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A B S T R A C T   

Background and Objective: The development, control and optimisation of new x-ray breast imaging modalities 
could benefit from a quantitative assessment of the resulting image textures. The aim of this work was to develop 
a software tool for routine radiomics applications in breast imaging, which will also be available upon request. 
Methods: The tool (developed in MATLAB) allows image reading, selection of Regions of Interest (ROI), analysis 
and comparison. Requirements towards the tool also included convenient handling of common medical and 
simulated images, building and providing a library of commonly applied algorithms and a friendly graphical user 
interface. Initial set of features and analyses have been selected after a literature search. Being open, the tool can 
be extended, if necessary. 
Results: The tool allows semi-automatic extracting of ROIs, calculating and processing a total of 23 different 
metrics or features in 2D images and/or in 3D image volumes. Computations of the features were verified against 
computations with other software packages performed with test images. Two case studies illustrate the appli
cability of the tool – (i) features on a series of 2D ‘left’ and ‘right’ CC mammograms acquired on a Siemens 
Inspiration system were computed and compared, and (ii) evaluation of the suitability of newly proposed and 
developed breast phantoms for x-ray-based imaging based on reference values from clinical mammography 
images. Obtained results could steer the further development of the physical breast phantoms. 
Conclusions: A new image analysis toolbox was realized and can now be used in a multitude of radiomics ap
plications, on both clinical and test images.   

1. Introduction 

Ionizing radiation is routinely used in medical diagnosis of the 
breast: x-ray acquisitions are the basis of all radiological modalities 
including Full-Field Digital Mammography and Breast Tomosynthesis. 
These modalities are improved in a continuous effort, with better x-ray 
sources and detectors, acquisition geometry, reconstruction algorithms, 
etc. Modelling and simulation play an important role in this process, by 
providing a potentially less expensive alternative to the experimental 
approach that involves the manufacturing of prototypes, access to pa
tient cohorts and expensive processing of data [1–10]. Regardless of the 
chosen approach, improvement of existing imaging techniques and the 
development of new ones such as dedicated breast CT [11–16], phase 
contrast breast CT [17–19] or dual energy CT [20] require phases of 

validation and extensive testing. 
Validation of any new evolution in breast x-ray imaging is in many 

cases related to an objective evaluation, based on different features and 
figures of merit (FOMs), computed from the images. Depending on the 
clinical imaging task to be optimized, specific metrics are available. 
While improved detectability of lesion-like signals is often an end goal, 
expressed with metrics such as signal difference-to-noise ratio and 
threshold contrast, our current project addresses applications that may 
benefit from differences in texture of the image. For example, in digital 
mammography, the complexity of the mammograms has been described 
with parameters such as the β value of the power spectrum envelope in 
the spatial frequency domain [5,21–24]. Other parameters include the 
fractal dimension [25], used to classify the breast parenchyma as very 
dense, scattered glandular tissue or fatty [26–30]. Some of these features 
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are also known to correlate with breast cancer risk analysis [31–34]. 
Optimization of the imaging chain may aim to detect specific patterns or 
textures, to preserve them or to improve specific aspects. Textures can be 
particularly influenced when switching to 3D imaging modalities, at the 
implementation of subtraction techniques, with multi modal imaging or 
artificial intelligence-based processing or reconstruction. 

The aim of this work was to build up a radiomics toolbox to quantify 
mammographic textures, to track feature changes in comparison to base 
line and/or study their impact on performance. Features to be imple
mented were first selected from literature, and then further expanded 
with possibly interesting extra functions using MATLAB coding. The 
developed toolbox is intended to facilitate validation and evaluation 
studies performed by researchers and to enable easy (routine) quality 
control measurements (of breast texture) by clinical medical physicists. 

In the following, we illustrate typical results from two state-of-the-art 
applications. 

The following requirements were put forward: (i) the toolbox should 
address the whole spectrum of 2D and 3D breast imaging techniques; (ii) 
common features defined in the literature should be included, (iii) the 
algorithms have to be validated, against computations with other soft
ware packages, and (iv) the (graphical) user interface (GUI) has to be 
intuitive, attractive and time-efficient for common applications. There
fore, the toolbox should offer the possibility to process different types of 
images, to manually or semi-automatically select regions of interest 
(ROIs), to compute a list of high-order statistics, spectral density and 
fractal dimension, and others, and adopt other potentially useful ones, 
such as the Laplacian fractional entropy [22] or any other promising 
function, with provision to save and/or print the output of the 

Fig. 1. Examples for feature extraction through ROIs from (a) fatty and (b) glandular breasts. Skewness and kurtosis are measured by using ROIs of 32 × 32 pixels, 
while the fractal dimension and power spectrum analysis are measured by using a single ROI of 512 × 512 pixels. 

Fig. 2. ROI spectrum and superimposed rings (in yellow) of linearly distributed frequency bands with every 2nd ring omitted for visual clarity (a), and the power 
spectra of a ROI of 128 × 128 pixels taken from the central part of the mammography image. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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processing. Moreover, definition of baseline values, reference data and 
mutual comparisons were considered standard output. 

Such a toolbox can be set up in different ways. There exist software 
applications to load images from different modalities and extract some 
general-purpose image features. One can also find and use dedicated 
scripts for popular image processing tools like ImageJ, MATLAB, IDL 
and even radiomics packages such as pyRadiomics [35]. However, for 
some specific applications, a dedicated toolbox would be much more 
valuable, also taking into account the increasing amount of big data 
applications, and the availability of large data sets for artificial intelli
gence (AI) and neural networks and other evaluations. Radiomics may 
be useful for data cleaning prior to any further (AI) application and to 
acquire ‘explainable’ data compared to neural network outputs, to add 
data to training parameters, or as a next or parallel evaluation. All this is 
only possible with appropriate processing tools. We present two appli
cations of the toolbox: evaluation of features from a set of ’left’ and 
’right’ craniocaudal (CC) mammograms and evaluation of the suitability 
of newly proposed and developed breast phantoms for x-ray-based im
aging based on reference values from clinical mammography images. 

2. Materials and methods 

The features currently included in the toolbox are often used for 
analysis of mammographic images as reported in literature. Most fea
tures are referenced from the IBSI (Image Biomarker Standardization 
Initiative) document, created by groups of researchers [36]. The IBSI 
document provides standardized definitions for a large number of 

radiomics features, which helps for validating the feature computation 
by different tools. The implemented feature set in our applications is not 
frozen – it is rather subject to further extension by the group, but can 
also be enriched by any other user. 

In the current implementation, calculations are performed for every 
individual region of interest (ROI) in the studied image. ROIs in the tool 
can be created by following two approaches: (i) manually, by placing 
each ROI by hand and (ii) semi-automatically, by configuring a region 
for placement in the image, overlapping method and ROI size. The final 
reported result for the features is an average of the results from these 
individual regions of interest (ROIs). The following subsections describe 
the theoretical basis of the implemented features. For clarity, the 
mathematical equations, marked with the letter A, are provided in the 
Appendix Part A. 

2.1. Histogram analysis 

For each ROI, the tool computes the following statistics:  

• Mean value and standard deviation of the intensities (pixel values) 
across the ROIs.  

