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Preface

In 2016, I joined Byteflies to develop wearable health sensors to transform
health care from point-of-care interventions in a hospital to early diagnosis and
monitoring in everyday life. Byteflies and several partners set up the SeizeIT
consortium. The project aimed to improve the care and treatment of people
with epilepsy. We were looking for solutions to record seizures in everyday
life. Wearable accelerometry and electrocardiography, among others, were
evaluated for their ability to record physiological features of seizures outside
of the hospital. The project concluded that wearable electroencephalography
is required to monitor all seizure types (including non-motor seizures, such as
absence seizures). At the time, no wearable EEG met requirements for everyday
use by people with epilepsy, so Byteflies set out to develop a wearable EEG
sensor. My PhD thesis was conceived in this context. Together with Byteflies,
UZ Leuven and KU Leuven, we formulated the challenges faced by wearable
EEG. For this thesis, we decided to focus on the signal processing challenges
related to wearable EEG. The project was supported by the Flemish government
(VLAIO) and Byeflies through a Baekeland mandate.

And here we are today! In the four years since the beginning of my PhD
the landscape has evolved. Some wearable sensors to monitor patients
with generalised tonic-clonic seizures have become medical devices. Byteflies
developed the Sensor Dot and measured many patients with different disorders
ranging from cardiorespiratory infections such as COVID-19 to epilepsy. Other
innovative companies have also developed new ways of monitoring epilepsy
in the long term, e.g. subcutaneous EEG. This thesis intends to provide the
community with some of the missing tools to solve the puzzle of long-term
unobtrusive EEG measurement in people with epilepsy in their everyday life.

This project was made possible by the joint effort of all partners and
collaborators. I would like to use the opportunity of this manuscript to thank
wholeheartedly the entire team of epilepsy at UZ Leuven. The patients as
the main users of this technology for inspiring this project for sharing their
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experience and ideas. I thank you for your participation, trust and hope in
this project. The EEG nurses who taught me how to record EEG and helped
me collect data. The neurology residents who taught me how to read EEG,
helped me annotate recordings and were always present to answer questions and
collaborate on different aspects of this thesis. The neurology research assistants
who guided the project from the initial stages of SeizeIT to where it stands today.
As well as prof. dr. Wim Van Paesschen my co-supervisor, for his support and
vision for the development of wearable EEG. I would also like to thank the whole
team at Byteflies for training me first as a hands-on engineer in a highly dynamic
start-up environment, then accompanying me along the journey of this PhD. I
congratulate and thank all my colleagues for the huge progress that was made to
provide new tools to the epilepsy community. I thank everyone for sharing the
questions and problems you were facing, continuously feeding me with new ideas
and challenges for my research. I would also like to personally thank Benjamin
Vandendriessche, for being my mentor and teaching essentials and practicals
of the biomedical engineer profession. You taught me to structure work, plan,
develop, and validate biomedical signal processing algorithms. I thank you for
being a challenging and constructive sparring partner as well as a meticulous
supervisor. Finally, I would like to thank the whole biomed team of ESAT. The
diversity of research topics and methods provides an eye-opening environment
that is particularly fruitful for the development of personal research. I drew my
biggest satisfaction from collaboration projects bringing together people with
different expertise, such as those taking place in the DISPATCH Neuro-Sense
and Neureka challenge. I would like to thank all my colleagues who shared their
intelligence and advice throughout this project. I would particularly like to
thank my supervisor Alexander Bertrand for guiding this project. Alex is one of
the main brains behind the concept of EEG sensor networks. Your encyclopedic
knowledge of signal processing algorithms and your didactic power were the
main drivers behind the success of this project. I thank you for proposing the
general thrust for the research and continuously enlightening me with new ideas
and challenges.

A PhD project is accomplished within a community. I was lucky to be part of
the epilepsy community. I would like to thank all patients and caregivers who
explained the needs of the community and challenged the technical innovations
we proposed. I am also grateful to the whole scientific community for the shared
expertise and openness, as well as industrial players who have always worked in
a spirit of collaboration to foster innovation.

I wish you a pleasant reading of this thesis.



Abstract

Epilepsy is one of the most common severely disabling brain conditions, affecting
over 46 million people worldwide. It is characterised by recurring, sudden,
excessive, synchronous electrical activity in neuronal networks that disrupt
ongoing brain activity and causes clinical seizures. Diagnosis and follow-up of
epilepsy typically relies on electroencephalogaphy (EEG). Clinical EEG is a
non-invasive electrophysiological measurement technique recording the electrical
field of the brain cortex from a number of scalp surface electrodes. It is typically
acquired for a few dozens of minutes in a controlled condition in the clinic with
devices that are ill-suited for long-term EEG-monitoring in daily life.

The development of portable EEG technology has taken advantage of the
advent of silicon integrated circuit chips and the subsequent miniaturisation
of electronics. However, the practical usability of many current EEG wearable
devices is still limited. One major limitation relates to the trade-off between
number of electrodes and wearability. More electrodes lead to larger electronics
and more wires, which make the platform less user-friendly, and induce more
wire-related artefacts. Conversely, the less electrodes, the lower the spatial
resolution and the less tasks the system can be used for.

We propose a different platform to offer solutions to some of the current
limitations associated with wearable EEG devices. This new platform will
consist of a collection of wireless miniature EEG sensor units operating as a
sensor network. Each EEG unit should incorporate electrodes, an amplifier, a
wireless radio and a processing unit in a single package with a small scalp area
footprint. The new topology eliminates the need for wires and will allow for
a flexible, discreet, miniature, wearable system with as many EEG sensors as
necessary for a particular application or patient. This new topology introduced
new challenges which are investigated in this PhD thesis.
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iv ABSTRACT

Specifically, this thesis presents signal processing methods for the analysis
of EEG in a wireless EEG sensor network. It addresses the following main
challenges.

1. Design algorithms for automatic analysis of epileptiform activity. To do
this we developed a novel multi-channel EEG signal processing method
for automated epileptiform event detection which is specifically designed
to run on a microcontroller with minimal memory and processing power.
It is based on a linear multi-channel filter that is precomputed offline in a
data-driven fashion based on the spatial-temporal signature of the seizure
and peak interference statistics. At run-time, the algorithm requires
only standard linear filtering operations, which are cheap and efficient to
compute, in particular on microcontrollers with a multiply-accumulate
unit. It has been validated on multiple datasets and compared to existing
state-of-the-art algorithms.

2. Design strategies for optimal EEG sensor selection. For this we propose
a channel (or variable) selection algorithm for generalised eigenvalue
problems such as those used in our epileptiform event detection algorithm.
The method extends and generalises existing work on convex optimisation-
based variable selection using semidefinite relaxations toward group-sparse
variable selection using the ℓ1,∞-norm. We comprehensively compared our
method to state-of-the-art methods for sensor selection for spatio-temporal
filter design in a simulated sensor network setting.

3. Provide guidelines for the design strategies of miniaturised EEG sensor
networks. This was investigated by conducting a study on the limits of
miniaturisation of an EEG sensor network by emulating different networks
using high-density EEG recordings and analysing interictal spikes in the
different simulations.

Results show that the epileptiform event detection algorithm performs on par
with state-of-the-art detection algorithms at a much lower computational cost
for the detection of absence seizures and interictal epileptiform discharges. The
study on channel selection algorithms indicates which algorithm to select in
function of computational constraints, number of channels to select, and the
topology of the problem. It shows that both the proposed channel selection
algorithm and a backward greedy selection method best approximate the optimal
solution. The proposed algorithm is also more robust to failure cases. The
study on limits of miniaturisation of a network of wireless EEG sensors showed
that recording equipment should be specifically designed to measure the small
signal power at a short inter-electrode distance by providing an input-referred
noise of < 300 nV. It also showed that an inter-electrode distance of minimum
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5 cm in a setup with a minimum of two EEG units is required to obtain near
equivalent performance in interictal spike detection to standard EEG.

In summary, this PhD thesis introduces several new signal processing methods
for wireless EEG sensor networks for monitoring of people with epilepsy. It
contributes to the technological advancement required for the wider adoption
of this technology.





Beknopte samenvatting

Epilepsie is een van de meest voorkomende ernstig invaliderende hersenaandoe-
ningen, waaraan wereldwijd meer dan 46 miljoen mensen lijden. Het wordt
gekenmerkt door terugkerende, plotselinge en overmatige synchrone elektrische
activiteit in neuronale netwerken die de lopende hersenactiviteit verstoort
en klinische aanvallen veroorzaakt. De diagnose en opvolging van epilepsie
berusten op elektroencefalogafie (EEG). Klinische EEG is een niet-invasieve
elektrofysiologische meettechniek die het elektrische opgewekt door de hersenen
registreert via een aantal oppervlakte-elektroden op de hoofdhuid. Deze EEG
data wordt meestal opgenomen in het ziekenhuis met apparatuur dat niet
geschikt is voor langdurige EEG-monitoring in het dagelijks leven.

De ontwikkeling van draagbare EEG-technologie is mogelijk gemaakt door
de komst van chips met geïntegreerde schakelingen en de daaropvolgende
miniaturisering van elektronica. De bruikbaarheid van veel van de huidige
draagbare EEG-apparaten is echter nog steeds beperkt. Een belangrijke
beperking houdt verband met de afweging tussen het aantal elektroden en
de draagbaarheid. Een groter aantal elektroden leidt tot grotere elektronica en
meer draden, die het platform minder gebruiksvriendelijk maken en ook meer
artefacten veroorzaken. Omgekeerd geldt dat hoe minder elektroden gebruikt
worden, hoe lager de spatiale resolutie van het EEG wordt en voor hoe minder
applicaties het systeem kan worden gebruikt. Wij stellen een alternatief platform
voor om oplossingen te bieden voor enkele van de huidige problemen door
meerdere draadloze miniatuur EEG-sensoreenheden te combineren en samen te
laten werken in een gezamenlijk sensornetwerk. Elke EEG-eenheid bevat zijn
eigen elektroden, een versterker, een draadloze radio en een verwerkingseenheid.
Een dergelijk platform maakt draden overbodig en faciliteert een flexibel,
discreet, en draagbaar systeem met zoveel EEG-sensoren als nodig voor een
bepaalde toepassing of patiënt. Deze nieuwe technologie introduceert echter
nieuwe uitdagingen die in dit proefschrift onderzocht worden.

Specifiek introduceert dit proefschrift signaalverwerkingsmethoden voor de
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analyse van EEG in een draadloos EEG-sensornetwerk. Het behandelt de
volgende belangrijke uitdagingen.

1. Ontwerp van algoritmen voor automatische analyse van epileptiforme
activiteit. Om dit te doen hebben we een nieuwe meerkanaals EEG-
signaalverwerkingsmethode ontwikkeld voor automatische epileptiforme
detectie, speciaal ontworpen voor microcontrollers met een beperkt
geheugen en rekenkracht. Deze methode is gebaseerd op een lineaire
meerkanaals filter die vooraf wordt berekend op een datagedreven manier
op basis van de spatio-temporele patronen van de epileptische aanval en de
piekinterferentiestatistieken. Tijdens de uitvoering vereist het algoritme
alleen standaard lineaire filterbewerkingen, die goedkoop en efficiënt te
berekenen zijn, met name op microcontrollers met een vermenigvuldigings-
accumulatie-eenheid. Deze methode wordt gevalideerd op meerdere
datasets en vergeleken met bestaande state-of-the-art algoritmen.

2. Ontwerpstrategieën voor optimale EEG-sensorselectie. We hebben
een nieuw kanaalselectie algoritme voor gegeneraliseerde eigenwaarde
problemen ontworpen, wat gebruikt kan worden voor de detectie van
epilepsie-gerelateerde patronen in het EEG. De methode breidt bestaand
werk over variabelenselectie met behulp van semidefiniete relaxaties uit,
waarbij nu ook selectie van groepen van variabelen mogelijk wordt. We
hebben deze methode uitvoerig vergeleken met state-of-the-art methoden
voor sensorselectie in een gesimuleerde sensornetwerksetting.

3. Richtlijnen voor ontwerpstrategieën van geminiaturiseerde EEG- sensor-
netwerken. Hier gaan we op zoek naar de grenzen van miniaturisatie
van een EEG-sensornetwerk door sensoren van verschillende groottes te
emuleren op basis van hoge-densiteit EEG-opnames en de analyse van
interictale spikes in de verschillende simulaties.

Uit de resultaten blijkt dat het algoritme voor de detectie van epileptische
patronen even goed presteert als de state of the art detectiealgoritmen, maar veel
minder rekenkracht nodig heeft. De studie van algoritmen voor kanaalselectie
geeft aanwijzingen over welk algoritme moet worden gekozen in functie van de
computationele beperkingen, het aantal te selecteren kanalen en de topologie
van het probleem. Het toont aan dat zowel het voorgestelde algoritme en
een ’greedy’ selectiemethode de optimale oplossing het best benaderen. Het
voorgestelde algoritme is daarbij robuuster tegen falingen. De studie naar de
grenzen van de miniaturisering van een netwerk van draadloze EEG-sensoren
toonde aan dat de opnameapparatuur specifiek moet worden ontworpen om het
kleine signaalvermogen bij een korte inter-elektrodeafstand te meten met een
input-ruis van < 300 nV. Het toonde ook aan dat een inter-elektrode afstand
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van minimaal 5 cm in een opstelling met minimaal twee EEG-eenheden nodig
is om bijna gelijkwaardige prestaties in interictale spike detectie te verkrijgen
als bij standaard EEG.

Samengevat introduceert dit proefschrift verschillende nieuwe signaalverwer-
kingsmethoden voor draadloze EEG-sensornetwerken voor het monitoren van
mensen met epilepsie. Het draagt bij aan de technologische vooruitgang die
nodig is voor een brede toepassing van deze technologie.
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CHAPTER 1

Introduction

The goal of this PhD thesis is to develop signal processing methods to
monitor people with epilepsy in a home environment with wearable EEG. This
introduction will outline the problem and background information required to
read this dissertation. First the neurological condition of epilepsy is described in
section 1.1. EEG as a recording technique and the resulting signal is described
in section 1.2. Home EEG monitoring with ambulatory recording devices is
introduced in section 1.3. An overview of standard practices in processing EEG
signals (in particular for epilepsy) are presented in section 1.4. Following this,
the research objectives are stated and an overview of the organisation of this
dissertation are provided.

1



2 INTRODUCTION

1.1 Epilepsy

Epilepsy is a brain disorder characterised by recurring, sudden, excessive,
synchronous electrical activity in neuronal networks that disrupt ongoing brain
activity and causes clinical manifestations known as seizures, i.e. stereotyped
behaviours or sensations that can include alteration of consciousness, depending
on the part of the brain that is affected. Seizure events are referred to as ictal,
and periods between seizures are called interictal. The International League
Against Epilepsy (ILAE) defines epilepsy operationally based on the following
situations: 1) at least two unprovoked seizures occurring more than 24 hours
apart; 2) at least one unprovoked seizure and probability of further seizures
similar to the general recurrence risk (i.e. at least 60%) after two unprovoked
seizures, occurring over the next 10 years; and 3) diagnosis of an epilepsy
syndrome [1].

Epilepsy accounts for a high proportion of the global disease burden, with 13
million disability-adjusted life years (a summary measure of health loss defined
by the sum of years of life lost for premature mortality and years lived with
disability) [2]. Every year, more than five million new cases are diagnosed, and
the number of people with epilepsy is expected to increase in future years [3].
This is attributed to the rising life expectancy worldwide and the increasing
proportion of people surviving epilepsy-provoking insults, such as birth injury,
head trauma, stroke, brain infection, and brain tumours.

The incidence rate of epilepsy is 61 per 100,000 person per year [3]. The
incidence is higher in low and middle income countries than in high income
countries. This can be explained by a greater exposure to perinatal risk factors,
higher rates of central nervous system infections, and traumatic brain injuries.
The prevalence of epilepsy is 7.6 per 1,000. It is also higher in low and middle
income countries than in high income countries [3]. Incidence and prevalence
are slightly higher in men than in women. The incidence of epilepsy is higher
in young infants (< 1 year old) and in the elderly. It has been estimated to be
86 per 100,000 during the first year of life, with subsequent decrease to 23-31
per 100,000 in the 30-59 age group, followed by increase to 180 per 100,000 in
the age group above 85 [4]. In the last decades, the incidence of epilepsy has
decreased in the younger age groups, probably due to improvements in perinatal
care, better general health, and improved control of infectious diseases [2]. In
contrast, the incidence has increased in the elderly, likely due to improved life
expectancy with parallel increase of ageing-related epileptogenic conditions,
such as stroke, tumours, and neurodegenerative disorders.

Seizures are classified according to their origin in the brain, the degree of
awareness (knowledge of self and environment) and the level of body movement
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during the seizure. Seizures are considered as focal if they originate within
one hemisphere, usually in a group of neurons that are damaged or otherwise
abnormal. They are regarded as generalised if seizure onset involves bilaterally
distributed networks of the brain, with (quasi) instantaneous involvement of
the entire brain [5].

Focal seizures occur when abnormal electrical activities originate from one
cerebral hemisphere. If the patient is fully aware of the events occurring around
them during the seizure it is categorised as a focal aware seizures. Most focal
seizures induce a loss of awareness of some of the events during the seizure
and are categorised as focal impaired awareness seizures. Examples of focal
seizures include seizures arising from the temporal lobe, which are typically
characterised by behavioural arrest and impaired awareness, often accompanied
by oral and / or manual automatisms. Temporal lobe seizures start with
sensory (auditory), emotional (fear), cognitive (déjà vu) or autonomic features
(epigastric sensation, tachycardia, skin colour change) prior to onset of impaired
awareness. Right after the seizure, patients typically show confusion. Patients
with focal aware seizures may start with an aura experience, such as déjà vu,
a strange taste or smell, sensation in the stomach, lip smacking, or and hand
rubbing. Focal seizures can progress to invovle both hemispheres [6].

Generalised seizures can be categorised based on clinical manifestations, as
motor or non-motor. The motor seizures include tonic-clonic, clonic, tonic,
myoclonic, myoclonic-tonic-clonic, myoclonic-atonic, atonic, or epileptic spasms.
Non-motor seizures are either typical or atypical absence seizures, or seizures
with myoclonic activity or eyelid myoclonia. Most of the generalised seizures are
associated with impairment of awareness, and therefore, the classification does
not take awareness into account. Motor seizures are characterised by involuntary
muscle movement that can manifest as jerking, tone stiffening or limb drop.
Typical absence seizures (previously designated as ‘petit mal’), are generalised
seizures with abrupt onset and termination of altered awareness that commonly
last about 10 to 20 seconds: the patient stares blankly and is not aware or
responsive. Right after the absence, the person resumes normal activity. Often,
they do not know that they had a seizure. Absence seizures are regarded as
non-motor generalised seizures, although subtle clonic movements can occur
at the level of the face or head, and oral and manual motor automatisms can
be observed. Absence seizures are typically (but not exclusively) seen in a
genetic or idiopathic generalised epilepsy syndrome known as childhood absence
epilepsy. This epilepsy syndrome occurs in otherwise typically developing
children, presenting with multiple daily absence seizures [7].

Seizures can occur at any moment without any notice. This weighs further on the
burden of the disease. Prediction of seizure occurrence has been a hot research
topic for the last 50 years in view of designing immediate, real-time anti-seizure
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intervention [8], [9]. This research has fostered collaboration between multiple
disciplines, namely neurology, electrophysiology, neuroscience, mathematics,
physics, engineering, first-line health care, and patients and families. However,
to date seizures cannot be predicted with sufficient accuracy and reliability to
meaningfully improve treatment of patients with epilepsy [10].

The diagnosis of epilepsy is based on clinical history, neuroimaging and EEG.
Relevant features include details of the events as they were experienced by the
patient and witnesses, general context including past personal and family medical
history, and specific circumstances under which the events occurred including
possible triggers [7]. The clinical history is complemented by laboratory tests.
These include blood and urine testing for evaluation of children [11], genetic
testing [12], neuroimaging and most importantly EEG [13]. EEG can provide
supporting evidence of epileptic activity, assist with classification of seizures and
epilepsy conditions, provide prognostic information regarding seizure recurrence
or following antiepileptic drug withdrawal, and plays a role in monitoring and
treatment adaptation.
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1.2 Electroencephalography

Scalp EEG is an electrophysiological measurement technique. It records
the electrical field of the brain cortex non-invasively by placing a number
of surface electrodes onto the scalp, typically about 20 in routine clinical
practice. The brain electrical field reflects cerebral function involving the
transmission of electrical signals by neurons (and possibly also glial cells) by
ionic currents that flow through brain tissue. This activity is the result of
both slow postsynaptic potentials (time scale 5 to 50 ms) and much shorter
action potentials (1 ms). Postsynaptic potentials are the main contributor
to EEG. Electrodes measure the summation of the activity of many neurons,
implying that it is mostly synchronised activity of aligned neuron bundles
that is being registered. Therefore, the EEG signal largely corresponds to
the synchronised recruitment of large populations of neurons. Thus, relatively
high amplitude EEG (in the range of hundreds of microvolts) mostly occurs
during states of increased neuronal synchrony, such as drowsiness, sleep, and in
some pathological conditions, such as epilepsy. Conversely, EEG attenuation is
associated with desynchronisation of neurons.

High quality EEG recordings require low impedance between the reference and
the measurement electrode. This impedance is due to the varying tissues and
interfaces between the brain and the conductive electrode. Most of the total
impedance is found in the layer of dead skin (stratum corneum) on the surface
of the scalp. To record EEG, the skin is first cleaned with an abrasive gel to
remove part of the stratum corneum. Then, electrodes are placed onto the scalp,
with conductive gel to secure the electrode connection [14]. EEG electrodes
are made of silver coated with a layer of silver chloride (Ag/AgCl), and these
are typically stable, but other materials can be used, such as gold, platinum,
tin, plastic with silver chloride inserts, wires, or epoxy coatings. These different
steps result in minimising impedance below 10 kΩ [15]. Recording electrodes
are connected to an amplifier, which converts small brain signals in the range
of tens to hundreds of microvolts to a digital medium.

A clinical EEG hardware system typically uses about 20 channels, each
corresponding to the electric field potential between two electrodes. This
allows to cover cortical regions across the whole scalp. The international 10–
20 system, first proposed in 1958, is used to place the ∼20 electrodes in a
reproducible manner [16]. This system describes locations on the surface of
the head relative to cranial landmarks. It places the first electrode at 10% of
the distance between the nasion (i.e. the anatomic landmark at the junction
between the forehead and the nose) and the inion (at the rear lower part of the
skull) in the front to back direction and subsequent electrodes at 20% of the
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distance. In the right to left direction, the same procedure is used with the first
electrode placed at 10% of the distance between the left and right mastoid in
the right to left direction and subsequent electrodes at 20% of the distance. The
international 10–20 system has been used almost universally and satisfactorily
when the need for accurate electrode placement and high spatial resolution is
limited. This system has been extended to higher density electrode settings,
referred to as high density electroencephalograph (HD-EEG). Such extensions
are sometimes used in the context of research and for the purpose of source
localisation of EEG activity. The 10–10 and 10–5 systems have been designed,
respectively, for at least 60 electrodes and at least 100 electrodes [17]. Even
higher densities are used for inverse source imaging. This is also the case in the
present work (257 electrodes). These different systems are shown in figure 1.1.
Placement systems for more than 250 electrodes are provided by vendor-specific
EEG head caps. In this work we use the EGI ™ Geodesic Sensor Net. This
systems uses 256 channels with electrodes arranged along geodesic lines on the
scalp (i.e. lines of shortest length along the surface of a sphere). We use this
setup in chapter 4 to investigate the limits of miniaturisation of EEG.
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a. 10-20 EEG b. EGI Geodesic Sensor Net

Figure 1.1: Placement of EEG electrodes on the scalp. a) 10–20 system
of electrodes with 21 electrodes. b) high-density EEG system from
EGI ™ Geodesic Sensor Net with 257 electrodes. Electrodes displayed outside
the scalp midline are located below the scalp midline.
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An EEG channel signal is obtained from the electric field potential between
two electrodes, one being regarded as a measurement electrode and the other
as a reference electrode. This allows recording and analysis EEG in different
configurations, known as an EEG montage, depending on the choice of reference
electrode. EEG can be recorded using a common reference montage where
all electrodes are referenced to a single reference. This reference can be
one particular electrode or the calculated average of all electrodes. If the
electrodes are chosen appropriately, a localised EEG signal will be visible on
the channel corresponding to the electrode overlying the cortical activity. EEG
can alternatively be recorded using a bipolar montage. In such a montage, each
channel is the potential difference within separate pairs of electrodes. Bipolar
montages are more efficacious for recording localised EEG activity. These two
different montage systems are shown in figure 1.2. These montage systems can
either be physically connected in the EEG recording device or computed after
the recording in a process referred to as re-rereferencing.
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Figure 1.2: Commonly used EEG montage in a 10–20 EEG system. A blue
line between two electrodes represents an EEG channel a) Common reference
montage. All electrodes are referenced to electrode Cz. b) Bipolar montage.
This bipolar montage is commonly named a ‘double banana’ montage.
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The acquired EEG signal can be described in terms of spatial extent, frequency
content, and morphological features. Signal oscillations are typically categorised
into conventional frequency bands [18]:

• δ (< 3.5 Hz), e.g. prominent in the fronto-central regions during deep
sleep.

• θ (4 – 7.5 Hz), e.g. prominent in fronto-central regions during drowsiness
and early stages of sleep, or in frontal regions in children and young adults
during heightened emotional states.

• α (8 – 13 Hz), e.g. the historically first described α rhythm that is
characteristically present in the occipital head region in awake subjects
when they close their eyes, and attenuated by eye opening and mental
effort.

