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Abstract—Fine-grain tactile sensing has recently gained much
attention in robotics applications where the manipulation of
potentially fragile objects must be provided. This has led to
the emergence of electronic skin (e-skin) sensors, usually im-
plemented with conventional frame-based acquisition chains. In
addition, prosthetics applications require e-skins with human-
level, sub-millimeter spatial resolution. This paper proposes to
study two types of spike-based e-skin readout circuits, based
on conventional and neuromorphic level crossing architectures.
Compared to prior frame-based, coarse spatial resolution readout
schemes, a sub-millimeter spiking e-skin scheme is modeled and
compared to its frame-based counterpart in terms of power
consumption and texture classification accuracy, using a Spiking
Neural Network. Our analysis shows that the sparsity-inducing
spike-based solutions achieve one order of magnitude lower
power consumption while reaching a higher classification accu-
racy (87.92%) compared to the frame-based readout (74.58%).

Index Terms—electronic skin, spiking readout, level crossing

I. INTRODUCTION

In recent years, fine-grain tactile sensing through electronic
skins (e-skins) has gained much attention in applications
such as object sensing for humanoid robotics [1]. Indeed,
contact parameters such as roughness, texture, weight, and
slip are difficult to infer from mere visual data, demanding the
integration of high-resolution e-skins on robotic arms (see Fig.
1 a). The spatial resolution of current e-skin sensors, however,
still falls short of the ~ 0.4 mm resolution found in human skin
[2]. Future prosthetic hand applications would likely require
human-like sub-millimeter e-skin resolutions.

In the past years, research in e-skins has principally been
devoted to the development of tactile sensors with readout
electronics mainly implemented using off-the-shelf compo-
nents having over-designed precision and speed [3]-[5]. This
results in readout circuits suffering from large area and power
consumption, which becomes an even greater issue when
targeting sub-millimeter-resolution, high-density e-skin.

In order to cope with the fast sensor array scan rate (1-10
kHz) required to detect fine spatio-temporal stimuli [4], the
skin sensors in each array are either polled sequentially (i.e.,
one by one) [3], [5] or in a column-based fashion [4], [6].
As shown in Fig. 2 a) for conventional readouts, the analog
sensor output is multiplexed onto a central ADC for conver-
sion, producing synchronous frames of tactile information that
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Fig. 1: High-density electronic skin: a) Equipping a robotic hand with
a combination of a large area e-skin with low spatial resolution e-
skin on the fingertips allows classification of macro and micro tactile
features. The chip-scale e-skin at the fingertips is connected to a
central board with SNN hardware. b) The high-density e-skin converts
sensor signals to spikes at taxel level.
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Fig. 2: State-of-the-art electronic skin readouts can be classified
in two major categories: a) synchronous frame generation using a
central ADC and further digital processing; b) asynchronous spike
generation in software followed by a spiking neural network.

are periodically sent for processing. This high-rate, periodic
sensing and transmission of the tactile frames is, however,
power-inefficient, despite the fact that tactile stimuli may be
sparse in time (this sparsity typically being ignored in the
conventional frame-based readout of Fig. 2 a).

Therefore, in contrast to previously-presented frame-based
e-skin readouts, the use of neuromorphic, spike-based e-skin
readout circuits is investigated in this paper. As opposed to
previously studied spiking e-skins, where the sensor to spike
conversion is performed in software after ADC acquisition
[7]1-[9] (see Fig. 2 b), a high-density e-skin readout with
taxel-wise sensor to spike conversion implemented directly in
hardware (i.e., on-chip) is modeled, resulting in a more power-



efficient design.

We also study the impact of the sensor to spike conversion
data rate on the fexture classification accuracy, by feeding
texture signals from the popular Kylberg texture dataset [10]
into our neuromorphic e-skin readout. In order to perform
spike-based classification, we use a recurrent Spiking Neural
Network (SNN) trained using the Surrogate Gradient method
[11] and achieving a top accuracy of 87.92%.

The paper is organized as follows. The spiking taxel circuits
studied in this paper are presented in Section II. A comparison
between frame-based and spiking readouts in terms of power
consumption and texture classification accuracy is modeled in
Section III. Conclusions are drawn in Section IV.

II. TAXEL CIRCUIT DESIGN
A. Conventional Level-Crossing Sampling

Prior work has shown that event-based sensing of time-
sparse input signals greatly helps making the readout elec-
tronics more power-efficient, which scales well with the ever
increasing sensor counts [12]. In addition, it has been shown
that deploying individual taxels that respond independently to
the stimuli results in an efficient scaling between the actual
information carried by the stimuli and the data transmission
rate at the output of the sensor [13].