• Skewness, i.e., the distortion or asymmetry of the data distribution 
compared to the normal bell curve. The symmetry of the frequency 
distribution of the values around the mean value is considered 
informative in breast image analysis, e.g., tailing in the pixel value 
histogram might be due to microcalcifications. Also, skewness values 
are computed from small ROIs and then averaged over the whole 
image. The resulting value could be used to determine the glan
dularity of a breast to some extent, as stated by Byng et al. [26]. 
Specifically, for a distribution, which tends toward lower grey levels, 
i.e., a region of fatty tissue, a positive skewness is expected, while for 
dense breast parts a negative skewness is expected. A commonly used 
computation, following equation A1 in the Appendix, is imple
mented in the tool.  

• Kurtosis, measures the combined weight of the tails, relative to the 
rest of the distribution [37]. The expression used in the tool, is 
described by equation A2. In case of mammography imaging, out
liers of the intensity, such as microcalcification, result in higher or 
lower values of the kurtosis, depending on the relative sizes of the 
microcalcification and the ROI. Both skewness and kurtosis were 
used by Bochud et al. [37] to validate quantitatively the realism of 
the generated synthetic mammograms against patient images. 

2.2. Fractal analysis 

The fractal dimension of the images correlates with the roughness of 
the observed textured areas. Higher fractal dimension corresponds to 
rougher textures and vice versa and can be used for image 

Fig. 3. Two GLCMs (b, c) created from the original matrix (a) for the directions of 0◦ and 180◦ (right and left) and neighbourhood of 1 and 7 bin levels. The (i, j)th 

value in the matrices (b, c) corresponds to the sum of the pairs with grey levels i and j encountered along the specified direction [36]. 

Fig. 4. Example of a part of an original image with grey levels (a) (7 bin levels) 
and corresponding NGTDM (b). For the matrix, i is the intensity value present in 
the image, ni is the number of pixels/voxels with intensity level i, pi is the 
probability of a pixel/voxel being of intensity level i, si is the neighbourhood 
grey level difference for pixels/voxels with grey level i. 
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Fig. 5. A screenshot of the main window of the tool – the numbered areas depict the tools dedicated to certain task.  

Fig. 6. Results window for the calculated features for each ROI in the mammography image.  
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characterization. In the case of mammography, it may be used as an 
indicator of the breast density [21]. There exist several methods for 
calculating the fractal dimension [38]. The one currently implemented 
in the tool is the “box-counting technique” described by Byng et al. 1996 
[26], shown by equation A3. Li et al. [39] demonstrated that the fractal 
dimension may be used as an indicator to assess the breast parenchyma, 
and thus inherently includes a prediction for low or high breast cancer 
risk. Example features extracted from the histogram of the mammog
raphy images of a fatty (ACR1) and a glandular (ACR4) breast are shown 
in Fig. 1. Two types of ROIs differing in their size – 32 × 32 pixels (3.2 
mm × 3.2 mm) and 512 × 512 pixels (51.2 mm × 51.2 mm) – were used 
to evaluate the features. Skewness and kurtosis were calculated based on 
the smaller ROIs, since they reflect the local texture of the finer details. 
Similarly, to the results of Byng et al. [26] and Li et al. [40], fractal 
dimension and skewness values of mammography images of a fatty 
breast are higher (Fig. 1a) compared to the values of these parameters 
extracted from the mammography image of a dense breast (Fig. 1b). 

2.3. Spectral analysis and power law 

The power spectrum describes the strength of the spatial frequencies 
present in the image. For mammographic images, the magnitude of the 
low-frequency components shows a power law [41] as described in A4 in 
the Appendix. 

The tool computes the centred version of the spectral density of the 
image, in which the frequency bands of interest are represented by 
central concentric rings of corresponding width, as shown in Fig. 2a. The 
frequency bands can be integrated or averaged. For calculation of β, the 
logarithm to the base 2 of the total energy per ring is then plotted versus 
the logarithm of the central frequencies of the bands (Fig. 2b). 

2.4. Grey level Co-occurrence matrix (GLCM) 

GLCM, first defined by Haralick et al. [42], is used to calculate fea
tures from an image such as texture, structural patterns and their spatial 
relationship. The method creates a matrix that expresses how combi
nations of pairs of discretised grey levels (intensities) in specified 
neighbourhoods are distributed along one or more of the image di
rections (left to right, bottom to top, etc., Fig. 3). These features rely on 
the probability distribution of the elements in the GLCM that are created 
by normalizing the GLCM matrix and integrating along the rows, col
umns and diagonals [36]. 

The IBSI document contains 25 possible features for calculation from 
the GLCM matrix. The descriptions of the features are referenced from 
the IBSI document [36]. Based on those features, Li et al. [40] showed 
that gene mutation carriers and low-risk women have different 
mammographic patterns. The mammographic images for the gene have 
coarse texture, which is indicated by high coarseness values, low fractal 
dimension and low entropy. Features were also used to classify breast 
textural patterns and assess the breast cancer risk [39,43–45].  

• GLCM Energy (Also known as: Angular Second Momentum, 
Uniformity) 

The GLCM Energy is also known as uniformity, uniformity of energy, 
or angular second moment, and is calculated as described by equation 
A5 in the Appendix. This descriptor is used for evaluation of the struc
tural patterns throughout the whole texture.  

• GLCM Contrast (Also known as: Variance, Inertia) 

The GLCM Contrast feature adds the differences in the intensity be
tween a pixel and its neighbour for all pixels in an ROI. This means that 
the greater the variation, the greater the final value will be. GLCM 
Contrast is calculated by using equation A6. This descriptor is used for 
evaluation of the local variations throughout the texture.  

• GLCM Correlation 

The GLCM Correlation feature measures how correlated a specific 
pixel is to its neighbouring pixels over the whole image. The correlation 
is calculated by using equation A7.  

• GLCM Homogeneity (Also known as: Inverse Difference) 

The GLCM Homogeneity measures the closeness of the distribution of 
the elements in the GLCM to the diagonal. This feature is calculated by 
using equation A8. 

2.5. Neighbourhood grey tone difference matrix (NGTDM) 

This feature extraction method was introduced by Amadasun and 
King [46] as an alternative to the GLCM. The main difference is that the 
NGTDM does not look at the pixel pairs in specific directions, but at the 
closest neighbouring pixels/voxels up to a specified Chebishev distance. 

The NGTDM matrix can be calculated in two ways – by using only the 
valid neighbourhoods (8 for a 2D image and 26 for a 3D image, with 
Chebishev distance of 1), which is the original definition given by 
Adamasun and King [46], or by using the incomplete neighbourhood – 
the latter method is an extended/improved method introduced in the 
IBSI document. In the example in Fig. 4a, all pixels, which do have valid 
neighbourhoods and on which a feature matrix can be calculated, are 
outlined. The pixels outside the boxed area will be ignored. Both 
methods are available for calculation in the toolbox. The calculated 
features from the resulting NGTDM matrix are Coarseness, Contrast, 
Busyness, Complexity and Strength. The reference and the description of 
the features are derived from the IBSI document. The features are used in 
evaluating breast textural patterns aiming at the breast risk prediction 
[40,43]. 

Fig. 7. A flowchart of the common usage of the tool.  
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• NGTDM Coarseness: The NGTDM Coarseness feature indicates the 
level of the spatial rate of change in intensity and is calculated by 
equation A9.  

