Als kenmerkenbeelden opteerden we voor LOIs [8, 9] (Locally Orderless
Images). Deze worden als volgt berekend. Eerst wordt het originele
beeld verwerkt door een Gaussiaanse filterbank, die afgeleiden van ver-
schillende ordes berekent op meerdere schalen. Vervolgens worden uit
elk gefilterd beeld een aantal kenmerkenbeelden bekomen door op elke
pixel (voxel) in het beeld de eerste statistische momenten te berekenen
van de intensiteiten binnen een lokaal Gaussiaans venster.

2. Om de beeldstructuur rond het merkpunt li te extraheren, worden de
LOIs lokaal rond li bemonsterd met sferische profielen. Bij tweedimen-
sionale beelden wordt het intensiteitsbeeld bemonsterd op punten van
een cirkel, gecentreerd rond li. Bij driedimensionale beelden wordt de
cirkel vervangen door een bol.

3 Segmentatie

Het segmenteren van een beeld I wordt vertaald naar het vinden van de meest
waarschijnlijke vorm l∗, gegeven het beeld I:

l∗ = arg max
l

p(l)p(I|l)
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Dit is equivalent met het minimaliseren van de volgende energiefunctie:

E(l, I) =
∑

i∈V

di(F (I, li)) +
n− 1

2t

∑

i∈V

∑

j∈Ni

dij(li, lj)

De eerst sommatieterm is de intensiteitsenergie die de vorm naar de juiste fo-
tometrische kenmerken in het beeld drijft. De tweede term is de vormenergie
en controleert de vorm.
Omdat de doelfunctie niet convex is en een groot aantal onafhankelijke va-
riabelen heeft, sturen conventionele optimalisatietechnieken de oplossing naar
foute lokale minima. Om dit probleem het hoofd te bieden, wordt het pro-
bleem geconverteerd naar een discreet optimalisatieprobleem, door voor elk
merkpunt een beperkt aantal geschikte kandidaten te selecteren. Dit wordt
gerealiseerd door het beeld, of een relevante regio in het beeld, af te speuren
met de intensiteitspotentialen di(F (I, li)). Voor elk merkpunt worden de m
goedkoopste locaties geselecteerd, resulterend in de verzameling kandidaten:

C = {{lik, fik}mk=1}ni=1

Op deze manier is het segmentatieprobleem vertaald naar een labelprobleem.
Voor elke knoop in de graaf, dient één kandidaat geselecteerd te worden. Dit
wordt wiskundig voorgesteld met binaire toekenningsvectoren xi:

∑m
k=1 xik =

1 en xij = 1 betekent dat kandidaat j wordt geselecteerd in knoop i. Het
minimalisatieprobleem kan nu worden geschreven als

x∗ = argmin
x

E(x, C)

met

E(x, C) =
∑

i∈V

m
∑

a=1

xia



di(fia) +
n− 1

2t

∑

j∈Ni

m
∑

b=1

xjbdij(lia, ljb)





De totale energie bestaat uit eerstegraads-intensiteitsenergieën toegekend aan
de knopen van de graaf V , en tweedegraads-vormenergieën toegekend aan de
verbindingen E .
In deze thesis worden verschillende optimalisatietechnieken toegepast om dit
combinatorische probleem op te lossen. Eerst wordt aangetoond dat een
globaal optimum kan worden gevonden door gebruik te maken van dynamisch
programmeren (DP) [10]. Jammer genoeg schaalt de rekencomplexiteit van
deze methode op met de complexiteit van de graafconfiguratie. Praktisch
komt het erop neer dat DP enkel toegepast wordt bij objecten die worden
voorgesteld als contouren. Daarom werden nog twee alternatieve technieken
toegepast. Mean field annealing [7] maakt gebruik van het feit dat het la-
belprobleem x zich gedraagt als een MRF ten opzichte van G = (V , E). De
rekencomplexiteit van dit algoritme is onafhankelijk van de configuratie van
de graaf, maar kan wel hoog oplopen door het hoge aantal benodigde itera-
ties. Een derde algoritme splits het probleem op in meerdere gemakkelijk op
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te lossen deelproblemen (met DP) door de graaf op te delen in verschillende
overlappende deelgrafen. Iteratief worden dan de minst gekozen kandidaten
verwijderd tot convergentie bereikt wordt.

4 Toepassingen

Het segmenteren van medische beelden is zowel een twee- als een driedimen-
sionaal probleem. Een radiografie toont tweedimensionale projecties van drie-
dimensionale vormen. De aflijning van deze geprojecteerde vormen is vaak
uitdagend vanwege de grote vormvariaties afkomstig van zowel populatiegere-
lateerde verschillen als verschillen in pose. Het overlappen van andere struc-
turen zorgt voor een bijkomende moeilijkheid. In deze thesis werden meerdere
anatomische objecten gesegmenteerd uit radiografieën: longvelden, hart en
sleutelbeenderen uit thoraxbeelden, femur en tibia uit beelden van de knie en
handbotjes uit radiografieën van de handen. Bovendien werd ook nog de drie-
dimensionale vorm van de lever gesegmenteerd uit CT-scans.
In deze samenvatting bespreken we de resultaten van het segmenteren van ana-
tomische structuren uit radiografieën van de thorax. Voor deze toepassing werd
een publiekelijk beschikbare databank gebruikt. De SCR-databank [11, 12]
(Segmentation in Chest Radiographs) werd opgebouwd ter vergelijking van
algoritmes voor de segmentatie van de longvelden, het hart en de sleutelbeen-
deren uit radiografieën van de thorax (Fig. 2). De databank bestaat uit 247
beelden (2048× 2048 pixels) uit de JSRT-databank (database [13]) waarin de
anatomische objecten door twee experten manueel werden afgelijnd. De seg-
mentaties van de eerste expert worden beschouwd als referentie. De resultaten
van de automatische algoritmes en de aflijningen van de tweede waarnemer
worden vergeleken met de referentiesegmentaties door middel van de overlap-
pingscoefficient Ω en een afstandsmaat ∆ die de gemiddelde afstandsfout langs
de curves berekent. Het ultieme doel voor een automatisch algoritme is het
behalen van een fout die vergelijkbaar of zelfs lager is dan de fout gemaakt
door de tweede waarnemer. Een eerste helft van de beelden wordt gebruikt als
leerverzameling om de modellen te bouwen, die dan worden toegepast op de
beelden in de tweede helft. In een tweede fase worden de rollen van de twee
helften verwisseld.
De resultaten van de hier voorgestelde methode (MISCG: Minimal Intensity
and Shape Cost Graph) en een aantal andere participerende methodes zijn
samengevat in Tabel 1. Voor een overzicht en een beschrijving van alle metho-
des en bijhorende resultaten verwijzen we naar [11, 12]. Voor elk object heeft
MISCG de hoogste performantie. De longen worden gesegmenteerd met een
nauwkeurigheid die even goed is als die van manuele segmentaties. Voor het
aflijnen van de sleutelbeenderen en het hart lijkt de tweede expert beter te doen
dan de algoritmes. Bij deze structuren is het contrast heel wat minder duidelijk
dan bij de longen. Het menselijk brein heeft bij het aflijnen van deze struc-
turen minder problemen omdat het ook gebruik maakt van andere contextuele
informatie zoals bijvoorbeeld andere overlappende of naburige structuren. De
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(a) (b) (c)

Figuur 2: Anatomische structuren te segmenteren uit een radiografie: longen
(a), hart (b) en sleutelbeenderen (c).

computeralgoritmes gebruiken enkel voorkennis over één specifiek object.
Verder wordt ook nog de pixelfout gerapporteerd. Deze foutmaat wordt bere-
kend als de fractie van alle pixels die fout worden geclassificeerd. MISCG heeft
de laagste gemiddelde fout (0.033) op het manuele resultaat (0.029) na. Pixel-
classificatie haalt een score van 0.043. Methodes die gebruik maken van een
globale PDM zoals ASM tuned en AAM whiskers BFGS scoren minder goed
met een fout van respectievelijk 0.044 en 0.046. De belangrijkste verklaring
hiervoor is het gebrek aan flexibiliteit van de globale PDMs. Bovendien heeft
MISCG het voordeel dat een globaal optimum wordt gevonden, in tegenstelling
tot de globale PDMs.

5 Conclusies

In deze thesis werd een modelgebaseerde methode voor de segmentatie van me-
dische beelden voorgesteld, die in staat is om ongeziene beelden nauwkeurig
te segmenteren, zelfs indien maar een beperkte leerverzameling beschikbaar
is. Waar de meeste algoritmes gebruik maken van een globale PDM, aan-
geleerd uit een aantal trainingsbeelden met bijhorende referentiesegmentaties
werd hier een model voorgesteld dat enkel lokale correlaties in rekening brengt.
Deze aanpak heeft twee grote voordelen. Ten eerste, het model kan ongeziene
objecten nauwkeurig reconstrueren, zelfs indien maar een beperkt aantal voor-
beelden beschikbaar is. Ten tweede, het segmentatieprobleem is omgezet in een
combinatorisch optimalisatieprobleem waarvan een optimale of bijna-optimale
oplossing kan gevonden worden met discrete technieken als dynamisch pro-
grammeren en mean field annealing.
De methode heeft een sterk gefundeerde basis dankzij een formulering vanuit
de waarschijnlijkheidstheorie. De intensiteiten van het beeld en de vorm van
het object worden beschouwd als gecorreleerde toevalsprocessen. Deze strate-
gie laat toe om het segmentatieprobleem te formuleren als een maximum-a-
posteriori-probleem: gegeven een beeld, vind de meest waarschijnlijke vorm
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µ ± σ Min Q1 Median Q3 Max

Longen

MISCG 95.3± 02.6 83.4 94.7 95.8 96.4 97.7

PC post-processed 94.5± 02.2 82.3 93.9 95.1 95.8 97.2

Tweede waarnemer 94.6± 01.8 82.2 93.9 94.9 95.8 97.2

ASM tuned 92.7± 03.2 74.5 91.7 93.6 94.6 94.6

AAM whiskers BFGS 92.2± 02.9 71.8 91.4 93.1 94.0 96.1

Hart

Tweede waarnemer 87.8± 05.4 57.1 84.3 88.8 91.6 96.5

MISCG 84.9± 10.4 26.1 82.4 87.4 90.7 96.3

AAM whiskers BFGS 83.4± 07.0 51.0 79.1 84.5 88.2 96.7

PC post-processed 82.4± 07.7 50.0 78.3 84.4 87.7 93.2

ASM tuned 81.4± 07.6 52.0 77.0 82.7 87.3 93.8

Sleutelbeenderen

Tweede waarnemer 89.6± 03.7 70.7 88.0 90.5 92.2 95.2

MISCG 77.5± 12.9 01.1 73.8 80.7 85.4 91.5

ASM tuned 73.4± 13.7 09.3 70.5 77.6 82.2 91.2

AAM whiskers BFGS 64.2± 17.1 00.3 58.8 68.9 76.1 86.1

PC post-processed 61.5± 12.3 22.3 55.4 63.9 70.6 83.7

Tabel 1: Overlappingscoefficient (%) voor elke anatomische structuur. Het
minimum, maximum, de mediaan en het eerste en derde kwartiel worden ge-
rapporteerd. De resultaten zijn gerangschikt volgens de mediaan.

van het object. Een belangrijk voordeel van deze aanpak is dat een zinvolle
afweging gemaakt wordt tussen geometrische en fotometrische karakteristie-
ken.
Het performante en uiterst generische karakter van de methode werd aange-
toond door het succesvol segmenteren van meerdere anatomische objecten,
zowel in twee- als driedimensionale beelden.
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Chapter 1

General introduction

1.1 Segmentation of anatomical objects

The discovery of X-rays in 1895 [1] for the first time revealed the ability to
look inside the human body without perforating the skin. X-rays, also called
Röntgen waves, have the property that they can travel trough the body and
are attenuated depending on the penetrated tissue. Bone for example atten-
uates X-rays much more than soft tissue does. This property is exploited to
create a picture of the human anatomy by sending a beam of X-rays through
the body and capturing the transmitted photons. This is the basic principle
of radiography.
Röntgen’s historical experiment is considered as the cradle of radiology, gener-
ally defined as the medical speciality that deals with the acquisition of medical
images towards diagnosis and treatment of diseases. A second breakthrough
was the invention of tomography. This technique enables to visualize a single
cross section of the human body using X-rays. A computed tomography (CT)
scanner, first commercially available in the early 1970’s [2], uses this technique
to generate a whole series of cross sectional radiographs. Hence, a volumetric
image is produced that contains information about the true three-dimensional
(3D) shapes of anatomical structures.
Nowadays, modern radiologic imaging is no longer limited to X-rays, and uses
many other physical principles [3]. For example, magnetic fields are used in
magnetic resonance imaging (MRI), radioactivity enables the acquisition of
positron emission tomography (PET) scans and high frequency sound waves
are used in ultrasonic imaging.
Together with the onset of the 3D imaging modalities and the digitization
of radiography, a new domain in computer science, medical image analysis,
was born. Researchers in image processing started to develop methods for the
quantitative analysis and visualization of medical images.
Registration methods combine information from multiple images by warping
one image onto another image in an anatomically meaningful way. For ex-
ample during lung cancer follow-up, the radiologist examines two thorax CT
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scans acquired at different time points. Evaluating whether a nodule or a lung
tumor has grown is greatly facilitated if the images are aligned prior to visual
inspection.
Many computer-aided detection methods intend to automatically find and clas-
sify pathological abnormalities. The automated identification and localization
of lung nodules in a CT scan of the thorax (e.g., [14]) saves the radiologist
expensive time. Emphysema, an obstructive lung disease often caused by ex-
posure to tobacco smoke, can be diagnosed automatically on a CT image by
running texture classification methods (e.g., [15]).
An important group of methods deals with image segmentation. In general,
segmentation is defined as the process of partitioning a digital image into re-
gions originating from different objects in the scene. The term segmentation
might refer to the process of grouping and labeling pixels, but also refers to
the delineation of specific objects in the image. The segmentation of anatom-
ical objects is indispensable for the analysis of medical images. It enables the
assessment of anatomical measurements and it is a possible means towards
diagnosis, therapy planning and visualization. For example the delineation of
the lung fields from a chest radiograph allows to measure the relative heart
size and indirectly enables the diagnosis of cardiomegaly (e.g., [16]). Brain
segmentation can be used to automatically find multiple sclerosis lesions in an
MR image (e.g., [17]). Liver segmentation is the basis for computerized plan-
ning of liver surgery as tumor resection and donor transplantation (e.g., [18]).
This thesis deals with the segmentation of anatomical objects with a consistent
geometry. This means that an anatomically meaningful one-to-one mapping
between different shape instances exists. The lungs and the liver satisfy this
condition, contrary to pathological structures that have a rather random topol-
ogy.

1.2 Purpose and contributions

Anatomical objects appear in medical images with high variability. The shape
is often very complex and also large geometrical differences exist between dif-
ferent instances of the same structure. Also the object’s image photometry
shows large variability. Large photometrical differences occur inside one sub-
ject and between multiple subjects. This complicates the segmentation of these
structures and consequently, prior knowledge about the object to be segmented
needs to be taken into account as much as possible.
Segmentation using active shape models (ASM), put forward by Cootes et al.
[4], extracts prior shape knowledge by learning from a set of example images
with corresponding ground-truth segmentations. The shape model consists of
an average shape together with the most important modes of variation ob-
served in the training set. Very soon this approach became very popular in
the medical domain (e.g., [19, 20]) and is currently, thanks to a number of
improvements to the original scheme (e.g., [5, 8, 21, 22]) still state-of-the-art.
However, despite its success, the ASM segmentation scheme has some limi-
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tations. Its use of a global shape model complicates the search for a global
optimum and a sufficiently large number of training images is needed to make
the model flexible and accurate enough.
In computer vision, a class of object recognition methods [23–26] exists that
uses a locally deformable graph. These methods are, thanks to their localized
nature, more flexible and moreover they often allow to find a global opti-
mum. Unfortunately, they are not generally applicable for the segmentation
of anatomical structures. For example the pictorial structures algorithm de-
scribed in [26] uses tree-like object representations and is therefore not capa-
ble of segmenting surfaces from volumetric images. In computer vision, these
methods are considered as a solution for object recognition problems where
specific features in pictures are detected, rather than as a method for segmen-
tation. Moreover, these localized methods are rather unknown in the medical
image analysis domain. Many researchers belief that a global shape model is
a requirement towards robust segmentation of anatomical structures. With
good reason one can indeed wonder whether using only local statistical knowl-
edge suffices.
The main purpose of this thesis is to present such a localized segmentation
scheme that captures statistical prior shape information as a concatenation of
multiple local shape models into a deformable graph configuration. Its validity
for the extraction of both two- as three-dimensional anatomical objects will
be investigated for several applications.

1.3 Overview

Chapter 2 gives an overview of the different segmentation strategies with em-
phasis on their applicability to medical data. Also the proposed method is
situated and motivated in the broad image segmentation field.
The algorithm consists of two phases. In the training phase, described in
Chapter 3, statistical models of shape and image appearance are learnt from a
training set. Chapter 4 describes how the model is fitted to an unseen image
to find the shape automatically. Firstly, the model fitting is translated into
a discrete optimization problem and secondly, a number of appropriate opti-
mization techniques is discussed.
The method and its methodological choices are validated in Chapter 5. In
Chapter 6, the method is applied for the segmentation of several anatomical
structures from both two- and three-dimensional images. Lung fields, clavi-
cles, heart are delineated from chest radiographs. Also hand bones and knee
bones are extracted from radiographs and finally, the 3D shape of the liver is
automatically segmented from contrast enhanced CT scans.
Chapter 7 draws some important conclusions related to anatomical object seg-
mentation.





Chapter 2

Segmentation strategies

2.1 Introduction

In the literature of computer vision and medical image analysis, a true wealth
of image segmentation methods is available. Because the choice for an appro-
priate method for a specific application is of crucial importance, this wealth
might feel like a poisoned gift. As in this thesis a new segmentation scheme
is presented, it is important to situate and motivate the method in the broad
field of image segmentation.
A method that can handle every application does not exist for several rea-
sons. First, the geometrical structure of the objects to be segmented varies
from very simple (Fig. 2.1(a)), to very complex (Fig. 2.1(b)). Also the large
differences in the image appearance of the objects initiated the use of very
different strategies. Objects that appear with low contrast and without a ho-
mogeneous intensity distribution will require a more sophisticated approach
than classifying the pixels according to their intensity value only. The choice
for an algorithm also depends on the problem setup. Real-time applications
exclude the use of several advanced model-based approaches because of their
computational complexity. Also, some methods are intended to be generally
applicable and do not make strong assumptions about the scene whilst oth-
ers are able to incorporate prior knowledge. Obviously, many strategies are
needed for what is called image segmentation.
This chapter intends to give a short overview of the different segmentation
strategies with emphasis on their ability to handle medical image data. The
methods are classified according to the amount of prior knowledge about the
scene to be segmented. Low-level strategies, discussed in Section 2.2 typically
use only very limited prior knowledge. An overview of model-based methods is
given in Section 2.3. The novel segmentation method that will be proposed in
Chapters 3 and 4 is situated in the field of image segmentation in Section 2.5.
The most related methods are described in Section 2.4.
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(a) (b)

Figure 2.1: The geometrical structure of the objects to be segmented varies
from very simple, as for example the object in picture (a), to very complex, as
for example a liver in a CT image (b).

(a) (b) (c)

Figure 2.2: Retrieving the boundary between object and background is formu-
lated as a minimal cost path (MCP) problem that can be solved using dynamic
programming. The path that runs from the left to the right side of the image
(a) is found as follows. First, the magnitude of the gradient in each pixel is
computed (b). The border is then computed as a minimal cost path (c): the
path is only allowed to shift one row between two consecutive nodes and the
cost in the nodes is equal to the negative magnitude of the gradient.

2.2 Low-level segmentation

Low-level algorithms use very limited prior knowledge and rely on finding
similarities or/and dissimilarities between neighboring pixels. Methods that
group the pixels by looking at similarities are labeled as region-based whereas
the algorithms that search dissimilarities are called edge-based.

2.2.1 Region-based

In this category is region growing [3] the most popular strategy. The image
is partitioned into regions as follows. First, a number of seed points, one for
each object, are placed in the image. Then an iterative growing procedure is
started. First, all pixels adjacent to a region are compared to the respective
region by computing the difference between the pixel’s intensity value and
the region’s mean intensity value. The pixel with the smallest difference is
added to the corresponding region. The algorithm stops if all pixels have been
assigned to a region.
Clustering methods partition the image by searching for clusters in the feature
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space of the image data. The K-means clustering algorithm [27] is a well
known example. The algorithm is started from K cluster centers. Each pixel
is assigned to the cluster that minimizes the difference between the feature
value at that pixel and the cluster center. This procedure is repeated until
convergence is obtained. The difference between a pixel and a cluster center is
usually based on a combination of several features as color, intensity, texture
and location.

2.2.2 Edge-based

One way to detect object boundaries in an image is to use local edge fil-
ters. These filters amplify the image pixels where a large intensity gradient is
present. For example the Canny algorithm [28] is based on this technique.
Many graph-based methods that search for region boundaries were proposed in
the literature. In general, the image is considered as a graph where the nodes
are the pixels and the edges express the connections between neighboring pix-
els. Montanari [29] and Martelli [30] formulated the search for the boundary
between object and background as a MCP problem that can be solved using
dynamic programming. The technique is demonstrated in Fig 2.2: a bound-
ary that runs from the left to the right side of the image (Fig 2.2(a)) is found
as follows. First, the magnitude of the gradient in each pixel is computed
(Fig 2.2(b)). The boundary is then retrieved as the minimal cost path from
left to right (Fig 2.2(c)). The path is only allowed to shift one row between two
consecutive nodes and the cost in the nodes is equal to the negative magnitude
of the gradient.
Other graph-based methods (e.g. [31]) assign a weight to each edge to express
the dissimilarity between the neighboring pixels. A segmentation is then con-
sidered as a partitioning of the graph into subsets, such that edges in one
subset have low weights compared to edges between nodes of different sets.
Wu et al. [32] and Shi et al. [33] proposed to divide the image in regions by
finding minimal cuts in the graph. This approach was also applied for the
extraction of surface borders from volumetric datasets [34, 35].

2.2.3 Rule-based schemes

As these low-level techniques require only limited prior knowledge about the
scene to be segmented, they are generic in nature. However, for many ap-
plications they fail because of a number of reasons. The objects and regions
to be partitioned are not always clearly visible due to noisy image data or if
the different objects have overlapping intensity ranges. As a result, the object
boundary does not necessarily result in a clearly visible edge in the image.
This is often the case in medical data. For example edge detectors will fail on
the fluoroscopic image shown in Fig. 2.3(a) to extract the boundaries of the
vertebras. Another problem is encountered when the objects do not have a
homogeneous intensity distribution. The lung fields in the radiographic image
of the chest shown in Fig. 2.3(b) exhibit a large gray-level variability due to
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projections of the ribs and the clavicles. Another situation where low-level
techniques fail is if the object of interest is occluded by an other object or in
the case of pathologies (Fig. 2.3(c)). It is obvious that in these cases, prior
knowledge about the scene to be segmented has to be incorporated by the
segmentation method itself.
To overcome these obstacles many researchers developed so-called rule-based
algorithms. Low-level techniques are used to find local relevant structures in
the image and a set of rules is implemented to put the primitive structures to-
gether. Unfortunately, these methods are often heuristic and rather dedicated
to handle one single problem. A new set of rules and a new implementation is
required for a new application.
Despite these limitations, rule-based algorithms are still popular in commercial
software because they are easy to implement and computation time is often
very small. A typical example of such a rule-based approach to segment the
lung fields in a chest radiograph can be found in [36].

(a) (b) (c)

Figure 2.3: Low-level segmentation techniques often fail for medical applica-
tions. The edges of the vertebras in the fluoroscopic image (a) are not clearly
visible due to low contrast. Due to the projections of the ribs and the clav-
icles in the thorax radiograph (b), the intensities in the lung fields do not
have a homogeneous intensity distribution. Low-level techniques also fail for
the detection of the lung fields in the radiograph shown in (c) because of the
occluding implant (portacath) and because of the pathology.

2.2.4 Manual interaction

Alternatively, instead of implementing a set of rules, low-level methods can
also be combined with manual interaction to guide the segmentation process.
Livewire [37] is such an interactive segmentation tool where the user marks
points along an object boundary and the computer connects these points using
dynamic programming.
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2.3 Model-based segmentation

Model-based methods incorporate more extended prior information about the
object to be segmented. In general, the model contains knowledge about the
shape of the object and/or about the object’s photometry. Many model-based
methods use an explicit description of the shape and fit this shape template
to the image data. An overview of these shape-based methods is reported in
Section 2.3.2. Model-based techniques without an explicit shape description
are discussed in Section 2.3.1.

2.3.1 Intensity-based

What differentiates these methods from the shape-based ones is that they do
not fit an explicit shape model to the image data. They might include shape
information but only implicitly such as an atlas. Pixel classification (PC)
methods separate the pixels into classes according to photometry features.
Atlas-based segmentation techniques solve the segmentation task by warping
the photometry of a template image onto the photometry of the target image.