• β (14 – 30 Hz), which is the prevailing oscillation in typical recordings,
particularly in frontal and central regions, with higher amplitude during
drowsiness and early stages, and in people taking sedative medications such
as barbiturates and benzodiazepines, which are also used as anti-seizure
medications.

• γ (> 30 Hz), e.g. associated with sensory perception integrating
information from different cortical areas.

In addition to background oscillatory activities, EEG episodic transients
can be identified as isolated waveforms or complexes. Normal transients
must be distinguished from pathological ones, particularly those signalling
epilepsy. Identification of epileptic waveforms requires training and experience.
Misinterpretation of non-epileptic transients as epileptic discharges can lead to
overdiagnosis of epilepsy and unnecessary treatments that can induce adverse
effects. There are two main markers of epilepsy in the EEG waveform, namely
interictal epileptiform discharges (IED) and epileptic seizures. Criteria to
identify IED have been established by the International Federation of Clinical
Neurophysiology [19]. These criteria define an IED as:

1. Di- or tri-phasic waves with sharp or spiky morphology (i.e. pointed
peak).

2. Different wave duration than the ongoing background activity: either
shorter or longer.

3. Asymmetry of the waveform: a sharply rising ascending phase followed
by a more slowly decaying descending phase, or inversely.
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4. The transient is followed by an associated slow after-wave.

5. The background activity surrounding the IED is disrupted by the presence
of the IED.

6. Distribution of the negative and positive potentials on the scalp suggests
a source of the signal in the brain, corresponding to a radial, oblique, or
tangential orientation of the source.

These six criteria are illustrated in figure 1.3. IED can appear as isolated spikes,
sharp waves, polyspikes, spike and slow wave complexes, or brief potentially ictal
rhythmic discharges (birds). IED are the main diagnostic marker of epilepsy
on the EEG as people with epilepsy have many IED between seizures, so that
routine clinical EEG has a high chance of recording them. In a study conducted
in 822 patients referred for EEG in support of the diagnosis of epilepsy, 36% of
30-minute long recordings showed at least one IED [20].

Figure 1.3: The six criteria of the International Federation of Clinical
Neurophysiology for the definition of an interictal epileptiform discharge. The
figure is reproduced from Kural et al. [19].
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Ictal EEG patterns typically involve runs of rhythmic monomorphic discharge
activity associated with clinical manifestations. The former are often more
dramatic and more easily recognisable than IED, but seizures are classically of
much rarer occurrence than IED, and their clinical features commonly induce
major motion and muscle artefacts that jeopardise EEG interpretability. The
patterns can be varied, and their recognition plays a role in diagnosis, sometimes
supporting specific identification of a certain epileptic syndrome. In clinical
practice, localisation of seizure onset (focal, generalised) is of great importance.
This period is less prone to motion and muscle artefacts, and this localising
information is often more relevant than that provided by IED [21]. There
may also be recognisable immediate postictal changes, typically slowing of the
background activity. Seizure patterns vary between epilepsy types and between
patients. In idiopathic generalised epilepsy, generalised spikes and polyspikes are
observed along with slow wave discharges at 3–5 Hz. The background cerebral
activity is typically normal. In childhood absence epilepsy, bilateral synchronous
3 Hz discharges lasting 3–30 seconds are observed. The discharges are often
slightly faster than 3 Hz at onset, and tend to slow down towards the end. The
interictal EEG is normal, or may show runs of occipital rhythmic δ oscillation.
In juvenile myoclonic epilepsy, the interictal and ictal EEG characteristic is
brief bursts of polyspikes (sometimes a single spike). Variable asymmetry or
lateralised emphasis of discharges is common, and interictal focal abnormalities
are described in up to 40% of cases. Temporal lobe epilepsy associated with
hippocampal sclerosis shows temporal interictal spikes and a characteristic
rhythmic 5–7 Hz ictal discharges. In familial temporal lobe epilepsy, in contrast,
focal IED is uncommon. [22]. An example of a generalised and focal epileptic
seizure is shown in figure 1.4.
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Figure 1.4: Examples of epileptic seizures. For each example 10 channels and
30 seconds of data are displayed. 500 µV separate two lines of data. Seizure
onset is indicated by a blue line. a) A generalised seizure from a patient with
childhood absence epilepsy. The seizure is characterised by generalised spike-
wave discharges of approximately 3.5 Hz. The seizure lasts 8 seconds. The data
were obtained from the study presented in chapter 2. b) A focal seizure with
onset in the right parietal lobe. The seizure quickly spreads widely over the
right hemisphere. The ictal EEG activity evolves from slow complexes (2.5 Hz)
to fast (θ) activity. Several electrodes are contaminated by muscle artefacts
during the ictal activity, likely corresponding to the motor manifestation of
the seizure. The data were obtained from the public CHB-MIT Scalp EEG
Database [23].
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There is substantial variation in EEG recording practice in clinical settings
[24]. Current requirement suggested by the ILAE for ‘advanced’ recording, i.e.
standards that should be expected for tertiary epilepsy centres and university
hospitals in resource-rich countries, include a digital device for multiple channel
polygraphy, with video and activation procedures in addition to hyperventilation
and intermittent photic stimulation, while stressing that all recordings should be
individualised according to clinical information and questions. They also suggest
that sleep EEG be recorded after sleep deprivation or pharmacological induction,
and that prolonged (daytime or overnight) recordings are considered as indicated,
ideally with video monitoring. The American Clinical Neurophysiology Society
guidelines require a minimum of 20 minutes of artefact-free EEG recording
for epilepsy diagnosis. However, longer recordings are more likely to yield a
conclusive diagnosis. It was for example shown that recording durations of 40
minutes increased the diagnostic yield by 11% [25]. Long-term EEG monitoring
is defined as recordings lasting more than 24 hours. It has been shown useful to
classify epilepsy, leading to optimized treatment strategies with positive impact
on the course of disease. In a 2021 study, Mann et al. showed long-term EEG
monitoring altered the diagnosis of 37.4% of patients. They also reported it
was well tolerated in 75% of patients and families [26].

1.3 Ambulatory EEG

While in-clinic EEG is an essential tool for epilepsy diagnosis, it has some
limitations due to the short and episodic nature of the recordings. Some of these
limitations can be addressed by using long-term ambulatory EEG. Long-term
recordings provide more opportunities to distinguish between epileptic and
non-epileptic events. Long-term EEG also increases the probability of recording
epileptiform events when standard in-clinic EEG is non-diagnostic. Ambulatory
EEG allows identification of seizure triggers that would be missed in a hospital
setting. It also provides more realistic insights into the epilepsy condition than
brief, episodic recordings in a highly standardised setting, therefore allowing
decision-making regarding adjustment of anti-seizure medications [27], [28].

Ambulatory EEG monitoring comes with new challenges which are not present
in in-clinic video-EEG. Ambulatory EEG typically does not include a video
recording. This can make it challenging to distinguish between artefacts and
epileptic activity. Given that subjects are being recorded in a free-moving
environment, muscle and movement artefacts are a major challenge. Artefacts
are also due to the difficulty in maintaining a low impedance. In the clinic, an
EEG technician is responsible for checking the impedance of electrodes and
re-applying gel when needed. This is more difficult to monitor and correct in
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ambulatory EEG [29]. Ambulatory EEG recording devices also need to adhere
to specific design requirements. They should encompass memory capacity that
is large enough to record data over at least 24 hours. Devices should be light
to allow free-range motion. The American Clinical Neurophysiology Society
recently published minimum technical requirements for performing ambulatory
EEG [27]. They recommend ambulatory EEG devices should record at a
minimum sampling rate of 256 Hz. Electrode impedance should be less than
10 kΩ at the beginning of the recording and device weight should not exceed
500 grams [27].

Building such devices has been made possible by the advent of silicon integrated
circuit chips and the subsequent miniaturisation of electronics. Early portable
EEG devices focused on battery powered devices mimicking hospital-based
systems. These devices, such as the Morpheus ™ EEG recorder from Micromed,
allows monitoring of people with epilepsy in an ambulatory setup [30]. Initiatives
around the world are transferring some of their standard practice of in-hospital
video-EEG examinations to home EEG telemetry [31], [32]. While these devices
make it possible to perform ambulatory EEG recordings, they remain bulky and
inconvenient for unobtrusive use in everyday life. Advances in electronics also
facilitates the development of cheaper consumer- and research-oriented devices.
Devices such as the emotiv epoch allow the research community to build brain
computer interface (BCI) [33] and gaming applications while devices such as
the Muse headband can support consumer grade meditation applications [34].
More recently, companies such as Byteflies have developed miniaturised EEG
devices that could pave the way for home monitoring of people with epilepsy
in their everyday life [35]. These different devices are illustrated in figure 1.5.
In addition to these commercially available products, research has focused on
different aspects of the miniaturisation of EEG devices. Active research is also
taking place on electrode technology. It aims at improving ease of use to allow
users to self-apply the electrodes. These electrodes should also allow for long-
term (> 24 hour) monitoring with minimal user interaction. This may require
the development of so-called dry electrodes that do not make use of water-based
solutions [14]. Manufacturing techniques have been developed to produce arrays
of miniature needles [36], [37]. These microneedles are several hundreds of µm
long and have a diameter of less than 100 µm. The working principle is that
they pierce the stratum corneum of skin, thereby greatly reducing impedance
compared to flat dry electrodes. In parallel, amplifier technology is continuously
being developed in order to achieve lower power consumption while maintaining
high gain and high input impedance for use with new dry electrodes [38]. These
modern integrated circuits (ICs) are then packaged into wearable form factors.
These can take the form of behind the ear EEG [39] or in-ear EEG where
electrodes are placed within the ear attached to an ear bud [40].
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Other efforts have designed electronics integrated into the frame of eyeglasses for
discrete everyday use [41]; still others have developed headbands [42]. Another
promising approach consists of implanting an array of electrodes subcutaneously
in a minimally invasive surgical procedure. This can allow continuous EEG
recording during extended periods of time, up to many months [9], [43].

A. Neurosoft - video-EEG telemetry

B. Emotiv Epoc - portable research EEG

C. Byteflies Sensor Dot - wearable EEG 

Figure 1.5: Examples of different portable EEG devices. A) Neurosoft home-
video telemetry setup for home-video EEG monitoring. B) emotiv epoch
amplifier for use as a research device in mobile environments. C) Byteflies
Sensor Dot for EEG recording in people with epilepsy in their everyday life.
(Images are reproduced with the authorisation of the manufacturers. Image
rights remain the property of the device manufacturer.)
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Traditional ambulatory EEG rely on a centralised system where all electrodes
are connected to a central recorder. This requires wires between the electrodes
and central recording unit which are the cause of artefacts and hinder wearability.
An alternative platform has been proposed to improve wearability [44]. This
new platform consists of a collection of wireless miniature EEG sensor units
operating as a sensor network. Each EEG unit should incorporate electrodes,
an amplifier, a wireless radio and a processing unit in single package with a
small scalp area footprint. It is illustrated in figure 1.6. Electronics designed for
a wireless EEG sensor network have been developed by several groups [45], [46]
and algorithms making use of this type of platform have been proposed for BCI
applications [47]. In this thesis we rely on algorithms that can be expressed as
a generalised eigenvalue decomposition (GEVD). Musluoglu et al. proposed a
framework for solving spatial filtering optimization problems in a distributed
fashion [48]. The previous sections of this introduction showed most components
required for a practical realisation of a wireless EEG sensor network are already
available or in active development. In this thesis, we investigate how a wireless
EEG sensor network can be used in the context of home monitoring of people
with epilepsy. For this, we develop signal processing methods for the analysis
of EEG signals recorded in a wireless EEG sensor network. We also develop
algorithms to design such a network in the context of home monitoring of people
with epilepsy. Next to the EEG amplifier technology and signal processing
algorithms, electrodes for home monitoring of EEG are also required. These
are still in active development and not yet validated for long term monitoring.

INION

NASION

Figure 1.6: Example of a wireless network of galvanically isolated EEG units.
This example network consists of four mini-EEG units. Each unit incorporates
a bipolar channel with two electrodes, an amplifier, a wireless radio and a
processing unit in a small package.
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1.4 Signal Processing of the Electroencephalogram

In this dissertation, we develop new signal processing methods for the analysis
of EEG signals recorded in people with epilepsy. These algorithms produce
human-interpretable output from the large volume of data recorded by multiple
channels of EEG sampled at more than 200 Hz. The aim of this introductory
section is to present common signal processing tools for EEG analysis, as well
as the background to understand the main chapters in this thesis.

The first step for EEG analysis consists of pre-processing the signal in order to
format the raw EEG data for analysis independently from individual recording
settings. This requires making sure that the data are appropriately sampled,
referenced and filtered, as well as eliminating artefacts that would hamper signal
analysis.

First the EEG must be acquired at a sample rate that captures all the relevant
information in the EEG and ensures the recorded signal does not suffer from
aliasing effects. To achieve this, the sampling frequency (fs) should be twice as
high as the frequency of the highest signal, according to the Nyquist–Shannon
sampling theorem, as any signal above this frequency will be aliased. To ensure
proper sampling of the signal, an EEG amplifier should implement a hardware
low-pass filter prior to sampling. The signal is then filtered to the frequency band
of interest. This is typically done using a combination of high-pass, low-pass,
and notch filters. The high-pass filter removes the direct current (DC) offset
and baseline wander as these are caused by the electronic and slow impedance
changes that are unrelated to neural activity. To remove the DC offset and
baseline wander, a zero-phase infinite impulse response (IIR) high-pass filter
with a cut-off frequency of 0.5 Hz is typically used. The low-pass filter uses
a similar filter design with a cut-off dependent on the application. They can
be set to a cut-off frequency of 35 Hz in the presence of prominent muscle
artefacts or 70 Hz in more conservative settings. A notch filter is used to remove
the power-line interference. The EEG can then be resampled to a lower (or
standardised) sampling frequency depending on the required application. For
example, in chapter 4 the EEG was acquired at 1 kHz, however the analysis
did not require such a high sampling rate such that the signal was resampled to
100 Hz.

Artefacts in the signal should be dealt with in order to allow the signal
processing pipeline to achieve its task. Artefacts, such as those induced by
disconnected electrodes, can reach values that are several orders of magnitude
larger than physiological neural activity recorded by the EEG. Artefacts can have
a physiological origin, e.g. blinking, eye movement, muscle contractions, sweat,
cardiac electrical activity, pulse, or body movement. Artefacts can also have
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a non-physiological origin in the power-line interference, changes in electrode
impedance, tapping or movement of electrode wires or electrodes, and electrode
disconnections. Artefacts are a challenge for the analysis of EEG as they occult
the underlying neural activity. They are often challenging to remove without
distorting the signal reflecting neural activity. Several strategies are used to
deal with artefacts. They include manual or automatic rejection of epochs or
channels severely contaminated by artefacts. The latter is the procedure we use
in this thesis when selecting the beginning and end of a recording as well as
rejecting epochs with abnormally high recorded values. Specific artefact rejection
algorithm can be included in the pre-processing pipeline. Common examples
include techniques based on wavelet decomposition, independent component
analysis, and Wiener filters [49]. However, one must accept that some artefacts
remain in the signal and they are part of the challenges for a signal processing
pipeline. Controlled environments, such as those organised in the hospital,
tend to induce less artefacts than recording conditions in environment in which
people can move freely.

The task of detecting epileptiform events is central to this thesis. It can be
formulated as a classification problem that aims at providing binary labels
to data epochs: “epileptiform event” or “non-epileptiform event”. This task
is often approached as a classical machine learning problem where a bag of
features that should allow discrimination between the two states are extracted
from the signal and fed to a classifier that determines a decision boundary
based on the value of the feature set [50]. Many features have been proposed
in the literature as relevant for the detection of epileptiform events [51]. They
correspond both to linear and non-linear descriptors of the signal [52], [53].
They relate either to the time domain, the frequency domain, to the spatial
domain (across channels), or a combination of the former dimensions. Since
the advent of neural networks, complex neural network architectures have been
developed to operate directly on the raw signal [54]. Some of these have been
shown to outperform classical classifiers [55]. In addition to feature extraction
or classifiers operating on raw data, filters can be designed to attenuate activity
that is unrelated to epileptiform activity. The output of these filters can then
be used to classify epochs. This strategy is attractive in that it allows for a
tight control of the computational complexity in function of the number of filter
parameters. It also allows for early fusion of the multi-channel EEG as raw
signals are fused together to produce a single output rather than extracting
per-channel features. This allows to exploit the spatio-temporal statistics of the
EEG signal. This is the strategy used in this thesis. It is explained in detail in
chapter 2.
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In this thesis we make the assumption the EEG signal is stationary. This
means the first order statistics of the signal do not vary over time. This
assumption is often found in signal processing algorithms and is a prerequisite
for many mathematical problems. However, the stationarity assumption is
easily violated in practice. Several causes can result in non-stationarity of the
EEG signal statistics. Among them, changes in electrode impedance lead to
degradation of the signal quality and changes in the signal statistics. Changes
in brain states could also influence the signal statistics, but should only have a
minimal impact on the filter performance if training data was presented with
these different states. Everyday life activities can also lead to changes in the
statistics of the signal. Repetitive artefacts such as those found while walking or
vibration associated with motorised transportation can lead to non-stationarity
of the EEG. The recording conditions in this thesis should guarantee a relative
stationarity of the EEG signal. However, we caution the reader to keep in mind
stationarity might not be guaranteed in some long-term EEG recordings.

1.5 Research objectives and thesis overview

1.5.1 Research objectives

In the previous sections of the introduction we highlighted the health burden
on people with epilepsy. We explained how EEG is the main diagnostic tool
for epilepsy. We detailed the current clinical standard for EEG measurements
in the hospital and enumerated current efforts to develop wearable EEG for
home monitoring of people with epilepsy. However, many current EEG wearable
devices still suffer from usability issues. One of the major limitations relates to
the trade-off between wearability and number of electrodes. More electrodes lead
to larger electronics and more wires, which make the platform less user-friendly,
and induce more wire-related artefacts. Conversely, the less electrodes the lower
the spatial resolution and the less tasks the system can be used for.

We propose a different platform to offer solutions to some of the current problems
associated with wearable EEG devices. This new platform will consist of a
collection of wireless miniature EEG sensor units operating as a sensor network.
Each EEG unit should incorporate electrodes, an amplifier, a wireless radio and
a processing unit in single package with a small scalp area footprint. Each unit
would record a single local bipolar EEG channel with the units placed anywhere
on the scalp. The new modular topology eliminates the need for wires and will
allow for a flexible, discreet, miniature, wearable system with as many EEG
sensors as necessary for a particular application or patient. This absence of wires
removes all physical connections between EEG units resulting in galvanically
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isolated EEG units. This wireless network of galvanically isolated EEG units
should also suppress artefacts resulting from wire movement and interference
[56]. This novel modular approach would facilitate a flexible miniaturised
design with multi-channel recordings at various positions on the scalp, but it
will also require new signal processing tools to analyse the EEG signals. To
limit the energy consumption of our system, we will design specific algorithms
for embedded applications. The new opportunities offered by the system can
hopefully be used for automated detection of seizures and interictal epileptic
discharges from multi-channel EEG in daily life, which is important for diagnosis
and follow-up of people with epilepsy.

The concrete objectives of this thesis are :

1) Design algorithms for real-time automatic analysis of epileptiform activity
in resource-constrained (wearable) EEG platforms. These algorithms should
automatically detect relevant physiological markers of epilepsy on EEG such
as epileptic seizures and interictal epileptiform discharges. The algorithms
should be designed to operate on limited hardware resources to allow real-time
applications such as providing an alarm to a caregiver in case of a seizure. They
must take into account the limitations on computational resources, battery
lifetime, wireless bandwidth, random access memory (RAM), and storage, as well
as the limitations resulting from the miniaturisation of the EEG setup. This
entails short inter-electrode distance resulting in low signal-to-noise (SNR)
as well as a limited number of EEG channels. These algorithms assume
stationarity of the EEG signal. They should be designed to operate in free
ranging environments where artefacts are common occurrence.

2) Design and benchmark strategies for optimal EEG sensor selection.
The number of available EEG sensor units generates a trade-off between
performance and wearability such that the number of sensors should be
minimised while ensuring sufficient performance for the task at hand (e.g.
automatic epileptic seizure detection). The EEG channel selection should be
optimised for epileptiform activity detection while optimally reducing noise. It
should be computationally tractable such that the channel selection on a large
number of input variables can be computed in reasonable time to allow many
simulation scenarios such as those explored in chapter 4.
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3) Provide guidelines for the design strategies of miniaturised EEG sensor
networks. Simulations of networks of miniaturised EEG networks should
provide limits of miniaturisation of such networks, both in terms of inter-
electrode distance (2–8 cm) and number of units (1–10 units) in a network.

1.5.2 Chapter overview

This thesis consists of three main chapters. A schematic overview of the thesis
is provided in figure 1.7. The first chapter introduces a computationally efficient
algorithm for absence seizure detection in the context of wearable EEG. This
algorithm is based on a GEVD framework that serves as a basis for the rest
of the work in this thesis. The results of chapter 2 will reveal the important
issue of appropriate selection of EEG channels or electrodes. It leads on to
the development of a channel selection method for GEVD problems, which is
presented in chapter 3. The methods developed in chapters 2 and 3 are used
to investigate the limits of miniaturisation of EEG for monitoring of epilepsy,
which is addressed in chapter 3. These three chapters presenting novel original
research are followed by conclusions and future research directions (chapter 5).

Chapters 2 and 3 are based (with minor modifications to optimise fluidity of
the presentation of the dissertation) on peer-reviewed, published papers. All
papers are first-authored by myself, in close collaboration with supervisors and
research collaborators. A more detailed overview of the different chapters can
be found below.
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1. Introduction

5. Conclusion

Figure 1.7: Schematic representation of the thesis text. The thesis is split into
three main chapters. Chapter 2 develops an algorithm for automatic detection
of absence seizure detection. The algorithm is based on the GEVD framework.
This is the basis for the channel selection and benchmark of methods in chapter
3. The insights in chapter 2 and 3 are used in chapter 4 to analyse the effects
of miniaturisation of EEG.
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Chapter 2: Computationally-Efficient Algorithm for Real-Time Absence
Seizure Detection in Wearable Electroencephalography describes the design
of a novel computationally-efficient algorithm for absence seizure detection. The
algorithm is specifically designed to run on microcontrollers as would be found
in miniature, wearable EEG devices. The algorithm is benchmarked against
other algorithms for absence seizure detection in the context of wearable EEG.
The algorithm is based on a GEVD framework which is used throughout this
thesis. The chapter highlights the importance of channel selection which is
explored in more detail in chapter 3.

Chapter 3: Grouped Variable Selection for Generalised Eigenvalue Problems
presents a new variable selection method for GEVD problems that can for
example be used for channel selection in EEG. The chapter also compares
different algorithms for variable context in the GEVD problems. This chapter
is used to select the best channel selection method to explore the limits of
miniaturization presented in chapter 4.

Chapter 4: Sensor selection and miniaturisation limits for detection of
interictal epileptiform discharges with wearable EEG explores the limits
of miniaturization of wearable EEG devices, both in terms of inter-electrode
distance (2–8 cm) and number of units (1–10 units) in a network, by making use
of the methods in chapters 2 and 3. The results from the chapter give design
guidelines for miniature EEG devices.
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Computationally-Efficient Algorithm
for Real-Time Absence Seizure
Detection in Wearable
Electroencephalography

This chapter is based on J. Dan, B. Vandendriessche, W. Van Paesschen,
D. Weckhuysen, and A. Bertrand, (2020). “Computationally-Efficient
Algorithm for Real-Time Absence Seizure Detection in Wearable
Electroencephalography”, International journal of neural systems, vol.
30, no. 11, 2020. A Graphical User Interface to improve review of EEG
recordings from patients with absence seizures is added as an appendix.
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Computationally-Efficient Algorithm for Real-Time
Absence Seizure Detection in Wearable Electroen-
cephalography

Abstract | Advances in EEG equipment now allow monitoring of people
with epilepsy in their daily-life environment. The large volumes of data
that can be collected from long-term out-of-clinic monitoring require
novel algorithms to process the recordings on board of the device to
identify and log or transmit only relevant data epochs. Existing seizure-
detection algorithms are generally designed for post-processing purposes,
so that memory and computing power are rarely considered as constraints.
We propose a novel multi-channel EEG signal processing method for
automated absence seizure detection which is specifically designed to
run on a microcontroller with minimal memory and processing power.
It is based on a linear multi-channel filter that is precomputed offline
in a data-driven fashion based on the spatial-temporal signature of the
seizure and peak interference statistics. At run-time, the algorithm
requires only standard linear filtering operations, which are cheap and
efficient to compute, in particular on microcontrollers with a multiply-
accumulate unit. For validation, a dataset of eight patients with juvenile
absence epilepsy was collected. Patients were equipped with a 20-channel
mobile EEG unit and discharged for a day-long recording. The algorithm
achieves a median of 0.5 false detections per day at 95% sensitivity. We
compare our algorithm with state-of-the-art absence seizure detection
algorithms and conclude it performs on par with these at a much lower
computational cost.
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2.1 Introduction

Epilepsy is one of the most common severely disabling brain conditions, affecting
over 46 million people worldwide [57]. The clinical utility of monitoring epileptic
seizures has been amply documented [58]. For example, it is used for optimizing
antiepileptic therapy and for the development of new drugs. Until recently,
long-term monitoring of epilepsy relied mostly on patient-reported outcomes and
occasional short duration EEG recording in hospital-based epilepsy monitoring
units to document epileptic discharges. Such in-hospital recordings rarely
contain actual electroclinical seizures as these are relatively unlikely to occur
during the very short recording sessions [59]. For a small proportion of people
with epilepsy, typically those selected for surgical treatment, this can eventually
be complemented by additional (one to several day-long) video-EEG recordings
in specially equipped hospital units [58]. Epilepsy monitoring units confine
recordings within a hospital room, imposing restriction on patients’ movement
and activity. These hospital recordings also incur significant expenses [60].

