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Prof. Dr. ir. J. Suykens
Prof. Dr. J. G. Clement
(University of Melbourne)

ISBN 978-90-5682-809-7
U.D.C. 681.3*J2
Wett. dep. D/2007/7515/43

Proefschrift voorgedragen tot
het behalen van het doctoraat
in de ingenieurswetenschappen

door

Peter Claes

04 juni 2007



c© Katholieke Universiteit Leuven − Faculteit Ingenieurswetenschappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotokopie, microfilm, elek-
tronisch of op welke andere wijze ook, zonder voorafgaande schriftelijke toestemming
van de uitgever.

All rights reserved. No part of this publication may be reproduced in any form by

print, photoprint, microfilm or any other means without written permission from the

publisher.

ISBN 978-90-5682-809-7
U.D.C. 681.3*J2
Wett. dep. D/2007/7515/43



Acknowledgements

Four and a half years ago I had the opportunity of employment at the Med-
ical Image Computing (MIC) research laboratory located in the University
Hospital Gasthuisberg, Leuven, Belgium. The goal of the proposed research
was to develop an automatic computerized craniofacial reconstruction method.
Financially, the conducted research over the past years was supported by
the Flemish Institute for the Promotion of Innovation by Science and Tech-
nology in Flanders (IWT, project IWT/GBOU/020195), by the K.U.Leuven
(project /OF/GOA/2004/05) and by the Fund for Scientific Research - Flan-
ders (FWO-Vlaanderen, project FWO/G.0258.02). The GBOU project and
my research in particular was an interesting and fruitful collaboration be-
tween the electrical engineering department of the engineering faculty and the
orthodontics and forensic odontology department of the dental science faculty.

This doctoral work is the product of team efforts and there is no I in team.
Therefore I would like to thank all the people who contributed to this work
either directly or indirectly. First of all, it would have been impossible for
me to accomplish this dissertation without the guidance of prof. Paul Suetens
and prof. Dirk Vandermeulen, being my promoters. Prof. Paul Suetens is
the head of the medical image processing research group (MIC) and is be-
sides a great scientist also a warm and helpful person. He always made the
time to answer and to resolve various types of questions and problems. Fur-
thermore, he has a keen interest in the ideas and suggestions of other people
while making a research group related discission. Special thanks to prof. Dirk
Vandermeulen who was my scientific mentor and most direct coach. He has
a tremendous knowledge about various biometric, computer vision and image
processing related methodologies and he is mainly responsible for the outcome
of this doctoral thesis. Thank you for showing me the light concerning implicit
functions. He also carried out the difficult task of proofreading every paper
and report I wrote. Furthermore, I had the pleasure of personally knowing
him and his family during various occasions besides work and I’m grateful for
his and their friendship. I would hereby like to thank his family as well for
enduring the time Dirk has spent doing work for me and for others in his spare
time.

I want to thank my assessors, prof. Luc Van Gool and prof. Guy Willems.
Prof. Luc Van Gool is mainly active and very successful within the field
of computer vision and leads an industrial image processing research group

i



ii Acknowledgements

(VISICS). Thanks to him, I came in contact with fellow engineers working
on similar but industrial instead of medical related research topics. One of
them was Rik Fransens for whom I show a great admiration concerning his
combined practical and theoretical skills. I want to thank him for introducing
and explaining the Expectation-Maximization algorithm to me. Prof. Guy
Willems is active in the field of orthodontics and forensic odontology and was
responsible for the forensic relevancy and practicality of my work. He had
a never ending motivation to stimulate all the project participants. I also
want to thank Sven De Greef, who was a PhD student at the department
of orthodontics and forensic odontology and who was my partner in crime
over the past years. The acquisition of an elaborated database for craniofacial
reconstruction purposes and the different conference trips made us spent a lot
of time together, resulting in a good friendship.

I would also like to thank all the members of my jury for their interest
and participation. Special thanks to all the volunteers who participated in my
research to obtain an elaborate database of facial information.

The development of a craniofacial reconstruction technique is useless with-
out the proper demand for such a method. Therefore, I thank the Belgium
federal police for showing interest in my work. Especially many thanks to
Peter Clauwaert and Ben Claes from the Forensic Facial Imaging (FFI) po-
lice unit. They were my direct contact persons within the federal police and
both of them are experts in manual 2D and 3D craniofacial reconstructions.
Thanks for all the discussions, useful tips and your interest concerning forensic
reconstruction and identification.

I’m grateful to all my colleagues at the MIC laboratory. I would like to
fondly remember prof. Johan Van Cleynenbreugel†. He stood at the base of
the GBOU project, but unfortunately left us to soon. I will mostly remember
his enthusiasm when I showed him my first craniofacial reconstruction result.
Thanks to prof. Frederik Maes for introducing and explaining analytical based
gradient descent optimizations to me. Thanks to Jeroen Hermans and Dieter
Seghers for the numerous serious and less serious break conversations. Thanks
to Dirk Loeckx for solving a wide range of queries concerning software, theo-
retical and practical issues. I’m grateful to Wouter Mollemans for providing
me and Sven De Greef with the useful visualization tool, Forensim. I thank
Dominique Delaere and Bart De Dobbelaer, for ensuring that the systems and
networks were always up and running. Dominique was always ready to offer a
solution to any problem and we had some nice conversations as well. I thank
Annitta and Patricia, for their diligence, punctuality and persistence in en-
suring that all the paperwork was up-to-date. I also thank my card playing
partners during lunch break. Of course thanks to all the remaining team play-
ers: Bruyninckx Pieter, Ruijters Daniel, Lambelin Yves, Scheys Lennart, De
Buck Stijn, Loubele Miet, Elen An, Roose Liesbet, D’Agostino Emiliano, Kiss
Gabriel, De Groeve Pieter, Suetens Kevin, Verstreken Kris, Schutyser Filip,
Van Delm Tinne, Peeters Gert, Srivastava Siddharth, Wang Qian and Wouters
Jeroen.

Live to work or work to live? Being amongst friends, I was frequently



Acknowledgements iii

reminded that the latter option is the most promising one. Thanks to all my
friends from Leuven, Antwerpen or elsewhere for the enjoyable and relaxing
moments during my spare time. Special Thanks to Ellen, Anne, Kathy and
Lesly for providing me with food, fuel and entertainment during the writing
of this book.

Last but not least, I would like to thank my family. Special thanks, vader
en moeder for teaching me the important values of life. Thank you for giving
me all the chances and opportunities to get me this far. Thanks, Tim, Kim,
Sam, Flore, Ann, Ronny, Cindy, Bomma Pirard and Bompa Claes for always
being there for me and for showing a great interest in my work. Thanks to
the rest of the family. Unfortunately, some important family members left me
to soon to witness the result of my research. I dedicate this work to them,
Bompa Pirard†, Bomma Claes† and Clarisse†.

Thanks, Bedankt, Merci, Danke.

Peter
Leuven, June 4, 2007.





Abstract

A robust statistical surface registration frame-

work using implicit function representations. Ap-

plication in craniofacial reconstruction

Surface registration refers to the establishment of the geometrical relationship
between two or more surfaces. It is a key enabling technology to solve a
wide range of 3D computer-based modeling and reconstruction problems. We
present a robust, statistical, surface registration framework that optimizes an
inter-surface distance measure over the parameters that define the geometric
transformation. We use a memory efficient, continuous, smooth and analytical
implicit surface representation, which has particularly interesting properties
for registration purposes. Robustness against noise and outliers of the surface
models during registration is obtained using a Maximum a Posteriori (MAP)
formulation including a statistical inlier- and outlier-process model.

The main application of the proposed framework is forensic craniofacial re-
construction which aims at estimating the face associated to an unknown skull
specimen for victim identification. Traditional methods are based on a manual
3D reconstruction by physically modeling a face on a skull replica with clay or
plasticine. We present here a computer-based (semi-)automated reconstruc-
tion method that is both consistent and objective. It builds on a statistical
model of the interrelationship between facial shape and soft-tissue thicknesses
as measured on a predefined set of landmark points on the skull. The model
can be considered as an elastic mask with elastic hemi-spherical dowels on the
inside of the mask at the landmark locations, which is subsequently fitted to
the skull such that the virtual dowels touch the skull. The elastic deformation
of the model is based on the statistical likelihood as learned from a database
of nearly 400 subjects. The whole procedure involves a number of registra-
tion tasks, for which the proposed framework is used. First, complete facial
surfaces are assembled from partial surface patches using a rigid transforma-
tion model. Second, surfaces of different subjects are matched to each other
using a non-rigid Thin Plate Spline based deformation model. The observed
inter-individual deformations are statistically modeled via Principal Compo-
nent Analysis, assuming a multivariate normal distribution. Finally, this facial
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model (including the soft-tissue thicknesses) is aligned with the (virtual) skull
specimen using a transformation model based on the learned statistical de-
formations. Quantitative and qualitative facial reconstruction evaluations are
used to validate the skull registration framework, while comparing the statis-
tical model and the implicit skull representation choices with more traditional
craniofacial reconstruction choices. The validation results indicate that the
proposed statistical craniofacial reconstruction approach is a very promising
substitute for current procedures.

Robuuste statistisch gebaseerde oppervlakregis-

traties m.b.v impliciete functie voorstellingen.

Toegepast op gezichtsreconstructies

Oppervlakkenregistratie duidt op de bepaling van de geometrische relatie tussen
twee of meerdere oppervlakken. Het is een algemene technologie en strategie
om een brede waaier van 3D computergebaseerde modellering en reconstruc-
tieproblemen op te lossen. Wij presenteren een robuuste statistisch gebaseerde
oppervlakregistratie methodologie die de afstand tussen oppervlakken mini-
maliseert over de parameters die de geometrische transformatie definiëren. Hi-
ervoor gebruiken we een geheugen efficiënte, continue, zacht verlopende en ana-
lytische impliciete oppervlakvoorstelling, welke interessante eigenschappen in-
corporeert voor registratiedoeleinden. Robuustheid tegen ruis of kleine fouten
en onverklaarbaarheden of grote fouten wordt bekomen m.b.v een maximum
a-posteriori formulering van de registratie, dewelke statistische verklaarbare
en onverklaarbare proces modellen bevat.

De hoofdapplicatie van het voorgestelde registratieraamwerk is forensische
gezichtsreconstructie welke oogt op het genereren van een gezichtsenveloppe
schatting geassocieerd met een onbekende schedel voor identificatiedoelein-
den. Traditionele manuele reconstructiemethoden bestaan erin om fysisch
het gezicht te boetseren op de droge schedel m.b.v klei of plasticine. Wij
presenteren een (semi-)automatische computergebaseerde gezichtsreconstruc-
tie methode die zowel consistent is als objectief. De techniek is gebaseerd
op een statistisch gezichtsmodel betreffende de interrelatie van gezichtsvorm
en zachte weefsel diktes gemeten in een voorgedefinieerde verzameling van
anatomische merkpunten op de schedel. Het model kan bekeken worden als
een elastisch masker met elastische halve bollen aan de binnenkant, dat ver-
volgens vervormd wordt naar de schedel toe zodat de halve bollen het schede-
loppervlak raken. De elasticiteit van het masker en de bollen is gebaseerd op
een statistische waarschijnlijkheid zoals die geleerd werd uit een databank met
gezichtsschedel relaterende gegevens van bijna 400 levende personen. De hele
procedure vergt een aantal registratietaken waarvoor we het voorgestelde reg-
istratieraamwerk gebruiken. Ten eerste worden volledige gezichtsoppervlakken
geassembleerd van meerdere partiële gezichtsoppervlak opnames gebruikmak-
end van een rigide transformatiemodel. Ten tweede worden volledige gezicht-
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soppervlakken van verschillende individuen met elkaar geregistreerd m.b.v een
niet-rigide thin-plate-spline (TPS) transformatiemodel. De als dusdanig be-
komen geobserveerde interindividuele vervormingen worden statistisch gemod-
elleerd m.b.v principale component analyse (PCA), waarbij we de veronder-
stelling aannemen dat de data normaal verdeeld is. Tot slot, wordt dit foren-
sische gezichtsmodel (met zacht weefsel diktes) geregistreerd met een virtuele
kopie van de onbekende schedel gebruikmakend van een transformatiemo-
del geleerd uit de statistische vervormingen. Kwantitatieve en kwalitatieve
gezichtsreconstructie evaluaties worden gebruikt om de schedel registratietech-
niek te valideren. Hierbij vergelijken we het statistische gezichtsmodel met
meer traditionele gezichtsmodellen. Bijkomend wordt de impliciete schedel-
voorstelling vergeleken met een traditionele craniometrische puntgebaseerde
schedelvoorstelling. De resultaten geven aan dat de voorgestelde statistisch
gebaseerde reconstructietechniek een waardige vervanger is voor huidige pro-
cedures.
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Robuuste statistisch gebaseerde opper-
vlakregistraties m.b.v impliciete functie
voorstellingen. Toegepast op gezichtsre-
constructies

0.1 Probleemstelling

Waarom gezichtsreconstructie? Zondag ochtend, 7 uur, de hemel is helder
en de zon komt op. Mr. Anoniem jogt langs het kanaal wanneer hij plotsel-
ing de schedelresten van een persoon tussen de bloemen in het struikgewas
opmerkt. Hij belt onmiddellijk de autoriteiten met zijn mobiele telefoon en
20 minuten later arriveert de politie ter plaatse. Vooraleer eender welk onder-
zoek kan gestart worden is het belangrijk te achterhalen wie de persoon in het
struikgewas is. Het antwoord op deze vraag wordt typisch verkregen m.b.v
forensische identificatie technieken gebaseerd op het vergelijken van ante- en
post-mortem data, tandheelkundige dossiers, X-rays of DNA. De hele proce-
dure wordt minder evident wanneer men te maken heeft met humane resten in
vergaande vorm van ontbinding zoals in figuur 0.1 waarbij elke relatie met een
mogelijke identiteit ontbreekt. In deze omstandigheden kan een gezichtsrecon-
structie helpen om het onderzoek uit een impasse te halen. Een gezichtsre-
constructie bestaat erin om een schatting van het gezicht van een individu te
creëren op basis van de schedel op het tijdstip van overlijden. Verschillende 2D
en 3D manuele en computergebaseerde gezichtsreconstructie methoden werden
ontwikkeld over de jaren en allen zijn gebaseerd op de relatie tussen de zachte
weefselenveloppe en het onderliggende harde weefsel of schedel structuur.

Van manuele naar computergebaseerde technieken Verscheidene 3D
manuele methoden voor gezichtsreconstructie werden ontwikkeld en worden
momenteel uitvoerig gebruikt in de praktijk. De technieken bestaan erin
om fysisch het gezicht te boetseren op een kopie van de schedel m.b.v klei
of plasticine (zie figuur 0.2). Deze methoden vragen echter een uitgebreide
anatomische kennis en artistieke talenten zodat de uiteindelijke reconstructie
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Figuur 0.1: Voorbeeld schedel in vergaande ontbinding.

resultaten eerder subjectief zijn (afhankelijk van de persoon die de reconstruc-
tie maakt). Darenboven vergen manuele reconstructies veel tijd waardoor ze
vaak gelimiteerd zijn tot een enkele reconstructie. Computergebaseerde tech-
nieken zijn eerder consistent en objectief. Verder zijn de nodige berekeningen
relatief snel uitgevoerd waardoor er meerdere reconstructies met verschillende
modelleringassumpties (ouder, dikker,) verkregen kunnen worden. Met andere
woorden, de ontwikkeling van computer software voor gezichtsreconstructies
zou zeer interessant zijn voor verschillende gerechtsinstanties door sneller, een-
voudiger, efficiënter en objectiever meerdere reconstructies te genereren van
een onbekend individu.

Figuur 0.2: Voorbeeld manuele reconstructiemethode uitgevoerd door de FFI
afdeling van de Belgische federale Politie (Ben Claes)

Reconstructie raamwerk Computergebaseerde gezichtsreconstructie meth-
oden gebruiken allen hetzelfde stramien of dezelfde strategie gëıllustreerd in
figuur 0.3. Een gezichtsmodel, gekozen op basis van schedeleigenschappen
(afkomst, leeftijd, geslacht, ...), wordt vervormd of getransformeerd naar een
virtuele kopie van de onbekende schedel, gebruikmakend van een bepaalde op-
pervlakvoorstelling (bvb. dichte punten wolk, beperkte anatomische schedel
merkpunten, impliciete functie voorstelling, ...). Gelijkaardig aan een arti-
est die een manuele reconstructie uitvoert bevat het gezichtsmodel de vereiste
kennis om het reconstructie probleem op te lossen en is typisch verkregen
o.b.v relevante data van levende individuen uit een databank. Het gezichts-
model bestaat uit een referentiegezicht of masker (bvb. een specifiek gezicht
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uit de databank of een meer generisch gemiddelde gezicht) dat gezicht-schedel
relaterende informatie bevat (bvb. zachte weefseldiktes, volledige schedelop-
pervlakken met bijbehorende gezichtsoppervlakken, ...) en wordt uitgebreid
met een transformatiemodel om het masker te vervormen naar de schedel. De
registratie van het model naar de schedel heeft als doel de bepaling van de
geometrische relatie tussen het gezichtsmasker van het model en de schedel.
De drijfveer van de registratie is een similariteitsmaat die de goedheid van
overeenkomst tussen de schedel en het vervormde masker uitdrukt en die be-
paald wordt op basis van de gekozen schedelvoorstelling en de gezicht-schedel
relaterende informatie die vervat zit in het model. Het transformatiemodel en
de similariteitsmaat worden gecombineerd in een doelfunctie waarvan het op-
timum overeenkomt met de ideale vervorming van het masker naar de schedel
toe. Tijdens de registratie worden er transformatieparameters gezocht die het
masker vervormen naar de schedel en die daardoor de maat van overeenkomst
verbeteren tot er convergentie optreedt. Wanneer de ideale parameters gek-
end zijn kan het masker vervormd worden om een gezichtsreconstructie of een
schatting van het onbekende gezicht te verkrijgen.

Wat ontbreekt er? Huidige computergebaseerde reconstructietechnieken
zijn echter gelimiteerd in het gezichtsmodel dat ze gebruiken. Initieel wordt
ofwel een enkelvoudig generisch ofwel een enkelvoudig specifiek meest geli-
jkaardig gezicht (in termen van schedel eigenschappen), gekozen als model-
masker. Vervolgens wordt een schatting van het onbekende gezicht verkregen
door het modelmasker te vervormen, gebruikmakend van een generisch, zacht
verlopend transformatiemodel (bvb. TPS gebaseerd). Meerdere reconstruc-
ties gebaseerd op verschillende schedeleigenschappen worden verkregen door
andere gezichten uit de databank te kiezen als modelmasker. Twee grote teko-
rtkomingen zijn echter aanwezig bij het gebruik van zulk enkelvoudig mod-
elmasker in combinatie met een generisch transformatiemodel. Ten eerste
wordt de reconstructie verkeerd bëınvloed door de keuze van referentiegezicht
of modelmasker. Wanneer men gebruik maakt van een specifiek meest geli-
jkaardig gezicht blijven er specifieke gezichtskenmerken aanwezig in de recon-
structie die afkomstig zijn van het referentiegezicht maar niet noodzakelijk
horen bij het onbekende gezicht. Het gebruik van een gemiddeld gezicht als
referentiegezicht of modelmasker resulteert in een gemiddelde reconstructie
zonder enige vorm van specifieke gezichtskenmerken. Dit is niet noodzake-
lijk beter voor herkenningsdoeleinden. Ten tweede zijn generische transfor-
matiemodellen niet gezichtsspecifiek, ze zijn enkel zacht verlopend. Er treden
geen problemen op wanneer de verschillen tussen het referentiegezicht en de
schedel klein zijn. Wanneer deze verschillen echter groot zijn is de nodige
vervorming groot en het gevaar bestaat erin om gezichten te genereren met
een lage gezichtswaardige waarschijnlijkheid. M.a.w het is niet eenvoudig om
geldige en plausibele gezichtsreconstructies te bekomen gebruikmakend van
een algemeen, niet gezichtspecifiek, transformatiemodel gecombineerd met een
enkelvoudig referentiegezicht.

Het grootste verschil tussen bestaande computergebaseerde reconstructi-
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Figuur 0.3: Algemene strategie voor computergebaseerde gezichtsreconstructie
technieken
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etechnieken is de databank waarvan vertrokken wordt om een gezichtsmodel
met zekere gezicht-schedel relaterende informatie te extraheren. Dit bëınvloedt
ook de keuze van schedeloppervlak voorstelling om het model naar schedelreg-
istratie probleem op te lossen. Een ideale databank voor gezichtsreconstruc-
tie doeleinden bevat een groot aantal gegevens bestaande uit gezichtsopper-
vlakken en informatie die schedeloppervlakken met de gezichtsoppervlakken
relateert. De gezichtsoppervlakken zijn bij voorkeur verkregen van personen
in rechtstaande positie en de gezicht-schedel relaterende informatie bepaalt de
keuze van de onbekende schedelvoorstelling. Een belangrijk punt betreffende
de registratie van het gezichtsmodel naar de schedel is de aanwezigheid van
kleine fouten of ruis en grote fouten of onverklaarbaarheden in de schedel-
voorstelling. Buiten het feit dat een virtuele kopie van een schedel nooit exact
is worden er extra kleine en grote fouten gëıncorporeerd tijdens de opbouw van
de gekozen schedeloppervlak voorstelling. Tot op heden, volgens het beste van
onze kennis, wordt er geen robuuste (in termen van kleine en grote fouten)
registratie methodologie gebruikt in huidige computergebaseerde gezichtsre-
constructie technieken.

Een laatste punt betreffende computergebaseerde methoden is de nood
aan validatie. Vanuit ingenieursstandpunt kan een ontwikkelde methode goed
werken maar is waardeloos zonder een uitgebreide validatie. Een dergelijke
validatie kan enkel een positieve bijdrage betekenen voor gezichtsreconstructie
methoden in de praktijk. Een databank met gekende schedel - en gezichtsop-
pervlakken is noodzakelijk voor een goede evaluatie van een methode. Elke
schedel in de databank kan gebruikt worden om een reconstructie te maken
welke vervolgens vergeleken kan worden met het gekende gezicht van de schedel
gebruikmakend van technieken voor gezichtsvergelijking.

0.2 Materialen en methoden

Robuuste statistisch gebaseerde gezichtsreconstructie In deze thesis
presenteren wij een (semi-) automatische gezichtsreconstructie methode die
consistent en objectief is. De techniek is gebouwd op een statistisch gezichts-
model van de interrelatie tussen gezichtsvorm en zachte weefsel diktes geme-
ten in een voor gedefinieerde verzameling van merkpunten op de schedel. Het
model kan bekeken worden als een elastisch masker met elastische halve bollen
aan de binnenkant, dat vervolgens vervormd wordt naar de schedel toe zodat
de halve bollen het schedeloppervlak raken. De elasticiteit van het model-
masker en de bollen is gebaseerd op een statistische waarschijnlijkheid zoals
die geleerd werd uit een databank met gezicht-schedel relaterende gegevens
van bijna 400 levende personen. Hiervoor zijn er een aantal deeltaken vereist.

1. Het verwerven van 3D gezichtsoppervlakken en diktemetingen van in-
dividuen in rechtstaande positie, gemeten over een voldoende diverse
populatie, die vervolgens gestockeerd moeten worden in een databank
samen met de leeftijd, BMI, en geslacht kenmerken van de individuen.
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2. Het bepalen van puntovereenkomsten tussen de verschillende gezichtsop-
pervlakken van de individuen in de databank voor de constructie van een
statistisch gezichtsmodel.

3. De statistische modellering van de populatieafhankelijke gecombineerde
variatie en co-variatie van gezichtsvorm en zachte weefsel diktes, aange-
past aan gegeven schedeleigenschappen (afkomst, geslacht, leeftijd, ...).

4. Het vervormen of registreren van dit gecombineerd statistisch gezichts-
model naar de onbekende schedel.

5. Een uitgebreide validatie van de complete gezichtsreconstructie methode.

Robuust registratie raamwerk m.b.v impliciete oppervlakken De
hele procedure (1-5) bevat een aantal registratie taken, wat refereert naar
de bepaling van de geometrische relatie tussen twee of meerdere oppervlakken.
Het is een algemene technologie en strategie om een brede waaier van 3D
computergebaseerde modellering en reconstructie problemen op te lossen. Wij
stellen een robuuste statistisch gebaseerde oppervlak registratie methodolo-
gie voor die de afstand tussen oppervlakken minimaliseert over de parame-
ters die de geometrische transformatie definiëren. Hiervoor gebruiken we een
geheugen efficiënte, continue, zacht verlopende en analytische impliciete opper-
vlakvoorstelling, welke interessante eigenschappen incorporeert voor registratie
doeleinden. Robuustheid tegen ruis of kleine fouten en onverklaarbaarheden of
grote fouten wordt bekomen m.b.v een maximum a-posteriori (MAP) formuler-
ing van de registratie, dewelke probabilistisch verklaarbare en onverklaarbare
procesmodellen bevat. Dit registratieraamwerk wordt gehanteerd om de ver-
schillende noodzakelijke registratie taken in de hele gezichtsreconstructie pro-
cedure op te lossen: in deeltaak (1) worden volledige gezichtsoppervlakken ge-
assembleerd van meerdere partiële gezichtsoppervlak opnames gebruikmakend
van een rigide transformatiemodel. In deeltaak (2) worden volledige gezicht-
soppervlakken van verschillende individuen met elkaar geregistreerd m.b.v een
niet-rigide thin-plate-spline (TPS) transformatiemodel. In deeltaak (3) worden
de als dusdanig bekomen geobserveerde interindividuele vervormingen statis-
tisch gemodelleerd m.b.v principale component analyse (PCA) onder de veron-
derstelling dat de data normaal verdeeld is. In een eerste instantie wordt dit
statistische model geregistreerd met de gezichtsoppervlakken van de verschil-
lende individuen in de databank d.m.v het geleerde gezichtsspecifieke statis-
tische transformatiemodel om na te gaan of de TPS gebaseerde overeenkom-
stige punten kwalitatief voldoende en consistent zijn. Tot slot in deeltaak (4),
wordt dit gezichtsmodel (plus de zachte weefsel diktes) geregistreerd met de
virtuele kopie van de schedel door opnieuw gebruik te maken van de geleerde
gezichtsspecifieke statistische vervormingen.