Pixel classification

PC methods consider the objects to be segmented as sets of discrete pixels
rather than as objects. The pixels are labeled into classes according to their
photometric features. Consequently, these methods are optimally suited for
tissue classification provided that each tissue type has its own discriminating
photometry. Applications where there is no well-defined relationship between
pixel photometry and the corresponding labels, which is often the case when
segmenting anatomical structures, need extra spatial information. This is ob-
tained by incorporating pixel location into the feature vector.
Thresholding is the most trivial form of PC: a pixel is classified as object
or background depending on whether it exceeds a preset threshold value.
Thresholding is rather classified as low-level segmentation because the only
prior knowledge captured is one (or multiple) preset threshold values. More
advanced advanced pixel classification methods have been published in the
medical domain (e.g. [11, 36, 38–41]). They differ in which features and which
classifier they use. Typical photometry features are gray-level value, entropy
measures and several filter outputs. Also pixel location is often taken into ac-
count. Popular classifiers are discriminant analysis [38, 40], neural nets [38, 39],
kNN-classifiers [11, 36, 40] and support vector machines. Contextual informa-
tion was included by Vittitoe et al. [41] and Van Leemput et al. [42]. They
used Markov random fields (MRFs) [7] to model interaction between neighbor-
ing pixels. This way, the classification of a pixel does not only depend on the
features of that pixel but also on the classification of the neighboring pixels.
The pixel classifiers are learnt in a supervised or unsupervised manner. Su-
pervised segmentation means that the model is learnt from examples. Unsu-
pervised classification indicates that the classifier learns from the data in the
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target image. In general, these approaches start from an initial model and
iteratively update the model parameters (e.g. [40–42]).
Although some of these methods model shape information implicitly, either by
incorporating the location of the pixel into the feature vector, or by modeling
pixel interaction, the drawback of these methods is that they are unable to
include knowledge about the typical shape variations. As a result, such an
approach can generate object shapes that are not very meaningful. Often a
postprocessing step (e.g. [11]) is used to remove isolated incorrectly classified
pixels.

Atlas-based segmentation

Atlas-based methods tackle the segmentation problem by fitting an atlas image
to the target image. The process of matching one image onto another image in
an anatomical meaningful way is known as image registration [3]. Therefore,
the atlas-based approaches are also referred to as segmentation-by-registration
methods. An atlas image is a typical image of the scene to be segmented (in-
tensity image) augmented with a corresponding golden truth segmentation
(label image). The label image contains one label for each structure of inter-
est. Once the atlas has been registered to the target, a transformation field is
obtained which is subsequently applied to the atlas labels. If the matching is
correct, the deformed label image indicates where each object can be found in
the target image.
Atlas-based segmentation has been applied for the segmentation of structures
in the brain (e.g. [43–45]). Research in this domain focusses on the registra-
tion algorithms and to atlas construction. The most simple atlas consists of a
single example image and a corresponding ground-truth segmentation. Unfor-
tunately, for many medical applications a single image atlas does not capture
all the existing biological morphology seen in a population. Therefore, the
construction of probabilistic atlases has received a considerable amount of at-
tention in the medical imaging literature (e.g. [46–49]). Such an atlas contains
probabilities to find specific labels at a given location in the image and is
constructed from a set of example images with corresponding manual segmen-
tations. Alternatively, instead of registering the probabilistic atlas, one can
also register each individual training image to the target. Hence, each reg-
istered training image will assign a label to each pixel of the target image.
A combined solution is then obtained by selecting the label that was mostly
voted. Van Rikxoort et al. applied this approach for the segmentation of the
brain caudate [45].
Atlas images have also been combined together with other segmentation tech-
niques. For example Ali et al. [50] used an atlas constructed from a set of
manually labeled kidney images to incorporate shape knowledge into a graph-
cuts algorithm for kidney segmentation from magnetic resonance (MR) images.
Van Leemput et al. [42] used a digital brain atlas for initialization of the clas-
sification of brain tissue.
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2.3.2 Shape-based

A shape template is a mathematical representation of a shape, possibly aug-
mented with information about the allowed geometrical variations. An image
is then segmented by fitting the shape template to the image data. In gen-
eral, an objective function derived from the image data provides the driving
force that attracts the shape to the correct image features whereas the shape
template controls the optimization process such that only plausible shapes are
generated.
Methods differ in the way the shape is represented (e.g. landmark points, spline
representations, implicit functions,...) and the type of information stored.
Some methods use statistical distributions to describe the prior knowledge
while others store information into a mathematical or a bio-mechanical model.

Rigid/affine templates

A rigid shape template is only allowed to be translated and rotated. Affine
templates also allow for scaling. For example an outline of a building in a
satellite image can be segmented by matching a rectangle to the image data.
The rectangle is rotated, translated and resized to make it fit to the building
in the image.

Hand crafted templates

A number of published methods work with hand-crafted shape templates. A
famous example is the work of Yuille et al. [51]. They use a template consisting
of a circle and parabolas to extract the eye from a picture of the face. These
hand crafted algorithms have the drawback that they are limited to one single
application.

Snakes and level sets

Kass and Witkin [52] proposed a more generic method, commonly known as
active contour models or snakes, where the object contour is represented as
a spline. A related method, called level set segmentation was proposed by
Sethian [53]. They use implicit functions to describe the location of an object
in the image. The contour (or surface) of the object is defined as its zero level
set, i.e. as the points in space where the implicit function evaluates to zero.
Snakes and level sets obtain a segmentation by minimizing an energy function
guided by internal forces that put constraints on the shape and external image
forces that pull the object towards edges in the image. Hence, geometrical
information is modeled by the internal forces and the external forces embody
appearance information.
Despite their generic nature, snakes and level sets fail for many medical seg-
mentation tasks. A first reason is that their object representation is not
designed to model the typical shape variations observed among a popula-
tion. Their shape model guarantees that the shape is a smooth contour or
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curve rather than a realistic shape instance. Secondly, the object boundaries
should coincide with edges in the image which is an often unsatisfied condition
(Fig. 2.3(a)). As a result, an active contour (or surface) model will escape at
an object boundary where no contrast is available. It is obvious that in these
cases prior knowledge about the allowed shapes instances is needed.

Active shape and appearance models

A popular approach that satisfies this need was introduced by Cootes and
Taylor [54]. They represented an object as a set of landmark points. Shape in-
formation is captured by constructing point distribution models (PDMs) using
principal components analysis (PCA) of the landmarks of the shape instances
in a training set after appropriate spatial normalization. By augmenting the
PDMs with intensity information, these can be applied for image segmenta-
tion in the context of so-called active shape models (ASM) [4, 55] and active
appearance models (AAM) [56–58].
ASM segmentation schemes augment the PDM with local landmark-individual
gray-level models whereas AAM algorithms consider all object pixels to build
a texture PCA model. The general AAM and ASM schemes were compared by
Cootes et al. [59] for the alignment of structures in MR brain sections and by
van Ginneken et al. [11] for the segmentation of the lung fields, the heart and
the clavicles in posterior-anterior (PA) chest radiographs. These studies con-
cluded that ASM performed better than AAM due to its larger capture range.
However, this conclusion is out of date as some important improvements have
been made to the general AAM scheme mainly focused at increasing robust-
ness [60–62].
The active shape and appearance models are a popular strategy for the seg-
mentation of anatomical structures (e.g. [19, 20, 63, 64]). Their success stim-
ulated the research community to develop a number of variants to make some
improvements with respect to the original scheme of Cootes and Taylor. An
ASM with an improved gray-level appearance model was introduced by van
Ginneken et al., called ASM with optimal features (ASMOF) [8]. Other exam-
ples of modified ASM schemes can be found in [21, 65–67].
In general these algorithms consist of the following components: (1) a global
shape model to ensure that only plausible shapes are generated, (2) an intensity
model to drive the object to a region in the image with gray-level appearance
similar to what is found in the training set and (3) a search method to match
the model to a new image.

Graphical templates

Another series of landmark-based approaches for object detection use localized
shape constraints instead of one global shape model. The shape is considered
as a graph where the landmarks are the vertices in the graph and the edges
define the local shape dependencies.
Fischler and Elschlager [23] introduced a pictorial structure representation
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whereby an object is modeled as a collection of parts linked together trough
spring-like connections. A similar approach was proposed by Felzenszwalb and
Huttonlocker [26, 68]. They use a tree-like representation to recognize objects
by optimizing an objective function that consists of match costs for the parts
(landmarks) and deformation costs for connected pairs of parts. The global
optimum is found using dynamic programming (DP) [10]. This method has
been applied for locating facial features in pictures [68, 69]. Similar work was
published by Amit and Kong [24] and Coughlan et al. [25].
Overall, these methods find a global solution for the proposed objective func-
tion thanks to the use of local shape constraints instead of a global shape
description. Nevertheless, these methods did not get a lot of attention in the
literature of medical image analysis. Instead, these local methods have been
applied for different computer vision problems where a number of features
in the image are recognized. For example Felzenszwalb used his method for
the detection of persons and facial features from pictures [26]. Coughlan [25]
applied his method for the segmentation of hands in pictures.

2.4 Related methods

This section describes the methods most related to the model-based segmen-
tation approach developed in this thesis: active shape models (Section 2.4.1),
active appearance models (Section 2.4.2) and the pictorial structure algorithm
put forward by Felzenszwalb and Huttonlocker [68] (Section 2.4.3).

2.4.1 Active shape models

The general ASM scheme consists of three components: a global shape model,
a local gray-level appearance model and a search algorithm to match the model
to a new image. The original scheme of Cootes and Taylor described in [54]
and the ASMOF algorithm with an improved intensity model (van Ginneken
et al. [8]) are described briefly.

Shape Model

The shape of the object is described by a fixed number of labeled landmark
points

li = (xi, yi, zi) (2.1)

A training set is constructed by determining the landmark points in a set of
s training images. A PDM is constructed by applying PCA to the training
shapes

l = (x1, y1, z1, . . . , xn, yn, zn). (2.2)
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First, the mean and covariance of the example shapes l(i), i = 1, . . . , s are
computed:

µl =
1

s

s
∑

i=1

l(i), (2.3)

Σl =
1

s− 1

s
∑

i=1

(l(i) − µl)(l
(i) − µl)

T . (2.4)

Secondly, the eigenvectors and eigenvalues of Σl are computed. Retaining
the eigenvectors φi corresponding to the t largest eigenvalues λi enables the
approximation of a shape l that belongs to the class of shapes represented by
the training set:

l ≈ µl + Φb (2.5)

with Φ = [φ1 . . . φt]. The number of principal components t is determined by
fv, the amount of variation in the training shapes to include in the model.
The vector b represents the model parameters and is computed as

b = ΦT (l− µl) (2.6)

This way, the sum of squared differences (SSD) between l and the reconstructed
shape (Eq. 2.5) is minimized. The values of b are restricted to lie in a range
±a
√

λi to generate only plausible shapes. The value of a usually lies between
two and three.
Prior to PCA, the shapes can be aligned by translating, rotating and resiz-
ing them so as to eliminate irrelevant pose-related differences. This is usually
obtained by minimizing the SSD between the corresponding landmark points
using Procrustes analysis [70]. Omitting this global alignment requires a con-
siderable higher value for fv as the first modes of shape variation are usually
associated with variations in size and position [8, 71].

Intensity model (Cootes and Taylor)

To augment the model with intensity information, knowledge about the local
gray-level appearance around each landmark is captured. Two approaches are
described.
The ASM method described in [54] builds intensity profiles as follows. First,
the image intensities are sampled at k pixels on either side of the shape con-
tour at which the landmark is located with a fixed step size perpendicular to
the contour. To reduce the effect of global intensity offsets between images,
the first derivative of the intensities is computed using finite differences. The
resulting profiles are normalized such that the sum of absolute values is equal
to one. Extracting the profile in each training image, results in a training set
f (1), . . . , f (s) describing the local gray-level appearance around the landmark
of interest.
A statistical model of the local gray-level appearance is obtained by comput-
ing the mean µf and covariance Σf . The goodness of fit of a new profile f ,
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encountered when searching for a shape in an unseen image, is measured as
the Mahalanobis distance between this profile and the mean profile:

d(f) = (f − µf )
T Σ−1

f
(f − µf ). (2.7)

Intensity model (van Ginneken)

An improved non-linear appearance model was introduced by van Ginneken
et al. [8]. For each landmark point, a nonlinear kNN-classifier is constructed
to predict whether a point lies inside or outside the object.
The local image neighborhood of a pixel is described by a feature vector using
the concept of locally orderless images (LOI) [9]. First, the original image
is fed into a filter bank of multiscale Gaussian derivatives. Secondly, from
this set of filtered images, feature images are extracted by taking the first few
moments of the local distribution of image intensities around each location.
The local image appearance of a specific pixel is then described by taking the
intensity values of the feature images at the pixel of interest.
This way, a feature vector is constructed and is used to classify a pixel as
background or as object. The kNN-classifier is constructed as follows. From
each training image and for each landmark a square grid of Ngrid×Ngrid points
with Ngrid an odd integer, is centered at the landmark point. For each point on
the grid, the feature vector is computed and labeled with 0 or 1 if the pixel lies
outside or inside the object respectively. The number of features is limited to a
predefined maximum with a sequential feature forward and backward selection
algorithm yielding an optimal set of features.
The goodness-of-fit of a candidate location is then obtained by first defining
a profile with length 2k + 1 perpendicular to the contour centered at the
candidate location (akin to the original ASM scheme). Secondly, for each
point on the profile (i = −k, . . . , 0, . . . , k), the corresponding feature vector is
fed into the classifier to determine the probability fi that the corresponding
location lies inside the object. The goodness-of-fit measure is then computed
as the sum of absolute differences between the expected probability (0 or 1 for
points outside or inside the object, respectively) and the predicted probability
fi for each point along the contour:

d(f) =

−1
∑

i=−k

fi +

k
∑

i=0

(1− fi) (2.8)

Several profile step sizes, image scales and grid spacings are used to build local
intensity models for multiple resolutions.

Search Method

The shape and intensity models are applied to a new image in an iterative
coarse-to-fine optimization algorithm initialized with the mean shape. Each
iteration consists of two steps: (1) updating the landmark points using the
local appearance models and (2) fitting the shape model to the updated target
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points.
In the first step, each landmark is moved along a line perpendicular to the
contour to ns positions at either side with a step size in accordance to the
current resolution level. Each of the 2ns+1 locations is evaluated by computing
the goodness-of-fit of the profile centered at that location and perpendicular
to the current contour.
After each landmark is moved to the best fitting point, the shape model is
fitted to the updated points. This is repeated for a fixed number of iterations
or till some convergence criterium is reached. This procedure is repeated for
each resolution.

2.4.2 Active appearance models

The input for an AAM [56] is the same as for an ASM: a set of training
images augmented with landmark points marked in each image. AAM builds
a combined model of shape and appearance.

Combined shape and intensity model

Whereas ASM does a PCA analysis of only the shape l, an AAM builds a
combined model of both shape l and texture f . The texture f holds the in-
tensities of the image after the image was made shape-free. This is obtained
by warping the image such that the corresponding shape l is transformed onto
the mean shape µl.
The appearance model has parameters c and generates a shape instance l with
corresponding texture f as follows:

l = µl + Φlc (2.9)

f = µf + Φfc (2.10)

where µl is the mean shape, µf is the mean texture and Φl, Φf follow from
the eigen-analysis performed on the training set. If the generated texture f
(Eq. 2.10) is warped onto the generated geometry l (Eq. 2.9) a new image
instance is synthesized.

Search method

In order to segment an unseen image I, the AAM search method tries to find
parameters c that minimize the difference between the new image and the
synthesized image.
The error measure of a specific c is computed as follows. Firstly, the model
(Eq. 2.9 and Eq. 2.10) is used to suggest a shape l and texture fm. Subse-
quently, the suggested shape is used to sample the image texture fi. The error
is computed as

E(I, c) = ‖fm(c) − fi(I, c)‖2 (2.11)

Hence, the AAM search is driven by differences in modeled texture and ob-
served texture.
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It is known that the AAM search problem is not easily solved due to its non-
convex nature. Cootes and Taylor [56] proposed to learn how the problem is
solved during the training phase. For a specific training image, there exist
model parameters c that predict the texture in the image f . They observed
that an error in the difference vector δf is related to an error in the model
parameters δc. The assumed linear relationship

δc = Aδf (2.12)

is learnt during the training phase using linear regression.
Optimization is done iteratively: a current c enables to compute the texture
difference δf . The model parameters are then updated c → c − δc with δc
computed from Eq. 2.12. This is repeated till no improvement is made to the
error (Eq. 2.11). Usually, this iterative scheme is run for multiple resolution
levels.

AAM extensions

The original AAM scheme has some problems when applied for medical image
segmentation tasks. First, the quadratic error measure (Eq. 2.11) makes AAM
sensitive to outliers. In this context an outlier means that the image contains
intensity patterns that are not explained by the model. For example a local
disturbance caused by a pathology entangles the search for a correct solution.
To cope with this, alternative error measurements were proposed [58, 72] to
make the AAM search more robust. Beichel et al. [60] proposed an alternative
search method to increase robustness.
Another problem encountered when applying the standard AAM scheme for
medical applications was mentioned in the literature [11, 58]. As the standard
AAM scheme only considers the object’s interior for constructing the texture
vectors, and because the inside of the anatomical objects often does not con-
tain valuable and discriminating information, the search is likely to end up at
the inside of the object. Stegmann et al. [58] proposed to include intensity
information that lies at the object’s outside. van Ginneken et al. [11] added
texture information by adding intensities sampled along the contour normals
at each landmark point. They proved that this approach resulted in a sig-
nificantly better segmentation performance for the delineation of anatomical
structures in chest radiographs.

2.4.3 Pictorial structures

The work of Felzenszwalb and Huttonlocker on object recognition using pic-
torial structures [26, 73] is summarized here.

Model

The object is represented as a set of nodes or landmark points li and a set of
connections {i, j} between the nodes in a tree configuration (Fig. 2.4). In order
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to find an instance l = {l1, . . . , ln} of the object in an image I, two costs are
defined. First, the match cost di(I, li) measures how well a point li matches
to the image data. Secondly, a pairwise shape cost dij(li, lj), defined for each
connection {i, j} ∈ E , measures the plausibility of the relative geometrical
configuration of li with respect to lj . The definition of the match cost and
geometrical cost leads to the following energy function

E(I, l) =

n
∑

i=1

di(I, li) +
∑

{i,j}

dij(li, lj) (2.13)

Search method

A proper segmentation l∗ is found as the shape instance that minimizes Eq. 2.13:

l∗ = argmin
l

E(I, l) (2.14)

As each landmark point li can be placed at m locations with m the number
of pixels in the image, Eq. 2.14 is a discrete optimization problem. Dynamic
programming [10] is used to find a global optimum of this cost function.

Figure 2.4: Some example graphs in a tree-like configuration.

2.5 Motivation

Here the pillars of the proposed segmentation scheme are explained and moti-
vated.

2.5.1 Landmarks

As previously mentioned, there is no standard method for image segmenta-
tion as different applications need different strategies. Obviously, if the tissue
types of the anatomical objects of interest have distinguishing photometry fea-
tures, low-level segmentation and rule-based algorithms might be considered.
However, due to the complex nature of the images and objects, most medical
applications require the use of a model.
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The type and the amount of prior knowledge that a model can include, largely
depends on how the object is described. The shape-based approaches, cer-
tainly the ones with landmarks, have a higher modeling capacity than the
intensity based methods. However, this does not mean that a shape-based
algorithm should be preferred by all means. One of the conditions when us-
ing landmarks, is that a one-to-one mapping must exist between all shape
instances of the same anatomical structure. Vessel trees for example do not
satisfy this condition as the number of branches and bifurcations in the tree is
not known in advance. Another example is brain tissue classification (e.g, [42])
from MR datasets. For these applications, pixel classification methods should
be considered instead.
Nevertheless, if the correspondence condition is satisfied, which is true for
many anatomical objects, segmentation with landmark-based models is an ap-
propriate choice because of a number of reasons. Firstly, a landmark-based
shape representation, allows to learn all the available shape characteristics
from a set of examples. Moreover, such an algorithm is highly generic as it
can be adapted easily to a new application by replacing the examples in the
training set. Another advantage of the landmark approaches is that the im-
age appearance can be modeled both locally, for each landmark, or globally.
Hence, a uniform appearance distribution along the object boundary is not
required. As a result, among the shape-based approaches, segmentation using
ASMs and AAMs became the most popular strategy in the medical domain.

2.5.2 Problems with global PDMs

However, during the years, some shortcomings related to global PDMs were
addressed in the literature (e.g.,[5, 6]).

Local instead of global optimization

The first drawback is rather a problem of the matching algorithms than it is a
limitation inherent to the PDM itself. ASM is the best known and most widely
used technique where a global PDM is matched to an image. Unfortunately,
the ASM search is prone to find a solution which is only locally optimal. As
in each iteration target landmark points are searched for in a local neighbor-
hood of the current estimate of each landmark location, a sufficiently accurate
initialization needs to be provided for the scheme to converge to the correct
shape. This is illustrated in Fig. 2.5 for lung field segmentation in a chest
radiograph.
Also the fact that the ASM optimization algorithm applies the intensity model
and the shape model alternatingly instead of simultaneously, might cause the
algorithm to get stuck in a local optimum. In each iteration, the landmark
locations are updated using the intensity model only and subsequently a new
ASM shape is fitted through the target points. If the intensity model selects
the wrong location for a landmark, the shape model is misled. An example of
this is shown in Fig. 2.6.
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As a result, a number of ASM variants were suggested to avoid the search to get
stuck into a local minimum. A more robust intensity model was proposed by
van Assen et al. [22] by using image patches instead of pixel profiles. Behiels et
al. [20] and Tianly et al. [74] proposed a smoothness constraint imposed on the
displacement of neighboring landmark points to avoid the intensity model to
select a wrong candidate. This makes the ASM approach more robust to local
optima, although extra improvement could be made if the shape and intensity
model would be applied simultaneously. The problem of the alternating use
of the two models was also mentioned by Gleason et al. [75]. They proposed
a probabilistic based segmentation scheme that iteratively optimizes a maxi-
mum a posteriori (MAP) objective function taking both shape and intensity
knowledge into account [6, 65]. Behiels et al. [20] introduced a similar MAP
algorithm although it seemed less effective than the ASM with smoothness
constraint. In spite of all these improvements, the global shape model keeps
complicating the search for the global optimum.

Flexibility

As the global PDM is built from examples in a training set, only shape in-
stances can be reproduced that have the same variational modes as the example
shapes. Consequently, if the training set is too small, several new shapes can
not be reproduced properly. If such a shape is segmented, and even if the
intensity model attracts the shape to the correct image boundaries, the shape
model will pull the shape away from the correct solution. To avoid this, a suf-
ficiently large representative training set is needed. However, this is for several
applications not acceptable as it takes a large effort to obtain the examples,
certainly for 3D applications.
To overcome this lack of flexibility, some researchers (e.g., [5, 76, 77]) proposed
to superimpose local degrees of freedom onto the global shape description.
They combined a global model with a constrained free-form deformable model
to gain extra flexibility. This allows the shape template to fit more accurately
to unseen images, even when the shape has variational modes that do not
occur in the training set.

2.5.3 Local graphical templates

To cope with the limitations of the global PDMs, instead of superimposing lo-
cal degrees of freedom onto a global shape description, alternatively the graph-
ical deformable templates [23–26, 68] (Section 2.3.2) could be used. As these
methods only consider local shape constraints they are much more flexible.
Moreover, some of them guarantee a global optimum of the posed optimiza-
tion problem.
Nevertheless, these methods are rarely used in the medical domain. As no ex-
tensive validation study exists for medical applications, these algorithms and
their performance is rather unknown to the medical community. A first possi-
ble reason is that these algorithms are often not directly applicable to medical
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(a) (b) (c)

Figure 2.5: Illustration of an ASM shortcoming with a lung field segmentation
example. The large distance between the true location of the landmark point
indicated with a white circle (a) and the search line perpendicular to the initial
contour (mean shape) avoids the shape to converge to the true solution. The
contour after one iteration and the final contour are shown in (b) and (c)
respectively.

(a) (b) (c)

Figure 2.6: The gray-level model searches for a better landmark location by
computing the goodness of fit (Eq. 2.7) of 11 (ns = 5) candidate locations as
shown in (a). The point that best fits the gray-level model, indicated with a
white circle, is a bad choice from a shape point of view and distracts the shape
from the true solution. The contours after the current iteration and the final
solution are shown in (b) and (c) respectively.

applications. For example the pictorial structures algorithm described in Sec-
tion 2.4.3 uses tree-like object representations and is therefore not capable of
segmenting surfaces from volumetric images. In computer vision, these meth-
ods are considered as a solution for object recognition problems where features
in pictures are detected, rather than as a method for segmentation. A second
possible explanation is that many researchers belief that a global shape model
is a requirement towards robust segmentation of anatomical structures. With
good reason one can indeed wonder whether using only local statistical knowl-
edge suffices.
In this thesis a segmentation scheme will be presented that falls in the category
of the deformable graphical templates. A model is proposed that learns local
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shape and appearance characteristics from examples and is generally applica-
ble for the segmentation of anatomical objects from both 2D and 3D images.

2.6 Conclusion

Choosing an appropriate algorithm is a first and crucial step towards image
segmentation. In this chapter a short overview is given of the best known
segmentation algorithms together with their application fields. These meth-
ods are divided according to their use of prior knowledge: low-level methods
versus model-based segmentation schemes.
Anatomical objects often have a large shape variability. Moreover, their ap-
pearance in medical images is often variable and noisy. Consequently, a model
that maximally captures prior knowledge is required for a robust and accurate
segmentation.
The amount and the nature of the prior knowledge that can be modeled largely
depends on how the object is represented. A strong approach is to use land-
mark points because of its large modeling capacity. As a result, active shape
and active appearance models are very popular in medical image analysis.
However, there are a few limitations. Their use of a global shape model com-
plicates the search for an optimum, and moreover a large number of training
examples is needed to make the model flexible enough towards a sufficiently
accurate segmentation.
The deformable graph methods capture local shape characteristics and are
thereby much more flexible. Nevertheless, they haven’t received much of at-
tention for medical segmentation tasks. In this thesis, such a deformable graph
model will be presented and its validity for the segmentation of anatomical ob-
jects, both in two as in three dimensions, will be verified.



