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Abstract— We investigate indoor human multi-target tracking in cartesian
coordinates based on range, Doppler and Angle-of-Arrival measurements
obtained with a four-antenna passive bistatic radar capturing 802.11ax Wi-
Fi signals. A reference antenna selection method is described to perform
angle processing correctly when dealing with target detection diversity
among antennas. The tracking is performed by an Unscented Kalman
Filter (UKF) to handle the non-linear relation between the measurement
space and the state space. A Joint Probabilistic Data Association Filter
is coupled to the UKF to handle the data association between tracks
and measurements when dealing with multiple targets. Simulations are
performed to determine the tracking parameters under heavy constraints
and identify key scenarios. An experimental setup is built using Universal
Software Radio Peripherals, featuring an over-the-air phase calibration
for angle processing with an anchor antenna. It is used to validate the
proposed single and multi-target tracking scheme.

Index Terms— Joint probabilistic data association filter, multi-antenna, passive radar, tracking, unscented Kalman filter,
Wi-Fi, 802.11ax

I. INTRODUCTION

Wi-Fi-based remote monitoring has drawn increasing at-
tention since the creation of the Task Group for WLAN
Sensing [1]. One of the main goals is to detect the presence
of objects or human targets in an environment, along with
some of their features such as range, speed, and angle with
respect to the sensor. Potential applications include human and
vehicular target tracking [2], movement classification [3], and
non-intrusive area monitoring methods [4].

Remote monitoring can be achieved through a Wi-Fi-based
passive bistatic radar (PBR). Radars use multipath components
(MPCs) bouncing on the targets of interest to deduce their
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distance based on the propagation time (range processing),
their speed based on the Doppler effect (speed processing),
and their angle w.r.t. the radar if it is equipped with multiple
reception antennas (angle processing). In the case of passive
bistatic radars, the transmitter TX is a non-cooperative source
of opportunity, not colocated with the receiver RX. Due to their
quasi-ubiquitous availability, Wi-Fi signals are an adequate
source of opportunity. Furthermore, they resort to the Orthog-
onal Frequency Division Multiplexing (OFDM) modulation
that is convenient for radar processing. Therefore, a Wi-Fi
access point (AP) could be exploited as a transmitter for a
Wi-Fi-based PBR. The receiver can be any device equipped
with antennas capable of capturing signals at the adequate
carrier frequency, i.e. in the S-band around 2.45 GHz and in
the C-band around 5 GHz [5], and with an appropriate signal
acquisition chain.

A single-antenna PBR outputs a so-called range-Doppler
map (RDM) or range-speed map, i.e. a 2D map where targets
are identified by amplitude peaks. It can be obtained by
performing the range and speed processing simultaneously
via a 2D cross-correlation function [2] or in a decoupled
fashion by processing separately the range and the speed with
channel estimation and a Fast Fourier Transform (FFT) over
the Doppler dimension [6]. The knowledge of the transmitted
signal is required for both approaches. It can be acquired by
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pointing a highly directive antenna towards TX, following a
so-called reference channel approach [2]. A method requiring
fewer resources is to use the known training fields at the be-
ginning of each Wi-Fi packet [5] [7] [8]. A multi-antenna PBR
also allows one to exploit the phase difference in the received
signal between antennas to compute the angle-of-arrival (AoA)
of the MPCs corresponding to targets and typically outputs a
so-called range-Doppler-angle cube (RDAC) [8].

One of the main interests of the PBR approach is to
use the range-speed or range-speed-angle measurements to
perform localization and tracking in an x-y coordinates system
for movement monitoring. There are mainly three options to
achieve this: i. using a multistatic passive radar with range-
speed only measurement, i.e. featuring several receivers, ii.
using a bistatic passive radar with multiple antennas with
range-speed-angle measurements, or iii. combining both [9].

The first approach is investigated in [10], where the target
position is computed either by an iterative positioning algo-
rithm or by performing a separate line tracking in the range-
Doppler space with a standard Kalman Filter and intersecting
the two obtained bistatic ellipses.

A comparison of the three approaches is presented in [9]
to track a car movement outdoors. The authors use a setup
based on a former version of the 802.11 Wi-Fi standard and
consisting of a multistatic radar with two receivers, including
one receiver with two antennas for angle computation. They
demonstrate that using an angle measurement is critical for
precise target tracking in Cartesian coordinates. The two best
approaches are shown to be the third approach mentioned here-
above (combining the multistatic radar with angle measure-
ment) using a maximum-likelihood position estimate and the
second approach (bistatic approach with angle measurement)
by intersecting the bistatic ellipse given by the range and the
line yielded by the angle.

In [11], the authors show that it is also possible to perform
tracking with Doppler-only measurements collected by a mul-
tistatic passive radar. They resort to an Extended Kalman Filter
to handle the non-linearities in the underlying observation
model. Resorting to a particle filter is also an alternative to deal
with those non-linearities. The two approaches are validated
experimentally on short-range indoor measurements of a single
human target.

The importance of being able to track multiple targets with
Wi-Fi-based passive radars is also emphasized in [12]. An Un-
scented Kalman Filter is combined with a Multiple Hypothesis
Tracking algorithm to deal with the data association problem
in a multi-target scenario. However, it is not validated on
experimental measurements. Furthermore, the simulated data
rely on a former version of the 802.11 standard with limited
bandwidth.

In this paper, we simulate and experimentally demonstrate
the feasibility of a Wi-Fi-based PBR for multiple human target
tracking based on the latest Wi-Fi standard, 802.11ax. The
progress compared to the state-of-the-art presented hereabove
is the following:
• Our multiple targets tracking scheme is validated experi-

mentally on human targets, and with targets moving close
to each other;

• The tracking takes place indoors, yet still on long dis-
tances. It thus has to deal with a low target-SNR of the
true target compared to the target-SNR of ghost targets
and other MPCs inherent to the indoor environment. The
target-SNR is here defined as the ratio between the target
peak power and the noise floor in the RDAC;

• We resort to the latest Wi-Fi standard, 802.11ax, lever-
aging the increased 80 MHz signal bandwidth for better
range resolution compared to previous versions of the
standard [5];

• We demonstrate that the sole use of the known 802.11ax
Preamble field provides sufficient accuracy for tracking,
therefore getting rid of the need for a reference channel;

• We use only one 4-antenna Uniform Linear Array re-
ceiver built with Universal Software Radio Peripher-
als (USRPs) calibrated over-the-air to cancel hardware-
induced parasitic phase shifts, based on our previous
work on the matter [8]. We propose a novel method for
reference antenna selection when antenna face detection
or synchronization differences. Therefore we do not resort
to a multistatic PBR configuration.