Epilepsy is classified in different syndromes and seizure types. Typical absence
seizures are generalised seizures that occur in people with juvenile absence
epilepsy and childhood absence epilepsy syndromes. These seizures are
characterized by sudden impairment of consciousness lasting a few seconds
[61]. The seizures are associated with a bilateral, synchronous, and symmetrical
EEG discharge of 3 Hz spike and wave complexes [62]. Given the lack of
distinctive movement or other clinical manifestations, it is difficult for people
with absence seizures or their caretakers to accurately detect and count seizures,
and report them to the clinician. An ambulatory EEG study in people with
absence seizures found that only 6% of seizures lasting more than three seconds
were reported [63]. Due to this severe under-reporting, a wearable EEG device
that automatically detects and logs absence seizures in daily life situations
would be a valuable asset for the people with epilepsy and the clinician.

The emergence of miniature EEG devices that can record EEG outside a hospital
or lab environment enables ambulatory measurements in a real-life setting [39],
[64]–[67]. This allows long-term recordings, which have a much higher chance
of capturing seizures [68]. In addition, seizures resulting from epileptic triggers
that would not occur in the hospital can be recorded, sleep patterns are not
disturbed, and the neurologist has access to a more representative recording
of the patient’s seizures. In order for these new EEG devices to be accepted
and worn by people with epilepsy outside the hospital for prolonged periods of
time, the devices need to be designed to be comfortable, miniature, wearable
and discreet. Such EEG devices could be used to monitor people with epilepsy
over long periods of time, generating large amounts of data.
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In turn, this would require automated data analysis to extract relevant
biomarkers from large datasets as the amount of manual annotation work
would not be manageable realistically by an epileptologist. Furthermore, the
recorded EEG data have to be processed on the device itself in order to minimize
the amount of data that have to be logged within the device or transmitted to
the cloud. This would ensure a sufficiently long battery lifetime.

Many seizure detection algorithms have been proposed for use in the clinic [69],
[70]. Most of these are not built for a specific seizure type and are operated offline
on data collected during routine clinical observation in epilepsy monitoring units.
Only a few algorithms have been designed specifically for people with absence
seizures [71]–[75]. In even fewer of these studies, algorithms were designed to run
on wearable systems. In contrast to algorithms developed to run in a hospital
without strict computational constraints (as they can rely on powerful servers
connected to the hospital network) [70], algorithms for wearable systems must
meet with strict storage, computing memory, and computing power constraints.
The challenge of developing energy efficient seizure detection algorithms has
also been highlighted by teams working on long-term intracranial EEG for use
in implanted devices [76]–[78].

In this chapter we propose a fully automated seizure detection algorithm
specifically designed to run on a microcontroller. The algorithm is based on
a linear filter that is designed in a data-driven fashion to maximally amplify
absence seizure signals while optimally attenuating peak interference. This
framework is inspired by work from Wouters et al. in spike sorting where a
template matching algorithm is used [79]. Wouters et al. propose to optimize a
data-driven filter in terms of separation of target signal and peak interferences,
thereby maximizing the signal-to-peak interference ratio. This is an adaptation
of classical data-driven filters that optimize signal-to-noise (SNR) ratio. It is
then applied as a linear filter-and-sum operation with finite impulse response
(FIR) filters. FIR filtering is a standard signal processing operation that can be
efficiently implemented in low-power hardware, in particular when a dedicated
multiply-accumulate (MAC) unit is available.

The chapter is organized as follows. The data collection and the data-driven
filter design are presented in section 2.2. The results of the proposed algorithm
are reported and compared to other state-of-the-art absence seizure detection
algorithms in section 2.3. The results are discussed in section 2.4 and conclusions
are drawn in section 2.5.
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2.2 Materials & methods

2.2.1 Data collection and annotation

The main dataset used in this study consisted of recordings performed in
out-of-clinic environments. An additional validation dataset was assembled
from retrospective recordings obtained in a hospital setting to validate the
generalizability of the proposed algorithm to new independent data sets with
additional patients and different recording equipment.

For the main dataset, EEG signals were obtained from eight patients with
refractory juvenile absence epilepsy recruited at the epilepsy reference center
of the UZ Leuven university hospital (Belgium) (Table 2.1). Inclusion criteria
were age of 18 or above, and diagnosis of refractory juvenile absence epilepsy
ascertained by an expert neurologist. Exclusion criteria for data analysis were
the absence of recorded absence seizures. Participants were equipped at the
hospital with a 20 channel Medatec BrainWalker3 (Braine-le-Château, Belgium)
portable EEG amplifier (10-20 system) sampling at 200 Hz and then discharged
for ambulatory continuous EEG recording until the next day. During the
recording, they were allowed to proceed with their daily life activities (the only
restriction was not washing their hair).

Patient Sex Age Seizure types Recorded
seizures

Seizure du-
ration

Recording du-
ration

1 F 49 A, GTCS, M 0 NA 05:53:30
2 F 25 A, GTCS 41 26 22:43:47
3 M 18 A, GTCS 8 10 21:45:00
4 M 24 A 0 NA NA
5 F 42 A, GTCS 5 8 21:18:20
6 F 22 A, GTCS 5 4 21:55:33
7 F 20 A, GTCS 24 13 21:43:40
8 F 24 A, GTCS, M 18 9 21:50:40

Table 2.1: Patients with juvenile absence epilepsy recruited for 24 hours out-of-
clinic EEG monitoring. Sex: F (female), M (male); Age in years; Seizure types:
A (absence seizure), GTCS (generalised tonic-clonic seizure), M (myoclonic
seizure); Median seizure duration in seconds
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For the independent validation dataset, EEG recordings from 17 patients with
refractory juvenile absence epilepsy who visited the epilepsy monitoring unit
during the period 2016-2019 were aggregated (Table 2.2). The patients were
recorded within the video-EEG unit for a day-long monitoring using a 20 channel
BrainRT Brainbox 1042 EEG recorder (Kontich, Belgium) sampling at 250 Hz.
Throughout those recordings, the patients stayed in the video-EEG monitoring
room. These recordings are of high quality and contain little technical or
movement related artifacts. The first eight patients from table 2.2 are the same
as the patients in table 2.1.

Patient Sex Age Seizure types Recorded seizures Recording du-
ration

1 F 49 A, GTCS, M 5 21:59:25
2 F 25 A, GTCS 0 20:42:50
3 M 18 A, GTCS 0 20:16:50
4 M 24 A 5 20:38:04
5 F 43 A, GTCS 0 14:01:40
6 F 22 A, GTCS 0 20:56:13
7 F 20 GTCS 0 19:02:21
8 F 24 A, GTCS, M 0 20:12:47
9 M 28 A, GTCS, M 20 19:54:40
10 F 30 A, GTCS 2 21:48:35
11 F 41 A, GTCS 10 19:44:12
12 M 24 A 0 20:34:56
13 F 32 A 0 21:22:48
14 F 47 A, GTCS 88 21:16:33
15 F 49 A, GTCS 6 19:40:05
16 F 48 A 40 19:54:04
17 F 33 A, GTCS 43 21:54:56

Table 2.2: Patients with absence epilepsy recruited for 24 hours in-hospital EEG
monitoring. Sex: F (female), M (male); Age in years; Seizure types: A (absence
seizure), GTCS (generalised tonic-clonic seizure), M (myoclonic seizure)

Absence seizures, defined as electroencephalographic generalised spike and wave
discharges, were annotated by an expert epileptologist from UZ Leuven. It
is noted that epileptiform graphoelements with a duration of less than three
seconds are generally associated with interictal activity [80]. It depends on the
targeted use case whether such shorter events should be flagged by a detection
algorithm or not, and so whether their detection should be treated as true or
false positives. In this work, this choice was avoided by excluding all epileptiform
segments with a duration shorter than three seconds from the analysis.
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The study was approved by the local ethics committee and written informed
consent was obtained from all participants.

2.2.2 Seizure detection algorithm

Our proposed seizure detection algorithm is a pre-trained spatio-temporal filter,
implemented as a filter-and-sum pipeline; followed by thresholding on the power
of the single-channel output signal. This approach is illustrated in Figure 2.1.

Raw signal

Filtered signal

Epileptic seizure Peak interference

spatial summation (N channels)

Noise

L tap FIR filter #1

L tap FIR filter #2

L tap FIR filter #n

Figure 2.1: Illustration of the seizure detection algorithm. Bandpass filtered
multichannel EEG signal (top left, blue) is fed to a pre-trained (see Fig. 2.2)
spatio-temporal filter (right) implemented as a filter-and-sum pipeline where
each FIR filter has L filter coefficients (‘taps’). This results in a single-channel
output (bottom, blue). The time-varying standard deviation (root mean square
(RMS) value) of this filter output signal is computed (bottom, orange). All
samples above a set threshold (bottom, black) are labeled as seizures.
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The training of the filter coefficients is done in a two-step approach. First, peak
interferences are detected by training and applying a purely spatial filter that
maximizes the seizure power to non-seizure power ratio. The 40 minutes of
highest power of the single-channel output (excluding seizure segments) are
labeled as peak interference. Then, a second spatial-temporal data-driven filter
that maximizes the seizure to peak interference ratio (SPIR) is trained. This
filter can be adapted in terms of number of channels and number of time lags.
A detailed explanation of the algorithm is given in the following subsections.

Data preprocessing

The data were high-pass and low-pass filtered with a fourth-order Butterworth
filter with a cut-off frequency of 0.5 Hz and 25 Hz, respectively. The data were
then downsampled to 50 Hz and re-referenced to a longitudinal bipolar montage
[81] resulting in 18 channels. Segments with a RMS amplitude of more than
400 µV over a window of 100 ms were considered as non-electroencephalographic
(i.e. not of brain origin) and excluded from the analysis along with 1.5 seconds
of data before and after each excluded segment of 100 ms.

Data-driven filter design

The EEG signal in channel k is modeled as

yk(t) = sk(t) + nk(t) + ik(t)

where sk(t) corresponds to seizure-related EEG activity, nk(t) corresponds to
background EEG or noise components that are not related to the seizure 1, and
ik(t) corresponds to peak interference, i.e. artifacts that occur sparsely in time
with a high peak amplitude, e.g. due to chewing or eye blinking. Peak interferers
are typically the main source of false positives in a threshold-based seizure
detection algorithm, whereas the noise floor denoted by nk(t) generally does not
trigger a detection. Note that sk(t) and ik(t) are sparse processes, i.e. the signals
are zero most of the time, whereas the noise floor signal nk(t) is continuously
active. The raw data in figure 2.1 show periods where seizure activity, noise,
and peak interference (chewing artifact) are respectively dominant.

Let y(t) ∈ RN denote a N -dimensional vector containing the sample at time t
collected at N EEG channels, i.e. y(t) = [y1(t) . . . yN ]T , where T denotes the
transpose operator. The vectors s(t), n(t), and i(t) are defined similarly, such

1In the remaining of the chapter, we will refer to nk(t) as the ‘noise’ component. The term
noise should be read in the signal processing terminology as non-target signal components,
i.e., signal dynamics that are not related to a seizure.



2.2 | MATERIALS & METHODS 31

that y(t) = s(t) + n(t) + i(t). The N EEG channels are then linearly combined
into a single-channel output signal o(t).

o(t) = wT y(t) (2.1)
where w ∈ RN contains the combination weights. From a signal processing
point of view, w acts as a spatial filter as it linearly combines different EEG
channels at different positions on the scalp. Our goal is to find the optimal
set of filter coefficients such that the filter output signal o(t) has a maximal
amplitude if a seizure is present, while suppressing the noise floor and peak
interferers as much as possible. In other words, the filter w is optimized in a
data-driven fashion to maximize the SPIR of o(t) over a training set, i.e. solving

maxw
Es{(wT s(t))2}

Ei{(wT (i(t) + n(t)))2}
(2.2)

where Es{.} denotes the expected value operator evaluated over epochs in which
a seizure is present, and Ei{.} denotes the expected value operator evaluated
over signal segments during which a peak-interferer is active.

Equation 2.2 is equal to:

maxw
wT Rsw

wT Ri+nw (2.3)

where Rs = Es{s(t)s(t)T } is the seizure covariance matrix and Ri+n = Ei{(i(t)+
n(t))(i(t) + n(t))T }, is the peak-interference-plus-noise covariance matrix. In
subsection 2.2.2, we will explain how these covariance matrices are estimated
from the data. It can be shown[82] that the solution of the maximization
problem defined in equation 2.3 is the eigenvector corresponding to the largest
eigenvalue of the matrix R−1

i+nRs.

The filter described above is a purely spatial filter. It can be expanded to
a causal spatio-temporal filter by creating a buffer of L samples for each
channel and stacking all buffered (time-lagged) samples in a single vector
ỹ(t) = col{ỹ1(t), . . . , ỹN(t)} where ỹk(t) = [yk(t), yk(t−1), . . . , yk(t−L+1)]T
and col{.} denotes a columnwise stacking. The output signal o(t) is given
by equation 2.1 where w is replaced by w̃ ∈ RLN and y(t) is replaced by
ỹ(t) ∈ RLN . This then corresponds to a filter-and-sum operation as depicted in
Fig. 2.1, where each channel is filtered with a channel-specific L-taps FIR filter,
followed by a summation across channels. The filtering operation that produces
one output sample of o(t) is obtained by LN multiplications and LN additions.

In this spatio-temporal extension, the covariance matrices in equation 2.3 are
replaced with their spatio-temporal generalizations, i.e., Rs = Es{s̃(t)̃s(t)T }
and Ri+n = Ei{(̃i(t) + ñ(t))(̃i(t) + ñ(t))T }. In the remainder of the chapter,
we shall always assume the spatio-temporal extension unless otherwise specified,
and omit the ˜ for notational convenience.
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Covariance matrix estimation

In order to compute the optimal filter w, we need to estimate the two covariance
matrices Rs and Ri+n on a training data set, where the training data can be
either patient-specific or patient-independent (see subsection 2.2.3).

In our implementation of the algorithm, the seizure covariance matrix Rs was
computed as 2

Rs ≈ 1
|S|
∑
t∈S

y(t)y(t)T (2.4)

where S is the set of all samples that are part of epochs that were marked as
“seizure” by an expert epileptologist. Similarly, the peak-interference covariance
matrix Ri+n was computed as

Ri+n ≈ 1
|I|
∑
t∈I

y(t)y(t)T

where I is the set of all samples that are part of epochs that contain a peak
interference. As opposed to S, the set of samples that belong to I are identified
in an automatic fashion. To this end, again, a data-driven filtering technique
was used.

The signal was modeled as a linear combination of a seizure time series s(t)
and a seizure-free time series f(t) (including noise-only and peak-interference-
plus-noise segments). A spatial filter p was then computed as the eigenvector
belonging to the largest eigenvalue of R−1

f Rs, where the seizure covariance
matrix Rs was computed as in equation 2.4. The seizure-free covariance matrix
Rf was computed on the rest of the data. Note that in this prior step, we do not
use any temporal filtering, i.e. L is set to 1 resulting in a purely spatial filter.
This filter was then used to produce a single-channel output given by pT y(t).
The RMS over three seconds of the output was computed. The 40 minutes
of highest RMS during seizure-free epochs were labeled as peak interference
which then form the set I. The set is formed by ranking the signal by highest
power, selecting the sample with the highest power, extending the selection to
three seconds around the sample and repeating until a total of 40 minutes are
selected. This captures most of the peak interferers that appear during a 24-hour
recording such as, e.g. chewing artifacts, eye blinking, speech artifacts, head
motion, etc while being short enough such that high power interferers dominate

2Note that, since the noise floor is always present, the resulting covariance matrix is
actually an estimate for Es(s(t) + n(t))(s(t) + n(t))T = Rs + Rn. If necessary, Rn can be
estimated over noise-only epochs (without seizures or peak interferers) and subtracted from
the estimate of Rs. However, since absence seizures have a much higher amplitude than
the noise floor generated by background EEG, we have not applied this correction in our
implementation.
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the set I. The process leading to the identification of the peak interferers and
the training of the max-SPIR filter is shown in figure 2.2.

Epileptic seizure

non-epileptic data

max-SNR filter
spatial filter
(N channels) Peak interference1.

2.

max-SPIR filter
spatio-temporal filter
(N channels, L lags)3.

label peak interference

Figure 2.2: Illustration of the three-stage process that is used to train the
spatio-temporal max-SPIR filter. (1) Bandpass filtered multichannel EEG (left,
blue) is used to train a purely spatial max-SNR filter. The filter optimally
amplifies the epochs of epileptic activity and attenuates those of non-epileptic
data. (2) Examples of peak interference are automatically labeled based on
the filtered data with the highest RMS power during non-epileptic epochs. (3)
These peak interferences and the epileptic activity epochs are used to train
a max-SPIR spatio-temporal filter. In contrast to the max-SNR filter, the
max-SPIR filter will focus on suppressing peak interferers (which cause the
majority of the threshold crossings) more so than suppressing sub-threshold
noise.

Regularization

The inclusion of time lags substantially increases the dimension of the covariance
matrices, possibly making them ill-conditioned due to the redundancy in the
entries of y(t). For this reason a regularization scheme is required. Wouters et al.
[83] proposed an effective regularization scheme for a template-matching-filter
that optimizes a similar cost function as in equation 2.3. The regularization is
obtained by projecting the data on a subspace containing the main principal
components of the denominator covariance matrix along with the template
itself (to represent the target signal). In this work we adapted the method
to our problem formulation. The data were projected on a subspace defined
as the span of the principal components of the peak interference Ri+n and
seizure Rs covariance matrices. The principal components with the largest
eigenvalues of Ri+n and accounting for 90% of the variance in the interference
segments were retained. The principal components with the largest eigenvalues
of Rs accounting for 95% of the variance in the seizure segments were also
retained. These two sets of principal component vectors were then combined
and orthogonalized by placing them in the columns of a new matrix M on which
a singular value decomposition is applied to find an orthogonal basis for the
subspace. Let U = [u1 . . . uK ] denote the matrix, the columns of which consist
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of the K left singular vectors corresponding to the largest singular values of M,
where the cut-off K is chosen such that the cumulated sum of these singular
values is at least 99% of the sum of all singular values. The matrix U is then
used as a compression matrix on the data, i.e.,

yc(t) = UT y(t)

where yc(t) ∈ RK . The optimal compressed filter wc is then given as the
eigenvector of (R−1

i+n,c)Rs,c, where Ri+n,c = UT Ri+nU and Rs,c = UT RsU
correspond to the compressed matrices. The filter output is then defined as
o(t) = wc

T yc(t) which is equivalent to an uncompressed filtering o(t) = wT y(t)
with w = Uwc. It is noted that this compression is only applied with the
purpose of regularization during training to obtain a better (uncompressed)
filter w. During operation of the algorithm (at test time), we always apply the
full filter w on the uncompressed data, as the compression with U requires
more computations than the filtering with w.

Seizure detection

The power of the single-channel output o(t) was used to detect samples
corresponding to a seizure. The RMS of o(t) over three seconds was calculated
as this duration is commonly used to define an absence seizure [61]. A threshold
was then applied to the running RMS signal, and selected depending on the
desired sensitivity (see Section 2.3). This binary classification (above or below
threshold) classified samples as seizure or non-seizure.

Several rules were applied to the output of the binary classification to assess
the performance of the classification. Samples labeled as seizures and occurring
less than 1.5 seconds before the start or after the end of a seizure were not
counted as false positive. This was done to account for the settling time of the
rolling RMS. False positives occurring less than 30 seconds apart were merged
as a single false positive. A seizure was considered as detected if at least one
output sample of the binary classification was labeled as a seizure. These rules
were applied both to our proposed algorithm and to the algorithms used as
benchmark.
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2.2.3 Cross-validation

When training and testing the seizure detection algorithm in a patient-specific
paradigm, care was taken to separate the dataset in independent training and
testing sets. The seizure epochs were split in two folds of equal size (referred to
as seizure folds). The rest of the data were split in four folds (referred to as non-
seizure folds) of continuous data (each non-seizure fold contained approximately
six hours of data). Each training fold used one fold of seizure epochs and
three folds of non-seizure data. The obtained filter was then evaluated on
the remaining seizure fold and remaining non-seizure fold. This process was
repeated for all possible combinations between seizure and non-seizure training
folds. An illustration of the cross-validation scheme for the patient-specific case
is given in figure 2.3.

training set
test set

peak interference
seizure

Figure 2.3: Patient-specific cross-validation. The seizures are split in two folds.
The remaining data are split in four folds. One seizure fold and three non-seizure
folds are used for training. The remaining seizure fold and remaining non-seizure
fold are used for testing. This process is repeated until all combinations of
training and testing folds are covered.

In the patient-independent paradigm, a leave-one-patient-out approach was
used for cross-validation. The seizure Rs and peak interference Ri+n covariance
matrices were calculated for each patient, normalized with respect to their trace,
and then averaged across patients to obtain the pair (Rs, Ri+n) that is used
for the filter design in equation 2.3. The process was repeated by systematically
leaving one patient out of the training of the filter and testing on that patient.

As a final validation, the patient-independent filter trained on the patients
discharged for out-of-clinic monitoring was evaluated on a second dataset with
additional patients and a different EEG device, recorded in hospital. This
was used as a validation test to show that the algorithm is generalizable to
independent EEG recordings.
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2.2.4 Channel selection

When evaluating the performance of the algorithm, we investigated the effect
of the number of channels (N) on the performance. To this effect a channel
selection procedure that selects N out of all available channels was used. It is
based on a greedy forward selection. In the first iteration, 18 single-channel
SPIR filters are trained and evaluated. The channel with the best performance
(in terms of false positives for a sensitivity of 95%) was selected (N = 1). In the
next iteration, all subsets of two channels that include the previously selected
channel were trained and evaluated (N = 2). The process was repeated until N
channels were selected. Note that the evaluation of the best channels was done
on the training fold rather than the test fold. Although this may introduce an
overfitting bias to the training fold, the reported performance (on the test fold)
is fair in the sense that the channel selection is not optimized with respect to
the test fold. The use of a separate validation fold for channel selection was not
possible due to the small amount of seizures in some patients.

2.2.5 Evaluation metrics

A varying seizure detection threshold was used to map sensitivity, i.e. the
percentage of seizures that are detected by the algorithm, in function of false
positive count. This threshold was applied to the running mean of the RMS
of the single-channel output o(t) as explained in subsection 2.2.2. A measure
of false positive rate was used in place of specificity because seizures are very
rare events and specificity of the algorithm does not correctly assess the clinical
utility of seizure detection algorithms [84].

In the patient-specific paradigm, the false positives were averaged over the eight
different test folds, to calculate an average false positive rate per day.

Because energy efficiency of the algorithm is important when operating in
real time on board of a wearable device, the algorithm was also evaluated in
terms of memory usage and computing complexity. The computing complexity
was calculated as the number of operations (summations and multiplications
required by the algorithm). Single operations that do not depend on the number
of channels or the number of samples were not counted. Memory was computed
with variables stored with 32 bits. These variables could be either integers or
floating point.
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2.2.6 Comparison with the state of the art

We compared our method with two state-of-the-art algorithms for absence
seizure detection using wearable EEG [71], [72]. Kjaer et al.[71] proposed a
support-vector machine (SVM) based classifier for use with a single-channel
EEG setup. The algorithm extracts many features based both on amplitude and
frequency before applying a non-linear SVM classifier. The algorithm suggested
by Xanthopoulos et al.[72] is based on a multichannel wavelet-based algorithm
followed by a thresholding operation. These algorithms were re-implemented as
truthfully as possible based on the original publications and evaluated on our
dataset. A more detailed description of the similarities and differences between
these algorithms and our proposed method is given in the discussion.
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2.3 Results

All results presented in this section are for the main (ambulatory) dataset,
unless mentioned otherwise. Data from all but two subjects could be used for
analysis. Data from patient 4 were lost due to a recording error. Patient 1 had
no seizures during the recording time. These two subjects with no recorded
seizures were excluded from the analysis.

2.3.1 Performance analysis

Figure 2.4 shows the false positive rate in function of seizure detection sensitivity
when all (N = 18) bipolar channels were used and the number of time lags was
set to L = 25 in a patient-specific paradigm. A distribution of the false positive
rate across the subjects is shown for each sensitivity level. The median number
of false positives per day for a sensitivity of 95% is 0.5. Note that we report
the mean number of false positives across the two seizure folds. This is why
the number of false positives per day are reported as multiples of 0.5, despite
the fact that we never record longer than a day. In this context, a value of 0.5
false positives per day within a patient means that the filter trained on seizure
fold 1 generates 0 false positives per day, while the filter trained on seizure fold
2 generates 1 false positive per day. When displaying results in a boxplot the
following conventions are used. The median is represented as a bright square.
The box extends from the first to the third quartile. The whiskers extend to
1.5 times the interquartile range (1.5 ∗ Q3 − Q1). All points outside this range
are represented as large dots.

Table 2.3 shows the number of false positives when detecting all seizures and
when detecting all but one seizure in the different patients when all (N = 18)
bipolar channels were used and the number of time lags was set to L = 25
in a patient-specific paradigm. The patient with the greatest number of false
positives per day when detecting all seizures has 2.5 false detections per day.
The median number of false detections per day is 0.5. The median F1 score
across all patients is 0.95 (best between 100% sensitivity and detection of all
but one seizure).