• NGTDM Contrast: The NGTDM Contrast feature depends on the 
dynamic range of the intensity levels as well as the spatial frequency 
of intensity changes. It is calculated by using equation A10.  

• NGTDM Busyness: The NGTDM Busyness feature describes the 
changes in the intensity between neighbouring pixels. Large changes 
are defining the image as busy. This feature is calculated by equation 
A11.  

• NGTDM Complexity: The NGTDM Complexity feature describes 
how common are the non-uniform and rapid changes in the grey 
levels. It is calculated by equation A12.  

• NGTDM Strength: The NGTDM Strength of the texture is defined by 
equation A13. 

2.6. Software environment 

The tool was implemented in MATLAB. Most of the computations 
were preliminary performed and tested in MATLAB. The coding of all 
features, except the fractal dimension, the power spectrum analysis and 
the statistical features, was verified against the data available in the IBSI 
document [36]. The coding of the statistical features was validated 
versus computations performed with the pyRadiomics library [35], while 
the power spectrum analysis was validated by replicating experimental 
results using the IDL code published by Marshall et al. [47]. The detailed 
validation of the features is presented in the Appendix Part B. 

3. Results and discussion 

The results of this work were separated in two categories. Firstly, we 
presented the user interface, image region selection and the practical 
usage of the tool. Secondly, we apply the tool to two research case 
studies in digital mammography. 

3.1. The toolbox and its GUI  

• User interface 

Figure 5 shows the main screen of the user interface application of 
the toolbox. The user interface is implemented in MATLAB 2013a 
environment using the GUIDE module [48]. Consequently, the toolbox 
was upgraded to work also with MATLAB version 2020a, while at the 
same time keeping backwards compatibility. The five regions high
lighted in this graphical interface relate to different activities and 
functionalities: 

Region 1: Importing images: DICOM, raw data (no header) and other 
common picture formats (e.g., TIF, PNG, etc.) can be imported into the 
“Images” list. Particular raw data formats such as .NRRD and .NII are not 
supported at the moment. The current workspace (loaded images, per
formed analyses, defined ROIs) can also be saved and loaded. The four 
buttons under the list with image files in region 1 (“Images” list) allow 
reloading of the original image, cropping, computing the histogram, and 
obtaining additional information (displaying DICOM header) of the 
studied image. In the current toolbox version, the option to load and 
extract 3D image features (from 3D volume) is implemented in the form 
of separate scripts. Features extracted from tomography slices are 
evaluated in a similar way as 2D planar images. 

Region 2: Visualization area, i.e., an area for displaying the loaded 
images. The image selected from the “Images” list is displayed on the 
right side in grayscale, preserving the original image aspect ratio. 

Region 3: Tools for image inspection and control of the contrast. The 
sliders provided on the left allow contrast adjustments to be applied to 
the displayed image (Fig. 5, region 3). The toolbar additionally provides 
the user with controls to zoom in and out, to pan the image and to 
examine the data of a specific pixel. Ta
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Region 4: Definition of Regions of Interest. A group of controls 
(Fig. 5, region 4) is used to, manually or semi-automatically, create a 
mask and define ROIs in the selected image. Masks are binary matrices 
with the same dimensions as the loaded mammography image, the true 
values of which show the ROIs. The size and sampling method of the 
ROIs (either by percentage overlap or randomly) is selected by the user. 

Region 5: Selection of FOMs. The user can select either a subset or the 
whole set of features from the ‘Calculations’ section (Fig. 5, region 5). 
Before performing calculations on the image, the user is required to add 
at least one ROI in the “Regions and Masks” list (Fig. 5, region 3). An 
example output of the calculations is shown in Fig. 6, where some of the 
calculated features are shown for the selected 289 ROIs. For some fea
tures, like the power spectrum analysis, additional information such as 
spectral density and the selected frequency range (Fig. 2b) are displayed. 
The titles of the columns follow the names of the features (Fig. 6). The 
calculations can be exported as a Comma Separated Value (CSV) file and 

used for further analysis and processing in other environments. For each 
feature, the corresponding histogram can be built based on the ROIs in 
the image and shown in separate windows. The latter can be saved and 
used into reports.  

• ROI selection tools 

The toolbox offers several tools for selection of the ROIs within the 
image, as depicted in Fig. 5 (area 4). First, the ROI dimensions are 
specified in the fields (“Region size (px)”), allowing for any rectangular 
size. Then, the user decides how ROIs will be placed. If manual place
ment is required, the “Manual Options” tools will be exploited. By using 
these tools, the user can place a drag-and-drop rectangle and add a ROI 
of its location to the list on top. The user can also remove all or selected 
regions. 

If a large number of ROIs must be selected, placement by hand might 

Fig. 8. Histograms of first order statistics, skewness, kurtosis, β, fractal dimension, GLCM and NGTDM, summarized for the 2 × 44 pairs of patient mammography 
images. Gaussian fit is shown for the cases with the Gaussian distribution. ‘Lefts’ and ‘Rights’ stand for left CC and right CC mammography image, respectively. 
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not be practical. A semi-automatic approach is available and imple
mented through the tools located in the “Automatic Options” section 
(Fig. 5, area 4) and the “Brush” tool. By toggling the “Edit Mask” button, 
the user enters a mode for specifying the image mask. This mask is used 
to guide the automatic ROI placement. In this section, the tools offer the 
following functionality – creating an initial mask based on a selected 
threshold value; inverting the mask; growing and shrinking the mask 
with a specified step; add or remove areas by specifying rectangular and 
polygonal areas by hand; adding and removing areas with a “Brush” 
tool. When the desired mask is created, the user then selects the method 
(and number, if available) of the ROIs with the drop-down menu on the 
bottom. The toolbox offers ROI selection both in a grid and random 
patterns. The grid method allows for adjacent placement and for spec
ified overlap (by percentage or pixel overlap). In order to use the 
random placement, the user specifies the number of ROIs to be used for 
image population.  

• Using the tool 

By means of the toolbox, an image evaluation / analysis is commonly 
performed following the sequence, presented in the diagram in Fig. 7. 

The image of interest is loaded and visualized. The toolbox works 
with both isotropic and anisotropic images. Part of the computations are 
invariant to the size of the pixel (e.g. power law, fractal analysis), while 
for the others, a possibility for resampling to a square pixel is provided. 
The user defines the parameters of the ROIs (dimensions and locations) 
to be used for the calculations of the features. ROIs can be created 
manually or semi-automatically, as discussed in the previous section. 
Further, the user selects the type(s) of the image analysis and proceeds 
with the computations. Currently, no option for image pre-processing is 
provided, however the tool is open and such possibility can be added 
later, if needed. 

Calculations are performed either on a single image or on a batch of 
images. The batch in the tool is defined as a list of separate images, 
which may eventually be 2D slices from a single volume. The batch in 
scripts may also include stacked images from single files. The parameters 
of the features are specified in a dedicated .mat file, the content of which 
is shown in Appendix Part C. The later may be adjusted from the 
MATLAB console. The source code of the tool (only the custom- 
developed scripts, excluding MATLAB-provided toolboxes and core 
scripts) is open and is available on request together with a complete 
guide and user supplies. 