• We provide a detailed procedure to perform the tuning
of the tracking filter to deal with the heavy constraints
imposed by the Wi-Fi-based PBR.

This article is structured as follows: in Section II, the system
model is summarized. Section III presents the associated radar
processing. In Section IV the data association and tracking
schemes are presented. Section V explains the main system
constraints, the challenges to handle as well as the scenarios
investigated in simulations and measurements. Section VI
presents the simulation results used to tune the parameters
of the tracking algorithm and the simulation of a large-scale
scenario. Finally, Section VII contains the experimental setup
and measurement results. As a convention, bold lowercase
letters correspond to vectors, matrices, or tensors of time-
domain signals (e.g. s). Similarly, bold uppercase letters
correspond to vector, matrices, or tensors of frequency-domain
signals (e.g. S). Calligraphic uppercase letters correspond to
sets (e.g. Z). The symbol P denotes a probability.

II. SYSTEM MODEL

Wi-Fi signals are considered to be transmitted in bursts
of packets. Each burst contains N packets, and the time
between the beginning of each burst is Tp. The first OFDM
symbol of each packet is a fully 802.11ax-compliant High
Efficiency-Long Training Field (HE-LTF) [5]. In each packet,
the HE-LTF is followed by κ unknown data symbols. This
replicates the behaviour of Wi-Fi transmissions where only
the training OFDM symbols at the beginning of a packet
are known and usable for radar processing. Each OFDM
symbol, including the HE-LTF, contains Q+ Lcp samples for
a duration (Q+ Lcp)Ts, with Ts = 1/B the sampling time, B
the bandwidth, Q the number of OFDM subcarriers and Lcp
the length of the Cyclic Prefix. The sampling time Ts is also
referred to as the fast time, and the corresponding discrete-time
instants are indexed with the fast time index i = 0, ..., Q− 1.
The time between the reception of two HE-LTFs is given by

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3095675

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



L. STORRER et al.: INDOOR TRACKING OF MULTIPLE INDIVIDUALS WITH AN 802.11AX WI-FI-BASED MULTI-ANTENNA PASSIVE RADAR 3

1 packet

1 burst of packets

𝑇𝑝

𝑇

𝑄 + 𝐿𝑐𝑝 𝑇𝑠

HE-LTF

𝜅 unknown 

data symbols

1 OFDM symbol

... ... ... ... ... ...

Fig. 1. Symbols, packets and bursts

T = (κ+ 1)(Q+Lcp)Ts. This duration is referred to as slow
time, and indexed with the slow time index k = 0, 1, ..., N−1.
These elements are illustrated in Fig. 1.

The environment containing targets and static objects is
modelled by a channel transfer function (CTF) and its corre-
sponding channel impulse response (CIR) in the time domain.
The CTF varies between the reception of each HE-LTF sym-
bol, i.e. with the slow time, due to the phase changes induced
by the Doppler shifts of the targets. There is also one CTF per
RX antenna, indicated with index l = 0, 1, ..., L− 1 where L
is the number of RX antennas. Upon reception of an HE-LTF,
the CTF is estimated on each of the q = −Q/2, ..., Q/2 − 1
subcarriers of the OFDM spectrum. For one burst of N
packets, the CTFs can thus be represented by a 3D tensor
H whose elements are [13]

H[q, k, l] =

Nr∑
r=0

αr e
−j2πfcτr ej2πl∆sin(θr)+jΦl

ej2πfrkT e   j2π
q
QBτr rect

(
q

Q

)
, (1)

where the index r denotes each of the Nr objects or targets
in the environment, considering only the corresponding first-
order reflection MPC (single bounce model). For each target,
this MPC is characterized by:
• Its propagation delay τr to the first antenna of

the RX array, corresponding to the bistatic distance
dr = dTX-target + dtarget-RX. It is linked to a fast time index
ir = bτr/Tse and a bistatic distance d̂r = irTsc, with c
the speed of light in vacuum.

• Its Doppler frequency shift fr = 2vr
λ εr, where vr is the

target speed, λ is the wavelength and −1 ≤ ε ≤ 1 is
a projection factor depending on the bistatic geometry,
whose absolute value is maximal when the target moves
perpendicularly to the baseline TX-RX [14].

• Its AoA θr w.r.t. the line perpendicular to the RX antenna
array baseline.

• Its complex amplitude αr.
The index r = 0 refers to the direct path between TX
and RX. The other indices refer to the objects or targets in
the environment. The term fc is the carrier frequency, and
∆ = δant/λ where δant is the antenna spacing at RX. The
exponential ej2πl∆sin(θr) is due to the extra propagation delay
of the MPCs between the first antenna and the l-th antenna.
It is exploited to estimate the MPCs AoA θr. However, this

TABLE I
INDICES, SIGNALS & MPCS FEATURES

Symbol Name
i Fast time index
q Subcarrier index
k Slow time index
n Doppler frequency bin
l Antenna index
p Tracking time index
r Target index
r′ Detection index
t Target track index
H CTF tensor
h CIR tensor
D Range-Doppler-angle cube (RDAC)
Dr RDAC target vector
τr Propagation delay of the r-th MPC
fr Doppler frequency of the r-th MPC
vr Speed of the r-th MPC
θr Angle-of-arrival of the r-th MPC
αr Complex amplitude of the r-th MPC

AoA term is affected by an unwanted phase shift Φl induced
by the hardware acquisition chain of each antenna, that has
to be compensated, as explained in Section III. Finally, the
ej2π

q
QBτr rect(q/Q) term is due to the sampling with a limited

sampling rate. In the time domain, it corresponds to a sinc
that creates what we express here as delay leakage: when the
propagation delay τr is not an integer multiple of the sampling
time Ts, the energy of the MPC leaks on the neighbouring
delay bins. It is a direct consequence of having bandlimited
signals [15]. This leaking energy can complicate the target
detection and even affect other targets located at other delay
bins.

A summary of the different indices, signals and MPCs
features is given in Table I.

III. RADAR PROCESSING

Based on the CTF model, the goal of the radar processing
is to estimate dr, vr and θr for each target. This estimation
is performed on each burst of N packets, using the HE-
LTFs only, and fed to the tracking algorithm presented later.
The time interval between updates of the tracking is thus the
burst interval Tp introduced in Section II, and indexed with
p = 0, 1, ..., P − 1 denoted as tracking time index, with P the
total number of bursts.