Figure 2.5 shows the number of false positives per day for a sensitivity of 95%
when varying both the number of time lags (L) and the number of channels (N)
in a patient-specific paradigm. The figure shows a decrease of false positives
when the number of channels and/or the number of time lags increase.
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Figure 2.4: Boxplot (over the different subjects) of seizure detection sensitivity
as a function of false positives per day when applying the data-driven filter
with all (N = 18) channels and L = 25 time lags in a patient-specific paradigm.
Median is represented by an orange square, outliers by a black circle.

Patient Recorded
Seizures

False
positives
per day
for 100%
detection

False
positives
per day to
detect all but
one seizure

F1 score

2 41 0 0 1
3 8 0.5 0.5 0.90
5 5 1.5 1.5 0.87
6 5 0.5 0 0.94
7 24 2.5 1 0.96
8 18 0 0 1

Table 2.3: Number of false positives per day for each patient to detect all
seizures and to detect all but one seizure when all (N = 18) bipolar channels
were used and the number of time lags was set to L = 25 in a patient-specific
paradigm.
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Figure 2.5: Median (over the different subjects) of seizure false positives per
day when setting the sensitivity to 95% and varying the number of channels
(N) and time lags (L) in a patient-specific paradigm. Color represents false
positives per day. Dark blue represents a low number of false detections, yellow
a high number.
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Figure 2.6: Boxplot (over the different subjects) of seizure false positives per
day when setting the sensitivity to 95% and varying the number of channels
(N) when using L = 25 time lags in a patient-specific paradigm.
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Figure 2.6 shows how the performance of the algorithm varies in function of the
number of channels (N) that are used for the classification task with L = 25
time lags in a patient-specific paradigm. The number of false positives per day
decreases with increasing number of channels, reaching 0.5 false positives per
day when using 10 channels.

Figure 2.7 illustrates the effect of the number of available training seizures on
the performance of the algorithm. The algorithm was trained in a patient-
specific fashion using all (N = 18) channels and L = 25 time lags. This graph
shows results for three patients (patients 2, 7 and 8), the only ones with 10
or more seizures. Figure 2.7a illustrates that the number of available training
seizures has very little influence on the performance of the algorithm. The
spatio-temporal pattern in the seizure covariance matrix estimated from one
seizure (Fig. 2.7b) is very similar to the seizure covariance matrix estimated
from all seizures (Fig. 2.7c).
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Figure 2.7: (a) Median number of false positives per day for a sensitivity of 95%
when artificially limiting the number of training seizures, using all (N = 18)
channels and L = 25 time lags in a patient-specific paradigm. – (b) Example
of a seizure covariance matrix estimated from one seizure – (c) Example of a
seizure covariance matrix estimated from all seizures in the same patient.
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Figure 2.8: Median (over the different subjects) of seizure detection sensitivity
in function of false positives per day when applying the data-driven filter with
all (N = 18) channels and L = 25 time lags in a patient-specific paradigm (blue)
and a patient-independent paradigm (ocher).

Figure 2.8 compares the performance of the algorithm when trained in a patient-
specific paradigm compared to a patient-independent paradigm. Both were
generated using all (N = 18) channels and L = 25 time lags. The sensitivity
versus false positive rate starts diverging for sensitivities higher than 60%.
For these higher sensitivities the false positive rate per day is higher in the
patient-independent paradigm than in the patient-specific one. For a sensitivity
of 95% the patient independent-algorithm makes a median of 6 false positives
per day while the patient-specific one makes 0.5 false positives per day.

As a final validation, the patient-independent filter trained on the out-of-clinic
recordings was evaluated on the validation dataset of patients recorded in
hospital in order to test how well the pre-trained filter generalizes to other data
sets. For a detection threshold that detects all 222 seizures in the dataset, there
were two false detections in two different patients across the whole dataset.
An example of a true detection and of a false detection are given in figure 2.9.
Both detections occur while the patient is eating. The artifacts resulting from
chewing are well suppressed in both examples. The seizure is correctly amplified.
In the case of the false detection some noise with a seizure-like pattern triggers
a false detection.
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Figure 2.9: An example of detected seizure (a) and of a false detection (b) in
the validation dataset. The blue line is the single-channel output of the filter.
The orange line is the running mean of the RMS of the single-channel output.
The black dashed line is the detection threshold.
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2.3.2 Benchmarking performance and energy consumption

Figure 2.10 shows a comparison of the performance of our proposed algorithm
with state-of-the-art algorithms for patient-specific absence seizure detection.
Four seizure detection algorithms are shown on the figure. The best performing
classifier is a nonlinear SVM classifier on a single-lead EEG [71]. The best single-
lead channel was investigated in the work of Kjaer et al. For their algorithm,
they found F7 − Fp1 to be the best channel. It has a median false positives per
day across subjects of zero for sensitivities up to 85%. For higher sensitivities,
the number of false positives increases rapidly. The classification method we
propose (N = 10, L = 25) performs similarly with 0.25 false positives per day for
a sensitivity of 85%. When the method we propose is restricted to one channel
(N = 1, L = 25), it generates 15 false positives per day. The multi-channel
(N = 18) wavelet-based algorithm does not perform well on this dataset [72]. It
already has 15.5 false positives per day for a sensitivity of 10%. The number of
false positives increases with higher sensitivities.
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Figure 2.10: Comparison of the sensitivity in function of false positives per
day in four different seizure detection algorithms in a patient-specific paradigm.
SVM-N = 1 is the algorithm of Kjaer et al. [71]. Wavelet-N = 18 is the
algorithm of Xanthopoulos et al. [72].

The memory usage of the method we propose corresponds to the data that are
buffered and in the storage of the filter coefficients. The number of calculations
needed to classify are the result of applying the data-driven filter and computing
the RMS of the single-channel output. The memory usage of the non-linear
SVM classifier on a single-lead EEG [71] resides in a data buffer, the finite
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impulse response filter that is used to calculate some features and in the support
vectors that need to be stored for classification of a new epoch. The SVM
algorithm uses an average of 403 support vectors (full range: [17, 1659]). The
number of calculations needed to classify a new epoch are the result of the
feature extraction and classification using a radial basis function kernel. The
memory usage of the wavelet-based method [72] lies in the data that are buffered.
The number of calculations needed to classify a new epoch are the result of
the continuous wavelet transform and the transformation to a single-channel
output (variance of individual channels and mean over channels). The total
number of bytes of memory as well as the number of operations (summations,
multiplications, non-linear operations) are reported in table 2.4. The number of
operations is reported as a normalized number of operations per sample. For the
window-based algorithms, the number of operations on a window is divided by
the number of samples in the window. For comparison purposes the sampling
frequency of all algorithms was set to 200 Hz. The algorithm we propose uses
100 bytes of memory in the single channel and 1 kB of memory in the 10 channel
configuration. The amount of memory required and the number of computations
are linearly proportional to the number of channels and the number of time
lags (see subsection 2.2.2). The SVM and the wavelet methods use respectively
12 kB and 8 kB of memory. The algorithm we propose executes 50 operations
per sample period (25 summations and 25 multiplications) for one channel and
500 operations per sample period for 10 channels. The SVM uses a windowed
approach and classifies windows of two seconds. The algorithm executes 6519
operations per sample period, of which 2 are non-linear (cosine and radial
basis function). The wavelet algorithm classifies windows of one second. It
executes 24012 operations per sample period. Details on the implementation of
these algorithms that allows to calculate the number of operations is given in
Appendix 2.A.

Memory
[bytes]

Operations per sample

proposed-N = 10 1000 500
proposed-N = 1 100 50
SVM-N = 1 11976 6519
wavelet-N = 18 8000 24012

Table 2.4: Memory consumption (bytes) and number of operations of four
seizure detection algorithms. proposed-N = 10: our proposed method with
N = 10 channels and L = 25 time lags, proposed-N = 1: our proposed method
with one (N = 1) channel and L = 25 time lags, SVM-N = 1: a single-channel
classifier based on a SVM [71], wavelet-N = 18: a multichannel (N = 18)
wavelet-based classifier [72].
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2.4 Discussion

In this chapter we propose an absence seizure detection algorithm specifically
designed to run on a wearable device. We collected data in real-life, out-of-clinic
environments using a portable EEG amplifier. It has a sensitivity of 95% for
0.5 false positives per day when using 10 EEG channels and 25 time lags. The
algorithm requires only 1000 bytes of memory and 500 operations per new
sample (250 multiplications and 250 summations). This is well within the
capabilities of typical microcontrollers that would be found in a wearable EEG
device, such as ARM Cortex M4F [66], [67]. The computational efficiency can
be further increased by reducing the number of channels or the number of time
lags (see Fig. 2.5 where the corresponding trade-off is visualized), the sampling
rate, or by reducing the output sample rate of the spatio-temporal filter, thereby
avoiding the need to compute a filter output sample for each input sample.

Low power requirements have several advantages for the patient. First, it
allows the use of a smaller size power supply, which is relevant considering that
batteries are among the larger and heavier components in a wearable device.
This facilitates further miniaturization and concealability of wearable EEG
sensor devices. Second, requiring less power allows for a longer recording time,
which in turn demands less manipulation effort from the patient, who would not
need to replace batteries as often as in currently available devices. Furthermore,
algorithms with a sufficiently low computational/memory footprint such that
the processing can be on board of the device itself allow to bypass the need
for a cloud-based processing, thereby eliminating an energy-intensive wireless
transfer of the raw data.

A sensitive seizure detection algorithm is a valuable asset to a neurologist in
order to have a precise idea of the number of seizures the patient is having.
It is well known that patients with absence epilepsy have difficulties keeping
an accurate seizure diary. The algorithm we propose could be used by the
neurologist to considerably speed up the analysis of EEG recordings. For this
use, the algorithm is set to a sensitivity of 100% and the neurologist is only
given a handful of events (including some false positives) to review.

We investigated the effect of the number of channels on the performance of
the algorithm. The performance of the algorithm greatly improved when more
channels were available. Ten well-chosen channels were sufficient to reach 0.5
false positives per day for a sensitivity of 95% in all but one patient. Using
three channels was associated with a median of eight false positives per day for
a sensitivity of 95%.

We demonstrated that this method requires only a very small number of example
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seizure data to train a linear data-driven filter with good performance. Results
from the algorithm barely varied when training with one seizure compared to
training with more seizures. This was shown both in the performance of the
seizure detection algorithm when trained on a low number of seizures and in
the visual comparison of the seizure covariance matrices (figure 2.7). This is
in contrast with other machine learning approaches such as neural networks
or SVMs [71], [85], [86], which require a large amount of training data before
being able to classify correctly. The need for very few annotated samples to
train our data-driven filter is a major advantage over complex machine learning
methods as this allows neurologists to reduce the time they spend annotating
EEG files. It also allows for the use of transfer learning techniques where
a patient independent version of the filter is refined based on a small set of
patient specific examples. While only a small number of seizures are required
to train the algorithm, recording quality during these few examples influences
the performance of the algorithm. Patient 5 had only five seizures during the
recording period. All seizures were short and the recording was of relatively low
quality (i.e. noise during the seizure). Patient 5 is the only patient to generate
more than 1 false detection per day for a 95% sensitivity.

We compared the performance of our method in a patient-specific paradigm
to the same method in a patient-independent paradigm. A patient-specific
approach is associated with a lower number of false detections for the same
sensitivity as it is able to better capture the specific characteristics of seizures
and non-seizure data for that patient. This includes information on the temporal
content of seizures and peak interferences as well as spatial information. A
patient-independent paradigm allows the algorithm to be used on a patient for
whom no previously annotated data are available. This considerably broadens
the pool of patients who could potentially benefit from this algorithm. However,
the performance of the algorithm deteriorates in the patient-independent
paradigm to six false detections per day. A transfer learning approach could be
used where a patient-independent filter is used initially, and then updated to a
patient-specific filter when more data from the patient become available. This
was not explored in this study.

We verified that our algorithm was generalizable to an independent dataset by
applying the patient-independent version of the algorithm trained on patients
recorded in a out-of-clinic environment to a dataset collected in the hospital.
Results from these 17 in-hospital patients showed detection of 222 seizure events
collected over more than 14 days of recording which resulted in only two false
detections across all patients. The very low number of false positives illustrates
that our recordings conducted in a hospital setting contained less artifacts
than recordings collected in environments outside the clinic. False detections
are usually triggered when the EEG contains high-amplitude noise and when
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the spatio-temporal characteristics of this noise happen to overlap with the
spatio-temporal characteristics of seizures. As we showed in this study, this is
a rare event. We note that the algorithm can be straightforwardly extended
with a mechanism that estimates the event duration based on a thresholding
of the filter output. In this case, it would be able to distinguish between
long epileptiform events and short (typically interictal) epileptiform events.
Furthermore, if short interictal events are not of interest to the neurologist, this
mechanism can also be used to reduce the number of false positives due to short
interfering events. However, since the distinction between ictal and interictal
event duration is somewhat arbitrary and because the necessity of it is use-case
specific, we did not take event duration into account in our analysis.

We compared our proposed algorithm with two state-of-the-art algorithms for
absence seizure detection [71], [72]. Kjaer et al. [71] designed an algorithm for
wearable single-lead EEG where data analysis is performed off-line after the
recording. The algorithm extracts many EEG features that differentiate an
absence seizure from the rest of the EEG signal. A nonlinear SVM classifier
is then used to classify two-second EEG epochs. The algorithm performs very
well when it is provided with enough training data (more than five seizures).
The SVM algorithm cannot be ported directly onto a microcontroller such as
found on wearable EEG systems as the calculation of the EEG features, and
classification are computationally heavy processes. The single-channel SVM
classifier performed similarly to the multichannel version we propose. We also
compared our method to a multichannel wavelet-based algorithm developed
to detect absence seizures. The algorithm shares some underpinnings with
the method we proposed as it is based on a filtering step, reduction from
multichannel data to a single-channel output, and a threshold on the single-
channel output. However, that algorithm does not use any spatial information
on seizures, imposing an equal weight on all channels. That method does not
have a data-driven mechanism to suppress peak interferences so that large
amplitude artifacts would also trigger the thresholding mechanism leading to
false positives. Another difference is that it uses wavelet-based filtering, which
is computationally expensive. Xanthopoulos et al. report 4.8 false positives per
day for a sensitivity of 80% on a dataset of six people with absence seizures
with a total of 40 hours of recording [72]. The algorithm performed less well
on our dataset. Xanthopoulos et al. identified that large amplitude artifacts
trigger false detections with their method. In our ambulatory EEG recordings,
many such high amplitude artifacts are present. These are suppressed by our
proposed method by the spatial filtering.

We also built a graphical user interface (GUI) to improve review of EEG
recordings from patients with absence seizures. The GUI is presented in
appendix 2.B
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The sample we used is small, though it appeared to be informative. We also
focused on ca. 24h recordings, so that generalization to multiple-day recordings
requires further testing. It must be emphasized that the algorithm focused on a
single seizure type, which is appropriate in some but not all epilepsy disorders.
Absence seizures can be found in many forms of epilepsy across all ages and
they are the hallmark seizure type in two epilepsy syndromes, namely childhood
absence epilepsy and juvenile absence epilepsy. However, in many epilepsies,
they are not the only seizure type occurring in a patient. In addition, other
seizure types may have a less characteristic EEG signature and may involve less
channels, making accurate detection more challenging [87].

We believe this work is crucial to advance the development of wearable seizure
detection systems for long-term monitoring of people with epilepsy outside
of the hospital. Additional work is required to further validate and test this
algorithm and to actually integrate it in a wearable EEG device. In such a
device, the location and distance between the electrodes will be constrained by
wearability considerations [88]. This is explored in chapter 4 where the influence
inter-electrode distance on an epileptiform activity detector is evaluated. In
addition, validation of this method in a larger patient cohort and during long
term monitoring is needed before it can be applied in a clinical setting.

2.5 Conclusion

We have proposed a data-driven linear filtering method for absence seizure
detection that is designed to run on a microcontroller for use in a wearable EEG-
based seizure detection system. The algorithm aims to suppress peak interferers
while enhancing seizure signal. It requires only a few annotated seizures to train
the optimal filter. Our algorithm has been benchmarked against two state-of-the-
art absence seizure detection algorithms (without computation constraints), and
was found to perform almost on par with the best of these, while being much more
efficient in terms of hardware memory and computational requirements. The
algorithm demonstrates the relevance of a generalised eigenvalue decomposition
(GEVD) based filtering pipeline for pattern identification in epilepsy. Findings
in this chapter also illustrated that reliable detection of epileptic seizures is
possible with less than twenty electrodes as found in standard clinical EEG. The
next chapter investigates different algorithms for channel selection in GEVD
problems.
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Appendix

2.A Calculating the number of operations of each
algorithm

When counting the operations of the algorithms in the work of Kjaer et al.
[71] and Xanthopoulos et al. [72], the following implementation of common
algorithms were chosen:

• The fast Fourier transform (FFT) is implemented using the radix-2 Cooley-
Tukey algorithm. The algorithm requires 5N log2(N) operations, where
N is the number of samples in a window and is chosen as a power of two
[89].

• The continuous wavelet transform was implemented using FFTs. This
implementation takes an FFT of the signal, an FFT of the wavelet,
multiplies both signals and takes the inverse-FFT [90]. This process is
repeated at every scale.
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2.B A graphical user interface for seizure review

Review of EEG for the diagnosis of epilepsy is performed by a highly specialised
epileptologist. The task requires the annotator to look for epileptiform events
in the recording. The epileptologist typically reviews windows of 10 seconds of
data at a time. The review is done chronologically, starting from the beginning
of the recording until the end. This is a time-consuming task. Analysing
a one hour recording requires the review of 360 ten-second long windows; a
24 hour recording requires the review of 8640 ten-second long windows. The
epileptologist can also be aided by tools such as a spectrogram of the data that
gives an overview of the activity in the full recording in a single overview image,
allowing them to concentrate their review on periods with suspicious activity
[91]. Some tools also provide an overview plot of more complex features which
should better highlight epileptiform activity [92].

We propose a different way to review EEG recordings for the annotation of
absence seizures. Instead of reviewing events chronologically, we propose to
review them in order of probability of being a seizure event. For this we use
the max-SPIR based filter developed in this chapter. The filter is used with
fixed weights in a patient-independent mode trained on the data from the home
study. This allows use of the algorithm on new data with no prior annotation.
This is packaged in a GUI. First, the operator selects an EEG file in the edf
file format. The file is automatically processed and produces two panels for
review of the epileptiform events. The first panel shown in figure 2.B.1 presents
an overview of the power of the events detected by the max-SPIR algorithm.
The events are sorted by power. A high power of the output of the algorithm
indicates a high confidence of the algorithm in the detection of a seizure. The
panel allows the user to click on an event to view the waveform. It also counts
the number of events above a user-set detection threshold. The second panel
shown in figure 2.B.2 gives a detailed view of a detected event. The panel
shows 30 seconds of data in the different EEG derivations along with the output
of the max-SPIR filter. The events are sorted by detection probability. The
panel allows navigating to the next detected event. A typical use of this GUI
for annotation of absence seizures would consist of using the overview panel
to get an estimate of the number of events in the recording before reviewing
the individual events. Individual events are reviewed in order of likelihood.
The review would stop once the annotator sees only non-epileptiform events in
individual event panel.



52 COMPUTATIONALLY-EFFICIENT ALGORITHM FOR REAL-TIME ABSENCE SEIZURE DETECTION IN
WEARABLE ELECTROENCEPHALOGRAPHY

Figure 2.B.1: Overview of the power of the events detected by the max-SPIR
algorithm. The events are sorted by power. A high power of the output of the
algorithm indicates a high confidence of the algorithm in the detection of a
seizure. The panel allows the user to click on an event to view the waveform. It
also counts the number of events above a user-set detection threshold.

Figure 2.B.2: Detailed view of a detected event. The panel shows 30 seconds
of data in the different EEG derivations along with the output of the max-
SPIR filter. The events are sorted by detection probability. The panel allows
navigating to the next detected event.



CHAPTER 3

Grouped Variable Selection for
Generalised Eigenvalue Problems

This chapter is based on J. Dan, S. Geirnaert, and A. Bertrand,
“Grouped Variable Selection for Generalised Eigenvalue Problems”, Signal
Processing, vol. 195, 2022. A regularization scheme for the backward
elimination method was added in subsection 3.4.5 and the real-world
data example (section 3.5) was expanded.

53

https://doi.org/10.1016/j.sigpro.2022.108476


Grouped Variable Selection for Generalised Eigen-
value Problems

Abstract | Many problems require the selection of a subset of variables
from a full set of optimization variables. The computational complexity
of an exhaustive search over all possible subsets of variables is, however,
prohibitively expensive, necessitating more efficient but potentially
suboptimal search strategies. We focus on sparse variable selection
for generalised Rayleigh quotient optimization and generalised eigenvalue
problems. Such problems often arise in the signal processing field, e.g., in
the design of optimal data-driven filters. We extend and generalize
existing work on convex optimization-based variable selection using
semidefinite relaxations toward group-sparse variable selection using
the ℓ1,∞-norm. This group-sparsity allows, for instance, to perform
sensor selection for spatio-temporal (instead of purely spatial) filters, and
to select variables based on multiple generalised eigenvectors instead of
only the dominant one. Furthermore, we extensively compare our method
to state-of-the-art methods for sensor selection for spatio-temporal filter
design in a simulated sensor network setting. The results show both
the proposed algorithm and backward greedy selection method best
approximate the exhaustive solution. However, the backward greedy
selection has more specific failure cases, in particular for ill-conditioned
covariance matrices. As such, the proposed algorithm is the most
robust currently available method for group-sparse variable selection
in generalised eigenvalue problems.
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3.1 Introduction

Variable selection is an important problem occurring in many mathematical
engineering fields. Its goal is to select the subset of variables - often corresponding
to specific sensor signals or features thereof - that have the largest impact on
the optimization of a specific objective function. Such methods are often used,
e.g., to identify the most relevant sensor nodes in a sensor network, or to
find the optimal positions to place sensors in a predefined grid [93]. These
sensor selection problems arise in many signal processing-related fields, including
telecommunication, where antenna placement is critical to the good functioning
of a communication network [94]–[101], biomedical sensor arrays, e.g., in the
context of EEG channel selection or optimal positioning of wearable sensors [88],
[102]–[104], or wireless acoustic sensor networks, where a microphone subset
needs to be selected [105], [106]. The number of sensors is typically constrained
by practical factors such as fabrication cost, bandwidth, or physical setup
limitations, necessitating an appropriate selection of a limited number of sensors
and their location.

In many signal processing applications, the objective function can be written as a
generalised Rayleigh quotient (GRQ), which corresponds to solving a generalised
eigenvalue decomposition (GEVD). Such GRQ- or GEVD-based objectives are
encountered in various beamformer or filter design problems, for example, to
maximize the signal-to-noise (SNR) [96], [104], [107], [108], or to maximize
discriminative properties of the output signals of a filterbank, e.g., in biomedical
sensor arrays [109], [110]. In these contexts, variable/sensor selection helps to
reduce the computational complexity and power requirements of processing
pipelines, to reduce the risk of overfitting of models, and to improve the overall
setup.

In this chapter, we focus on grouped variable selection in GRQ/GEVD problems,
where the goal is to select a subset of predefined groups of variables. For
illustrative purposes, but without loss of generality, we will introduce the
problem in the context of sensor selection for data-driven spatio-temporal filter
design. In sensor networks, an intuitive grouping of the optimization variables
is based on the finite impulse response (FIR) filter tap weights in each sensor.
However, various (other) types of groupings exist, such as a grouped selection
across different filterbands or output filters. Note that all presented methods
are besides sensor networks applicable to any other application containing
(group-sparse) variable selection for GRQ optimization and GEVD problems.

In sensor selection, the goal is to identify the optimal subset of M out of C
available sensors where the choice of M typically leads to a tradeoff between
the optimization objective and satisfying some practical constraints. The
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exhaustive evaluation of all possible sensor combinations is a computationally
costly operation. The selection of M out of C sensors is of combinatorial
complexity C!

M ! (C−M)! , where each evaluation requires a new GEVD computation,
which in itself has a computational cost of O(M3). Therefore, computationally
efficient methods are required to solve the sensor selection problem. Two
popular heuristic methods are found in the greedy forward selection (FS) and
backward elimination (BE) algorithms [102], [111], which are easily applied to
many selection problems, including the GEVD problem. However, their greedy
nature strongly reduces the combinatorial exploration space, which can result
in a highly suboptimal selection. Other approaches take the specific problem
structure into account and combine optimization of the objective (e.g., the
GRQ) with finding a sparse set of sensors. A specific subclass among these
optimization-based approaches relaxes the sensor selection problem to a convex
optimization problem, which can be solved with off-the-shelf convex optimization
solvers [112]. More specifically for the GEVD problem, [108] used the sparsity
promoting ℓ1-norm for a purely spatial beamformer (see Section 3.3.5), which
was extended in [94] to a spatio-temporal beamformer using the ℓ1,∞-norm as
a group-sparse regularizer, albeit in a suboptimal manner (as we will show in
Section 3.3.4). Spatial-temporal beamformers allow to combine both spatial
and temporal filters in a joint filter design. They have been shown effective
in a range of signal processing problems [94], [104], [109]. Other approaches
in radar beamforming employed the ℓ1,2-norm as a group-sparse regularizer in
combination with successive convex approximation [99], [100]. Furthermore,
[94], [99], [100] only cover the case of a single output filter (multiple-input single-
output (MISO) filtering), i.e., a single generalised eigenvector is computed,
while several GEVD-based signal processing techniques, such as the common
spatial patterns (CSP) filterbank, require the extraction of multiple eigenvectors
(multiple-input multiple-output (MIMO) filtering).

The main contributions of this work are as follows:

• We extend the GRQ/GEVD sensor selection for purely spatial filtering
in [108] to spatio-temporal filtering borrowing techniques from [107]. This
necessitates the use of a group-sparse regularizer. When a sensor is
eliminated, all corresponding filter lags should be put to zero.