Chapter 3

Modeling image objects

3.1 Introduction

The automated segmentation of anatomical structures requires prior knowl-
edge about the geometry of the objects and knowledge related to how the
objects appear in the image. A mathematical description of prior geometry
knowledge is referred as a shape model. A description of how the image data
typically looks like in that part of the image where the object is located, is
called an intensity model. Also the expressions gray-level appearance model
or even shorter appearance model are commonly used.
Different strategies exist for constructing the models. One possibility is to use
a mathematical model that simulates the physical and bio-mechanical prop-
erties of the anatomical object of interest. Also a set of rules (Section 2.2.3)
can be developed to incorporate the available prior knowledge. Unfortunately,
these approaches have the limitation to be rather dedicated to one single ap-
plication.
A much more generic strategy, the one followed here, extracts the prior knowl-
edge from examples. This learning or training process mimics the process that
a human experiences when he learns to recognize objects in images. Before he
is able to segment a specific anatomical structure, he first needs to learn how
the object typically appears by observing a set of annotated example images.
Automated algorithms that learn their model from training data are catego-
rized as supervised methods.
Many of these supervised methods applied for medical purposes perform a
principal component analysis of the global shape vector to learn the shape
characteristics. This is a strong and natural approach as it learns all the ex-
isting correlations that can be observed in a set of example shapes. However,
such a global shape description has the consequence that if the location of only
one point on the shape is changed, every other point feels a direct influence.
This is somewhat unnatural. Consider the example of a liver tumor. It is
acceptable to assume that the tumor will change the liver geometry only in
its neighborhood and that it will not interact with the shape of the liver at

23
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the opposite side. To overcome the lack of flexibility of such a global shape
description, a localized model based on Markov random field theory will be
proposed that only considers local shape dependencies.
To understand how the chapter is organized, a little explanation is needed
about the statistical nature of the model and how to apply it for the segmen-
tation of an unseen image. An image I and the corresponding segmentation l
are considered as correlated random processes. The segmentation task can be
interpreted as finding the shape l in the image I that maximizes the posterior
probability p(l|I). Applying Bayes’ rule

p(l|I) =
p(l)p(I|l)

p(I)
(3.1)

separates the process into a shape prior p(l) that reflects the plausibility of the
shape and an image appearance model p(I|l) that expresses how well the shape
fits to the given image. The probability p(I) does not need to be estimated
as we are only interested in how p(l|I) varies with l. How this optimization
problem is solved will be explained in Chapter 4.
This chapter explains how the prior knowledge, embodied by the distribu-
tions in Eq. 3.1, is learnt from examples. The chapter is organized as follows
(Fig. 3.1). Prior to estimating the shape and appearance distributions, a
mathematical representation of the shape l (Section 3.2) and a set of train-
ing examples (Section 3.3) are needed. Section 3.4 explains how probabilities
are converted into energies. The shape prior p(l) is explained in Section 3.5
and the intensity distribution p(I|l) is revealed in Section 3.6. Finally, these
models are merged into one global model that combines shape and intensity
characteristics (Section 3.7).

object representation

shape prior

appearance model

Figure 3.1: Components for model construction: an object representation, a
shape prior and an appearance model.
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3.2 Object representation

Landmarks and edges

The object is represented as a graph

G = (V , E) (3.2)

• where the vertices V = {1, . . . , n} refer to landmark points l1, . . . , ln
defined on fixed positions on the shape,

• and the edges E contain t unordered pairs of distinct vertices {i, j} that
express landmark interactions.

Consider the examples in Fig. 3.2 and 3.3. The landmark points can be
placed at the object boundaries resulting in contours (Fig. 3.2(a,f)) and sur-
faces (liver in Fig. 3.2(b)) for respectively two and three dimensional objects.
Alternatively, the landmark points can be defined at the inside of the object
(lung in Fig. 3.2(c)) or landmarks can be used to annotate characteristic fea-
tures in the image as in Fig. 3.2(d,e).
The exact meaning of the edges will become clear when the shape prior p(l)
is introduced (Section 3.5), but it is already useful to reveal what they are
meant for. Edges will be defined between those landmarks of which the loca-
tions have a direct statistical interaction. When landmarks describe a 2D curve
along an object boundary, it is straightforward to define edges between succes-
sive points (Fig. 3.2(a,f)). Extending this representation to three dimensional
shapes results in surface meshes (Fig. 3.3) where edges are defined between
direct neighbors along the shape border. Edges do not necessarily coincide
with object borders. For example, the graph in Fig. 3.2(d) assumes that there
is an interaction between neighboring bones of the same finger. The graph in
Fig. 3.2(e) also takes dependencies between different fingers into account.

Neighborhood system

Instead of defining a set of edges E , the interrelationship between the land-
marks can be formulated in terms of a neighborhood system N

N = {Ni | ∀i ∈ V} (3.3)

where Ni is the set of sites neighboring i. The neighborhood system satisfies
the following requirements:

1. a vertex is not neighboring to itself: i /∈ Ni

2. the neighboring relationship is mutual: i ∈ Nj ⇔ j ∈ Ni

There is a one-to-one mapping between E and N :

j ∈ Ni ⇔ {i, j} ∈ E (3.4)

Both the edges E as the neighborhood system N will be used in this text.
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: The shape of anatomical objects represented as graphs. The shapes
can be described with landmark points defined along the object boundary
(a,b,f). Landmark points can also be located at specific points inside the
objects (c) or at specific features in the image (d,e).

Cliques

Another term commonly used in graph theory needs to be explained. A clique
c is a subset of a graph G = (V , E) such that every two vertices in the clique
are neighbors. The maximum clique size of a graph will have an important
meaning when the shape distribution is discussed.
The maximum clique size of a contour (Fig. 3.2(a,f)) or a tree-like configura-
tion (Fig. 3.2(d)) is two. A triangulated graph has cliques up to order three
(Fig. 3.2(b,c,e)).
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(a) (b)

Figure 3.3: The graph representation is appropriate for modeling 3D objects.
The liver clearly visible in the contrast enhanced CT image (a) can be described
as a triangulated surface mesh (b).

3.3 Training set

The training set consists of s example images with corresponding ground-truth
shapes:

{(I(k), l(k))}sk=1 (3.5)

Each shape l(k) = {l(k)
1 , . . . , l

(k)
n } consists of n landmark points. Setting up

such a set yields different stages.

3.3.1 Ground-truth segmentations

Firstly, a set of ground-truth segmentations is obtained by segmenting a set of
images using manual or semi-automated techniques. In this thesis, for some
applications we make use of publicly available data. For example the SCR
database [11, 12] contains 247 posterior-anterior chest radiographs together
with manual delineations of lung fields, heart and clavicles. A free database
that supplies training material for 3D liver segmentation from computed to-
mography datasets is available at [78].
Whether the ground-truth data is obtained from such a public database or
obtained with manual segmentation tools, in general the shapes are not yet
represented as a set of landmark points. A manually delineated contour con-
sists of an arbitrarily number of points clicked along the object boundary rather
than the required landmark points. Other semi-automated segmentation tools
fill regions in the image to define the object’s location and produce labeled
images. Again, no information about corresponding points is available yet. A
training set is only complete if the point correspondence problem is solved.
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3.3.2 Correspondences

Finding corresponding points on 2D objects is often done by hand. To do this
efficiently, a number of specific anatomically characteristic points is annotated
on each shape instance first. Additionally, a number of pseudo-landmarks are
defined by equidistantly sampling points along the object boundary between
the characteristic landmarks.
Unfortunately, this manual technique is for most 3D applications not accept-
able as it would become too cumbersome and would take too much time. As a
result, automated algorithms that search corresponding points on instances of
anatomical structures have become very popular and well studied in the do-
main of medical image analysis. A complete survey of the existing approaches
to search the correspondences falls out of the scope of this work. Instead, only
a limited number of important and relevant methods are reported here.
Many published methods use a point registration algorithm to deform a tem-
plate shape onto a target shape. The warped points of the template shape are
then considered as the landmark points of the target shape.
A famous algorithm in this category is the iterative closest point (ICP) algo-
rithm proposed by Besl et al. [79]. For each point on the target shape, the
closest point to the template surface is searched. Subsequently, a transfor-
mation is computed that brings the target points closer to the corresponding
closest points of the template shape. This procedure is repeated until the
change in the objective function falls below a preset threshold.
In Chapter 6, a similar method [80] will be used to warp a template surface
onto a target surface. First, the target shape is converted into a distance map.
This distance image contains the closest distance to the surface at each pixel
position. The template shape is then iteratively transformed by letting each
landmark point evolve with a small step in the direction of the gradient of
the distance map. This way, each landmark point of the template is moved
closer to the target surface. This approach is computationally less expensive
compared to the ICP method as the closest points do not have to be computed
explicitly in every iteration.
The minimal description length (MDL) [81] approach to the point correspon-
dence problem, introduced by Davies et al. became recently very popular and
therefore needs to be mentioned. They proposed to compute the quality of
a set of correspondences using an information theoretic measure. The idea
is that the amount of information needed to describe the shape statistics ex-
tracted from a set of correspondences should be as small as possible. The
compactness of the shape model is computed as the description length that is
needed to encode the model.
A comparative study [82] showed that MDL outperforms several other strate-
gies. At the other hand, one should be aware of the computationally expensive
nature of the method. Recently, Heimann et al. [83] presented an optimized
procedure for minimizing the MDL cost function that leads to a more efficient
search and accordingly needs a considerably smaller computation time.
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3.3.3 Global alignment

For reasons that will become clear in Section 3.5.3, the training shapes and
corresponding images need to have similar orientations prior to model con-
struction and model fitting (Section 3.5.3). In medical images, this require-
ment is often satisfied automatically thanks to the acquisition protocol. This
is for example the case for radiographic images of the chest (Fig. 3.4).
If large pose differences of the shapes in the training images are present, a
coarse affine alignment of the images is needed to correct for differing orienta-
tions and scales.

1

2

3
4

5
6
7

8 9

10

11

12

13

14

Figure 3.4: The lung fields in the radiographic images have similar orientation
and scale due to the acquisition protocol.

3.4 Energy space

In this thesis several random variables, random vectors and random fields
(Section 3.5.1) will be encountered. Instead of describing them with their
probability density functions (PDFs), they will be described in the log-space
as follows. Consider a random variable, random vector or random field x ∈ X

and the corresponding PDF p(x). If one assumes that p(x) > 0, ∀x ∈ X then
one can write

p(x) =
1

Z
exp

(

− 1

T
E(x)

)

(3.6)

with T a strictly positive scalar and Z a normalizing constant

Z =
∑

x∈X

exp

(

− 1

T
E(x)

)

(3.7)

We will refer to E(x) as the energy of x. If T is chosen, the energy E(x) is
determined except for a constant. Changing this constant alters the value of
Z. A likely sample x (high probability) corresponds to a low energy and vice
versa: a sample with high energy is unlikely to occur (Fig. 3.5).

3.5 Shape model

A localized point distribution model (PDM) is proposed. First, a short intro-
duction (Section 3.5.1) to Markov random field (MRF) theory [7] is given, as
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x

p(x)

x

E(x)

(a) (b)

Figure 3.5: The PDF (a) of a random variable can be converted to the energy
space (b). A high probability corresponds to a low energy and vice versa: a
sample with a high energy is unlikely to occur.

this is the basis on which the PDM is built. A shape prior and corresponding
energy function will be derived in Sections 3.5.2 and 3.5.3. Section 3.5.4 ex-
plains how the parameters of the energy function are estimated from a set of
training shapes.

3.5.1 Markov random fields

Let V = {1, . . . , n} be a set of sites and X = {X1, . . . , Xn} a set of random
variables (or random vectors) defined on V , in which each variable Xi takes
a value xi in X. A joint event {X1 = x1, . . . , Xn = xn} will shortly be noted
as x = {x1, . . . , xn} and the probability will be written as P (x) for a discrete
random variable or as p(x) for a continuous variable.
Let N be a neighborhood system defined on V , then X is said to be a Markov
random field on V with respect to N if and only if the following two conditions
are satisfied:

p(x) > 0 ∀x ∈ X
n (positivity) (3.8)

p(xi|xV/{i}) = p(xi|xNi
) (Markovianity) (3.9)

The Markovianity property expresses that a site only interacts with its neigh-
bors.

Gibbs energy

The Hammersley-Clifford theorem [7] states that an MRF is equivalent with
a Gibbs random field (GRF). A GRF is a random field X defined by a joint
PDF written as a Gibbs distribution:

p(x) =
1

Z
exp

(

− 1

T
E(x)

)

(3.10)
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where Z is a normalizing constant called the partition function and T is a
constant called the temperature of the Gibbs distribution. The energy function

E(x) =
∑

c∈C

Vc(x) (3.11)

is a sum of clique potentials Vc(x) over all possible cliques C. The value of
Vc(x) only depends on the sites in c. Thanks to the Hammersley-Clifford
theorem, the joint PDF of an MRF can be expressed in terms of potential
functions defined on the cliques. Formula 3.10 enables to work with energies
instead of probability densities: a field with a low probability corresponds to
a high energy and vice versa.

Markov conditional distribution

If the potential functions of the Gibbs distribution are known, the conditional
probability can be computed as [7]:

p(xi|xNi
) =

exp
(

− 1
T

∑

c∈A Vc(x)
)

)
∑

x
′
i
∈X

exp
(

− 1
T

∑

c∈A Vc(x
′ )
) (3.12)

where A consists of the cliques containing i and where

x
′

= {x1, . . . , xi−1, x
′

i, xi+1, . . . , xn} (3.13)

equals x at all sites except possibly i.

Shape as an MRF

The shape l is modeled as an MRF on the vertices V with respect to the
neighborhood system N :

p(li|lV−{i}) = p(li|lNi
) (3.14)

This implies that if the locations of a landmark’s neighbors lNi
are known,

then everything is known to predict the location of landmark li. No extra
information can be gained by knowing the location of other landmarks.
Consequently, if a landmark is moved to another position, only his direct
neighbors will feel this change directly. However, this does not mean that
two landmarks that are not neighbors are statistically independent. There is
interaction between them, but only indirectly via other landmarks.

3.5.2 Shape energy

The Hammersley-Clifford theorem delivers the following formula for the prob-
ability density function of the shape:

p(l) =
1

Zl

exp

(

−1

2
El(l)

)

(3.15)
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with Zl a normalizing constant. Without loss of generality, the temperature
is chosen to be T = 2.
The theorem states that the shape energy El(l) is a sum of local energy func-
tions over all possible cliques of the graph. For example, the shape energy of
a contour can be expressed as a sum of potential functions that depend on
couples of neighboring landmarks whereas the energy of a triangulated graph
consists of local energies of maximum third order.
To find expressions for the potential functions, the PDF of trivial graphs con-
sisting of one, two and three vertices will be analyzed.

First order

Consider a trivial shape that consists of only one landmark: V = {1} and
E = ø. The proposed PDM aims at describing the shape variances rather than
its relative location in space. Therefore, the distribution of a single landmark
is considered to be invariant for translations. Hence, the PDF is uniform and
also the energy is a constant. One is free to choose

El(l1) = 0 (3.16)

Second order

Consider a graph that consists of two vertices and one edge: V = {1, 2} and
E = {{1, 2}}. The shape PDF can be written as follows:

p(l1, l2) = p(l1)p(l2|l1) (3.17)

= p(l1)p(l2 − l1|l1) (3.18)

Eq. 3.17 follows Bayes’ rule. The conversion to Eq. 3.18 is trivial as the random
occurrence of l2 given l1 is equivalent to the occurrence of l2 − l1 given l1. As
the shape PDF is modeled to be invariant for translations:

p(l + δ) = p(l), ∀δ ∈ R
3, (3.19)

it follows that the distribution of an edge vector l2− l1 does not depend on its
relative location in space:

p(l2 − l1|l1) = p(l2 − l1). (3.20)

Hence, the shape PDF becomes

p(l1, l2) = p(l1)p(l2 − l1) (3.21)

∝ p(l2 − l1) (3.22)

Writing the distribution of an edge eij = lj − li in the energy space

p(eij) =
1

Zeij

exp

(

−1

2
dij(eij)

)

(3.23)
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enables the definition of the edge energy dij(eij) that reflects the plausibility
of the edge eij . To keep the notations simple in the following sections, the
energy will be written as dij(li, lj) instead of writing it explicitly as function
of the edge vector.
An edge that significantly deviates from what is seen in a population will result
in a high energy whereas an edge that is similar as in the population will yield
a low-energy value. How these edge energies are learnt from examples will be
explained in Section 3.5.4.
Finally, the shape energy of the second order graph becomes

El(l1, l2) = d12(l1, l2) (3.24)

Obviously, the energy function consists of one potential function of second
order.

Third order

Assume a graph that consists of one triangle:

V = {1, 2, 3} (3.25)

E = {{1, 2}, {1, 3}, {2, 3}} (3.26)

Similar as for the second order potential, the joint PDF can be rewritten as

p(l1, l2, l3) = p(l1)p(l2|l1)p(l3|l1, l2) (3.27)

= p(l1)p(l2 − l1|l1)p(l3 − l1|l1, l2 − l1) (3.28)

= cte.p(e12)p(e13|e12) (3.29)

The conversion from Eq. 3.28 to Eq. 3.29 uses the translation-invariance as-
sumption. Similar as for the edge distribution 3.23, an energy can be defined
for the conditional likelihood:

p(e13|e12) ∝ exp

(

−1

2
d13|12(l1, l2, l3)

)

(3.30)

The conditional edge energy d13|12(l1, l2, l3) reflects the likelihood of observing
a certain l3 if both l1 and l2 are given.
The shape energy of a triangle becomes

El(l1, l2, l3) = d12(l1, l2) + d13|12(l1, l2, l3) (3.31)

Several combinations of Eq. 3.31 can be obtained by shifting the roles of l1,
l2 and l3 in Eq. 3.27. A better balanced formula is obtained by averaging all
combinations:

El(l1, l2, l3) =
1

3

(

d12 + d23 + d13 + d13|12 + d12|23 + d23|13

)

(3.32)

In accordance with the Hammersley-Clifford theorem, the triangle energy con-
sists of potential functions up to third order. The same principle can be used
to obtain the energy function of any graph configuration. For example, a graph
that consists of only triangles (called a triangulation) can be written as a sum
of potential functions up to third order.



34 Modeling image objects

3.5.3 Second order approximation

As follows from section 3.5.2, the complexity of the shape energy function is
related to the maximum clique size of the graph. Unfortunately, incorporating
these potentials in the energy function will have a large impact on the com-
putational complexity of the model fitting. Therefore it is desirable that the
energy can be written in terms of potential functions up to size two. An ap-
proximation is made here where third order (and higher) potentials are written
as combinations of second order functions.
Consider again the triangle example and the following approximation:

p(l1, l2, l3) = p(l1)p(l2|l1)p(l3|l1, l2) (3.33)

≈ p(l1)p(l2|l1)p(l3|l1) (3.34)

This approximation ignores the influence of l2 on l3, or in other words: it only
takes the edges e12 and e13 into account. However, this approximation is only
acceptable if the triangle instances have similar orientations and scales.
To understand this, assume that the orientation of the triangle would be ran-
dom. The probability p(l3|l1, l2) tells where l3 can be expected if both l1 and
l2 are known. Knowing the direction of the edge l2 − l1 contains valuable
information about the expected direction of the edge l3 − l1. Hence, the in-
fluence of knowing l2 can impossibly be ignored and thus the approximation
p(e13|e12) ≈ p(e13) does not make sense here. Similarly, if the shapes would
have highly differing scales, the influence of a given edge on the distribution of
another edge can not be ignored. Indeed, if the given edge vector has a large
magnitude, one can expect that the other edge will have a large length too.
As to make the approximation acceptable, an alignment of the training shapes
is required.
A better balanced approximation that takes all edges into account, is obtained
by averaging the three variants of Eq. 3.34:

El(l1, l2, l3) =
2

3
(d12(l1, l2) + d13(l1, l3) + d23(l2, l3)) (3.35)

General shape energy

Assume a graph G = (V , E) with n vertices and t edges. The joint PDF can
be approximated similar as in Eq. 3.34:

p(l1, . . . , ln) ≈ p(li1)p(li2 |li1)p(li3 |li2) . . . p(lin
|lin−1) (3.36)

with ij ∈ Nij−1 , j = 2, . . . , n. The energy that corresponds to Eq. 3.36 consists
of n− 1 second order potentials of the type dij(li, lj). An averaged expression
that sums all the possible combinations of Eq. 3.36 consists of t energy terms
dij(li, lj). If each edge has the same weight in the energy function, the global
shape energy becomes

El(l) =
n− 1

t

∑

{i,j}∈E

dij(li, lj) (3.37)
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As the occurrence of the edge lj − li is equivalent with li − lj, then it is also
true that dij(li, lj) = dji(lj , li). Hence, the energy Eq. 3.37 can be rewritten
as

El(l) =
n− 1

2t

n
∑

i=1

∑

j∈Ni

dij(li, lj) (3.38)

Fig. 3.6 applies this formula for a number of example graphs.

l1

l1

l1

l2

l2

l3

li

lj

n = 1
t = 0

n = 2
t = 1

n = 3
t = 3

n = N
t = T

E = 0

E = d12

E = 2
3 (d12 + d13 + d23)

E = N−1
T

∑

{i,j}∈E dij

Figure 3.6: The shape energy of the graph can be approximated using only
edge related energies dij .
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Markov shape energy

The conditional distribution of the Markovianity property predicts were a
landmark should lie given its neighbors and can be derived from the energy
Eq. 3.38 using Eq. 3.12:

p(li|lNi
) = K(lNi

) exp



−n− 1

2t

∑

j∈Ni

dij(li, lj)



 (3.39)

with K a normalizing constant with respect to li. The factor 2 arises here
because T = 2. The conditional shape energy follows from Eq. 3.39:

Eli|lNi
(li, lNi

) =
n− 1

t

∑

j∈Ni

dij(li, lj) (3.40)

3.5.4 Learning from examples

In order to evaluate the proposed energy functions for a new shape instance, a
probability density function (PDF) needs to be chosen that properly describes
the edge distributions (Eq. 3.23 and Eq. 3.30) observed in the training set.

Edge energy

As the shapes have similar orientation and scale, an edge vector that connects
two neighboring landmark points will have a more or less consistent length
and direction. Hence, a multivariate gaussian distribution is a straightforward
choice to describe the edge distribution (Eq. 3.23). It follows immediately that
the defined edge energy dij(li, lj) is equal to the Mahalanobis distance [84]
between the edge lj − li and the expected edge µeij

:

dij(li, lj) = (lj − li − µeij
)TΣ−1

eij
(lj − li − µeij

) (3.41)

with µeij
and Σeij

respectively the mean and the covariance of the gaussian
edge distribution.
The Mahalanobis distance measures how far a sample lies from its expectation
value taking the modes of variation into account. For example, for a one-
dimensional gaussian, the Mahalanobis distance is equal to the number of
standard deviations that the sample deviates from its mean.
The unknown parameters in Eq. 3.41 are computed from the training shapes
using the maximum likelihood (ML) criterion [85]:

µeij
=

1

s

s
∑

k=1

(l
(k)
j − l

(k)
i ) (3.42)

Σeij
=

1

s− 1

s
∑

k=1

(l
(k)
j − l

(k)
i − µeij

)T(l
(k)
j − l

(k)
i − µeij

) (3.43)
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The gaussian edge distributions estimated from the lung shapes in Fig. 3.4 are
plotted in Fig. 3.7. The choice for a normal PDF seems convenient as it fits
the training samples properly.
The Markov conditional distribution (Eq. 3.39) is illustrated for the hand
shape. The vertices of the hand graph shown in Fig. 3.8 indicate the centers of
11 hand bones. The probabilities plotted in (b) and (c) show where the bone
center is expected using only shape information. The red dots correspond to
the true landmark locations.

l2 − l1 l3 − l2 l4 − l3 l5 − l4

l6 − l5 l7 − l6 l8 − l7 l9 − l8

l10 − l9 l11 − l10 l12 − l11 l13 − l12

l14 − l13 l1 − l14

Figure 3.7: The estimated normal distributions (using Eq. 3.41) of the lung
edges seem to describe the observed data properly. The Gaussian distributions
are plotted as gray-levels where white corresponds to the maximum density of
the distribution and black to a zero density. The training samples are plotted
as yellow dots.
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(a) (b) (c)

Figure 3.8: The conditional distribution of Eq. 3.39 is illustrated for the hand
shape (a). The probabilities plotted in (b) and (c) show where the bone center
is expected using shape information only. The red dots correspond to the true
landmark locations.

Conditional edge energy

If the approximation presented in Section 3.5.3 is made, only second order
potentials (Eq. 3.41) are needed. If at the other hand the exact energy is
used and if the graph consists of cliques larger than order two, also the higher
order potentials need to be estimated. In Chapter 5, a validation experiment
will be performed where third order potentials are computed exactly. In that
case, also the conditional edge distributions p(eik|eij) (Eq. 3.30) need to be
estimated. The formulas can be found in Appendix A.

3.6 Intensity model

3.6.1 Model assumptions

The intensity distribution p(I|l) expresses the probability of observing the
image I given that the object of interest is located at l. Two simplifications
are made prior to estimating the model.

1. Firstly, the proposed model assumes that the shape has only an influence
on the image photometry f in the neighborhood of the shape l. The
image structure f is obtained by extracting the local gray-level patterns
fi around the landmarks li using an intensity descriptor:

fi = F (I, li) (3.44)

Hence, for each landmark a feature vector is extracted from the image
that embodies how the image appears around that landmark point.
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2. A second model assumption states that the landmark-individual patterns
fi are statistically independent amongst one another. Consequently, one
can write

p(I|l) ∝
n
∏

i=1

p(fi) (3.45)

with p(fi) the probability that at the location of landmark i the local
image pattern fi is observed. Note that the assumption (Eq.3.45) that
patterns of different landmarks are statistically independent is only ac-
ceptable if the shapes in the training images have similar orientations and
scales. Indeed, if the shapes have largely differing orientations in the im-
ages, knowing the intensity pattern of one landmark contains essential
information about the expected pattern to be observed at a neighboring
landmark.

Several strategies for constructing the intensity descriptor (Eq. 3.44) are pos-
sible. An effective approach is presented in section 3.6.2. The corresponding
intensity energy function is proposed in Section 3.6.3 and how its parameters
are learnt from the training set is the topic of Section 3.6.4.

3.6.2 Intensity descriptor

The intensity descriptor (Eq. 3.44) performs two successive steps. First, a
number of feature images is computed and secondly, intensity profiles are ex-
tracted from them.