A. Time Synchronization

The first step of the processing is the time synchronization
between TX and RX, i.e. finding the beginning of the packet
at the receiver side. It is achieved by correlating the known
transmitted HE-LTF with the received symbols and finding
the maximal correlation value. The fast time index of this
value corresponds to the propagation delay of the direct path
between TX and RX. RX is placed at a distance smaller
than the range resolution dres = cTs/2 from TX in a quasi-
monostatic configuration [16]. Hence this direct path can be
used as the 0 s propagation delay reference. Samples before
the direct path index can thus be discarded. However, time
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misalignment can occur between antennas due to locking
delays in the Pulse Per Second (PPS) signal rising edges used
to time-align the local clock associated with each antenna with
each other [17]. Therefore, the same target can appear on two
different range bins depending on the antenna, with a maximal
difference of one range bin. This problem is addressed in
Section III-G.

B. Hardware-induced phase calibration
The hardware-induced phase shift Φl from (1) has to be

compensated for the future angle estimation to work. This
consists in setting this phase to the common value of Φ0 for
all antennas. Our technique for this calibration relies on the
use of empty subcarriers in the OFDM spectrum and on an
anchor antenna. In the 802.11ax standard, the 5 frequency
subcarriers at the centre of the spectrum of each OFDM
symbol are left empty [5]. A complex exponential, called here
calibration exponential at one of those subcarriers frequency,
fcal = qB/Q for q ∈ [−2, 2], can thus be transmitted
from an anchor antenna located in front of RX. At the
anchor, this complex exponential is expressed in baseband as
xcal[i] = exp(j2πfcaliTs). Upon reception, it is not affected
by the angle term 2πl∆sin (θr) from (1) since the anchor is
located in the far field at an angle of 0° w.r.t. RX. The only
phase difference between antennas is thus Φl. The calibration
exponential is located on one unique subcarrier frequency,
hence it can be extracted without any filtering. By going back
in time-domain and computing the sample offset between the
exponentials at each antenna, the phase difference Φ0 − Φl
can be estimated and cancelled by multiplying the received
signal by the scalar exp(j(Φ0 −Φl)). Details about the phase
calibration can be found in [8].

C. Range processing
Range processing is the estimation of dr. The received

signal at antenna l is a convolution of the transmitted signal
with the CIR at this time instant. In the frequency domain,
this corresponds to a product with the CTF. The relation can
be inverted to isolate the CTF by a frequency-domain least-
square channel estimation [13] [8] using the known HE-LTFs,
yielding an estimate Ĥ of H .

If the Doppler shifts are sufficiently small so that the
duration of M subsequent packets is inferior to the channel
coherence time, which is the case for human targets, the CTFs
can be averaged by groups of M [14]. The number of received
packets per burst can thus be rewritten as N = N ′M , with
N ′ the number of remaining slow time points used later for
the Doppler FFT presented later. An IFFT is then computed
to obtain the estimated CIR tensor:

ĥ[i, k′, l] =
1√
Q

Q/2−1∑
q=−Q/2

 1

M

(k′+1)M−1∑
k=k′M

Ĥ[q, k, l]

 ej2πqi/Q

(2)

=

Nr∑
r=0

αr e
−j2πfcτr ej2πl∆sin(θr)+jΦl

ej2πfrk
′MT sinc(B(τr − iTs)) + wik′l. (3)

In (2), the outer sum on q is the IFFT, and the inner sum on
k is the averaging operation. The index k′ = 0, 1, ..., N ′ − 1
is the averaged OFDM symbol index corresponding to the
discrete time MT . The Doppler exponential term from (1)
becomes thus ej2πfrk

′MT ∀k′ in (3). The last term wik′l
represents the remaining noise originating from the received
samples, after channel estimation, averaging and IFFT.

The estimated CIR tensor ĥ contains the estimated delay
τ̂r = irTs of each MPC r, allowing to compute its bistatic
distance d̂r = cτ̂r. With the quasi-monostatic configuration,
the distance between RX and the target is computed from
the single bounce model as d̂target-RX ≈ d̂r/2 [16]. The main
source of error on the distance estimation is the limited
range resolution due to the sampling time. A correct time
synchronization from Section III-A is also critical to obtain
the true 0 s propagation delay reference, hence the true 0 m
distance reference.

D. Speed processing
An FFT, called here Doppler FFT, can be applied along the

second dimension of the estimated CIR tensor ĥ to extract
the Doppler frequency information [14], yielding a so-called
range-Doppler-angle cube (RDAC):

D̂[i, n, l] =
1√
N ′

N ′−1∑
k′=0

ĥ[i, k′, l]e−j2πkn/N
′

(4)

where n = −N ′/2, ..., N ′/2−1 is the Doppler bin index. Each
frontal slab of the RDAC, D̂[:, :, l], is one aforementioned
range-Doppler-map (RDM), in which targets are identified as
amplitude peaks. The corresponding Doppler bin nr of each
target gives its estimated Doppler frequency f̂r = nrfres,
where fres = 1/(N ′MT ) is the frequency resolution of the
Doppler FFT. This allows one to estimate the target speed
v̂r = λf̂r/2. A window is usually applied prior to the Doppler
FFT to reduce frequency leakage. The limited speed resolution
and the projection factor εr are the main sources of error in
this estimation. Components with v̂r = 0 are considered as
static clutter and are removed using Average Removal [6].

E. Target detection
The goal of target detection is to separate the RDM cells

containing a target from cells containing noise. It is usually
performed by thresholding using a Constant False Alarm Rate
(CFAR) detector. However, in this work, a local maxima search
on each RDM is preferred to avoid detecting the range and
Doppler significant points caused by the leakage (cf. Sections
II and III-D) [8]. In the general case, all targets, denoted with
an index r, might not be detected, and ghost targets created
by higher-order MPCs can also be detected. Hence detections,
i.e. detected targets, are denoted with a different index r′ 6= r.

F. Angle processing
Angle processing is the estimation of θr′ , relying on the

phase difference 2πl∆sin (θr′) between antennas. It is per-
formed separately for each detection point in the RDAC using
MUSIC [18]. Assuming no time-alignment error between
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antennas, each detection occurs at one unique range tap ir′

and frequency bin nr′ across antennas, and an L × 1 RDAC
target vector is built as follows:

D̂r′ =
[
D̂[ir′ , nr′ , 0] ... D̂[ir′ , nr′ , L− 1]

]T
. (5)

It contains the RDAC cells of the detected target across
antennas. Vector D̂r′ is used as input to MUSIC. The output
is the MUSIC angle spectrum J(θ) whose peaks correspond
to the AoA θr′ of the detected MPC. Inputting only this single
vector per target allows benefiting from the FFT gain, helping
to detect low reflectivity targets like humans. It also avoids the
leakage impact and isolates targets from each other. It does
not require MUSIC spectrum peak association with detection
since the peaks of each MUSIC spectrum all correspond to
one RDAC cell. The precision of the angle estimation depends
on the target-SNR and the hardware-induced phase calibration
from Section III-B. The calibration is critical since without
it the angle estimation is erroneous due to hardware-induced
phase shift Φl in (1). Errors of a few samples in the sample
offset estimation during the calibration result in an angle
estimation error of the order of one degree [8]. More details
on this discussion and the estimation process are given in [8].