Therefore, Level-Crossing Sampling (LCS) converters [14]
have been used as a straightforward way for converting the
input signals into event-based spike trains. As shown in Fig.
3, the LCS converter generates a spike sample every time
the input exceeds a certain threshold. Then, the sequence
of level crossings across multiple taxels is encoded as a
sequence of the taxel addresses using the popular Address
Event Representation (AER) interface, as shown in Fig. 1 b)
[13].

| @ Level-Crossing

— >
Vup
T Vdm+> bown

DOWN

_I

Fig. 3: Analog to Spike Conversion using a non-uniform
sampling/level-crossing converter.

B. Neuromorphic Level-Crossing Sampling
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Fig. 4: The Closing Window Level-Crossing Sampling in a) approx-
imates how a leaky neuron in b) generates spikes.

A common limitation with previously proposed LCS designs
is the lack of level crossings during a slow-moving input. Such
behavior is expected as LCS converters are designed to detect
the signal change and not the DC component. For signals
that are sparse in time, the lack of level crossings results
in a reduced signal conversion accuracy. Increasing the ADC
resolution N to also detect the small signal changes requires
a ~ 22N increase in power consumption [15]. Therefore,
solutions such as adding a triangular dither [16] or an adaptive
threshold [17] have been proposed.

In this paper, we explore a novel approach to the problem
of sampling slow tactile inputs by borrowing insights from
neural encoding. Instead of a step-wise decreasing threshold
used in common LCS circuits [17], we propose to explore the
use of an exponentially-decaying threshold instead, as a more
faithful model for biological neural encoding [18], [19]. Fig.
4 compares our proposed exponentially-decaying threshold to
the common step-wise dynamics.

ITI. RESULTS
A. Power Consumption Analysis of Spikes vs. Frames

In this Section, the power consumption analysis for spike-
based readout circuits is provided when multiple input chan-
nels must be sensed and converted. Prior analysis has shown
the increase in power efficiency obtained when spike-based
readouts are used [15], but these previous results assumed a
single input channel with no analog front end (AFE) stage.
For small sensor signals with high output impedance, such as
the piezoelectric sensor used in this application, an AFE with
gain and signal conditioning is needed.

In order to compare our event-based readout techniques
against the frame-based counterpart in a multi-channel setting,
detailed power consumption models of the following readout
circuits are implemented: i) the spiking readout with regular
LCS taxels and without a closing window; ii) the spiking
readout with the proposed neuromorphic LCS taxels (see
Section II-B) and iii) a conventional frame-based readout with
sensors multiplexed into a single ADC (with a typical figure
of merit of around 10 fJ per conversion step). Fig. 5 illustrates
these models, assuming a 64-taxel array, which is comparable
to state of the art large area e-skins, at the input of each model.

Fig. 6 shows the result of this power consumption analysis.
At low signal-to-noise ratio (SNR) (right bars in Fig. 6), we
observe that the multi-channel spike-based readout with AFE
modelling is more power-efficient than the conventional frame-
based counterpart. This result is in line with prior single-
channel analysis, where AFE power consumption was omitted
[15].

On the other hand, at high SNR (left bars in Fig. 6),
the power consumption of the per-taxel AFE in spike-based
readouts dominates the system power consumption, making
the spike-based solution less power-efficient compared to the
frame-based counterpart, despite the savings in transmission
power due to the compressing transfer of spiking data. In
addition, Fig. 7 shows the allowed RMS value of the AFE
output noise (cross-over point) as a function of the equivalent
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Fig. 5: Blocks considered for power consumption modelling: In
contrast to a frame-based readout in a) where the analog front-end
(AFE) circuit is shared among all sensors, the spike-based readout
in b) requires one AFE per taxel.

bit resolution. Increasing the bit resolution in both LCS and
N-LCS limits the minimum AFE output noise allowed to
maintain a lower system power consumption than a frame-
based readout.

Therefore, the analysis in Fig. 6 shows that the use of
spike-based readout is mainly suitable in challenging signal
acquisition scenarios where the input SNR is low.
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Fig. 6: System power consumption breakdown for spike- and frame-
based readouts, at three different AFE noise RMS target.
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Fig. 7: Minimum AFE output noise above which the spiking readout

is more power efficient than the frame-based one as a function of the

resolution. The lines halting below 10 bits mean that the frame-based

power efficiency is better from that bit resolution onward. Plots for

different threshold decay constants tau (Fig. 4) are shown.