• We add the possibility to take multiple filters (i.e., multiple generalised
eigenvectors) into account (MIMO), whereas previous work only focused
on the dominant generalised eigenvector (MISO). This requires consistent
removal or zeroing of the filter coefficients corresponding to an eliminated
sensor across all filters. This approach can be employed in various other
applications, where the notion of a shared selection exists.
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• We provide an in-depth and statistical comparison of the proposed method
with other state-of-the-art sensor selection methods in GEVD problems,
which is largely missing in the aforementioned prior art.

The chapter is structured as follows. First, the sensor selection problem for
GEVD and GRQ optimization is introduced in Section 3.2. Next, the convex
optimization-based group-sparse sensor selection is explained in Section 3.3.
We then thoroughly compare the proposed method with other (benchmark)
sensor selection methods on simulated data in Section 3.4. In Section 3.5, we
provide an example of the developed method applied on real-world data, in the
context of mobile epileptic seizure monitoring. Finally, conclusions are drawn
in Section 3.6.

3.1.1 Notation

Scalars, vectors, and matrices are denoted by a lowercase (x), bold lowercase
(x), and bold uppercase letter (X). The element of matrix X on the ith row and
jth column is given by xij . Xt denotes the transpose of a matrix X and Tr (X)
denotes the trace of X. The N × N identity matrix is denoted by IN , while
0N denotes an N × N matrix with zeros. The ℓ∞-norm of a vector (i.e., the
maximal absolute value) is written as ||x||∞, the ℓ1-norm of a vector (i.e., the
sum of the absolute values) as ||x||1, the ℓ2-norm of a vector (i.e., the square
root of the sum of squared elements) as ||x||2, and the max-norm of a matrix
(i.e., the maximal absolute value across all elements) as ||X||max. X ≽ 0 denotes
that X is a positive semidefinite matrix. The Kronecker-delta is written as
δij (i.e., δij = 0 if i ̸= j; δij = 1 if i = j). Finally, the Kronecker-product of
matrices X ∈ RIx×Jx and Y ∈ RIy×Jy is defined as:

X ⊗ Y =

 x11Y · · · x1Jx
Y

... . . . ...
xIx1Y · · · xIxJx

Y

 ∈ RIxIy×JxJy .

3.2 Sensor selection for GEVD problems

Consider a setting with C sensors and two stationary zero-mean multi-sensor
signals x1(t) ∈ RCL and x2(t) ∈ RCL, where t denotes the sample (time)
index and L denotes the group size as explained below. x1(t) and x2(t)
could represent the C sensor signals measured during two different states
(e.g., EEG during movement of the left arm and movement of the right
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arm [110]), or they could represent two signal components that are both
simultaneously present in the sensor signals (e.g., target signal and noise).
We assume that the entries of x1(t) and x2(t) are grouped in blocks of L
entries, each group corresponding to a single sensor. For example, a group
could consist of L frequency subbands or other features extracted from a
single-sensor signal. For illustrative purposes, but without loss of generality,
we focus here on spatio-temporal filter design, in which case the L entries
of a group correspond to a delay line of length L. In this case, the vector
x1(t) ∈ RCL can be represented as x1(t) =

[
x1,1(t)t x1,2(t)t · · · x1,C(t)t]t

where x1,c(t) =
[
x1,c(t) x1,c(t − 1) · · · x1,c(t − L + 1)

]t represents the
causal FIR filter taps corresponding to the cth sensor (similarly for x2(t)).

The goal is to find a spatio-temporal filter represented by w ∈ RCL which
optimally discriminates between the two signals x1(t) and x2(t). Optimal
discrimination corresponds to maximizing the energy of the output signal
y1(t) = wtx1(t), while minimizing the energy of the output signal y2(t) =
wtx2(t). The optimal w is thus found by maximizing:

max
w∈RCL

E{(wtx1(t))2}
E{(wtx2(t))2}

= wtR1w
wtR2w , (3.1)

where R1 = E{x1(t)x1(t)t} ∈ RCL×CL and R2 = E{x2(t)x2(t)t} ∈ RCL×CL

are the corresponding covariance matrices. Assuming ergodicity and given
T samples of the signals x1(t) and x2(t), these covariance matrices can be

estimated as R1 = E{x1(t)x1(t)t} ≈ 1
T

T −1∑
t=0

x1(t)x1(t)t and similarly for R2.

The problem in (3.1) is known as a generalised Rayleigh quotient (GRQ)
optimization. In the case where x1(t) and x2(t) represent the target signal
and noise components, respectively, Equation (3.1) implies a maximization
of the signal-to-noise ratio, resulting in a so-called max-SNR filter [82]. In
max-SNR filtering, the covariance matrices R1 and R2 thus correspond to the
spatio-temporal covariance matrices related to the target signal and the noise,
respectively. In the CSP framework [110], these covariance matrices correspond
to the two signal classes that have to be discriminated (e.g., left versus right
hand movement).

Because of the scale-invariance of w in (3.1), we can arbitrarily set the output
power depicted in the denominator to wtR2w = 1. Using the method of
Lagrange multipliers to solve (3.1) then leads to a GEVD [113]:

R1w = λR2w.

The optimal filter w corresponds to the generalised eigenvector (GEVc)
corresponding to the largest generalised eigenvalue (GEVl).
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In various applications, the GRQ optimization of (3.1) for MISO filtering is
generalised to MIMO filtering, i.e., multiple output filters. In this MIMO
case, the goal is to find a filterbank of K spatio-temporal filters W ∈ RCL×K

for which the sum of the energies of the multiple output signals is maximally
discriminative:

max
W∈RCL×K

Tr (WtR1W)
Tr (WtR2W)

s.t. WtR2W = IK ,

(3.2)

with Tr (·) denoting the trace operator and IK the K × K identity matrix. The
constraint in (3.2) ensures that the K output channels are orthogonal to each
other with respect to the signal component x2(t). This constraint is added
to obtain K different filters. By plugging this constraint in the cost function
in (3.2), we obtain:

max
W∈RCL×K

Tr (WtR1W)

s.t. WtR2W = IK .

(3.3)

The solution of (3.3) is now given by taking the K GEVcs corresponding to the
K largest GEVls:

R1W = R2WΛ. (3.4)

This generalization to MIMO filters (K > 1) is crucial in classification tasks
and discriminative analysis as in the CSP framework or in Fisher’s discriminant
analysis, where the data are projected into a K-dimensional feature space instead
of a one-dimensional space. The number of output filters K then introduces a
tradeoff between how much information from the original data is preserved and
the GRQ (3.2), which becomes smaller (worse) for larger K.

Our goal is to find the optimal subset of M ≤ C out of C sensors, with
M ≥ K, for which the ratio of traces in (3.2) is maximal. Note that eliminating
a sensor means that all time lags corresponding to that sensor need to be
zero. Furthermore, the selected sensors must be consistent across all K filters
(i.e., columns of W) to be able to physically select only a few sensors. That
is why a group-sparse sensor selection is required, i.e., the filter weights are
grouped per sensor across time lags and filters, and whole groups are put to
zero (i.e., eliminated) rather than the individual elements in a group. In the
next section, we present a convex optimization-based approach for this sensor
selection problem.
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3.3 Optimal group-sparse sensor selection

In this section, we generalize the optimal sensor selection and array design
method of [108], which focuses on GRQ optimization and GEVD for purely
spatial filtering (i.e., L = 1) and for MISO filtering (i.e., K = 1), to spatio-
temporal filtering and MIMO filtering. Our derivation is based on a similar ℓ1,∞-
norm regularization technique as proposed in [107] for multicast beamforming
and antenna selection. It is noted that during the consolidation of this work, a
similar idea to introduce group-sparsity in GEVD problems was published in [94]
in the meantime, independently from our work. The work in [94] establishes the
L > 1 case, yet without generalizing to the K > 1 case as also targeted here.
Furthermore, our proposed generalization differs from [94] on another crucial
aspect, which will be pointed out throughout the derivation (see Section 3.3.4),
and which makes that [94] can not be treated as a special case of our proposed
general framework. In Section 3.4, we will also empirically compare with [94]
for the K = 1 setting and demonstrate the superiority of our generalization.

Before pursuing group sparsity in (3.3), let us first vectorize W ∈ RCL×K as
w ∈ RCLK , with wk, k ∈ {1, . . . , K}, the kth spatio-temporal filter:

w =

w1
...

wK

 , wk =

wk,1
...

wk,C

 , and wk,c =

wk,c,1
...

wk,c,L

 . (3.5)

The optimization problem in (3.3) then becomes:

min
w∈RCLK

wt (IK ⊗ R2) w

s.t. wt
kR1wk′ = δkk′ , ∀k, k′ ∈ {1, . . . , K},

(3.6)

with ⊗ the Kronecker-product and δkk′ the Kronecker-delta (i.e., δkk′ = 0, ∀k ̸=
k′; δkk′ = 1, ∀k = k′). Notice that we changed the problem in (3.3) to a
minimization problem to accommodate for an easy introduction of the sparse
regularization term. It can be shown that the solution of (3.3) and (3.6)
are the same up to an arbitrary scaling on each wk, which is irrelevant as
generalised eigenvectors are defined up to a scaling. Using the filter-selector
matrix Sk ∈ RCL×CLK , where the subscript indicates the selected coefficients
of w:

Sk =
1 k-1 k k+1 K

[ ]0CL . . . 0CL ICL 0CL . . . 0CL
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with an identity matrix on the kth position to select the kth filter wk from w,
i.e., Skw = wk, (3.6) can be rewritten as:

min
w∈RCLK

wt (IK ⊗ R2) w

s.t. wtSt
kR1Sk′w = δkk′ , ∀k, k′ ∈ {1, . . . , K}.

(3.7)

3.3.1 Group-sparsity promoting regularization

The goal is now to introduce sparsity in (3.6) on the sensor level. This sparsity
on the sensor level corresponds to a group-sparse constraint on (3.6), as all lags
of all output filters corresponding to a particular sensor need to be set to zero.
Therefore, as in [107], we deploy the convex sparsity-promoting ℓ1,∞-norm as a
proxy for the optimal but non-convex ℓ0-norm as a regularization term in (3.6).

To simplify the notations in the remainder of the derivations, we define the
permutation matrix P ∈ RCLK×CLK that permutes the elements of w such
that they are first ordered by sensor and then by filter and lags (instead of first
by filter as in (3.5)), resulting in w̃:

w̃ = Pw =

w̃1
...

w̃C

 and w̃c =

w1,c

...
wK,c

 . (3.8)

Using this notation, the ℓ1,∞-norm on the sensor level is defined as:

||w||1,∞ =
C∑

c=1
||w̃c||∞ =

C∑
c=1

max
k=1,...,K

||wk,c||∞ , (3.9)

where ||w̃c||∞ corresponds to the maximal absolute value across all lags and
filters corresponding to sensor c. As the ℓ1-norm induces sparsity, while the
ℓ∞-norm is only zero when all elements are zero, the ℓ1,∞-norm can be used to
put groups of coefficients across lags and filters corresponding to one sensor to
zero. Furthermore, in [107], it is also shown that any sparsity-inducing norm
can be replaced with the squared norm without changing the regularization
properties of the problem. Therefore, the sensor selection problem with the
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group-sparse regularization term becomes:

min
w∈RCLK

wt (IK ⊗ R2) w + µ

(
C∑

c=1
||w̃c||∞

)2

s.t. wtSt
kR1Sk′w = δkk′ , ∀k, k′ ∈ {1, . . . , K},

(3.10)

where the regularization parameter µ can be used to control the solution’s
sparsity and thus the number of sensors selected. Note that this is not yet a
convex optimization problem due to the quadratic equality constraints.

3.3.2 Semidefinite formulation and relaxation

To transform (3.10) into a convex semidefinite problem (SDP), we are using the
following trick, as suggested in [107], [108], [114]:

wt (IK ⊗ R2) w = Tr (wt (IK ⊗ R2) w)

= Tr ((IK ⊗ R2) wwt)

= Tr ((IK ⊗ R2) V) ,

where the second equality holds because of the cyclic property of the trace.
Per definition, V = wwt ∈ RCLK×CLK is thus a rank-1 positive semidefinite
matrix. Similarly, the equality constraints can be reformulated as:

Tr (R1Sk′VSt
k) = δkk′ , ∀k, k′ ∈ {1, . . . , K}.

Using the following definition of Ṽ:

Ṽ = w̃w̃t = PVPt =

Ṽ11 · · · Ṽ1C

... . . . ...
ṼC1 · · · ṼCC

 ,
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the group-sparse regularization term in (3.10) can be reformulated similarly
to [107]:

(
C∑

c=1
||w̃c||∞

)2

=
C∑

c1=1

C∑
c2=1

||w̃c1 ||∞ ||w̃c2 ||∞

=
C∑

c1=1

C∑
c2=1

∣∣∣∣Ṽc1c2

∣∣∣∣
max

= Tr (1C1t
CU) , (3.11)

where the max-norm ||A||max = max
i,j

|aij | is the elementwise maximum over a

matrix, 1C ∈ RC denotes an all-ones vector of length C, and where U ∈ RC×C

is equal to:

U =


∣∣∣∣Ṽ11

∣∣∣∣
max · · ·

∣∣∣∣Ṽ1C

∣∣∣∣
max... . . . ...∣∣∣∣ṼC1

∣∣∣∣
max · · ·

∣∣∣∣ṼCC

∣∣∣∣
max

 . (3.12)

Using the definition of U in (3.12), we finally obtain:

min
V∈RCLK×CLK ,

U∈RC×C

Tr ((IK ⊗ R2) V) + µTr (1C1t
CU)

s.t. Tr (R1Sk′VSt
k) = δkk′ , ∀k, k′ ∈ {1, . . . , K},

U ≥ |Sk,lVSt
k′,l′ |, ∀k, k′ ∈ {1, . . . , K},

and ∀l, l′ ∈ {1, . . . , L},

V ≽ 0, rank(V) = 1,

(3.13)

with the selector-matrix Sk,l ∈ RC×CLK selecting all coefficients across C
sensors for a particular filter k and lag l. The second constraint is an element-
wise inequality, which ensures that each element of U (i.e., for each pair of
sensors) is larger than the corresponding element for the corresponding pair
of sensors across all filters and lags (expressed by the ∀ over the filter and lag
indices), and thus implements the max-norm operation. The last two constraints
ensure the equivalence between V and wwt.

However, (3.13) is still not a convex optimization problem due to the rank-1
constraint. Therefore, we approximate (3.13) by relaxing the rank constraint,
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which is a technique known as semidefinite relaxation (SDR) and results in an
SDP [114]:

min
V∈RCLK×CLK ,

U∈RC×C

Tr ((IK ⊗ R2) V) + µTr (1C1t
CU)

s.t. Tr (R1Sk′VSt
k) = δkk′ , ∀k, k′ ∈ {1, . . . , K},

U ≥ |Sk,lVSt
k′,l′ |, ∀k, k′ ∈ {1, . . . , K},

and ∀l, l′ ∈ {1, . . . , L},

V ≽ 0.

(3.14)

This SDR results in practice in a good approximation of the underlying rank-1
solution, potentially using a post-hoc rank-1 approximation of the solution.
Note, however, that we are here not interested in the optimal filter coefficients
themselves, but only in the selected sensors, which can be retrieved as the
non-zero elements of the diagonal of U. Typically, the GEVD problem in (3.4)
is afterward recomputed given the selected sensors from (3.14).

3.3.3 Iterative reweighting and algorithm

Similarly to [107], [108], the all-ones matrix 1C1t
C in (3.14) can be replaced

with a reweighting matrix B(i) ∈ RC×C to implement iteratively reweighted
ℓ1-norm regularization [115]. The optimization problem in (3.14) can then be
iteratively solved by updating B(i) as:

B(i+1)
c1c2

= 1
U

(i)
c1c2 + ϵ

. (3.15)

This iteratively reweighted ℓ1-norm regularization procedure compensates for
the inherent magnitude-dependency of the ℓ1-norm. Using the ℓ1-norm as a
proxy for the ℓ0-norm introduces a too large penalty on the elements that have
a large magnitude, while it is only relevant to know whether an element is equal
to zero or not [115]. The parameter ϵ, which is set as 10% of the standard
deviation of the elements of U without sensor selection (as suggested in [115]
and which can be easily computed using the GEVD in (3.4)), avoids division
by zero. Initially, B(1) is set to 1C1t

C , i.e., (3.14) is solved. This iterative
reweighting procedure generally converges after a few iterations.

To find the optimal set of a specific number M of sensors, a bisection search
on the hyperparameter µ of (3.14) can be performed. Once the optimal set of
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sensors is found, the corresponding spatio-temporal filters W can be computed
by taking the K GEVcs corresponding to the K largest GEVls of the GEVD
in (3.4), using the reduced covariance matrices R(red)

1,2 ∈ RML×ML, i.e., by
selecting the rows and columns corresponding to the selected sensors. The
complete algorithm, which is referred to as GS-ℓ1,∞ (GS for group-sparse) in
the remainder of the chapter, is summarized in Algorithm 11. The convex
optimization problem in (3.14) is solved using the CVX toolbox [116], [117] and
MOSEK solver [118].

Remark: It is noted that this algorithm can be easily extended to complex filter
coefficients (as often found in beamforming), as the objective function of (3.14)
(with the transpose replaced by Hermitian transpose) is a real-valued function,
even though it is function of complex variables, while the inequality constraints
are also real. This is due to the use of the trace operator in combination with
Hermitian (conjugate symmetric) complex-valued matrices.

1An open-source toolbox with the MATLAB implementation of this group-sparse sensor
selection algorithm can be found online on https://github.com/AlexanderBertrandLab/
gsl1infSensorSelection.

https://github.com/AlexanderBertrandLab/gsl1infSensorSelection
https://github.com/AlexanderBertrandLab/gsl1infSensorSelection
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Algorithm 1 Group-sparse sensor selection for GEVD (GS-ℓ1,∞)
Input:

• R1, R2 ∈ RCL×CL: to-be-discriminated covariance matrices

• M : number of sensors to be selected

• K: number of filters/GEVcs to take into account

• µLB, µUB: lower and upper bounds of the bisection search

• imax: maximal number of reweighting iterations

Output: Optimal subset of M sensors and corresponding filters/GEVCs W ∈
RML×K

1: Define ϵ as 10% of the standard deviation of the elements of U corresponding
to the solution with all sensors (as can be computed from the GEVD
in (3.4)) and the tolerance τ as 10% of the minimum across the diagonal of
U corresponding to the solution with all sensors

2: while Not M sensors selected do
3: Initialize B(1) = 1C1t

C

4: µ = µLB + µUB−µLB
2

5: while U changes and i ≤ imax do
6: Solve

min
V∈RCLK×CLK ,U∈RC×C

Tr ((IK ⊗ R2) V) + µTr
(

B(i)U
)

s.t. Tr (R1Sk′VSt
k) = δkk′ , ∀k, k′ ∈ {1, . . . , K},

U ≥ |Sk,lVSt
k′,l′ |, ∀k, k′ ∈ {1, . . . , K} and ,

∀l, l′ ∈ {1, . . . , L},

V ≽ 0.

7: Update counter i
8: Update B(i+1) as:

B(i+1)
c1c2

= 1
U

(i)
c1c2 + ϵ

9: end while
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10: Determine the (number of) sensors M̂ selected by comparing the diagonal
of U with the tolerance τ :

11: for c = 1 to C do
12: if Ucc > τ then cth sensor selected
13: else if Ucc < τ then cth sensor eliminated
14: end for
15: Update the regularization parameter bounds as:
16: if M̂ > M then µLB = µ
17: else if M̂ < M then µUB = µ
18: end while
19: Compute optimal filters as the K GEVcs corresponding to the K largest

GEVls of the GEVD problem with reduced covariance matrices R(red)
1,2 ∈

RML×ML:
R(red)

1 W = R(red)
2 WΛ
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3.3.4 Special case I: MISO filtering

When taking only one filter into account for the sensor selection (i.e., K = 1;
MISO filtering), the SDR problem in (3.14) becomes:

min
V∈RCL×CL,

U∈RC×C

Tr (R2V) + µTr (1C1t
CU)

s.t. Tr (R1V) = 1,

U ≥ |SlVSt
l′ |, ∀l, l′ ∈ {1, . . . , L},

V ≽ 0,

(3.16)

with the selector-matrix Sl ∈ RC×CL selecting all sensor coefficients
corresponding to the lth lag. This simplified problem is very similar to
the approach proposed in [94], which was independently published during
the consolidation of this work. However, the algorithm derived in [94] has
a subtle - yet crucial - difference with (3.16) in the inequality constraint
U ≥ |SlVSt

l′ |, ∀l, l′ ∈ {1, . . . , L}. In [94], a different inequality was proposed,
which only takes the diagonal elements of the different blocks of V into account,
i.e., U ≥ |SlVSt

l |, ∀l ∈ {1, . . . , L}, while we also take the off-diagonal elements
of each block of V into account (remember: the blocks of V correspond to
sensors when K = 1, the elements per block to different combinations of lags
(see (3.5))). While leading to fewer inequality constraints and thus resulting in
a decreased computational complexity, this relaxation in [94] alters the solution
and leads to a suboptimal sensor selection (as empirically shown in Section 3.4).
The reason is that the off-diagonal blocks also appear in the first constraint
of (3.16), resulting in a mismatch between both constraints. In the remainder
of the chapter, the variant of [94] is dubbed ‘GS-ℓ1,∞-[94]’.

3.3.5 Special case II: purely spatial filtering

In case we do not only constrain to MISO filtering (K = 1), but also restrict
w ∈ RC to a purely spatial filter (i.e., L = 1), (3.16) is reduced to:

min
V∈RC×C ,U∈RC×C

Tr (R2V) + µTr (1C1t
CU)

s.t. Tr (R1V) = 1,

U ≥ |V|,

V ≽ 0,

(3.17)
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which is equivalent to the approach proposed in [108].

3.3.6 Computational complexity

The computational complexity of the proposed method can be computed from
the complexity of interior-point method solvers for quadratic problems with
quadratic constraints that are relaxed using semidefinite relaxation. In general,
such problems with N2 variables and T quadratic constraints can be solved to an
arbitrary small accuracy ϵ with a complexity of O

(
max(N, T )4N0.5 log( 1

ϵ )
)

[114].
This leads to a complexity of O

(
(CLK)4.5 log( 1

ϵ )
)

for our proposed GS-ℓ1,∞
algorithm (Algorithm 1).

3.4 Benchmark study

We compare the proposed GS-ℓ1,∞ method with other benchmark sensor
selection methods on simulated sensor data with known ground-truth2. We use
the value of the GRQ (3.2) as the performance metric (higher is better).

Besides the exhaustive search, a random search, and the GS-ℓ1,∞-[94] method,
the proposed GS-ℓ1,∞ method is compared with three other sensor selection
methods, which are introduced in Section 3.4.1. For the random search, the
final GRQ is the mean over 1000 random selections of sensors for a given
problem. The setup of the benchmark study is described in Section 3.4.2. The
aforementioned methods are compared using only one filter (MISO filtering)
in Section 3.4.3 and using multiple filters (MIMO filtering) in Section 3.4.4
(for those methods that allow for K > 1). Finally, we provide a more in-depth
comparison of the two best-performing algorithms, namely the proposed GS-ℓ1,∞
method and the backward greedy elimination method (see Section 3.4.1) in
Section 3.4.5.

2We provide an open-source MATLAB implementation of the benchmark study online on
https://github.com/AlexanderBertrandLab/benchmarkStudySensorSelection.

https://github.com/AlexanderBertrandLab/benchmarkStudySensorSelection
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3.4.1 Benchmark sensor selection methods

In this section, we briefly introduce other algorithms for sensor selection that
will be included in the benchmark study.

Greedy sensor selection methods

Greedy sensor selection methods - also dubbed ‘wrapper’ methods [102] -
sequentially select or eliminate those sensors that maximally increase or
minimally decrease the objective, respectively. While these greedy approaches
are computationally more efficient than the method proposed in Section 3.3,
due to their sequential nature, the greedy mechanism can result in suboptimal
selections, as they are stuck with the selected or eliminated sensors from previous
steps. The computational complexity of these greedy methods is dominated by
the GEVD computation performed at each iteration, which is O

(
(CLK)3) [119].

The greedy selection can be applied in two directions (forward or backward):

Forward selection (FS) The FS method starts from an empty set of sensors
and sequentially adds the sensor (i.e., group of KL variables) that maximally
increases the objective (3.2). New sensors are added until M out of C sensors
are selected.

Backward elimination (BE) The BE method starts from the full set of sensors
and sequentially removes the sensor that minimally decreases the objective (i.e.,
the objective in (3.2)) until M out of C sensors are selected. Many variations
on the FS and BE method exist, mostly presented in the context of feature
selection for classification [111].

The STECS method

We also compare with the spatio-temporal-filtering-based channel selection
(STECS) approach proposed for the GEVD problem in [120]. In the STECS
method, initially proposed for K = 1, the following optimization problem is
solved [120] as a regularized proxy for (3.1):

min
w∈RCL

wtR2w + 1
wtR1w + µ ||w||1,2 , (3.18)
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with the ℓ1,2-norm, defined as ||w||1,2 =
C∑

c=1
||wc||2, enforcing the group sparsity

over different lags. The GRQ in (3.1) is split into the first two terms of (3.18) as
it removes the scale-invariance of w, while yielding an equivalent solution [120].