Intensity profiles

A commonly used means for extracting local gray-level appearance is by sam-
pling the image at a limited number of points around the landmark point of
interest.
The standard ASM algorithm put forward by Cootes and Taylor [4] uses linear
profiles centered at the landmarks and perpendicular to the object contour (or
surface) in this point. In order to extract features at a point li, the locations
of the neighboring points need to be known. Consequently, such a profile is
not suited for defining the descriptor we have in mind as F (I, li) only depends
on the image and one landmark point.
To cope with this, a spherical profile with a fixed configuration is proposed.
The profile vector is extracted by sampling the intensity values in the image
at nf locations on a sphere (circle in 2D) with radius rf centered at the land-
mark point. To reduce the effect of global intensity offsets between images,
the profiles are normalized such that the sum of absolute values is equal to
one.
In Fig. 3.9 an example configuration is shown on a slice of a computed to-
mography scan for modeling the image appearance of the liver. The profile
consists of nf = 6 samples: two samples are put on each of the three axes.
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Figure 3.9: An intensity profile extracted from a computed tomography scan
of the liver. The profile consists of nf = 6 samples: two samples are put on
each of the three axes.

Feature images

In order to construct a strong intensity model, the profile is extracted from a
set of feature images {I[1], . . . , I[nI]} derived from the original image I. The

profile corresponding to landmark i and feature image j is denoted as f
[j]
i and

the overall pattern fi is defined as the concatenation of the feature individual
profiles:

fi =









f
[1]
i
...

f
[nI]
i









(3.46)

The approach described by van Ginneken et al. [8] to compute locally orderless
images [9] is adopted here. The feature images are computed in two successive
steps.
First, the original image is fed into a filter bank of multiscale Gaussian deriva-
tives of several orders. This is motivated by the fact that the local behavior of
a function f(x) at a point x0 can be described as a polynomial of some order
K (Taylor expansion)

f(x) ≈
K
∑

k=0

1

k!
f (k)(x0)(x− x0)

k (3.47)

Hence, the coefficients f (k)(x0) contain all the information about the local be-
havior of f(x) around x0. For the image I, this is achieved by convolving it
with the derivatives of a Gaussian with scale σ (inner scale). The output of
the filter bank is then a set of images resulting from multiple derivatives and
scales σ.
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Secondly, from each filtered image, a set of feature images is extracted by
computing at each location the first few statistical moments of the local dis-
tribution of image intensities. The local histograms are computed using a
Gaussian-shaped region of interest with extent α. The location dependant
histograms are called locally orderless images. The word orderless refers to
the fact that the spatial image structure within the field of view α is lost. The
result of this procedure is a set of feature images I[1], . . . , I[nI] extracted from
the source image I. A detailed explanation how the LOIs are computed can
be found in [86].
Fig. 3.10 shows a number of feature images computed from a chest radiograph
following this approach. The filter bank consists of derivatives up to second
order (L, Lx, Ly, Lxx, Lyy, Lxy) using the inner scales σ = 2 and σ = 4 pixels.
The first two moments (M = 1 and M = 2) are extracted from the histograms
computed with window sizes α = 2σ.
A major property of this intensity descriptor F (I, li) is that it is not invariant
for rotations because of two reasons. First, the fact that fixed profile config-
urations are used and secondly, because not all the generated feature images
are rotationally invariant. Two adjustments are needed for obtaining an de-
scriptor that generates intensity patterns that do not change with a rotating
image:

1. A dynamic profile configuration should be used: if the image rotates,
the profile rotates with it. One way to do this is by using linear profiles
sampled along the image gradient.

2. Only rotationally invariant feature images should be computed. For
example the zero order derivatives of the filter bank satisfy this property.

For applications where the objects have (roughly) similar orientations and
scales, this property is a clear advantage as it is more specific. So, instead of
designing a descriptor that does not change with rotations, it is better to do a
rough affine alignment of the images if needed. This is the approach followed
in this work.

3.6.3 Intensity energy

Writing the landmark-individual intensity PDFs p(fi) in the energy space:

p(fi) =
1

Zfi

exp

(

−1

2
di(fi)

)

(3.48)

allows to work with energies di(fi) instead of probabilities p(fi). A location
ltest in an image I with a low intensity energy di(F (I, ltest)) has an intensity
pattern that is similar to what is found in the training images and is likely to
coincide with the true landmark location li from an intensity point of view.
Combining Eq. 3.45 and Eq. 3.48 delivers

p(I|l) =
1

ZI|l
exp

(

−1

2

n
∑

i=1

di(F (I, li))

)

(3.49)
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L Lx Ly Lxx Lyy Lxy

Figure 3.10: LOIs of a chest radiograph. The first (M = 1) and
second (M = 2) moment images of the derivatives up to second-order
(L, Lx, Ly, Lxx, Lyy, Lxy) and the scales σ = 2 and 4 pixels are shown.

with ZI|l a normalizing constant, and leads to the definition of the global
intensity energy

Ef (I, l) =

n
∑

i=1

di(F (I, li)) (3.50)

The intensity energy (Eq. 3.50) expresses how well a shape fits to the image.
Minimizing this energy function with respect to l, is equal to finding the most
probable shape l if only intensity information is considered.

3.6.4 Learning from examples

Similar as for the edge distributions, a gaussian is chosen to model the prob-
ability density of the intensity patterns fi. This results in an energy that is
equal to the Mahalanobis distance between fi and its mean:

di(fi) = (fi − µfi)
TΣ−1

fi
(fi − µfi) (3.51)

In general an unacceptable large training set is needed to estimate the distri-
bution parameters µfi ∈ R

nInf and Σfi ∈ R
nInf×nInf . To cope with this, the
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nI sub-profiles f
[j]
i are modeled as if they were independent:

Σfi =















Σ
f
[1]
i

0 . . . 0

0 Σ
f
[2]
i

. . . 0

...
...

...
...

0 0 . . . Σ
f
[nI]

i















(3.52)

and µT
fi

= [µT

f
[1]
i

. . .µT

f
[nI]

i

]. The intensity energy of Eq. 3.51 becomes

di(fi) =

nI
∑

j=1

(f
[j]
i − µ

f
[j]
i

)TΣ−1

f
[j]
i

(f
[j]
i − µ

f
[j]
i

) (3.53)

with the distribution parameters µ
f
[j]
i

and Σ
f
[j]
i

estimated from the training

samples for each vertex i and for each LOI j. The training samples are obtained
by extracting the intensity patterns (Eq. 3.44) from the training images at the
landmark positions li of the corresponding shapes.
The energy in Eq. 3.53 is only exact if the independency assumption (Eq. 3.52)
is true. In practice, this is not the case. It can be proven that the energy
function 3.53 is always an overestimation of the true value if the independency
assumption is violated. One way to obtain a more realistic probability, is to
rescale the energy:

di(fi) =
1

ρ

nI
∑

j=1

(f
[j]
i − µ

f
[j]
i

)TΣ−1

f
[j]
i

(f
[j]
i − µ

f
[j]
i

) (3.54)

with ρ ≥ 1 a parameter to be estimated. The amount of overestimation is
related to how strong the nI different sub-profiles are correlated. The more
the non-diagonal elements of Eq 3.52 differ from zero the higher ρ must be
chosen. If the feature images would be uncorrelated, then Eq. 3.52 is exact
and the intensity energy computed as 3.53 is valid or ρ = 1. In the opposite
case (if all profiles are 100% correlated), the energy overestimates the real
energy exactly nI times: ρ = nI.
This is illustrated in Fig. 3.11. A radiograph of the hand is scanned with
the intensity energy (Eq. 3.53) of the landmarks shown in the templates (a).
Fig. 3.11(b) shows the corresponding probability densities (Eq. 3.48). The
points in the image with the highest values (whitest regions) indicate where
the landmark is expected to lie. As only one white spot is visible, the intensity
energy as computed in Eq. 3.53 puts a too high restriction on other possible
locations. If the same distributions are computed with a corrected energy
(Eq. 3.54), a more truthful result is obtained as shown in Fig. 3.11(c). A
procedure to obtain an appropriate ρ-value is given in Chapter 4.
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(a) (b) (c)

Figure 3.11: A radiograph of the hand is scanned with the intensity energy
(Eq. 3.53) of the landmarks shown in the templates (a). The corresponding
probability densities (Eq. 3.48) are shown in (b). It seems that the probability
values are peaked as only one white spot is visible. A less peaked Gibbs
distribution leads to a more realistic distribution as shown in (c).

3.7 Combined model

When an unseen image has to be segmented, a shape will be searched that
properly fits the image data according to the appearance model. The shape
model at the other hand is needed to guarantee that only plausible shapes are
generated. The statistical approach of the segmentation task combines the
shape and appearance information in a natural way:

p(l|I) ∝ p(l)p(I|l) (3.55)
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with p(l) and p(I|l) respectively the shape and intensity PDFs:

p(l) =
1

Zl

exp

(

−1

2
El(l)

)

(3.56)

p(I|l) =
1

ZI|l
exp

(

−1

2
Ef(I, l)

)

(3.57)

and with El(l) and Ef(I, l) respectively the shape energy (Eq. 3.38) and inten-
sity energy (Eq. 3.50).

Object energy

Eq. 3.55 becomes (using Eq. 3.56 and Eq. 3.57)

p(l|I) =
1

Z
exp

(

−1

2
E(l, I)

)

(3.58)

with Z a constant with respect to l and with E(l, I) called the object energy:

E(l, I) =
∑

i∈V

di(F (I, li)) +
n− 1

2t

∑

i∈V

∑

j∈Ni

dij(li, lj) (3.59)

or

E(l, I) =
∑

i∈V



di(F (I, li)) +
n− 1

2t

∑

j∈Ni

dij(li, lj)



 . (3.60)

A low energy suggests that the shape fits both the image data and the shape
prior. The intensity term in Eq. 3.59 drives the shape to the correct image
features whereas the second term controls the shape.

Markov object energy

From Eq. 3.58 and Eq. 3.59 it follows that the shape l for a given image I
behaves as an MRF on V with respect to N . The Gibbs energy consists of
first order intensity potentials and second order shape potentials.
The probability of a landmark location li given the image I and also given the
locations of the neighbors lNi

is computed using Eq. 3.59 and Eq. 3.12

p(li|I, lNi
) = K(I, lNi

) exp



−1

2



di(F (I, li)) +
n− 1

t

∑

j∈Ni

dij(li, lj)









(3.61)
with K a constant with respect to li.
Hence, the conditional energy is a sum of the intensity energy of li and the
conditional shape energy of li given its neighbors lNi

(Eq. 3.39). This is
illustrated by Fig. 3.12 for the probability distribution of specific landmarks of
the hand shape (a). The intensity PDF p(fi) (b) with fi = F (I, li) expresses
where li is expected to lie as only intensity information is used, (c) shows where
li is expected if the location of the neighbors lNi

is known and (d) combines
the knowledge of I and lNi

to estimate li.
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p(fi) p(li|lNi
) p(li|lNi

, I)

(a) (b) (c) (d)

Figure 3.12: The probability of a landmark location li given the locations of
the neighbors lNi

and the image I for the hand shapes (a). The intensity
PDF p(fi) (b) with fi = F (I, li) expresses where li is expected to lie as only
intensity information is used, (c) shows where li is expected if the location of
the neighbors lNi

is known and (d) combines the knowledge of I and lNi
to

estimate li.

3.8 Conclusion

This chapter describes how prior information about local properties of an ob-
ject to be segmented is captured. Towards finding the most likely segmented
object in an unseen image, prior knowledge about the object geometry (shape
model) and about how the object appears in the image (intensity model) is
needed. Both models are learnt from examples.
The object to be segmented is represented as a graph that consists of a number
of landmark points defined on the shape and a number of connections between
neighboring landmarks points that express the shape correlations. Such an
approach allows to extract local statistical properties, both shape and appear-
ance related.
As the proposed shape model assumes that a landmark point only interacts
with its neighbors, the shape behaves as a Markov random field. Writing the
shape probability density as a Gibbs function allows to work with shape ener-



3.8 Conclusion 47

gies rather than probabilities. The shape energy is expressed as a sum of local
energies that only depend on couples of neighboring landmark points.
The appearance model assumes that the object controls the local image struc-
ture around each landmark individually. The local intensity patterns are con-
structed by extracting profiles from a number of feature images computed from
the original image. By estimating the statistical distributions of the gray-level
patterns and writing them as Gibbs functions, a global intensity energy can
be calculated. This global energy consists of landmark-individual appearance
energies and expresses the likelihood of the observed image patterns in the
neighborhood of the shape.
Both models are merged into one object model. A corresponding object en-
ergy is defined that consists of first order intensity potentials and second order
shape potentials. The intensity potentials drive the shape towards the correct
image features whereas the shape potentials control the shape geometry.





Chapter 4

Model fitting

This chapter explains how the object model that was introduced in Chapter 3,
is used to find the location of that object in an unseen image. Thanks to the
statistical nature of the model, the model fitting could be formulated from a
probability point of view: given an image, and also given a model that describes
how the object looks like, find its most likely location. Prior to optimizing
the energy function, the segmentation task is first converted into a discrete
optimization problem (Section 4.1). A number of optimization algorithm are
given in Section 4.2 and some important implementation issues are reported
in Section 4.3.

4.1 Objective function

4.1.1 Continuous optimization problem

The segmentation task is considered as a maximum a posteriori problem
(MAP):

l∗ = arg max
l

p(l|I) (4.1)

The optimization problem 4.1 is equivalent to minimizing the object energy
(Eq. 3.59):

l∗ = arg min
l

E(l, I) (4.2)

with

E(l, I) =
∑

i∈V

di(F (I, li)) +
n− 1

2t

∑

i∈V

∑

j∈Ni

dij(li, lj) (4.3)

The difference in problem formulation between this approach and the ASM
methods (Section 2.4.1) is that the energy to be optimized incorporates both
shape and image information. The ASM search method implicitly optimizes
an energy that only contains intensity information. Shape knowledge is used
to constrain the solution l to lie within a set of plausible shapes:

l∗ = arg min
l=µl+Φb

Ef (I, l) (4.4)
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Table 4.1: Methodological properties of ASM and MISCG.

Property ASM MISCG

Cost function intensity intensity and shape

Optimization constrained by shape unconstrained

Shape model global local

Another major difference is the nature of the shape model. The proposed
method uses multiple localized shape models whereas ASM applies one global
shape model. A set of localized shape models is weaker than one global model
in the sense that it enables unrealistic shapes, but it is more flexible and thus
enables an accurate fit to the image. These properties are summarized in
Table 4.1. The proposed method will in this text be referred to as the MISCG
method. The acronym stands for Minimal Intensity and Shape Cost Graph.

4.1.2 Discrete optimization problem

As the objective function 4.3 is non-convex and has a large number of inde-
pendent variables, conventional optimization techniques will steer the shape
into meaningless local optima. To cope with this, prior to optimization, the
problem is converted into a discrete optimization problem. The search space
is discretized by searching a number of appropriate candidate locations for
each landmark li. To accomplish this, the image (or a relevant part of it) is
scanned with the intensity energy function di(F (I, li)) (Eq. 3.54) as illustrated
in Fig 4.1. For each landmark, the m lowest-energy-locations are selected re-
sulting in the candidate set

C = {{lik, fik}mk=1}ni=1 (4.5)

At this point, the segmentation task is converted into a labeling problem x
that selects one candidate for each landmark:

x : V = {1, . . . , n} → X = {











1

0
...

0






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

,











0

1
...

0
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





, . . . ,











0

0
...

1











} (4.6)

A solution x = {x1, . . . ,xi, . . . ,xn} with xi ∈ X is called a labeling and the so-
lution space is noted as X

n. According to the labeling, the landmark locations
and intensity features can be written as

li =
m
∑

a=1

xialia (4.7)

fi =

m
∑

a=1

xiafia (4.8)
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continuous discrete

random field l x

probability p(l|I) P (x|C)
energy E(l, I) E(x, C)

optimization l∗ = argminl E(l, I) x∗ = arg minx E(x, C)

Table 4.2: By discretizing the search space of the shape l, the segmentation
problem becomes a labeling problem x.

with xij the j-th element of xi. By the defined discretization (Table 4.2), the
segmentation task is converted into the discrete optimization problem

x∗ = argmin
x

E(x, C) (4.9)

with

E(x, C) =
∑

i∈V

m
∑

a=1

xia



di(fia) +
n− 1

2t

∑

j∈Ni

m
∑

b=1

xjbdij(lia, ljb)



 (4.10)

As the landmark locations li and features fi can be expressed in terms of the
candidates C and the labels x (Eq. 4.7-4.8), the energies di(fi) and dij(li, lj)
can also be noted as functions of x and C. With this notation, the energy
function becomes

E(x, C) =
∑

i∈V

di(xi, Ci) +
n− 1

t

∑

{i,j}∈E

dij(xi,xj , Ci, Cj) (4.11)

The total energy consists of first order (intensity) energies di(xi) assigned to
the nodes in the graph, and second order (shape) energies dij(xi,xj) assigned
to the edges. Both expressions (Eq. 4.10 and Eq. 4.11) will be used in the
following section.

4.2 Optimization techniques

Three discrete optimization algorithms are proposed to find a candidate for
each landmark that properly fits to the image data and leads to a plausible
shape configuration (Eq. 4.10 and Eq. 4.11).

4.2.1 Dynamic programming

The term dynamic programming (DP) was first used by Richard Bellman [10]
to describe the process of solving problems where one needs to find the best
decisions one after the other. DP algorithms are only applicable for prob-
lems that have the optimal substructure property. This means that optimal
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(a) (b) (c)

Figure 4.1: The search problem is converted into a discrete optimization prob-
lem by discretizing the search space. The intensity energy function di(F (I, li))
is used to detect a number of candidate locations for each landmark individ-
ually. The landmarks of interest are indicated in (a) and the corresponding
probabilities are shown in (b). The best 200 candidates of a search grid that
covers the complete image area are selected in (c).
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solutions of subproblems can be used to find the optimal solution of the over-
all problem. DP has been applied for many image processing tasks (e.g.
[20, 24, 25, 29, 73, 74]). Here a DP algorithms is described that finds the
minimal cost E∗ and corresponding labels x∗ of the energy function 4.11.
First, the DP optimization scheme is given in its most general form, such that
it can be applied to any graph configuration. Afterwards implementations for
a number of specific graph configurations will be given.

General formulation

To benefit from the optimal substructure property, the graph is reduced land-
mark by landmark. The original graph consisting of n landmarks, is reduced to
one with n− 1 landmarks by eliminating one vertex and all the corresponding
edges. If we can find the solution for the reduced graph, the optimal labeling
of the complete graph can be computed easily. Without loss of generality, it
is assumed that the graph is eliminated using the order 1, 2, ..., n.
This is mathematically formulated as follows. First, the minimal energy E∗ is
expressed as a function of the (unknown) optimal labeling x∗:

E∗ = E(x∗
1,x

∗
2, . . . ,x

∗
n) (4.12)

To eliminate the first vertex, the dependency on x∗
1 in Eq. 4.12 needs to be

removed. Therefore, Eq. 4.12 is reformulated as

E∗ = min
x1

E(x1,x
∗
2, . . . ,x

∗
n) (4.13)

= min
x1



d1(x1) +
n− 1

t

∑

j∈N1

d1j(x1,x
∗
j ) + E1(x

∗
2, . . . ,x

∗
n)



 (4.14)

= min
x1



d1(x1) +
n− 1

t

∑

j∈N1

d1j(x1,x
∗
j )



 + E1(x
∗
2, . . . ,x

∗
n) (4.15)

= Q1(x
∗
2, . . . ,x

∗
n) + E1(x

∗
2, . . . ,x

∗
n) (4.16)

Q1 is referred to as the elimination energy, as it is the sum of the energies of
the eliminated parts and E1 the energy of the remaining vertices and edges.
In the first elimination step, the elimination energy is only function of x∗

N1
:

Q1(x
∗
2, . . . ,x

∗
n) = qN1(x

∗
N1

) (4.17)

To compute qN1 for a specific x∗
N1

, the m possibilities for x1 need to be com-
pared. Once qN1 is calculated for every possible x∗

N1
and stored in a multi-

dimensional array, the dependency of E∗ on x∗
1 is removed (Eq. 4.16). At

this point, the energy E∗ equals the sum of the energies di of the remaining
vertices and the energies dij of the remaining edges plus a known energy term
qN1 that depends on the vertices in N1. During optimization, one also keeps
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track of the optimal label of the eliminated vertex:

x∗
1 = R1(x

∗
N1

) = arg min
x1



d1(x1) +
n− 1

t

∑

j∈N1

d1j(x1,x
∗
j )



 (4.18)

The procedure continues with the elimination of vertex 2. Similar as in
Eq. 4.13-4.16, one obtains:

E∗ = Q2(x
∗
3, . . . ,x

∗
n) + E2(x

∗
3, . . . ,x

∗
n) (4.19)

with Q2 the minimal energy to eliminate vertices 1 and 2:

Q2(x
∗
3,...,n) = min

x2



d2(x2) +
n− 1

t

∑

j∈N
′
2

d2j(x2,x
∗
j ) + Q1(x2,x

∗
3, . . . ,x

∗
n)





(4.20)
where N ′

2 contains the neighbors of vertex 2 except vertex 1. Obviously, two
different situations exist:

1. If Q1 does not depend on vertex 2 (if vertex 2 is not a neighbor of ver-
tex 1), then Q2 splits up in a sum of two functions: Q2 = qN1(x

∗
N1

) +
qN2(x

∗
N2

). The first one corresponds to the elimination of vertex 1 as
computed in the previous step. The second one corresponds to the elim-
ination of vertex 2 and needs to be computed for every possible x∗

N2
.

2. When at the other hand, vertex 2 is a neighbor, then Q2 = qA(x∗
A)

consists of only one subfunction that has a value for every possible x∗
A

with A = (N1 ∪ N2)/{1, 2}.

In general, after eliminating landmark i one has

E∗ = Qi(x
∗
i+1, . . . ,x

∗
n) + Ei(x

∗
i+1, . . . ,x

∗
n) (4.21)

and the elimination energy Qi until and including vertex i follows from the
update equation

Qi(x
∗
i+1,...,n) = min

xi



di(xi) +
n− 1

t

∑

j∈N
′
i

dij(xi,x
∗
j ) + Qi−1(xi,x

∗
i+1,...,n)





(4.22)
with N ′

i = {j ∈ Ni|j > i}. If Qi−1 can be written as a sum of subfunctions
that depend on limited sets of vertices, this also counts for Qi:

Qi(x
∗
i+1, . . . ,x

∗
n) =

∑

k

qAi,k
(x∗

Ai,k
) (4.23)

During optimization, one has to keep track of the subfunctions qAi,k
for all

possible values of x∗
Ai,k

. Also the corresponding optimal labels x∗
i are stored
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in multi-dimensional arrays Ri. The elimination process continues till only
one landmark is left:

E∗ = Qn−1(x
∗
n) + En−1(x

∗
n) (4.24)

The optimal label x∗
n and minimal energy E∗ are obtained from Eq. 4.20 by

comparing the m possibilities of x∗
n. Finally, a tracing back procedure using

the stored arrays Ri delivers the desired labels x∗
n−1,x

∗
n−2, . . . ,x

∗
1.

The DP procedure can be applied to any graph, but the computational com-
plexity highly depends on the configuration of the graph and the landmark
ordering. During optimization, in each elimination step, a cost qA(x∗

A) is
computed for every possible x∗

A. As the cost for a specific x∗
A is found as the

minimum of m possible values, the computational complexity of the elimina-
tion step is O(m|A|+1) with |A| the number of vertices in A. For the graph in
Fig. 4.2(a), the elimination costs only depend on one vertex and hence, opti-
mization runs in O(nm2). The examples shown in (b) and (c) have elimination
steps that run in respectively O(m3) and O(m4).
From a practical point of view, DP is only applicable if |A| is small enough. In
Sections 4.2.2 and 4.2.3 optimization methods will be proposed that optimize
in O(m2) irrespective of the complexity of the graph.

x1

x1

x1

x2

x2

x2

x3

x3

x3

x4

x4

x4

x5

x5

O(nm2) O(nm3) O(nm4)

Figure 4.2: Dynamic programming can be used to find the optimal position for
each landmark. The computational complexity depends on the configuration
of the graph.
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Example

Consider the example graph shown in Fig. 4.2(b). Applying Eq. 4.22 delivers
the following elimination scheme:

E∗ = E(x∗
1,x

∗
2,x

∗
3,x

∗
4,x

∗
5)

= E1(x
∗
2,x

∗
3,x

∗
4,x

∗
5) + q3,5(x

∗
3,x

∗
5)

= E2(x
∗
3,x

∗
4,x

∗
5) + q3,5(x

∗
3,x

∗
5) + q3,4(x

∗
3,x

∗
4)

= E3(x
∗
4,x

∗
5) + q4,5(x

∗
4,x

∗
5)

= E4(x
∗
5) + q5(x

∗
5)

with the subfunctions qAi,k
computed as:

q3,5(x
∗
3,x

∗
5) = min

x1

[

d1(x1) +
4

7
d1,3(x1,x

∗
3) +

4

7
d1,5(x1,x

∗
5)

]

,

q3,4(x
∗
3,x

∗
4) = min

x2

[

d2(x2) +
4

7
d2,3(x2,x

∗
3) +

4

7
d2,4(x2,x

∗
4)

]

,

q4,5(x
∗
4,x

∗
5) = min

x3

[

d3(x3) +
4

7
d3,4(x3,x

∗
4) +

4

7
d3,5(x3,x

∗
5)

+ q3,4(x3,x
∗
4) + q3,5(x3,x

∗
5)

]

,

q5(x
∗
5) = min

x4

[

d4(x4) +
4

7
d4,5(x4,x

∗
5) + q4,5(x4,x

∗
5)

]

.

Open contour

An open contour can be described as a graph G = (V , E) with

V = {1, . . . , n} (4.25)

E = {{i, i + 1}}n−1
i=1 (4.26)

The landmarks are labeled 1, 2, ..., n when running along the contour from
one end to the other end. The update equation (Eq. 4.22) becomes:

Qi(x
∗
i+1) = min

xi

[

di(xi) + di,i+1(xi,x
∗
i+1) + Qi−1(xi)

]

(4.27)

As the elimination cost only depends on one remaining landmark, the DP
algorithm (listed in Algorithm 4.4.1) has computational complexity O(nm2).