Het doel van deze thesis is om elke deeltaak binnen de procedure op te
lossen, gebruikmakend van het voorgestelde registratieraamwerk. Het vervolg
van deze sectie introduceert elk aspect in meer detail, te beginnen bij het
registratie geraamte.
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0.2.1 Oppervlakregistratie methodologie

Een algoritme om twee of meerdere oppervlakken te registreren bestaat uit
vier hoofdcomponenten: een similariteitsmaat, een transformatiemodel, een
doelfunctie en een optimalisatie. We noemen het bewegende oppervlak het
oppervlak dat getransformeerd wordt. Het doeloppervlak is het oppervlak
waarnaar het bewegende oppervlak getransformeerd wordt. Vooraleer een reg-
istratie kan plaatsvinden, moet in eerste instantie een degelijke voorstelling
voor het bewegend en doeloppervlak gekozen worden. Een maat van over-
eenkomst, die gebaseerd is op de gekozen voorstellingen, schat de correctheid
van een gegeven transformatie door het getransformeerde bewegend oppervlak
te vergelijken met het doeloppervlak. De transformatie zelf is gemodelleerd
door en/of gelimiteerd tot een specifiek transformatiemodel, afhankelijk van
de voorkennis betreffende het registratieprobleem. Vervolgens worden de simi-
lariteitsmaat en het transformatiemodel gecombineerd in een doelfunctie. Tot
slot gids de optimalisatie het bewegende oppervlak naar de positie waar de
overeenkomst tussen beide oppervlakken maximaal is binnen de spreiding van
mogelijke transformaties door de gegeven doelfunctie te optimaliseren naar
het globale optimum. Voorafgaande aan de registratie is vaak een initial-
isatie vereist om de beiden oppervlakken binnen hetzelfde coördinatensysteem
te brengen, zodat de optimalisatie kan convergeren naar het correcte globale
optimum i.p.v een lokaal optimum.

Oppervlakvoorstelling

Het bewegende oppervlak wordt eenvoudigweg voorgesteld als een verzameling
van 3D punten. Voor het doeloppervlak gebruiken we een variationele implici-
ete oppervlakvoorstelling (VIS), welke de aaneenschakeling is van variationele
impliciete functie (VIF) nuldoorgangen. Een VIF wordt gecreëerd gebruikmak-
end van een variationele verspreide data interpolatietechniek van voorwaarde
puntlocaties en functiewaarden. Variationele impliciete functies worden exten-
sief gebruikt doorheen de thesis (niet alleen als oppervlakvoorstelling). Een
VIS voorstelling codeert voor elk 3D punt in de ruimte de benaderde eu-
clidische afstand tot en loodrecht op het oppervlak, nul op het oppervlak en
positief/negatief voor punten buiten/binnen het oppervlak. Een evaluatie van
een punt op het bewegende oppervlak in de VIS geeft de negatieve/positieve
afstand tot het doeloppervlak in de richting van de VIS gradiënt wat een inter-
essante inherente voorstellingseigenschap is voor registratiedoeleinden. Wan-
neer alle punten van het bewegende oppervlak geëvalueerd worden in de VIS
van het doeloppervlak wordt er een impliciete notie van overblijvende afstand
en verbeteringsrichting gegeven in de punten, zodat de transformatie van het
bewegende oppervlak naargelang kan aangepast worden. Met andere woorden,
de 3D informatie van het doeloppervlak wordt uitgebreid naar 4D informatie in
termen van iso-afstandsoppervlakken tot het doeloppervlak, zodat de vacuüm
ruimte tussen de twee oppervlakken opgevuld wordt met informatie betreffende
het doeloppervlak.



xvi Nederlandse samenvatting

VIS voorstellingen werden origineel voorgesteld voor gesloten oppervlakken
(oppervlakken zonder rand, bvb de schedel in figuur 0.7), omdat het moeil-
ijk is om een notie van de rand van open oppervlakken (partiële en volledige
gezichten in de figuren 0.5 en 0.6) te behouden binnen een impliciete opper-
vlakvoorstelling. Open oppervlakken worden buiten hun rand geëxtrapoleerd
en deze extrapolaties kunnen correct en gewenst zijn in de buurt van de rand,
maar de correctheid reduceert vrij snel verder weg van de rand. Om dit nadeel
van impliciete voorstellingen voor open oppervlakken weg te werken gebruiken
we dezelfde gespreide data interpolatietechnieken voor het opstellen van een
interne-externe of randfunctie voor open oppervlakken zodat de foutieve ex-
trapolaties gedetecteerd en genegeerd kunnen worden.

Transformatiemodel

Verschillende registratieproblemen vergen verschillende types van transfor-
maties. Het transformatiemodel bepaalt hoe het bewegende oppervlak kan
bewegen naar het doeloppervlak. De keuze van een specifiek transformatie-
model reflecteert onze voorafgaande kennis betreffende het registratieprob-
leem. Afhankelijk van het registratieprobleem en de aanwezigheid van ruis
in het doeloppervlak zijn niet alle transformaties mogelijk of realistisch zodat
bepaalde voorwaarden gëımponeerd moeten worden opdat de transformatie
zich zou gedragen volgens onze voorkennis. Deze voorwaarden worden typisch
gëıntroduceerd m.b.v een transformatieregularisatie die de ruimte van mogeli-
jke transformaties limiteert.

Maat van overeenkomst

Een similariteitsmaat of maat van overeenkomst geeft de mogelijkheid om
de overeenkomst tussen de twee oppervlakken automatisch te evalueren door
te definiëren hoe het bewegende oppervlak ideaal gepositioneerd is t.o.v het
doeloppervlak. Similariteit kan uitgedrukt worden m.b.v verschillende soorten
oppervlakte informatie (vorm of geometrie, buiging, kleur, ...) en is afhanke-
lijk van de gebruikte voorstelling voor het doeloppervlak. Wij poneren een
algemene geometriegebaseerde interoppervlak afstandssimilariteit, gemeten in
de punten van het bewegende oppervlak. De maat van overeenkomst impliceert
dat bewegende oppervlak punten gepositioneerd moeten worden zodat deze
punten op een vooraf bepaalde afstand tot het doeloppervlak komen te liggen.

Doelfunctie

Algemeen wordt de constructie van de doelfunctie niet beschouwd als een
aparte component voor registratiemethoden. Wij geloven echter dat speciale
zorg in acht genomen moet worden wanneer een doelfunctie opgesteld wordt
om de robuustheid tegen ruis en onverklaarbaarheden te verhogen. Het nut van
een doelfunctie is om de maat van overeenkomst en het transformatiemodel te
combineren zodat het optimum van de doelfunctie overeenkomt met een verza-
meling transformatieparameters die de similariteitsmaat optimaliseren terwijl
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de transformatieregularisatie in rekening gebracht wordt. Bijkomend moet de
doelfunctie robuust zijn tegen ruis en onverklaarbaarheden in het doelopper-
vlak die de maat van overeenkomst evaluaties bëınvloeden.

Wij stellen voor om een statistisch maximum a-posteriori (MAP) afleiding
van de doelfunctie te hanteren om de similariteitsmaat en het transformatie-
model te combineren. Een dergelijke MAP aanpak heeft al vaak bewezen
een nuttig theoretisch raamwerk te zijn, bevoorraad met een krachtige verza-
meling van goed ontwikkelde mathematische technieken en goed ondersteund
volgens een duidelijke filosofische onderbouw. Bovendien zijn alle assumpties
klaar en duidelijk geformuleerd. Robuustheid tegen kleine fouten wordt een-
voudig verkregen met zo’n raamwerk door te postuleren dat de similariteits-
maat metingen of evaluaties in de bewegende oppervlakpunten gegenereerd
worden door een probabilistisch gemodelleerd verklaarbaarheidproces. Robu-
ustheid tegen grote fouten wordt verkregen door te postuleren dat de similar-
iteitsmaat metingen gegenereerd worden door een statistisch verklaarbaarhei-
dproces of een on-verklaarbaarheidproces die samen een volledig genererings-
proces vormen. Hierdoor wordt er een latente variabele gëıntroduceerd die
de hoeveelheid geloof codeert dat een zekere meting verklaarbaar is of niet.
De modellering en de bepaling van de latente variabele is afhankelijk van de
voorafgaande kennis omtrent onverklaarbaarheden.

Het finale resultaat is een beter onderbouwde doelfunctie die quasi zelfrege-
lend is in termen van robuustheid tegen kleine en grote fouten. Bovendien kun-
nen we equivalente M-schatters uit de robuuste statistiek voor het volledige
genereringsproces bepalen. Hierdoor kunnen we de invloed van onverklaar-
baarheden analyseren en kunnen we gebruik maken van robuuste optimalisatie
technieken die gekend zijn binnen het domein van de robuuste statistiek.

Optimalisatie

De optimalisatie definieert hoe de transformatie parameters in de doelfunctie
aangepast moeten worden zodat de waarde van de doelfunctie evaluatie daalt
overeenkomend met een verbetering in de maat van overeenkomst rekening
houdend met de transformatie beperkingen. Optimalisatie is een brede disci-
pline in de wiskunde waar een hele cohorte van methoden voorgesteld zijn met
verschillende complexiteit.

Om een doelfunctie, zoals de onze, die afgeleid is van een volledig genere-
ringsproces te optimaliseren is er een gezamenlijke parameter schatting vereist.
Buiten de transformatieparameters moeten de latente variabele of parameters
ook geschat worden. Deze gezamenlijke parameter optimalisatie kan opgelost
worden door afwisselend de latente variabele en de transformatieparameters te
verbeteren terwijl tijdens beide optimalisaties de andere parameters ongewi-
jzigd blijven. Dit leidt tot een iteratief dubbele stap verbeteringsroutine die
gelijkaardig is aan het welbekende verwachting-maximalisatie (EM) algoritme.
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Initialisatie

Het voorgestelde registratie algoritme behoort tot de klasse van registrati-
etechnieken waarbij een doelfunctie, die de registratie kwaliteit reflecteert,
iteratief geoptimaliseerd wordt. Bijgevolg kunnen deze methode zeer accu-
rate oplossingen genereren en daardoor worden deze methoden ook vaak fijne
registratiemethoden genoemd. Echter door hun iteratieve karakter moeten
zij geinitialiseerd worden met een schatting van de onbekende transformatie
parameters. Voorafgaande aan de registratie moeten het bewegende opper-
vlak en het doeloppervlak in de buurt van elkaar gebracht worden door een
herpositionering van het bewegende oppervlak m.b.v een rigide of affiene trans-
formatie in het coördinatensysteem van het doeloppervlak. Een transformatie
schatting voor een registratie wordt typisch een ruwe registratie of initialisatie
genoemd.

0.2.2 Databank acquisitie en registratie

Om het gecombineerde statistische gezichtsmodel te creëren, hebben we een
databank met gezichtsvoorbeelden die bestaan uit geregistreerde, grijswaarde
gekleurde, 3D gezichtsoppervlakken gekoppeld met zachte weefsel diktemetin-
gen (zie figuur 0.4). Om deze databank voorbeelden te verkrijgen hebben
we de nodige hardware en software verzameld en ontwikkeld voor het meten
en registreren van 3D gezichtsoppervlakken en het meten van zachte weefsel
diktes.

Zachte weefsel diktemeting

Een mobiel semi-automatisch ultrageluidsgolf gebaseerd systeem is ontworpen
zodat we relatief snel diktemetingen in 52 anatomische merkpunten in het
gezicht van levende personen kunnen uitvoeren op een niet invasieve manier.
De merkpunten zijn gedefinieerd op basis van voorgaande zachte weefsel dik-
testudies. Het systeem bestaat uit een compacte, mobiele en digitale ultra-
geluidsgolf scanner (Epoch 4B, Panametrics Inc., Waltham, USA), een MySQL
databank en een zelf ontworpen visueel interactief programma. De Epoch 4B
heeft twee grote voordelen vergeleken met traditionele klinische geluidsgolf ap-
paratuur. Ten eerste is de mobiliteit van het toestel optimaal zodat een zo
groot mogelijke en diverse populatie opgemeten kan worden. Ten tweede is
de diameter van het meetkristal relatief klein zodat merkpunten op moeilijke
plaatsen toch meetbaar blijven. De MySQL databank zorgt enerzijds voor de
opslag van de meetresultaten en de persoonsgegevens en anderzijds voor de op-
slag van verschillende Epoch 4B instellingen die afhankelijk zijn van het type
persoon en de merkpunten. Deze laatste maken het mogelijk om automatisch
de instellingen van de Epoch 4B te wijzigen in functie van het type persoon
en het merkpunt. Het interactieve programma controleert de bi-directionele
datatransfer tussen de databank en de Epoch 4B zodat automatische dikte
berekeningen op basis van het geluidsgolf signaal, automatische bewaring van
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Figuur 0.4: Databank acquisitie en registratie. (a) gezichtsoppervlak meting,
(b) zachte weefsel diktemeting, (c) gezichtsoppervlak registratie, (d) Finaal
resultaat met de diktemetingen gevisualiseerd m.b.v een kleurencode in de 52
merkpunten.

de resultaten en automatische aanpassing van de instellingen verkregen wor-
den. Het programma zelf wordt bestuurd door een draadloze computermuis
met 3 functies. Hierdoor is de uiteindelijke opmeting van een persoon gere-
duceerd tot maximum 30 minuten waarbij elk van de 52 merkpunten drie maal
gemeten wordt om foutieve metingen te voorkomen. De meetprocedure van
zachte weefsel diktes wordt geanalyseerd op herhaalbaarheid door bepaalde
personen meerdere keren te meten en op accuraatheid door de ultrageluidsgolf
metingen te vergelijken met CT gebaseerde diktemetingen.

Gezichtsoppervlak meting

Het gezichtsoppervlak wordt gemeten m.b.v een mobiel 3D fotografisch sys-
teem (ShapeCam, Eyetronics, Belgium). Dit is een actief 3D verwervingsys-
teem dat een regulier rooster projecteert op het gezicht en waarbij gelijktijdig
een digitale foto genomen wordt vanuit een ander kijkstandpunt. Door mid-
del van roosterlijn extracties en triangulaties is het vervolgens mogelijk om 3D
informatie van het gezicht te berekenen als een dichte verzameling van verbon-
den 3D punten. De ShapeCam capteert buiten 3D informatie ook gezichtskleur
informatie wat gebruikt wordt voor het extraheren van de 3D merkpunt lo-
caties op het gezicht. Voor het nemen van de 3D foto’s worden de merkpunten
op het gezicht van de vrijwilliger aangeduid m.b.v een blauw ooglijn potlood.
De coördinaten van deze blauwe punten zijn achteraf in de digitale foto’s te
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extraheren door eenvoudige beeldverwerkingalgoritmen. Vervolgens wordt de
volledige kleurinformatie van het gezicht omgezet in grijswaarden. Een groot
voordeel van de Shapecam is zijn mobiliteit zoals de Epoch 4B, zodat het een-
voudiger wordt om een grote en diverse populatie op te meten. Bovendien
is het perfect mogelijk om gezichten in rechtstaande positie te fotograferen.
Een groot nadeel van de ShapeCam, wat algemeen is voor gelijkaardige 3D
aquisitie systemen, is de beperkte kijkhoek van de digitale camera (CANON
D60) resulterend in een partiële acquisitie van het volledige gezicht per 3D
foto opname. De reden hiervoor is dat het systeem enkel en alleen 3D infor-
matie kan berekenen van datgene dat zichtbaar is vanuit een zeker kijkstand-
punt. Daarom, moeten meerdere partiële opnames gemaakt worden vanuit
onbekende kijkstandpunten (door de camera mobiliteit) om een volledige 3D
gezichtsopname te verwerven.

Figuur 0.5: Tijdens een eerste fase moeten de gezichtsstukken accuraat geposi-
tioneerd worden in een gezamenlijk coördinatenstelsel: de registratiefase. Ten
tweede moeten de verschillende gezichtsstukken gëıntegreerd worden tot een
enkelvoudige entiteit: de integratiefase.

Het combineren van meerdere partiële gezichtsopnames of gezichtstukken
tot een enkelvoudig volledig gezicht vergt twee hoofdfases die gëıllustreerd
zijn in figuur 0.5. Tijdens een eerste fase moeten de gezichtsstukken accuraat
gepositioneerd worden in een gezamenlijk coördinatenstelsel: de registratiefase.
Ten tweede moeten de verschillende gezichtsstukken gëıntegreerd worden tot
een enkelvoudige entiteit: de integratiefase. Bovendien moeten zowel de reg-
istratie als de integratiefase robuust zijn tegen ruis en onverklaarbaarheden
afkomstig van het opnameproces en door de partiële overlap tussen verschil-
lende gezichtstukken. Om een volledig automatische assemblage te hebben
op basis van partiële opnames zonder enige voorkennis betreffende de camera
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standpunten moeten meerdere registratietaken opgelost worden. Eerst moet
een initiële positionering bepaald worden d.m.v een ruwe initialisatie die ver-
volgens verfijnd moet worden d.m.v een fijne registratie. Het eerste is een
globaal pose probleem of initialisatie waar geen voorkennis is gegeven betr-
effende de relatieve oriëntaties en positionering van de gezichtstukken. Het
tweede of de pose verfijning veronderstelt een gegeven initialisatie. Wanneer
men meer dan twee partiële opnames heeft, moeten zowel de paarsgewijze ruwe
initialisaties als de fijne registraties geconverteerd worden naar een meerdere
standpuntregistratie of positionering. Tot slot, na de registratiefase, moeten de
gepositioneerde stukken gëıntegreerd worden. In plaats van voor elke deeltaak
een bestaand algoritme te selecteren en te gebruiken zou het interessant zijn
om een gezamenlijke oppervlakvoorstelling te gebruiken doorheen de volledige
assemblage procedure zelfs tot en met de integratiefase.

Om een volledig automatische, accurate en robuuste registratie en inte-
gratiemethode van partiële opnames, zonder enige voorkennis van het opname-
proces, te verkrijgen gebruiken we een 4-staps algoritme gebaseerd op een
gemeenschappelijk geheugenvriendelijke VIS voorstelling van de open partiële
oppervlakken. Deze impliciete voorstelling bevat interessante eigenschappen
om de verschillende registratie en integratie problemen te behandelen. Boven-
dien, kunnen zacht verlopende eisen gehanteerd worden om met ruis in de
partiële oppervlakken om te gaan. In een eerste stap worden robuuste maar
minder accurate ruwe initialisaties tussen elk paar van partiële opnames be-
paald gebaseerd op punt correspondenties, die verkregen worden door de vergeli-
jking van georiënteerde punthandtekeningen berekend op basis van de varia-
tionele impliciete oppervlakvoorstelling. Een pose classificatie procedure se-
lecteert de beste rigide transformatie schatting uit mogelijke transformaties
die de overeenkomstige punten naar elkaar toe transformeren terwijl het hun
oriëntatie doet samenvallen. Lokale 2D geometrie histogrammen berekend op
basis van de VIS voorstelling worden gebruikt als punthandtekeningen, VISS-
beelden genaamd, welke een verbeterde variant zijn van de traditionele spin-
beelden. In een tweede stap wordt een selectie gemaakt van de paarsgewijze
ruwe initialisaties om deze te converteren naar een meerder standpunt ruwe ini-
tialisatie d.m.v een minimaal omspannende boom algoritme (MST). De paars-
gewijze transformatiekost wordt uitgedrukt in functie van het aantal transfor-
matie ondersteunende puntcorrespondenties. Het resultaat van het MST algo-
ritme is een niet-redundante minimale verzameling van relatieve paarsgewijze
transformaties om alle gezichtstukken in een gezamenlijk coördinatenstelsel
te initialiseren. Tijdens de derde stap worden de verzameling van initiële
transformaties verder verfijnd door het uitvoeren van paarsgewijze fijne reg-
istraties, die minder robuust zijn in termen van initialisatie maar die wel ac-
curate resultaten kunnen genereren. De fijne registraties bestaan erin om een
afstand gebaseerde doelfunctie, o.b.v de continue VIS voorstelling, iteratief te
optimaliseren volgens een dalende gradiënt methode. Om het probleem van
Partiële overlap tijdens de registratie op te lossen wordt er een nieuwe deter-
ministische onverklaarbaarheid functie geconstrueerd die de latente variabele
modelleert en die onafhankelijk is van de relatieve positionering of afstandhis-
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togrammen tussen twee partiële gezichtsstukken. Zowel de optimalisatie als
de onverklaarbaarheids behandeling zijn gedefinieerd en gecombineerd in het
voorgestelde robuuste en statistisch gebaseerde registratieraamwerk. Hierbij is
het bewegende oppervlak een zeker gezichtsstuk en het doeloppervlak een an-
der gezichtsstuk terwijl we een rigide transformatiemodel gebruiken. Tot slot,
in de laatste stap, wordt de accumulatie van paarsgewijze registratie fouten
weg gewerkt door een simultane meerder standspunt fijne registratie van alle
partiële opnames met een tussentijdse integratie uit te voeren. Deze fijne
registratie van een gezichtsstuk met een tussentijdse integratie van al de an-
dere stukken is zeer gelijkaardig aan de paarsgewijze fijne registratie. Dezelfde
gemeenschappelijke VIS oppervlakvoorstelling wordt gebruikt doorheen alle
stappen van de procedure tot en met de integratiefase zodat de registratie
en de integratie gecombineerd kunnen worden in de vierde en laatste stap.
Buiten vormintegratie wordt er ook een additionele kleurintegratie uitgevo-
erd. Zowel vorm als kleurintegratie zijn gebaseerd op een gewogen combinatie
van de VIS voorstellingen en variationele kleurfuncties, respectievelijk, van de
individuele partiële opnames. De gewichtsfuncties, welke lokaal een maat van
oppervlakcorrectheid weergeven, zijn ook verkregen op basis van de gespreide
data interpolatie technieken (variationele impliciete functies). Het finale re-
sultaat is een volledig, enkelvoudig, gezichtsoppervlak met kleurinformatie ge-
assembleerd vanuit meerdere partiële gezichtsopnames. De complete vier stap
procedure wordt uitgevoerd op realistische en gesimuleerde data om de nodige
validatie evaluaties te verkrijgen en te analyseren.

Gezichtsoppervlak registratie

Om een statistische analyse te verkrijgen betreffende de gezichtsvorm infor-
matie in de databank moeten alle gezichten niet-rigide geregistreerd worden.
Een enkelvoudig volledig gezichtsoppervlak bestaat uit een wolk van 3D pun-
ten die onderling verbonden zijn. Geregistreerde gezichtsoppervlakken hebben
hetzelfde aantal 3D punten met dezelfde connectiviteit alleen beschrijven de
3D punten een andere geometrische vorm. Om geregistreerde gezichten in
de databank te verkrijgen transformeren we de 3D punten met zekere connec-
tiviteit van een referentiegezicht naar alle gezichtsoppervlakken in de databank
door te zoeken naar overeenkomstige punten. Het resultaat is dat elk gezicht
in de databank evenveel punten heeft met dezelfde connectiviteit zodat voor
een bepaald punt op het referentiegezicht we de corresponderende punten op
alle andere gezichten kennen. Omdat de 52 gezichtsoppervlak merkpunten een
deelverzameling zijn van de volledige gezichtspunten kennen we bijgevolg ook
de corresponderende merkpunten op alle gezichten.

De gezichtsoppervlak registratiemethode, die voorgesteld wordt in figuur
0.6, moet robuust zijn tegen ruis en onverklaarbaarheden door partiële over-
lap of ontbrekende 3D informatie. De robuustheid tegen ontbrekende data is
omdat de 3D acquisitiescanner niet in staat is om 3D informatie te berekenen
in regio’s bedekt met haar zodat finale volledige gezichtsoppervlakken soms
gaten en ontbrekende data vertonen. Een voorbeeld is zichtbaar in figuur 0.6,
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Figuur 0.6: De 3D punten met zekere connectiviteit van een referentiegezicht
worden getransformeerd naar alle gezichtsoppervlakken in de databank door te
zoeken naar overeenkomstige punten. Links boven, het referentiegezicht gevi-
sualiseerd als roostervoorstelling en een computergrafische visualisatie. Links
onder een gezichtsoppervlak uit de databank en rechts het geregistreerde op-
pervlak uit de databank als roostervoorstelling en computergrafische visual-
isatie

waar er geen 3D informatie voor handen is op de plaats van de bakkebaar-
den. De robuustheid tegen ruis, is niet zozeer door fouten in de doelopper-
vlakken (zijnde volledige gezichtsoppervlakken in de databank), omdat deze
weggewerkt werden tijdens de partiële oppervlak integratiefase, maar eerder
door het niet-rigide karakter van het registratieprobleem. Een verwezenlijking
van overeenkomstige punten tijdens de registratie is typisch foutief, vooral in
het begin van de registratie omdat de vormen van het referentiegezicht, zijnde
het bewegende oppervlak, en de doeloppervlakken dan erg verschillend kunnen
zijn.

Het complete gezichtsregistratie probleem wordt opgelost d.m.v het voorge-
stelde registratieraamwerk. Hierbij maken we gebruik van een niet-rigide TPS
gebaseerd transformatiemodel en een maat van overeenkomst o.b.v de con-
tinue VIS doeloppervlak voorstelling. Onverklaarbaarheden door ontbrekende
data vormen geen probleem door gebruik te maken van een latente variabele
modellering die gelijkaardig is aan diegene van de fijne partiële opname regis-
traties. Door het niet-rigide karakter van het registratieprobleem maken we ge-
bruik van een deterministische annihilering optimalisatie. Resultaten worden
bekeken in termen van nauwkeurigheid en consistentheid. De nauwkeurigheid
validatie gaat na of de getransformeerde 3D punten van het referentiegezicht
de vorm van het doelgezicht accuraat beschrijven. De consistentheid validatie
gaat na of corresponderende punten op verschillende gezichten effectief corre-
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sponderend of consistent aangeduid zijn.