G. Antenna selection
The target detection points in the RDAC can be different

between antennas, for different possible reasons, e.g. time mis-
alignment due to the PPS signal as explained in Section III-A
or channel variations among antennas (power, delay, Doppler).

This is a problem for the angle processing where a unique
detection coordinates pair (ir′ , nr′) was assumed for (5), and
for the range and speed estimation since only one (ir′ , nr′)
pair should be used to determine the range and speed of a
detected point. Therefore the system should choose between
using the detection coordinates of the first antenna as reference
or using separate detection coordinates for each antenna. Since
the origin of the detection mismatch is not identifiable, both
strategies are considered and the one giving the best MUSIC
angle spectrum is kept. More formally, the system has to
choose between:

1) using the detection coordinates ir′ and nr′ from the first
antenna as a reference to build the target vector for angle
estimation as in (5) and to estimate the range and speed.

2) using the detection coordinates ir′l and nr′l separately
per antenna l to build a target vector

D̂r′ =
[
D̂[ir′0, nr′0, 0] ... D̂[ir′(L−1), nr′(L−1), L− 1]

]T
(6)

for angle estimation, and choose which (ir′l, nr′l) pair
to use for the range and speed estimation through a ma-
jority voting between antennas, i.e. by selecting the final
ir′ and nr′ respectively as the sample mode (most fre-
quently occurring value) of the set {ir′l|l = 0, ..., L− 1}
and the set {nr′l|l = 0, ..., L− 1}.

We introduce a simple and interpretable criterion to make that
decision: the MUSIC spectrum “dynamic range”

DR = max(J(θ)) / min(J(θ)). (7)

The MUSIC spectrum and its DR are computed for each
approach and the approach yielding the highest DR is chosen
as the correct one: indeed, the minimum of the MUSIC angle
spectrum is the estimation noise floor, and the maximum of the
spectrum is the value corresponding to the target AoA. Hence
the DR is the ratio between the target peak and the estimation
noise floor. The bigger the DR the higher the target peak stands
above this noise floor, giving a direct metric of the quality of
the angle estimation and allowing to choose the best approach.

Choosing the wrong approach would result in feeding an
RDAC target vector D̂r′ whose L elements do not all corre-
spond to the r′-th detection across the L antennas, yielding a
perturbated MUSIC spectrum for the detected target.

This antenna selection procedure is repeated separately for
each detection point r′.

IV. DATA ASSOCIATION AND TRACKING

A. Unscented Kalman Filter
After the radar processing, the collected measurements

are transferred to the tracking stage to estimate the target
state in Cartesian coordinates based on the measurements
and a kinematic model. The tracking filter chosen here is an
Unscented Kalman Filter (UKF) [19], to deal with the non-
linearities of the measurement model. The goal of the tracking
is to estimate the x-y position of the target over time. The
state vector x to track comprises the x-y positions but also the
speeds for increased precision, and the measurement vector z
received for each detection at each tracking time comprises
the quasi-monostatic range, speed and AoA estimated by the
radar processing:

x = [x ẋ y ẏ]
T

z =
[
d̂/2 v̂ θ̂

]T
. (8)

The system model of the UKF is the following:

xp = f(xp−1) + nx zp = h(xp) + nz (9)

where f is the dynamic model characterizing a uniform
rectilinear motion [20] and h is the non-linear measurement
model characterizing a quasi-static scenario assuming that the
receiver is at position (x = 0, y = 0) [21]:

h(x) =

[√
x2 + y2

xẋ+ yẏ√
x2 + y2

arctan(x/y)

]T
. (10)

A higher-order model including acceleration in the state space
is not chosen here due to the limited information provided
by the measurements. As commonly done in the literature,
the acceleration is rather assumed to be the source of errors
in the model through the error term nx which represents the
difference between the target movement and a true uniform
rectilinear motion [20]. It is assumed to be a Gaussian random
variable with a covariance matrix

q =


T 4
p /4 T 3

p /2 0 0
T 3
p /2 T 2

p 0 0
0 0 T 4

p /4 T 3
p /2

0 0 T 3
p /2 T 2

p

σ2
a, (11)

following a piecewise white noise model [20], where σ2
a is

the variance of the acceleration. The term nz is the classical
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measurement error term, also modelled as a Gaussian random
variable with a 3×3 diagonal covariance matrix whose diago-
nal consists in the variance σ2

d, σ
2
v and σ2

θ of the measurement
errors on the range, speed and AoA respectively. It is denoted
as

r = diag(σ2
d, σ

2
v , σ

2
θ). (12)

The parameter σa represents the uncertainty in the model and
the parameters σd, σv and σθ represent the uncertainties in the
measurement. The ratio between σa and (σd, σv, σθ) is critical
for a correct UKF performance and is tuned according to the
Wi-Fi-based PBR constraints in Section VI.

B. State initialization

The first range-Doppler-angle measurement is used to initi-
ate the Cartesian state. The x and y coordinates are initialized
as follows (the subscripts r′ are removed for readability):{

x = d̂
2 sin(θ̂)

y = d̂
2 cos(θ̂)

(13)

The ẋ and ẏ speeds can be initialized as 0 m/s, or by inverting
the second equation of the measurement model, i.e. the second
element of the vector in (10):

v̂ =
xẋ+ yẏ√
x2 + y2

=
xẋ+ yẏ

d̂/2
⇔

{
ẋ = v̂d̂/2−yẏ

x

ẏ = v̂d̂/2−xẋ
y

(14)

If prior knowledge on one of the initial speeds ẋ or ẏ is
available, the other speed can be initialized. This is the case
in a rectangular corridor for example, where one speed can be
initialized to 0 m/s, allowing to derive the other one.

C. Joint Probabilistic Data Association Filter

Since multiple targets have to be tracked simultaneously a
data association scheme is implemented. A Joint Probabilistic
Data Association Filter (JPDAF) is used to this end [22].
Tracks are used to represent detected targets. A track, denoted
with index t, is the set of the predicted and measurement-
updated states of the target along time. The JPDAF is a soft
association scheme which calculates the association probabil-
ity βr′t of each measurement-track pair, i.e. r′t pair, after
the prediction step from the dynamical model f of the UKF,
jointly across all the tracks, and computes the UKF innovation
of each track based on all the measurements found in a so-
called gating region of the track, weighted by their association
probability. Hence the UKF coupled to JPDAF becomes a
“weighted UKF”. The gating region is adjusted by a gating
probability parameter PG, set here to the typical value of
PG = 0.99 [23]. Association probabilities are computed using
feasible joint association events: first, association events Ar′tr′
between measurements and tracks are considered, with tr′ the
index of the track to which measurement r′ is associated in
the association event under consideration. Joint association
events A =

⋂
r′ Ar′tr′ are then determined, consisting of the

association events of all measurements to one of the tracks.
Finally, feasible joint association events A∗ are established,
which refine the joint association events by considering that

a target can generate at most one measurement and that a
measurement can have originated from at most one target [22].