B. Texture Recognition Experiments

Next, the impact of the readout spiking data rate on the
texture recognition accuracy is investigated, by connecting the
spiking output of our tactile skin readout to a recurrent SNN.
We use the popular 6-class Kylberg texture dataset [10] as
input to a 64-taxel readout with 200 pum spatial resolution.
Texture scanning is simulated by assembling the pixel values
from left to right into a continuous signal (see Fig. 8§ a).

As SNN architecture, we consider a 1-hidden-layer recurrent
SNN with 256 Integrate and Fire (IF) neurons [11], followed
by spike accumulation and a SoftMax output layer (see Fig. 8
c¢). This choice is motivated by the fact that i) using a low-
complexity 1-hidden-layer network enables a fair analysis of
the front-end hardware parameter effect, and ii) such resource-
constrained network can be directly deployed on existing ultra-
low-power SNN accelerators [14], [20].

The SNN training has been conducted during 500 epochs
using the Adam optimizer [21] with learning rate 10~3 and
batch size 32. The classification accuracy and standard devia-
tion is assessed using 6-fold cross-validation [11]. Fig. 9 shows
the texture classification accuracy and standard deviation as
a function of the spiking data rate of our e-skin readout.
Similarly, we also train a standard RNN with ReLU neurons
on the non-spiking e-skin scanning data (see Fig. 8 a), using
the same architecture as the SNN.

Three interesting effects can be observed in Fig. 9. First,
we see that the system accuracy is highly dependent on
the spiking data rate, set by adjusting the bit resolution of
the spike encoder, as shown in Fig. 8 b). As expected, the
accuracy increases when the data rate increases since less
signal information is lost. On the other hand, we observe a
decrease in accuracy when the data rate keeps growing. This
is due to the fact that having too many spikes can jeopardize
the SNN training during Surrogate Gradient back-propagation,
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Fig. 8: Spiking e-skin texture classification pipeline a) Time-varying sensor signals are obtained from the texture image dataset by simulating
a texture scan. b) the spiking taxel conversion circuit model allows the sweeping of conversion parameters such as the bit resolution, c) The
spike trains are fed to a recurrent SNN through the fully-connected weight matrix W;p,. Recurrence is introduced by the weights Wyy. The
output layer consists of 6 IF neurons connected through Wh,, the spiking output Sk of which at time step k is accumulated into A. A is

transformed to class probabilities using the SoftMax operator.
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Fig. 9: Texture classification accuracy in function of skin readout data
rate. The data-rate for the spiking readout is given by the total spike
rate multiplied by the row and column address bits. The LCS uses
an extra bit for the spike polarity.

leading to a decrease of model accuracy [11].

Secondly, it is interesting to note that the spike encoding
and SNN pipelines (blue and orange curves in Fig. 9) lead to a
higher accuracy compared to the baseline RNN for normalized
data rates > 107! in the sub-Nyquist region. This can be due
to the sparsity in the spiking signals, which helps increasing
the linear separability between data samples by providing an
early compression to the sensory signals [11].

Lastly, it is shown that the N-LCS has a slightly lower ac-
curacy compared to the LCS. However, it is important to note
that the texture classification performed here uses fast sensor
signals as input whereas, the N-LCS’ inherent advantage is
with slow input, as discussed in Section II-B. Future work on
the comparison of the classification accuracies between the
LCS and N-LCS using datasets with low-bandwidth sensor
signals shall be performed.

Since the system power consumption scales with the spiking

data rate, we see that the spiking e-skin readouts and SNN
classifier can lead to an overall lower power consumption com-
pared to the conventional RNN-based setup, while achieving a
higher texture classification accuracy for normalized data rates
between 107! and 1. A top accuracy of 87.92% is observed
using the LCS signal-to-spike converter, compared to 74.58%
for the frame-based readout.

IV. CONCLUSION

This paper has presented the modelling of a novel chip-
scale, high-density e-skin solution targeting sub-millimeter
spatial resolution. Compared to conventional frame-based sys-
tems, spike conversion is performed at the taxel level for
reduced power consumption and direct compatibility with
SNN processors. It has been shown that due to the per-
taxel nature of the analog front end blocks, their consumption
becomes dominant at higher SNR targets, meaning that the
spike-based readout has higher power efficiency than the
frame-based solution for lower SNR values. Finally, the impact
of the spiking readout on texture recognition accuracy has
been studied, achieving a superior accuracy of 87.92% over the
frame-based counterpart. These investigations clearly indicate
the advantages of using spiking readouts for high-density
e-skin systems. While this work presents only the results
of modeling the proposed e-skin spiking readout, the high-
density spiking readout, with LCS and N-LCS taxels, has been
designed and implemented on a standard sub-micron CMOS
process.
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