0.2.3 Gezichtsmodellering en reconstructie

Gebaseerd op de verkregen databank bouwen we een gezichtsmodel dat ge-
bruikt wordt voor gezichtsreconstructies. De meest abstracte formulering van
onze reconstructie procedure is: Wat is het meest waarschijnlijke gezicht, vol-
gens een statistisch gezichtsmodel, gegeven de fout bevattende schedeldata.
Het gezichtsmodel wordt verkregen door een statistische modellering van de
data in de databank resulterend in een statistisch gezichtsmodel. Het meest
waarschijnlijke gezicht gegeven de schedeldata wordt verkregen door een prob-
abilistische of statistische gebaseerde reconstructie aanpak. Een nodige en vol-
doende schedeloppervlak voorstelling en een transformatiemodel worden be-
paald om een statistisch geformuleerde gezichtsmodel naar schedelregistratie
uit te voeren die als dusdanig het meest waarschijnlijke gezicht genereert.

Statistische gezichtsmodellering

Om foutieve maskergerelateerde invloeden in de gezichtsreconstructies te ver-
mijden en om het waarschijnlijke karakter van de reconstructies te verhogen
stellen wij een statistisch gezichtmodel voor reconstructies voor. Wij mod-
elleren de gecombineerde populatie-afhankelijke variatie en co-variatie van
volledig gezichtsoppervlak vorm met grijswaarde kleur, 52 anatomische merk-
punten met bijhorende diktemetingen en eigenschapwaarden (BMI, leeftijd,
geslacht) informatie, berekend o.b.v een uitgebreide databank verkregen m.b.v
een fotometrische 3D scanner en ultrageluidsgolf technologie.

Het modelmasker of referentiegezicht kan geclassificeerd worden als zijnde
een volledig gezichtsoppervlak waaruit een enkelvoudige meest waarschijnli-
jke reconstructie bekomen wordt o.b.v geanalyseerde of statistische kennis van
meerdere gezichten. De statistische modellering wordt bekomen m.b.v prin-
cipale component analyse zo dat het gezichtsmodel beschouwd kan worden
als een elastisch masker met elastische halve bollen aan de binnenkant. De
elasticiteit van het masker wordt bepaald door de statistisch toegestane gecor-
releerde variatie van verschillende complete gezichtsoppervlakken en zachte
weefsel diktemetingen. Door de model transformatieparameters te veranderen
binnen de statistische grenzen wordt het masker op een gezichtsspecifieke
manier vervormd en wordt de gezichtsplausibiliteit gegarandeerd. Zodoende
wordt het masker op de schedel geplaatst totdat de halve bollen het schede-
loppervlak raken.

De creatie van meer subpopulatie gerichte gezichtsmodellen volgens gegeven
schedeleigenschappen, verkregen uit een antropologisch onderzoek, wordt be-
komen door de expliciete modellering en eliminatie van variaties afkomstig van
verschillen in individuele eigenschapwaarden in de databank. Het resultaat is
een genormaliseerd gezichtsmodel in functie van de gegeven schedeleigenschap-
pen. De incorporatie van grijswaarde informatie genereert een meer levendige
reconstructie in functie van de vorm en dikte informatie. Wij geloven dat
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het gebruik van grijswaarde i.p.v kleurinformatie minder gevaarlijk is om een
herkenning in de foute richting te duwen. Kleurinformatie is altijd moeilijk te
schatten op basis van de schedeldata en moet gelimiteerd worden tot het geven
van een idee (idee van lippen, wenkbrauwen, ...) zonder al te veel details.

Het grootste verschil van ons gezichtsmodel met meer traditionele gezichts-
modellen is de incorporatie van co-variatie kennis tussen verschillende ge-
zichtsinformatie delen. Door achtereenvolgens co-variatie informatie te elim-
ineren bekomen we een traditioneel gezichtsmodel dat gebruik maakt van een
enkelvoudig referentiegezicht in combinatie met een generisch (niet gezichtsspec-
ifiek) transformatiemodel.

De kwaliteit van het statistische gezichtsmodel aangaande de vorminfor-
matie is afhankelijk van de punt correspondenties verkregen door de volledige
gezichtsoppervlak registratieprocedure. De meest belangrijke voorwaarde voor
model opbouw is de consistente aanduiding van de punt correspondenties op de
gezichtsoppervlakken in de databank. Dit is echter niet eenvoudig te valideren
door een gebrek aan controlegegevens. Een voldoende consistentie evaluatie
kan wel verkregen worden door na te gaan of de gecombineerde kennis be-
treffende correspondenties in een trainingsverzameling van gezichten in staat
is om de correspondenties van een ongezien gezicht te beschrijven. Gebruik-
makend van het statistische vormmodel kunnen we een dergelijke test uitvo-
eren. Het statistische model bevat namelijk de gecombineerde kennis van corre-
spondenties afkomstig van meerdere gezichten en kan gebruikt worden in het
registratieraamwerk om modelgebaseerde correspondentie te bepalen op een
ongezien gezichtsoppervlak. Deze modelgebaseerde correspondenties kunnen
dan vergeleken worden met de eerder bekomen TPS gebaseerde corresponden-
ties om na te gaan of beide correspondenties voor hetzelfde gezicht consistent
zijn. M.a.w, de modelgebaseerde correspondenties zijn de controlegegevens.
Verder wordt er nagegaan of de statistische modellering voldoende is om en-
erzijds gezichten in de databank gebruikt voor de modelopbouw te beschri-
jven en anderzijds ongeziene gezichten niet gebruikt voor de modelopbouw te
beschrijven.

Statistische gezichtsreconstructie

Het zoeken van de ontbrekende gezichtsenveloppe horende bij een onbekende
schedel is het doel van de gezichtsreconstructie en wordt opgelost door een
model naar schedel of kortweg schedelregistratie (zie figuur 0.7). Vooraleer
een schedelregistratie kan plaatsvinden, moet een virtuele kopie van de schedel
gemaakt worden voor een computergebaseerde reconstructietechniek. Vervol-
gens moet een gezichtsmodel en een schedeloppervlak voorstelling gekozen
worden zodat een maat van overeenkomst kan opgesteld worden. Men mag
echter niet vergeten dat een virtuele kopie nooit een exacte kopie is en dat
bijkomende ruis en onverklaarbaarheden gëıntroduceerd worden tijdens de
schedelvoorstelling opbouw. Hierdoor moet de schedelregistratie robuust zijn
tegen ruis en onverklaarbaarheden. Tot slot, is een uitvoerige validatie vereist
opdat de ontwikkelde methode bruikbaar wordt in de praktijk tijdens foren-
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sische onderzoeken en gerechtelijke veroordelingen.

Figuur 0.7: Het modelmasker wordt getransformeerd naar de schedel om een
gezichtsreconstructie te verkrijgen tijdens een schedelregistratie.

De virtuele kopie van de schedel wordt bekomen d.m.v een medische CT
scanner. Onze primaire keuze van gezichtsmodel is het statistische model van
de vorige sectie. Een automatische gezichtsreconstructie wordt verkregen op
basis van een impliciete schedelvoorstelling, welke onze primaire voorstellings-
keuze is. Een variationeel impliciet oppervlak van de schedel wordt gecreërd op
basis van de gespreide data interpolatietechnieken. Deze impliciete voorstelling
codeert voor elk 3D punt de benaderde euclidische afstand tot en loodrecht op
het schedeloppervlak, nul op het oppervlak en negatief/positief voor punten
binnen/buiten het oppervlak. De similariteitsmaat nodig voor de registratie is
gebaseerd op de vergelijking van de VIS evaluaties met de zachte weefsel diktes
in de 52 merkpunten van het modelmasker. Het doel van de schedelregistratie
bestaat er dan in om de 52 merkpunten en diktemetingen te herpositioneren
en te veranderen zodat de diktemetingen gelijk worden aan de VIS evaluaties
in de merkpunten. Echter is de relatie tussen VIS evaluaties en ultragelu-
idsgolf diktemetingen niet 100% correct zodat de similariteitsmaat metingen
bëınvloed worden door ruis en onverklaarbaarheden. Een tweede, meer tra-
ditionele, schedelvoorstelling keuze is gebaseerd op 52 manueel aangeduide
merkpunten en hun normaal op het schedeloppervlak in overeenstemming met
de 52 gezicht merkpunten op het gezichtsmodel masker. De similariteitsmaat
tussen het model en de schedelvoorstelling is gebaseerd op de meetprocedure
van zachte weefsel diktes met ultrageluidsgolf technologie. De optimalisatie
tijdens de schedelregistratie komt er dan op neer om de schedeldiktes te meten
terwijl het gezicht gereconstrueerd wordt. Echter zijn de aangeduide schedel
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merkpunten niet foutloos en afhankelijk van de expertise van de antropoloog
die de punten aanduidt zodat de similariteitsmaat bëınvloed wordt door ruis
en onverklaarbaarheden.

Om het meest waarschijnlijke gezicht te vinden volgens de gezichtsmodel
keuze gegeven de gekozen schedelvoorstelling maken we gebruik van het voor-
gestelde registratieraamwerk. Het doeloppervlak is het schedeloppervlak. De
keuze van gezichtsmodel levert het bewegende oppervlak en een bijhorend
transformatiemodel. De maat van overeenkomst is gedefinieerd o.b.v de gezicht-
schedel relaterende informatie in het gezichtsmodel en de keuze van schedel-
voorstelling en wordt bëınvloed door ruis en onverklaarbaarheden. De statis-
tisch geformuleerde schedelregistratie procedure construeert en optimaliseert
een robuuste doelfunctie die het transformatiemodel en de maat van over-
eenkomst combineert. De latente variabele voor onverklaarbaarheden wordt
probabilistisch gemodelleerd m.b.v een random variabele en een statistisch
onverklaarbaarheid proces.

Een eerste validatie van de voorgestelde gezichtsreconstructie aanpak is
gebaseerd op een klinische CT databank van 12 patiënten en simuleert realis-
tische reconstructie scenario’s. Elk gezicht in de databank wordt om de beurt
gebruikt als testcase dat de nodige controlegegevens bevat. De resulterende
gezichtsreconstructies op basis van de gegeven schedel worden dan vergeleken
met het bijhorende gezichtsoppervlak zijnde de controlegegevens. Op basis
van deze databank worden beide schedelvoorstelling keuzes vergeleken. Verder
worden ook verschillende gezichtsmodel keuzes, met verschillende hoeveelheid
co-variate kennis, vergeleken. Hierdoor kan nagegaan worden of de incorpo-
ratie van co-variatie tussen verschillende gezichtsinformatie delen al dan niet
een positieve bijdrage levert tot de kwaliteit van de berekende reconstructies.
Tot slot, gaan we ook na of de robuuste formulering van het registratieraamw-
erk nodig is.

Een tweede validatie wordt bekomen o.b.v de databank voor gezichtsmodel
opbouw om meer gecontroleerde ruis en onverklaarbaarheden simulaties te
verkrijgen. Elk gezicht in de databank wordt om de beurt uit de databank
genomen en als testgezicht gebruikt, terwijl de andere gezichten gebruikt wor-
den om het gezichtsmodel op te bouwen. Door het gebrek aan volledige
schedeloppervlakken in de modeldatabank kunnen we de impliciete schedel-
voorstelling hier niet gebruiken. In plaats daarvan gebruiken we een beter
gecontroleerde merkpunt gebaseerde schedelvoorstelling in vergelijking met de
patiëntendatabank. Om de invloed van kleine fouten of ruis te analyseren voe-
gen we incrementeel kleine fouten op de foutloze schedel merkpunten toe. Om
de invloed van onverklaarbaarheden te analyseren voegen we grote fouten toe
aan een incrementeel percentage van licht foutieve merkpunten.

0.3 Resultaten

De praktische relevantie en de algemeenheid van het robuuste statistisch ge-
baseerde oppervlakken registratieraamwerk wordt verkregen door het toe te
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passen en te testen voor de verschillende registratieproblemen. Wij passen het
raamwerk toe op de registratieproblemen die opgelost moeten worden in de
volledige gezichtsreconstructie procedure.

De testen betreffende het voorgestelde vier-staps assemblagealgoritme voor
volledig gezichtsoppervlak metingen zijn voldoende accuraat en robuust om
de methode in de praktijk te gebruiken. De testen worden uitgevoerd op
praktisch relevante data en gesimuleerde data. De praktische data toont aan
dat de methode inderdaad robuust is tegen slechte partiële opnames. Fout-
loze gesimuleerde data illustreert dat de methode accuraat is en foutbevat-
tende gesimuleerde data toont aan dat de methode kan werken met ruis in
de partiële oppervlak opnames. De VISS-beelden die gebruikt worden als
punthandtekeningen leveren een beter ondersteunde en robuustere initile pose
schatting om de fijne registraties te initialiseren vergeleken met de traditionele
spin-beelden. De nieuw gedefinieerde onverklaarbaarheid functie maakt het
mogelijk om eenvoudiger met partiële overlap te werken vergeleken met tradi-
tionele alternatieven zodat de finale fijne registratieresultaten meer dan sub-
millimeter zijn en bijgevolg zeer accuraat. Door gebruik te maken van de
geheugen efficiënte VIS voorstellingen worden een aantal tekortkomingen van
huidige integratie methoden opgelost.

De accuraatheids - en consistentietesten betreffende de niet-rigide regis-
tratie van volledige gezichtsoppervlakken, m.b.v een TPS transformatiemo-
del, geven bevredigende resultaten. De geregistreerde gezichtsoppervlakken
beschrijven de geometrie van het oorspronkelijke oppervlak met een voldoende
nauwkeurigheid. Door gebruik te maken van een statistisch model in het regis-
tratieraamwerk wordt de consistentie nagegaan van de TPS gebaseerde punt-
correspondenties en hieruit blijkt dat de correspondentie kwaliteit bruikbaar
is in de praktijk. M.a.w de bepaalde puntcorrespondenties zijn kwalitatief
voldoende om een nuttig en correct statistisch gezichtsmodel te creëren. Het
gezichtsmodel zelf heeft daardoor een goede modelleringkracht om gezichten
die gebruikt tijdens de modelopbouw en gezichten die niet gebruikt worden
tijdens de modelopbouw te beschrijven of te modelleren met voldoende nauw-
keurigheid.

De reconstructie procedure wordt geëvalueerd op basis van de patiënten en
modeldatabank. Op basis van de patiënten databank worden beide schedel-
voorstelling keuzes vergeleken en zien we dat de impliciete voorstelling een
waardige keuze is om te gebruiken in de praktijk. Bijkomend verkrijgen we
met de impliciete keuze ook een volledig automatische gezichtsreconstructie
procedure. Bovendien blijkt het ook dat de merkpunt aanduiding voor de
traditionele schedelvoorstelling keuze niet eenvoudig is en dat de resultaten
hierdoor sterk bëınvloed worden. Verder worden ook verschillende gezichts-
model keuzes, met verschillende hoeveelheid co-variate kennis, vergeleken.
Hieruit zien we dat de voorgestelde statistisch gezichtsmodel keuze superieur
is vergeleken met de meer traditionele gezichtsmodel keuzes die gebruik maken
van een generisch transformatiemodel. Tot slot gaan we ook na of de robuuste
formulering in het registratieraamwerk nodig is op basis van deze patiënten
databank. Dit toont aan dat er inderdaad rekening gehouden moet worden



0.4 Besluit xxix

met ruis en onverklaarbaarheden in de schedelvoorstellingen en dat het voor-
gestelde registratieraamwerk krachtig genoeg is om er mee om te gaan. De
testen o.b.v de modeldatabank bevestigen wederom de voorgaande conclusies
omtrent de gezichtsmodel keuzes. Bijkomend zien we dat mits een goede para-
mater keuze het statistisch gebaseerde robuust schedelregistratie raamwerk
zeer nuttig is tegen verschillende niveaus van ruis en onverklaarbaarheden.

0.4 Besluit

Forensische gezichtsreconstructie bestaat erin om een schatting te genereren
van de gezichtsenveloppe horende bij een onbekende schedel. Alle reconstruc-
tietechnieken zijn gebaseerd o.b.v van de veronderstelde relaties tussen de
schedel en de zachte weefsels. Manuele technieken worden reeds uitvoerig ge-
bruikt in de praktijk maar zijn echter tijdrovend en subjectief. Computerge-
baseerde methoden zijn interessant om het reconstructieproces te versnellen
terwijl de subjectiviteit ingeruild wordt voor objectiviteit. Al de bestaande
methoden hebben een overeenkomstige manier van werken waarbij een gezichts-
model, in functie van schedeleigenschappen, naar een virtuele kopie van de
schedel geregistreerd wordt op basis van een maat van overeenkomst. Deze
laatste wordt gedefinieerd in functie van een gekozen schedelvoorstelling en de
gezicht-schedel relaterende informatie die vervat zit in het gezichtsmodel.

Wij stelden een complete statistische aanpak voor om gezichtsreconstruc-
ties te genereren. De filosofie achter de aanpak bestond erin om het meest
waarschijnlijke gezicht te zoeken volgens een gezichtsverdeling gegeven de fout
bevattende schedeldata. Een statistisch gezichtsmodel werd gebouwd en ge-
bruikt om de verkeerde modelmasker invloeden te elimineren en om de gezichts-
waardigheid van de reconstructies te verbeteren. Hiervoor werd de gecom-
bineerde variatie en co-variatie gebruikt van gezichtsvorm en zachte weefsel
diktemetingen vervat in een uitgebreide databank. Het meest waarschijnlijke
gezicht werd verkregen door een statistisch geformuleerde schedelregistratie
te hanteren. Bijkomend werd hierdoor de robuustheid tegen kleine en grote
fouten verhoogd.

De hele gezichtsreconstructie procedure vergde een aantal deeltaken waarin
er verschillende soorten oppervlak registratieproblemen opgelost moesten wor-
den. Een oppervlak registratie bestond erin om de geometrische relatie tussen
twee of meerdere oppervlakken te bepalen. Hiervoor werd een algemeen statis-
tisch gebaseerd robuust registratieraamwerk gedefinieerd en ontworpen. Robu-
ustheid tegen ruis en onverklaarbaarheden werd verkregen door een volledig
genereringsproces bestaande uit een verklaarbaarheidproces en onverklaar-
baarheidproces te definiëren. Hierdoor werd een extra latente variabele ge-
introduceerd die het geloof reflecteerde dat een similariteitsmaat meting al dan
niet verklaarbaar was. De manier van modellering voor de latente variabele
hing af van de voorkennis betreffende het voorkomen van onverklaarbaarheden.
Het raamwerk werd gehanteerd om de verschillende registratieproblemen op te
lossen en de nodige validatie testen werden uitgevoerd. Uit deze testen bleek
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dat het registratieraamwerk krachtig en nuttig is om de nodige robuustheid en
accuraatheid te verwerven voor uiteenlopend oppervlakregistratie doeleinden.

Toekomstige richtingen betreffende de registratie methodologie bestaan
erin om additionele oppervlakinformatie (bvb buiging en kleur), buiten vorm,
mee te incorporeren in de maat van overeenkomst. Verder onderzoek over de
gezichtsmodellering bestaat erin om de ultrageluidsgolf diktemetingen event-
ueel te vervangen door VIS evaluatie op basis van een databank bestaande uit
volledige schedeloppervlakken en bijhorende gezichtsoppervlakken. Hierdoor is
de relatie in de similariteitsmaat op basis van een impliciete schedelvoorstelling
tijdens registratie minder foutief zodat er meer registratiebewijs is om de re-
constructie te verbeteren. Bijkomend kunnen meer punten met diktemetingen
op het gezichtsoppervlak van het modelmasker gebruikt worden vergeleken met
de gelimiteerde 52 merkpunten, vermits de VIS diktemetingen in de databank
voor modelopbouw dan automatisch uitgevoerd kunnen worden.

Forensische gezichtsreconstructie balanceert tussen de werelden van weten-
schap en kunst. Dankzij de inzet van vele mensen in de wereld wordt de
lijn langzaam maar zeker verlegd richting wetenschap. Zo kan de praktis-
che relevantie van gezichtsreconstructies tijdens politionele onderzoeken en
gerechtelijke veroordelingen stijgen ten voordele van het slachtoffer. Ik ben
overtuigd dat de waarde van gezichtsreconstructies sterk kan toenemen wan-
neer de reconstructietechnieken gecombineerd worden met gezichtsidentificatie
technieken, wat momenteel een actief onderzoeksdomein op zich is.
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1D : one-dimensional

2D : two-dimensional

2.5D : two and a half-dimensional

3D : three-dimensional

4D : four-dimensional

BMI : body mass index

CC : cross correlation

CFR : craniofacial reconstruction

CG : contaminated gaussian (estimator)

CM : cranio-metric

CP : closest point

CT : Computer tomography

DNA : desoxyribonucleic acid

EM : expectation maximization

E-step : expectation-step

GT : ground truth

ICP : iterative closest point

KL : Kullback-Leibler

LM : landmark

LMSQ : least median of squares

LSQ : least-squares

LV : latent variable

LV-step : latent variable-step
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M-step : maximization-step

M-estimator : maximum likelihood estimator

MAD : median of absolute deviations

MAP : maximum a posteriori

MC : marching cubes

MD : mahalanobis distance

MF : mean-field

MI : mutual information

MIC : medical image computing

ML : maximum likelihood

mm : millimetre

MRI : magnetic resonance imaging

MST : minimum spanning tree

MT : marching triangles

PCA : principal component analysis

PDF : probability density function

Q : quadratic (estimator)

RBF : radial basis function

RGB : red-green-blue

RMSE : root mean squared error

RPM : robust point matching

sDT : signed distance transform

SSD : sum of squared differences

SVM : support vector machine

TPS : thin plate spline

TQ : truncated quadratic (estimator)

US : ultrasound

USA : united states of America

VBF : variational boundary function

VIF : variational implicit function

VIS : variational implicit surface

VISS-image : variational implicit surface spin-image

VMF : variational mapping function

VTF : variational texture function

VWF : variational weighting function
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X-rays : röntgen rays

Symbols

general aspects

E : 3D/4D Euclidean space

R : real numbers

f(r) : regular continuous function

r = (x, y, z) : 3D point with x, y and z coordinates

n = (nx, ny, nz): normal

∂f(r)/∂x : partial derivative of f to x

∇f : gradient of the function f , vector of partial deriva-
tives

∇conjf : Conjugate gradient of the function f

A,a : matrix, vector

AT,aT : matrix, vector transpose
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Chapter 1

Introduction

1.1 Problem statement

Why CFR? Sunday morning, 7:00 AM, the sky is clear and the sun is rising.
Mr. Anonymous is jogging along the canal, when suddenly he discovers the
skeletal remains of a person in the flowering shrub next to the water. He im-
mediately calls the authorities with his cellular phone and 20 minutes later the
Police arrives at the scene. Before any other investigation can be performed
the primary question to be answered is: Who is this person? The answer is
obtained by forensic identification techniques which are mostly based on com-
parisons of ante- and post-mortem data, such as medical files, dental records,
X-rays or DNA. This whole procedure becomes less evident when dealing with
skeletonized human remains, where any link with a possible identity is miss-
ing. In these circumstances, a craniofacial reconstruction (CFR) might help
the investigation out of the impasse. The goal of craniofacial reconstruction is
to recreate an estimate of the face of an individual at the time of death. Differ-
ent 2D and 3D manual or computer-aided facial reconstruction techniques have
been developed for this purpose and all are based on the assumed relationship
between the soft tissue envelope and the underlying skull substrate.

From manual to computerized CFR Several 3D manual methods for
facial reconstruction have been developed and are currently used in practice.
These reconstructions consist of physically modeling a face on a skull replica
(the target skull) with clay or plasticine. However, manual reconstruction
methods require a lot of anatomical and artistic modeling expertise and are
as a result highly subjective. Furthermore, these reconstructions take a lot of
time, and, hence, are often limited to a single reconstruction. Computer-based
methods, on the other hand, are consistent and objective. Moreover, since
these methods can be executed in a short time, multiple reconstructions from
the same skull using different modeling assumptions (older, thicker, ...) can be
obtained. The development of software for computerized facial approximations

1



2 Introduction

of an individual would be of benefit to various law enforcement agencies, by
allowing faster, easier and more efficient generation of multiple representations
of an individual.

CFR Framework Computerized reconstruction techniques all share a com-
mon work-flow in which a craniofacial model, linking the skull structures to the
soft tissue facial envelope, is warped onto a virtual copy of the skull specimen.
The craniofacial model consists of a facial mask combined with a geometric
transformation model. The registration of the model towards the skull is the
process of finding and applying the geometrical transformation between the
craniofacial model and the skull. The registration is driven by a similarity
measure expressing the goodness of fit of the craniofacial model to the skull.
Both the craniofacial transformation model and the similarity measure are
combined into an objective function, to ensure a proper optimization. During
optimization a set of transformation model parameters is searched for that op-
timize the objective function, increasing the similarity model fit, while assuring
a well-behaved transformation. Once these parameters are known, the com-
plete facial model template can finally be deformed towards the skull specimen
to recreate an estimate of the face.

What is lacking? Current computerized reconstruction techniques are lim-
ited, though, in the model used for reconstructing the complete facial outlook.
First, either a generic face template or a specific best look-alike template, based
on skull similarities or properties, is chosen. Subsequently, the skin surface as-
sociated to the target skull is estimated by transforming the model template,
based on a generic, ”smooth”deformation (e.g. TPS based). Multiple recon-
structions based on different values of BMI, age and gender are obtained by
choosing a different starting facial template. Two major shortcomings are
apparent using such a model template in combination with a generic defor-
mation. First, the reconstruction can be incorrectly biased by the choice of
the template. Indeed, when using a subject-specific best look-alike template
based on similarity in ancestry, gender and age, unwanted facial features of
the template remain visible in the final reconstruction. Using a generic face
template, on the other hand, results in too smooth and unspecific a reconstruc-
tion. Secondly, the generic deformations applied are not face-specific, they are
just ”smooth”. No problem arises when the differences between the model and
target skull are small. However, when these differences are relatively large, the
required deformation will be more pronounced, which can result in unrealistic,
caricature-like or implausible facial reconstructions.