3.2. Case studies 

The developed tool was used in a series of image evaluation studies 
[49–53]. In the following paragraph, we show the use of the tool in two 
original research applications in the field of x-ray breast imaging: (1) 
evaluation of the features from a series of left and right (pairs) CC breast 
clinical mammograms, and (2) evaluation of the suitability of newly 
proposed and developed breast phantoms for x-ray-based imaging. The 
first application aimed to obtain reference values of radiomics features 
for mammograms (free of breast lesions). The second application aimed 
at evaluation of existing physical breast phantoms by comparing fea
tures from their images with reference features from clinical 
mammography images. Results from such comparison can be used to 
further improve the phantoms.  

• Example 1: Feature extraction in a series of mammographic images 

With the newly developed radiomics toolbox we assessed 88 
mammography images (left and right CC pairs of each patient, 2 × 44 
total) selected to be in cranio-caudal (CC) view, with compressed breast 
thickness ranging from 50 mm to 59 mm, acquired with Siemens 
Mammomat Inspiration system (Forchheim, Germany) with a pixel 
resolution of 85 μm × 85 μm. First order statistics, skewness, kurtosis, Ta
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parameter β, fractal dimension, GLCM and NGTDM were calculated over 
at least 100 ROIs in each of the patient mammography images. Next, the 
Anderson-Darling test was used to determine whether the observed 
distribution of the individual features from a single image can be 
considered as normal (Table 1 for left and right mammographic CC 
images). For the features following the normal distributions, mean 
values and standard deviations were calculated. Further, histograms of 
these features were displayed in Fig. 8. The settings used for the calcu
lations were the following: for skewness and kurtosis and other first- 
order statistics (minimum, maximum, etc.) the ROI size was 64 pixels 
× 64 pixels (5.44 mm × 5.44 mm); for the calculation of the power-law 
exponent β, fractal dimension, GLCM and NGTDM the ROI size was 128 
pixels × 128 pixels (10.88 mm × 10.88 mm) with 50% overlap of the 
regions. All ROIs were placed “inside” the projected breast, excluding 
skin, muscle and non-breast background, as shown in Figs. 1 and 5. 

Table 2 shows the p-values after the null hypothesis testing of fea
tures from left and right mammography CC images using t-test for fea
tures following normal distribution and Mann–Whitney U test for the 
rest of features. 

Measurements for features extracted from the set of 44 pairs of 
mammograms of left and right breasts demonstrate very close data. 
Results showed that there is no statistically significant difference (sig
nificance level α = 0.05) between the CC view images of our left and 
right CC mammography datasets. Moreover, the results for skewness of 
the left and right breast mammography images both demonstrated 
positive values, suggesting that the mammography images were pre
dominantly from fatty breasts. This is also well supported by the rela
tively high fractal values (2.7–3.0) and lower β values, suggesting that 
mammograms are from more fatty breasts [44].  

• Example 2. Evaluation of newly developed physical phantoms 
dedicated to x-ray imaging. 

This study aimed at evaluating anthropomorphic physical breast 
phantoms to be used for 3D breast imaging. For this purpose, the 
radiomics toolbox was used in the evaluation of 100 (left CC or right CC, 
but not pairs) clinical mammograms. The new phantom (“L2”, Fig. 9b) is 
designed as a successor to the “L1” sphere phantom (Fig. 9a) by a 

cooperation between the team in KU Leuven and in the University of 
Vienna [54]. This new iteration has several differences when compared 
to the first version of the object – L1 has compressed breast thickness 
equivalent of 6 cm and physical thickness of 4.8 cm, while L2 has 
thickness equivalent of 5.5 cm and physical thickness of 5.35 cm. The 
spheres in the container have the same diameters and are filled 
following the same fractal ratios. The L2 phantom has a central plate 
covering the whole area and has its mass models 3D printed on it, while 
in the L1, the central plate is a strip, covering part of the whole container 
and its mass models were glued to the plate. Lastly, the filling between 
the spheres in the L2 is paraffin oil compared to the distilled water used 
in L1. Shaking both phantoms rearranges the spheres, thus creating new 
textures. 

Using the radiomics toolbox, we computed the features of the images 
of the two phantoms (L1 and L2) and we compared them to the reference 
data of the 100 single images. All images had a pixel pitch of 85 µm and 
were acquired on the same Siemens Inspiration mammography system 
(Forchheim, Germany), at a tube voltage of 28 kVp under automatic 
exposure control. For the calculations of the first order statistics, the size 
of the ROI was 64 × 64 pixels, while for the power spectrum analysis and 
the rest of the features this size was 128 × 128 pixels with 50% overlap. 
Fig. 10 presents the radiomics feature histograms for the patient and 
phantom groups. 

We followed the approach of Acciavatti et al. [55] and verified 
whether a given feature is realistic in comparison to features extracted 
from patient images. More specifically, if this feature is between 2.5th 
and 97.5th percentiles of the clinical distribution, then we accept that 
this is a realistic feature. The results are summarised in Table 3, showing 
important parameter coincidence for β, GLCM energy and GLCM ho
mogeneity with clinical data. They are shown in literature to be 
potentially improving the discrimination power of risk-prediction 
models [56]. 

The L1 phantom texture gives β, fractal dimension, GLCM correlation 
and NGTDM busyness features that are close to the mean of the distri
bution of the patient texture features. Only for the GLCM energy and 
NGDTM Contrast features the values fall out of the range of the patient 
values. In the case of L2, there is a close match for the β parameter be
tween phantom and patient images (Fig. 10, β values). The other 

Fig. 9. Physical breast phantoms: L1 (a, c) and L2 (b, d). Both contain acrylic spheres of different sizes, and with an identical total volume of the spheres in the 
separate size groups. L1 is filled with water, while L2 is filled with paraffin oil. 
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Fig. 10. Overlapping histograms of the results from the calculated features from a set of 100 mammography patient images (blue), 10 L1 images (orange) and 10 L2 
images (yellow): skewness, kurtosis, fractal dimension, and β (integrated ring frequencies method), GLCM features and NGTDM features. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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calculated parameters for the L2 phantom differed from the corre
sponding values from patient data even though the phantom filling 
material of the L2 phantom, namely acrylic and paraffin oil, are closer in 
x-ray attenuation to breast glandular and adipose tissue respectively 
when compared to the material in L1, acrylic and distilled water. The 
latter results in a model which produces mammograms of more dense 
breasts. This experiment indicates that radiomics analysis may be 
powerful tool in the process of improving the physical phantoms. From 
this first analysis, the L2 phantom seemed inferior to the L1 phantom for 
the texture analysis characteristics. For the improvement of the char
acteristics of L2 phantom, the analysis of the mammography images 
shown in Fig. 10 will be explored. 

The developed toolbox turns to be useful in analysing mammography 
images and in comparing results to outcomes from other clinical and 
phantom studies. It can help in feature extraction not only from 
mammographic but also from other types of medical images, provided 
they fulfil the format requirements specified in section 3.1. The toolbox 
can be run in MATLAB version 2013a or later. Most of the scripts can be 
run even in OCTAVE, which is freely available under the terms of the 

GNU General Public License. The toolbox provides functionality 
encapsulated with a user interface, without the need of writing pro
gramming code. This is one of the strengths of this tool. The tool is 
suitable for researchers using MATLAB and can be exploited in any other 
educational and research activities [61]. It needs rather a short time 
investment related to the installation of MATLAB, and no time in setting 
up the tool. 