Closed contour

A closed contour is represented as the graph G = (V , E) with

V = {1, . . . , n} (4.28)

E = {{i, i + 1}}n−1
i=1 ∪ {1, n} (4.29)
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The landmarks are ordered from 1 to n when running along the contour and
the connection {1, n} closes the path. As two edges need to be removed in the
first elimination step, the elimination cost will always depend on two remaining
landmarks and consequently, the optimization (listed in Algorithm 4.4.2) runs
in O(nm3).
An alternative DP approach finds a solution for a closed contour in O(nm2)
but without the certainty that the global optimum is found. First, the cheapest
paths are searched from landmark 1 to all the possible choices for landmark n as
if it was an open contour by ignoring the connection {1, n}. This is obtained
by running algorithm 4.4.1 and tracing back the path for each possible xn.
This way, the cheapest paths for all possible choices for the last landmark are
found. Subsequently, each of these n paths are closed by adding the cost for the
remaining connection {1, n}. The path with the cheapest cost is then selected.
In this text, the algorithm will be referred to as dynamic programming closed
contour (DPCC) (dynamic programming closed contour).

Exact energy

The DP scheme was applied to the energy function 4.11 where third (and
higher) order potentials are approximated using only second order potential
functions. However, without going into details, the elimination principle is
also applicable to the exact energy function as well.

4.2.2 Mean field annealing

Mean field annealing (MFA) [7] is a well known optimization technique in the
world of Markov random fields. It searches for a minimal Gibbs energy, not
by minimizing the energy function directly, but by estimating the mean field
for a decreasing Gibbs temperature.

Labeling as an MRF

In Chapter 3 it was stated that the localization of an object l in a given image
I behaves as an MRF on G = (V , E). Analogous, the labeling x for a given set
of candidates C acts as an MRF with distribution

P (x) =
1

Zx
e−

1
T

E(x,C) (4.30)

with E(x, C) computed as in Eq. 4.10. To keep the notations simple, we
write P (x) instead of P (x|C). In the following formulas, the candidates C are
assumed to be given implicitly.
As the energy is a sum of local (intensity) energies that depend on one vertex
and local (shape) energies that are function of two neighboring vertices, the
random field x given C behaves as an MRF on G = (V , E).
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Markov distribution

The conditional MRF distributions can be computed by applying Eq. 3.12 on
the energy 4.10:

P (xi|xNi
) =

exp
(

− 1
T Vi(xi,xNi

)
)

∑

x
′
i
∈X

exp
(

− 1
T Vi(x

′

i,xNi
)
) (4.31)

with Vi the sum of the local energies that depend on xi:

Vi(xi,xNi
) =

m
∑

a=1

xiadi(fia) +
n− 1

t

m
∑

a=1

xia

∑

j∈Ni

m
∑

b=1

xjbdij(lia, ljb) (4.32)

Mean field

The mean of the random field x is

<x>=
∑

x∈Xn

xP (x) (4.33)

The field values xij can only take the binary values 0 and 1, whereas the mean
field values <xij > are real numbers in [0, 1]. The mean changes with T as
follows:

lim
T→0+

<x>T = x∗ (4.34)

Eq. 4.34 implies that instead of minimizing the energy E(x, C) directly to find
x∗, one could try to evaluate the mean field <x> at a very low temperature.
This is the basic idea behind mean field annealing.

Mean field equations

The exact mean field is computed as

<xi>=
∑

xi∈X

xiP (xi) (4.35)

but as it is in practice impossible to compute the marginal probabilities P (xi),
the following approximation [7] is used:

<xi>≈
∑

xi∈X

xiP (xi| <xNi
>) (4.36)

The rationale behind the mean field approximation is that the influence of xj

with j 6= i can be approximated by the influence of <xj>. Eq. 4.36 can now
be rewritten as

<xi>≈







1
...

0






P (xi1 = 1| <xNi

>) + . . . +







0
...

1






P (xim = 1| <xNi

>) (4.37)
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and thus

<xik>≈ P (xik = 1| <xNi
>) k = 1, . . . , m (4.38)

If the conditional probability in Eq. 4.38 is replaced using Eq. 4.31-4.32, a set
of nm nonlinear equations in nm unknowns <xik> is obtained:

βik =
exp (− 1

T [di(fik) + n−1
t

∑

j∈Ni

∑m
b=1 βjbdij(lik, ljb)])

∑m
a=1 exp [− 1

T di(fia) + n−1
t

∑

j∈Ni

∑m
b=1 βjbdij(lia, ljb)]

(4.39)

The unknowns βik are the estimates of the mean values <xik> and are com-
puted from Eq. 4.39 using iterative resubstitution. In an ideal situation, this
set of equations needs to be solved once with a sufficiently small tempera-
ture (see Eq. 4.34). However, the convergence domain of the resubstitution
algorithm is small for a low temperature. To cope with this, the algorithm is
solved several times starting at a sufficiently high T , and gradually decreasing
the temperature towards zero.
The MFA algorithm is listed in Algorithm 4.4.3. A set of auxiliary variables
αik is introduced to compute updates for β. During optimization, the means β

for which
∑m

k=1 βik = 1 vary from soft assignments at the higher temperatures
to hard assignments (all but one components will be zero) as the temperature
reaches zero.
As in each iteration, nm variables α and nm variables β need to calculated,
and because their calculation is linear with m, the computational complexity
of one iteration of the resubstitution algorithm is O(nm2). Unlike DP, the
MFA algorithm does not suffer from complex graph configurations.

4.2.3 Heuristic search method

In Section 4.2.1 DP was proposed for optimization. The major advantage of
this approach is that it finds a global optimum, but DP is practically only
applicable to graphs with limited complexity. Therefore, a third optimization
strategy is proposed that is based on DP and where the computation time
does not depend on the complexity of the graph.
The basic idea is to look at a set of (overlapping) subgraphs of G = (V , E) and
to optimize these subgraphs individually using DP. Open contours are chosen
as subgraphs to keep the computational complexity limited (O(nm2)). Prior
to optimization a set of contours (paths) are generated randomly, starting from
a specific edge (Fig. 4.3(a)) and iteratively adding concatenating edges till all
landmarks are captured (b) or as long as the path is not self-intersecting (c).
From every edge in E a random path is started resulting into a total of t sub-
graphs Gj = (Vj , Ej). This guarantees that every edge is taken into account
for optimization.
Once all the paths are generated, an iterative optimization procedure is started
as follows. Each subgraph Gj , j = 1, . . . , t is optimized globally using Algo-
rithm 4.4.1. The result yields votes for the selected landmark candidates.
After optimizing every random path, the least voted candidates are removed
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such that the overall number of candidates n
∑n

i=1 mi is reduced with a pre-
defined fraction fred. This procedure is repeated till only one candidate is left
for every landmark. This optimization scheme is described in Algorithm 4.4.4.
As this method iteratively uses DP, it will be referred to as iterative dynamic
programming (IDP).

(a) (b) (c)

Figure 4.3: A path is generated by randomly adding neighboring points start-
ing from a specific edge (a) till all points are used (b) or till the path becomes
selfintersecting (c).

4.3 Implementation issues

Some practical considerations concerning the implementation of the model
fitting are discussed here. Section 4.3.1 describes how the discretization is
practically done and manages to keep the number of candidates m as small as
possible. This is important as for all the proposed optimization algorithms,
the computation time increases drastically with m. A second issue, handled
in Section 4.3.2, deals with the computation of the intensity energy.

4.3.1 Search regions

As mentioned in Section 4.1.2 the search space is discretized by evaluating
the intensity energies di(fi), i ∈ V at a number of locations in the image
and selecting the m lowest-energy-candidates for each landmark. This number
should be taken large enough to ensure that appropriate locations are captured.
When the whole image is scanned for candidates, a larger m is required than
when only a relevant part of the image is explored. This is illustrated in
Fig. 4.1 and Fig. 4.4. When searching for landmarks of the left lung shape,
also candidate locations located at the right lung field will be selected when
the whole image is scanned, because similar gray-level patterns can be found
there (Fig. 4.1).
To keep the required number of candidate locations as small as possible, the
following discretization approach is used. For each landmark, a search region
is defined that samples points in that part of the image where the landmark is
expected to lie. Points are sampled on a grid with a fixed distance δ between
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neighboring points in each direction (x,y and also z for 3D images). The size
and the location of these landmark-individual regions of interest (ROI) can be
learnt from examples as follows (Fig. 4.4). The ROI is centered around the
a priori expected location µli = (µxi

, µyi
, µzi

) of landmark li and its extent
is defined such that each point in the grid ls = (xs, ys, zs) deviates at most a
fixed number of standard deviations (typically a = 3) from the mean:

µxi
− aσxi

≤ xs ≤ µxi
+ aσxi

(4.40)

µyi
− aσyi

≤ ys ≤ µyi
+ aσyi

(4.41)

µzi
− aσzi

≤ zs ≤ µzi
+ aσzi

(4.42)

A second technique to keep the required number of candidates limited, is to
apply a multi-resolution search strategy. A first stage starts with sufficiently
large search regions centered at the mean positions and sampled with a large
grid spacing δ. In later stages, more accurate samplings (smaller δ’s) are used
in smaller search regions positioned around the computed locations as found
in the previous stages.

(a) (b) (c) (d)

Figure 4.4: Candidate locations for the landmarks shown in Fig. 3.11(a) are
searched by evaluating the intensity energies at points of a search grid that
overlays that part of the image where the landmark is expected as learnt from
the training set. This way only a limited number of candidates m is needed
to capture the appropriate locations.

4.3.2 Energy balance

If the intensity model p(I|l) is implemented as described in Section 3.6.2, a
bias towards intensity information is made in the energy function (Eq. 4.10
and Eq. 4.11) due to an overestimation of the intensity energy as illustrated
in Fig. 3.11.
The parameter ρ was introduced to bring the intensity energy in a statistically
meaningful range. Two approaches are described here to find an appropriate
value for ρ.

Using a validation measure

One technique is to segment unseen images for several ρ-values and select the
value that leads to the smallest difference between automated outcomes and
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ground-truth shapes. It is important to run the segmentation algorithm on
unseen images and not on the training images. A first possibility is to apply
the algorithm on a second set of images (validation set), for which the ground-
truth shapes are known. A second possibility does not need a validation set
but uses a leave-one-out strategy on the training images. A model is built
from all training images except one and the model is subsequently applied for
segmentation on the image that was left out. Doing this for all training images
and for several ρ-values enables to find an appropriate value.

Using the energy balance

A second approach considers ρ as part of the statistical model, rather than as a
parameter to be tuned. Assume that an image would be segmented with ρ = 1
(overestimated intensity energy), the shape energy of a solution that deviates
significantly from the shape model would only have a minor contribution in the
global object energy. As a result, the optimization algorithm would probably
find a shape that has a low intensity energy but not necessarily has a low shape
energy.
The statistical distributions p(l) and p(I|l) enable to compute an expected
shape energy <El> and an expected intensity energy <Ef >. These energy
values are the mean energy values of the training shapes and can be computed
directly from the model parameters:

<El> =
n− 1

t

∑

{i,j}∈E

<dij(eij)> (4.43)

<Ef> =
n
∑

i=1

<di(fi)> (4.44)

It can be shown that the expected value of the Mahalanobis distance between
a random vector and its distribution is equal to the rank of the covariance
matrix of that distribution (Appendix B). Consequently,

<El> =
n− 1

t
tnd = (n− 1)nd (4.45)

<Ef> =
1

ρ

n
∑

i=1

nI
∑

j=1

rank(Σ
f
[j]
i

) (4.46)

with nd the number of dimensions of the edge vectors eij . Hence, nd = 2 and
nd = 3 for respectively 2D and 3D images.
A shape l∗ segmented with a too low value for ρ will on average result in
shape energies much higher than <El > and intensity energies much lower
than <Ef>. A too large ρ would do the opposite. Too much attention would
be given to the shape energy. Hence, a shape would be found that lies close
to the mean shape, but not properly fits to the image data.
This suggests the following statistical criterion: a proper ρ will result in opti-
mal shapes l∗ that on average bring the shape and intensity energies into the
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correct balance:
<El∗>

<El>
≈ <Ef∗>

<Ef>
(4.47)

with <El∗ > and <Ef∗ > the expected shape and intensity energy of an op-
timized shape l∗. These energy values depend on the value for ρ and are
computed by segmenting each training image (using leave-one-out) and com-
puting the corresponding energies El(l

∗) and Ef (I, l
∗) (Eq. 3.38 and 3.54).

If the left hand side of Eq. 4.47 is larger than the right hand side, ρ should be
increased and vice versa. This procedure is repeated until the balance 4.47 is
in equilibrium.

4.4 Conclusion

Statistical knowledge about the shape of an object and how this object appears
in an image, is used to formulate the segmentation task: find the most likely
shape of that object in a given image. The energy function that corresponds
to this posterior distribution has to be minimized with respect to the unknown
shape. As this objective function has many local optima and a huge amount
of degrees of freedom, it is difficult to optimize in the continuous domain with
conventional techniques.
To find a solution of the proposed objective function, prior to optimization,
the search space is discretized by selecting a number of candidate locations for
each landmark individually. The resulting combinatorial optimization problem
behaves as an MRF and can be solved using several techniques. A first tech-
nique uses dynamic programming to find the global optimum. Unfortunately,
the computation time of DP becomes easily unacceptable for graphs with com-
plex configurations. Therefore, two alternative techniques are proposed. Mean
field annealing, known in the world of MRFs, tries to minimize the energy of
the MRF by estimating the mean field for decreasing Gibbs temperatures.
A second alternative technique approaches the problem by iteratively solving
minimal cost paths and removing the worst candidates.
As the computational complexity of the presented optimization techniques in-
creases fiercely with the number of candidates selected for each landmark, a
search method is proposed that uses landmark-individual search regions and
a multi-resolution strategy to keep this number as small as possible.
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Algorithm 4.4.1: DP open contour

1. Eliminate graph

Q0 = 0

for i← 1 to n− 1

do







for each xi+1 ∈ X

do

{

Qi(xi+1) = minxi
[di(xi) + di,i+1(xi,xi+1) + Qi−1(xi)]

Ri(xi+1) = argminxi
[di(xi) + di,i+1(xi,xi+1) + Qi−1(xi)]

2. Trace back

x∗
n = arg minxn

[dn(xn) + Qn−1(xn)]

for i← n− 1 to 1

do x∗
i = Ri(x

∗
i+1)

Algorithm 4.4.2: DP closed contour

1. Eliminate graph

for each (x2,xn) ∈ X
2

do

{

Q1(x2,xn) = minx1

[

d1(x1) + n−1
n (d12(x1,x2) + d1n(x1,xn))

]

R1(x2,xn) = argminx1

[

d1(x1) + n−1
n (d12(x1,x2) + d1n(x1,xn))

]

for i← 2 to n− 2

do



























for each (xi+1,xn) ∈ X
2

do















Qi(xi+1,xn) = minxi
[di(xi)+

n−1
n di,i+1(xi,xi+1) + Qi−1(xi,xn)]

Ri(xi+1,xn) = argminxi
[di(xi)+

n−1
n di,i+1(xi,xi+1) + Qi−1(xi,xn)]

for each xn−1 ∈ X

do















Qn−1(xn) = minxn−1[dn−1(xn−1)+
n−1

n dn−1,n(xn−1,xn) + Qn−2(xn−1,xn)]

Rn−1(xn) = argminxn−1[dn−1(xn−1)+
n−1

n dn−1,n(xn−1,xn) + Qn−2(xn−1,xn)]

2. Trace back

x∗
n = arg minxn

[dn(xn) + Qn−1(xn)]

x∗
n−1 = Rn−1(x

∗
n)

for i← n− 2 to 1

do x∗
i = Ri(x

∗
i+1,x

∗
n)
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Algorithm 4.4.3: MFA for optimal labeling

input:

C = {{lik, fik}mk=1}ni=1 : candidates

Tstart : start temperature

Tend : end temperature

nT : number of annealing temperatures

annealing scheme:

h = (Tend/Tstart)
1/(n−1)

T = Tstart

initialize β : βik = 1/m i ∈ V , k ∈ {1, . . . , m}
for iT ← 1 to nT

do







while β not stable

do update β

T = hT

x∗ = β

update β :

for i← 1 to n

do

{

for k ← 1 to m

do αik = exp(− 1
T [di(fik) + n−1

t

∑

j∈Ni

∑m
b=1 βjbdij(lik, ljb)])

for i← 1 to n

do

{

for k ← 1 to m

do βik = αik
∑

m
a=1 αia
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Algorithm 4.4.4: Heuristic search method

input:

C = {{lik, fik}mk=1}ni=1 : candidates

fred : candidate reduction

generate a number of random paths:

for each {i, j} ∈ E
do generate a path Gj = (Vj , Ej) starting from edge {i, j}

initial number of candidates:

mi = m, ∀i ∈ V

iteratively optimize and prune:

while
∑n

i=1 mi > n

do































































initialize votes:

vi = 0 ∈ R
mi , ∀i ∈ V

optimize paths:

for j ← 1 to t

do

{

x∗
Vj

= DP(Gj)

vi ← vi + x∗
i , ∀i ∈ V

vi ← vi/
∑mi

a=1 via

remove least voted candidates:
∑n

i=1 mi ← (1 − fred)
∑n

i=1 mi



Chapter 5

Validation

Together with the model building (Chapter 3) and model fitting (Chapter 4),
a number of choices arises. During model construction, a shape representation
with landmarks and edges needs to be chosen. Also the construction of the
intensity model and the model fitting need decisions to be made and some
parameter values to be specified.
This chapter elucidates these choices by making an in-depth validation on lung
field segmentation from chest radiographs [8, 11, 36, 38–41, 74]. Each part of
the algorithm is analyzed carefully to find appropriate parameter values and
to defend the methodological choices. Although these decisions depend on the
application, a lot of insight transferrable to other anatomical objects can be
gained. The following items are dealt with:

• Model construction

– Where to define the landmarks and the edges? (Section 5.2).

– How to determine the parameters of the intensity descriptor (LOIs
and profile configuration)? (Section 5.5)

– How to determine a proper ρ-value? (Section 5.4)

– How many training images are needed? (Section 5.6)

• Model fitting

– What about the discretization? How is the search grid built? How
many candidates have to be selected? (Section 5.5)

– What is the influence of the chosen optimization algorithm? (Sec-
tion 5.3)

– What is the effect of using local models instead of one global de-
scription of the shape? (Section 5.6)

67



68 Validation

5.1 Lung field data

Two data sets of standard posterior-anterior chest radiographs containing both
normal and abnormal cases (Fig. 5.1) were used in this experiment. The first
set consists of 50 images and was employed to train and tune the model. The
second set contains 44 images and served as a validation set. The width of all
images is 256 pixels. The left and right lung field were manually delineated by
a trained radiologist in each image of both sets. The manual delineated curves
consisted of an arbitrary number of points.

(a) (b) (c) (d)

Figure 5.1: The chest radiograph database contains normal (a,b) and abnormal
(c,d) cases.

5.2 Object representation

A training set is only complete if landmarks are defined on all shape instances
and when the edges E are established.

Landmarks

Anatomical objects typically have a clearly visible boundary which pleads
for points at the object boundary. As the inside of anatomical structures
often contains valuable information it might be useful to define additional
internal landmarks. However, in this experiment only border-landmarks are
considered. Firstly, three easily identifiable landmark points were marked at
each lung shape (as indicated in Fig. 5.1). Additional intermediate landmarks
were subsequently defined by equidistantly sampling along the contour. Two
different representations with either 14 and 40 landmark points were built this
way.

Edges

It is a logical choice to place edges between successive landmarks along the
contour only. This approach assumes that a point only directly interacts with
its first neighbors on the contour:

p(li|lV/{i}) = p(li|li−1, li+1) (5.1)



5.2 Object representation 69

(a) (b)

Figure 5.2: Two graph configurations to represent the lung fields. The first
one (a) assumes only direct interaction between successive landmarks along
the contour. The second graph (b) takes extra dependencies into account that
cross the object from one side to the opposite side.

with li−1, li and li+1 three successive points. However, it sounds reasonable
that a landmark also interacts with more landmarks than only its first neigh-
bors. Hence, one can wonder whether the assumption (Eq. 5.1) leads to a
loss in segmentation performance. This was investigated with the following
experiment.
Consider the two configurations shown in Fig. 5.2. The first one (a) assumes
only direct interaction between successive landmarks whereas the second graph
(b) takes extra dependencies into account that cross the object from one side
to the other side. The experiment intends to find out whether the first repre-
sentation is acceptable and well suited for segmentation. So as to answer this
question, a model was built for each graph and applied for segmentation.
In the objective function to be minimized (Eq. 4.10 or Eq. 4.11), the shape
potentials that depend on more than two landmarks were approximated as
combinations of second order potentials (Section 3.5.3). Consequently, in this
experiment the energy of the first configuration is exact, but the energy of the
second one is only an approximation. To eliminate the influence of the ap-
proximation, this experiment was carried out with exact shape energies (Ap-
pendix A) instead and DP was used for optimization.
Models for the two shape configurations were built with the 50 training images
using the settings listed in Table 5.1. A small number of pilot experiments was
carried out to find an appropriate set of parameter values. The intensity model
was constructed using spherical profiles with a radius rf = 8 pixels and nf = 4
samples. A total of nI = 60 feature images were generated with the same
LOI parameters as in [8]: the two moments (M = 1, 2), a filter bank of all
derivatives up to second-order (L, Lx, Ly, Lxx, Lyy, Lxy) and five inner scales
(σ = 0.5, 1, 2, 4, 8 pixels) and corresponding outer scales α = 2σ. The param-
eter ρ to compensate for the overestimated intensity energy was set to ρ = 15.
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An elaborate search for an appropriate ρ-value is described in Section 5.4.
The following settings were used to fit the model. For each landmark a rect-
angular search region was centered at the mean landmark location as deduced
from the training shapes. The extent of the grid was taken such that the x-
and y-coordinates did not deviate more than a = 3 times the standard devia-
tion from the mean of x and y respectively. The distance between neighboring
search points was set to δ = 4 pixels. In each search region, m = 50 candidate
locations were selected for discretization.
The quality of an automated segmentation l∗ with respect to a ground-truth
segmentation lGT is computed as the averaged euclidian distance Λ between
corresponding landmark points:

Λ =
1

n

n
∑

i=1

‖l*i − lGT
i ‖ (5.2)

A second validation measure computes the overlap between the manual and
automated delineations:

Ω =
ATP

ATP + AFP + AFN
(5.3)

where ATP stands for true positive (area correctly classified as lung), AFP for
false positive (area incorrectly classified as lung), and FN for false negative
(area incorrectly classified as background). This overlap coefficient always lies
between 0 and 1.
The results of the model fitting on the validation images are summarized in
Table 5.2. The mean and standard deviation of the overlap coefficient and
distance error are given for both configurations. According to these results, it
can not be concluded that the incorporation of extra dependencies than only
the first neighbors along the contour, improves segmentation. A paired t-test
gave no significant difference.
Hence, the choice to define only edges between first neighbors along the border
seems acceptable. If however the objects would have random orientations, the
assumption (Eq. 5.1) would not make sense. Indeed, the assumption pretends
that when both li−1 as li are known, only li holds useful information for the
prediction of li+1. It is obvious that when objects are randomly oriented, the
location of li−1 can not be ignored for the prediction of li+1.

5.3 Optimization algorithm

In Chapter 4 three optimization techniques were proposed. In this section a
number of experiments is worked out as to gain insight in the performance
of these algorithms. Dynamic programming always finds a globally optimal
solution whereas MFA and IDP do not guarantee a global optimum. One
could wonder whether these alternative algorithms in practice really end up
in another optimum. And if they do, has this effect on the segmentation per-
formance?
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Symbol Description Value

Model construction

n number of landmarks 2× 14 (left and right)

t number of edges 2× 14 or 2× 25

nf profile length 4

rf profile radius 8 pixels

σ LOI inner scale 0.5, 1, 2, 4, 8 pixels

α LOI outer scale 2σ pixels

Li LOI derivatives L, Lx, Ly, Lxx, Lyy, Lxy

M LOI moments 1, 2

ρ overestimation intensity energy 15

Model fitting

δ spacing search grid 4 pixels

a search grid extent 3

m number of candidates 50

Table 5.1: Parameters for lung field segmentation.

Right lungfield Left lungfield

graph 1 graph 2 graph 1 graph 2

Ω (%) 92.4± 2.4 92.3± 2.5 89.5± 6.8 89.2± 6.9

Λ (pixels) 8.4± 3.3 8.3± 3.2 10.3± 6.7 9.8± 6.9

Table 5.2: The mean and standard deviation of the overlap Ω (in %) and
distance error (in pixels) are given for the two configurations of Fig. 5.2. Ac-
cording to these results, it can not be concluded that the incorporation of
extra dependencies than only the first neighbors along the contour, improves
segmentation.

Experiments

The three algorithms were applied for different graph configurations. As the
DP algorithm easily gets computationally too involved, configurations with a
limited complexity (maximally O(nm3) with small n and limited m) were cho-
sen. As a result, DP could be applied for all configurations and consequently,
the ability of MFA and IDP to end up in the global optimum could be verified.
The experiment was done on the three configurations shown in Fig. 5.3. The
first and second one represent the lung fields as respectively open and closed
contours. The third one is a triangulated graph that incorporates extra edges
similar as in Section 5.2.
Models were constructed for each shape configuration using the settings of Ta-
ble 5.1. The three models were fitted to the validation images using dynamic
programming (DP), mean field annealing (MFA) and iterative DP (IDP). In
Section 4.2.1, an alternative DP algorithm to optimize closed contours was
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proposed that runs in O(nm2) instead of O(nm3) but doesn’t guarantee a
global optimum (DPCC). The performance of this algorithm on the closed
contour representation will be reported also. The required parameters for the
model fitting are given in Table 5.3. A small number of experiments was car-
ried out to find appropriate values for both MFA and IDP. A proper range
of annealing temperatures was established as follows. During annealing, the
mean field β evolves with a changing Gibbs temperature T . It seemed that
when the start temperature was set too high, β did not advance at all during
the first iterations. Also when the temperature becomes too small, the mean
field reaches a steady state. A proper range seemed T ∈ [10−3, 106].