What is required? The appearance of biased and face-unspecific recon-
structions can be reduced by the use of a face-specific model database built
over ideally, a large, representative set of attribute-labeled (race, gender, age,
BMI) facial masks and associated face-to-skull information. The facial masks
are preferably acquired in an upright position. The information relating the
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skull substrate to the soft tissue facial envelope can be spatially sparse, based
on a limited number of anatomical landmarks at which the soft tissue thick-
ness is measured by ultrasound probing, e.g. Dense point sets, on the other
hand, can be obtained, e.g., from CT-scans, although still mostly acquired
in a supine position and over a patient population. In any case, the type of
skull-to-skin link information will also determine the choice of an appropriate
surface representation for the unknown skull specimen. An important issue
concerning the registration of the craniofacial model towards the skull is the
presence of small errors or noise and gross errors or outliers within the skull
representation. Besides the fact that a virtual copy is never an exact but a
noisy copy of the skull specimen, additional errors are typically introduced
during skull representation build-up. Until now, to the best of our knowl-
edge, no robust (in terms of noise and outliers) skull registration framework
has been defined or used in current computerized craniofacial reconstruction
techniques. A last issue concerning computerized reconstruction techniques is
validation. From an engineering point of view, a developed method can work
fine, but is useless in practice unless properly validated. A proper validation
framework will hopefully substantiate on a scientific basis the added value of
reconstruction methods during crime-scene investigations.

1.2 Scope of the thesis

Robust Statistical CFR In this thesis we present as a first major contri-
bution, a computerized (semi-)automated craniofacial reconstruction method
that is both consistent and objective. It builds on a statistical craniofacial
model of the interrelationship between facial shape and soft-tissue thicknesses
as measured on a predefined set of landmark points on the skull. The model
can be considered as an elastic mask with elastic hemi-spherical dowels on the
inside of the mask at the landmark locations, which is subsequently fitted to
the skull such that the virtual dowels touch the skull. The elastic deformation
of the transformation model is based on the statistical likelihood as learned
from a database of nearly 400 subjects. This requires several subtasks.

1. The acquisition of 3D skin surfaces and tissue-depth information in an
upright position, measured over a sufficiently large and diverse popu-
lation which are subsequently stored in a database together with the
subject’s age, Body Mass Index (BMI), gender and ancestry informa-
tion.

2. The establishment of inter-subject dense surface correspondences for fur-
ther statistical modeling.

3. Statistical modeling of the population-dependent variation and covaria-
tion of skin surface shape and tissue depth, fine-tuned towards a given
set of skull properties (ancestry, age,...).

4. Fitting of this statistical model to the individual craniofacial skeleton.
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5. Validation of the complete craniofacial reconstruction approach.

Robust, statistical, implicit surface registration framework The whole
procedure (1-5) involves a number of surface registration tasks. Surface regis-
tration refers to the establishment of the geometrical relationship between two
or more surfaces. It is a key enabling technology to solve a wide range of 3D
computer-based modeling and reconstruction problems. As a second major
contribution of this thesis, we present a robust, statistical, surface registration
framework that optimizes an inter-surface distance measure over the parame-
ters that define the geometric transformation. We use a memory efficient, con-
tinuous, smooth and analytical, implicit surface representation, which has par-
ticularly interesting properties for registration purposes. Robustness against
noise and outliers of the surface models during registration is obtained using
a Maximum a Posteriori (MAP) formulation including a statistical inlier- and
outlier-process model. This framework is applied to solve different registra-
tion tasks necessary in the complete craniofacial reconstruction procedure or
pipeline: First in subtask (1), complete facial surfaces are assembled from
partial surface patches using a rigid transformation model. Second in subtask
(2), surfaces of different subjects are matched to each other using a non-rigid
Thin Plate Spline based deformation model. In subtask (3), the observed
inter-individual deformations are statistically modeled via Principal Compo-
nent Analysis, assuming a multivariate normal distribution. This model is
matched in a first instance to the facial surfaces of the different subjects in the
database using a transformation model based on the learned statistical defor-
mations to analyze the quality of the Thin Plate Spline based registrations in
the previous subtask. Finally in subtask (4), this facial model (including the
soft-tissue thicknesses) is aligned with the (virtual) skull specimen using again
the transformation model based on the learned statistical deformations.

The aim of this thesis is to solve every subtask within the craniofacial recon-
struction procedure, using the proposed surface registration framework. The
remainder of this section will introduce every aspect in more detail, starting
with the developed surface registration framework.

1.2.1 Surface registration methodology

An algorithm to register and transform two or more surfaces consists of four
main components: a similarity measure, a transformation model, an objective
function and an optimizer. We call the floating surface the surface that is
to be transformed. The target surface is the goal surface, i.e. the surface the
floating surface is transformed to. In a first instance a proper surface represen-
tation for both the floating and target surface is to be chosen. The similarity
measure, which is dependent on the chosen surface representations, estimates
the correctness of a given transformation by comparing the transformed float-
ing surface with the target surface. The transformation itself is modeled by
and/or restricted to a specific transformation model, describing the type of ge-
ometric transformations allowed (rigid, affine, non-rigid, . . . ). The similarity
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measure and the transformation model are combined within an appropriate
error, energy or objective function. Finally, the optimizer estimates the trans-
formation parameters that optimally map the floating surface onto the target
surface. Often, prior to surface registration, an initialization is required to
appriximately align the floating and target surface ensuring the optimizer to
converge to the correct global optimum of the objective function.

Surface representation

The choice of surface representation has a direct influence on the accuracy and
efficiency for surface registration. In this thesis, the floating surface is simply
represented as a set of 3D points. The target surface, on the other hand, is rep-
resented as a variational implicit surface (VIS). Here, the surface is defined as
the locus of zeros of the associated variational implicit function. A variational
implicit function (VIF) is created from constraint points using a variational
scattered data interpolation approach and is extensively used throughout the
thesis (not only for surface representations). The VIS representation encodes
for every 3D point an approximate shortest Euclidean distance to the target
surface, zero on the target surface, positive outside and negative inside. Evalu-
ation of a floating surface point into the target VIF gives the negative/positive
distance to the target surface in the direction of the VIS gradient in that point,
which is a very interesting property for registration purposes. Hence, when
the points of the floating surface are evaluated into the VIS of the target sur-
face, a notion of remaining distance and updating direction at these points
to the target surface is implicitly given. We also extend the concept of VIS,
originally proposed for closed surfaces, to open surface as well using the very
same machinery of implicit function representations.

Transformation model

Different registration problems require different types of transformations. The
transformation model stipulates how the floating surface can be transformed
to the target surface. The choice of using a particular type of transformation
model reflects our prior knowledge on the registration problem. Depending on
the registration problem and the presence of noise within the target surface
not all transformations are feasible or realistic so that certain mapping con-
straints are imposed to ensure that the transformation behaves according to
our prior knowledge. These constraints impose a transformation regulariza-
tion, restricting the space of possible transformations. We will discuss generic
(face-unspecific) and statistical (face-specific) transformation models.

Similarity Measure

A similarity measure provides an automated evaluation of the match between
the two surfaces to register by defining how the floating surface is to be posi-
tioned ideally with regard to the target surface. Similarity can be expressed
using different kinds of surface information (e.g. geometry, texture, curvature)
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and is dependent on the target surface representation. We propose a general
geometric-based inter-surface distance similarity, measured in the floating sur-
face points, implying that the floating surface points are to be repositioned
or transformed such that the points lie at predefined distances to the target
surface.

Objective function

Although generally not considered being a separate component for registration,
we believe that special care is to be taken when constructing an objective
function to increase robustness against noise and outliers within the similarity
measure. The purpose of such an objective function is to combine the similarity
measure and the transformation model such that the optimum (minimum or
maximum) of the function generates a set of transformation parameters while
improving the similarity measure and taking the transformation regularization
into account. Furthermore, the objective function must be robust against noise
or small errors and outliers or gross errors in the target surface data influencing
the similarity measure.

We propose to use a statistical Maximum a Posteriori (MAP) formulation of
the objective function to combine the similarity measures and the transforma-
tion regularization. MAP approaches have proven to be very useful theoretical
frameworks, equipped with a set of powerful and well developed mathemat-
ical techniques. Furthermore, all the assumptions are explicit. Robustness
against noise is easily obtained by stating that the similarity measures, eval-
uated at the floating surface points, are generated by a statistically modeled
noisy inlier-process. Robustness against outliers is obtained by stating that
the same similarity measures are generated by either a probabilistic inlier- or
an outlier-process, both constituting a complete-process. In order to do so, an
outlier latent variable is introduced encoding the presence of an inlier/outlier
at a floating surface point. The modeling and determination of the outlier
latent variable is dependent on the prior knowledge concerning the outlier
generating process.

The final result is a better underpinned objective function with quasi self-
regulating robustness against noise and outliers. Furthermore, we define equiv-
alent, closely related, M-estimators from Robust Statistics for the complete-
process formulation. Doing so, outlier influences in the objective function can
be analyzed and well known optimization techniques from Robust Statistics
can be applied.

Optimization

The optimization method defines how the parameters within the objective
function are adjusted or updated to improve the objective function evaluation
and therefore improving the matching quality while taking into account the
transformation model regularization. Optimization is a broad discipline in
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mathematics where a lot of methods have been proposed with varying com-
plexity.

To optimize the proposed objective function derived from a complete-
process modeling a joint parameter estimation is to be performed. Indeed,
besides the transformation parameters, also outlier latent variables are to be
estimated as well. This joint optimization can be solved by alternating between
a latent variable optimization and a transformation parameter optimization
while during either optimization or update the other update or estimate is
kept fixed.

Initialization

The proposed surface registration method belongs to a class of registration
algorithms in which an objective function, reflecting the quality of registration,
is iteratively optimized. Consequently these methods can generate accurate
results and are referred to as fine registration methods. However, due to
their iterative nature they need to be initialized with a proper estimate of the
unknown pose parameters. Prior to registration, the floating surface is to be
brought into the vicinity of the target surface, by repositioning the floating
surface, using a rigid or affine transformation, into the coordinate system of
the target surface. A pose estimation prior to fine registration is typically
referred to as crude registration or initialization.

1.2.2 Database acquisition and registration

In order to build the required statistical craniofacial model, we acquire a
database of three-dimensional facial entries or samples (figure 1.1 (d)), con-
sisting of registered 3D gray-textured skin surfaces coupled with soft-tissue
depths measured at 52 anatomical landmarks on the skin. For acquisition of
the 3D facial entries within the database, we assembled acquisition hardware
and software to capture and register 3D skin surfaces and to measure tissue
depths.

Thickness acquisition

For measuring the soft tissue depths a mobile semi-automated ultrasound sys-
tem (figure 1.1(b)) enabling in vivo, fast and non-destructive measurements
at the 52 anatomical landmarks (10 midline plus 2 times 21 bilateral) is devel-
oped. These landmarks are defined in and are measured according to [1, 2].
The system is composed of a compact and lightweight mobile digital ultra-
sound ”A-mode”scanner (Epoch 4B with a 10MHz 0.6mm diameter trans-
ducer, Panametrics Inc., Waltham, USA), a database (MySQL) and a self-
designed interface program.
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Figure 1.1: Database acquisition and registration. (a) skin surface acquisition,
(b) soft-tissue depth measurement, (c) facial surface registration, (d) final
result with the tissue depths visualized by means of a color code in the 52 face
landmarks.

Figure 1.2: Patch registration involves the accurate alignment of multiple
partial surface acquisitions into the same coordinate system. Subsequently
the patches are integrated into one complete surface entity
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Facial surface acquisition

The skin surface (figure 1.1(a)) is measured by a mobile 3D photographic
device (ShapeCam, Eyetronics (www.eyetronics.com)). This is an active 3D
capturing device, which projects a regular grid on the face. At the same time a
digital camera (CANON D60) takes an image of the face from a different point
of view such that by triangulation the 3D shape of the face can be retrieved
as a dense set of connected 3D points. The ShapeCam also captures texture
information, which is used to determine the 3D location of the landmarks on
the skin surface reconstruction. A disadvantage of the ShapeCam, which is
common for similar 3D acquisition devices, is the limited viewing-angle of the
camera, resulting in a partial surface acquisition of the complete facial surface.
The reason is that the acquisition system can only compute 3D information
of what can be ”seen”from a certain viewpoint. Therefore, a complete three-
dimensional facial surface is assembled from several partial surface acquisitions
or patches from unknown viewpoints (due to the camera portability).

Combining several patches into a single surface typically involves two main
phases, which is shown in figure 1.2. First, the patches need to be aligned
accurately into a common coordinate frame, the registration phase. Second,
the registered patches need to be integrated into a single entity, which is the
integration phase. Furthermore, both the registration and the integration must
be robust against noise and outliers in the patches due to the acquisition
process and due to the partial overlap in between different patches. In order
to have a fully automatic assembly, without any kind of a priori knowledge
of the geometry of the imaging process or user interaction, more than one
registration task has to be solved. In chapter 4, we present a fully automatic,
robust and accurate method for aligning and integrating partial acquisitions
without any prior knowledge of the relative viewpoints of the camera or the
geometry of the imaging process. This multi-step registration and integration
algorithm is based on memory efficient VIS patch representations and used
the surface registration framework proposed in chapter 3.

Facial surface registration

To perform a statistical analysis of 3D shape information all faces in the
database need to be registered non-rigidly. A single skin surface is repre-
sented by a dense set of connected 3D points. Registered skin surfaces share
the same amount of 3D points with the same connectivity. For this, the 3D
points with known connectivity of a carefully constructed generic reference
face are mapped onto the faces in the database (figure 1.1(c)) by finding dense
point correspondences. The result is that every facial surface in the database
is represented by the same amount of points with the same connectivity, such
that for every point on one surface the corresponding point on every other
surface in the database is known. Because the 52 face landmarks are a subset
of the dense points representing skin surfaces, corresponding inter-subject face
landmarks are known as well.
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Figure 1.3: The 3D points with known connectivity from a reference face are
mapped onto the faces in the database during facial surface registration

The facial surface registration methodology, illustrated in 1.3 must be ro-
bust against noise and must be able to cope with outliers due to partial overlap
or missing data. The latter is because of the fact that the 3D surface acquisi-
tion device is not able to acquire 3D information from hairy or covered regions
in the face, generating incomplete 3D surface acquisitions with holes or missing
data. An example is visible in figure 1.3, due to the presence of side-whiskers
the 3D facial surface contains holes or misses 3D surface information at the
location of the whiskers. The former, or noise robustness, is not necessarily
due to small errors in the target surface (being complete facial surfaces from
the database), because these were smoothed after shape integration, but rather
due to the non-rigid nature of the registration. An instance of point correspon-
dences during registration is typically erroneous, especially at the beginning
of the registration, because the shapes of the floating and the target surface
are then very different.

To tackle the facial surface registration undertaking robustly, we propose
to apply the presented robust statistical surface registration framework based
on a non-rigid thin-plate-spline (TPS) transformation model and a similarity
measure deducted from a VIS target surface representation. Outliers, due to
partial overlap or missing data, are dealt with using a deterministic outlier
detection function and probabilistic outlier-process, similar to the outlier han-
dling during fine registrations of patches. Because of the non-rigid and complex
nature of the registration problem a deterministic annealing optimization is
applied.
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1.2.3 Craniofacial modeling and reconstruction

Based on the acquired database we construct a craniofacial model used for
craniofacial reconstruction. The core most abstract formulation of the pre-
sented craniofacial reconstruction approach is: What is the most plausible or
probable face, according to a statistical craniofacial model being a face dis-
tribution, given the (erroneous) skull data. The face distribution is obtained
through the statistical modeling of the data in the craniofacial database, re-
sulting in a statistical craniofacial model. The most plausible face given the
skull data is obtained using a probabilistic or statistical reconstruction pro-
cess. A proper skull representation and craniofacial transformation model are
determined to conduct a probabilistic formulated craniofacial model to skull
registration, generating the most plausible solution accordingly.

The presented computer-based reconstruction method in this thesis is also
a further refinement of the work we have published in [3, 4, 5, 6, 7]. It must be
noted that some final fundamental changes have been made within the cranio-
facial model and skull representation to improve the reconstruction quality and
skull representation vs model compatibility. Furthermore, a new and improved
probabilistic registration framework, applicable to a wide range of craniofacial
models and skull representations, is proposed to increase robustness against
noise and outliers in the skull representation.

Statistical craniofacial modeling

In order to eliminate the template-related model bias and to minimize the
unrealistic character of the reconstructions caused by large generic model de-
formations, we propose a flexible statistical craniofacial model for reconstruc-
tion. We model the combined population-dependent variance and covariance of
complete skin surface shape, 52 anatomical face landmarks with tissue depths,
property (age, BMI and gender) values and skin surface gray-value texture
information, calculated from an elaborate facial database constructed with a
photogrammetric 3D scanner and ultrasound tissue depth measuring technol-
ogy. Note that in previous published work, thicknesses were set out starting
from face landmarks on the skin surface perpendicular to the skin surface,
resulting in 52 skull landmarks per face in a database. However this lead to
incorrectly determined skull landmarks for every face, because thicknesses are
measured perpendicular to the skull surface instead of the face surface. There-
fore, thicknesses are not set out anymore, but instead a thickness is considered
being an extra coordinate for the 52 face landmarks.

The major difference of the proposed statistical model with existing models
for craniofacial reconstruction is the incorporation of covariance knowledge be-
tween different facial information parts. Eliminating subsequently covariance
between different information parts from the model leads to more traditional
craniofacial models working with a single facial template in combination with
generic deformations.
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Statistical craniofacial reconstruction

Figure 1.4: The craniofacial model template is deformed or adapted towards
a given skull surface during the skull registration

Finding the facial outlook of a given unknown skull is the purpose of a
craniofacial reconstruction and is solved during the skull registration illus-
trated in figure 1.4. In a first instance a virtual copy of the skull is required
for a computer-based reconstruction technique. In a second instance a proper
choice of craniofacial model, reflecting our prior knowledge on the reconstruc-
tion problem, and a skull representation, being compatible with the craniofa-
cial model to establish a proper similarity criterium, are required. However,
one has to keep in mind that a virtual copy of the skull is never an exact copy
and that additional noise and outliers are incorporated during skull represen-
tation build up such that the skull registration must be robust against noise
and outliers. Finally, a proper validation framework is required to substanti-
ate on a scientific basis the added value of the reconstruction method during
crime-scene investigations.

The virtual copy of the skull substrate is obtained using a CT scanner.
Our primary choice of craniofacial model is the statistical model from the pre-
vious section. An automatic reconstruction procedure is obtained based on a
primary proposed implicit skull representation choice. A variational implicit
surface of the skull is created using variational scattered data interpolation
techniques. This implicit surface representation encodes for every 3D point an
approximated shortest euclidian distance perpendicular to the skull surface,
zero on the surface, positive outside and negative inside. The similarity mea-
sure needed for registration is based on the comparison of the VIS values, being
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signed distance values, with the ultrasound tissue depths in the 52 model tem-
plate landmarks. The goal of the skull registration is to reposition the 52 face
landmarks and to re-estimate the tissue depths such that the VIS values resem-
ble the tissue depths. However, the link between VIS values and tissue depths
is never 100% correct such that the similarity measure is corrupted by noise
(small errors) and outliers (gross errors). A second, more traditional, skull
representation choice, leading to a semi-automatic reconstruction, is based on
52 manually indicated craniometric skull points (corresponding with the 52
model template landmarks) and surface normal information (in contrast with
previous work). The similarity criterium between this craniometric skull rep-
resentation and the model is based on the procedure for measuring the tissue
depths in the database with ultrasound measuring technology. Trying to op-
timize this similarity measure during registration is then similar to measuring
the skull while reconstructing the face. However, the manual skull landmark in-
dications are error-prone and dependent on the expertise of the anthropologist
conducting the reconstruction, such that the similarity measure is corrupted
by noise and outliers.

To find the most plausible face according to our craniofacial model given
the skull representation we propose to use the robust statistical surface regis-
tration framework. The target surface is the skull surface. The choice of cran-
iofacial model is responsible for the floating surface, being the model mask
or template, and the transformation model based on the learned statistical
deformations. The similarity measure is defined based on the choice of skull
representation and is corrupted by noise and outliers. The statistical formu-
lated skull registration constructs and optimizes a robust objective function
combining a transformation model and similarity measure, while being robust
against noise and outliers. Outlier modeling is done using a probabilistic ran-
dom outlier latent variable in combination with the outlier-process model.

A first validation of the proposed craniofacial reconstruction method is
based on a database of 12 clinical patient cases and is used to simulate real-
istic reconstruction scenarios. Each facial sample is removed, in turn, from
the patient database and used as a test case. The resulting reconstructed fa-
cial skin surfaces can then be compared quantitatively and qualitatively, with
the skin surface of the test case representing the ground truth. Based on this
database a comparison between the results obtained with the craniometric and
the implicit skull representation is made. Furthermore a comparison between
the results obtained with different craniofacial models incorporating various
amounts of covariance within the same skull registration framework and based
on the same skull representations is made to validate the contribution of covari-
ance incorporated in the proposed statistical craniofacial model. Finally, the
contribution of the skull registration framework for robust model registration
is validated as well based on the clinical patient database.

A second validation is obtained by a leave-one-out cross-validation proce-
dure performed on the database used to build up the model and is used for
simulating controlled noisy and outlier skull data points in a craniometric rep-
resentation. Each facial sample is removed, in turn, from the model database
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and used as a test case. The remaining facial entries are used to create the
different craniofacial models. Because of the lack of complete skull surface
information in the model database, the implicit skull representation cannot be
used. Instead we use a better controlled, in terms of noise and outliers com-
pared to the patient database, craniometric skull representation. To examine
the robustness against small errors in the skull representation we gradually in-
sert gaussian distributed noise onto the skull-landmark positions. Additionally,
to examine the robustness against gross errors we inserted various amounts of
outliers within the skull representation.

1.3 Thesis outline

The structure of the thesis consist of three parts and is mainly determined
by the craniofacial reconstruction application. The first part is quite general,
introduces the CFR application and presents the underlying general method-
ology. The second and third part comprise the necessary chapters of the com-
plete CFR pipeline, which is schematically illustrated in figure 1.5. The second
part in combination with Appendix C concentrate on the facial database ac-
quisition and registration. The third part presents the statistical craniofacial
modeling and reconstruction approach.

Figure 1.5: Schematic overview of the chapters constituting the CFR pipeline,
Database building (Part II) containing registered facial surfaces and tissue-
depths, Craniofacial modeling and reconstruction (Part III)



1.3 Thesis outline 15

Part I: Application and general methodology

• Chapter 2: Defines and explains a general work-flow for computer-based
craniofacial reconstruction techniques while enumerating related work
concerning the main application.

• Chapter 3: Explains the robust statistical surface registration framework
using implicit function representations.

Part II: Facial database acquisition and registration

• Chapter 4: Concentrates on the facial surface assembling from several
partial surface or patch acquisitions.

• Chapter 5: Explains the establishment of dense correspondences on inter-
subject facial surfaces needed for statistical modeling.

Part III: Craniofacial modeling and reconstruction

• Chapter 6: Elaborates the statistical modeling of the acquired database
in order to obtain a statistical craniofacial model. Furthermore, statisti-
cal model manipulation according to a given set of skull property values
is explained as well.

• Chapter 7: In this chapter the statistical approach for craniofacial recon-
struction is given and applied on different craniofacial model and skull
representation choices. Furthermore, an extensive validation concerning
the several choices and the skull registration framework is given as well
in this chapter.

• Chapter 8: Gives a final conclusion and future work issues.

Appendices

• Appendix A: Two main approaches for robust statistics are presented
and applied to the surface registration problem.

• Appendix B: A principled approach to link robust estimators presented
in appendix A to a statistical model of how the measurements, including
the outliers, were generated is presented.

• Appendix C: Details concerning the ultrasound thickness acquisition
system are given in this appendix.

• Appendix D: Gives an elaborate related work overview concerning patch
registration and integration.

• Appendix E: A short related work overview concerning the non-rigid
facial surface registration for model building is presented.
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• Appendix F: Explains how a nonnumeric gender property can be con-
verted into a continuous numeric value in order to incorporate the gender
into the statistical modeling.

1.4 Main contributions

The major contributions of this thesis are:

• The definition of a general-work flow for computer-based craniofacial
reconstruction techniques combined with a complete overview of existing
methods.

• The development of a robust statistical surface registration framework
using implicit function representations that optimizes an inter-surface
distance measure over the parameters that define the geometric trans-
formation. We use a continuous, smooth and analytical, implicit surface
representation, which has particularly interesting properties for registra-
tion purposes. Robustness against noise and outliers of the surface mod-
els during registration is obtained using a Maximum a Posteriori (MAP)
formulation including a statistical inlier- and outlier-process model. This
framework is applied to solve different registration tasks necessary in the
complete craniofacial reconstruction procedure or pipeline

• The construction of a variational boundary function to retain the interior-
exterior concept within implicit representations for open surfaces.

• In order to provide a fully automatic, robust and accurate method for
aligning and integrating partial reconstructions without any prior knowl-
edge of the relative viewpoints of the camera or the geometry of the
imaging process, we developed a 4-step registration and integration al-
gorithm based on common memory efficient VIS representations of the
individual patches.

– Construction of VISS-images, being point signatures computed based
on VIS representations, to obtain an automatic crude pair-wise ini-
tialization.

– Application of the surface registration framework based on VIS rep-
resentations to solve pair-wise and multi-view fine registrations.

– The construction of a novel deterministic outlier detection function,
independent of the relative pose or distance histograms between two
partial surfaces, to deal with partial overlap between patches during
registration.

– The use of variational implicit functions for surface and texture
integration. VIS (surface function), VTF (texture function), VWF
(weight function).
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– The use of a common surface representation throughout the whole
algorithm such that integration and registration can be merged into
a single step.

• Application of the proposed surface registration framework to establish
dense point correspondences on inter-subject facial surfaces. To robustly
solve the facial surface registration, we propose to apply the presented
robust statistical surface registration framework based on a non-rigid
thin-plate-spline (TPS) transformation model and a similarity measure
deducted from a VIS target surface representation. Outliers, due to par-
tial overlap or missing data, are dealt with using a deterministic outlier
detection function and probabilistic outlier-process, similar to the outlier
handling during fine registrations of patches. Because of the non-rigid
and complex nature of the registration problem a deterministic annealing
optimization is applied.