Based on the tracks and the set of measurements
Z = {z|r′} =

{[
d̂r′/2 v̂r′ θ̂r′

]T}
from all detections r′, the

probability of each feasible joint association event is

P(A∗|Z) =
1

γ

∏
r′

(
λ−1
g ftr′ (z|r′)

)νr′∏
t

(PGP
t
D)δt(1−PGP tD)1−δt .

(15)
ftr′ is the likelihood of the r′-th measurement originating from
the target corresponding to track tr′ . P tD is the probability of
detection of track t, decreasing with its distance. λg is the
assumed mean number of ghost targets. νr′ is the measurement
association indicator, which is equal to one if the measurement
r′ has been associated in the feasible joint association event
under consideration and zero otherwise. Similarly, δt is the
track association indicator which is equal to one if the track
has been associated with a measurement and zero otherwise.
γ is a normalization constant [22].

Combining all the feasible joint association events where a
precise measurement has been associated with a precise track
yields the association probability

βr′t =
∑

A∗:Ar′t∈A∗
P(A∗|Z). (16)

More details on JPDAF are given in [22]. Other techniques
are also available such as the Multiple Hypothesis Tracking
(MHT) mentioned in Section I [12]. MHT is known to be
more efficient than JPDAF but at the cost of an unrealistically
increased computation time for the considered application if
the tracking should happen in real time [24]. Similar reasoning
was applied for the choice of the UKF as tracking filter
compared to other methods such as particle filters that are
more efficient but more computationally intensive [20].

D. Track management
For advanced scenarios involving a lot of targets, a track

management scheme can be implemented to handle targets
appearing or disappearing from the scene. It is also useful to
discard false tracks created by ghost targets due to higher-order
MPCs.

Track initiation: At a tracking instant p, any measurement
that has not been associated with a track is considered as a
potential track starting point and produces a preliminary track,
initiated as described in Section IV-B. A separate tracking is
performed on the preliminary tracks. At each tracking instant,
the probability of having no measurement associated with the
preliminary track, computed by the JPDAF, is compared to a
threshold to determine if a measurement was associated with
the track [25]. If it is below it constitutes a hit, otherwise it is a
miss. Any miss causes the preliminary track to be discarded. A
validation window Nv is chosen: after Nv tracking instants, the
remaining preliminary tracks are confirmed as valid tracks. At
the first tracking instant p = 0, this initiation process is applied
on all measurements since no track has been confirmed yet.

Track deletion: a maximal miss number Nmiss is fixed. If a
confirmed track faces Nmiss misses over subsequent tracking
instants, it is deleted [25].
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Fig. 2. Radar processing and tracking flowchart

E. Tracking summary
To sum up, at each tracking instant p, the N packets are

received, in which the HE-LTFs are used to perform the radar
processing. This produces a set of detections Z containing the
estimated range, speed and angle of each detection r′. In the
meantime, the UKF predicts the states of the different tracks t
based on their previous values and feeds them to the JPDAF.
The JPDAF then exploits the set Z and the predicted states to
produce the set B = {βr′t} of measurement-track association
probabilities. Finally, the sets Z and B and the predicted states
are fed to the update stage of the UKF which updates the state
of each track. Detections not associated with any track can
give rise to new tracks, and obsolete tracks can be deleted.
The whole radar processing and tracking are summarized in a
flowchart in Fig. 2.

V. SYSTEM PARAMETERS & SCENARIOS

After the description of the radar processing and tracking
techniques, this section lists the limiting parameters of the
system, the challenges faced by the tracking, and the different
scenarios addressing those challenges.

A. Parameters
The main limiting parameters of the system are:
• The tracking time Tp = 0.5 s. This value is chosen

to replicate the fact that a Wi-Fi AP does not transmit
packets continuously and that a large amount of time
can pass between the reception of two bursts of packets,
hence between two measurement sets to feed to the
tracking filter, compared to traditional active radars as
in [26] where the tracking time is of the order of 60
ms. This a heavy constraint that has to be dealt with via
proper tracking filter tuning, explained in Section VI-A.
Combined with the poor range resolution it gives abrupt
jumps in range measurements when the target moves
from one range bin to the next. This results in frequent
uncertainty jumps in the state covariance matrix of the
UKF, degrading the state estimates.

• The bandwidth B = 80 MHz from the 802.11ax standard
[5]. It gives a coarse range resolution dres = 1.88 m. This
can give large errors in range estimation and a potential
absence of change of range bin of the target between
two measurements (i.e. between two bursts of packets),

TABLE II
PARAMETERS

Symbol Name Value Unit
fc Carrier frequency 2.45 GHz
B Signal bandwidth 80 MHz
Ts Sampling time, i.e. fast time 12.5 ns
T Time between HE-LTFs, i.e. slow time 272 µs
Tp Tracking time 0.5 s
δant Antenna spacing 6 cm
Q Number of subcarriers 1024 \
Lcp Cyclic Prefix length 64 \
N ′ Number of Doppler bins 128 \
M Number of averaging points 6 \
κ Number of unknown symbols 19 \
L Number of antennas 4 \

causing the UKF to estimate a target speed much lower
than the real speed despite the Doppler information.

• The small number of antennas L = 4, resulting in a
coarse angle resolution. This value is due to the limited
parallel data streaming capability of the experimental
setup presented in Section VII-A.

The other parameters are summarized in Table II.

B. Challenges
The main challenges of an indoor human multi-target track-

ing in experimental conditions are the following:
1) Human targets can make abrupt trajectory changes,

such as turn arounds, compared to bikes and cars. The
challenge is for the JPDAF-UKF to handle the abrupt
turn around, i.e. to be able to perform a quick change
of sign of the estimated ẋ or ẏ. This requires a proper
tuning of the UKF parameters, detailed in Section VI-A.

2) The data association, explained and addressed in Sec-
tion IV-C.

3) Human targets feature a low reflectivity, yielding a low
target-SNR, especially at long distances like in corridors,
lowering the chances of detection and hindering the
angle processing which is heavily SNR-dependent. This
problem is addressed by resorting to a high digital
processing gain with the averaging and the Doppler FFT.