The c-th sensor is then selected if ||wc||2 is larger than a predefined tolerance
τ , which is set as 10% of the minimum min

c∈{1,...,C}
||wc||2 of the solution with

all sensors. The optimization problem in (3.18) is solved using the line-search
method proposed in [120]. The same settings as in [120] have been used.
Similarly to the proposed method in Section 3.3.3, we use a bisection search
method on the regularization parameter µ to obtain the correct number of sensors
M . Furthermore, the authors propose to use the selected sensors with (3.18) for
the first filter w ∈ RCL to recompute the solution of W ∈ RCL×K for multiple
filters with (3.4), which means the selection does not take the full objective (3.2)
into account. Lastly, note that the optimization problem (3.18) is non-convex,
resulting in potential convergence to non-optimal local minima.

Other sensor selection methods for GEVD problems (and in particular in
biomedical applications for CSP problems) have been proposed as well [102], for
example, based on filter coefficients magnitude (e.g., [121]), or other variants
of ℓ1-norm regularization (e.g., [99], [100], [122], [123]). However, we do not
further consider these methods, as they are not designed for group-sparsity
and/or the MIMO case, or have been shown to be outperformed by at least one
of the aforementioned methods [120].

3.4.2 Setup

Simulation model

We assume a
√

C ×
√

C square grid of C sensors, each of which are measuring a
mixture of N1 source signals to be maximized (i.e., contributing to x1(t) and the
numerator of (3.2)) and N2 source signals to be minimized (i.e., contributing to
x2(t) and the denominator of (3.2)) as well as independent sensor noise. This
simulated problem resembles point-source models as, for example, found in sensor
networks, microphone arrays, neural activity (EEG), and telecommunications.
The source signals contributing to x2(t) have a power that is approximately 150
times larger than the source signals contributing to x1(t). An example is given
in Figure 3.4.1. In the max-SNR filtering case, one could think of the source
signals contributing to x1(t) as target signals and source signals contributing to
x2(t) as noise signals. In that case, the GRQ can be interpreted as an SNR.
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contr. x1(t)

contr. x2(t)

Figure 3.4.1: An exemplary generated problem with C = 16 = 4 × 4 sensors,
N1 = 2 random signals contributing to x1(t), and N2 = 3 random signals
contributing to x2(t). Each sensor measures a mixture of the underlying sources.
The brightness of the color represents the intensity of the signal as perceived by
a sensor.

Each source signal is a bandpass-filtered white Gaussian signal in a random
frequency band between 1 and 9 Hz, sampled at 20 Hz. It originates from a
random location within the grid of sensors (drawn from a uniform distribution
over the entire area) and propagates with an exponentially decaying amplitude
to the sensors. The spread of the exponential decay is set such that the maximal
attenuation is equal to a predefined attenuation of 0.5%. Furthermore, a source
signal is measured at each sensor with a time delay linear to the distance to
that source signal, such that the maximal delay is 100 ms (i.e., 2 samples). The
sensor noise at each sensor is white Gaussian noise with twice the maximal
attenuation as amplitude.

Monte Carlo runs

For each experiment, i.e., for a given number of sensors C, number of lags L,
and number of filters K, 250 (for the K = 1 case) and 100 (for the K > 1 case)
of the random problems in Section 3.4.2 are generated, and the results for each
evaluated sensor selection method are averaged over these different problems.
For each of these Monte Carlo runs, unless specified otherwise, the number of
signals N1 and N2 is randomized between 1 and 2C.



3.4 | BENCHMARK STUDY 73

µLB µUB imax max. it. bisection search
GS-ℓ1,∞ 10−5 100 15 20
GS-ℓ1,∞-[94] 10−5 104 15 20
STECS 0 1016 / 200

Table 3.4.1: The chosen hyperparameters of the different optimization-based
sensor selection methods.

Hyperparameter choice

Table 3.4.1 shows the chosen hyperparameters for the different optimization-
based sensor selection methods. The bisection search for the GS-ℓ1,∞
(Algorithm 1), the GS-ℓ1,∞-[94], and the STECS method is aborted if no solution
was found after a certain number of iterations. For STECS, this number is taken
much larger, which is possible due to its computational efficiency. However, this
early stopping criterion leads to a limited number of cases where no solution is
found for a certain M . To still produce a meaningful solution in those cases,
a random extra sensor is added to the solution obtained for M − 1 sensors,
and the corresponding output GRQ (in dB) is computed. However, when no
solution is found for the lowest value of M and the previous solution to still
produce a meaningful solution correspondingly fails (because it relies on the
solution of the lowest M), the results for all methods for those M for which
there is no solution in that particular run are removed.

Furthermore, the hyperparameter µ for the GS-ℓ1,∞ (Algorithm 1) and
GS-ℓ1,∞-[94] algorithm is defined relative to the first target objective part
of (3.16) (i.e., Tr (R2V)) for the solution with all sensors.

Statistical comparison

To identify statistically significant differences based on hypothesis testing, we
use a linear mixed-effect model (LMEM) [124]. Such an LMEM allows the
exploitation of all structure in the data by modeling the obtained GRQ as a
function of the method while taking the variation due to the different Monte
Carlo runs and the effect of a different number of selected sensors M into
account as random factors. The following LMEM is chosen based on the Akaike
information criterion (AIC), which takes the model fit and complexity into
account:

GRQ ∼ 1 + method + (M |run).
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This notation is often used in LMEMs to reflect that the GRQ is modeled with
the method as a fixed effect, the number of selected sensors M as random slope
(i.e., the GRQ can vary as a function of M independently for each method),
and the run as a random intercept. Per fixed term, the estimated regression
coefficients (β), standard error (SE), degrees of freedom (DF), t-value, and
p-value are reported. If a significant effect between the different methods is
found, we use an additional Tukey-adjusted post-hoc test to assess the pairwise
differences between individual methods. The significance level is set to α = 0.05.
All statistical analyses are performed using the R software package and the
nlme and emmeans packages.

In the statistical hypothesis testing, we limit the number of selected sensors to
C
2 , as we consider this lower half range much more relevant in the context of
sensor selection than the upper half range. Typically, one wants to drastically
reduce the number of required sensors, i.e., below half of the number of available
sensors.

3.4.3 Comparison in the MISO case (K = 1)

First, we evaluate and compare the presented methods in the first special MISO
case of Section 3.3.4, where only one filter (first GEVc) is taken into account,
i.e., K = 1. In this case, we can also include the comparison with GS-ℓ1,∞-[94],
which was designed specifically for this case. We choose C = 25, L = 3 and look
for the optimal sensor selection for M ranging from 2 to 24. Figure 3.4.2 shows
the output GRQs as a function of M for each separate method (mean over 250
Monte Carlo runs ± the standard error on the mean). Table 3.4.2 shows the
outcome of the statistical analysis, for M ranging from 2 to 12 (see Section 3.4.2).
All presented methods achieve significantly higher (better) GRQ than random
selection but lower (worse) GRQ than the optimal solution obtained through
an exhaustive search over all possible combinations (Table 3.4.2b).

The greedy sensor selection methods suffer from intrinsic limitations, i.e., they
depend on previous choices in their sequential procedure. For example, the
FS method starts with a GRQ close to optimal but diverges from the optimal
exhaustive solution when M increases, and the other way around for the BE
method. However, the FS method achieves overall lower GRQ than the BE
method, which is also confirmed by the statistical testing in Table 3.4.2b. This
could be due to the fact the FS method is limited to selecting one sensor at a
time, which hampers its capacity to probe combined effects of multiple sensors.
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Figure 3.4.2: The output GRQ (mean over 250 runs) as a function of M for
the different sensor selection methods when C = 25, L = 3, K = 1. The shading
represents the standard error on the mean.

Furthermore, Figure 3.4.2 and Table 3.4.2b show that the GS-ℓ1,∞-[94] method
is outperformed by all other methods, except by the STECS method. Our
proposed method (significantly) outperforms GS-ℓ1,∞-[94] across all M . This
is an effect of dropping the off-diagonal blocks of the inequality constraints
of (3.16). However, the gap between both methods becomes smaller for lower M
(see also Figure 3.4.2). Similarly, the STECS method is outperformed, especially
for low M , by all other methods, suffering from its non-convex objective function.
This method achieves slightly higher GRQ than the GS-ℓ1,∞-[94] method for
most larger M , but it achieves much lower GRQ for small M . As a result, there
is also a significant difference observed across all M between 2 and 12 between
the STECS and GS-ℓ1,∞-[94] method (Table 3.4.2b).

A remarkable conclusion is that the greedy BE method significantly outperforms
almost all other state-of-the-art methods, including GS-ℓ1,∞-[94] and STECS,
which have not been benchmarked in a group-sparse setting against BE in the
corresponding original papers [94] and [120], respectively. The only method that
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significantly outperforms the BE method is our proposed GS-ℓ1,∞ algorithm.
Interestingly, although the BE method seems to perform slightly better for
larger M , the GS-ℓ1,∞ method seems to perform better than the BE method
for small M especially, explaining the statistically significant difference. The
gap between both methods is also larger for these small M than for large M .
From an application-based point of view, these smaller M - below half of the
total number of sensors C - are often targeted in practice. Indeed, sensor
selection is typically performed to substantially decrease the number of required
sensors, not to remove only a few sensors. Although the heuristic BE method
is computationally much more efficient than the optimization-based GS-ℓ1,∞
method, it thus performs worse than the GS-ℓ1,∞ method when it most matters.
Lastly, it is interesting to identify in how many and in which cases a sensor
selection method completely fails. For example, one could define a failure as
more than 10 dB difference with the exhaustive method. Using this rule, the
fail rate for the BE method across all runs and again for M between 2 and 12 is
3.71%, while this is 0.44% for the GS-ℓ1,∞ method. Thus, the BE method has
almost 10 times more severe fail cases than the GS-ℓ1,∞ method. While these
percentages might seem marginal at first sight, it should be taken into account
that this percentage is biased by the highly randomized simulated scenarios.
After a closer look, these fail cases turn out to mainly occur in cases where
the covariance matrix R2 is ill-conditioned, which is not necessarily a rare
case in practical settings, for example, as found in miniaturized EEG sensor
networks [88]. In Section 3.4.5, we further analyze these particular fail cases
and provide a more extensive discussion.
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Fixed-effect term β SE DF t-value p-value
intercept −5.38 0.79 18729 −6.80 < 0.0001
method = exh−BE 2.51 0.07 34.94 < 0.0001
method = exh−FS 3.35 46.71 < 0.0001
method = exh−STECS 5.48 76.30 < 0.0001
method = exh−random 8.73 121.59 < 0.0001
method = exh−GS-ℓ1,∞-[94] 4.33 60.36 < 0.0001
method = exh−GS-ℓ1,∞ 1.83 25.46 < 0.0001

(a)

exh BE FS STECS rand GS-H GS
exh / 2.51∗ 3.53∗ 5.48∗ 8.73∗ 4.33∗ 1.83∗

BE −2.51∗ / 0.85∗ 2.97∗ 6.22∗ 1.83∗ −0.68∗

FS −3.53∗ −0.85∗ / 2.13∗ 5.38∗ 0.98∗ −1.53∗

STECS −5.48∗ −2.97∗ −2.13∗ / 3.25∗ −1.15∗ −3.65∗

rand −8.73∗ −6.22∗ −5.38∗ −3.25∗ / −4.40∗ −6.90∗

GS-H −4.33∗ −1.83∗ −0.98∗ 1.15∗ 4.40∗ / −2.51∗

GS −1.83∗ 0.68∗ 1.53∗ 3.65∗ 6.90∗ 2.51∗ /
(b)

Table 3.4.2: (a) The LMEM fixed-effect outcomes for M = 2 to 12 when C =
25, L = 3, K = 1. (b) The pairwise differences, showing the estimated difference
between average GRQ (method in row − method in column)/p-value per pair
of methods (p-values < 0.0001 are indicated with ∗). Statistically significant
differences are color coded. Values in green/red indicate that the method in the
row outperforms/is outperformed by the method in the column. The method
names are abbreviated as exh: exhaustive, BE: Background Elimination, FS:
Forward Selection, STECS, rand: random, GS-H: GS-ℓ1,∞-[94], GS: GS-ℓ1,∞
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3.4.4 Comparison in the MIMO case (K > 1)

Figure 3.4.3 and Table 3.4.3a show the results of 100 Monte Carlo simulations
with C = 25, L = 2, and K = 2, i.e., the more general case where K > 1. As
the GS-ℓ1,∞-[94] method was only proposed for K = 1, it is not included in
these simulations.

First of all, the results confirm that the proposed extension to MIMO filtering
in Section 3.3 is valid, as the GS-ℓ1,∞ method still obtains GRQs close to those
of the optimal exhaustive solution. Furthermore, the results are in line with
Section 3.4.3. The BE and GS-ℓ1,∞ method again show a statistically significant
difference when evaluated across M between 2 and 12 (Table 3.4.3b), confirming
that the latter has the advantage for the more relevant low M . Finally, both
methods significantly outperform the other benchmark methods (except the
exhaustive search).
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Figure 3.4.3: The output GRQ (mean over 100 runs) as a function of M for
the different sensor selection methods when C = 25, L = 2, K = 2. The shading
represents the standard error on the mean.
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Fixed-effect term β SE DF t-value p-value
intercept −14.64 0.91 6393 −16.01 < 0.0001
method = exhaustive−BE 2.10 0.11 18.54 < 0.0001
method = exhaustive−FS 3.18 28.04 < 0.0001
method = exhaustive−STECS 5.35 47.15 < 0.0001
method = exhaustive−random 9.09 80.17 < 0.0001
method = exhaustive−GS-ℓ1,∞ 1.51 13.36 < 0.0001

(a)

exhaustive BE FS STECS random GS-ℓ1,∞

exhaustive / 2.10∗ 3.18∗ 5.35∗ 9.09∗ 1.51∗

BE −2.10∗ / 1.08∗ 3.24∗ 6.99∗ −0.59∗

FS −3.18∗ −1.08∗ / 2.17∗ 5.91∗ −1.66∗

STECS −5.35∗ −3.24∗ −2.17∗ / 3.75∗ −3.83∗

random −9.09∗ −6.99∗ −5.91∗ −3.75∗ / −7.58∗

GS-ℓ1,∞ −1.51∗ 0.59∗ 1.66∗ 3.83∗ 7.58∗ /
(b)

Table 3.4.3: (a) The LMEM fixed-effect outcomes for M = 2 to 12 when
C = 25, L = 2, K = 2 (GS-ℓ1,∞-[94] is omitted as it is only defined for K = 1).
(b) The pairwise differences, showing the estimated difference between average
GRQ (method in row − method in column)/p-value per pair of methods (p-values
< 0.0001 are indicated with ∗). Statistically significant differences are color
coded. Values in green/red indicate that the method in the row outperforms/is
outperformed by the method in the column.
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3.4.5 Comparison of GS-ℓ1,∞ with BE

In this section, we zoom in on the comparison between the BE and GS-ℓ1,∞
method, as these two methods achieve the highest GRQ in the previous
simulations. As explained in Section 3.4.1, the BE method can suffer from
its greedy sequential selection, where previously eliminated sensors can not be
recovered when selecting a lower number of sensors. This inherent disadvantage
of the BE method can lead to various fail cases (defined here as > 10 dB
difference with the optimal exhaustive solution). After closer inspection, we
identified that the majority of the fail cases (73.53% of all the fail cases in the
previous simulations) corresponded to scenarios in which the matrix R2 was
ill-conditioned, i.e., where there was a large difference between the largest and
smallest eigenvalue(s).

To thoroughly test this case, we compare the BE method to the GS-ℓ1,∞ method
on the subset of 60 simulations of Section 3.4.3 where 2 ≤ N2 ≤ 12, i.e., where
the number of signals contributing to x2(t) is less than half of the C = 25
sensors. These cases correspond to ill-conditioned covariance matrices R2 in
the denominator of the GRQ, where the smallest eigenvalues are determined
solely by white Gaussian sensor noise (see Section 3.4.2). The results are shown
in Figure 3.4.4, where also the performance of the exhaustive solution is shown
as a reference. For large M , both methods perform similarly to the exhaustive
solution, with very little change in GRQ for increasing values of M . When M
decreases, both methods start to diverge from the exhaustive solution. However,
the BE method achieves lower GRQ than the GS-ℓ1,∞ method for smaller M .
This is confirmed by the LMEM including only those two methods, as there is
again a significant effect of the method, i.e., the GS-ℓ1,∞ method outperforms
the BE method (Table 3.4.4).

Fixed-effect term β SE DF t-value p-value
intercept 31.30 0.44 1259 71.47 < 0.0001
method = GS-ℓ1,∞−BE 1.53 0.19 1259 8.20 < 0.0001

Table 3.4.4: The LMEM outcomes when including only the BE and GS-ℓ1,∞
methods in the case with an ill-conditioned covariance matrix R2 in the
denominator (for M = 2 to 12).



3.4 | BENCHMARK STUDY 81

2 13 24
0

10

20

30

exhaustive

BE

GS-`1,∞

Number of channels selected M

GRQ [dB]

Figure 3.4.4: While the BE and GS-ℓ1,∞ method performs on par for large
M , the GS-ℓ1,∞ method starts to outperform the BE method for smaller M in
the ill-conditioned R2 covariance matrix case (mean ± standard error on the
mean).
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Figure 3.4.5 shows the differences in GRQ across all runs and M between 2
and 12 between the BE/GS-ℓ1,∞ method and the exhaustive solution when
2 ≤ N2 ≤ 12. The BE method has a heavier tail with more outlying negative
differences with the exhaustive solution than the GS-ℓ1,∞ method. Of all runs
with 2 ≤ N2 ≤ 12, there is a fail rate of 11.52% for the BE method, while this
is only 0.91% for the GS-ℓ1,∞ method. To summarize, when there is an ill-
conditioned covariance matrix R2 in the denominator of the GRQ, the GS-ℓ1,∞
method is more robust than the BE method.

−24 −10 −3 0

BE −
Exhaustive

GS-`1,∞ −
Exhaustive

Difference in GRQ [dB]

64.55% above −3 dB11.52% below −10 dB

77.88% above −3 dB0.91% below −10 dB

Figure 3.4.5: The BE method shows more outlying negative differences in GRQ
(across all runs and M between 2 and 12) with the exhaustive solution than the
GS-ℓ1,∞ method when the covariance matrix in the denominator of the GRQ is
ill-conditioned.

The failure cases of the BE method can be reduced by preventing covariance
matrix R2 from being ill-conditioned. This can be done by performing the
BE method on a regularized covariance matrix R̃2. The regularization should
increase the condition number of the covariance matrix R̃2. The solution of the
BE method on the regularized problem should provide a more robust estimate
of the optimal solution. Several regularization techniques can be used including
diagonal loading or the subspace projection presented in the previous chapter
(sub-section 2.2.2). Diagonal loading has been widely used to improve robustness
of GEVD problems, such as beamforming, in presence of noise [125]. Diagonal
loading is applied by adding an identity matrix (I) to the covariance matrix of
interest:

R̃2 = R2 + λI

The relative power of the identity matrix (I) in relation to the covariance matrix
(R2) is a parameter (λ) which must be carefully selected. One estimator for an
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optimal choice of this parameter is described as the Ledoit-Wolf estimator.
The estimator is shown to minimize the mean squared error between an
estimated covariance matrix acquired from a finite set of observations and
the real covariance matrix [126].

To evaluate the effect of regularization, the following simulation is conducted.
An artificially rank-deficient problem is created. The simulation setup in
section 3.4.2 is used to generate a grid of 9 sensors (L = 1, K = 1). 9 additional
sensors are constructed as random linear combinations of the first 9 sensors. They
are added to create a pool of 18 sensors (half of which are redundant). 400 Monte
Carlo runs are executed. The results of the simulation are shown in figure 3.4.6.
It shows the BE method with Ledoit-Wolf regularization outperforms standard
BE for any number of sensors. A comparison to the exhaustive solution is
used to compare the failure cases of the standard BE with the Ledoit-Wold
regularized BE. In these simulations with 9 independent sensors and 9 redundant
sensors, the standard BE fails (defined here as > 10 dB difference with the
optimal exhaustive solution) in 35% of cases. This failure rate decreases to
19% with the regularized BE. This represents a reduction of 47% of the failure
cases. This shows regularization of the covariance matrix (R2) can improve the
robustness of the BE method.
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Figure 3.4.6: The BE with Ledoit-Wolf regularization (BE-LW) outperforms
standard BE for any number of sensors.
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3.5 Example of sensor selection on real-world data

The benchmark study in Section 3.4 was performed on simulated data, which
allowed us to generate a large number of simulations that are generic enough to
apply to many sensor selection problems that arise in different signal processing
domains. In this section, we show an example of sensor selection in the context
of mobile epileptic seizure monitoring. More specifically, the task requires to
design a spatiotemporal filter that amplifies multi-channel EEG data during
seizures while maximally attenuating peak interferers [104]. The solution is
found through max-SNR filtering and can be solved using the GEVD framework
described in this chapter. More information about the context, problem, and
data can be found in chapter 2.

In the following example, we investigate the effect of the reduction of EEG
channels on subject three of the study in chapter 2, aiming to design a mobile
EEG setup. The data contains 16 channels (i.e., C = 16). Five time lags
are used per channel (i.e., L = 5), while two output filters are computed (i.e.,
K = 2).

Figure 3.5.1 shows the GRQ as a function of the number of selected channels for
the GS-ℓ1,∞, the FS and BE methods, which performed best in the benchmark
study (see Section 3.4.3 to 3.4.5). The results are in line with the benchmark
study. Both the GS-ℓ1,∞ and BE methods obtain similar GRQ across the whole
range of selected channels, but the GS-ℓ1,∞ and FS methods outperform the
greedy BE method for a low number of channels M . This confirms that the
developed method performs as expected, also on sensor selection problems on
real-world data.

The example of channel selection on a standard EEG cap (C = 16) allows
using the GS-ℓ1,∞ method, the FS or the BE method with confidence on the
selected channels with regards to the optimal exhaustive selection. When
the number of available channels increases as is found in high density EEG
caps with 256 channels, the computational complexity of the different methods
becomes a determinant factor when considering the channel selection method.
The computational time of the different methods on an Intel quad-Core i7-
4790 (3.60 GHz) for the selection of 6 channels in a problem with 64 channels
(C = 64, L = 1, K = 1) is shown in table 3.5.1. The FS method is 20 times faster
than the BE method to select 6 channels out of a pool of 64 (L = 1, K = 1).
Both these methods obtain a result in less than one second while the GS-ℓ1,∞
takes more than 15 minutes. The computation of all these methods increases
with the number of channels (C), the numer of time lags (L) and filter outputs
(K) such that the GS-ℓ1,∞ is impractical to use in problems with many variables.
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Figure 3.5.1: The GS-ℓ1,∞ and the FS methods outperform the BE method for
a low number of channels also on an example with real-world data collected on
a patient with epilepsy (C = 16, L = 5, K = 2).

FS BE GS-ℓ1,∞

Compute time [s] 0.02 0.4 924

Table 3.5.1: The FS method is 20 times faster than the BE method to select
6 channels out of a pool of 64 (L = 1, K = 1). Both these methods obtain a
result in less than one second while the GS-ℓ1,∞ takes more than 15 minutes.
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3.6 Conclusion

In this chapter, we proposed a group-sparse variable selection method using the
ℓ1,∞-norm for GRQ optimization and GEVD problems applied in the context
of sensor selection. This group-sparsity does not only allow to extend spatial
to spatio-temporal filtering but also to take multiple filters (eigenvectors) into
account and thus extend MISO to MIMO filtering. The latter is essential in
various other applications, such as selecting sensors across different filterbands
in CSP applications [109], [110].

We have extensively compared the proposed GS-ℓ1,∞ method with various other
sensor selection methods (greedy, optimization-based, . . . ). Remarkably, the
simple greedy BE method outperformed all methods from the state of the
art, except the proposed GS-ℓ1,∞ method. While the heuristic BE method is
computationally more efficient, it performs worse than the GS-ℓ1,∞ method for
smaller numbers of selected sensors, and with a higher probability to completely
fail. We have shown that one specific fail case of the BE method is when the
covariance matrix in the denominator of the GRQ is ill-conditioned. We also
showed the FS method performs in line with the GS-ℓ1,∞ method when the
number of sensors to select is small.

As the BE method is less robust than the proposed GS-ℓ1,∞ method, the latter
is the preferred choice when performing variable selection, in particular if the
number of desired variables is small compared to the total number of variables.
In cases where the total number of variables is large such that the GS-ℓ1,∞
method becomes computationally impractical, the FS or regularized BE are the
preferred methods for respectively low and high number of desired variables
compared to the total number of variables.

In the next chapter, we will be investigating the effects of miniaturization on a
setup with 256 EEG channels. From this setup we will be selecting one to ten
channels. For this problem which requires to select a low number of variables
from a large pool, this chapter showed the FS method is the best available
method.