• The development of a complete statistical approach for computer-based
craniofacial reconstruction. The core most abstract formulation of the
presented approach is: What is the most plausible or probable face, ac-
cording to a statistical craniofacial model being a face distribution, given
the (erroneous) skull data.

– The construction of an elaborated database for craniofacial surface
purposes using non-invasive measuring technology.

• Statistical modeling:

– The construction of a combined statistical craniofacial model. In
order to eliminate the template-related model bias and to min-
imize the unrealistic character of the reconstructions caused by
large generic model deformations, we propose a flexible statisti-
cal craniofacial model for reconstruction. We model the combined
population-dependent variance and covariance of complete skin sur-
face shape, 52 anatomical face landmarks with tissue depths, prop-
erty (age, BMI and gender) values and skin surface gray-value tex-
ture information.

– Statistical manipulation according to skull property values. The
creation of more realistic sub-population craniofacial models ac-
cording to a set of skull properties, derived from a anthropological
examination, is obtained by modeling and removing facial varia-
tions originating from property differences in the facial database.
The result is a property normalized craniofacial model.

– The generation of more lifelike reconstructions based on a texture
map derived from facial geometry, property value and tissue depth
information. This is accomplished trough the incorporation of gray-
valued texture variation.
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– The application of the proposed surface registration framework to
establish model-based point correspondences on facial surface sam-
ples. These model-based point correspondences are compared with
the TPS-based point correspondences to validate correspondence
consistency and therefore the quality of the statistical model.

• Statistical reconstruction:

– The application of the surface registration framework to tackle the
skull registration to obtain robustness against noise and outliers.

– The construction and the embedding of two different skull repre-
sentations into the registration framework. The first is novel and
based on VIS representation and the second is a cranio-metric rep-
resentation augmented with surface normal information.

– The derivation and the embedding of four different craniofacial
models into the registration framework. Eliminating subsequently
covariance between different information parts from the proposed
model leads to more traditional craniofacial models working with a
single facial template in combination with generic deformations.

– The initial establishment of a craniofacial reconstruction validation
framework based on a database with known facial outlooks using
quantitatively and qualitatively facial comparison techniques.
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Chapter 2

Craniofacial modeling and

reconstruction

”Sometimes it is believed that the old ways become obsolete, but the future is
nearly a repetition and mimicking of the past”

2.1 Manual CFR

When confronted with a corpse that is unrecognizable (figure 2.1) due to its
state of decomposition, skeletonisation, mutilation or incineration, and if no
other identification evidence is available, craniofacial reconstruction can be
considered. The goal of craniofacial reconstruction (CFR) is to recreate an
estimate of the face of an individual at the time of death, starting from the skull
specimen. Hopefully, this will trigger recognition by relatives such that further
identification evidence can be gathered from a restricted list of candidates.
Although craniofacial reconstruction is a valuable tool in the initiation of the
process of identification, eventually, positive identification has to be obtained
by classical techniques such as radiographic and dental comparisons or DNA-
analysis.

All facial reconstruction techniques are based on the assumed relationship
between the soft tissue envelope and the underlying skull substrate [8]. Several
3D manual methods for facial reconstruction have been developed and are cur-
rently used in practice. These reconstructions consist of physically modeling
a face on a skull replica (the target skull) with clay or plasticine. The Russian
anthropologist Gerasimov (1971) [9] was the first to make a manual reconstruc-
tion by modeling the complete anatomy of muscles and soft-tissues covered by
a thin layer of skin onto the skull. This anatomical or ”Russian”technique,
also referred to as the morphoscopic technique, was further refined by Lebe-
dinskaya and co-workers [10]. In the mean time an alternative technique was
developed in the United States, called the morphometric method [11]. This
technique consists of building the soft tissue layers in bulk, without much re-

21
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Figure 2.1: Example skull to identify. Due to the severe state of decomposition
craniofacial reconstruction is to be applied to help the investigation out of an
impasse.

gard to the rest of the underlying anatomy, approximating tabulated average
tissue depths at a sparse set of landmarks on the skull and interpolating in
between. An example of this technique is depicted in figure 2.2. More re-
cently, Richard Neave [12] used both Russian and American methods laying
the foundation for the combined technique, which was further developed by
Caroline Wilkinson [13] and her team at Manchester. The facial interpolation
in between manually placed soft tissue depth markers is based on the facial
muscles and soft tissue depths used in an anatomical manner. An example of
this sophisticated reconstruction technique is shown in figure 2.3 on the same
skull of figure 2.2. Proponents of this method believe that since the faces are
reconstructed according to the rules of anatomy, artistic subjectivity in areas
with limited tissue depth measurements is reduced.

Figure 2.2: Example manual craniofacial reconstruction, using the morphome-
tric technique performed by the FFI department of the Belgium federal Police
(Ben Claes)

Manual reconstruction methods, however, require a lot of anatomical and
artistic modeling expertise and remain as a result subjective. Two different
artists have a different feeling or knowledge about the facial features to re-
construct and make two different faces, which can be seen by comparing the
final faces in figures 2.3 and 2.2, using in this case a slightly different manual
technique. According to Davy et al. [14] this point is further illustrated in
[15], in which multiple facial reconstructions of several victims from the Green
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Figure 2.3: Example manual craniofacial reconstruction, using the combined
morphoscopic and morphometric technique performed by Ludo Vermeulen
(Belgium)

River serial-killer were created. The results were highly variable between prac-
titioners and with little success. Furthermore, these reconstructions take a lot
of time (several days), and, hence, are often limited to a single reconstruction.

Computer-based methods, on the other hand, can be consistent (given the
same input data and modeling assumptions, the same output results) and ob-
jective (knowing all the modeling assumptions). Moreover, since these methods
can be executed in a short time, multiple reconstructions from the same skull
using different modeling assumptions (older, thicker, ...) can be obtained. A
final advantage of using virtual computer models is the enhanced possibility
of visualization. The skull and the reconstructed face can be visualized to-
gether by making the face transparent, such that the face-skull relationship
can be examined and, if necessary, corrected. The development of software
for computerized facial reconstructions of an individual would be of benefit to
various law enforcement agencies, by allowing faster, easier and more efficient
generation of multiple representations of an individual.

In the following section we will give an exhaustive and critical review of the
published methods for computerized craniofacial reconstruction. We structure
the discussion following the general work-flow of a computer-based reconstruc-
tion set-up. Specific choices for each of the components in this work-flow are
compared, leading to the proposal of a new, improved computerized recon-
struction method that will constitute the central part of this thesis.

2.2 Computerized CFR: taxonomy and critical

review

Current computerized techniques all share the same general work-flow shown
in figure 2.4. They are essentially a virtual mimicking of manual reconstruc-
tion techniques and can be compartmentalized into six components. The skull
specimen is first examined by anthropological experts to determine subject
properties such as age and gender. These properties parameterize the cranio-
facial reconstruction model which codes for the a priori knowledge about facial
shape and its link to the skull substrate. In order to execute a computerized re-
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construction, a virtual skull copy has to be digitalized from the real specimen.
During reconstruction the craniofacial model is fit to a compatible computer
representation of the virtual skull. In a final stage, the reconstructed facial
shape can be additionally textured and rendered in order to generate images
for further distribution.

2.2.1 Anthropological examination

The skull, which has a craniometric individuality as distinctive as a fingerprint
[16], is the essential substrate and source of information of any craniofacial re-
construction. In a first instance, an anthropological examination is performed
in order to determine a set of skull properties including age, gender, race and
stature [17]. Sometimes it is even possible to determine or estimate the Body
Mass Index (BMI) based on remaining soft tissue layers on the skull or addi-
tional evidence found at the crime scene (clothes e.g). Computer assistance
for estimating race and gender is given by the software package FORDISC 2.0
[18, 19] which has recently been upgraded to FORDISC 3.0 [20]. This interac-
tive computer program offers custom discriminant functions for up to 21 man-
ual, human-guided, cranial measurements. Unlike most previously published
functions, this program allows classification, even with incomplete remains for
which only a limited number of measurements is possible.

Although no completely automatic computer-aided method supporting such
examinations exists too date, it is likely that automated skull classification
procedures will be developed in the same way facial archetypes describing a
various cohort of people are being developed today [21].

2.2.2 Skull digitalization

In a second part of the work-flow, a digitized version of the skull is obtained in
order to translate the skull shape into a machine-readable format for further
processing and visualization. This is comparable with a cast or mold construc-
tion of the skull for manual reconstruction techniques in order not to destroy
the original skull and, therefore, possible evidence.

Pioneering work on computerized three-dimensional craniofacial reconstruc-
tion was performed by Vanezis et al. (1989) [22]. In their work and in [14, 23,
24, 25] the skull is digitized using a laser scanning system. This system consists
of a computer controlled rotating platform, a projected laser line and a video
camera interfaced to the computer. Simple triangulation is used to derive the
3D shape of the skull from the recorded digital video images.
Thanks to recent advances in medical imaging technology, Computer Tomog-
raphy (CT) scanners have become a useful alternative for acquiring a digital
copy of the skull. A CT scanner produces a set of stacked 2D slices through
the skull on which the hard-tissue structure can be clearly distinguished from
other structures based on their relatively high CT intensity values. The sur-
face of the 3D skull can be extracted from the 2D slices using marching cubes
[26], hysteresis thresholding [27] or dynamic contour models [28]. All recent
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Figure 2.4: General work-flow of computerized craniofacial reconstruction
techniques
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computerized reconstruction techniques use CT scanners for skull digitaliza-
tion.

Both laser-based and CT-scanners have their limitations and shortcomings,
especially in the context of skull surface acquisition. CT scanners are sensitive
to amalgam teeth fillings resulting in heavy streak artifacts in the images as
shown in figure 2.5. The 3D surface extraction based on the stacked 2D CT
images generates a kind of moustache artefact around the teeth. Although laser
scanning is a general technique for scanning the outer-surface of 3D objects, the
skull surface may be too complex to reconstruct based on laser-line projections.
More importantly both scanners have a limited scanning resolution, such that
very small details of the skull are not acquired or copied. One has to keep in
mind that, while working with a virtual copy of the skull, errors due to the
used acquisition technique are introduced and are to be dealt with. A virtual
copy is never an exact copy of the skull specimen.

Figure 2.5: Streak artifacts in CT images resulting from amalgam teeth fillings

2.2.3 Craniofacial model

An essential step in the computerized reconstruction work-flow is the defini-
tion of a craniofacial model,which codes for the knowledge about human facial
shapes and their relationship to the underlying skull as learned over a rep-
resentative database of living subjects. A craniofacial model contains three
components: (1) a facial template describing the facial outlook, (2) a facial
template information source containing the knowledge relating faces to skulls
and, (3) a geometric deformation model describing the class of transformations
allowed in fitting the craniofacial model to a given skull specimen.

Craniofacial model template

A craniofacial model template is a computer representation of the shape of a
human face and can be classified following the hierarchical taxonomy shown
in figure 2.6. At the top level, templates either represent a holistic, complete
view of the face or represent the face as a collection of parts like the nose,
mouth, ears e.g. [22, 29, 30] and even muscles [14]. Complete facial templates
describe either a single reference head or multiple reference heads. A single
reference head can either be a generic/average face [23, 31, 32, 33, 34, 35] or
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Figure 2.6: Classification of craniofacial model templates

a specific similar face in terms of age, gender,race and skull dimensions drawn
from a database [24, 25, 28, 36, 37, 38, 39, 40, 41, 42, 43].

A first way to cope with multiple templates is to make an individual recon-
struction starting from every template in the database resulting in multiple
reconstructions for one skull substrate. Afterwards these results can be com-
bined as a weighted average [44, 45, 46] or analyzed using a technique from
structural analysis, Principal Component Analysis (PCA) [47]. A second, dual,
way is to analyze the templates with PCA [3, 4, 5, 6, 7, 48, 49, 50] before the
deformation towards the skull and to make a single reconstruction based on
the analyzed knowledge of multiple faces.

Property Normalization. By selecting appropriate template(s),and the
way multiple model templates are integrated, the reconstruction can be more
or less tailored to the skull property estimates as obtained from the anthropo-
logical examination. We call this tailoring process property normalization.

• In a pre-reconstruction property normalization mode, the craniofacial
model is normalized to the skull properties before a reconstruction is
made. This is the preferred mode, since the use of a craniofacial model
with properties or attributes that differ too much from the target skull,
could make the reconstruction too difficult, if not impossible.

• In a post-reconstruction property normalization mode, only the recon-
structed results are normalized to the estimated properties. This mode
of operation is interesting when a property of the reconstruction needs to
be altered from its value at the time of death to generate, e.g., a younger
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version of the victim when he/she could have been missing for several
years prior to his/her death.

In [25] a simple linear geometrical interpolation between two reconstruc-
tions with different skull properties, is used to generate intermediate recon-
struction results. They also state that ageing is a non-linear process, because
ageing will progress at different rates for different people affecting different
parts in the face in different ways.

A typical way to tailor the craniofacial model is to select one or a set of
reference heads from a database, of which the properties are similar to the
ones of the skull [24, 25, 28, 36, 37, 38, 39, 40, 41, 42, 43]. However this
requires an extended database containing enough samples for every possible
sub-population, which is labor intensive to acquire. Alternatively, one can try
to model or learn geometrical facial variations originating from attribute dif-
ferences between faces in a database in order to simulate age, corpulence, race
and gender changes. The advantage is that under-sampled sub-populations in
a database can still be represented by the interpolating nature of the attribute
modeling or learning process. In [4, 6, 7] a linear statistical interpolation of
attribute differences is learned. Claes et al. [4] use this to generate multi-
ple reconstructions starting from one reconstruction in a post-reconstruction
mode, while Claes et al. [6, 7] use this to manipulate the craniofacial model
itself in a pre-reconstruction mode. Before the fitting or reconstruction pro-
cess, shape variation in the statistical model coded by the values of the given
properties is removed. This results into a property normalized database of
facial entries with the same property values as the skull specimen, from which
a new statistical model with property variation eliminated can be calculated
and used during reconstruction. In other words every face in the database is
projected into the sub-population according to the given skull properties by
simulating an appropriate amount of age, gender and BMI change per face.
A non-linear ageing model is constructed in [51] based on the same statistical
face representation as in [4, 6, 7]. However, learning a non-linear ageing model
requires more and better sampled facial entries in a database compared to a
linear ageing model, which can already give a satisfying simulation.

Model Bias. If inappropriate templates are chosen, model bias can occur.
Model bias is the leaking through of specific facial feature details, originating
from the model template, into the reconstruction. Using only a single generic
or specific best look-alike reference head, the potential to produce model-biased
reconstructions is high, which is illustrated in figure 2.7. Indeed, when using
a subject-specific best look-alike template, based on similarity in ancestry,
gender and age, unwanted facial features of the template remain visible in the
final reconstruction (red ellipses in figure 2.7). Using a generic face template,
on the other hand, results in too smooth and unspecific a reconstruction. To
reduce or to resolve the model bias it is better to work with multiple reference
heads. Thinking about the human artist being the craniofacial model for
manual reconstruction techniques it is logical to work with multiple templates.



2.2 Computerized CFR: taxonomy and critical review 29

Figure 2.7: Illustration of model bias. Two reconstructions (B,D) made of the
same skull, represented as 52 skull landmarks and an estimate of the nose tip,
using a single generic (A) and specific (C) model template in combination with
a TPS deformation.

The knowledge of the artist is based on seeing many faces during his or her
live. An artist knowing only the geometry of his/her own face will make
reconstructions resembling him/herself. The goal is to create a computerized
craniofacial model keeping objectivity and incorporating the same amount of
knowledge as a human artist, which can only be done based on a database of
many faces.

Craniofacial model template information

The facial template information describes the knowledge relating faces to skulls
and, independent of the model template class, incorporates facial surfaces, tis-
sue thicknesses, skull surfaces and/or facial muscles. The simpler ones incor-
porate only facial surface information [22, 23, 29, 30, 31, 32, 33, 41]. Capturing
skull surface information combined with facial surfaces is typically obtained
using CT scans of living or deceased subjects [28, 35, 36, 37, 38, 39, 40, 42,
44, 45, 46, 49, 50, 52, 53]. A generic face model consisting of the outer facial
surface and 24 facial muscles was build by [34], using graphics modeling tech-
niques. This gives the possibility to animate the final reconstruction based on
muscle movements. Mang et al. [54] use Magnetic Resonance Imaging (MRI)
scanners to build up a database of reference heads. The major advantage
of MRI compared to CT is the enhanced visualization of different soft-tissue
types (muscles, fat,... e.g.). However, the distinction between hard-tissues and
air is less clear in MRI, making it hard to extract skull information from those
images. Finally, in our work [3, 4, 5, 6, 7, 48] a combined facial surface tem-
plate is used with soft-tissue thicknesses measured at 52 anatomical landmarks
according to [1, 2].

The choice of model template information is dependent on the type of scan-
ning material used to scan living subjects for building the craniofacial model.
The major advantage of using a CT scanner to build up a database is the pos-
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Figure 2.8: The facial geometry of a person in a horizontal supine position
(bottom row) and an upright position (top row). Local surface differences
visualized by means of a color-code ranging from 0 to 10 mm (right image)

sibility to have dense skull representations in combination with dense related
tissue depth measurements. A disadvantage however, is the involved irradia-
tion dose during CT scanning, limiting the reference database to patient data
and incomplete head scans or deceased subject data. Furthermore, CT images
are acquired of subjects in a horizontal, supine position. As a result, due to
gravitational forces, facial shapes extracted from CT images will differ from the
typical facial shape as viewed in standard upright position, which is illustrated
in figure 2.8. Recently, Cone-Beam CT scanners have been developed and are
being used in practice in which the subject can be scanned in an upright po-
sition. However the signal to noise ratio in such scanners is much lower than
traditional CT scanners resulting in noisy 2D CT slices, making it harder to
extract the skull surface accurately. An alternative to CT scanners is the use
of MRI scanners, which are considered not to be harmful. Again dense soft-
tissue depth measurements can be acquired, including differentiation between
different types of soft-tissue (muscles, fat e.g.). However, the same remark con-
cerning the difference in facial outlook between supine and upright position of
the subject during scanning stands for MRI scanners. Furthermore, the link
between the soft-tissue measurements of a subject and the underlying skull is
hard to establish because of the poor hard-tissue visualization in MRI. A third
choice of scanning material is the use of laser based or photogrammetry based
scanners. These scanners give the possibility to scan a person in a an upright
position, without being harmful. Laser scanners are considered to be accurate,
but the required acquisition time is in the order of several seconds making it
difficult for a person to stand still during acquisition, influencing the quality



2.2 Computerized CFR: taxonomy and critical review 31

of the scan. Photogrammetry scanners are less accurate but have a fast ac-
quisition time, which becomes important when scanning children. Both types
of scanners are limited to scan the outer facial surface, such that additional
measuring technology (ultrasound e.g.) is required to measure tissue-depths.
Because of the manual labor involved measuring the tissue-depths, the num-
ber of measurements is limited to a sparse instead of a dense set of anatomical
landmarks on the face.

Figure 2.9: Nose Tip manipulation of a face (left) with a generic TPS based
deformation (middle) and a face-specific statistical PCA based deformation
(right)

Craniofacial transformation model

The transformation models which are applied to the facial templates in order
to geometrically align them with the given skull are very diverse.
A first class of rigid transformations apply only a translation and rotation.
Incorporating scale and skew as well leads to another class of affine transfor-
mations. Rigid or affine transformations are used by all techniques in order
to bring both the skull and the craniofacial model into the same coordinate
system.
Starting from this rough alignment or crude registration, local surface defor-
mations are needed in order to adapt the model template exactly to the skull
specimen by making use of non-rigid or non-affine deformation models.

Generic deformations The majority of computer-based methods make use
of generic non-rigid deformations, which can be applied to a broad range of ob-
jects besides faces. A popular non-rigid and smooth transformation mechanism
is the use of Radial Basis Functions (RBF) as in [41]. RBF’s are functions cen-
tered around points in which the deformation or displacement is known, such
that the deformation is nicely interpolated and extrapolated in between and
outside the known displaced points or features. Thanks to the interpolation
and extrapolation properties other points besides the known displaced points
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of the facial template can be deformed or displaced as well. Thin plate Splines
(TPS) [55] are used as radial basis functions in [28, 35, 38, 39, 43, 47, 54], while
[14, 31, 32, 33, 46] use B-splines defined on a regular grid. [53] uses 2D in-
stead of 3D bicubic splines, because they converted the template deformation
problem from 3D to 2D by using a cylindrical mapping of the skull. [42] also
applies a 2D warp or deformation after taking a 2D image of the frontal view
of the 3D reference skull. Other generic non-rigid deformation models used in
computerized reconstruction techniques besides RBF’s are non-uniform scal-
ings [22], digital cosine transformations [44, 45], polygon-based deformations
[29, 56], diffused scattered motion fields [40], trilinear transformations [57],
volume distortion functions based on disc fields [36] and volume deformation
based on local cylindrical coordinate systems [37].

The advantage of using generic transformations or deformations is that they
are applicable to a wide range of objects and that no training or deformation
learning phase is necessary. However care is to be taken when using generic
deformations, because no knowledge of facial geometry and/or anatomy is
incorporated. They are just ”smooth”, but can deform a face into a Picasso
or Pinocchio look-alike face when not used carefully. To illustrate this we
applied an exaggerated displacement to the tip of the nose of the face in figure
2.9 (left). Subsequently the face was deformed based on this displacement
making use of a generic TPS interpolating deformation (figure 2.9 (middle)).
The resulting face has a bigger, but very pointy Pinocchio alike nose, which is
unrealistic and implausible according to human anatomy. No problem arises
when the differences between the model template and target skull are small.
However, when these differences are relatively large, the required deformation
will be more pronounced, which can result in unrealistic, caricature-like or
implausible facial reconstructions. This is also visible in figure 2.7, where large
differences between several corresponding landmarks on the model templates
and the target skull (the nose tip e.g) generate caricature-like final outlooks
of the reconstructions due to the large amount of non-affine TPS deformation
that has been applied. Especially, when using the subject-specific face, the
nose of the reconstruction looks unrealistic.

Face-specific deformations The use of a face-specific instead of a generic
non-rigid deformation model was first proposed by Claes et al. (us) in [3] and
also used by [49, 50]. Here, the facial template and the deformation model
are interrelated into a statistical model consisting of a geometrical averaged
facial template and a correlation-ranked set of modes of principal variations
that capture the major changes between different facial outlooks in a database
centered around the average. This template can be considered as an elastic
mask of which the elasticity is defined as the statistically allowed correlated
variation or covariance of facial surfaces. By changing the statistical model
parameters between the statistically determined boundaries, the mask is de-
formed in a face-specific way only. The disadvantage of using a statistical
model is the need of an elaborate database incorporating enough variability.
In order to overcome a lack of elasticity of the mask due to a limited database
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or limited variation in the database, [4, 5, 6, 7] combine the face-specific de-
formations with a more generic TPS based deformation, resulting in a flexible
but constrained deformation of the mask.

Generating a face-specific deformation model typically includes a learning
phase or a statistical analysis of a facial database. The advantage compared
to generic deformations is that faces can be deformed in a face-specific man-
ner within statistical boundaries, guaranteeing the facial plausibility. To show
the difference we deformed the face in figure 2.9 (left) based on the same
nose tip displacement making use of a statistical interpolating deformation
extracted from a PCA facial model resulting in the face of figure 2.9 (right).
The final nose is anatomically more acceptable than the one based on the TPS
transformation. The disadvantage is that the modes of face-specific deforma-
tion learned from a database are entirely dependent on the samples in the
database. Having a small database or a database with low inter-subject vari-
ance, generates a small and too restrictive set of deformation modes, so that
faces a-typical to the database are hard to reconstruct. It is best to have an
extended database or otherwise to combine the face-specific deformations with
generic deformations in order to reconstruct a wide range of different faces.

Figure 2.10: Two examples of errors in the skull representation (52 virtual dow-
els, based on manually indicated landmarks and surface normal information)
generating surface inconsistencies of the final reconstruction. Both reconstruc-
tions are made based on an adjusted average facial template (in terms of skull
properties) in combination with a generic TPS based deformation

2.2.4 Unknown skull representation

The fourth component in the work-flow is the skull representation, which is
related to the choice of craniofacial model. A skull can be represented or
parameterized in different ways depending on the type of relationship between
soft- and hard-tissues or template information incorporated in the craniofacial
model. The skull representation for manual reconstruction techniques is a
physical copy of the skull surface combined with dowels in specific anatomical
or craniometric landmarks whose lengths are equal to average tissue depths
according to the anthropological examination results.
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Craniometric skull representation

Quite a few computer-based methods [14, 22, 23, 29, 30, 31, 32, 33, 34, 40,
41, 43, 54, 56] adapt the manual reconstruction skull representation by in-
teractively positioning virtual dowels in a sparse set of anatomical landmarks
on a virtual copy of the skull whose lengths equal tabulated average tissue
depths. Others [14, 40, 58] expand the number of virtual dowels in between
the manually placed dowels at mathematically calculated intermediate points.
This virtual dowel representation is typically used in combination with a model
template consisting of facial surfaces, without skull surface or tissue depth in-
formation except for [43, 54]. The end-points of the virtual dowels represent
estimates of landmarks on the face surface, which are typically indicated on
the facial model template as well. Alternatively, some methods [22, 30, 33, 56]
use a tissue growth algorithm starting from the virtual dowel representation
to create an initial featureless mask of the face lacking eyes, ears, nose and
mouth. The tissue thickness distributions known in the landmarks are grown
starting from the skull surface by interpolating the thickness values for points
on the skull surface. This kind of fundamental facial shape representation can
be used in combination with facial models consisting of separate facial feature
parts. Something similar is done by [14], but instead of growing tissue, they
model the muscles onto the skull after which the facial parts and skin are
added. [3, 4, 5, 6, 7] also uses a sparse set of anatomical landmarks indicated
manually on the skull, but no thickness values are set out. Instead soft-tissue
thicknesses are incorporated into the craniofacial model instead of the skull
representation in order to exploit the influence of tissue thickness on facial ge-
ometry and vice versa. Thicknesses are set out starting from landmarks on the
skin surface perpendicular to the skin surface, resulting in 52 skull landmarks
per face in a database. We refer to these skull representations based on or
starting from manually indicated craniometric or anatomical skull landmarks
as sparse craniometric skull representations.