4. Conclusions 

Using MATLAB, we created a toolbox, including a GUI application 
for extraction of features of interest, dedicated for applications in breast 
imaging modalities. The toolbox was successfully used for two practical 
questions in actual mammography research. The tool was designed for 
applications in breast imaging, but it is not limited to this application – 
as other imaging modalities use similar techniques. In addition, the tool 
is available to the community upon reasonable request and its func
tionality can also be easily expanded to suit more specific needs and 
applications. 
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Appendix  

A. Coded features   

Feature Calculation 

Skewness 
Skewness =

∑ (Xi − X)3

nσ3 (A1) 

Xi stands for the individual pixel intensity values of the ROI, X is their mean value, σ is the standard deviation, and n is the sample size (i.e., the number of the 
pixels in the ROI). The tool also computes the unbiased value for the skewness [37], by substituting n in equation 3 with (n − 1).  

Kurtosis 
Kurtosis =

∑

(
Xi − X

)4

nσ4 (A2) 

The unbiased value is also calculated.  
Fractal dimension The current implementation is similar to the “box-counting technique” [26]. If the image pixels are represented in three-dimensional space as adjacent prismatic 

bars, the proposed method computes the area A, of the total surface they form. In case of square pixels of size ε, this area is calculated as follows: A(ε) =
∑

x,yε2 +
∑

x,yε(|iε(x, y) − iε(x, y + 1)| + |iε(x, y) − iε(x + 1, y)|)
where iε(x,y)is the pixel value at location (x, y). The fractal dimension D of an image is then calculated as follows: 

D = 2 −
Δlog[A(ε)]

Δlog[ε] (A3) 

and the resulting value reported by the tool is the average over all the ROIs.  
Power law For mammographic images, the magnitude of the low-frequency components shows a power law behaviour [41]: 

P(f) =
c
fβ(A4) 

where P is the power spectrum, c is a constant, f represents the spatial frequency (lp/mm) in the radial direction, and β is a factor that determines the slope of the 
lg(P) vs. lg(f) graph. The descriptive parameter β has been used to characterize the texture of the breast.  

GLCM Energy FGLCMEnergy =
∑Ng

i=1
∑Ng

j=1p2
ij(A5) 

where Ng is the number of discretized grey levels present in the ROI and pij is the probability value for the ij-th grey tone from the calculated GLCM matrix.  
The GLCM 

Contrast 
FGLCMContrast =

∑Ng
i=1
∑Ng

j=1(i − j)2pij(A6) 
For a constant image, the GLCM Contrast is 0.  

GLCM Correlation 

(continued on next page) 

Table 3 
Evaluation of feature realism for L1 and L2 phantoms. √ - realistic, × - non- 
realistic.  

Feature L1 L2 

Skewness √ £

Kurtosis √ £

Beta, β √ √ 
Fractal dimension √ £

GLCM Contrast √ £

GLCM Correlation √ £

GLCM Energy £ √ 
GLCM Homogeneity √ √ 
NGDTM Coarseness √ £

NGDTM Contrast £ £

NGDTM Busyness √ £

NGDTM Complexity √ £

NGDTM Strength √ √  
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(continued ) 

Feature Calculation 

FGLCMCorrelation =
1

σi.σ.j

∑Ng

i=1

∑Ng

i=1
(i − μi)

(
j − μj

)
pij(A7) 

where μi =
∑

i ipi and σi = (
∑

i(i − μi)
2pi)

1/2 are the mean and the standard deviation of the row marginal probability pi. If the calculation is done on a symmetric 
matrix, the j indices can be swapped with I, simplifying the formula.  

GLCM 
Homogeneity 

FGLCMHomogeneity =
∑Ng

i=1
∑Ng

i=1
pij

1 + |i − j|
(A8)  

NGTDM 
Coarseness 

FCoarseness =
1

∑Ng
i=1pisi

(A9) 

where Ng is the number of discretized grey levels present in the ROI, si is the neighbourhood grey tone difference value and pi is the grey level probability.  
NGTDM Contrast 

FContrast =

(
1

Ng,p
(
Ng,p − 1

)
∑Ng

i1=1

∑Ng

i2=1
pi1pi2(i1 − i2)2

)(
1

Nv,c

∑Ng

i=1
si

)

(A10) 

where Nv,c =
∑

ni is total number of voxels that have at least one neighbour. If all voxels have at least one neighbour, then Nv,c = Nv. Nv is the number of all 
voxels. Furthermore, let Ng,p ≤ Ng be the number of discretised grey levels with pi > 0. Grey level probabilities pi1 and pi2 are copies of pi with different iterators, 
i.e., pi1 = pi2 for i1 = i2. The first term considers the grey level dynamic range, whereas the second term is a measure for intensity changes within the volume. If 
Ng,p = 1,FContrast = 0.  

NGTDM Busyness 
FBusyness =

∑Ng
i=1pisi

∑Ng
i1=1
∑Ng

i2=1|i1pi1 − i2pi2|
,pi1 ∕= 0andpi2 ∕= 0(A11) 

If Ng,p = 1,FBusyness = 0  
NGTDM 

Complexity 
FComplexity =

1
Nv,c

∑Ng

i1=1

∑Ng

i2=1
|i1 − i2 |

pi1si1 + pi2si2

pi1 + pi2
,pi1 ∕= 0andpi2 ∕= 0(A12) 

as before pi1 = pi2 for i1 = i2 and likewise si1 = si2 for i1 = i2.  
NGTDM Strength 

FStrength =

∑Ng
i1=1
∑Ng

i2=1(pi1 + pi2)(i1 − i2)2

∑Ng
i=1si

,pi1 ∕= 0andpi2 ∕= 0(A13) 

as before, pi1 = pi2 for i1 = i2. If 
∑Ng

i=1si = 0,FStrength = 0.     

B. Feature Verification 

The verification of the toolbox features was performed with both the pyRadiomics library [35]. The pyRadiomics library is based on the feature 
definitions described in the IBSI document. For validation purposes, two types of phantoms are used: the digital phantom described in the IBSI 
document (chapter 5.1, IBSI [36]), and patient clinical 2D and 3D mammography images. The digital phantom is a matrix with size of 5 × 4 × 4 pixels 
and is presented in MATLAB as follows: 

IBSIphantom = zeros(4,5,4); % [Row, Col, Depth] 
IBSIphantom(:,:,1) = [1,4,4,1,1; 1,4,6,1,1; 4,1,6,4,1; 4,4,6,4,1]; 
IBSIphantom(:,:,2) = [1,4,4,1,1; 1,1,6,1,1; 1,1,3,1,1; 4,4,6,1,1]; 
IBSIphantom(:,:,3) = [1,4,4,1,1; 1,1,1,1,1; 1,1,9,1,1; 1,1,6,1,1]; 
IBSIphantom(:,:,4) = [1,4,4,1,1; 1,1,1,1,1; 1,1,1,1,1; 1,1,6,1,1]; 
Table 4 lists the calculated features. Results showed an excellent match between calculated features. 
Patient clinical 2D and 3D mammography images were selected randomly from two publicly available datasets with clinical mammography 

images: the Maxima database [57] and a new dataset of breast phantom images registered at Zenodo public repository [58], both being at the basis for 
the development of 3D physical and computational breast phantoms [59] and virtual clinical trials in breast imaging [60]. Fig. 11a, b shows ROIs 