CHAPTER 4

Sensor selection and miniaturization
limits for detection of interictal
epileptiform discharges with
wearable EEG

This chapter is based on J. Dan, M.T. Foged, B. Vandendriessche, W.
Van Paesschen and A. Bertrand, “Sensor selection and miniaturization
limits for detection of interictal epileptiform discharges with wearable
EEG”, Under review, 2022.
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Sensor selection and miniaturization limits for detec-
tion of interictal epileptiform discharges with wearable
EEG

Abstract | Objective The goal of this chapter is to investigate the
limits of EEG sensor miniaturization in a set-up consisting of multiple
galvanically isolated EEG units to record interictal epileptiform discharges
(IED), referred to as ‘spikes’, in people with epilepsy. Approach A dataset
of high-density EEG recordings (257 channels) was used to emulate local
EEG sensor units with short inter-electrode distances. A computationally
efficient sensor selection and interictal spike detection algorithm was
developed and used to assess the influence of the inter-electrode distance
and the number of such EEG units on spike detection performance.
Signal-to-noise ratio, correlation with a clinical-grade IED detector and
Cohen’s kappa coefficient of agreement were used to quantify performance.
Bayesian statistics were used to confirm the statistical significance of the
observed results. Main Results We found that EEG recording equipment
should be specifically designed to measure the small signal power at short
inter-electrode distance by providing an input referred noise < 300 nV.
We also found that an inter-electrode distance of minimum 5 cm between
electrodes in a setup with a minimum of two EEG units is required
to obtain near equivalent performance in interictal spike detection to
standard EEG. Significance These findings provide design guidelines
for miniaturizing EEG systems for long term ambulatory monitoring of
interictal spikes in epilepsy patients.
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4.1 Introduction

Epilepsy is one of the most common severely disabling brain conditions,
affecting over 46 million people worldwide [57]. The disorder is characterized
by pathological electrical discharges of neurons, which can be recorded non-
invasively using scalp EEG as isolated spikes or spike-wave complexes. The
latter occur during clinical epileptic seizures, but also between seizures (i.e.
IED or ‘spikes’), without any concomitant clinical manifestations. EEG is
routinely used in the clinic to document such discharges in order to contribute
to diagnosis, follow up, and adaptation of treatment for people with epilepsy.
Clinical EEG recordings are typically carried out in a hospital (outpatient or
inpatient) setting in a resting condition over a relatively short period of time.
The American Clinical Neurophysiology Society recommends, that this lasts at
least 20 minutes [15]. Therefore, routine EEG often provides only a snapshot
of the disorder experienced by a person with epilepsy. Short duration EEG
recordings cannot capture long-term patterns of the disorder such as seizure
frequency, timing or dynamic cycles [127]. Long-term monitoring of interictal
spikes has been shown to be an effective predictor of seizure timing [128] as
well as treatment outcome [129]. In order to obtain long-term EEG in realistic
conditions, miniaturized EEG devices that can be worn by people in their
everyday life would be preferable.

Previous work has demonstrated that EEG recording using several dozens of
electrodes, such as those used in clinical routine, are not required to effectively
monitor discharge features in people with a diagnosis of epilepsy and that
a low number of electrodes can be sufficiently informative [104], [130], [131].
Furthermore, wearable EEG devices for everyday life monitoring are in active
development [35], [132]–[135]. Efforts to miniaturize EEG devices have mainly
focused either on the electronics of the recording device or on the electrode
placement setup. Some examples include the work of Zibrandtsen et al. [135]
who made custom fitted in-ear EEG to monitor people with epilepsy. They
analyzed intra-ear EEG channels and inter-ear EEG channels and investigated
the feasibility of annotating epileptic seizures based on in-ear EEG channels
alone. They found ear-EEG can detect temporal lobe seizures and generalised
seizures as well as interictal spikes. Swinnen et al. [35] used Byteflies Sensor
Dot, a commercial miniature EEG sensor with two channels, to detect typical
absence seizures in adults and children. They found epileptologists were able to
reliably detect typical absence seizures using this miniature EEG sensor.

One way of further minimizing the EEG setup is by reducing the number of
wires. This can be done by using several EEG amplifiers that are each connected
to a single pair of electrodes. These isolated EEG sensor units measure a local
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bipolar channel, each with a built-in local amplifier. Such a set-up with multiple
miniaturized and galvanically isolated EEG sensor units eliminates the need for
multiple long wires that run across the scalp, and is sometimes referred to as
a wireless EEG sensor network [44], [45], [47]. The bulkiness of such an EEG
sensor network is determined by the number of sensor units and the size of these
units. The latter is mostly dependent on the distance between the electrodes of
each such sensor unit.

Obviously, reducing the number of recording electrodes increases the importance
of electrode placement as it is expected to influence the detection of epileptiform
discharges, even for generalised discharges [130]. As a corollary, it is critical to
individualize the placement of reduced numbers of electrodes to the specifics of
a patient discharge pattern as compared to routine hospital-based recordings.

To approach this electrode placement problem, and to analyze miniaturization
effects, a setup with multiple sensor units with short bipolar inter-electrode
distances can be emulated and evaluated using information collected through
high density electroencephalograph (HD-EEG) recordings. In a 257-electrode
HD-EEG head cap, electrodes are situated approximately 2 centimeters apart,
thus allowing to emulate short inter-electrode distances. This type of approach
has been previously proposed in the context of auditory attention decoding,
to identify and quantify the lower bound on miniaturization for EEG-based
decoding of neural responses to speech. Mundanad Narayanan et al. showed
that for inter-electrode distances equal or greater than 3 cm, the decoding
performance was not significantly worse compared to that achieved with long
distance channels referenced to the Cz electrode [47]. Furthermore, they showed
a rapid decline in decoding performance for inter-electrode distances smaller
than 3 cm. The study was also performed on an HD-EEG dataset where short
distance channels were constructed through re-referencing. Studies on the effect
of inter-electrode distance had already been reported in the 1980. Authors
showed that the amplitude of the EEG follows an exponential relationship with
inter-electrode distance [136]. However, in the context of spike detection, it is not
necessarily the decrease in amplitude that impacts the detection performance,
but (also) the changes in signal-to-noise (SNR) as the noise levels will also
change with a decrease in inter-electrode distance.

In this chapter, we investigate the limits of miniaturization for interictal spike
detection using a network of galvanically isolated EEG units by emulating such a
set-up via HD-EEG recorded on people with epilepsy. We present an automated
algorithm pipeline for the selection of a small number of EEG channels for
mobile EEG ambulatory monitoring and for the automatic detection of inter-
ictal epileptiform discharges. The effects of miniaturization, both in terms of
short inter-electrode distance and in terms of a small number of EEG units,
were assessed through comparison with spike detection on standard 32 channels
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of ‘long-distance’ EEG in which all electrodes are wired to a central reference
electrode.

Processing of HD-EEG is a computationally heavy operation due to the high
number of electrodes resulting in high-dimensional data. In order to study
the influence of the number of EEG sensor units and the inter-electrode
distance, efficient methods to process these data have to be developed. First
a computationally efficient spike detector should be used. Spike events are
stereotypical in that spatial and temporal signature of different events are
very similar (within the same patient). Algorithms that leverage this build
an average spike template that is then used as a matched filter for detecting
spikes [137]–[140]. This type of algorithm is computationally efficient due to
the low number of operations required to classify a new epoch of data. In this
chapter, we use an algorithm that leverages the spatio-temporal signature of
spike events by constructing a filter that enhances spikes, but also suppresses
non-spike EEG activity and artefacts by exploiting the spatio-temporal second
order statistics of the latter components. In this way, the filter maximizes
the SNR (i.e. spike to noise ratio) to obtain a more accurate detection than
a straightforward matched filter. This filter design paradigm is known as
max-SNR filtering [82]. We then select a small number of EEG units using a
channel selection procedure to obtain a reduced channel set from a large set
of candidate channels. This must also be computationally efficient and should
make a selection that is optimized for the spike detection task. In chapter 3,
we compared different channel selection methods for group-sparse generalised
eigenvalue decomposition (GEVD) problems, which is a general class of problems
that contains the max-SNR filter as a special case. The group-sparsity appears
in the spatio-temporal filter, where selecting one EEG channel corresponds
to also selecting all the time lags associated with that channel (representing
a group of optimization variables). In the chapter, we found that for a low
number of channels to be selected, a forward greedy selection was the most
efficient, while being competitive with more expensive optimization methods.

Manual annotation of spike events is a time-consuming activity that requires
the expertise of experienced clinical neurophysiologists [141]. It is a difficult
task that must meet the six criteria suggested by the International Federation
of Clinical Neurophysiology [19]. These criteria define an IED as (1) di- or
tri-phasic waves with sharp or spiky morphology (i.e. pointed peak); (2) different
wave duration than the ongoing background activity: either shorter or longer;
(3) asymmetry of the waveform: a sharply rising ascending phase and a more
slowly decaying descending phase, or vice versa; (4) the transient is followed
by an associated slow after-wave; (5) the background activity surrounding IED
is disrupted by the presence of the IED; and (6) distribution of the negative
and positive potentials on the scalp suggests a source of the signal in the brain,
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corresponding to a radial, oblique, or tangential orientation of the source. While
these criteria provide a basis for labeling a spike, inter-rater agreement is only
fair, with reported Cohen’s kappa coefficient of 0.49 for inter-rater agreement
for single spike identification [142], 0.63 for the occurrence of one or more
spikes during a 10-second epoch, and 0.69 for a 30-minute epoch [143]. Because
of the time required, it is rare for human experts to fully annotate an EEG
recording. For diagnostic purposes, the annotation of several clear spike events
that allow confirmation of the diagnosis of epilepsy and localization of the
seizure onset zone are often sufficient. Human annotation can be facilitated by
a spike detection software. Only a few software packages are available on the
market with certification for use in clinical practice. Currently, Persyst is the
spike detection software with the highest agreement to human experts [143]. It
is a fully automated spike detector based on a deep neural network.

The outline of the chapter is as follows. We present the dataset, along with
the channel selection and spike detection methodology in section 4.2. Next, in
section 4.3, we present our results on the effect of inter-electrode distance and
number of miniaturized EEG units on the ability to identify spikes. They are
discussed and put in perspective with the current corpus of research in section
4.4. Conclusions and implications of the work are highlighted in section 4.5.

4.2 Methods

This section describes the material and methods that were used to conduct
the analysis on the limits of EEG sensor miniaturization to record interictal
spikes. We first describe the EEG data set in subsection 4.2.1, after which we
describe the different steps of our signal processing methodology in the remaining
subsections. The signal processing pipeline consists of the following steps. First,
a base set of annotations for spikes are generated using the automated spike
detector provided with the Persyst software. Then, a pool of bipolar channels
with a fixed inter-electrode distance is generated by re-referencing the high-
density EEG channels.A spike detector based on a max-SNR filtering criterion
is developed. A channel selection algorithm which optimizes this max-SNR
criterion is used to select the N best channels. The spike detector is then
trained on these N channels. A detailed description of each of these steps is
presented in the next subsections along with the performance metrics used to
evaluate miniaturization limits.
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4.2.1 Recordings

The recordings used in this study were originally obtained between 2015 and
2018 in the context of pre-surgical evaluation of patients with drug-resistant
focal epilepsy referred to a tertiary care hospital (Rigshospitalet, Copenhagen,
Denmark). HD-EEG recordings were performed on 40 subjects over 120 minutes
with 257 electrodes with exchangeable sponge electrodes using a EGI Gedodesic
Sensor Net HydroCel GSN 130 amplifier and cap sampled at 1 KHz.

4.2.2 Spike annotations

In order to automate the annotation of IEDs (from hereon referred to as
’spikes’), the recordings were analyzed using Persyst version 14.D software
(Persyst Development Corporation, Solana Beach, CA, USA) to annotate the
spikes. Persyst is a clinical grade EEG analysis software that specializes in
epilepsy diagnosis. It contains a fully automated spike detector based on a
deep neural network. To obtain the spike annotations, the software’s low-pass
and high-pass values were left at their default values (0.16 Hz - 70 Hz). The
notch filter was set to 50 Hz. The detection was set to the low sensitivity
setting (Persyst score > 0.9), which has high specificity [143]. Spikes occurring
during periods contaminated by strong artifacts (peak amplitude > 200 µV
or 1 second root-mean-square > 100 µV , which are mostly associated with
tapping and movement artifacts) and recordings with a low number of spikes
such that cross-validation could not be performed (less than 10 spike events)
were excluded from the analysis.

A total of 40 subjects were processed by Persyst for spike annotations. Fifteen
subjects had ten or more spike events meeting the inclusion criteria and were
included in the analysis. A total of 4088 spikes were detected by Persyst. The
median number of spikes per subject was 58 (range 27-1190) The number of
spike events detected by Persyst are given per subject in table 4.2.1.
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# spikes
subject 1 1190
subject 2 1016
subject 3 439
subject 4 401
subject 5 375
subject 6 231
subject 7 111
subject 8 58
subject 9 47
subject 10 45
subject 11 43
subject 12 40
subject 13 38
subject 14 27
subject 15 27
Total 4088

Table 4.2.1: Number of interictal epileptiform discharges detected by Persyst
14 at the low sensitivity setting.

4.2.3 Miniature EEG emulation

The miniaturization analysis was performed by extracting a pool of candidate
channels (each representing a separate galvanically isolated EEG sensor unit),
with desired inter-electrode distances of either 2, 3.5, 5, 6.5 or 8 cm between
electrode pairs (each distance leads to a different pool of candidates which
are then standardized across scenarios as explained below). We refer to the
inter-electrode distance with the value d. To obtain this pool of bipolar channels,
we implemented the following procedure. First, the inter-electrode distance
between all possible electrode pairs was computed. The latitude and longitude
of each electrode in the EGI Gedodesic Sensor Net HydroCel GSN 130 headset
is given by the manufacturer. The distance was computed as the haversine
distance with the head modeled as a sphere with a circumference of 57 cm [144].
The haversine distance or great-circle distance is the shortest distance between
two points on the surface of a sphere, measured along the surface of the sphere
[145]. In the context of EEG sensor units, this distance corresponds to the
length of the wire between two electrodes. Figure 4.2.1 shows the number of
electrode pairs (channels) as a function of the inter-electrode distance. The
electrode pairs at a distance d ± 0.25 cm were retained. Since each d results in a
different number of candidate channels, a channel selection procedure was then
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applied to each of the pools in order to obtain an equal number of candidate
channels independently of inter-electrode distance d. This selection eliminates
redundant channels to obtain a pool of candidate channels that uniformly cover
the scalp. Channels were considered redundant with respect to each other if
they were geometrically close by and in the same orientation as they would
record very similar signals. However, electrode pairs with close midpoints but
orthogonal orientation would record relevant information as they record dipoles
with different orientations. To this end, we use a proximity metric (p), which
combines the distance (d) and the orientation between two channels, based on

d = haversine_distance(m1, m2) (4.1)

p = e(− 2
3 ∗d) ∗ |v1 · v2| (4.2)

where m1, m2 are the midpoints of each channel (i.e. the center point of the
great circle line between the two electrodes that define the channel), v1, v2
are the unit orientation vectors of each channel (defining the orientation of the
line between the two electrodes that define the channel), and d is the harvesine
distance between the midpoints of both channels. The different symbols used
in the computation of the proximity metric are illustrated in figure 4.2.2. The
proximity metric p in equation 4.2 is defined such that it is high if the two
channels are close to each other (small d), and if their orientation is similar
(large |v1 ·v2|). Indeed, if either the angle between v1 and v2 is near-orthogonal
or the distance d is large, then p will be small. The local density of a channel
was computed as the sum of the proximity p of a channel to all other channels.
To obtain a set of 256 channels, the channel with the highest proximity to all
other channels was iteratively removed until a set of 256 channels was obtained
in each candidate pool.
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Figure 4.2.1: Histogram of the inter-electrode distance between all electrodes
in a EGI Geodesic Sensor Net HydroCel GSN 130 headset with 257 electrodes.
Distances of 2, 3.5, 5, 6.5 and 8 cm ±0.25 cm, highlighted in darker blue, are
investigated in this study.
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Figure 4.2.2: Illustration of the different symbols used in the computation of
the proximity between two pairs of electrodes.
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4.2.4 Spike detection algorithm

Template matching has been demonstrated to successfully detect neural spiking
activity both on intracranial and scalp EEG recordings [137]–[140]. In this
chapter, we use a filter design framework that is akin to such a template
matching filter, with the additional benefit that it takes the noise statistics into
account (in this case any non-spike EEG activity) in order to maximize the SNR
for the detection. The max-SNR filtering algorithm we use here is a variation
of an algorithm we previously developed and validated for the detection of
epileptic seizures [104]. It is a pre-trained multi-channel filter, implemented as
a filter-and-sum pipeline. The algorithm requires examples of spikes and noise
(i.e. non-spike EEG), which are obtained automatically via Persyst executed at
a high specificity level (see below).

The raw signals were first downsampled from 1 KHz to 100 Hz, then bandpass
filtered between 3 Hz and 30 Hz using a zero-phase, non-causal bandpass filter.
The EEG signal in channel k at sample time index t is modeled as

xk(t) = sk(t) + nk(t)

where sk(t) corresponds the signal component that contains all the spike events
and nk(t) corresponds to background EEG, which in our case is considered
to be noise. The N -channel EEG signal is denoted as x(t) ∈ RN with x(t) =
[x1(t) . . . xN (t)]. The aim is to produce a filter w ∈ RN that filters and combines
the N channels of EEG into a single-channel output signal o(t) in which the
background EEG is maximally suppressed, while preserving the spikes. This
output channel is obtained through the linear combination:

o(t) = wT x(t) (4.3)

From a signal processing viewpoint, w acts as a spatial filter that linearly
combines different EEG channels at different positions on the scalp. The filter
w is optimized in a data-driven fashion to maximize the SNR of o(t) over a
training set, i.e. solving

maxw
E{(wT s(t))2}

E{(wT (n(t))2}
= maxw

wT Rsw
wT Rnw (4.4)

where E{.} denotes the expected value operator, Rs = E{s(t)s(t)T } and
Rn = E{n(t)n(t)T } denote the spike and noise covariance matrices, respectively,
and s(t) and n(t) are defined similarly to x(t), i.e., x(t) = s(t) + n(t). In
subsection 4.2.4, we will explain how these covariance matrices Rs and Rn
are estimated from the data. It can be shown [82] that the solution of the
maximization problem defined in equation 4.4 is the eigenvector corresponding
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to the largest eigenvalue of the matrix R−1
n Rs. This is equivalent to solving a

GEVD problem based on the matrix pencil (Rs, Rn) [82].

The filter described above is a spatial filter. It can be expanded to a causal spatio-
temporal filter by creating a buffer of L samples for each channel and stacking all
buffered (time-lagged) samples in a single vector x̃(t) = col{x̃1(t), . . . , x̃N(t)}
where x̃k(t) = [xk(t), xk(t − 1), . . . , xk(t − L + 1)]T and col{.} denotes a
columnwise stacking. The output signal o(t) is given by equation 4.3 where w is
replaced by w̃ ∈ RLN and x(t) is replaced by x̃(t) ∈ RLN . This then corresponds
to a filter-and-sum operation, where each channel is filtered with a channel-
specific finite impulse response filter of length L, followed by a summation
across channels. For spike detection the buffer length is set to 200 ms (L = 20
at 100 Hz sampling), corresponding to the full duration of a spike discharge.

In this spatio-temporal extension, the covariance matrices in equation 4.4 are
replaced with their spatio-temporal generalizations, i.e., Rs = Es{s̃(t)̃s(t)T }
and Rn = Ei{(ñ(t))(ñ(t))T }. In the remainder of the chapter, we always
assume the spatio-temporal extension unless otherwise specified, and omit the
˜ for notational convenience.

Covariance matrix estimation

In order to compute the optimal filter w, we need to estimate the two covariance
matrices Rs and Rn on a training data set.

In our implementation of the algorithm, the spike covariance matrix Rs is
estimated based on a training set S with a few example 1 spike waveforms of
the patient under test. To this end, we used the following estimator 2

Rs ≈ 1
L|S|

∑
τ∈S

f(τ)
τ+L∑
t=τ

x(t)x(t)T (4.5)

f(τ) = g

τ+L∑
t=τ

||x(t)2||1

(∑
ν∈S

∑ν+L
t=ν ||x(t)2||1
|S|

)−1
 (4.6)

1These examples can be obtained, e.g., from a manual annotation on part of the data,
or via automatic annotation with clinical-grade software such as Persyst in high-specificity
modus to extract a few examples with a minimal number of false positives.

2Note that, since the noise floor is always present, the resulting covariance matrix is
actually an estimate for E{(s(t) + n(t))(s(t) + n(t))T } = Rs + Rn. However, since replacing
Rs with (Rs + Rn) in (4.4) leads to the equivalent optimization problem maxw1 + wT Rsw

wT Rnw ,
we obtain the same optimal filter.
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g(x) =
{

1 if x < 1
1
x if x >= 1

(4.7)

where S is the set of time indices corresponding to the first time sample of
each ‘spike’ segment marked by the Persyst spike detector. Each spike has a
duration of 200 ms. f(τ) is a normalization of the power of a spike event with
respect to the average power of all spike events for events with above-average
power. It is used to reduce the influence of outlier spikes with high power
(i.e., above-average). The noise covariance matrix Rn was computed similarly
without the normalization factor as

Rn ≈ 1
|N |

∑
t∈N

x(t)x(t)T

where N is a set of training samples that do not contain a spike event. Since
most of the data does not contain spikes (as IEDs are sparse events), it is not a
problem if some spikes leak into Rn, as they will not have a large impact in the
overall sum.

Given the cross-validation scheme, Rs is evaluated on 20 to 892 spikes depending
on the test subject. Rs is always evaluated on 1h30 of data.

Regularization

The inclusion of time lags substantially increases the dimension of the covariance
matrices, possibly making them ill-conditioned due to redundancy in the entries
of x(t). For this reason a regularization scheme is required. Wouters et al. [83]
proposed an effective regularization scheme for a template-matching-filter that
optimizes a similar cost function as in equation 4.4, but where the numerator
consists of a single template instead of a covariance matrix. The regularization
is obtained by projecting the data on a subspace containing the main principal
components of the denominator covariance matrix along with the template itself
(to represent the target signal). In this work we adapted the method to our
problem formulation. The data were projected on a subspace defined as the
span of the principal components of both the noise Rn and spikes Rs covariance
matrices. The principal components with the largest eigenvalues of Rn and
accounting for 85% of the variance in the noise segments were retained. The
principal components with the largest eigenvalues of Rs accounting for 95% of
the variance in the spike segments were also retained. These two sets of principal
component vectors were then combined and orthogonalized by placing them
in the columns of a new matrix M on which a singular value decomposition
is applied to find an orthogonal basis for the subspace. Let U = [u1 . . . uK ]
denote the matrix, the columns of which consist of the K left singular vectors
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corresponding to the largest singular values of M, where the cut-off K is chosen
such that the cumulated sum of these singular values is at least 99% of the sum
of all singular values. The matrix U is then used as a compression matrix on
the data, i.e.

xc(t) = UT x(t)

where xc(t) ∈ RK . The optimal compressed filter wc is then given as the
eigenvector of (R−1

n,c)Rs,c, where Rn,c = UT RnU and Rs,c = UT RsU
correspond to the compressed matrices. The filter output is then defined as
o(t) = wc

T xc(t) which is equivalent to an uncompressed filtering o(t) = wT x(t)
with w = Uwc. It is noted that this compression is only applied with the
purpose of regularization during training to obtain a better (uncompressed)
filter w. During operation of the algorithm (at test time), we always apply the
full filter w on the uncompressed data, as the compression with U requires
more computations than the filtering with w.

Classification

The classification of an epoch as containing spikes was performed twice per
second (i.e. at 0.5 Hz). As the filter is trained to suppress non-spike EEG and
enhance spikes, we can perform detection based on the output power or root
mean square (RMS) value of the filter. Therefore, as features for the classifier,
we used the moving average RMS value of the single-channel filter output o(t)
averaged over 200 ms (i.e. the duration of a spike) and the moving average
RMS averaged across the different channels of the EEG data x(t) and averaged
over one second (the latter serves as a baseline reference). The downsampling
to 0.5 Hz was done with a bucket algorithm [146]. This algorithm preserves the
amplitude of short duration local extrema such as spikes that would otherwise
be attenuated by a standard low-pass and decimation algorithm. These two
RMS features were log transformed before being fitted by a linear discriminant
analysis (LDA) classifier, which was trained based on the spike annotations in
the training set.

4.2.5 Greedy Forward Channel selection

To reduce the number of channels from 256 candidates, a channel selection
procedure is required. As we are assessing the performance of a spike detection
task based on a max-SNR framework, which is equivalent to solving a GEVD
problem [82], the channel selection task corresponds to a (group)-sparse GEVD
problem. In chapter 3 the performance of various group-sparse variable selection
methods for GEVD problems has been investigated. We showed that greedy
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forward selection performed competitively with other state-of-the-art methods
at a significantly lower computational cost. In chapter 3 we found the proposed
GS-ℓ1,∞ performed best for a low number of channels to select from a large pool
of candidates. However, that method is prohibitively slow for the large problem
at hand with 256 channels and several time lags (L = 4). The second-best
method when few channels need to be selected from a large pool of candidates
is the forward selection. The forward selection method starts from an empty
set of channels C and sequentially adds the channel that maximally increases
the objective in equation 4.4 when added to the current set C. New channels
are added until C contains M channels, where M is a pre-defined number of
required channels. Some examples of selected channels are shown in figure 4.2.3.

Figure 4.2.3: Example of seven channels selected in two example subjects. The
inter-electrode distance of the channels is set to 5 cm. The topoplot shows the
magnitude of the average spike of Persyst at the peak of the spike (t=0) in a
common average montage. The 1 second timecourse of the average spike is shown
with all channels superimposed. The figure illustrates the automatic channel
selection results. Maximising the signal to noise ratio results in a selection with
most channels close to the electrodes with highest peak magnitude. Note that
some channels far away from the spike with possibly little correlation to the
spike activity are selected which allows the algorithm to cancel some of the
noise components.
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4.2.6 Training scheme

Training and testing was performed individually for each subject. When
evaluating the effect of inter-electrode distance, care was taken to separate
the dataset in independent training and testing sets. The spike epochs were
split in four folds of equal size. The rest of the non-spike data were also split in
four folds each containing 30 minutes of data. Each training fold used three
folds of spike epochs and three folds of non-spike data in order to estimate the
covariance matrices Rs and Rn. The obtained filter w defined in equation 4.4
was then evaluated on the remaining spike fold and remaining non-spike fold.
This process was repeated four times.

4.2.7 Evaluation metrics

Since the real ground truth is unknown, we propose several indirect metrics to
assess the quality of the spike detections.