Figure 5.3: Three different graph configurations are tested. The first and
second one, represent the lung fields as respectively open and closed contours.
The third one is a triangulated graph that incorporates connections that do
not coincide with the lung boundaries.

Symbol Description Value

Optimization

Tstart MFA start temperature 106

Tend MFA end temperature 10−3

nT MFA number of annealing temperatures 100

fred IDP candidate reduction fraction 0.05

Table 5.3: Parameters for lung field segmentation.

Results

The optimal energies found with DP, IDP, MFA and DPCC averaged over the
44 validation images are listed in Table 5.4. The difference between on one
hand the optimal energies found with MFA, IDP and DPCC and on the other
hand the global minimal energy (found with DP) is shown in Fig. 5.4 for (a)
open contour, (b) closed contour and (c) triangulation. The plotted values ǫ
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are relative energy differences:

ǫ =
E(x) − E(x∗)

E(x∗)
(5.4)

where x is the solution found with MFA or IDP. DP finds the global mini-
mum for the three configurations, IDP also finds the minimum of the energy
function for the open contour. For the closed contour, MFA, IDP and DPCC
found the global optimum for respectively 23, 27, and 22 out of 44 images.
However, if we take a look at Fig. 5.4(b) it seems that the DP based methods
score significantly better than MFA.
The opposite is observed for the triangulation. MFA found for 24 images the
global solution and always ended up in a lower energy as compared to IDP
(Fig. 5.4(c)). This experiment suggests that MFA optimizes more easily as
landmarks have more neighbors. This is illustrated with the example seg-
mentation shown in Fig. 5.5. The left lung field does not get into the global
optimum if it is represented as a contour, but it correctly converges to the true
optimum for the triangulated graph.

DP MFA IDP DPCC

Left lungfield

open 181.1± 39.3 183.9± 40.8 181.1± 39.3

closed 181.2± 39.1 183.8± 40.5 181.2± 39.1 181.6± 39.4

tri 182.9± 37.5 183.8± 38.4 187.6± 41.0

Right lungfield

open 194.3± 37.8 194.5± 37.9 194.3± 37.8

closed 194.9± 37.6 195.1± 37.8 194.9± 37.6 195.1± 37.6

tri 195.1± 39.0 195.1± 39.0 202.1± 44.4

Table 5.4: The optimal energy of the left and right lung fields found with DP,
IDP, MFA and DPCC averaged over the 44 validation images. DP guarantees
the global optimum, but this is not true for MFA, IDP and DPCC. For the
contours, the DP based methods do better than MFA. The opposite is noticed
for the triangulated graph.

A whisker plot of the distance errors for each segmentation scheme (three
algorithms and three configurations) is depicted in Fig. 5.6. The boxes indicate
the value of the median and the lower and upper quartiles. The vertical line
shows the extent of the errors and outlier errors are indicated as red crosses.
A paired t-test gave no significant differences (p < 0.05) among the three dif-
ferent algorithms and also between the different graph configurations.
In Fig. 5.7 the automated delineations using DP, MFA and IDP on four val-
idation images are shown. The images were selected by first ranking them
according to the optimal energy (using DP), and taking the lowest and high-
est energies (#1 and #44) and two intermediate cases (#15 and #29). A
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ǫ ǫ

open contour closed contour

ǫ

triangulation

Figure 5.4: The relative deviation ǫ of the energies found with the approxi-
mating methods from the globally minimal energy. These plots show that the
IDP and DPCC are better suited for contour segmentation, whereas for the
triangulated graph, MFA finds segmentations with lower energies than IDP.

segmentation that results in a high energy often corresponds to a pathological
case or a wrong segmentation. The third patient has an unusually large heart
and for the highest energy case, the left lung is highly pathologic. One land-
mark of the right lung in the same example has been located wrongly. This
fault was due to the large radius used for the intensity profiles. If the profile
is positioned at the correct location, the circle gets out of the image range.
Using a more accurate model (with smaller profiles) avoided this problem.

5.4 Energy balance

In Section 4.3.2 two techniques were described to find a ρ-value that brings
the intensity energy to the right scale. First, the validity of the energy balance
criterion will be verified. Subsequently, an appropriate value will be searched
using both techniques.
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open contour closed contour triangulation

DP

E = 296.7 E = 297.9 E = 295.3

MFA

E = 350.5 E = 349.1 E = 295.3

Figure 5.5: Segmentation of an example image with DP and MFA for the three
configurations. MFA does not find the global optimum for the left lung field if
it is represented as a contour, but it correctly converges to the true optimum
for the triangulated graph.

Experiment 1

A first experiment was set up to test the validity of the proposed energy bal-
ance (Eq. 4.47). The same graph configurations as in the previous experiment
(Section 5.3) were used. As they all consist of the same 14 landmark points,
the same ρ value should be found for each of the three representations.
The criterion was verified as follows. An intensity model was constructed with
the same parameters as the previous experiment (Table 5.1) except that only
one single LOI is used: one zero-order derivative with σ = 1, α = 2, and only
the first statistical moment. It is trivial that for this model the assumption of
Eq. 3.52 is valid and consequently it should hold that ρ = 1. This theoretical
value will be compared with the experimental value that follows from the en-
ergy balance criterion described in Section 4.3.2.
The following iterative procedure was followed to bring the balance into equi-
librium. A particular ρ is updated according to

Kρ =
<El∗> / <El>

<Ef∗> / <Ef>
=

<El∗><Ef>

<Ef∗><El>
≈ 1 (5.5)

The expected shape and intensity energies (Eq. 4.45 and 4.46) are

<El> = 2(n− 1) = 26 (5.6)



76 Validation

DP IDPMFA

Λ

DP IDP DPCCMFA

Λ

open contour closed contour

DP MFA IDP

Λ

triangulation

Figure 5.6: Whisker plot of the distance error Λ (pixels) obtained with DP,
MFA and IDP for three graph configurations. The boxes indicate the value
of the median and the lower and upper quartiles. The vertical line shows
the extent of the errors. The crosses indicate outlier errors. No significant
differences in segmentation accuracy among the three different optimization
algorithms can be observed.

<Ef> =
1

ρ

n
∑

i=1

rank(Σ
f
[1]
i

) =
n(nf − 1)

ρ
=

42

ρ
(5.7)

The rank of the covariance is nf − 1 because of the profile normalization: the
values in the profile are rescaled such that the sum of absolute values equals
one. As a result, the profiles have only three degrees of freedom instead of
four.
The mean segmentation energies <El∗ > and <Ef∗ > depend on ρ and are
obtained by running the segmentation algorithm on the training images using
leave-one-out and evaluating the energy functions Eq. 3.38 and Eq. 3.54.
A leave-one-out experiment on the training images that delivers a Kρ consid-
erably higher than 1 means that the energy function gives too much weight to
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GT DP MFA IDP

#1

E = 611.0 E = 283.7 E = 283.7 E = 288.7

#15

E = 533.4 E = 341.7 E = 341.8 E = 344.0

#29

E = 648.3 E = 390.6 E = 391.2 E = 434.7

#44

E = 1258.3 E = 561.8 E = 567.0 E = 572.9

Figure 5.7: Automated delineation using DP, MFA and IDP of images 1, 15, 29
and 44 ranked from low to high energy. The high energies of the third and last
image can be attributed to pathologies. The heart in image #29 is unusually
large and for the last segmentation, the left lung is highly pathologic. The
reported energies are the total object energies (Eq. 4.3) of left and right lung
fields together. For comparison, the expected energy for both lungs together
is <E>= 388.

the intensity energy and hence, ρ should be increased:

ρ← ρ + ∆ρ (5.8)

with ∆ρ > 0 a predefined step. If at the other hand Kρ < 1, ρ should
be decreased instead. If the direction of the step is changed between two
iterations, ∆ρ is divided by two. This procedure was started from ρ = 0.1 and
∆ρ = 5. The procedure can be initialized from any start point, but this value
was chosen such that ρ-values at both sides of the optimal value would be
tested. The procedure was interrupted if the difference between two successive
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ρ’s became smaller than 0.01.

Result 1

The values found for ρ are reported in Table 5.5. If m = 50 candidates were
selected for each landmark, the search ended up in ρ-values considerably higher
than the expected value ρ = 1. This is explained by the fact that the model
implicitly assumes that the correct solution is included in the candidate set.
For this model, only one feature image was used which made the intensity
descriptor less powerful and consequently a higher m was required to ensure
that for each landmark proper candidates are selected. Consequently, a shape
segmented with m = 50 has on average a shape energy that is higher than
normal because the optimization algorithm was not able to select candidates
that fit the shape model properly. As a result, the ρ-search algorithm brings
the balance into equilibrium by increasing ρ. The large differences between
between left and right lung for m = 50 (for example ρ = 6.62 versus ρ = 1.31)
can be explained by the fact that in general the right lung is much more easy
to segment. In other words: selecting only 50 landmarks is almost enough for
the right lung whether this is not true for the more difficult left lung.
It was found that with m = 200, for each landmark the correct landmark
locations were selected. Repeating the experiment with m = 200 yielded ρ-
values close to the theoretical value. Fig. 5.8 shows the value of Kρ as a
function of ρ for the open contour (blue), closed contour (red) and triangulation
(green) for both left (a) and right lung field (b).

m = 200 m = 50

left right left right

open 1.00 0.92 6.62 1.31

closed 1.15 1.00 8.38 1.47

tri 1.08 1.04 6.47 1.47

Table 5.5: The ρ-values that bring the energy balance into equilibrium for the
segmentation of left and right lung fields represented as contours and triangu-
lated graphs. If enough candidates are selected (m = 200), the experimentally
found values agree with the theoretical value ρ ≈ 1.

Experiment 2

In a second experiment, the energy balance criterion was applied to find the
unknown ρ for the model as specified in Table 5.1. As for this model nI = 60,
a larger ρ ∈ [1, 60] is expected. The algorithm was initialized with ρ = 1 and
∆ρ = 10.
A ρ-value found as such is the best choice from a statistical point of view, but
one can wonder whether it is the best choice with respect to segmentation per-
formance. To analyze this, the distance error (Eq. 5.2) and overlap coefficient
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Figure 5.8: Kρ as a function of ρ with m = 200. As expected the curves
approximately cross the point (1, 1).

ρ

Λ
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Ω

Figure 5.9: Average distance error Λ (pixels) and overlap Ω (%) using leave-
one-out on the training set as a function of ρ. The standard deviations are
indicated by the dotted lines.

(Eq. 5.3) were computed for several ρ-values.

Result 2

The obtained ρ-values were ρopen = 16, ρclosed = 17 and ρtri = 20 for the
left lung represented as respectively an open contour, a closed contour and a
triangulation. For the right lung the values were more consistent: ρopen = 15.1,
ρclosed = 15.8 and ρtri = 15.4.
Fig. 5.9 shows the average distance error Λ (a) and overlap Ω (b) as a function
of ρ. It seemed that using a validation criterion to determine ρ has some
drawbacks. First, the result might depend on the validation criterion used.
Secondly, the curve that shows the average error versus ρ has often meaningless
local peaks that make the search for an appropriate value badly conditioned.
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5.5 Intensity descriptor

Until now no attention was spent to the parameters of the intensity model.
However, several choices have to be made when implementing the descriptor
fi = F (I, li). The one presented in Section 3.6.2 needs a set of LOI parameters
and a profile configuration (rf and nf ).

5.5.1 LOI parameters

The idea behind the selection of LOI parameters is the following. If a large
set of LOIs is computed, probably only a limited set of them will significantly
contribute in the detection of landmark candidates, because some features are
not able to characterize a certain gray-level pattern. For example, if the image
pattern around a landmark point is characterized by an edge in the image
along the y-axis, the operator Lx will extract much more relevant information
than Ly would do. This suggests that for each individual landmark a set of
optimal features needs to be selected. For the ASMOF algorithm, van Gin-
neken et al. [8] used a sequential feature forward selection procedure to find
at most 10 LOIs for each landmark, followed by a sequential feature backward
selection to prune the set: features are removed if that improves the segmen-
tation performance. This way they could improve the performance of their
kNN classifier.
For the proposed image appearance model, in contrast with the ASMOF ap-
proach, no segmentation performance can be gained by reducing the LOI set to
only a limited set of relevant features. To understand this, consider again how
the intensity energy is computed (Eq. 3.53). The contribution of a particular
LOI in the total intensity energy is computed as the Mahalanobis distance
between the observed profile and the expected profile for that LOI.
Assume a specific LOI that doesn’t contain valuable information for a par-
ticular landmark. The profiles sampled from this LOI will not be consistent
and specific among the training examples and as a result the corresponding
PDF will not be sharp (specific). Consequently, every possible profile in a test
image will get a low energy value. Such an LOI will not be able to discriminate
between a proper and a wrong candidate location, but it also won’t interfere
with the energy obtained from other LOIs.
This is illustrated in Fig. 5.10 for a landmark (a) along the boundary of the
left lung. Two LOIs are considered here. The first one (b) is the first moment
of Lx (σ = 1, α = 2) and attenuates edges in the image that run along the
y-axis. The second one (c) is the Ly equivalent. The intensity energies of
Lx and Ly, computed along a horizontal line that crosses the true landmark
location, are shown in respectively Fig. 5.10(e) and Fig. 5.10(f). As expected,
the energy of Lx has a strong discriminative power compared to Ly. The total
energy is plotted in Fig. 5.10(d) and shows that the low energy values of Ly

do not weaken the positive effect of Lx.
As the selection of only the relevant features does not improve segmentation
accuracy and also because the selection of an optimal feature set for every
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landmark requires an exhaustive procedure, we prefer to use an extensive LOI
set for segmentation.

(a) (b) (c)

d
[j]
i

(d) (e) (f)

Figure 5.10: The intensity energies corresponding to two different LOIs are
computed along a horizontal line that crosses the true landmark location shown
in (a). The first LOI (b) is the first moment of Lx (σ = 1, α = 2) and
characterizes edges in the image that run along the y-axis. The second one (c)
is the Ly equivalent. Obviously, the energy of Lx (e) has a strong discriminative
power compared to Ly (f). The total energy is shown in (d) and proves that
the low energy values of Ly do not weaken the positive effect of Lx.

5.5.2 Profile length

The configuration of the spherical profile is determined by two parameters: nf

(profile length) and rf (profile radius). First, the influence of the number of
samples nf is investigated. Fig. 5.11 shows the tested configurations. For each
of them, an individual ρ had to be determined: the higher nf , the more infor-
mation is extracted from one LOI and the higher the statistical dependency
between different LOI profiles might be. This is confirmed by Table 5.6, that
shows ρ found with the energy criterion as a function of nf .
The segmentation quality of each configuration was tested by running the al-
gorithm on the 44 validation images and computing the overlap and distance
error (Fig. 5.12) between manual and automated outcomes. The smaller pro-
files are preferable as they have a lower computational complexity (Eq. 3.51)
and because they do not perform significantly worse than the larger profiles
do.
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nf = 3 nf = 4 nf = 6 nf = 8 nf = 10

Figure 5.11: Profile configurations with varying length to be compared for
lung field segmentation.

nf 3 4 6 8 10

ρ 11.4 15.3 21.9 26.9 30.6

Table 5.6: The more samples a profile contains, the higher the dependency
between different LOIs and thus the more the intensity energy is overestimated.

Figure 5.12: Distance error Λ (pixels) and overlap Ω for the 50 training images
using leave-one-out for several profiles configurations: nf = 3, 4, 6, 8, 10.

5.5.3 Profile radius

First, a small number of pilot experiments was carried out to find a range of
more or less appropriate values: rf ∈ [1, 20] pixels. Going outside this range
resulted in completely wrong solutions. The choice for a radius (in this range)
was important with respect to accuracy and robustness. Accuracy is related
to how close the automated solution comes to the ground-truth shape and
robustness refers to how likely the algorithm generates completely wrong seg-
mentations.
The relationship between profile radius, accuracy and robustness can be un-
derstood as follows. An intensity model built with a larger profile (large rf )
includes information about a larger part of the image around the landmark
whereas a smaller profile looks more locally at the image data. Consequently,
the smaller ones are able to find the landmark positions more accurately but
at the other hand, as they only consider a small neighborhood, they are more
likely to select completely wrong candidate locations (false positives). The
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larger ones, at the other hand, are more robust but less accurate. This is
illustrated with the following experiment.
First, the intensity energy di(I, l) (with a particular rf ) was computed for ev-
ery pixel in the image. Secondly, the image pixels were sorted according to
the energy from low to high. The quality of the intensity descriptor was mea-
sured by looking at the ranking of the true landmark location li. Repeating
this for every training image (after leaving it out of the model), and for every
landmark enabled to quantify the performance of a particular rf .
Again the same LOI parameters as listed in 5.1 were used. The profiles con-
sisted of nf = 4 points sampled on a circle with a size rf ranging from 1 to 20
pixels.
Fig. 5.13 shows the relative ranking (in %) averaged over all images and land-
marks. Obviously, the larger profiles seem to score significantly better (lower
ranking) than the small ones. Fig. 5.14 shows the intensity energy of a par-
ticular landmark computed at every pixel location for (a) rf = 4, (b) rf = 12
(c) and rf = 18 (d) pixels. Apparently, the smaller profiles select locations at
several regions in the image whereas the larger ones, mostly generate locations
in the neighborhood of the true location.
However, if the lung fields were segmented with the same rf -values, it seemed
that the smaller ones performed significantly better than the larger ones. This
was experienced after performing a leave-one-out experiment on the training
set with δ = 2 pixels, m = 100 and nf = 4 and the same LOIs as in the previous
experiments. Fig. 5.15 shows the overlap score for different radii and indicates
that despite the fact that the smaller profiles result in less robust candidate
selectors, their segmented shapes were both accurate and robust. The use of
landmark-individual search regions and the incorporated shape knowledge into
the energy function, avoid the algorithm to select wrong candidates. This is of
course only true if enough candidate locations were selected for each landmark.
Hence, the optimal segmentation scheme is one with a sufficiently small grid-
spacing (δ = 1 pixel), an accurate profile (for example rf = 4 pixels) and
a sufficiently high m. However, such a scheme is not very efficient from a
computational point of view. For the candidate selection step, the number of
evaluations of the intensity energy function di(F (I, l)) is proportional to 1/δ2

and the optimization step is proportional to m2 as the DPCC method was
applied here.
Instead of using only one accurate resolution level, the same accuracy but with
less computation time can be obtained using the multi-resolution strategy as
specified in Table 5.7. The algorithm is started with δ = 4 and rf = 8 pixels
and sufficiently large search regions. In the following resolution steps, smaller
search regions (width and height are divided by two) are centered around the
estimated locations from the previous step and are sampled with a smaller
spacing and more accurate profiles. This way, the number of evaluations of
the intensity energy and the number of selected locations m is reduced without
losing quality.
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rf

S

Figure 5.13: Comparison of different profile radii (pixels) for the detection of
landmark points. The scores S reported here are obtained as follows. First, the
intensity energy for a particular landmark is computed at every pixel location.
Secondly, the pixels are ranked according to their intensity energy. The values
shown hare are the relative ranking (in %) of the ground-truth location.

resolution δ (pixels) rf (pixels)

1 4 8

2 2 4

1 1 4

Table 5.7: Multi-resolution parameters for lung field segmentation.

5.6 Global versus local

In Chapters 1 and 2 the choice for local shape models was motivated. It was
claimed that their higher flexibility as compared to the global models enables a
better fit to unseen objects. So as to investigate this assumption, a comparison
between the proposed segmentation scheme and ASM segmentation is made
here.

Experiments

van Ginneken [8] et al. applied an ASM scheme for lung field segmentation
by using an augmented intensity model based on LOIs and a kNN classifier.
In this experiment, the proposed method is compared to this algorithm (AS-
MOF) and to a third ASM scheme that was obtained by embedding the same
intensity model as the MISCG method into the conventional ASM scheme.
One change was made to this model: the circular profiles were replaced by
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rf = 4 rf = 12 rf = 18

Figure 5.14: Intensity energy of a particular landmark computed at every pixel
location for (a) rf = 4, (b) rf = 12 (c) and rf = 18 (d) pixels. Obviously, the
smaller profiles would select locations at several regions of the image whereas
the largest one only has low energy pixels in the neighborhood of the true
location.

linear profiles perpendicular to the contour with k points at either side of the
landmark as in [55]. During search, landmark points are updated by evaluat-
ing the intensity cost at 2ns +1 locations and selecting the candidate with the
lowest intensity cost. This algorithm will be denoted with ASM∗. Both ASM
methods were initialized with the mean shape.
For MISCG, the settings as obtained from the previous experiments were used.
Both the left and right lung fields were represented as closed contours, consist-
ing of n = 14 and n = 40 landmarks. The intensity models were built with the
conventional LOI parameters, spherical profiles with nf = 4. Three resolution
levels for segmentation were carried out as specified in Table 5.7.
For ASMOF, the same settings as in [8] were used. A number of experiments
was performed to find the best performing settings for ASM∗. It was found
that a profile with k = 4 points at each side of the landmark yielded the best
results. Three resolution levels were used and ns = 5 candidate locations at
each side of the current location were evaluated.
Three validation measures were used to compare automated and ground-truth
segmentations. The overlap Ω and distance error Λ were previously explained.
A third validation criterium ∆ measures the distance between the two curves.
For each point on the first contour, the closest distance to the second contour
is computed. As to obtain a one-dimensional measure, the distance error along
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rf

Ω

Figure 5.15: Overlap between ground-truth contours and automated segmen-
tations for several rf -values. The smaller profiles perform significantly better
than the larger ones as they allow to detect the lung boundaries more accu-
rately.

the contour is averaged. The error is calculated a second time by switching
the role of first and second contour. The mean of the two errors delivers a
final symmetrical measurement.
Also the influence of the number of training examples on the segmentation
performance was studied. For both the MISCG and ASM∗ algorithm, the
overlap measure was computed for the segmentation of the right lung field,
applying models trained with 5 to 50 images.

Results

The results of applying the MISCG, the ASMOF and the ASM∗ algorithm to
the 44 validation images are summarized in Table 5.8. With 14 landmarks,
the average overlap for the left and right lung is 90.1% and 92.5% respectively
for MISCG, compared to only 84.1% and 86.8% respectively for the ASMOF
algorithm. The ASM∗ method also scores worse than MISCG with 85.6% and
89.5%. The results increase to 92.2% and 93.9% for the MISCG method, to
87.1% and 89.4% for ASMOF and to 88.6% and 92.1% for ASM∗ when 40
landmarks are used. MISCG also generates the lowest average distance er-
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rors, followed by ASM∗ and ASMOF. For all the results of Table 5.8, MISCG
scored significantly better than ASMOF and ASM∗ with p < 0.01 according to
a paired t-test. Fig. 5.16 shows the local variation of the distance error along
the lung field contours generated by the MISCG, ASMOF and ASM∗ algorithm
with n = 14 and n = 40 landmarks. Apparently, the ASM algorithms are less
accurate at the lower regions (at the mediastinum) than MISCG. Fig. 5.17
shows the results of the three algorithms on five validation images ranked
from easy to difficult. The difficulty ranking was achieved as follows. For each
image the overlap measure of the three algorithms with respect to the manual
segmentations was averaged. The images were ranked according to the mean
overlap from high to low. The images at the positions 1, 11, 22, 33 and 44
were selected.
At this point, one can wonder why MISCG performs better than ASM for
lung field segmentation. Is it the fact that ASM gets stuck in local optima
instead of finding the global optimum? Or is the global shape model too stiff
to fit properly to the unseen image data? The following experiment was set
up to investigate this (Table 5.9). First, to see whether ASM got stuck in a
local minimum, we tried to find ASM solutions that had both a higher per-
formance and a lower value of the intensity cost function. This was achieved
by initializing ASM∗ with the ground-truth (GT) contour. The performance
of ASM∗GT (91.2%) was significantly better than ASM∗ (89.8%) and lower
intensity costs1 were achieved (1.07 vs. 1.17). Hence, finding the global op-
timum would improve the performance, but is still insufficient to explain the
difference between MISCG and ASM∗ (93.0% vs. 89.8%). There seems to be
a second problem. ASM tries to find the shape in the PCA subspace with the
lowest intensity cost Ef (l). Fitting the GT curve into the PCA space, yields
the contour with the highest performance (93.5%) that satisfies the ASM shape
constraint (GTPCA in Table 5.9). Unfortunately, the intensity costs of these
contours are far from optimal (compare with the intensity costs achieved by
ASM∗) and this makes that ASM∗ shifts away from these contours to decrease
the intensity cost (from 1.21 to 1.07) and unintendedly lowers segmentation
accuracy (from 93.5% to 91.2%). Consequently, the fact that the PCA space
is too narrow explains another part of the lower ASM performance. A possible
solution would be to increase the flexibility of the shape model by increasing
the number of training images.
Fig. 5.18 illustrates the influence of the number of training images on the seg-
mentation performance. Overlap measures for the right lung with n = 14 (a)
and n = 40 (b) landmarks are reported. The required number of training
images can be obtained using a paired t-test as follows. One starts from the
maximum number i.e. s = 50 and gradually decreases this number as long as
this does not result in a significant worse result. For the n = 40 landmarks and
at the 5% level, MISCG needed s = 10 images whereas ASM∗ needed s = 25
images. These numbers increased to s = 20 and s = 35 images respectively
at the 15% level. For n = 14 landmarks, no difference between MISCG and

1The reported energy values are normalized such that the expected value equals one.
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ASM∗ could be observed.