Dense point skull representation

Having a model template with both facial and skull surface information, a
dense point skull representation is possible. A first possibility is to represent
the skull with a set of control or feature points [28, 37, 42, 50] which can
be determined automatically and which can have a denser distribution than
the sparse craniometric representations discussed in the previous paragraph.
In the most extreme scenario, every point on a discrete digital representation
of the skull surface is used, but in practice a subset of points is defined. A
second possibility is the use of points on crest-lines as in [38, 39, 47]. These
lines follow the salient lines of the skull surface like the mandible, the orbits,
the cheekbones or the temples [39]. Thirdly, [35, 53] convert the 3D skull
into a 2.5D range image representation using a cylindrical mapping, which
is a conversion of (x, y, z) cartesian coordinates into angular θ, height h and
radial r coordinates. A 2D image is then defined such that the horizontal axis
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corresponds to the angular coordinate θ, the vertical axis corresponds to the
height coordinate h and the intensity in every pixel of the image is set to the
radial coordinate r. After the 3D to 2.5D conversion, a sparse set of salient or
fiducial points are manually indicated onto the 2.5D images.

Implicit Skull Representation

A completely different skull representation is used in [44, 45, 46]. A signed
distance transform (sDT) of the skull is constructed, representing for each
element in a 3D matrix the shortest euclidian distance to the skull surface,
zero on the surface, positive inside and negative outside. This implicit skull
representation is a dense almost continuous representation and does not only
code the original skull surface, but, at the same time codes an infinite set of
surfaces inside and outside the skull at certain iso-distances from the skull,
which are smoothed versions of the original surface.

2.2.5 Model to skull registration

The fifth component describes the registration, also called fitting or matching,
which is the process of finding and applying the geometrical relationship or
transformation between the craniofacial model and the skull. Starting from a
skull representation that is compatible with the chosen cranio-facial model, a
similarity criterium is defined, which expresses the goodness of fit of the cran-
iofacial model to the skull. The craniofacial transformation model is combined
with the similarity criterium into an objective function. During registration a
set of transformation model parameters is searched for, optimizing the objec-
tive function, by increasing the similarity criterium or goodness of model fit
within a range of possible transformation parameters. Once these parameters
are known, the complete facial template can finally be deformed/warped/mor-
phed towards the skull specimen.

A frequently used similarity criterium is the distance between correspond-
ing points or features in between the skull representation and the craniofacial
model. These correspondences can either be known or unknown before regis-
tration. If the correspondences are known, the registration simply reduces to
finding the parameters of the chosen deformation model that transform the
known corresponding points onto each other leading to an optimization of the
similarity criterium within the objective function. In case correspondences are
unknown they need to be searched for as well during registration leading to a
more complicated optimization task.
Having a sparse set of craniometric landmarks indicated both on the skull and
the model template in 3D [3, 4, 5, 6, 7, 23, 29, 31, 32, 34, 40, 41, 43, 54]
or 2.5D [35, 53], correspondences are established manually and are therefore
known before registration. The registration simply reduces to transforming
the manually determined corresponding landmarks onto each other. Using the
set of determined parameters the complete facial template can be transformed
towards the skull. However, having a more dens skull representation, the prob-
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lem of finding corresponding points or features is hard to solve manually and
some automatic correspondence procedure is needed. [28] and [40] both start
from interactively manual indicated points in order to establish more corre-
sponding points automatically. However, no further details are given. [37]
uses a volume-based correspondence algorithm, but again no further details
are given. [42] uses a correlation based measure in order to find correspond-
ing points in between the target skull and a reference skull. A very popular
automatic registration procedure with unknown correspondences is the Iter-
ative Closest Point (ICP) algorithm [59], which converges monotonically to
the nearest local minimum of the objective function expressing remaining dis-
tances between corresponding points. ICP is a iterative registration algorithm
alternating between correspondence update and parameter update in every
iteration step, until convergence occurs. A corresponding point on a target
surface of a point on a reference surface is the point lying closest in terms of
distance. Based on the closest points being corresponding points the trans-
formation parameters are updated, until the change in objective function falls
below a certain accuracy threshold. [38, 39] use an ICP alike algorithm to
align the points of the skull crest-lines. [47] also uses ICP to align crest-lines
on skulls, but afterwards more corresponding points besides the points on the
crest-lines are searched for, based on distance and point normal information.
[57] extends the ICP objective function with a matching symmetry constraint
in order to find more correct dense correspondences between skulls. In [50] they
further developed their method using these dense correspondences to find the
parameters of a statistical face-specific deformation model as a missing data
problem.

When using an implicit skull representation, no explicit point correspon-
dences are searched for, instead the complete sDT, represented as a 3D image,
of a reference skull is matched or registered with the sDT of the target skull
based on a sum of squared differences (SSD) similarity criterium in [45] or a
Mutual Information (MI) similarity criterium in [46]. The result is a better
control of the deformation away from the original skull surfaces, because skull
surface information is extended in terms of iso-distance surfaces to the skull.

An important issue concerning the registration of the craniofacial model
towards the skull is the presence of small errors or noise and gross errors or
outliers within the skull representation on which the registration is performed.
Besides the fact that a virtual copy is never an exact but a noisy copy of the
skull specimen, additional errors are introduced during skull representation
build up. Making a registration robust against small errors is done by in-
corporating a global transformation regularization into the objective function,
restricting the deformation. Instead of exactly interpolating or obeying the
skull representation an approximation is allowed, resulting in smoother (TPS)
or more facial plausible (PCA) deformations. The amount of regularization
needed is typically dependent on the amount of noise present in the skull rep-
resentation. The type of regularization is dependent on the a-priori knowledge
incorporated in the craniofacial transformation model. Outliers, however are
gross errors compared to the noise level present in the majority of the data
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constituting the skull representation and they severely influence the objective
function and therefore the final transformation parameters. Increasing the
regularization to deal with outliers makes the deformation too restrictive such
that the model template is not allowed to change. Instead outliers are to be
detected and either removed or their influence on the deformation parameter
estimation is to be reduced. This can be accomplished by using individual
skull data confidence values incorporated into the similarity criterium part of
the objective function. The lower the confidence value the lower the influence
on the parameter estimation. Removing outliers is then similar to setting the
appropriate confidence values equal to zero.

Manually indicating anatomical or craniometric landmarks on a skull is
error prone even for the most experienced anthropologist. Furthermore, the
surface normal in a point of the skull surface needed to set out an according
tissue-depth is only an approximation and heavily dependent on the skull
surface sampling density. Ignoring these errors during registration can result in
surface inconsistencies of the final reconstruction. Two examples are depicted
in figure 2.10. The mouth region of the left reconstruction is incorrect due to
bad placement of the virtual dowels in that region. Small unrealistic peaks
and dips are visible in the cheek and chin region of the reconstruction on the
right. A first challenge is to determine the amount of regularization needed.
A second challenge is to deal with wrongfully indicated landmarks. Using an
interactive program to correct the virtual dowels manually makes it possible
to generate a reconstruction based on trial and error. However, this can be
very laborious and time consuming. Alternatively, an individual confidence
value per landmark can be assigned and the deformation parameters can be
determined accordingly as in [54] for TPS based deformations. In practice, it is
not easy to manually assign confidence values, again leading to a trial and error
approach. So far, no automatic estimation of the noise level determining the
needed amount of regularization and of the individual confidence parameters
is incorporated during registration for craniofacial reconstruction.

Not only manually indicated skull representations incorporate errors. Sim-
ilar errors in points or features extracted with an automatic procedure to
construct and register skull representations exist. Here also, regularization is
to be incorporated during registration and outliers are to be dealt with. Ad-
ditionally, a new kind of outlier points or features can occur, which are skull
points or features extracted from the target skull having no corresponding fea-
ture or point in the craniofacial model or vice versa. This kind of errors due to
missing correspondences are to be detected and removed during registration.
[39, 47] incorporate such outlier removal during registration of the target skull
crest-lines and model crest-lines.

2.2.6 Texturing and Rendering

Generating a good approximation of the geometry of the face belonging to
a skull substrate is the most important prerequisite of a craniofacial recon-
struction technique, but in order to generate a lifelike appearance texturing
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the reconstruction is necessary. Manual reconstructions can be refined by the
artist painting directly onto the clay model. A few current computerized re-
construction techniques apply texturing in a final step of the work-flow after
the geometry of the reconstruction is created. 3D modeling software can be
used to virtually paint the eyes and mouth e.g. onto the 3D surface of the
reconstruction. Another possibility is to use texture mapping as in [14, 39],
which is a process akin to applying wallpaper to a flat surface. In this case
the wallpaper is a facial texture map like in figure 2.11 (b), mapped onto the
3D surface of a face (figure: 2.11 (a)), resulting in a lifelike 3D face viewable
from different angles (figure: 2.11 (c)). Besides texturing, a 2D sketch of the
3D reconstruction can be generated to make the final result more alive as in
[39].

Figure 2.11:

The final textured reconstruction result can now be rendered or visual-
ized with proper 3D visualization software. The advantage is that both the
skull and the facial outcome can be rendered together, while playing with a
transparency parameter in order to examine the face-skull relationship. This
kind of visualization makes it interesting to evaluate the reconstruction and
to correct possible errors.

Texturing the reconstruction is not without warning, because it can trigger
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a recognition into the wrong direction. Applying the texture map of a certain
living subject onto the facial geometry of a different person will trigger the
recognition towards the former person. It is not advised to use a texture map
from a particular individual, introducing unwanted fine detail. Instead an av-
erage texture map should be created and used to render the 3D reconstruction.
Average texture maps, belonging to different sub-populations are to be created
in the same way a craniofacial model for different sub-populations is necessary.
So far texturing is considered a separate final step after constructing the fa-
cial geometry of the reconstruction. However, it is thinkable of incorporating
texture information besides skull, face and tissue thickness information into a
craniofacial model based on multiple faces. This could give the possibility to
generate more specific compared to averaged texture maps according to the
geometry of the face, because the relationship between texture and geometry
could be modeled in the same way the relationship between skull properties
and geometry is modeled in [6, 7]. The use of 3D modeling software capable of
painting onto a 3D surface is interesting to create particular details like scars
or birthmarks when they are known to be present.

2.2.7 Validation

The last issue in the design of a computerized reconstruction technique is
validation. From an engineering point of view, a developed method can work
fine, but is useless in practice until properly validated. A first attempt to set
up a validation framework for craniofacial reconstruction methods has been
defined in [6]. A proper validation framework will hopefully substantiate on a
scientific basis the added value of reconstruction methods during crime-scene
investigations.

A database of skulls with known facial outlooks is needed for a proper val-
idation. Validation can be based on a leave-one-out cross-validation scenario.
Here every skull in the database is removed in turn, and used as a test case.
The resulting facial skin surface of the reconstruction technique can then be
compared with the skin surface of the test case representing the ground truth.
In a first instance a quantitative error evaluation can be performed by observ-
ing local surface differences. Calculating the distance between every point on
the reconstructed skin surface and its closest point on the ground truth skin
surface is a typical way to do this. However, this kind of distance calculations
are an underestimation of the local errors [60, 61], because they are typically
lower than distances calculated between anatomically corresponding points
onto the two surfaces. Comparing the two surfaces this way is interesting for
evaluating the reconstruction performance in terms of accuracy and provides a
spatial map of the difficulty of each facial region to be reconstructed. However,
the final goal of craniofacial reconstruction is not reconstruction accuracy, but
rather recognition or identification success. [6] used Euclidian Distance Matrix
descriptors [62] for 3D surfaces to compare the reconstruction with a database
of faces including the ground truth. Several other computer-based face recog-
nition descriptors can be used, which is currently an active research topic [63].
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A more realistic, human subjective, identification process can be simulated
by generating face-pool tests. Given an image of a reconstruction and a set
of possible candidate images extracted from the database, a human observer
is asked to indicate the face from the face-pool most similar to the given re-
construction. However, it is very difficult to generate realistic face-pool tests.
Finally, comparing the performance of different craniofacial models, skull rep-
resentations and/or registration algorithms is to be done within the same test
set and with the same comparing techniques in order to be objective.

2.3 Conclusion: towards an improved comput-

erized craniofacial reconstruction method

Forensic facial reconstruction aims at estimating the facial outlook associated
to an unknown skull specimen for victim identification. Manual reconstruction
methods require a lot of anatomical and artistic modeling expertise and are as
a result subjective and time consuming. The development of software for com-
puterized facial reconstructions of an individual would be of benefit to various
law enforcement agencies, by allowing faster, easier and more efficient genera-
tion of multiple representations of an individual. Computer-based methods are
essentially a virtual mimicking of manual reconstruction techniques involving
an anthropological examination influencing the choice of craniofacial model.
Subsequently this model is deformed or transformed towards a virtual copy
of the skull based on a similarity criterium extracted from a skull represen-
tation. The proper transformation parameters are determined by optimizing
an objective function combining the similarity criterium and the craniofacial
transformation model.

Besides the issues about craniofacial reconstruction in general, a number of
choices are to be made and a number of implementation issues are to be dealt
with while designing a computerized reconstruction technique. For every step
in the general work-flow of figure 2.4 several choices exist and problems are to
be coped with.

Based on the critical review in section 2.2, we propose in this thesis a
complete statistical approach for computer-aided craniofacial modeling and
reconstruction. The philosophy behind the reconstruction technique is to find
the most plausible or probable face, according to a face distribution or model,
given the erroneous skull data. A statistical craniofacial model for recon-
struction is used, eliminating the model-bias and minimizing the unrealistic
character of the reconstructions caused by large generic model deformations,
incorporating the combined population-dependent variance and covariance of
complete skin surface shape, 52 anatomical face landmarks with ultrasound tis-
sue depths, property (age, BMI and gender) values and skin surface gray-value
texture information, calculated from an extended database of faces measured
in an upright position. Furthermore, statistical manipulation or simulation of
properties is used to fine-tune the model towards a given set of skull properties.

In order to build up the statistical craniofacial model and to use it for cran-
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iofacial reconstruction, several registration problems are to be tackled. Firstly,
the complete facial surface acquisition of database samples is based on as-
sembling partial surface acquisitions. Secondly, different facial surface entries
within the database need to share dense correspondences in order to perform
a statistical shape analysis. Thirdly, the resulting craniofacial model is to be
transformed towards a skull substrate. Despite the three different registration
goals, the developed and used registration strategy is very similar. In the next
chapter we explain the core registration methodology or strategy using a sta-
tistical or probabilistic robust objective function formulation combined with
implicit surface representations.





Chapter 3

Surface registration

methodology

3.1 Introduction

In this chapter we will present a general framework for robust surface registra-
tion. Surface registration is defined as the process of finding the geometrical
transformation between two or more surfaces that aligns the surfaces as well
as possible. Independent of the surface representations, these transformations
map the coordinates of each point of one surface, called the floating surface,
into the coordinate space of the target surface.

As mentioned at the end of the previous chapter, different surface registra-
tion tasks are to be solved as part of the statistical craniofacial modeling and
reconstruction procedure proposed in this thesis.

• First, the acquisition of complete facial surfaces that make up the database
requires the assembling of partial surfaces. Indeed, most three-dimensional
(3D) surface acquisition systems generate several partial surfaces that are
to be combined to obtain a complete 3D object surface. The reason is
that a number of these acquisition systems can only compute 3D infor-
mation within a limited field of view. A 3D acquisition from a single
viewpoint is referred to as a patch or partial surface. A complete sur-
face is built from many patches or partial surfaces and can be seen as a
patchwork. The required number of views is mainly determined by the
complexity of the object. A more complex object will require more views
at which point it becomes interesting to have a fully automatic complete
surface acquisition system based on partial acquisitions.
Combining several patches into a single surface, involves two main phases
depicted in figure 1.2. First, in the registration phase, the patches are
accurately aligned into a common coordinate frame. Secondly, in the
integration phase, the registered patches are integrated into a single en-
tity. During patch registration, the floating surface is a particular partial
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surface or patch, while the target surface can either be another partic-
ular patch or an integration of all the other partial surfaces having a
partial overlap with the floating surface. The patch registration must be
robust against noise, both statistical measurement errors as well as gross
reconstruction errors, present in the individual patches. Furthermore, it
must be able to cope with outliers defined as points on one patch that
have no corresponding point on the other patch due to partial overlap
between the different patches.

• A second registration task concerns the establishment of dense correspon-
dences between different complete facial surfaces. The determination of
dense point correspondences is required to further statistically analyze
the facial shapes. Point correspondences are obtained by mapping 3D
points with known connectivity defined on a carefully constructed generic
reference face onto every face in the database as shown in figure 1.3. Here,
the generic reference face is the floating surface while the faces in the
database are the target surfaces. The result is that every facial surface in
the database is represented by the same amount of points with the same
connectivity, such that for every point on one surface the corresponding
point on every other surface in the database is known.
The facial surface registration must be robust against noise and must be
able to cope with outliers due to partial overlap or missing data. Noise
is here defined as incomplete or even erroneous intermediate point cor-
respondences as estimated during the iterative process of registration.
Indeed, as we will see later on, the registration is calculated in an alter-
nating sequence of determining point correspondences and calculating
the geometrical transformation mapping the estimated corresponding
points onto each other. Especially at the beginning of the registration
procedure, erroneous point correspondences will be established since the
shapes of the floating and the target surface are still very different. Miss-
ing data occur because the 3D surface acquisition device is not able to
acquire 3D information from highly textured regions (such as facial hair),
resulting in 3D surface acquisitions with holes or missing data. An ex-
ample is visible in figure 1.3: due to the presence of side-whiskers, the
3D facial surface contains holes or misses 3D surface information at the
location of the whiskers.

• The third and most important registration task is the craniofacial model
to skull registration illustrated in figure 1.4. Here, the floating surface
is the craniofacial model template, while the target surface is the un-
known skull surface. The skull registration must be robust against noise
or small errors and must be able to cope with outliers or gross errors.
Smaller errors are due to skull digitization effects and errors in manually
indicating craniometric landmarks (if necessary). Gross errors occur in
the teeth region because of CT-reconstruction artefacts. Furthermore,
gross errors are also caused by inconsistencies between the manual indi-
cation of the cranial landmarks (during Ultrasound-based measuring of
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soft tissue thicknesses on the subjects in the reference database) and the
automatic determination of these landmarks during the computerized
reconstruction procedure.

In order to solve these registration tasks, we developed a unifying frame-
work for robust, statistical, surface registration. It uses a principled,
statistical approach to simultaneously handle the measurement noise and out-
liers. The framework is presented in extenso in section 3.3. Prior to this, in
section 3.2, we propose a continuous, smooth and analytical, implicit surface
representation, which we will show to have particularly interesting proper-
ties for registration purposes. This framework is extensively used throughout
the thesis in the context of computerized craniofacial reconstruction. Starting
from the theoretical foundations of the surface registration framework given
in this chapter we will tackle every registration problem that is encountered.
Specific details about the different registration problems are given in chapter 4,
5 and 7 for the patch, complete facial surface and skull registration problems
respectively. However, the framework is also suitable to solve other surface
registration problems, besides the ones we encountered, as well.

3.2 Implicit surface representation

A surface can be mathematically defined as a two-dimensional manifold in
three-dimensional Euclidean space E

3. The most familiar surface examples
are those that arise as the boundaries of solid objects. Surfaces can be either
closed or open. An open surface is a 2D manifold consisting of a surface
interior, which is always non-empty, and its complement the surface boundary.
Open surfaces are not closed in either direction. This means that moving in any
direction along the surface will cause an observer to hit the edge or boundary
of the surface. The patch and complete facial surfaces in figures 1.2 and 1.3 are
open surface examples. A closed surface is one that is boundaryless, having
an empty boundary, and compact. Moving in any direction on such surfaces
will cause the observer to travel forever without hitting an edge. The skull
surface in figure 1.4 and the spherical surface in figure 3.1 are closed surface
examples.

For the purpose of registration a proper surface representation is to be
chosen. Three major surface representation classes exist: mesh or point-based
surfaces, parametric surfaces and implicit surfaces.

• In virtual reality and computer graphics or animation, a surface is of-
ten represented by a surface mesh of node points or vertices connected
by edges, forming simple polygons such as triangles or quadrilaterals.
The process of creating a mesh is called tessellation and generates a
discrete surface representation. Connected vertices or meshes are very
suitable for visualization purposes and are used throughout figures 1.2,
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Figure 3.1: A wire-frame visualization of a mesh represented sphere. A para-
metric and implicit representation of the same sphere are given in (3.1) and
(3.2) respectively.

1.3 and 1.4. Similarly, the sphere visualization in figure 3.1 is also ob-
tained by rendering the vertices and the polygon edges of the spherical
mesh representation. Often this representation is derived from another
representation as an intermediate or final representation for surface visu-
alization purposes. The disadvantage of a discrete representation is that
the surface is approximated by discrete samples forming local polygons
and therefore normals and tangents to the surface are approximated as
well and cannot be determined analytically.

• Instead, it is better to use a continuous surface representation. One such
continuous surface representation is the parametric representation. Let
f be a continuous, injective function from R

2 to R
3. Then the image of

f is said to be a parametric surface. The parametric representation for
the sphere in figure 3.1 is:

x = r sin θ cosφ

y = r sin θ sin φ

z = r cos θ

(3.1)

where θ and φ are the 2D angular parameters of the representation.
Tessellation for visualization is obtained by altering the parameter values
within predefined boundaries generating node points or vertices on the
surface. Restricting the range of the angular parameters for the sphere
in figure 3.1, generates an open surface instead of a closed surface, where
the boundary is defined by the parameter range. The disadvantage of
parametric surfaces is their topology dependency.

• Implicit surfaces, on the contrary, are topology independent continuous
representation. Suppose that f is a smooth function from R

3 to R whose
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gradient is nowhere zero1. Then the locus of zeros of f is defined as the
implicit surface. The implicit representation for the sphere in figure 3.1
is:

f(x, y, z) = x2 + y2 + z2 − r2 = 0 (3.2)

Implicit functions define the surface of an object as the zero level set
(f(x, y, z) = 0) of an analytical function f(x, y, z). The 3D surface is
therefore embedded into a 4D euclidian space E

4 consisting of 3D point
positions and an additional functional value. The advantage of repre-
senting surfaces implicitly is similar to the ”flat-landers”problem (2D
creatures not being able to see similarities in mirrored versions of each
other in a 2D world, but easily in a 3D extension). Indeed, by adding an
additional dimension, some representational disadvantages of parametric
representations disappear. Most notably, the representation automati-
cally adapts to the topology of the objects surface. Note that the function
f in (3.2) is a signed Distance Transform (sDT)2 to the spherical surface
with radius r, which is a special kind of implicit function. For points
on the spherical surface the function value is zero. When a 3D point
r = (x, y, z) lies inside/outside the spherical surface the function value
f(r) is the negative/positive distance to the spherical surface in the di-
rection of the sDT gradient ∇f(r) in that point. This is a very useful and
interesting property for surface registration purposes. When the points
of the floating surface are evaluated into the sDT of the target surface,
a notion of remaining distance and updating direction is implicitly given
within these points. 3D target surface information is extended to 4D in-
formation in terms of iso-distance surfaces, such that the space between
the floating and the target surface is filled with useful information about
directed distances to the target surface. Tessellation of implicit sDT’s
for visualization purposes is typically obtained using marching cubes [26]
or marching triangles [64].

Because of its continuous, topology-independent nature and the interesting
properties for registration purposes we propose to use a sDT (or an approxi-
mation thereof) implicit representation of the target surface. In the remainder
of this thesis, we refer to an implicit surface as being the sDT. The surfaces
to start from are, most often, mesh-represented surfaces, acquired with a 3D
capturing device. Therefore, an implicit function is to be derived from this
mesh represented surface by fitting this function through the points on the
surface.
The implicit function in (3.2) is an algebraic implicit function and is easily
determined because of the relative simple spherical geometrical form of the
surface in figure 3.1. However, algebraic implicit functions represent a limited
class of surfaces depending on the geometrical complexity of the objects.
A first way to deal with this problem is to sample the functional on a regular

1Otherwise the surface, defined as the locus of zeros of f , cannot be extracted as a
two-dimensional manifold.

2To be more exact: a signed squared distance transform.
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volumetric grid instead of determining the functional analytically. A volumet-
ric grid is placed around the surface and subsequently the signed distance of
every grid point to the closest point on the surface is determined and stored.
However, these grid-based implicit surface representations are very memory
inefficient. A surface is by definition very thin, such that the grid resolution in
the vicinity of the surface must be high, while the resolution further away from
the surface can be much lower. A grid structure is not intrinsic to a surface,
but artificial. Furthermore, sDT values and gradients are only approximated
by discrete grid point value interpolations.
Alternatively and more interesting than the grid-based sampled implicit func-
tional, analytical variational implicit functionals of complex surfaces can be de-
rived using scattered data interpolation or fitting techniques, where a smooth
function is created that passes through a given set of data points. The smooth-
ness is imposed by variational techniques.

We applied this variational fitting framework to create implicit surface
representations for the target surfaces. Details about the variational implicit
functions are given in section 3.2.1. The construction of variational implicit
surfaces based on these variational implicit functions is explained in 3.2.2.
Furthermore, the same variational implicit function fitting technique is used
in section 3.2.3 to determine an interior-exterior or boundary function for
open surfaces to cope with the lack of boundary notion within implicit surface
representations.

3.2.1 Variational implicit functions

A variational implicit function (VIF) is created from constraint points us-
ing a variational scattered data interpolation approach. These functions are
obtained as special cases of a scattered data interpolation problem using vari-
ational techniques, which we briefly introduce here [65]. Given a collection
of constraint points {ri = (xi, yi, zi)| 1 ≤ i ≤ N} with function constraints
{hi| 1 ≤ i ≤ N}, we want to construct a ”smooth”scalar-valued function f(r)
such that {f(ri) = hi| 1 ≤ i ≤ N}. The scattered data interpolation can be
formulated as a variational problem where the desired solution is a function,
f(r), that minimizes a functional ‖L(f)‖2, representing integrated curvature
e.g, subject to the interpolation constraints f(ri) = hi. The solution of the
variational implicit interpolation function f(r) can be expressed as a sum of
weighted radially symmetric basisfunctions (RBF) centered at the constraint
locations.

f(r) = v(r) +

N∑

i=1

λiφ(‖r − ri‖) (3.3)

with:

f(ri) = hi i = 1, . . . , N (3.4)

where:
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• v(r) is a low degree polynomial, typically linear or quadratic.