4) As already mentioned, higher-order MPCs due to walls
are present, creating so-called ghost targets. Since the
tracks formed by ghost targets are not consistent over
time, ghost targets are usually cancelled out when the
tracking is implemented with track management.

C. Scenarios
Proper tuning of the UKF filter parameters is necessary

to deal with the system limits and with the challenges men-
tioned hereabove. To this end, several typical scenarios are
investigated in simulations. Once the filter parameters are
determined, the tracking performance in those scenarios is also
demonstrated experimentally. The scenarios are the following:

1) One target with a U-turn: the first scenario consists of
one single human target moving away from the radar
along the y-axis, making an abrupt turn around and
coming back. This scenario addresses challenge 1).
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Fig. 3. Illustration of the simulations & measurements scenarios

2) Two targets with opposite speeds: the second scenario
consists in two targets walking with opposite speeds: the
first target is moving away from RX, and the second is
moving towards RX. This is a first step to verify the
multi-target tracking capability of the proposed scheme
and to address challenge 2), because the two targets are
well separated in the measurement space since the sign
of their Doppler shift is opposite.

3) Two targets moving side-by-side: the third scenario
is much more challenging. It consists in two targets
moving towards the radar side-by-side. This means that
both targets are at the same range from the radar and
have the same speed. The only difference between them
is their angle. Hence, the measurements of the two
targets are at a very short distance in the measurement
space, pushing the data association to its limits for
challenge 2). Furthermore, the targets start far from RX,
hence the target-SNRs are low for angle estimation at
the beginning of the tracking, addressing challenge 3).

Besides, a six-target scenario (scenario 4) is also investigated
in simulations, to have a glimpse of how tracking and data as-
sociation perform for a larger number of targets. All scenarios
are illustrated in Fig. 3.

In simulations, the Root Mean Squared Error (RMSE) met-
ric is computed to assess the quality of the position estimation:

RMSE =

√√√√ 1

Nreal

Nreal−1∑
s=0

(x̂− x)2
s + (ŷ − y)2

s (17)

where Nreal is the number of realizations of the scenario and
the subscript s is the realization index. The value Nreal is set
to 100. With experimental measurements, only one realization
is considered, hence with Euclidean distance as performance
metric:

ED =
√

(x̂− x)2 + (ŷ − y)2 (18)

VI. SIMULATIONS

A. UKF Parameters tuning

As said previously, for the filter tuning a trade-off has to be
found between model uncertainty (σa in q) and measurement
uncertainty (σd, σv, σθ in r). This is why those parameters
have to be jointly tuned. The value of σa is usually rec-
ommended to be set between ∆a/2 and ∆a, where ∆a is
the maximal change of target acceleration that could occur in

between two tracking time instants [20]. Here we analyse a
broader range of values, between 0.1 and 1.6 m/s2.

The three parameters of r (σd, σv and σθ) relate directly
to radar measurement errors, hence mainly to the radar res-
olutions on range speed and angle, i.e. dres, vres and θres.
This last parameter has not been introduced until now, since
there is no analytic formula for angle resolution computed
with superresolution methods like MUSIC, except a Cramer-
Rao Lower Bound (CRLB) which in this case is too idealized
to be close to experimental reality. Based on previous works,
an empirical value of θres = 3° can be chosen [8] [27]. For
fine-tuning, the different resolutions are adjusted by a factor
ρ to yield their respective error variance, such that:

r = diag
(
σ2
d, σ

2
v , σ

2
θ) = diag((dres/ρ)2, (vres/ρ)2, (θres/ρ)2

)
.

(19)
Hence this factor becomes the only parameter to tune for the
design of r and can be interpreted as a factor of belief in the
measurements.

The three first scenarios introduced in Section V-C are simu-
lated by performing a grid search on pairs of σa and ρ: for each
(σa, ρ) pair, noisy measurements from the radar processing
are generated at each time instant, including the true target(s),
false alarms from noise and ghost targets originating from
higher-order MPCs. The tracking is performed assuming a
known number of targets, hence a fixed number of tracks, and
using all these radar measurements. The RMSE is computed
at each time instant. When multiple targets are present, an
averaged RMSE is computed with the contribution of each
target. The mean on all time instants of the RMSE is also
computed and used as the single value representing the quality
of the tracking for this (σa, ρ) pair. The tested σa values range
from 0.1 to 1.6 m/s2, as said above, and the tested values of ρ
range from 0.1 to 1.6. Higher values can lead to a divergence
of the tracking due to an excessive misbelief in the model
(through σa) or an unreasonably large belief in measurements
(through ρ). The step between tested values is 0.1. A heatmap
is generated with the values of mean RMSE for each (σa, ρ)
pair, and the pair yielding the lowest mean RMSE is selected.

In Scenario 1 the turn around of the target happens at 10 s.
It has to be properly handled by the tracking. In Scenario 2,
target 1 starts at position (−1.4, 3) m and speed (0, 1.2) m/s,
and target 2 starts at position (1.4, 20) m and speed (0,−1.2)
m/s. In Scenario 3 the two targets start at (−1.4, 23) m and
(1.4, 23) m respectively, at the same speed (0,−1.2) m/s.
In this case, the detection points are close to each other in
the measurement space, they will thus yield similar JPDAF
weights for each target. Hence, each target influences the other.
A correct tracking should thus prevent the two tracks to mix.
Tracks mixing would be noticed by an increased RMSE.

The resulting RMSE heatmaps for the different scenarios
are displayed in the left of Fig. 4. For scenario 1 (top left
plot), it can be noticed that a high belief in the model (small
σa) combined with a high belief in the measurements (high
ρ) does not handle the turn around because the filter cannot
choose whether it should trust the model or the measurement
when the turn around occurs, hence yielding a high RMSE.
For scenario 2 (middle left plot), combining a low belief both
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Fig. 4. UKF tuning simulations. Left: mean RMSE in function of σa and
ρ for Scenario 1 (top), Scenario 2 (middle), Scenario 3 (bottom). Right:
mean RMSE averaged on the three scenarios in function of σa and ρ.

in the model (high σa) and in the measurements (low ρ) is
not recommended as it causes tracks to mix when the targets
cross each other and RMSE to increase, since at that moment
the corresponding measurements are close to each other in the
measurement space. This is confirmed by the red zone in the
top left corner of the RMSE heatmap. As expected, scenario 3
is the most constraining one, as several parameters pairs lead
to track mixing. In this situation, it is noticed that a high belief
in both the model (small σa) and the measurements (high ρ)
is required to avoid track mixing.