Table 4 
Feature results from the IBSI phantom analysed through the pyRadiomics library and this toolbox. For this example, 32 bins were used for the toolbox and bin width of 
20.84 was used for the pyRadiomics library for the rescaling. Step and neighborhood for the GLCM and NGTDM were set to 1.   

pyRadiomics This toolbox 

energy  567.00  567.00 
kurtosis  2.65  2.65 
max  6.00  6.00 
mean  2.15  2.15 
median  1.00  1.00 
min  1.00  1.00 
range  5.00  5.00 
variance  1.08  1.08 
skewness  3.05  3.05 
GLCM Contrast  5.32  5.32 
GLCM Correlation  0.16  0.16 
GLCM Homogeneity  0.68  0.68 
GLCM Energy  0.30  0.30 
NGTDM Busyness  6.54  6.54 
NGTDM Coarseness  0.03  0.03 
NGTDM Complexity  13.54  13.54 
NGTDM Contrast  0.58  0.58 
NGTDM Strength  0.76  0.76  
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extracted from a mammographic image (Maxima database) and a tomosynthesis slice of an imaged patient breast (Maxima database), while Fig. 11c 
shows a ROI from a phantom CT slice from the new dataset of breast phantom images registered at Zenodo. In the latter case, the grey levels 
correspond to the basic breast tissue types: adipose and glandular tissue. The results, summarised in Table 5, showed an exact match to the mea
surements performed with the pyRadiomics.  

C. Default feature values 

Default values of the included features are shown in Table 6. These features are stored in a .mat file, which can be loaded in the MATLAB 

Fig. 11. Region of interests (ROIs) used for validation of features: ROI extracted from a patient (a) mammography image, (b) slice from a reconstructed tomo
synthesis volume and (c) phantom CT slice. ROIs in (a) and (b) have dimensions of 500 × 500 pixels, while in (c) the ROI is 90 × 90 pixels. 

Table 5 
Comparison of features extracted from publicly available clinical images [58,59] by using the pyRadiomics library and this toolbox. The first pair of columns (a) lists the 
features extracted from mammography ROI, the second (b) is from the central slice of a reconstructed tomosynthesis volume (Fig. 11 b) and the last (c) from an 
isometric phantom voxel model. For this example, 32 bins were used for both pyRadiomics and the toolbox and for the rescaling. Step and neighbourhood parameters 
for GLCM and NGTDM were set to 1.   

Patient mammographic image (a) Patient tomosynthesis (b) Segmented Phantom Slice (c)  

pyRadiomics MATLAB pyRadiomics MATLAB pyRadiomics MATLAB 

Maximum  4004.00  4004.00  2679.00  2679.00  2.00  2.00 
Minimum  822.00  822.00  1505.00  1505.00  1.00  1.00 
Range  3182.00  3182.00  1174.00  1174.00  1.00  1.00 
Median  1707.00  1707.00  1957.00  1957.00  1.00  1.00 
Mean  1804.49  1804.50  1985.52  1985.50  1.25  1.25 
Variance  2.22E + 05  2.22E + 05  3.53E + 04  3.53E + 04  0.19  0.19 
Skewness  0.72  0.72  0.43  0.43  1.14  1.14 
Kurtosis  3.01  3.01  2.44  2.44  2.30  2.30 
Energy  8.63E + 11  8.63E + 11  9.86E + 11  9.86E + 11  1.36E + 04  1.36E + 04 
GLCM Contrast  1.34  1.34  1.72  1.72  70.36  70.36 
GLCM Correlation  0.97  0.97  0.97  0.97  0.80  0.80 
GLCM Energy  1.74E-02  1.74E-02  1.48E-02  1.48E-02  5.58E-01  5.58E-01 
GLCM Homogeneity  0.65  0.65  0.66  0.66  0.93  0.93 
NGTDM Coarseness  1.06E-04  1.06E-04  1.42E-04  1.42E-04  1.13E-04  1.13E-04 
NGTDM Contrast  2.76E-02  2.76E-02  2.76E-02  2.76E-02  4.13E + 02  4.13E + 02 
NGTDM Busyness  28.46  28.46  17.34  17.34  602.65  602.65 
NGTDM Complexity  308.33  308.33  233.10  233.10  70.62  70.62 
NGTDM Strength  6.16E-02  6.16E-02  5.95E-02  5.95E-02  0.11  0.11  

Table 6 
Default feature parameters specified in the dedicated .mat file.  

Feature parameter Value Comment 

afBetaLow 0.1 Lower frequency for the β value 
afBetaHigh 1 Higher frequency for the β value 
fractalIterations 8 Number of iterations for the Fractal Dimension 
GLCMDistance 1 Pixel distance for the GLCM feature 
GLCMGrayLevels 32 Number of gray levels to rescale the image to before extracting the features 
GLCMGrayLimits 0 Range used scaling input image into gray levels, specified as a 2-element vector [low high] 
GLCMSymmetry 1 Specify if the resulting matrices with opposite directions are summed 
NGTDMDistance 1 Pixel neighbourhood distance for the NGTDM feature 
NGTDMGrayLevels 32 Number of gray levels to rescale the image to before extracting the features  

S. Marinov et al.                                                                                                                                                                                                                                



Physica Medica 89 (2021) 114–128

127

environment. 
The content of the mat file can be updated by the following procedure (via the console window):

References 

[1] Bliznakova K, Bliznakov Z, Bravou V, Kolitsi Z, Pallikarakis N. A three-dimensional 
breast software phantom for mammography simulation. Phys Med Biol 2003;48 
(22):3699–719. 

[2] Bliznakova K, Sechopoulos I, Buliev I, Pallikarakis N. BreastSimulator: a software 
platform for breast x-ray imaging research. J Biomed Graph Comput 2012;2(1). 
https://doi.org/10.5430/jbgc.v2n1p1. 

[3] Bliznakova K, Suryanarayanan S, Karellas A, Pallikarakis N. Evaluation of an 
improved algorithm for producing realistic 3D breast software phantoms: 
application for mammography. Med Phys 2010;37(11):5604–17. 

[4] Bliznakova K, Russo P, Mettivier G, Requardt H, Popov P, Bravin A, et al. 
A software platform for phase contrast x-ray breast imaging research. Comput Biol 
Med 2015;61:62–74. 

[5] Mettivier G, Bliznakova K, Sechopoulos I, Boone JM, Di Lillo F, Sarno A, et al. 
Evaluation of the BreastSimulator software platform for breast tomography. Phys 
Med Biol 2017;62(16):6446–66. 

[6] MacKenzie A, et al. Comparison of synthetic 2D images with planar and 
tomosynthesis imaging of the breast using a virtual clinical trial. Progress in 
Biomedical Optics and Imaging - Proceedings of SPIE. 2018. 

[7] Sharma D, Graff CG, Badal A, Zeng R, Sawant P, Sengupta A, et al. Technical Note: 
In silico imaging tools from the VICTRE clinical trial. Med Phys 2019;46(9): 
3924–8. 