Signal-to-Noise Ratio

The average spike signal power over 200 ms was computed as the average RMS
amplitude over all channels in all segments that were flagged as spikes by Persyst
(note that we used Persyst in the high specificity setting, such that the effect of
the false positive detections are assumed to be negligible). The noise power was
computed in a similar fashion over all non-spike segments. The ratio of both
RMS values was then used as the SNR metric.

Correlation

To compare the Persyst detections and the detections of our max-SNR pipeline,
a correlation score was computed for each subject between the average spike
events detected by both algorithms. The correlation score allows to compare
the morphology of the detected spike waveforms of both algorithms. A high
correlation indicates that the number of false positive detections of the max-
SNR filter is small (as these would have a distorting effect on the waveform).
Indeed, since Persyst is used in the low sensitivity mode [143] (resulting in a
high specificity, i.e., very few false positives), the average waveform of both
approaches should be similar. The events were first aligned to the maximum
of the absolute value over a 0.5 second epoch across all channels. The average
0.5 second event was then constructed. The Pearson-correlation coefficient was
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computed per channel between the average of the spikes detected by Persyst
and the spikes annotated by the max-SNR pipeline. The average correlation
coefficient was computed as the weighted sum over all channels where the weight
was given by the power of the channel in the Persyst average spike event.

Agreement score

Cohen’s kappa coefficient of agreement was used as the agreement score. It was
computed between the baseline performance of the max-SNR detection pipeline
when trained with 32 channels referenced to Cz and between the different short
inter-electrode distance scenarios. The inter-rater agreement between humans
in annotating IEDs reaches a Cohen’s kappa of 0.49 for detecting individual
spikes [142]. We therefore consider a kappa larger than 0.5 to be in the region
of practical equivalence (ROPE).

4.2.8 Statistical analysis

A Bayesian analysis was performed to evaluate the probability of obtaining
a Cohen’s kappa coefficient > 0.5 for the different short distance scenarios
(when comparing with the baseline). This is the level of agreement obtained
between human experts annotating interictal spikes [142]. The analysis was
based on the generation of a large number of samples from distributions that fit
to the observed data. A Bayesian analysis allows to estimate the probability of
observing a parameter based on observed measurements and a prior assumption
on the underlying distribution of the parameter. The observed Cohen’s kappa
was modeled as a B-distribution as is appropriate for a variable bound to [0, 1]
[147]. The B-distribution was expressed in terms of mean and variance as was
proposed in [148]. The mean and variance are set by a prior distribution with
fixed parameters and are used to generate different distributions of Cohen’s
kappa coefficient. As proposed in [149], the means were drawn from a B-
distribution whose mean and variance was set to the mean and variance of
Cohen’s kappa coefficients in the full data set (i.e. across different subjects,
folds, inter-electrode distances, and number of EEG units).. The variance was
drawn from a uniform distribution in the interval between 0 and two times the
variance of the whole data. The model is represented schematically in figure
4.2.4. PyMC 4.1.4 [150] was used to generate the model.

The complete code for the simulations is provided online : https://github.
com/danjjl/miniEEG

https://github.com/danjjl/miniEEG
https://github.com/danjjl/miniEEG
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Figure 4.2.4: Schematic representation of the Bayesian model. Cohen’s kappa
coefficient is modeled as a β distribution with parameters obtained from a β
distribution for the mean (µ) and a uniform distribution for the variance (var).

4.3 Results

4.3.1 Signal power

The power of the spike events annotated by Persyst is reported as a function of
inter-electrode distance. The power is reported as an average across channels
for the channels selected by the channel selection algorithm when 1-10 channels
are selected. Figure 4.3.1.a shows that the median spike RMS at an inter-
electrode distance of 2 cm is 4 µV and increases to 12 µV at 8 cm. The RMS
is shown as a function of distance in 4.3.1.b. As opposed to the spike SNR, It
shows a near equal SNR independent of distance with a median SNR of 1.4 at
2 cm and 1.5 at 8 cm. This implies that both the power of the spikes as well
as the background noise are reduced by an equal amount when reducing the
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inter-electrode distances.
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Figure 4.3.1: Boxplots of (a) spike RMS amplitude as a function of distance and
(b) spike RMS to noise RMS ratio as a function of distance over 15 subjects
and 1-10 EEG channels.

4.3.2 Correlation between Persyst and the max-SNR pipeline

In order to validate our computationally efficient max-SNR based spike detection
pipeline, we compared the spikes detected by Persyst to the spikes detected by
the max-SNR based detection pipeline when electrodes were referenced to Cz
and 32 channels were selected using the automatic channel selection algorithm.
Both algorithms detect events such that the average spike waveform of both
algorithms have a very high correlation. The distribution of average spike
correlations is given in figure 4.3.2.b. It shows a median correlation of 0.94. An
example of the average spike of both algorithms for subject 15 is given in 4.3.2.a.
The number of events detected by the max-SNR algorithm is four times higher
than the number of events Persyst detected at the low sensitivity setting. In
total, across all subjects, the max-SNR algorithm detected 16937 events while
Persyst detected 4088.
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Figure 4.3.2: Comparison of the average spike event from patient 15 detected
by Persyst and by the max-SNR pipeline. (a) Example average spike event :
(left) Persyst, (right) max-SNR pipeline. One second of data is shown with 32
electrodes referenced to Cz. (b) Histogram across all patients of the Pearson
correlation between the average spike event of both algorithms.

4.3.3 Cohen’s kappa coefficient as a function of number of
EEG units and distance

Cohen’s kappa coefficient of agreement is computed between the max-SNR
spike detections on 32 channels referenced to Cz and max-SNR spike detections
when the number of channels was restricted between one and ten and the
inter-electrode distance was fixed to 2, 3.5, 5, 6.5, 8 cm. A boxplot of these
different comparisons is shown in figure 4.3.3. The median of Cohen’s kappa
coefficient increases both with the number of units and with the inter-electrode
distance. For an inter-electrode distance of 2 cm, the median coefficient is
always below 0.5 for three or less nodes. From 3.5 cm, it increases above 0.5 for
two or more EEG units.
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Figure 4.3.3: Boxplot of Cohen’s kappa coefficient of agreement of detected
spike events between the different test scenarios (varying distance and number
of channels) using a max-SNR pipeline and a reference max-SNR pipeline on 32
channels referenced to Cz. The different colors represent different number of
EEG units. The dashed grey line shows the agreement between human raters.

The Bayesian framework is used to test the confidence of these findings. All
simulated MCMC reported convergence with the Gelman-Rubin statistic equal
to one for all variables. The probability of the mean Cohen’s kappa coefficient
being greater than 0.5 is reported in figure 4.3.4. It shows a probability < 95%
when using a single EEG unit. It shows a probability > 95% when using seven
or more EEG units at distances of 2 and 3.5 cm. It shows a probability > 95%
when using two or more EEG units at distances of 5 cm or more.
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Figure 4.3.4: Probability in a Bayesian model of observing a mean Cohen’s
kappa coefficient of agreement > 0.5 between spike events detected in different
test scenarios (varying distance and number of EEG units) using a max-SNR
pipeline and a reference max-SNR pipeline on 32 channels referenced to Cz.
The black line shows the 95% probability boundary.

4.4 Discussion

In this chapter, we investigated the effect of inter-electrode distance and influence
of the number EEG channels on the ability to record and detect spikes using a set
of galvanically isolated miniature EEG sensor units. We analyzed data recorded
for clinical purposes with a 257 electrode HD-EEG setup. We annotated the
data for spikes using the Persyst 14.D tool, which has been widely utilized
in clinical practice and research for seizure and spike detection on EEG. We
then measured the RMS amplitude of the detected spikes after re-referencing
to short inter-electrode distances. We found that the median RMS of spike
events measured with an inter-electrode distance of 2 cm was 4 µV (see figure
4.3.2.A). This is about three times lower signal power than found at greater
electrode distances and results in signals that are close to the noise floor of
standard EEG equipment. In standard clinical care, the American Clinical
Neurophysiology Society states that EEG recording devices should add less
than 1 µV peak-to-peak noise at any frequency in the band [0.5 - 100] Hz [151].
This is in line with amplifier technology commonly found in EEG equipment,
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such as the Texas Instrument ADS1299 which claims an input referred-noise
of 1 µV peak-to-peak [152]. This indicates that EEG devices with short inter-
electrode distances should aim for lower input referred noise. This is a similar
observation as in [153]. Our findings suggest that devices aiming for 2 cm
inter-electrode distance should be designed for an input referred noise < 300 nV
(three times lower than current standard as suggested by spike amplitude). We
also compared the spike RMS to the non-spike RMS (SNR) as a function of
inter-electrode distance. This SNR results both from physiological processes
as well as extra-physiological such as electronic noise. We found a ratio of
150%. This is in line with the definition of spikes, which state that spikes
should stand out from the background EEG activity [19]. The SNR was only
minimally impacted by the inter-electrode distance with the SNR at 140% for
an inter-electrode distance of 2 cm. This indicates that spike activity is still
distinguishable at 2 cm with scalp EEG. This also means that the amplitude
of the spikes and the noise (i.e. background non-spike EEG) is reduced with
a similar factor. A similar observation was also made in [153] for the case of
event-related potentials.

We compared the spike annotations from the Persyst software on the original 257
electrodes to the annotations using our channel selection and detection pipeline
constrained to 32 channels referenced to Cz. We found that Persyst detected
about four times less spikes than our proposed algorithm. However, we observed
a median Pearson correlation of 0.94 between the average spike event detected
by both algorithms, with a single subject with a correlation of less than 0.77.
For this subject, Persyst does not detect a clear spike pattern. The maximum
amplitude of the average spike is 9 µV with no clear spike morphology. The
high median correlation indicates a very good agreement on the morphology of
spikes between both algorithms and is a point of validation to demonstrate that
our algorithm does detect valid spike events. This indicates that the additional
spikes detected by the max-SNR filter are actual spikes instead of false positives,
implying that Persyst misses a large fraction of the spike events. The latter is
expected, since we set Persyst to low sensitivity mode because this is the mode
with the highest specificity. In this setting, Reus et al. observed a specificity
of 99% when compared to human experts [143]. This setting allows us to use
Persyst as reliable ground truth data to accurately estimate the Rs covariance
matrix with minimal leakage of non-spike events in the estimation of Rs.

We compared the spike annotations between a baseline version of our detection
pipeline referenced to Cz in a 32 channel setting with the annotations from
our pipeline constrained to short inter-electrode distances and less than ten
channels. We found an influence of both the distance and the number of EEG
units on Cohen’s kappa coefficient of agreement. Increasing distance increases
agreement. Increasing the number of EEG units also increases agreement. We
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found that the influence of the number of EEG units is stronger at small inter-
electrode distances. The increase in performance is strongest when taking two
or more units compared to a single EEG unit. We used the Bayesian estimation
framework [149] to estimate the probability of obtaining high agreement. This
Bayesian testing confirmed a probability > 95% of obtaining an agreement
> 0.5 for inter-electrode distances greater than 5 cm when using two or more
EEG units (which corresponds to an agreement that is at least as good as an
inter-rater agreement of human annotators, for which Cohen’s kappa is 0.49
[142]). These findings indicate that a network of galvanically isolated short
distance EEG units is an appropriate setup to monitor spikes and is comparable
to a 32 channel setup referenced to Cz. It also shows that carefully placed units
and increasing the number of units can counteract the decrease in performance
obtained by shortening the inter-electrode distance.

Current efforts to miniaturize EEG systems are not limited to the field of
epilepsy. In the hearing aid community, several research groups have investigated
miniaturization of EEG systems to integrate them with hearing aids. In a recent
study, Mundanad Narayanan et al. showed that for inter-electrode distances
equal or greater to 3 cm, the decoding of neural responses to speech was not
significantly worse to that achieved with long distance channels referenced to
the Cz electrode [47] when using an appropriate number of EEG units. While a
direct comparison to a spike detection task is impossible, given the differences
in the nature of the neural response localization and amplitude, both our study
and the studies in the hearing aid community show networks of galvanically
isolated short distance EEG units are able to capture an EEG signal of interest.

The design objective of short distance EEG units is to allow for measurement
of EEG in real-life conditions. This study was conducted on data acquired
in a hospital setting. Recordings obtained in uncontrolled conditions during
everyday life are expected to contain more artifacts than measured in the
controlled setting of the epilepsy monitoring unit. Therefore, reproducibility
of the findings we report on a minimal number of channels and inter-electrode
distance should now be tested in everyday life activity conditions. When
designing an ambulatory setup, robustness should be considered. This could
be done by increasing the number of channels and/or inter-electrode distance
above our minimal requirements findings. Improvements to the spike detection
algorithm could also be made for example by building a filter that discriminates
between epileptic spikes and non-epileptic peak interferers as was suggested in
[104].
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4.5 Conclusion

We found that EEG recording equipment should be specifically designed to
measure the small signal power at short inter-electrode distance by providing
an input referred noise < 300 nV. We also found an inter-electrode distance
of 5 cm between electrodes in a setup with a minimum of two EEG units is
required to obtain near equivalent performance in interictal spike detection to
standard EEG. These findings provide design guidelines for EEG equipment
miniaturization in the context of detection of interictal epileptic discharges.





CHAPTER 5

Conclusion

This work contributes to the development of EEG monitoring of people with
epilepsy in the home environment and lowering the technical difficulties that
limit its wide adoption. It brings three main contributions which are detailed
in the main chapters of this dissertation. This chapter will summarise these
contributions as well as propose future directions for research in the field.

5.1 Main contributions

Epileptiform event detection | The first contribution of this thesis lies in
the development and validation of a computationally efficient algorithm for
automatic detection of epileptiform events in wearable EEG.

It is designed for systems using wearable EEG sensors for long-term monitoring,
e.g. over 24 hours or multiple days of EEG recording. Such recordings generate
large amounts of data that need to be analysed to extract relevant physiological
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information. Annotation of epileptic seizures on EEG is a time-consuming
task that is performed by a highly trained epileptologist. It would be greatly
advantageous that the task would be automated for use with wearable EEG. In
addition, certain applications of wearable EEG, such as seizure alarms, require
algorithms in real-time on the wearable EEG device. In contrast to algorithms
developed to run in a hospital without strict computational constraints (as
they can rely on powerful servers connected to the hospital network) [70],
real-time algorithms for wearable systems must meet strict storage, computing
memory, and computing power constraints. These real-time algorithms can be
used to provide an alarm to a caregiver when a seizure is detected or could
be used as a trigger to provide abortive seizure medication. In chapter 2,
we design an algorithm for real-time absence seizure detection specifically for
use on a microcontroller or field-programmable gate arrays (FPGA) such as
found in wearable EEG. The algorithm is based on a spatio-temporal filter
that maximally separates absence seizures from peak interferers. The design of
this filter builds on previously reported max-SNR filters, which are themselves
analogous to matched filters. The filter we propose adds several key innovations.
While max-SNR maximally separate between a target (seizure samples) and
noise (non-seizure samples), the max-seizure to peak interference ratio (SPIR)
filter we propose is able to achieve better classification outcome by separating
between seizures and peak-interferers (i.e. non-seizure samples with high power)
because low power ‘background EEG’ are already easily distinguishable from
seizures. We also propose a regularisation scheme for the max-SPIR filter
based on existing work in template matching. This regularisation greatly
improves the performance of the filter when presented with data covariance
matrices that are ill-conditioned due to a lack of training data. In chapter 2,
the algorithm was benchmarked against two state-of-the-art absence seizure
detection algorithms (without computation constraints), and was found to
perform almost on par with the best of these when used in a configuration with
ten or more channels, while being much more efficient in terms of hardware
memory and computational requirements. The algorithm demonstrates the
relevance of a GEVD based filtering pipeline for pattern identification in epilepsy.
We used this same approach to identify IEDs in chapter 4. In that chapter we
showed that the GEVD-based filtering detected similar IED events to those
detected by a commercial software.

In addition to using GEVD-based filtering for the detection of epileptiform
events in low power devices, it can also be used to achieve state of the art seizure
detection in computationally intensive pipelines. In “Epileptic Seizure Detection
in EEG via Fusion of Multi-View Attention-Gated U-Net Deep Neural Networks”
[55], together with colleagues, we proposed a seizure detection algorithm based
on multiple deep neural networks, each trained on a different pre-processing
pipeline. One of these pre-processing pipelines was based on GEVD-based
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filtering. It was shown that including this GEVD-based filtering improved the
overall classification.

Chapter 2 showed that 10 well-chosen channels were sufficient to reach 0.5 false
positives per day for an absence seizure detection sensitivity of 95% in all but
one patient. This highlights both the feasibility of using a reduced number
of channels compared to the clinical gold-standard in the context of seizure
monitoring with wearable EEG as well as the need for a good channel selection
procedure.

Electroencephalogaphy channel selection | The second contribution proposes
a new channel selection algorithm as well as a benchmark of state-of-the-art
sensor selection methods in GEVD problems. Channel selection is essential
when designing a wearable EEG system as these should only use a minimum
number of electrodes to optimise portability. The methods we propose are
data-driven, i.e. the channel selection is based on optimising the GEVD-based
epileptiform event detection task. It can be generalised as a variable selection
task and is an important problem in many mathematical engineering fields.
For example, the variable selection problem is found in telecommunication,
where antenna placement is critical to the good functioning of a communication
network, biomedical sensor arrays, or wireless acoustic sensor networks, where
a microphone subset needs to be selected.

In chapter 3, we propose a new channel selection algorithm. It extends the
GEVD channel selection for purely spatial filtering in [108] to spatio-temporal
filtering borrowing techniques from [107]. This necessitates the use of a group-
sparse regulariser. When a channel is eliminated, not just one variable, but
all corresponding filter lags should be put to zero. The algorithm provides
the possibility to take multiple filters (i.e. multiple generalised eigenvectors)
into account (multiple-input multiple-output (MIMO)), whereas previous work
focused on the dominant generalised eigenvector (multiple-input single-output
(MISO)). This requires consistent removal or zeroing of the filter coefficients
corresponding to an eliminated channel across all filters. This approach can be
employed in various other applications, where the notion of a shared selection
exists. In the chapter we also identify a key failure of the otherwise performant
and computationally efficient background elimination method. This method
fails when the selection is performed on ill-conditioned data matrices. We
proposed and demonstrated the efficacy of a regularisation scheme for the
backward elimination method. Finally, the chapter brings about evidence which
had been largely missing in prior literature, namely an in-depth and statistical
comparison of state-of-the-art channel selection methods in GEVD problems.
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Limits of EEG miniaturisation | This thesis provides an analysis of the limits
of miniaturisation of wearable EEG systems. It analyses the effect of reducing
the number of channels (or EEG units in a network of galvanically isolated EEG
sensors) as well as the effect of inter-electrode distance in a setup with fixed inter-
electrode distance for all channels. This analysis is conducted by emulating short
distance EEG on high-density EEG recordings with 257 electrodes. Chapter 4
made several key observations for the design of wearable EEG. First it quantified
the power of IED events in function of inter-electrode distance. This allowed
the definition of minimum required specifications for the acquisition of IED at
short inter-electrode distance. The chapter also shows the limits of accurate
IED detection when reducing both the number of EEG channels and the inter-
electrode distance. This allows for better design specifications when building
new wearable EEG systems.

In summary | This thesis contributes to the development of wearable EEG. It
provides three major contributions to the field :

• An automated epileptiform event detection algorithm based on a
computationally efficient GEVD-based filter. (chapters 2,4)

• A channel selection algorithm for GEVD problems as a well as a comparison
with state-of-the-art channel selection methods in GEVD problems.
(chapter 3)

• An analysis of the limits of miniaturisation of EEG systems for detecting
IED. (chapter 4)

5.2 Open challenges & Future perspectives

The work in this PhD thesis contributes to the development of wearable EEG.
There remain some open challenges related to this body of work. In this section,
we will give an overview of these challenges and we will sketch some ideas that
could serve as a starting point for future research.

The GEVD-based filtering presented in this dissertation was successfully applied
to IED detection collected from in-hospital EEG recordings. We also successfully
applied the method to absence seizure detection in EEG recorded in people
while engaged in their everyday life without any movement constraints. The
filters proposed in this thesis make the assumption that the signal is stationary.
However, the stationarity assumption is easily violated in practice. Several
causes can result in non-stationarity of the signal statistics. Among them,
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changes in electrode impedance lead to degradation of the signal quality and
changes in the signal statistics. Changes in brain states could also influence the
signal statistics, but should only have a minimal impact on the filter performance
if training data was presented with these different states. Everyday life activities
can also lead to changes in the statistics of the signal. Repetitive artefacts such as
those found while walking or vibration associated with motorised transportation
can lead to non-stationarity of the EEG. It is not expected that small changes in
the signal statistics would significantly degrade the performance of the detection
pipeline. However, we can assume that an adaptive filter that would update in
function of the statistics of the signal would improve the detection performance.
The following strategy proposed in [154] could be used to build an adaptive
filter :

1. Estimate the seizure (Rss) and interference (Rii) covariance matrix based
on some annotated training data.

2. Design an initial max-SPIR filter that discriminates between the seizures
and interferers.

3. During the inference phase, every filtered epoch that crosses a threshold
for inclusion as an interferer is used to update the interferer covariance
(Rii) matrix. This update can be done with an exponential forgetting
factor which slowly favours new observations.

4. Also during the inference phase, every detected seizure can be used to
update the seizure covariance matrix (Rss) estimate.

5. These updated covariance matrices can then be used to update the max-
SPIR filter on a regular basis.

The stability of this updating mechanism would have to be evaluated to make
sure the updates based on unlabelled data do not lead to serious degradation of
the performance of the filter. A computationally efficient mechanism to invert
the interferer covariance matrix and compute the filter would also have to be
designed.

The epileptiform event detection pipeline developed in this thesis was evaluated
both on IED detection collected from in-hospital EEG recordings of patients
with focal epilepsy and on absence seizures recorded in people while engaged in
their everyday life without any movement constraints. Both these epileptiform
activities present stereotypical spatio-temporal patterns that can be well
discriminated from noise by the GEVD-based filtering. Other seizure types
might require further algorithmic development. These include generalised tonic-
clonic seizures, which are often accompanied by strong movement artefacts,
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as well as focal seizures, which typically evolve over the course of the seizure
[155]. For these seizure types, the GEVD-based filtering would likely not have
optimal performance. Algorithms for focal seizure detection would likely need
to integrate some of the dynamic features of the seizures. This could possibly be
done by using a filterbank of GEVD-based filters informed by a hidden Markov
model [156].

In this thesis we designed a centralised version of the GEVD-based filter.
This means a central processing unit needs access to the multi-channel EEG
signals to compute the filter. In a practical implementation, this would require
communication between the miniaturised EEG nodes. The communication with
a central unit could be wired, but this would severely hinder the discreetness
and user-comfort of the device. It could be wireless, and this would severely
impact battery life [44]. An alternative, energy efficient, approach would rely on
distributed processing. This implies that one cannot measure the full covariance
structure across all EEG channels. To this end, algorithms that iteratively
perform in-network fusion where the EEG units only exchange fused data with
a few (1-hop) neighbours would have to be designed. Over time, all nodes
gradually adapt their fusion filters driven by the (fused) data that pass through
them, thereby keeping track of local correlation matrices. The distributed
realisation of the algorithms proposed in this thesis could rely on existing
literature, such as the work presented by Bertrand et al. [48], [157].

The filter we propose produces a single channel output corresponding to the
eigenvector associated to largest eigenvalue. This single channel output is the
signal with highest SNR. However, the GEVD-based filtering could produce
multiple filter outputs. These multiple outputs could then be used to extract
a feature vector for a classifier. This approach is used in the brain computer
interface (BCI) community when using common spatial patterns (CSP) filters
[109]. In the context of epileptiform activity detection, multiple filter outputs
could provide substantial performance improvements when multiple distinct
epileptiform patterns should be detected. This would for example be the case
for people with two distinct clusters of IED and it might be the case in less
stereotypical seizures such as those found in some patients with focal seizures.

This thesis focused on signal processing problems related to wireless EEG sensor
networks for monitoring people with epilepsy. Other challenges also need to be
resolved for wider adoption of the technology. In this thesis, all data collected
in chapter 2 and in chapter 4 were obtained with gold-cup electrodes and gel or
wet sponges. These wet electrode systems dry over time and cannot be used
for several days (up to 24 hours) without manual intervention to refill the gel
and check electrode impedance. The gold-cup electrodes used in this study also
required special training to manipulate. This requires an EEG technician to
place the electrodes and periodically check the electrode impedance. For wider
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adoption of the technology, the electrode should be easy enough to manipulate
for a user to place them himself. Studies such as Plug ’n Patch [158] are
testing electrode adhesives that should provide solutions to this problem, while
microneedles and dry electrode technology presented in the introduction could
enable long term monitoring.

The system of wireless EEG sensor networks would also have to be further
evaluated in the field. In this PhD thesis only a limited subset of recordings
were performed in people that were allowed to continue with their everyday
life activities. It is expected that EEG recorded in a free environment would
be more heavily affected by artefacts compared to EEG recorded in the clinic.
This will require adequate signal processing to distinguish signal of interest
from noise. The algorithm here should provide a partial solution. However, it
is possible that additional pre-processing steps would be required to add to
the robustness of the system for in the event an electrode disconnects during
the recording. Other ways of dealing with the robustness of the system could
be achieved by using different sensing modalities to monitor epilepsy. Studies
have shown that in selected patients, seizure classification could be improved by
adding accelerometery, electromyography (EMG) or electrocardiography (ECG)
[159], [160].

In sum, this PhD thesis introduces several new signal processing methods
for wireless EEG sensor networks for monitoring of people with epilepsy. It
contributes to the technological advancement required for the wider adoption
of this technology.
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