The RMSE can be averaged on the three scenarios, re-
sulting in the heatmap in the right of Fig. 4. It com-
bines the observations made for the three scenarios and
features a minimum RMSE of 0.46 m for the parameter pair
(σa = 0.6 m/s2, ρ = 1). Hence, this pair is chosen for the filter
to deal with the constraints mentioned in Section V-A. By (19),
the factor ρ = 1 means that the best tuning for the measure-
ment error covariance matrix consists simply in taking directly
the resolutions: r = diag(σ2

d, σ
2
v , σ

2
θ) = diag(d2

res, v
2
res, θ

2
res).

It implies that the measurement errors are principally dictated
by the radar resolutions rather than by noise.

B. RMSE analysis for multiple targets

The six-target scenario is investigated with the parameters
pair (σa = 0.6 m/s2, ρ = 1) determined hereabove. The six
targets are placed in a free-space area extending from 0 to
15 m along the x-axis and -10 to 10 meters in the y-axis.
The targets trajectories are chosen so that parallel trajectories,
target crossings and changes in trajectory occur to challenge
the JPDAF-UKF. As already mentioned, RX is placed at
(x=0, y=0).

1) Without track management: The x-y trajectories and the
RMSE, along with its mean value and standard deviation, are
plotted in Fig. 5 in a case without track management, i.e.
with a fixed number of 6 tracks. On the x-y plot, grey lines
correspond to the ground truth of each trajectory, while colours

Fig. 5. Scenario 4 simulation without track management: x-y trajectory
(left) and corresponding RMSE (right)

are used for the tracks. The start of the movement is denoted
with a red star and the end of the movement with a black star.

At first, it can be noticed that the RMSE features a small
peak at 0.5 s. This is due to the UKF of each target making
poor estimations since it did not have the time to refine
its state covariance matrix, combined with the fact that the
limited range resolution causes abrupt jumps in the range
measurements. These abrupt changes in range measurements
also create smaller RMSE peaks later in the tracking, as
noticed in the figure. A small increase of the RMSE is
noticeable between the 12th and 15th seconds: this is due
to the crossing of target 3 (in yellow) with target 6 (in deep
blue) with a small angle between their trajectories, hence close
measurements for several tracking instants, slightly confusing
the JPDAF.

Overall the maximal RMSE is 0.61 m, and the mean RMSE
is 0.32 m with a standard deviation of 0.08 m. This is
very acceptable w.r.t. the range resolution of 1.875 m, and
comparable to the 0.45 m RMSE obtained with the single
target tracking in the top left of Fig. 4 with the selected
parameter pair.

2) With track management: The same scenario is now ana-
lyzed with the track management scheme enabled, with targets
appearing and disappearing at certain instants. Targets 1, 2 and
3 are appearing in the scene at 3, 5 and 5 seconds respectively
and remain in it until the end of the simulation. Targets 4,
5 and 6 are present in the scene from the beginning but
disappear at 10, 12 and 12 seconds respectively until the end
of the simulation. Since the number of tracks is not fixed here,
higher-order MPCs can give rise to ghost tracks. The validation
window length is set as Nv = 2 for the first preliminary tracks
at the initialization of the simulation and as Nv = 3 for the
subsequent preliminary tracks. The maximal miss number is
set as Nmiss = 2.

The x-y trajectories of the confirmed tracks and the RMSE,
along with its mean value and standard deviation, are displayed
in Fig. 6. Only the tracks corresponding to targets present in
the scene contribute to the RMSE at a given time instant. The
delay between the appearance of a target in the scene and the
confirmation of its corresponding track, due to the validation
window Nv , can be noticed on the x-y plot. Similarly, the
delay between the disappearance of a target in the scene and
the deletion of its corresponding track, due to the maximal
miss number Nmiss, is also noticeable. Tracks that are not
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Fig. 6. Scenario 4 simulation with track management: x-y trajectory
(left) and corresponding RMSE (right)

in the legend are false tracks initiated by ghost targets due
to higher-order MPCs. They are usually deleted after a few
tracking instants by the track management.

The RMSE is higher than in the case without track manage-
ment. Indeed, since ghost tracks can be initiated, they affect
the feasible joint association events probabilities P(A∗|Z)
computed by the JPDAF through the product over tracks in
(15), hence the association probabilities βr′t from (16). This
parasitic effect decreases the association probabilities of the
correct tracks with correct measurements, i.e. measurements
emanating from first-order MPCs from targets, degrading the
performance of the tracking. Nevertheless, the mean RMSE
is 0.65 m, with a standard deviation of 0.13 m, hence still
significantly below the range resolution of 1.875 m and close
to the 0.45 m RMSE obtained with the single target tracking
in the top left of Fig. 4.

VII. EXPERIMENTAL RESULTS

A. Setup

The practical performance of our Wi-Fi-based PBR is also
assessed experimentally indoors. The measurements take place
in a 6×20 m corridor. RX is placed at one end of the corridor,
and target detection and tracking are performed assuming a
known number of targets. The ground truth of the targets
positions is determined by using markers on the ground and
recording the target movements with a video camera.

Our setup consists of four USRPs X310, connected to mini
helical 2.4-2.5 GHz omnidirectional antennas via Sucoflex
126E cables with SMA connectors:
• The first USRP is equipped with a single antenna and

acts as TX Wi-Fi AP;
• Two USRPs are equipped each with two antennas and

act as RX array. This yields the previously mentioned
number of RX antennas L = 4;

• The last USRP is equipped with a single antenna and acts
as the calibration anchor from Section III-B.

It was chosen to use a USRP as TX instead of an off-
the-shelf Wi-Fi AP to have better control on the number of
transmitted packets and on the time interval between bursts of
packets for the experiments. The USRPs are connected via 10
Gigabit Ethernet cables to one single computer equipped with
two 10Gtek X520-10G-2S-X8 10-Gigabit Ethernet cards and
one 12-cores AMD Ryzen 9 3900X CPU clocked at 3.8 GHz.

Fig. 7. Passive radar setup

Fig. 8. Scenario 1: x-y position (left), ED (right)

The Data Plane Development Kit (DPDK) [28] is used to speed
up the CPU processing by manually dedicating certain cores
to a specific task or entity, for example assigning one core to
each USRP. The resulting processing acceleration allows the
CPU to manage the anchor, TX and four RX antennas data
streams simultaneously without interruptions at a rate of up
to 100 Msps for each stream [29]. The clocks of TX, RX and
the anchor are shared using an Octoclock CDA-2990, to avoid
non-idealities such as carrier frequency offset (CFO). Clock
sharing could be avoided by performing a CFO estimation
with standard pilot-based techniques [13], however this is not
the focus of this work. The setup is displayed in Fig. 7.