[8] Badano A, Graff CG, Badal A, Sharma D, Zeng R, Samuelson FW, et al. Evaluation of 
digital breast tomosynthesis as replacement of full-field digital mammography 
using an in silico imaging trial. JAMA Netw Open 2018;1(7):e185474. https://doi. 
org/10.1001/jamanetworkopen.2018.5474. 

[9] Badano A, et al. In silico imaging clinical trials for regulatory evaluation: Initial 
considerations for VICTRE, a demonstration study. Progress in Biomedical Optics 
and Imaging - Proceedings of SPIE. 2017. 

[10] Bakic PR, et al. Virtual clinical trial of lesion detection in digital mammography 
and digital breast tomosynthesis. 2018: SPIE. 

[11] Russo P, Mettivier G, Lauria A, Montesi MC. X-ray cone-beam breast computed 
tomography: phantom studies. IEEE Trans Nucl Sci 2010;57(1):160–72. 

[12] Mettivier G, Russo P, Cesarelli M, Ospizio R, Passeggio G, Roscilli L, et al. 
Dedicated scanner for laboratory investigations on cone-beam CT/SPECT imaging 
of the breast. Nucl Instrum Methods Phys Res Sect A-Accelerators Spectrometers 
Detectors Associated Equipment 2011;629(1):350–6. 

[13] Sarno A, Mettivier G, Russo P. Dedicated breast computed tomography: Basic 
aspects. Med Phys 2015;42(6Part1):2786–804. 

[14] Sarno A, Mettivier G, Di Lillo F, Cesarelli M, Bifulco P, Russo P. Cone-beam micro 
computed tomography dedicated to the breast. Med Eng Phys 2016;38(12): 
1449–57. 

[15] Kalender WA, Beister M, Boone JM, Kolditz D, Vollmar SV, Weigel MCC. High- 
resolution spiral CT of the breast at very low dose: concept and feasibility 
considerations. Eur Radiol 2012;22(1):1–8. 

[16] Boone JM, Nelson TR, Lindfors KK, Seibert JA. Dedicated breast CT: radiation dose 
and image quality evaluation. Radiology 2001;221(3):657–67. 

[17] Sarno A, Mettivier G, Golosio B, Oliva P, Spandre G, Di Lillo F, et al. Imaging 
performance of phase-contrast breast computed tomography with synchrotron 
radiation and a CdTe photon-counting detector. Phys Med 2016;32(5):681–90. 

[18] Longo R, Arfelli F, Bellazzini R, Bottigli U, Brez A, Brun F, et al. Towards breast 
tomography with synchrotron radiation at Elettra: first images. Phys Med Biol 
2016;61(4):1634–49. 

[19] Delogu P, Golosio B, Fedon C, Arfelli F, Bellazzini R, Brez A, et al. Imaging study of 
a phase-sensitive breast-CT system in continuous acquisition mode. J Instrum 
2017;12(01):C01016. 

[20] Ding H, Ducote JL, Molloi S. Measurement of breast tissue composition with dual 
energy cone-beam computed tomography: a postmortem study. Med Phys 2013;40 
(6Part1):061902. https://doi.org/10.1118/1.4802734. 

[21] Heine JJ, Velthuizen RP. Spectral analysis of full field digital mammography data. 
Med Phys 2002;29(5):647–61. 

[22] Abbey CK, Nosratieh A, Sohl-Dickstein J, Yang K, Boone JM. Non-Gaussian 
statistical properties of breast images. Med Phys 2012;39(11):7121–30. 

[23] Mainprize JG, Tyson AH, Yaffe MJ. The relationship between anatomic noise and 
volumetric breast density for digital mammography. Med Phys 2012;39(8):4660–8. 

[24] Cockmartin L, et al. Power spectrum analysis of an anthropomorphic breast 
phantom compared to patient data in 2D digital mammography and breast 
tomosynthesis. In: Lecture Notes in Computer Science (including subseries Lecture 
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 2014. 
p. 423–9. 

[25] Lopes R, Betrouni N. Fractal and multifractal analysis: a review. Med Image Anal 
2009;13(4):634–49. 

[26] Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ. Automated analysis of 
mammographic densities. Phys Med Biol 1996;41(5):909–23. 

[27] Karssemeijer N, Hendriks JHCL. Computer-assisted reading of mammograms. Eur 
Radiol 1997;7(5):743–8. 

[28] Shepherd JA, Herve L, Landau J, Fan B, Kerlikowske K, Cummings SR. Clinical 
comparison of a novel breast DXA technique to mammographic density. Med Phys 
2006;33(5):1490–8. 

[29] Conroy SM, Woolcott CG, Koga KR, Byrne C, Nagata C, Ursin G, et al. 
Mammographic density and risk of breast cancer by adiposity: an analysis of four 
case-control studies. Int J Cancer 2012;130(8):1915–24. 

[30] Tagliafico A, Tagliafico G, Astengo D, Airaldi S, Calabrese M, Houssami N. 
Comparative estimation of percentage breast tissue density for digital 
mammography, digital breast tomosynthesis, and magnetic resonance imaging. 
Breast Cancer Res Treat 2013;138(1):311–7. 

[31] Boyd NF, Lockwood GA, Martin LJ, Knight JA, Byng JW, Yaffe MJ, et al. 
Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers 
Prev 1998;10(3-4):113–26. 

[32] McCormack VA, Dos Santos Silva I. Breast density and parenchymal patterns as 
markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 
2006;15(6):1159–69. 

[33] Alonzo-Proulx O, Jong RA, Yaffe MJ. Volumetric breast density characteristics as 
determined from digital mammograms. Phys Med Biol 2012;57(22):7443–57. 

[34] Nazari SS, Mukherjee P. An overview of mammographic density and its association 
with breast cancer. Breast Cancer 2018;25(3):259–67. 

[35] van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. 
Computational radiomics system to decode the radiographic phenotype. Cancer 
Res 2017;77(21):e104–7. 

[36] Zwanenburg A, et al. Image biomarker standardisation initiative arXiv e-prints, 
2016. arXiv:1612.07003. 

[37] Bochud F, Abbey C, Eckstein M. Statistical texture synthesis of mammographic 
images with super-blob lumpy backgrounds. Opt Express 1999;4(1):33–42. 

[38] Caldwell CB, Stapleton SJ, Holdsworth DW, Jong RA, Weiser WJ, Cooke G, et al. 
Characterisation of mammographic parenchymal pattern by fractal dimension. 
Phys Med Biol 1990;35(2):235–47. 

[39] Li H, Giger ML, Olopade OI, Lan Li. Fractal analysis of mammographic 
parenchymal patterns in breast cancer risk assessment. Acad Radiol 2007;14(5): 
513–21. 

[40] Li H, et al. Computerized texture analysis of mammographic parenchymal patterns 
of digitized mammograms. Acad Radiol 2005;12(7):863–73. 

[41] Heine JJ, Deans SR, Velthuizen RP, Clarke LP. On the statistical nature of 
mammograms. Med Phys 1999;26(11):2254–65. 