• φ is a real valued, radially-symmetric, radial basis function (RBF) cen-
tered around a constraint point.

• the λi’s are the RBF coefficients or weights.

• the ri’s are the RBF centers or constraint point locations.

Let V = {v1 . . . vl} be a monomial basis for polynomials of the degree of v(r),
and c = {c1 . . . cl} be the coefficients that give v(r) in terms of this basis. The
constraints (3.4) can then be written in matrix form as a linear system (3.5)
for determining Λ and c, and hence f(r).

(
Φ V

V t 0

)(
Λ

c

)
=

(
h

0

)
(3.5)

where:
Φi,j = φ(‖rj − ri‖) i, j = 1, . . . , N

Vi,j = vj(ri) i = 1, . . . , N j = 1, . . . , l
(3.6)

Depending on the type of regularization functional ‖L(f)‖2, solving (3.5),
which is called RBF fitting, for more than a few thousand constraint points is
computationally expensive and impractical (due to the size of the RBF ker-
nel Φ). Algorithmic improvements have been proposed involving hierarchical
domain decomposition [66] and fast multi-pole methods [67] for the function
fitting and evaluation to reduce the original computational complexity from

O(N3) to O(N log N) and the storage requirements from O(N2

2 ) to O(N). This
makes RBF’s practical for 1 million and even more constraint points. The ap-
proximation algorithms are implemented in the FastRBFTM library, which is
commercially available at [68]. As a consequence of the approximation meth-
ods, the equalities of the constraints (3.4) are only approximated. Therefore
two user-defined accuracies are needed. The first is the fitting accuracy and is
defined as:

maxi=1,...,N |f(ri) − hi|) (3.7)

The second is the evaluation accuracy defined as:

maxi=1,...,N |f(ri) − ai|) (3.8)

Where ai are the approximate values of the RBF’s at the points ri for i =
1, . . . , N .

For the RBFs φ, we use 3D biharmonic splines which are known as smoothest
interpolators, in the sense that they minimize certain energy functionals and
interpolate the data. Given a set of constraint points {ri = (xi, yi, zi)| 1 ≤ i ≤
N} with function constraints {hi| 1 ≤ i ≤ N}, the function f̂(r) that satisfies
the interpolation conditions and minimizes a bending energy regularization
functional ‖L(f)‖2:

f̂ = argmin(‖L(f)‖2) (3.9)
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where
‖L(f)‖2 =

∫
R3(

∂2f
∂x2 )2 + ( ∂2f

∂y2 )2 + ( ∂2f
∂z2 )2 + . . .

2( ∂2f
∂x∂y

)2 + 2( ∂2f
∂x∂z

)2 + 2( ∂2f
∂y∂z

)2dr

(3.10)

is the 3D biharmonic or thin-plate spline (TPS) φ(r) = r. The RBFs will
smoothly change in value between the constraint or interpolation points. As a
consequence interpolation and extrapolation are inherent to the f functionals.

Using TPSs, a smooth transition of the function f in between consecutive
constraint points is obtained, while interpolating through the function con-
straints. When dealing with noisy constraint points and function constraints,
additional smoothing is necessary and, instead of exact interpolation, an ap-
proximation of the constraint points is obtained. In [69] different possible
smoothing techniques for VIFs during evaluation or fitting are explained and
shown on noisy data. One of those techniques, called spline-smoothing, is
achieved during fitting by modifying the smoothness criterion in (3.9):

f̂ = argmin

(
ν‖L(f)‖2 +

1

N

N∑

i=1

(f(ri) − hi)

)
(3.11)

with ν ≥ 0 and ‖L(f)‖2 the smoothness penalty defined in (3.10). According
to [69], ν is similar to an inverse spring constant. If ν = 0, the springs are
inextensible and the VIF f(r) is forced to pass through the data points. When
ν > 0, the springs can stretch and the VIF is pulled close to the function
constraints in the constraint points, but not forced to pass through them.
Solving the fitting problem in (3.5) with ν > 0, again leads to a closed form
linear system: (

Φ + νI V

V T 0

)(
Λ

c

)
=

(
h

0

)
(3.12)

with I the identity matrix. Increasing the value of ν is essentially trading
off constraint fidelity or confidence in favor of smoothness or approximation
instead of interpolation.

3.2.2 Variational implicit surfaces

A variational implicit surface (VIS) is an iso-surface of a 3D variational implicit
function (VIF), as was first introduced in [70] for closed surfaces. Alternatively,
a VIS representation is the representation of a surface with a variational im-
plicit function. Given the machinery of variational techniques for scattered
data interpolation, how can we use this to build a VIS representation? We
follow the recipe as proposed by Carr et al. [65] and illustrated in figure 3.2.
The constraints in (3.4) that we use to build a VIS = d(r) representation,
consist of surface location-constraints and normal-constraints. The location-
constraints are the 3D coordinates of the surface points through which the
zero iso-surface or level-set of the function d(ri) should pass (hi = 0) and the
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Figure 3.2: Construction of a VIS representation. Starting from the original
surface (left) interior- (green points) and normal- constraints )blue and red
off-surface points) are defined (middle), through which a variational implicit
function is fitted resulting in the V IS representation being the zero level-set
of the VIF (right). The latter is visualized after tessellation of the VIS

normal constraints are positive/negative valued constraints (hi = ±d) that
are placed near the location-constraints, and are positioned outside/inside the
surface at a certain distance d along the normal direction. Choosing these
constraints leads to an implicit function d(r) that is a very good approxima-
tion (at least close to the surface, and gracefully degrading away from it) of a
Euclidean signed distance-to-surface function or sDT.

When using three-dimensional biharmonic or thin plate splines as RBFs,
interpolation and extrapolation are inherent to the VIS representation. Small
holes in the surfaces are interpolated and the extrapolation properties allow
the function d(r) to be evaluated anywhere in 3D, on and off the surface.
Evaluating the function in a point off the surface will give an approximation
of the signed distance to the surface in that point when using the location-
and the normal-constraints. In figure 3.2 the interpolation and extrapolation
properties for an example surface are clearly visible.

The fitted 3D variational implicit function, from which the zero iso-surface
d(x) = 0 can be extracted using implicit function tessellation techniques, is
a continuous function that can be evaluated anywhere, not just on a discrete
grid. Furthermore, gradients are continuous and smooth and can be deter-
mined analytically. The representation, like any other implicit representation,
is topology independent, but in contrast to most other implicit function rep-
resentations, no memory inefficient and resolution limiting volumetric-grid is
used. The number of parameters to be stored is only dependent on the number
of constraint points and can even be reduced using approximation techniques.
These approximation techniques also allow for a built-in data smoothing with
variational implicit functions and surfaces either during evaluation or during
fitting of the function (3.3), like the spline-smoothing in (3.11) during fitting.
In [69] the different smoothing techniques during evaluation or fitting are ex-
plained and shown on noisy data.
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input triangles X dim. Y dim. Z dim.

54850 211 mm 298 mm 260 mm

GRID grid sampling Dimensions memory

representation 1 mm 221x249x182 78.25 Mb

VIS accuracy constraints memory

representation 1e-04 mm 55790 1.85 Mb

Table 3.1: Comparison of memory occupation between an uniform grid and a
VIS representation.

Besides smoothness properties and the continuous analytical formulation,
an additional advantage of VIS representations compared to grid-based im-
plicit surface representations is memory efficiency. Table 3.1 shows a com-
parison of memory occupation in matlabTM R13 (double accuracy) between
a uniform grid representation with no memory optimization and a VIS repre-
sentation of a facial surface. Observing table 3.1, note that, in practice the
structure of grid representations are optimized (e.g Octree structures) instead
of uniform, reducing the grid memory occupation but leading to additional
overhead.

3.2.3 Variational boundary functions

VIS representations were originally proposed in [70] for closed surfaces. How-
ever, due to the implicit nature of the VIS representation, being embedded in
a higher-dimensional space, it is hard to retain the boundary concept for open
surfaces. As a result, open surfaces are extrapolated outside their boundaries
during tessellation of the corresponding implicit function depicted in figure 3.2
(right). These extrapolations and interpolations are correct in the vicinity of
the boundary, but deteriorate as one moves further away from the boundary.
In order to use VIS representations correctly for open surfaces such as the patch
and complete face surfaces in figures 1.2 and 1.3, we developed an additional
variational implicit function. This function implicitly encodes the boundary
of an open surface, such that the interior and boundary or exterior concept for
open surfaces is retained within a VIS representation. This variational bound-
ary function (VBF) is constructed using the same variational interpolation or
fitting technique from section 3.2.1 based on distance to border or boundary
constraints.

The determination of the boundary constraints is illustrated in figure 3.3.
First, we determine the border ∂S of an open surface S. Then, the geodesic
distance3 d(ri, ∂S) of every point ri belonging to the interior ∃S of the open
surface S to ∂S is determined. We then define a set of boundary constraint
points {ri|i = 1, . . . , Ns} with Ns the number of points on the surface S and

3The geodesic distance between two points is approximated as the shortest list of con-
nected edges (of the tesselated surface) connecting the two points.



3.2 Implicit surface representation 53

Figure 3.3: Construction of the boundary constraints. First, the boundary
points of the surface are detected (blue points in left figure). Then the Eu-
clidean distance of every point to the closest boundary point is determined
(middle). Finally, these distances are normalized between 0 and 1 according
to (3.13) (right). Distances are visualized using a colormap

associated function constraints {hi|i = 1, . . . , Ns}:

hi = w′ log(1 + w′′d(ri, ∂S)) (3.13)

This function has been chosen such that the function constraints increase
rather quickly for points further away from the border of the patch. Fur-
thermore, distances to the boundary are normalized between zero and one,
but any other similarly behaving function can be substituted. Possible values
for (w′, w′′) are (1/ log(100), 99/(maxid(ri, ∂S))).

Figure 3.4: Evaluation of the V BF in three different iso-surfaces of the V IS
representation of the surface in figure 3.3 (Left) tessellation of the - 6 mm
iso-distance surface evaluated in the V BF , (middle) zero iso-distance surface
tessellation and (right) + 6 mm iso-distance surface tessellation

If we construct a variational implicit boundary function VBF =b(r) from
the constraints in equation (3.13), we obtain a partitioning of E

3 into a positive
and negative region. Based on the interpolation and extrapolation properties
of b(r), points in 3D located directly above and below the surface S will evalu-
ate positive in b(r), decreasing slowly with increasing distance from the surface,
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while points next to and far away from the surface will evaluate negative. In-
deed, starting in a point in the middle of S and approaching the border of S,
the function b(r) will gradually decrease to zero. When traversing the border
this decrease will continue and b(r) becomes negative. This can also be seen
in figure 3.4. Observing the middle image in figure 3.4, if we evaluate the tes-
sellation or mesh of the zero iso-distance surface from the VIS representation
in the VBF and only retain the tesselated vertices evaluating zero or positive
(red to green values), while discarding the tesselated vertices evaluating neg-
ative (light blue to dark blue), then we reduce or cut-off the extrapolations
generating a surface tessellation close to the original open surface. Through
the adaption of the cutting off threshold from zero to a small negative number,
an amount of extrapolation and interpolation can be retained if wanted. Using
the concepts of VISs and VBFs we build a surface registration framework in
the following section and subsections.

3.3 Robust surface registration framework

In this section we present our general methodology for point sampled surface
registration, based on a statistical embedding which is robust to noise and
outliers and which uses implicit surface representations for the target surface
as presented in the previous section. Robustness to noise is obtained by casting
the registration as a statistical estimation problem resulting in a Maximum
A-Posteriori (MAP) objective function formulation. As stated in [71], MAP
approaches have proven to be very useful theoretical frameworks, equipped
with a set of powerful and well developed mathematical techniques with clear
assumptions. Robustness to outliers is obtained by defining a weighted MAP
objective function using inlier and outlier beliefs resulting from appropriate
probabilistic inlier- and outlier-processes. Throughout this section, the floating
surface, in contrast to the target surface, is represented as a set of connected
3D points. The final goal of registration is to reposition the points of the
floating surface as good as possible at prescribed distances (most often zero,
but some applications require an offset distance) to the target surface.

As already partially mentioned in the introductory chapter, a registration
algorithm generally requires the following four main components.

• A similarity measure (section 3.3.2), which estimates the correctness of
a given transformation by comparing the transformed floating surface
with the target surface.

• A transformation model (section 3.3.1) restricting the geometric trans-
formation to an application-specific family of transformations.

• An appropriate error, energy or objective function (section 3.3.3), which
combines both the similarity measure and the transformation model.

• A numerical optimizer (section 3.3.4) which generates a sequence of
transformation estimates converging to the position where the similarity
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between both surfaces is maximal within the range of possible transfor-
mations by optimizing the objective function towards a global optimum.

Often, prior to surface registration, an initialization (section 3.3.5) is required
to bring both the floating and target surface within the same coordinate system
and to ensure that the optimizer converges to the correct global optimum of
the objective function.

3.3.1 Transformation model

The transformation model stipulates how the points on the floating surface
can be transformed to the target surface. Given a floating surface Sf =
{rf

i |i = 1, . . . , Nf} consisting of Nf three-dimensional points. Suppose the
transformation can be abstractly represented by a function T with parameters
θ. Applying it to a floating surface point rf

i will map or transform it to its new

location rf∗
i = T(rf

i , θ) such that the complete transformed floating surface
Sf∗ can be defined as:

Sf∗ = T(Sf , θ) = {T(rf
i , θ)|i = 1, . . . , Nf} (3.14)

The choice of using a particular type of transformation model reflects our prior
knowledge on the registration problem. Depending on the registration prob-
lem and the presence of noise within the target surface, not all transformations
are feasible or realistic so that certain mapping constraints are imposed to en-
sure that the transformation behaves according to our prior knowledge. These
constraints, inducing a transformation regularization, can be modeled prob-
abilistically using a Gibbs prior distribution on the parameters θ, restricting
the space of possible transformations:

p(θ) =
1

Zpart

exp
(
−ν‖L(θ)‖2

)
(3.15)

This Gibbs prior distribution expresses the probability of a certain transfor-
mation parameter setting θ, within the range of possible parameters, favoring
more plausible transformations, with Zpart a normalization constant and ν a
weighting factor. L is an operator on the parameters θ and represents the
regularization on the transformation as ‖L(θ)‖2. Regularization prevents the
transformations from behaving too arbitrarily. Furthermore, regularization
ensures the constrained propagation of the transformation results from ar-
eas with salient registration evidence into areas where registration evidence is
largely absent or not defined. As a result, registration based, e.g., on a limited
subset of floating surface points (see section 3.3.2), can be propagated to the
complete set of floating surface points.

Linear transformations The simplest transformation model is the class
of rigid transformations, only compensating for overall differences in pose by
global translation and rotation. This rigid transformation model does not
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allow any local deformation of the floating surface and is, for example, used
during the patch registration problem in chapter 4. Including global scale and
skew into the rigid transformation model leads to the class of affine or linear
transformations, but still no local surface deformations are allowed. When
using either affine or rigid transformations the regularization or parameter
probablilties in (3.15) trivially reduce to a constant, because rigidity is inherent
to the transformation model.

Non-linear generic transformations Using non-rigid or non-affine trans-
formation models allows local surface deformations. Depending on the kind of
transformation parametrization and regularization, different non-rigid trans-
formation models exist from which we use two types within this thesis. A first
type that we use are the generic functional transformation models obtained
by a parametrization of the transformation as a weighted sum of generic basis
functions similar to the variational implicit functions in (3.3) which already in-
corporate a mathematical regularization. The regularization typically includes
a smoothness measure, ensuring local surface consistencies after transforma-
tion, and a smooth transition of the floating surface towards the target surface.
The prior distribution in (3.15) will favor transformation parameters generat-
ing smoother transformations. These transformation models are mathemati-
cally well defined and are applicable to a wide range of surfaces from different
objects without a learning phase and, hence, can be called generic. We use a
generic transformation model with TPS basis functions for the complete facial
surface registration problem in chapter 5, were a generic face surface being
the floating surface is to be locally adapted and smoothly mapped towards
a target facial surface from the database. Note that these generic functional
models are also widely used in current computerized craniofacial reconstruc-
tion techniques.

Non-linear statistical transformations The second non-rigid transfor-
mation type that we use is an object-specific, statistical transformation model.
It is constructed by a parametrization of the transformation as a weighted sum
of object-specific deformations. The associated regularization is statistical in
nature and represents the plausibility of the applied deformations according
to an object deformation distribution. The prior distribution in (3.15) will
favor transformation parameters generating more plausible object surface in-
stances. These transformation models ensure that the surfaces are deformed
in an object-specific way only, but they require a learning phase. This learn-
ing phase consists of co-registering object instances within a database to some
reference object structure, using a generic non-rigid transformation model for
example. Once the statistical transformation model is learned new object in-
stances can be registered using the statistical inferred transformation model,
which is shown in chapter 6.
We use a statistical non-rigid transformation model with principal component
deformations learned in chapter 6 for the skull registration problem in chapter
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7, were the craniofacial model template (the floating surface) is to be locally
adapted and mapped in a face-specific way towards a skull surface (the target
surface).

3.3.2 Similarity measure

In the context of surface registration, the similarity measure is a functional of
the transformation parameters that returns a scalar number quantifying how
well the floating and target surfaces are geometrically aligned (irrespective of
the plausibility of the applied transformation). Similarity can be expressed us-
ing different kinds of surface characteristics, e.g. geometry (location), texture,

curvature,. . . Using a point-based floating surface Sf = {rf
i |i = 1, . . . , Nf}

representation, the surface similarity is typically defined over a subset {rf
j |i =

1, . . . , N} with N ≤ Nf of the floating surface points.
A general geometry-based individual point similarity sj implies that the

point rf
j is to be transformed to a new position T(rf

j , θ) at a predefined dis-

tance4 dj(θ) to the target surface St. In its most general form, this individual
point similarity can be mathematically represented as a function of the trans-
formation model parameters θ according to:

sj(θ) = D(St, T(rf
j , θ)) − dj(θ) for j = 1, . . . , N (3.16)

with D(S, r) the distance between a point r and a surface S. Hence, optimizing
this similarity measure is equivalent to eliminating the difference between the
distance D(St, T(rf

j , θ)) at the currently estimated positions of the floating

surface points rf
j and the predefined dj(θ) distances by finding an appropriate

set of transformation parameters θ. The values of the predefined distances
dj(θ) are different for different registration problem. For the patch and the
complete facial surface registration problems, the predefined distance values
for points on the floating surfaces are all set to zero and independent of the
transformation parameters. For the skull registration problem, on the other
hand, the predefined distance values are equal to ultrasound thickness values
in 52 face landmarks points of the craniofacial model template floating surface.
Dependent on the craniofacial model used, the predefined distances change as
a function of the transformation parameters as well.

The way the current distance D(St, T(rf
j , θ)) is calculated for a point of

the floating surface to the target surface is dependent on the target surface
representation. In traditional point-based or mesh-based surface representa-
tions for the target surface St = {rt

i|i = 1, . . . , N t}, the current distances are
determined based on the distance between corresponding points on the two
surfaces, established either manually or automatically. Given a subset of cor-
responding points {(rt

j , r
f
j )|j = 1, . . . , N} with N ≤ Nf and N ≤ N t, then the

4In most applications, this predefined distance will be zero. However, certain applications,
such as the positioning of a skin floating surface at a certain distance from a skull target
surface, require the floating points be positioned at a non-zero distance from the target
surface.
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current distance is defined as ‖rt
j −T(rf

j , θ)‖. A typical individual point simi-
larity sj as a function of the transformation parameters θ using a point-based
target surface representation is then defined as:

sj(θ) = ‖rt
j − T(rf

j , θ)‖ − dj(θ) for j = 1, . . . , N (3.17)

When the predefined distances dj are zero, then (3.17) amounts to the signed
Euclidean Distance to the closest point which is a well-defined similarity cri-
terium and the resulting transformation is a one-to-one mapping between cor-
responding points. However, when the predefined distances are different from
zero, then (3.17) is an ill-defined similarity criterium and the resulting trans-
formation is a one-to-many mapping. Indeed, a point can be transformed to
every point on a sphere with radius dj 6= 0 around the corresponding point. In
order to solve this problem, additional surface information besides correspond-
ing point positions is to be incorporated within the similarity measure favoring
certain positions along the spheres of possibilities. An example is given in chap-
ter 7 where, using a traditional craniometric point-based skull representation,
the skull landmark position information is augmented with skull surface nor-
mal information favoring spherical possibilities in the direction of the positive
skull surface normal.

Alternatively, we propose the use of an implicit target surface representa-
tion for the current distance D(St, T(rf

j , θ)) calculation. When using a VIS

representation dt(r), as defined in section 3.2.2, for the target surface St, the
current distance is straightforwardly and implicitly obtained by evaluating the
transformed floating surface points T(rf

j , θ) into dt(r). The proposed individ-
ual point similarity sj as a function of the transformation parameters θ using
a target VIS representation is then defined as:

sj(θ) = dt(T(rf
j , θ)) − dj(θ) for j = 1, . . . , N (3.18)

In contrast to (3.17) this similarity criterium is well-defined even with non-
zero predefined distances dj . Here, the mapping possibilities are restricted to
lie on iso-distance surfaces that smoothly copy the target surface geometry
at different distances from the zero-distance surface. Furthermore, no explicit
notion of point correspondences is necessary, resulting in an alternative opti-
mization strategy given in section 3.3.4, when point correspondences are not
known prior to registration. But, before we discuss the optimization strategy
for this kind of geometry-based VIS similarity measure, we first combine the
transformation model from the previous section with the similarity definitions
from this section into an objective function in the next section.

3.3.3 Objective function

The objective function combines the individual point similarity measures and
the transformation model, such that the optimum (minimum or maximum) of
the function corresponds to a set of transformation parameters θ that maxi-
mizes the individual point similarities sj(θ) while taking the transformation
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regularization ‖L(θ)‖2 into account. Furthermore, the objective function must
be robust against noise or small errors and outliers or gross errors in the tar-
get surface data. We propose to derive this objective function using a prin-
cipled statistical approach in which prior probabilities (the transformation
model) are combined with likelihoods (the similarity measure) into a Maxi-
mum A-posteriori Probability (MAP) objective function. As a result, robust-
ness against statistical noise is easily obtained, through the explicit modeling of
an inlier-process. Furthermore, robustness against outliers is obtained through
the explicit modeling of an outlier-process combined with the inlier-process.
The final result is a better underpinned objective function quasi self-regulating
robustness against noise and outliers. Furthermore, we will show equivalent
closely related M-estimators from robust statistics [72] techniques for param-
eter estimation. Doing so, outlier influences in the objective function can be
analyzed.

Noise robust MAP objective function

In this section, the registration problem is reformulated into a statistical
Bayesian framework, leading to a Maximum A-posteriori Probability (MAP)
objective function: What are the most probable parameters, according to a
prior transformation model, transforming the floating surface towards noisy
target surface data while increasing matching quality. Mathematically, this is
similar to finding the MAP parameters maximizing the posterior probability
p(θ|St), which is, according to Bayes’ rule, equal to:

p(θ|St) =
p(St|θ)p(θ)

p(St)
(3.19)

resulting into the following MAP formulation, where p(St) is omitted because
it is independent of θ:

θ̂MAP = argmaxθ (log p(St|θ) + log p(θ))

= argminθ (− log p(St|θ) − log p(θ))
(3.20)

Taking the negative log-likelihood, the MAP is restated into a minimization
problem. p(θ) is the transformation model or, more generally model-likelihood,
reflecting our prior belief on the possible transformations. It acts as a regular-
ization ensuring that the deformation behaves according to our prior knowledge
and was probabilistically defined in (3.15) as a Gibbs prior distribution. The
first term in (3.20) is the complete data-likelihood p(St|θ), which expresses
the probability of measuring the target surface data St given a transformed
floating surface, using the individual point similarities defined in (3.16), while
taking the target surface noise into account. The presence of noise influences
the individual point similarities defined in (3.16) resulting in erroneous point
similarity s∗j measurements:

s∗j (θ) = sj(θ) + ǫ for j = 1, . . . , N (3.21)
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Assuming that the errors ǫ can be modeled as additive Gaussian or normally
distributed i.i.d. noise with zero mean and standard deviation σ, then the com-
plete data-likelihood can be formulated as a product of Normally distributed
evaluations with given parameters Θ = {θ, σ}, including the unknown noise
standard deviation:

p(St|Θ) =

N∏

j=1

p(sj |Θ) =

N∏

j=1

1√
2πσ

exp

(
− 1

2σ2
(sj(θ))2

)
(3.22)

p(sj |Θ) is a a Gaussian probability density function (PDF) or distribution
constituting the inlier-process, which is defined based on the point similarity
measures sj centered around a zero mean with noise or error standard deviation
σ. This inlier-distribution represents the probability of a residual sj(θ) (Eq.