(a)

Algorithm Left lung Right lung

n = 14 landmarks

MISCG 89.8± 6.0 93.0± 3.3

ASMOF 84.1± 9.0 86.8± 8.6

ASM∗ 85.6± 7.9 89.5± 4.5

n = 40 landmarks

MISCG 92.2± 4.3 94.1± 3.1

ASMOF 87.1± 9.8 89.4± 9.4

ASM∗ 88.6± 7.5 92.1± 3.3

(b)

Algorithm Left lung Right lung

n = 14 landmarks

MISCG 2.47± 1.78 1.82± 0.78

ASMOF 4.04± 3, 00 3.48± 2.44

ASM∗ 3.63± 2.36 2.86± 1.39

n = 40 landmarks

MISCG 1.72± 1.09 1.42± 0.60

ASMOF 3.00± 2.78 2.69± 2.44

ASM∗ 2.75± 2.58 1.91± 0.72

Table 5.8: (a) Overlap coefficient Ω (%) and (b) distance measure ∆ (pixels)
between the manual and automated chest radiograph lung field segmentation.
Various automated schemes were evaluated as indicated. The mean value over
all images in the validation set and its standard deviation are reported.

Algorithm Overlap (%) Intensity energy Ef (l)

n = 14 n = 40 n = 14 n = 40

GT 100.0 100.0 1.19 1.11

MISCG 91.2 93.0 0.90 0.88

GTPCA 90.7 93.5 1.60 1.21

ASM∗GT 89.8 91.2 1.23 1.07

ASM∗ 86.8 89.8 1.33 1.17

Table 5.9: Explains why MISCG performs better than ASM for lung field (left
+ right) segmentation in chest radiographs. Overlap values are reported for
GT (ground-truth), MISCG, GTPCA (fit of GT in PCA subspace), ASM∗GT
(ASM∗ initialized with GT) and ASM∗. The second column contains the
ASM∗ intensity cost Ef (l) for the resulting contours.
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n = 14

n = 40

MISCG ASMOF ASM∗

Figure 5.16: Local variation of the distance error along the lung field contours
generated by the MISCG, ASMOF and ASM∗ algorithm. The mean error
along the curve ranges from 1.3 to 9.1 pixels for ASM∗ and from 1.0 to 4.9
pixels for MISCG if 14 landmarks are used. With 40 landmarks, the errors
decrease to 1.0− 7.6 pixels for ASM∗ and to 0.8− 4.3 pixels for MISCG. The
ASM methods are less accurate at the lower regions (at the mediastinum) than
MISCG.

5.7 Conclusion

The segmentation of an object from an image requires a model of the object
and an algorithm to fit the model to the image. Both the construction of the
model and the model fitting require a number of choices to be made. This can
be a parameter to be set, but also a methodological decision to be made. In
this chapter, insight is gained in all these choices by performing an in-depth
validation on lung field segmentation from chest radiographs. Each part of
the method was analyzed carefully to find appropriate parameter values and
to explain the methodological choices to be made.
First, a proper object representation is required. One must decide where on
the shape landmark points should be placed and where the connections should
be defined. As many anatomical objects have visible borders and do not have
very useful appearance information at the inside, landmarks are mostly placed
at the object boundaries. The edges should be defined between landmark
points that directly interact. For objects that have similar orientations and
scales, it is reasonable to define the edges between direct neighbors along the
object boundary.



90 Validation

GT MISCG ASMOF ASM∗

#1

#15

#29

#44

Figure 5.17: Segmentation results of the MISCG, the ASMOF and the ASM∗

algorithm on five validation images ranked from easy to difficult. The difficulty
ranking was achieved as follows. For each image the overlap measure of the
three algorithms with respect to the manual segmentations was averaged. The
images were ranked according to the mean overlap from high to low. The
images at the positions 1, 15, 29 and 44 were selected. The ground-truth
(GT) segmentations are added for comparison.

Secondly, the intensity model requires several parameters to be specified. A
first parameter series determines how the LOIs are computed from the original
image. If a large set of LOIs is computed, probably only a limited set of them
will significantly contribute in the detection of landmark candidates. However,
as no (or only limited) segmentation performance can be gained by reducing
the LOIs to only a limited set of optimal features and also because an exhaus-
tive procedure is needed to find them, we prefer to compute an extensive set
of LOIs and to use them all during segmentation.
The spherical profile configuration is specified by a length (number of sampled
points) and a radius. Experiments have shown that the choice for the number
of samples is not critical. The choice of the profile radius however, has a signif-
icant influence on segmentation performance. The radius controls the extent
of the local image neighborhood around the landmarks. A descriptor with a
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Figure 5.18: Influence of the number of training images on the segmentation
performance. The overlap scores for the right lung with 14 and 40 landmarks
are reported.

larger radius captures information about a larger part of the image whereas
a smaller profile looks more locally at the image data. Consequently, a suffi-
ciently small profile enables to localize the landmark positions more accurately
but is more likely to generate false positives than a larger profile. However,
despite their lower robustness, the smaller profiles perform significantly better
for segmentation than the larger ones. The use of landmark-individual search
regions and the incorporated shape constraints into the energy function avoid
the algorithm of selecting wrongly positioned candidates.
A last parameter related to the intensity model was previously introduced to
bring the intensity energy into a statistical meaningful range. Apparently, ac-
cording to a number of experiments, this parameter can be estimated correctly
by bringing the intensity and shape energies of the segmented shapes into bal-
ance.
The optimal segmentation scheme is one with a sufficiently fine search grid, an
accurate profile and a sufficiently large number of selected candidates. How-
ever, such a scheme is not very efficient from a computational point of view.
Instead, the same accuracy but with less computation time can be obtained
using a multi-resolution strategy. The algorithm is started with a large spac-
ing of the search points and sufficiently large search regions. In the following
steps, smaller regions are sampled with a smaller spacing and more accurate
profiles. This way, the number of evaluations of the intensity energy and the
required number of candidates is reduced without losing quality.
Finally, a discrete optimization algorithm must be chosen to solve the combi-
natorial problem. Despite the fact that DP always finds the global optimum,
it can not be used in every situation. With DP, computation time becomes
easily unacceptable when dealing with complex graph configurations. If the
computation of a path (|A| = 1) would take one single second, the compu-
tation of a graph with |A| = 3 would need almost three hours if m = 100
candidates are selected. In these situations MFA seems a good alternative as
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its complexity does not suffer from the graph configuration. However, MFA
often needs a lot of iterations and therefore the alternative IDP search method
should be considered as a faster alternative. For lung field segmentation, no
significant difference in segmentation accuracy between the three algorithms
could be observed.
In this thesis, the choice for using local instead of global models was moti-
vated. It was claimed that these models would allow to fit more accurately
to unseen objects. This was empirically verified by comparing the proposed
segmentation scheme (MISCG) against ASM for lung field segmentation. The
better results obtained with MISCG could be attributed to a combination of
two reasons. First, ASM segmentation is prone to get stuck in a wrong lo-
cal optimum whereas MISCG, in the case of contour representations, finds a
global optimum. Secondly, although the local shape models allow unrealistic
shapes they indeed have the ability to fit more accurately to unseen images.



Chapter 6

Applications

6.1 Introduction

Object segmentation is essential in medical image processing. The extraction
of the shape of anatomical objects from medical images has many purposes. It
is often a preprocessing step towards another task. For example, a computer
program that extracts lung nodules from chest radiographs, will first delineate
the lung fields prior to searching for nodule candidates. Segmentation is also
required for the automation of anatomical measurements and it is a possible
means towards diagnosis, therapy planning and visualization. Hence, it is ob-
vious that many applications exist for the proposed method.
The medical image segmentation task is both a two- as a three-dimensional
problem. In radiography, an image is acquired by projecting X-rays on a 2D
plate. Consequently, the radiographic image only shows two-dimensional pro-
jections of true three-dimensional shapes. The delineation of these shapes is
often a challenge due to a large shape variability that originates from both pop-
ulation as pose differences. Also the overlapping projections of other anatom-
ical structures makes the task more complex. The MISCG method will be
demonstrated for the following radiographic applications: lung fields, heart
and clavicles from chest radiographs (Section 6.2), delineation of the hand
bones (Section 6.4) and segmentation of the femur and tibia in knee radio-
graphs (Section 6.5). Also a clinical experiment was set up to validate the
automated assessment of the cardiothoracic ratio from chest radiographs (Sec-
tion 6.3). Finally, the MISCG method was applied for 3D liver segmentation
from computed tomography scans (Section 6.6).

6.2 Anatomical structures in chest radiographs

The existence of many segmentation algorithms that can handle one single ap-
plication requires comparative studies between these different methods. When
a new method is published, it is compared against conventional methods. How-
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ever, these comparisons are often not very trustworthy because of several rea-
sons. Often the presented algorithms are developed for one particular database
and are therefore optimally tuned for that particular database. Also more at-
tention is given to the implementation of the presented method, than to the
implementation of the conventional method. This difficulty has motivated the
research community to come up with comparative studies using publicly avail-
able databases. The SCR database [11, 12] is one of these initiatives and was
set up for the segmentation of anatomical structures in chest radiographs. We
used this database to compare our MISCG method to other approaches.

6.2.1 Data

The database consists of 247 standard posterior-anterior chest radiographs
taken from the JSRT database [13]. The radiographs originate from 13 institu-
tions in Japan and one in the United states. The images contained 2048×2048
pixels and a spatial resolution of 0.175mm per pixel and 12 bit gray-levels.
In each image, the left and right lung field (Fig. 6.1(a)), the heart and the left
and right clavicle were delineated manually by two experts. It is important
that these experts use a consistent definition of what is meant by the delin-
eation of each anatomical structure. For example the lung fields are defined
as those pixels for which radiation passed through the lungs but not through
the heart, the mediastinum and the aorta.
The same approach as described in Chapter 5 was used to annotate the con-
tours with landmark points: 50 and 44 landmarks for respectively left and
right lung, the heart was described with 27 and the clavicles with 23 landmark
points.
The segmentations of the first expert are considered as the gold standard. The
computer outcomes and the segmentations of the second observer are compared
to the gold standard by means of the overlap Ω (Eq. 5.3) and closest distance
error ∆ (Section 5.6). The ultimate goal for a computer algorithm is to obtain
an error that is comparable or even lower than the error 1 made by the second
observer.
The images were divided in two parts by selecting the even and odd numbers.
First, the images in one set are used to train the algorithm that is subsequently
applied to the images of the other set. Second, a model is built from the second
set and applied to the first set.

6.2.2 Methods

The segmentation methods that participated in this study all belonged to one
of the following categories: active shape models, active appearance models and
pixel classification. For a complete overview of all methods we refer to [11].
Only a short summary of the here reported methods is given.

1Error is not the correct word as the segmentation of the second observer is not neces-
sarily worse than the gold standard. The error mentioned here expresses the inter-observer
variability.
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(a) (b) (c)

Figure 6.1: Anatomical structures to be segmented from one chest radiograph:
lung fields (a), heart (b) and clavicles (c).

ASM tuned

The standard ASM scheme as described in Section 2.4.1 with the appearance
model put forward in [54] was applied with optimal settings obtained from a
number of pilot experiments.

AAM whiskers BFGS

Some alterations are made to the basic AAM algorithm (Section 2.4.2). As the
standard AAM scheme only considers the object’s interior for constructing the
texture vectors, and because the interior of the anatomical objects often does
not discriminating information, the search is likely to result in a segmentation
that lies completely inside the object. Therefore, the model was augmented
with texture information about the contour edges by adding intensities sam-
pled along the contour normals at each landmark point.
A second alteration to the original AAM was that an extra refinement of the
model fit was performed using quasi-Newton optimization algorithm. The ab-
breviation BFGS (Broyden, Fletcher, Goldfarb and Shanno) refers to the used
update of the Hessian.

Pixel classification post-processed

The used pixel classification algorithm classifies each pixel according to three
kinds of features: pixel position (x and y), the gray-level value of that pixel
and the output of several gaussian derivative filters. A kNN classifier was
trained with k = 15. During segmentation, the classifier was used to compute
the probability that a pixel belongs to a specific class. To ensure that for every
structure a single connected object was obtained, a post-processing procedure
was applied. First, the soft output was blurred, then the largest connected
object was selected and the holes in the object were filled.
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MISCG

For MISCG, a model was constructed for each individual structure individ-
ually. The same LOIs were computed as for the experiments in Chapter 5.
Profiles of length nf = 4 and radii ranging from 8 to 4 pixels were extracted.
Model fitting was performed with m = 100 candidates and DPCC was used
for optimization.

6.2.3 Results

The overlap scores of each segmentation scheme on each anatomical object are
reported in Table 6.1. More details and individual segmentations can be found
on the website of the study [12]. The MISCG method seems to have the high-
est performance for each anatomical object. The lung fields are segmented
with an accuracy comparable to manual segmentation. For the delineation
of the heart and the clavicles, the second observer still scored significantly
better. The outlines of the heart and the clavicles are often difficult to per-
ceive in a radiographic image. Nevertheless, the second observer still segments
these structures correctly as he is able to use contextual information. The
recognition of other overlapping or neighboring structures helps him during
segmentation. The automated algorithms on the other hand only use infor-
mation about one single structure.
The overall result is shown in Fig. 6.2 where the pixel error is shown. This er-
ror is defined as the proportion of pixels for which any of the five object labels
(right lung, left lung, heart, right clavicle, left clavicle) is not in agreement
with the reference standard. MISCG has the lowest mean pixel error (0.033)
except for the human observer (0.029), compared to 0.043 for pixel classifi-
cation. Methods that use a global PDM as ASM tuned and AAM whiskers
BFGS score worse with respectively 0.044 en 0.046. The main reason for this
is the lack of flexibility of the global PDMs. We refer to the SCR website [12]
for a detailed overview of the performance of all available methods described
in [11].

6.3 Cardiothoracic ratio

One of the clinical motivations for lung field segmentation is that it enables
the computation of the cardiothoracic ratio (CTR), that expresses the size of
the heart relative to the size of the thorax as shown in Fig. 6.3. It is computed
as

CTR =
MRD + MLD

ID

where MRD and MLD denote the maximum diameter from the centerline to
respectively the right and left heart border and ID stands for internal diameter
(of the chest). A ratio of more than 0.5 is considered abnormal in an adult. An
enlarged heart might be an indication of cardiac failure or pericardial effusion.
The CTR is extracted from the segmented contours using a number of specific
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µ ± σ Min Q1 Median Q3 Max

Lungs

MISCG 95.3± 02.6 83.4 94.7 95.8 96.4 97.7

PC post-processed 94.5± 02.2 82.3 93.9 95.1 95.8 97.2

Human observer 94.6± 01.8 82.2 93.9 94.9 95.8 97.2

ASM tuned 92.7± 03.2 74.5 91.7 93.6 94.6 94.6

AAM whiskers BFGS 92.2± 02.9 71.8 91.4 93.1 94.0 96.1

Heart

Human observer 87.8± 05.4 57.1 84.3 88.8 91.6 96.5

MISCG 84.9± 10.4 26.1 82.4 87.4 90.7 96.3

AAM whiskers BFGS 83.4± 07.0 51.0 79.1 84.5 88.2 96.7

PC post-processed 82.4± 07.7 50.0 78.3 84.4 87.7 93.2

ASM tuned 81.4± 07.6 52.0 77.0 82.7 87.3 93.8

Clavicles

Human observer 89.6± 03.7 70.7 88.0 90.5 92.2 95.2

MISCG 77.5± 12.9 01.1 73.8 80.7 85.4 91.5

ASM tuned 73.4± 13.7 09.3 70.5 77.6 82.2 91.2

AAM whiskers BFGS 64.2± 17.1 00.3 58.8 68.9 76.1 86.1

PC post-processed 61.5± 12.3 22.3 55.4 63.9 70.6 83.7

Table 6.1: Overlap (%) scores for each anatomical structure. The minimum,
maximum, median and first and third quartile are listed. The systems are
ranked according to the median as in [11].

landmark points as shown in Fig. 6.3. The center line is positioned at the
middle of landmarks a and b. The heart diameter is determined as the sum of
at one hand the distance from the most left point between c and d to the cen-
terline and at the other hand the distance from the most right point between
e and f to the centerline. Similarly, the diameter of the thorax is computed
from g, h, i and j.
The CTR was computed three times for every image. First, it was obtained by
a radiologist manually as he does in his daily practice (R1). Secondly, the CTR
was computed from the manually delineated lung fields (R0). A last result was
obtained fully automatically (R2). One case was left out as no complete left
lung was available for one patient. The ratios computed from the manually
delineated contours were considered as ground-truth. All values ranged from
0.37 to 0.70. It was found that 19 out of 43 patients had a CTR higher than
0.5 which could be attributed to the mix of normal and abnormal cases. The
errors made by the automated and manual technique are summarized in Ta-
ble 6.2. A paired t-test gave no significant difference between the manually and
automatically obtained ratio. A Bland and Altman plot (Fig. 6.4) confirmed
that the automated ratio gave errors comparable to the manual errors.
In a next experiment, the automatic computation of the lung fields and the
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Figure 6.2: SCR database results: box plot (minimum, maximum, median and
first and third quartile) of the pixel error of all available algorithms, sorted by
increasing median error. The proposed method (MISCP where P stands for
path) scores best of all automated approaches in this study.

CTR was implemented in the clinical workflow of the Radiology Department
of the University Hospital Gasthuisberg in Leuven (Belgium) in collaboration
with Prof. Dr. Verschakelen. Each time a radiographic image was acquired,
the lung fields were delineated automatically and the result was stored tem-
porarily. When a radiologist handled a case, he could press a CTR-button
that enabled him to view the result. He was also allowed to give a score from
1 to 5 concerning the quality varying from completely wrong to very good.
The average score was 4.0 and the median was found to be 5.

µ ± σ Min Q1 Median Q3 Max

Man 0.019± 0.020 0.000 0.005 0.014 0.024 0.089

Auto 0.025± 0.023 0.000 0.008 0.018 0.039 0.092

Table 6.2: Absolute errors made by the automated and manual technique
to determine the CTR from a chest radiograph. A student t-test gave no
significant difference between the manually and automatically obtained ratio.
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Figure 6.3: The cardiothoracic index or ratio measures the size of the heart
relative to the size of the thorax. It is computed as the ratio between heart
diameter (left part + right part) to the diameter of the thorax.

(R0 + R1)/2
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Figure 6.4: Bland and Altman plot for (a) the manual method and (b) the
automated method. The difference between two measurements (X-axis) is
plotted versus the average of the two measurements (Y -axis). According to
this plot, the error of the automatic method (R2) is comparable to the error
of the manual method (R1).

6.4 Hand bones

In order to demonstrate the generic nature of the algorithm, it was also applied
for the segmentation of hand bones from a hand radiograph.

6.4.1 Data

The database consisted of 186 hand radiographs (image width of 256 pixels and
varying height) and manual delineations of the bones of the little finger, the
middle finger and the thumb. Each individual bone was described as a contour
consisting of 20 (smaller ones) or 40 (bigger ones) landmarks (Fig. 3.2(f)). The
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dataset is split in two folds, 93 images each. The first one is used for model
building, the second one for validation. Due to the image acquisition protocol,
all hands had a similar orientation which made an affine warping prior to
model building unnecessary.

6.4.2 Model construction

One strategy is to represent each bone with an individual contour. However,
as the locations of the bones are mutually correlated, it would be better to
consider all the bones together as one single object by defining edges between
the different bone contours.
Alternatively, a hierarchical model can be built. A first model is used to
localize the center of each bone. This model is trained with landmarks at
the bone centers and edges between the correlated centers. A second layer of
models is needed to delineate each bone individually in a region centered at
the corresponding bone center.
Two graphs were tested for the localization of the bone centers. The first
one (Fig. 6.5(a)) models the hand as if the locations of the three finger tops
were independent. A second model (Fig. 6.5(a)) also learns the relationship
between finger-to-finger connections as shown in Fig. 6.5(b). The profiles were
configured with nf = 4 samples and two radii: rf = 8 and rf = 4 pixels. Again
the same LOI sequence as in Chapter 5 was computed. An appropriate ρ was
determined by the approach explained in Chapter 5 that brings the shape and
intensity energy into balance.
For each of the eleven bones, a contour model is trained from sub-images
extracted from the original training images as shown in Fig. 6.5(c). These sub-
images are centered at the bone center and the range is chosen large enough
to ensure that each of the 93 training shapes were fully captured. Intensity
profiles for the contour model were extracted with nf = 4 and rf = 1 pixel.

6.4.3 Model fitting

The hierarchical model was fitted to the images in two consecutive steps. First,
the bone-center model was applied to find proper locations for each bone in
the image. The search occurred in two resolution levels: a coarse search with
rf = 8 and δ = 3 pixels and a fine search with rf = 4 and δ = 1. A number of
pilot experiments showed that selecting m = 100 candidates per landmark was
sufficient. To find out which of the two proposed graphs should be applied on
the validation set, a leave-one-out experiment was run on the training images
with both graph configurations. Optimization was done with DP for the first
graph (Fig. 6.5(a)) and MFA for the second graph (Fig. 6.5(b)).
To find the 11 bone contours, sub-images were extracted at the detected bone
centers (Fig. 6.5(c)). The contour models were fitted using the DPCC algo-
rithm with m = 100 and δ = 1 pixel.
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(a) (b)

(c) (d)

Figure 6.5: Segmentation strategy using a hierarchical object representation:
the models (a) and (b) are built to localize the bone centers. Bone-individual
contour models (d) are then applied to ROIs centered around the obtained
centers (c).

6.4.4 Results

The leave-one-out experiment on the training images with the two bone-
localization models gave the following results. The second model (Fig 6.5(b))
segmented 7 hands out of 93 wrongly. One error was made on a hand that had
maximally opened fingers whereas the other training examples all had closed
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or moderately opened fingers. The six other errors were due to a bad acquisi-
tion: bones of the little finger or the thumb lied too close to the image border.
Such a bone is hard to detect as the corresponding intensity structure deviates
too much from the model. These errors could be avoided by extending the
image with zero pixels at the borders. However no border handling was used
for all the results reported here.
The first model did worse with 11 wrong segmentations: the same 7 cases where
the second model went wrong together with 4 additional erroneous cases. One
of them is shown in Fig . 6.6. Obviously for this example, the incorporation
of knowledge about the finger-to-finger correlation is needed to identify each
bone correctly.
Hence, the 93 validation images were segmented by first applying the graphi-
cal model of Fig. 6.5(b) and subsequently delineating the bone contours. The
bone localization went wrong in four cases due to bad acquisition. This way,
an average overlap score of Ω = 90.15% and distance error Λ = 0.9 pixels were
obtained. These values improved to Ω = 91.5% and Λ = 0.5 pixels without
these four cases. An automated segmentation result is shown in Fig. 6.7(a).
This case was selected as the one in the middle after ranking the images ac-
cording to their overlap with the ground-truth Fig. 6.7(b). The overlap of this
example was Ω = 92.4%.

Figure 6.6: Example segmentation where the incorporation of knowledge about
the finger-to-finger correlation is needed to identify each bone correctly.
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(a) (b)

Figure 6.7: An automated segmentation result is shown in (a). This case was
selected as the one in the middle after ranking the images according to their
overlap with the ground-truth shapes (b). The overlap of this example was
Ω = 92.4%.

6.5 Knee segmentation

In the clinical practice, radiography is frequently used for the diagnosis of knee
osteoarthritis (OA). Arthritis refers to protective tissue (cartilage) that wears
away. As a result, the distance between femur (upper bone) and tibia (lower
bone) decreases. Consequently, a tool to automatically delineate the femur
and tibia boundaries is a requirement towards the automated assessment of
OA.

6.5.1 Data

A model was learnt from 38 example knee radiographs with expert manual de-
lineations. One single object was used to represent femur and tibia together:
a closed contour consisting of 39 landmark points (in Fig 6.8). Correspon-
dences were obtained by first marking 6 specific anatomical landmarks and
subsequently sampling pseudo-landmarks equidistantly in between them. The
original images had a width of 1024 pixels and were resized for processing to
be 512 pixels width (256 pixels for each leg). The analysis was performed only
on the left knee and thus the images had a size of 256 pixels.
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6.5.2 Experiments

A contour model was constructed with the following parameter values: nf = 4,
rf = 4 pixels. The model was fitted to the training images (after leaving
them out of the model) using the DPCC algorithm with m = 100 and three
resolution levels: δ = 4, 2 and 1 pixel.

6.5.3 Results

The automated delineations of femur and tibia were compared against the
manual delineations using the closest distance error Λ. To ignore the influence
of the error along the meaningless vertical connections between femur and
tibia, the distance error was only measured along the bone boundaries. The
results are summarized in Table 6.3 and three automated segmentations are
shown in Fig. 6.8: (a) best score, (b) median score and (c) worst. The large
error for (c) is 6.48 pixels and is caused by a pathology.

µ ± σ Min Q1 Median Q3 Max

1.85± 0.96 0.80 1.33 1.58 2.08 6.48

Table 6.3: Knee application: closest distance error (pixels) made by the au-
tomated segmentation as compared to the ground-truth. The reported errors
are the average errors along the bone boundaries.

6.6 Liver segmentation

The fact that liver segmentation from CT images is such a popular topic in
medical image analysis (e.g. [18, 64, 77]), can be explained by two facts. Firstly,
it is extremely relevant for clinical purposes. Liver segmentation is the basis
for computer-based surgery planning and it can serve as a preprocessing step
for diagnosis and monitoring. Secondly, automated segmentation is a highly
challenging task because of a number of reasons. The border between liver
and its surrounding tissue is not always clearly visible as illustrated in Fig. 6.9.
The intensity range at the heart region (Fig. 6.9(a)) has some overlap with the
range of liver tissue. The vena cava, a vessel fully surrounded by liver tissue
and considered as part of the liver (Fig. 6.9(b)) is also a source of problems.
Consequently, voxel classification according to intensity values alone is not
possible. Also the high variability of the liver shape makes liver segmentation
a challenge.
The performance of the MISCG method for liver segmentation was tested on
a publicly available database [78]. A competition was started as part of the
workshop 3D Segmentation in the Clinic: A Grand Challenge [87] organized
during the MICCAI conference in 2007.
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(a) (b) (c)

Figure 6.8: Three segmentation results: (a) smallest, (b) median and (c)
largest error. The large error for (c) is 6.48 pixels and is caused by a pathologic
knee. The automated segmentations are shown at the first row, the ground-
truth at the second row.