S. Marinov et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S1120-1797(21)00258-1/h0005
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0005
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0005
https://doi.org/10.5430/jbgc.v2n1p1
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0015
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0015
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0015
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0020
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0020
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0020
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0025
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0025
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0025
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0030
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0030
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0030
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0035
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0035
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0035
https://doi.org/10.1001/jamanetworkopen.2018.5474
https://doi.org/10.1001/jamanetworkopen.2018.5474
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0045
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0045
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0045
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0055
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0055
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0060
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0060
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0060
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0060
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0065
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0065
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0070
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0070
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0070
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0075
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0075
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0075
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0080
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0080
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0085
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0085
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0085
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0090
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0090
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0090
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0095
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0095
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0095
https://doi.org/10.1118/1.4802734
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0105
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0105
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0110
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0110
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0115
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0115
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0120
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0120
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0120
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0120
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0120
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0125
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0125
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0130
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0130
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0135
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0135
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0140
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0140
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0140
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0145
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0145
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0145
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0150
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0150
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0150
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0150
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0155
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0155
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0155
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0160
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0160
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0160
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0165
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0165
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0170
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0170
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0175
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0175
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0175
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0185
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0185
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0190
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0190
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0190
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0195
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0195
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0195
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0200
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0200
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0205
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0205


Physica Medica 89 (2021) 114–128

128

[42] Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. 
IEEE Trans Syst Man Cybern 1973;SMC-3(6):610–21. 

[43] Castella C, Abbey CK, Eckstein MP, Verdun FR, Kinkel K, Bochud FO. Human linear 
template with mammographic backgrounds estimated with a genetic algorithm. 
J Opt Soc Am A Opt Image Sci Vis 2007;24(12):B1. https://doi.org/10.1364/ 
JOSAA.24.0000B1. 

[44] Li H, Giger ML, Olopade OI, Chinander MR. Power spectral analysis of 
mammographic parenchymal patterns for breast cancer risk assessment. J Digit 
Imaging 2008;21(2):145–52. 

[45] Kontos D, Bakic PR, Carton A-K, Troxel AB, Conant EF, Maidment ADA. 
Parenchymal texture analysis in digital breast tomosynthesis for breast cancer risk 
estimation: a preliminary study. Acad Radiol 2009;16(3):283–98. 

[46] Amadasun M, King R. Textural features corresponding to textural properties. IEEE 
Trans Syst Man Cybern 1989;19(5):1264–74. 

[47] Marshall NW. A comparison between objective and subjective image quality 
measurements for a full field digital mammography system. Phys Med Biol 2006;51 
(10):2441–63. 

[48] MathWorks. Matlab-MathWorks. 2016; Available from: https://www.mathworks. 
com/products/matlab.html. 

[49] Baneva Y, Bliznakova K, Cockmartin L, Marinov S, Buliev I, Mettivier G, et al. 
Evaluation of a breast software model for 2D and 3D X-ray imaging studies of the 
breast. Phys Med 2017;41:78–86. 

[50] Gospodinova G, Bliznakova K. An approach of modelling of breast lesions, in 
Proceedings of the 1st International Conference “Applied Computer Technologies”. 
Ohrid, Macedonia: Ohrid: University of Information Science and Technology “St. 
Paul the Apostle” –; 2018. p. 149–53. 

[51] Feradov F, Marinov S, Bliznakova K. Physical Breast Phantom Dedicated for 
Mammography Studies. In: Henriques J, Neves N, de Carvalho P, editors. XV 
Mediterranean Conference on Medical and Biological Engineering and Computing 
– MEDICON 2019. MEDICON 2019. IFMBE Proceedings, 2020. vol 76. Springer, 
Cham. https://doi.org/10.1007/978-3-030-31635-8_41. 

[52] Bliznakova K, et al. Validation of a software platform for 2D and 3D phase contrast 
imaging: Preliminary subjective evaluation. Proceedings of SPIE - The 
International Society for Optical Engineering. 2020. 

[53] Dukov NT, et al. An approach for printing tissue-mimicking abnormalities 
dedicated to applications in breast imaging. In: 28th International Scientific 
Conference Electronics, ET 2019 - Proceedings 2019. 

[54] Salomon E, et al. Equivalent breast thickness and dose sensitivity of a next iteration 
3D structured breast phantom with lesion models. In: Medical Imaging 2020: 
Physics of Medical Imaging. 2020: SPIE. 

[55] Acciavatti RJ, et al. Calculation of radiomic features to validate the textural realism 
of physical anthropomorphic phantoms for digital mammography. 2020: SPIE; 
2020. 

[56] Malkov S, Shepherd JA, Scott CG, Tamimi RM, Ma L, Bertrand KA, et al. 
Mammographic texture and risk of breast cancer by tumor type and estrogen 
receptor status. Breast Cancer Res 2016;18(1). https://doi.org/10.1186/s13058- 
016-0778-1. 

[57] Bliznakova K, Dukov N, Feradov F, Gospodinova G, Bliznakov Z, Russo P, et al. 
Development of breast lesions models database. Phys Med 2019;64:293–303. 

[58] Sarno A, Mettivier G, Franco F, Varallo A, Bliznakova K, Hernandez AM, et al. 
Dataset of patient-derived digital breast phantoms for in silico studies in breast 
computed tomography, digital breast tomosynthesis, and digital mammography. 
Med Phys 2021;48(5):2682–93. https://doi.org/10.1002/mp.v48.510.1002/ 
mp.14826. 

[59] Bliznakova Kristina. The advent of anthropomorphic three-dimensional breast 
phantoms for X-ray imaging. Phys Med 2020;79:145–61. 

[60] di Franco F, Sarno A, Mettivier G, Hernandez AM, Bliznakova K, Boone JM, et al. 
GEANT4 Monte Carlo simulations for virtual clinical trials in breast X-ray imaging: 
Proof of concept. Phys Med 2020;74:133–42. 

[61] Bliznakova K, Buliev I, Bliznakov Z. Anthropomorphic Phantoms in Image Quality 
and Patient Dose Optimization. In: A EUTEMPE Network book. 2018, IOP 
Publishing, online ISBN: 978-0-7503-1323-0, Print ISBN: 978-0-7503-1324-7. 

S. Marinov et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S1120-1797(21)00258-1/h0210
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0210
https://doi.org/10.1364/JOSAA.24.0000B1
https://doi.org/10.1364/JOSAA.24.0000B1
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0220
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0220
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0220
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0225
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0225
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0225
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0230
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0230
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0235
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0235
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0235
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0245
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0245
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0245
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0250
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0250
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0250
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0250
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0260
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0260
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0260
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0275
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0275
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0275
https://doi.org/10.1186/s13058-016-0778-1
https://doi.org/10.1186/s13058-016-0778-1
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0285
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0285
https://doi.org/10.1002/mp.v48.510.1002/mp.14826
https://doi.org/10.1002/mp.v48.510.1002/mp.14826
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0295
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0295
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0300
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0300
http://refhub.elsevier.com/S1120-1797(21)00258-1/h0300

	Radiomics software for breast imaging optimization and simulation studies
	1 Introduction
	2 Materials and methods
	2.1 Histogram analysis
	2.2 Fractal analysis
	2.3 Spectral analysis and power law
	2.4 Grey level Co-occurrence matrix (GLCM)
	2.5 Neighbourhood grey tone difference matrix (NGTDM)
	2.6 Software environment

	3 Results and discussion
	3.1 The toolbox and its GUI
	3.2 Case studies

	4 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	Appendix Acknowledgments
	References