Since TX and RX are closely located, the direct TX-RX
signal could cause Analog-to-Digital Converter clipping. This
is avoided by tuning the amplification gains at TX and RX.

B. Scenario 1: One target with a U-turn

The estimated target position and the ground truth for the
experimental realization of Scenario 1 are displayed on the left
of Fig. 8, and the corresponding ED is displayed on the right
of Fig. 8, along with its mean value and standard deviation
band to be compared with the range resolution. Here, the target
turn around movement happens between 4.5 s and 6.5 s.
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Fig. 9. Scenario 2: x-y positions (left), ED target 1 (right, top), ED target
2 (right, middle), Average ED of the 2 targets (right, bottom)

It can be seen that the ED remains at a low value, around
0.4 m, during the first part of the target movement. Then,
the radar and the tracking filter manage to detect and handle
the target turn around movement. As expected, this abrupt
variation induces an increase in the ED. It remains inside the
standard deviation region around its mean at the beginning of
the turn around and then features an error peak at 6.5 s because
the filter needs time to adapt the estimated state. After the
adaptation time, the ED drops back to acceptable values inside
the standard deviation region. So during the whole tracking,
including the turn around, the ED exceeds the range resolution
at only one tracking instant.

Overall, the mean ED is 0.89 m, so less than half the range
resolution. It is in the order of the target size since the human
target is not a point target [9]. The standard deviation is 0.60
m, so the standard deviation zone around the mean does not
exceed the range resolution. This proves the efficiency of the
tracking in a challenging single human target tracking case.

It has to be noted that the gating probability PG is slightly
increased from 0.99 to 0.9999 for that experiment, resulting
in an increased gating region that is very sensitive to PG, to
ensure that the turn around measurement featuring a change
in the speed sign is not rejected by the gating. This raises the
question of assessing if JPDAF is the best data association
scheme for human target tracking that can abruptly change
directions. This question should be answered in future work.

C. Scenario 2: Two targets with opposite speeds
For Scenario 2, the x-y trajectories are displayed in Fig. 9,

along with the ED of target 1, ED of target 2, and the averaged
ED on the two targets. It can be noticed that the tracking of
target 2 is worse than the tracking of target 1. Indeed, target
2 starts far from RX (18 m) while target 1 starts close to RX
(4 m). Hence, the target-SNR of target 2 is much lower, giving
poor angle estimation. Furthermore, the impact of the angle
error on position estimation increases with the distance w.r.t.
the radar. Nevertheless, the mean ED of target 2 is at 1.53 m,
so still below the range resolution of 1.88 m.
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Fig. 10. Scenario 2, 6th tracking instant: RDM of the first antenna (top),
MUSIC spectrum of target 1 (middle) and target 2 (bottom) with the two
alternatives of the antenna selection technique

On the other hand, the tracking of target 1 is of much
better quality, yielding a mean ED of 0.73 m. Averaging the
individual RSEs on the two targets and computing the mean
leads to a total mean ED of 1.13 m, with a standard deviation
of 0.20 m. This standard deviation is lower than both the
individual standard deviations of the targets, meaning that in
this case, at a given instant, when the estimated position of
target 2 is poor, the estimated position of target 1 is of good
quality, keeping a stable total ED. Since the standard deviation
region of the total ED is far below the range resolution, it can
be concluded that the multi-target tracking is successful.

Additionally, to illustrate the intermediate steps and the
radar processing, the obtained RDM at the first antenna and the
MUSIC spectrum for both targets at the 6th tracking snapshot
are displayed in Fig. 10. On the RDM, the two target returns
can clearly be noticed: target 1 is located on the negative
speed side and target 2 on the positive speed side. Each
target return is surrounded by its corresponding range and
speed leakage. For the angle, the antenna selection selects the
option yielding the highest DR for each target, as explained
in Section III-G: for target 1 the first antenna is taken as
reference (option 1, blue curve), yielding a MUSIC spectrum
peak at -7.4°, while the ground truth is -6.9°. The error on
the angle is thus negligible in this case. For target 2, separate
antennas detections are used (option 2, orange curve), yielding
a MUSIC spectrum peak at 17.4°, while the ground truth is
6.25°. This large error can be explained by a misdetection on
the 4th antenna.
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Fig. 11. Scenario 3: x-y positions (left), ED target 1 (right, top), ED
target 2 (right, middle), Average ED of the 2 targets (right, bottom)

D. Scenario 3: Two targets moving side-by-side
The x-y trajectories and the EDs of Scenario 3 are displayed

in Fig. 11. It can be noticed that the tracking is more difficult
than in the previous case. Indeed, when the targets start their
movement at a far distance, their target-SNR is small and their
difference in angle is less than 15 degrees. Therefore, with a
four-antenna receiver, the two targets cannot be resolved in
the MUSIC spectrum without large errors. Hence, the track
initialization is far from the ground truth, giving a large ED,
especially for target 1 in this case. Furthermore, since the
distance between the measurements originating from the two
targets is small in the measurement domain, the JPDAF has
difficulties discriminating the measurements origin and hence
attributes weights of close value to the measurements, meaning
that target 1 heavily influences target 2 and vice-versa.

However, after a few tracking instants, the filter manages to
recover and the track gets closer to the ground truth, causing
the ED to go below the range resolution. On average, the mean
ED of target 1 is very close to the range resolution, and the
mean ED of target 2 is 1.41 m, so slightly below the range
resolution. In total, the averaged ED of the two targets has
a mean value of 1.65 m and a standard deviation of 0.95 m.
The total mean ED is thus slightly below the range resolution
but this clearly shows that the multi-tracking is here pushed
to its limits due to the poor separation of the targets in the
measurement space combined with weak target-SNR.

VIII. CONCLUSIONS

We demonstrated the feasibility of an indoor human multi-
target tracking based on a JPDAF-UKF using a Wi-Fi-based
multi-antenna PBR leveraging the Preamble of the packets of
the latest Wi-Fi standard, 802.11ax. We built a prototype using
USRPs, featuring an over-the-air calibration and automatic
reference antenna selection, and resorting to CPU acceleration
to handle several data streams with a high sampling rate.
Simulations were performed to fine-tune the UKF parameters
and to assess the performance of the tracking with a high
number of targets. The real-life performance of the tracking

was also tested on three measurements scenarios, showing that
it successfully deals with constraints such as the limited range
resolution and the slow tracking time, even at long distances.
The tracking performance was benchmarked for an extremely
challenging scenario, e.g., when two targets are consistently
closer than the range resolution and moving in the same
direction and speed. Our proposed scheme features a larger
error in such a scenario, but still under the range resolution.
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Jérôme Louveaux received the electrical en-
gineering degree and the Ph. D. degree from
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