6.6.1 Data

A set of 20 contrast enhanced CT datasets and corresponding segmentations
of the liver were obtained from [78]. The images originated from several clin-
ical institutes using different CT scanners for acquisition. Most images were
pathologic as they included tumors, metastasis and cysts. All images were
enhanced with contrast agent and scanned in the central venous phase. The
in-slice pixel spacing varied from 0.55 to 0.8 mm and the inter-slice distance
varied from 1 to 3 mm.
Ground-truth segmentations were created manually by radiologic experts. All
internal structures as vessels and tumors surrounded by liver tissue, were con-
sidered as part of the liver.
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Figure 6.9: The border between liver and its surrounding tissue is not always
clearly visible. The intensity range at the heart region (a) has some overlap
with the range of liver tissue. The vena cava, a vessel fully surrounded by liver
tissue and considered as part of the liver (b) is also a source of problems. The
voxels that lie at the liver boundary are colored in white.

6.6.2 Model construction

The dataset as downloaded from [78] consisted of a set of images and a set of
corresponding labeled images. A voxel had label 0 or 1 depending on whether
the voxel lied outside or inside the liver. Consequently, prior to learning the
shape and intensity models, several preprocessing steps were needed as to
obtain a training set in the required format (images and landmark points).

Affine registration and resampling

One of the protocols used for scanning required patients to lie on their side. As
to eliminate pose-related differences, an affine registration was needed. First,
one image, referred to as the reference images, was arbitrarily chosen from
the training set (first image of the training set). All other images and their
corresponding segmentations were affinely transformed and sampled in the
space of the reference image. More details about the registration can be found
in [88]. The resulting resampled intensity images and segmentations all had a
size of 256 x 256 x 185 voxels with a voxel size of 1.5 x 1.5 x 1.5 mm.
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Morphological operations

Prior to extracting the liver surfaces, a morphological closing operation was
performed to fill the holes and gaps in the label images. Holes and gaps up to
5 mm were closed this way.

Surface meshes

Next, the binary label images were converted to triangulated surface meshes
using the Matlab FastRBF Toolbox [89]. The sides of the triangles had on
average a length of 5 mm. The number of vertices ranged between 2573 and
4185. Some examples are shown in Fig. 6.10.

Figure 6.10: Three example livers represented as triangulated surface meshes.

Landmarks

Point correspondences between all training shapes were established using the
point registration algorithm put forward by Claes et al. [80]. A short de-
scription of the algorithm was given earlier in Section 3.3.2. Some trial ex-
periments where one reference liver shape ra was warped onto a target liver
shape rb showed that still large errors could be observed between the warped
shape rc = Ta→b(ra) and the target shape rb. A simple alteration made to the
original algorithm (Fig. 6.11) made the error decrease significantly. Besides
the warping from ra to rb (resulting in the shape rc) also a second warping
from rb to rc was made. Finally, the inverse of the resulting transformation
Tb→c was applied to rc. Hence, the final shape is computed as rd = T−1

b→c(rc)
with rc = Ta→b(ra). The shape rd has the configuration of ra but its points
(approximately) lie at the surface of rb.
The algorithm as outlined above, was used to find corresponding landmarks
on all shape instances. This was accomplished in two stages. In the first stage,
one liver shape was chosen as a reference shape (first liver) and was deformed
towards all remaining livers one by one. At this point, 20 shapes were obtained
with an equal number of (corresponding) vertices. As to remove the bias in
the landmark arrangement towards the chosen template shape, a second stage
was carried out. Firstly, a new reference shape was obtained by averaging
the 20 output shapes of the first stage. Secondly, this mean shape was used
to compute a new mesh with equally sized triangles using FastRBF [89]. A
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final set of landmark shapes with n = 3277 vertices and t = 9825 edges was
obtained by registering the mean-shaped template towards all individual liver
shapes.

replacemen

ra rbrc

rd

Ta→b Tb→c

T−1
b→c

Figure 6.11: A simple alteration made to the original algorithm [80]. Besides
the warping from ra to rb (resulting in the shape rc) also a second warping
from rb to rc was made. Finally, the inverse of the resulting transformation
Tb→c was applied to rc.

Intensity model

A number of pilot experiments yielded a set of LOI parameters (Table 6.4)
leading to 24 LOIs. For computational reasons the second order derivatives
were not computed.
The spherical profiles were configured similarly as for the lung field experiments
in Chapter 5: 2 samples are taken at each side of the center point in each
direction, leading to a profile vector of length nf = 6. Profile models with a
larger (rf = 8 pixels) and a smaller extent (rf = 4 pixels) were built.

Symbol Description Value

Model construction

n number of landmarks 3277

t number of edges 9825

nf profile length 6

rf profile radius 8, 4 pixels

σ LOI inner scale 0.5, 1, 2 pixels

α LOI outer scale 2σ pixels

Li LOI derivatives L, Lx, Ly, Lz

M LOI moments 1, 2

ρ overestimation intensity energy 12

Model fitting

δ1 grid spacing (level 1, rf = 8 pixels) 4 pixels

δ2 grid spacing (level 2, rf = 4 pixels) 2 pixels

δ3 grid spacing (level 3, rf = 4 pixels) 1 pixel

a initial search grid extent 3

m number of candidates 200

Table 6.4: Parameters for liver segmentation.
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6.6.3 Model fitting

The model was fitted in three resolution levels (Table 6.4). At the first level,
sufficiently large search regions were explored with a sampling interval δ1 = 4
pixels and the large-sized profile. The next resolution levels used the more
accurate profile (rf = 4 pixels) in smaller search regions centered around the
landmark points that came out of the previous stage.
For optimization IDP was chosen because of its low computation time and a
reduction rate of fred = 0.05 was used. The number of selected candidates was
set to m = 200, which was still acceptable from a computational point of view.
In some cases it occurred that for a particular landmark point, mostly because
of a pathologic region, no candidate was selected in the neighborhood of the
true landmark location. These outlier landmarks could be detected after every
optimization stage. If a landmark location li resulted in an excessively high
shape energy

∑

j∈Ni

dij(li, lj) > 1000

this landmark was considered as an outlier and a new location was computed
by averaging the neighboring landmark points. The needed computation time
using non-optimized Matlab code with some computational subroutines writ-
ten in C was approximately 1h on a 2.8 GHz Intel Pentium processor.
In a second experiment, the first two stages were carried out with the same
settings as the previous experiment (using IDP) but the third resolution level
was optimized with MFA.

6.6.4 Evaluation

The segmentation scheme was validated by segmenting the training images
(using leave-one-out) and comparing the results against the reference stan-
dard. To enable a comparison between an automated segmentation (consisting
of landmarks) and a ground-truth segmentation (label image), the landmark
shapes were converted to binary label images: 0 if a voxel is background and
1 if the voxel lies inside the liver.
We applied the scoring system described in [87] which is based on five error
metrics: volumetric overlap error, volume difference, surface distance, RMS
surface distance and maximum surface distance. These errors were converted
into scores between 0 and 100 by comparing the errors that the algorithm made
to the errors that a second observer made when manually segmenting the same
images. For a perfect result (error is zero), 100 points were awarded. For an
error equal to the error of the independent human observer, a score of 75 was
given. All other scores were computed by using a linear scale between these
two gauge values. As to avoid negative scores, negative values were truncated
to 0. Consequently, if an algorithm gets 75 points it is considered to perform
as well as manual segmentation.
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6.6.5 Results

The results are summarized in Table 6.5. The mean of every error is listed
together with the corresponding score. Obviously, the algorithm still per-
forms significantly worse than human with a mean score of 68.9%. However, it
seemed that for 10 out of the 20 cases a score higher than 75% was obtained.
The larger RMS distance error (2.9 mm) and maximum surface distance (28.0
mm) imply that the algorithm makes larger errors in some regions as com-
pared to the second observer whereas in other regions a comparable accuracy
is obtained. This is illustrated in Fig. 6.12 that shows the distance errors of
the worst (#20), middle (#11) and best case (#1) with scores of 34.0%, 73.2%
and 83.4% respectively. The results increased slightly (mean score of 69.5%)
with the second segmentation scheme (final stage with MFA).
Considering on one hand the large shape and appearance variance of the liver,
and the small number of examples on the other hand, it is very likely that
a significant improvement could be made when the training set would be in-
creased.

Measurement Second observer MISCG

error score (%) error score (%)

Overlap error 6.4% 75 7.6% 70.1

Volume diff. 4.7% 75 2.9% 84.6

Avg. dist. 1.0 mm 75 1.3 mm 66.8

RMS dist. 1.8 mm 75 2.9 mm 59.7

Max. dist. 19 mm 75 28.0 mm 63.2

Total 75 68.9

Table 6.5: Liver segmentation results for the leave-one-out experiment. The
mean of every error is listed together with the corresponding score. Obviously,
the algorithm still performs significantly worse than the human observer (75%)
with an overall score of 68.9%.
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score = 34.0% 73.2% 83.4%

Figure 6.12: The worst (34.0%), middle (73.2%) and best (83.4%) segmenta-
tion obtained with MISCG. Ground-truth and automated segmentations are
shown in respectively the top and middle row. The colored shapes at the bot-
tom row indicate the surface distance errors ranging from 0 mm (blue) to 5
mm (red).





Chapter 7

Conclusions and future

work

7.1 Main contributions

The main goal of this thesis was to develop a model-based method for medical
image segmentation that is able to fit accurately to unseen objects, even if
only a limited number of training examples is available. Whereas most al-
gorithms first build a global PDM by learning from a set of example images
with corresponding landmark points and use this model to find instances of
the modeled object in new images, a method was proposed that only consid-
ers local statistical dependencies. This approach has two major advantages.
First, the model can generate accurate fits to new objects even if only a small
number of training images is available. Second, an optimal or nearly optimal
solution for the model fitting optimization problem can be found.
The method has a strong theoretical basis as it is formulated from a proba-
bility point of view. The intensities in the image and the shape of the object
are considered as correlated random processes. This way of thinking enables
to formulate the segmentation task as a maximum a posteriori problem: given
an image, find the most likely shape. A key advantage of this approach is that
a meaningful answer is given for the weighing between shape fitting and image
appearance fitting.
The highly generic nature of the method was proven by applying it for the
segmentation of several anatomical structures, both from 2D and 3D images.
It was shown for multiple applications that the presented method outperforms
other competitive methods.

7.2 Method

The object is represented as a graph that consists of a number of landmark
points (vertices) defined on the shape and a number of connections between
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neighboring landmarks (edges). The shape is modeled as a Markov random
field such that the landmark points only have a (direct) statistical interaction
with their neighbors. This allowed for the definition of a shape energy that
reflects the plausibility of an unseen shape instance with respect to its distri-
bution. This shape energy function is a sum of local energies that only depend
on couples of neighboring landmark points.
The appearance model assumes that the object influences the local image
structure around each landmark individually. The local intensity patterns are
captured by extracting spherical intensity profiles centered at the landmark
points from a number of feature images (LOIs) computed from the original
image. By estimating statistical distributions for the LOI profiles, a global in-
tensity energy could be defined that consists of landmark-individual energies
that express the goodness-of-fit of the landmarks to the image.
Both models were merged into one object model and a corresponding object
energy was defined that consists of first order (one vertex) intensity potentials
and second order (two neighboring vertices) shape potentials. The intensity
potentials drive the shape towards the correct image features whereas the
shape potentials control the geometry of the shape. It was shown that finding
the shape that minimizes this global object energy is equivalent to finding the
most likely (MAP) shape in a given image.

As the objective function has many local optima and a huge amount of degrees
of freedom, finding an optimum in the continuous domain with conventional
techniques is like searching for a needle in a haystack. To cope with this,
prior to optimization, the search space is discretized by selecting a number of
candidate locations for each landmark individually.
The resulting combinatorial optimization problem behaves as an MRF and can
be solved using several techniques. A first technique uses dynamic program-
ming to find the global optimum. As the computation time of DP becomes
easily unacceptable for graphs with complex configurations, two alternative
techniques were proposed. Mean field annealing, an optimization method
known in the world of MRFs, tries to minimize the energy of the MRF by
estimating the mean field for decreasing Gibbs temperatures. A second alter-
native technique approaches the problem by iteratively solving minimal cost
paths and removing the worst candidates.
As the computational complexity of the presented techniques increases with
the number of candidates selected for each landmark, a search method was
proposed that uses landmark-individual search regions and a multi-resolution
strategy to keep the number of candidates as small as possible.

The method was initially developed and applied for lung field segmentation
from chest radiographs. Insight, also transferrable to other anatomical objects,
was gained in all the choices that had to be made during model construction
and model fitting.
An important choice is where to define the vertices and edges on the shape.
Anatomical objects typically have a clearly visible boundary which pleads for
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landmark points on the object border. As the training shapes have similar
orientations and scales, due to acquisition or due to an affine registration, it
makes sense to define the edges only between the first neighbors along the
object border.
Other choices concern the intensity model. A first parameter series determines
how the LOIs are computed from the original image. If a large set of LOIs
is computed, probably only a limited set of them will significantly contribute
in the detection of landmark candidates. However, as no (or only limited)
segmentation accuracy can be gained by reducing the LOIs to only a limited
set of optimal features and also because an exhaustive procedure is needed to
find them, we prefer to compute an extensive set of LOIs and to use them all
during segmentation.
The spherical profile configuration is specified by a length (number of sam-
pled points) and a radius. Experiments have shown that the choice for the
number of samples is not critical. The choice of the profile radius however,
has a significant influence on segmentation performance. A sufficiently small
profile enables to localize the landmark positions more accurately than the
larger ones but is more likely to generate false positive candidates. The use
of landmark-individual search regions and the incorporated shape constraints
into the energy function avoid the algorithm of selecting the false positives.
Consequently, the smaller profiles, despite their lower robustness, perform sig-
nificantly better for segmentation than the larger ones as long as enough can-
didates are selected.
A next set of parameter values specifies how the model is fitted to a new image.
The optimal segmentation scheme is one with a sufficiently fine search grid, an
accurate profile and a sufficiently large number of selected candidates. How-
ever, such a scheme is not very efficient from a computational point of view.
Instead, the same accuracy but with less computation time can be obtained
using a multi-resolution strategy. The algorithm is started with a large profile,
a large spacing of the search points and sufficiently large search regions. In
the following steps, smaller search regions are sampled with a smaller spacing
and more accurate profiles. This way, the number of evaluations of the inten-
sity energy and the required number of candidates is reduced without losing
quality.
A final decision concerns the choice for an optimization algorithm. Despite
the fact that dynamic programming theoretically finds the global optimum, it
can not be used in any situation. With DP, computation time becomes easily
unacceptable when dealing with complex graph configurations. In these situa-
tions mean field annealing seems a good alternative as its complexity does not
suffer from the graph configuration. However, MFA often needs a lot of iter-
ations and therefore the alternative IDP search method should be considered
as a faster alternative.
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7.3 Clinical relevance

If we look at the method from a clinical point of view, we must consider its
possibilities and limitations in clinical practice. Can a computer algorithm re-
ally replace manual segmentation? For many applications, the computer has
a human-like accuracy (e.g. CTR results in Section 6.3), but is more likely
to fail as compared to manual segmentation when the anatomical structures
show large pathological abnormalities. As these pathologies are often difficult
to model, they complicate the computer’s search for a correct segmentation. A
human brain on the other hand is capable of recognizing these abnormalities
and moreover, the brain will recognize and virtually delineate other neighbor-
ing anatomical structures. This pathological and contextual knowledge is very
valuable for the manual segmentation process.
Hence, it is not advisable to use the automated segmentations blindly for
further diagnostic purposes. Instead, an expert should still supervise the com-
puter outcomes. Alternatively, instead of using a fully automated algorithm,
an interactive computer program might be a good compromise. The user could
for example specify the positions of a number of crucial landmark points.

7.4 Suggestions for future work

7.4.1 Curse of number of candidates

One of the prerequisites towards a correct segmentation is that for each land-
mark appropriate candidate locations are selected during the discretization
step. When dealing with pathological cases, it occurs that a specific land-
mark does not really exist or is not visible in the image. Consequently, if only
a limited number of candidates is selected, it might occur that the intensity
detector will fail to select an appropriate location. For 2D applications, this
seems not a problem, as the number of candidates can be chosen large enough
such that each point in the search region is included in the candidate set. The
shape energy in the objective function will force the algorithm to select a ge-
ometrically plausible candidate. This is illustrated in Fig. 7.1 for lung field
segmentation. Selecting only 20 candidates per landmark was insufficient to
find an appropriate point in the neighborhood of the implanted device. The
problem was avoided by increasing the number of candidates.
However, when dealing with 3D objects with a large shape variability, large 3D
search regions are scanned. In these cases, it is from a computational point of
view unacceptable to drive up the number of candidates such that the whole
search region is covered. We suggest a number of approaches to compensate
for this.

Variable number of candidates

In its current implementation, the same number of candidates m is selected
for each landmark individually. However, it might be a good idea to work with
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a variable number mi with i = 1, . . . , n. Select more candidates in delicate
regions and a lower number for easily tractable landmarks. The challenge of
this approach is to automatically determine (during segmentation) the required
number of candidates for each landmark.

Outlier candidate

Another possible strategy is to add an extra outlier candidate for each land-
mark. The combinatorial problem of selecting one out of m candidates for
each landmark becomes a problem of selecting one out of m + 1 candidates.
The fictive outlier should be selected when no proper location is available for
that landmark.

Combining local and global PDMs

Finally, an alternative strategy is to combine a global PDM with the proposed
localized model. A shape l could be considered as the sum of a global shape
lglobal that listens to a global PDM and a correction shape lcorr that expresses
the deviation of l from the global PDM:

l = lglobal + lcorr

The correction shape lcorr compensates for the lack of flexibility of the global
PDM. The model is constructed in two stages:

1. First, a global PDM is constructed as explained in Section 2.4.1. This
model will describe the global part lglobal.

2. Second, a localized PDM as described in this thesis is built to model
lcorr. This is obtained as follows. For each training shape l(i) the follow-
ing procedure is followed. First, a global PDM is built from all training
shapes except l(i). Second, the difference between l(i) and its reconstruc-

tion l
(i)
rec using the reduced global PDM is computed. Repeating this for

every training shape yields a set of local correction shapes:

l(i)corr, i = 1, . . . , s.

Finally, a localized PDM is built from the set of correction shapes.

During segmentation the global model is iterated using ASM (to find lglobal)
and in each iteration the MISCG method is applied to find the shape correction
lcorr. Consequently, only small search regions need to be explored and hence,
only a limited number of candidates is needed.

7.4.2 Optimization algorithms

Three different optimization algorithms capable of finding optimal or near-
optimal solutions of the discrete assignment problem were described. Very
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m = 20 m = 100

Figure 7.1: Selecting only 20 candidates per landmark was insufficient to find
an appropriate point in the neighborhood of the implant. The problem was
avoided by increasing the number of candidates to 100.

recently, there seems to have been an explosion of interest in such algorithms
that solve the so-called max-sum labeling problem where the objective function
is characterized by sums of functions of pairs of variables.
Recently published work [90, 91] seems strongly related to the proposed IDP
algorithm. A comparison with these approaches would be very worthwhile.
They have in common that the MRF energy is split up in easy-to-solve sub-
problems (slaves). The slave-problems can be paths or threes as long as they
are fast to compute. At the top level there is a master that iteratively coordi-
nates the slave-individual solutions to make them gradually agree on common
nodes in the overall MRF.
The main difference between IDP and for example the work of Komodakis [90]
is the way the master does its coordination job. The IDP master does not
change the slave MRFs but gradually prunes the set of possible labels per
node. After a while, all slaves will select common labels. In Komodakis’s
work, the MRF energies of the trees are slightly changed at those places where
the slaves do not agree such that gradually an agreement between the slaves is
obtained. In the latter, the process of forcing-to-agree is less explicit than in
the IDP method. Moreover, how the overall problem is split into sub-problems
and how the sub-solutions are merged has a much stronger theoretical back-
ground.

7.4.3 Merging segmentation and registration

Registration and segmentation are often considered as intertwined and com-
plementary problems in medical image analysis. Registration can be the solu-
tion for segmentation (atlas-based segmentation) and vice versa: if the same
anatomical structures are segmented in both images, a correspondence between
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the two images is established. Therefore, several researchers try to tackle both
problems simultaneously (e.g. [92]). Also the framework described in this the-
sis is extendable for merging segmentation and registration.
Consider two images IA, IB of the same patient but acquired at different points
in time. To find the segmentations lA and lB simultaneously, the following
MAP problem needs to be solved:

(l∗A, l∗B) = argmax
lA,lB

p(lA, lB|IA, IB) (7.1)

= argmax
lA,lB

p(lA, lB)p(IA, IB|lA, lB)

p(IA, IB)
(7.2)

The factor p(lA, lB) in Eq. 7.2 expresses the likelihood of observing the shapes
lA and lB in two images of the same patient:

p(lA, lB) = p(lA)p(lB|lA) (7.3)

= p(lA)p(lB − lA|lA) (7.4)

If we now make the simplification that the shape change does not depend on
the value of the shape itself, then we have

p(lA, lB) = p(lA)p(lAB) (7.5)

with lAB = lB − lA.
The factor p(IA, IB|lA, lB) in Eq. 7.2 reflects the fitting of the shapes to the
image data:

p(IA, IB|lA, lB) = p(IA|lA, lB)p(IB|lA, lB, IA) (7.6)

= p(IA|lA)p(IB|lB, IA) (7.7)

≈ p(IA|lA)p(IB|lB) (7.8)

The conversion from Eq. 7.6 to Eq. 7.7 assumes that the intensities in one
image only directly correlate with the shape in that image and not with the
shape in the other image, which is highly acceptable. The next conversion is
a rude simplification that assumes that the image structure around a shape
does not depend on the image data of a previous image.
With Eq. 7.5 and Eq. 7.8, the MAP criterion of Eq. 7.2 can be rewritten as

(l∗A, l∗B) = argmax
lA,lB

p(lA)p(lAB)p(IA|lA)p(IB|lB) (7.9)

with p(IA|lA) and p(IB|lB) computed with the intensity energy of Eq. 3.50.
The shape energy of Eq. 3.38 enables the computation of p(lA). The novel
part in Eq. 7.9 is p(lAB) that reflects the plausibility of a change in shape over
time. A model that describes the shape changes can be learnt from a training
set that consists of couples of images of the same patient but acquired at dif-
ferent points in time.
Thanks to such an approach it might be expected that the simultaneous seg-
mentations are more consistent in shape than if they were segmented individ-
ually. This technique would be useful for patient follow-up or in applications
where several time frames of the same structure are acquired.





Appendix A

Conditional edge energy

If the second order approximation presented in Section 3.5.3 is made, only
second order potentials (Eq. 3.41) are needed to compute the shape energy. If
at the other hand the exact energy is used and if the graph consists of cliques
larger than order two, also the higher order potentials need to be estimated.
In that case, also the conditional edge distributions p(eik|eij) (Eq. 3.30) need
to be estimated. Assume that the vector x that holds the edges eij and eik

x =

[

eik

eij

]

(A.1)

is normally distributed:

x ∼ N

([

µ1

µ2

]

,

[

Σ11 Σ12

Σ21 Σ22

])

(A.2)

Also note that µ1 = µeik
, µ2 = µeij

, Σ11 = Σeik
and Σ22 = Σeij

. It can be
shown [84] that the edge eik for a given eij is also normally distributed:

eik|eij ∼ N(µeik|ij
,Σeik|ij

) (A.3)

where the conditional mean depends on the value of eij as follows (see [84]):

µeik|ij
= µeik

+ Σ12Σ
−1
eij

(eij − µeij
) (A.4)

The conditional covariance is a constant with respect to eik:

Σeik|ij
= Σeik

−Σ12Σ
−1
eij

Σ21 (A.5)

A formula for the conditional edge energy follows from combining Eq. 3.30 and
Eq. A.3:

dik|ij(li, lj, lk) = (lk − li − µeik|ij
)TΣ−1

eik|ij
(li − lk − µeik|ij

) (A.6)

with µeik|ij
and Σeik|ij

computed as in Eq. A.4 and Eq. A.5 respectively. In
words: the conditional energy of an edge eik for a given eij is computed as the
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Mahalanobis distance between this edge and its expectation value for a given
eij . The unknown distribution parameters in Eq. A.3 are estimated from the
training shapes using the ML principle.



Appendix B

Expected value of the

Mahalanobis distance

Assume a normally distributed random vector x ∈ R
n:

x ∼ N(µ,Σ) (B.1)

with mean µ and covariance Σ. The Mahalanobis distance d between an
instance x and its mean µ is computed as

d(x, µ,Σ) = (x − µ)TΣ−1(x− µ) (B.2)

This distance measure expresses the goodness-of-fit of a sample according to
its distribution. Two samples with the same Mahalanobis distance have the
same likelihood according to the normal distribution, which means that they
lie at the same ellipsoid centered around µ.
A disadvantage of the computation as in Eq. B.2 is that the inverse of the
covariance matrix Σ is required. Consequently, if the covariance matrix is
singular, Eq. B.2 becomes invalid.
A more general calculation of the Mahalanobis distance can be obtained from
the eigenvalue decomposition of Σ. As Σ is a real symmetric matrix, it has
only real eigenvalues. If r denotes the rank of Σ, then Σ has r nonzero eigen-
values λ1, . . . , λr with corresponding eigenvectors Φ1 . . .Φr. This eigenvalue
decomposition can be used to transform x into a random vector z with inde-
pendent components with zero mean and unit variance:

z =











1/
√

λ1 0 . . . 0

0 1/
√

λ2 . . . 0
...

...
...

...

0 . . . 0 1/
√

λr











ΦT(x− µ) (B.3)

with Φ = [Φ1 . . .Φr].
The Mahalanobis distance is now computed as

d(x, µ,Σ) = d(z, 0, Ir) = zTz (B.4)
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and its expected value becomes

<d(x, µ,Σ)>=

r
∑

i=1

<z2
i >=

r
∑

i=1

1 = r (B.5)
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