3.16) between a certain current distance D(St, T(rf
j , θ)) to the target surface

St and a predefined distance dj being explained or being an inlier according

to a transformed floating surface point rf∗
j instance or realization taking into

account the allowed deviation σ. Applying (3.15) and (3.22) into (3.20) gives
the following MAP objective function:

E(Θ) =
∑N

i=j [− log p(sj |Θ)] − log p(θ)

=
∑N

j=1

[
1

2σ2 (sj(θ))2 + log
√

2πσ
]
+ ν‖L(θ)‖2 + K

(3.23)

With K a constant independent of Θ, which can be dropped during optimiza-
tion (see section 3.3.4). The target surface noise is explicitly modeled through
σ and must be estimated as well. ν is a weighing factor regulating the tradeoff
between matching quality and transformation regularization, which is impor-
tant when the target surface data is noisy. Choosing ν too low/high, results in
an over/under-fitting of the noisy target surface data. Somewhere in between,
an optimal ν value has to be chosen, fine-tuning the amount of regularization
in order to generate the optimal registration result. The optimal ν value is
dependent on the amount of noise present in the target surface data. To show
this, the objective function is multiplied with two times the noise variance σ2

resulting in:
E(Θ) = S(Θ) + 2σ2ν‖L(θ)‖2 (3.24)

with

S(Θ) =

N∑

j=1

[
(sj(θ))2 + 2σ2 log

√
2πσ

]
(3.25)

When setting ν equal to one, resulting in no user-specific defined amount of
regularization, the tradeoff between matching quality or squared error and
transformation regularization is regulated automatically (self-regulating) and
solely in function of the estimated noise. However it is not obligatory to set
ν = 1 and to keep generality in this section we will assume ν 6= 1 while working
with (3.23).
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The ML parameters Θ = {θ, σ} should satisfy ∂E(Θ)/∂Θ = 0, minimizing
the energy defined in (3.23). In most practical applications, however, the
assumed distribution p(sj|Θ) of the inlier-process is only an approximation
to reality, and estimation of the parameters should not be severely affected
by the presence of a limited amount of outliers. Gross errors or outliers are
data severely deviating from the pattern set by the majority of the data.
The evaluation of an outlier in the inlier-distribution results in a very low
probability: the outlier cannot be explained by the inlier-distribution or the
outlier cannot be generated by the inlier-process. Since

lim
p(sj |Θ)→0

log p(sj |Θ) = −∞ (3.26)

the contribution to the data log-likelihood of an observation that is a-typical for
the inlier-distribution is very high. Dealing with this requires the application
of robust statistics, which provides tools for problems in which underlying
assumptions (inlier-distribution) are inexact. A robust procedure should be
insensitive to departures from underlying assumptions caused by, for example,
outliers. That is, it should perform well under the underlying assumptions and
the performance should deteriorate gracefully as the situation departs from the
assumptions.

In appendix A we present two main approaches for robust statistics and
apply it to the surface registration problem. The first approach makes use
of robust estimators that are substituted for the classical estimators such as
the sum of squared errors (when the residuals are normally distributed). It
is, however, unclear how the analytical form of these estimators as well as
their internal parameters have to be chosen upfront. The second approach
models the outliers explicitly as well, which allows the modeling of additional
constraints such as, e.g. spatial coherence of outliers. Furthermore, it can be
shown that for every such outlier process, an equivalent robust estimator from
the first approach can be constructed. While this approach leads to a robust
estimator of a general functional form, it still requires the ad hoc setting of
certain parameters.

In the next section, following Fransens et al. [73], we will present a prin-
cipled approach to link the robust estimators to a statistical model of how
the measurement, including the outliers, were generated. Indeed, the outlier-
process will be modeled as a statistical process as well, akin to the inlier-
process. As a result, making use of the theory expanded in appendix A, we
will be able to construct equivalent M-estimators for outlier rejection. The final
result will be an objective function with quasi self-regulating outlier robust-
ness, depending on the kind of outliers, besides self-regulating noise robustness
obtained previously.

Outlier robust MAP objective function

We will model both the inliers and outliers as random variables within the
complete data log-likelihood resulting in a robust copy of the first term in
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(3.23). The transformation model-likelihood or the second term in (3.23),
remains unchanged. Therefore, we will concentrate on the complete data log-
likelihood term from now on.

Suppose a data sample sj is generated by either an inlier-process or an
outlier-process, then the generating complete-process can be specified by con-
ditioning the sample likelihood on the state of a binary-valued latent variable
zj, signalling whether a data sample sj was generated by the inlier-process
zj = 1 or not zj = 0:

p(sj |zj, Θ) =

{
p(sj |Θ) if zj = 1

po(sj) if zj = 0

p(sj |zj, Θ) = p(sj|Θ)zj po(sj)
(1−zj) for zj ∈ {0, 1}

(3.27)

p(sj |θ) is a Gaussian5 probability density function (PDF) constituting the
inlier-process and was defined in (3.22). po(sj) is the outlier PDF constituting
the outlier-process for which several choices can be considered. First off all, if
some knowledge about the outlier generating process is known, then po(sj) can
be set to a known distribution. In most cases, however, no outlier generating
process knowledge is given and po(sj) can either be estimated similar to the
inlier-distribution or can be set to a fixed uniform distribution for example.
The latter is the case for our surface registration problems. Therefore, we
take a fixed outlier distribution, which is assumed to be uniformly distributed
po(sj) = δ. Spatial constraints on the outliers are typically incorporated us-
ing a proper modeling of zj depending on the prior knowledge of the outlier
problem besides the outlier PDF.

In appendix B we derive the objective functions for robust parameter esti-
mation in the presence of outliers. Depending on the type of outlier generating
process and thus the type of latent variable (deterministic or random, or a com-
bination of both), different functionals are derived. Here we summarize the
major results for the different types of latent variables.

Random Bernoulli LV The most general type of latent variable we con-
sider is a random (probabilistic) variable, where the binary latent variable z′′j
is Bernoulli distributed and the outliers are uniformly distributed (po(sj) = δ).
The consequence is that the outlier map z′′ is a random map with an associ-
ated prior-distribution p(z′′). Let P be the prior probability of z′′j being an
inlier (i.e the fraction of observations sj thought to be generated by the inlier-
process) and let Po = 1 − P be the prior probability of being an outlier (i.e
the fraction of observations sj thought to be generated by the outlier-process).

5In general, p(sj |θ) can be any probability density function, but in our application, we
have assumed the measurement noise to be Gaussian, hence the choice of this particular
PDF.
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Then, assuming z′′ is i.i.d6, p(z′′) can be specified as follows:

p(z′′) =

N∏

j

P z′′

j P
(1−z′′

j )
o (3.28)

This kind of random latent variable choice is used for the skull registration
problem. Outliers within this registration problem are due to gross errors
in the skull acquisition process and the construction and choice of the skull
representation. These errors are treated probabilistically. Further details are
given in chapter 7.

Deterministic LV As a special case, we consider a binary latent variable z′j ,
with very strong prior knowledge encoded in a deterministic (non-probabilistic)
outlier detection function f that directly determines wether an observation sj

is either an inlier or outlier:

z′j = f(sj(θ)) ∈ {0, 1} (3.29)

This kind of deterministic latent variable choice is used for the patch registra-
tion and complete facial surface registration problems. Outliers within these
registration problems are due to partial overlap between the target and float-
ing surfaces. Individual point similarities defined in section 3.3.2 measured in
floating surface points rf

j not belonging to the partial overlap are very erro-
neous and therefore outliers. The deterministic function f generating binary
valued latent variables can be defined based on the VBF b(r) of the target
surface. Further details are given in chapters 4 and 5.

Combined deterministic and random LV The final choice of latent vari-
able we consider is not really different from the two previous, but rather a
combination of them. Imagine an incomplete skull substrate is given for skull
registration or an incomplete patch, or incomplete facial surfaces. Suppose fur-
thermore that besides these incomplete data, probabilistic outliers are present
as well for these surfaces. We thus have combination of the two types of la-
tent variables: deterministic, coding for missing data, and random, coding
for the presence of erroneous data. To tackle these problems we define a
combined latent variable outlier map z = z′ ∧ z′′ with ∧ a conjunction and
(1 − z) = (1 − z′) ∨ (1 − z′′) with ∨ a disjunction incorporating a regular
deterministic latent variable z′ outlier map and a random latent variable z′′

outlier map according to:
z′ = f(x) (3.30)

and

p(z′′) =

N∏

j

P z′′

j P
(1−z′′

j )
o (3.31)

6i.i.d. = independent and identically distributed
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Using these latent variables, the first term in our MAP-objective function
(3.23) (complete data negative log-likelihood), can then be reconstructed us-
ing the complete-process p(sj|zj , θ) defined in (3.27) and taking the negative
logarithm:

S(Θ, z′, z′′) =

N∑

j=1

−[z′jz
′′
j ] log p(sj |Θ) − [(1 − z′j) + z′j(1 − z′′j )] log δ (3.32)

Using the procedures defined in appendix B, we can estimate and/or elimi-
nate the latent variables from this equation, resulting in the following final
functional:

S(Θ) =
∑

z′′

[∑N
j=1 h(sj(θ), α(f(sj(θ)), z′′j ), β(f(sj(θ)), z′′j ))

]
(3.33)

where
h(x, α(z′, z′′), β(z′, z′′)) = α(z′, z′′)x2 + β(z′, z′′) (3.34)

with

α(z′, z′′) = 1
2σ2 [z′z′′]

β(z′, z′′) = −[(1 − z′) + z′(1 − z′′)] log δ + [z′z′′] log
√

2πσ

(3.35)

Following an out-integration strategy for the random latent variable we can
finally define the equivalent M-estimator as:

ρ(x, α, β) = h(x, α(f(x), b), β(f(x), b)) (3.36)

To summarize, we obtain a general complete MAP objective function from
which we will start to solve the different registration problems given in the
relevant chapters:

E(Θ, z′, z′′) = S(Θ, z′, z′′) + ν‖L(θ)‖2 (3.37)

such that after latent variable estimation the objective function becomes:

E(Θ) = S(Θ) + ν‖L(θ)‖2 (3.38)

with

S(Θ) =

N∑

j=1

ρ(sj(θ), α, β) (3.39)

where

ρ(sj(θ), α, β) = h(sj(θ), α(f(sj(θ)), bj), β(f(sj(θ)), bj)) (3.40)

In the next section we give details about possible optimization strategies
dependent on the target surface representation w.r.t the transformation param-
eters θ and the noise standard deviation σ given the equivalent M-estimator
formulation in (3.38) based on (3.37) after latent variable estimation.
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3.3.4 Optimization

The optimization method defines how the parameters within the objective
function are adjusted or updated to lower7 the objective function evaluation
and therefore improving the matching quality while taking into account the
transformation model regularization. Optimization is a broad discipline in
mathematics where a lot of methods have been proposed with varying com-
plexity. In the previous section we already saw that for an objective function to
be robust against outliers with prior knowledge a joint parameter optimization
or estimation is necessary (3.37). Furthermore, according to [74, 75, 76, 77]
this joint optimization can be solved by alternating between a latent variable
optimization and a ML parameter optimization while during either optimiza-
tion or update the other update or estimate is kept fixed. We showed that
the latent variable optimization could be performed using minimization by
determination of the infimum (this is in fact a combinatorial optimization),
deterministic function evaluation (not really considered an optimization) and
out-integration (Mean-Field optimization) dependent on the kind of outlier
latent variable. Note that the latter case where the latent variable is a ran-
dom probabilistic variable using out-integration is in fact the Expectation step
(E-step) within an Expectation-Maximization (EM) optimization algorithm,
which has desirable convergence properties. Therefore the ML parameter es-
timation or optimization is considered to be the Maximization step (M-step),
which was reformulated into a minimization by taking the negative logarithms
in (3.20), within the same EM optimization. Using a broad interpretation
of the E-step (Latent Variable step: LV-step) making it applicable to non-
probabilistic outlier latent variables as well, an EM optimization produces a
sequence of parameter estimates {Θ̂(m)|m = 0, 1, . . .} by alternating the fol-
lowing two steps:

LV-step or E-step: On the (m + 1)th iteration, the expectation of the com-
plete data log-likelihood S(Θ, z′, z′′) is obtained by determining the latent

variable values based on the ML parameter estimation Θ̂(m) with Θ = {θ, σ}
of the previous iteration. The expectation of the complete log data-likelihood
or the so-called Q-function is then given by:

Q(Θ|Θ̂(m)) = −S(Θ) (3.41)

with S(Θ) defined in (3.39). The LV-step is in fact the determination of the
equivalent M-estimator used in the following M-step.

M-step In the case of MAP estimation, the ML parameters are then updated
according to:

Θ̂(m+1) = argminΘ{−Q(Θ|Θ̂(m)) − log p(θ)} (3.42)

7We assume that the objective function is always written such that the optimum corre-
sponds to a minimum of the objective function
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leading to the following objective function or energy minimization:

E(Θ) = S(Θ) + ν‖L(θ)‖2 (3.43)

which is the same as in (3.38). The E-step and the M-step are alternated
during each iteration until convergence or when minimal changes in parameter
updates occur. In this section we will concentrate on the M-step of the joint
EM optimization which is the same for every choice of outlier latent variable
but can be different for a mesh or point-based target surface representation
and an implicit target surface representation.

A prerequisite for optimization is to compute the individual point similar-
ities sj(θ) defined in (3.17) and (3.18) for the point-based and implicit target
surface representation respectively. For the proposed implicit target surface
representation this comes down to simple VIS evaluations. Due to the smooth
and analytical properties of these VIS, gradient information can always be
calculated and the ML parameter update can be obtained according to:

Θ(m+1) = Θ(m) − s∇E(Θ) (3.44)

This is a Steepest-Descent optimization approach including knowledge of the
gradient. The parameters are updated by taking a step s in the negative di-
rection of the gradient, which is calculated analytically ∇E(Θ) = [∂E/∂Θ1,
. . . , ∂E/∂Θn] based on the first derivatives of (3.38) to every parameter in Θ.
The optimal step s is obtained using a Brent’s line minimization [78]. Inclu-
sion of the first derivatives increases robustness and reduces the number of
iterations. More advanced Steepest-Descent methods can be applied as well,
like Conjugate gradient (used for patch registration) and quasi Newton (used
for skull registration). These will gradually build up and use the Hessian
or second order derivatives for faster convergence. Furthermore, Stochastic
Steepest-Descent methods can also be applied to decrease computational ef-
forts and to increase robustness when the amount of floating surface points is
huge. It must be noted that the term −[(1− z′) + z′(1− z′′)] log δ in β(z′, z′′),
originating from the outlier-process, after the LV-step and used during the M-
step is independent of the ML parameters Θ and can be treated as a constant
during first derivative calculations, therefore vanishing.

For point-based target surface representations corresponding points {(rt
j , r

f
j )

|j = 1, . . . , N} are required to compute the individual point similarities sj(θ).
Therefore an additional correspondence search is needed within the M-step
before a ML parameter update can be performed. These searches are com-
putational expensive and require extensive implementation tricks (e.g. Octree
representations) to reduce the computational cost of finding corresponding

points. A corresponding point rt
j for a floating surface point rf

j is typically

defined being the closest point to rf
j . It must be noted that the quality of

the correspondences based on a non-continuous mesh target surface represen-
tation is dependent on the surface point sampling leading to discretisation
errors within the correspondences. When the predefining distances dj are
zero, an exact one-to-one mapping between corresponding points is defined
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and an update of the ML-parameters can be obtained using the well known
Iterative Closest Point (ICP) optimization [59]. The correspondence search
is alternated with the transformation parameter update in order to improve
correspondences and transformation estimates. These transformations are ob-
tained by solving a closed (meaning not strictly requiring an iterative scheme)
problem such that corresponding points are mapped onto each other:

rt
j = T(rf

j , θ) (3.45)

Of course individual point confidences (inlier-beliefs) and the transformation
regularization are to be taken into account while solving the closed problem.
Alternatively and especially when the predefined distances are not equal to
zero dj 6= 0 the Steepest-Descent in (3.44) can be applied as well once the
correspondences are established.

Note that correspondences being closest points can be made explicit us-
ing an implicit sDT target surface representation according to the following
implicit to explicit conversion:

rt
j = rf

j − dt(rf
j )

∇dt(rf
j )

‖∇dt(rf
j )‖

(3.46)

Using an implicit sDT target surface a corresponding point rt
j of rf

j is ob-
tained by walking an amount equal to the VIS evaluation or signed dis-
tance value dt(rf

j ) in the negative direction of the normalized VIS gradient

∇dt(rf
j )/‖∇dt(rf

j )‖. Doing so, the ICP optimization strategy (3.45) can ap-
plied on implicit target surfaces as well. Furthermore due to the continuous
nature of the VIS, no discretisation errors are present in the established point
correspondences. Whether to use the ICP strategy (3.45) or the Steepest-
Descent strategy (3.44) depends on the transformation model and the complex-
ity or feasibility to obtain a closed problem formulation. When the amount of
parameters is limited or when it is not feasible to obtain a closed form formula-
tion (e.g. no one-to-one mapping), it is preferred to apply the Steepest-Descent
strategy. This is for instance the case for the patch and skull registration prob-
lems. When the amount of transformation parameters is equal to the amount
of points on the floating surface and if a closed problem formulation can be
obtained, it is interesting to apply the ICP strategy. This is the case with
the complete facial surface registration using TPS non-rigid transformation
models, incorporating a vast amount of parameters. Furthermore, using the
TPS transformations an elegant closed form formulation, taking into account
the transformation regularization, can be obtained and applied. Therefore, an
ICP-like strategy is used in chapter 5 for the facial surface registration problem
in which correspondences are obtained according to (3.46).

A final issue concerning optimization is the fact that the objective function
is not guaranteed to be convex. This means that the optimization procedure
may converge to or get stuck in a local minima instead of the global correct
minimum. The original Least-Square formulation using the Quadratic esti-
mator in (A.2) is convex and does not suffer from local minima, but is not
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robust against outliers. The robust outlier process formulation, however, may
not be convex. Furthermore, the non-convexity or the amount of local minima
increases when having a vast amount of transformation parameters to estimate
and when having erroneous or conflicting point-correspondences. Fortunately,
converting outlier processes in terms of robust estimators (E-step) results in
the possible application of deterministic continuation methods to tackle the
local minima problem. One such method is deterministic annealing [79] and
is used for the facial surface registration problem. The idea is to choose a
control parameter within the estimator that can be used to change the shape
of the estimator to construct a convex approximation of the objective func-
tion. The control parameter is slowly adjusted such that the objective function
increasingly approximates the original non-convex estimation.

Further optimization details are given in the relevant chapters about patch
registration (chapter 4), facial surface registration (chapter 5) and skull regis-
tration (chapter 7).

3.3.5 Initialization

The proposed surface registration method belongs to a class of registration
algorithms in which an objective function, reflecting the quality of registration,
is iteratively optimized. Consequently, these methods can generate accurate
results. However due to their iterative nature they need to be initialized with
a proper estimate of the unknown pose parameters. Prior to registration, the
floating surface is to be brought into the vicinity of the target surface, by
repositioning the floating surface, using a rigid or affine transformation, into
the coordinate system of the target surface. Furthermore, final registration
results are dependent on the quality of the initial pose estimate. The latter
is to be within the convergence range of the iterative registration method
in order to generate successful registration results. Due to their dependency
on the initial pose, registration algorithms iteratively optimizing an objective
function are refereed to as constrained registration methods and due to their
accuracy they are also referred to as fine registration methods.

Finding relative poses with arbitrary differences in initial pose is referred to
as unconstrained registration or crude registration. Typically a coarse-to-fine
strategy is applied. First, a crude registration is performed to give an initial
estimate of the pose. Next, a fine registration is applied to compute an accurate
transformation. Consequently, crude registration is not to be accurate but is
successful as long as it gives a correct initialization for the fine registration.
Having a more accurate crude registration does have the advantage that the
fine registration can converge more robustly and within fewer iteration steps.

Initialization or crude registration is often solved manually. A first way
is to interactively rotate and translate the surfaces manually to bring them
into each others proximity. An alternative is to manually indicate a sparse
set of prominent point correspondences based on which the initial pose trans-
formation parameters are computed according to (3.45). The latter is done
for the complete facial surface and skull registration problems both using the
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52 face landmarks as prominent point correspondences to determine an initial
translation and rotation. When the amount of surfaces to register increases as
in the patch registration problem, it becomes interesting to have an automatic
initialization or crude registration method. We developed such an automatic
initialization method for the patch registration problem based on VIS-Spin im-
ages (VISS-images) to find prominent point correspondences without manual
user intervention. Further details thereabout are given in chapter (4).

3.4 Conclusion

In this chapter, a general noise- and outlier-robust surface registration method-
ology, using implicit target surface representations, was presented to solve
three different registration problems required as part of our statistical cran-
iofacial modeling and reconstruction procedure. In section 3.2, we presented
an implicit surface representation commonly used throughout the thesis to
represent the target surfaces. In addition, a variational boundary function
that retains the boundary concept of open surfaces within an implicit surface
representation, was created. The thus constructed implicit surfaces are an ap-
proximation of a signed Distance Transform, incorporating interesting implicit
notions of distance and direction for surface registration purposes. Using these
target surface representations, we developed a general robust surface registra-
tion framework in section 3.3. Components generally needed for registration
were introduced while focussing on the use of implicit surfaces and a robust
statistical objective function. The latter was obtained by reformulating the
objective function into a robust MAP problem, with explicit inlier- and outlier-
process modeling. Using an explicit outlier-process formulation was done to
incorporate prior outlier knowledge within the objective function leading to a
joint optimization. Furthermore, equivalent M-estimators (as used in robust
statistics) were constructed for different kinds of latent variables (which code
for the presence of an outlier). Doing, so we were able to analyze outlier influ-
ences. The construction of the M-estimators was obtained during the E-step
of the joint estimation, regarded as a general interpretable EM optimization.
Thanks to the implicit surface representations, no additional correspondence
search is needed and a straightforward Steepest-Descent M-step optimization
could be applied. Furthermore, well established optimization routines for ro-
bust statistics are directly applicable on the explicit outlier-process formula-
tions due to the unification with robust M-estimators.

The final result is a unifying theoretical surface registration methodology,
which is extensively used throughout the thesis for almost every component
of our a statistical craniofacial reconstruction technique. Starting from the
theoretical surface registration foundations given in this chapter, we solve every
registration problem that is encountered. Specific details about the different
registration problems are given in chapter 4, 5 and 7 for the patch, complete
facial surface and skull registration problems respectively.
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Chapter 4

Facial surface acquisition

4.1 Introduction

Besides soft-tissue thickness acquisition (cf. appendix C), the second prereq-
uisite for a craniofacial database is the acquisition of facial surface information
preferably from living subjects. In chapter 2 several possibilities used in prac-
tise were enumerated (e.g. CT, MRI, laser and photogrammetric scanners) all
with their advantages and disadvantages. To acquire face information (geome-
try and texture) of living subjects in an upright position a non-invasive mobile
photogrammetric scanner (ShapeCam, Eyetronics (www.eyetronics.com)) is
used, which is depicted in figure 4.1. This is an active 3D capturing device,
which projects a regular grid on the face (figure 4.1(middle)). At the same
time a digital camera (CANON D60) takes an image of the face from a differ-
ent point of view such that by triangulation the 3D shape of the face can be
retrieved as a dens set of connected 3D points. The ShapeCam also captures
a second image incorporating texture information, which is used to determine
the 3D location of the landmarks on the skin surface reconstruction. Indeed,
before taking 3D images, the 52 landmarks are marked on the face with a blue
eyeliner pencil by a forensic odontologist. The coordinates of these blue points
are extracted by simple image processing. Afterwards the colored texture
information is converted into gray-value texture information for recognition
purposes (cf. chapter 1 and 2).

An advantage of the ShapeCam is its non-invasiveness and portability, sim-
ilar to the Epoch 4B, making it easier to create a database over a sufficiently
large and diverse population. Furthermore, faces of subjects can be acquired
in an upright position. A disadvantage of the ShapeCam, which is common
for similar 3D acquisition devices, is the limited viewing-angle of the camera,
resulting in a partial surface acquisition (figure 4.1(right)) of the complete
facial surface. The reason is that the acquisition system can only compute
3D information of what can be ”seen”from a certain viewpoint. Therefore,
a complete three-dimensional facial surface is assembled from several partial
surface acquisitions from unknown viewpoints (due to the camera portability).

73
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Figure 4.1: Illustration of the Eyetronics camera (left). Per viewpoint two
images are taken: a regular texture image and an image with a projected grid
for shape or geometry extraction (middle). The result per viewpoint is a patch
or partial surface consisting of 3D shape information combined with texture
information (right).

The 3D acquisition from a single viewpoint is referred to as a patch or partial
surface. A complete surface is build from many patches or partial surfaces
and can be seen as a patchwork. The number of views necessary is mainly de-
termined by the required detail, camera resolution and the complexity of the
object. Furthermore, in the absence of any calibration data relating the differ-
ent views (as with free-hand cameras), tedious manual alignment is often used
to initiate further computer-based refinement. As a result, the construction of
complex 3D objects, or large databases of 3D objects, cannot be practically
implemented unless a fully automatic reconstruction system is available.

Combining several patches into a single surface involves two main phases
(which was already shown in figure 1.2). First the patches need to be aligned
accurately into a common coordinate frame, the registration phase. Secondly,
the registered patches need to be integrated into a single entity, which is the
integration phase. Furthermore, both the registration and the integration must
be robust against noise and outliers in the patches due to the acquisition pro-
cess and due to the partial overlap in between different patches. In order to
have a fully automatic assembly, without any kind of a priori knowledge of
the geometry of the imaging process or user interaction, more than one reg-
istration task ir required. First, an initial alignment needs to be calculated
by means of a crude registration (cf. [80], e.g.), followed by a pose refinement
using a fine registration (cf. [59], e.g.). The former is a global registration
problem or initialization where no a priori information on relative positions
and orientations of the patches is available (figure 4.2). The latter or pose
refinement assumes that an initial, but inaccurate, estimate of the exact posi-
tions is known (figure 4.6). When more than two patches are to be registered,
both crude and fine pair-wise registrations need to be combined into a multi-
view registration (figures 4.4 and 4.7). Finally, the registered patches need to
be integrated into one entity or surface (figure 4.8). Instead of selecting the
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best algorithm available for every subtask, it would be interesting to have a
single common representation of all patches throughout the whole pipeline of
crude- and fine registrations, even up to the integration stage, like in [81, 82].

In order to provide a fully automatic, robust and accurate method for align-
ing and integrating partial reconstructions without any prior knowledge of the
relative viewpoints of the camera or the geometry of the imaging process, we
developed a 4-step registration and integration algorithm based on common
VIS representations for open surfaces (cf. chapter 3) of the patches. This im-
plicit signed Distance representation for patches has several useful properties
for solving the different registration and integration tasks and doesn’t require
a memory inefficient and resolution limiting discrete grid. Furthermore, ad-
ditional smoothing properties of the VIS representation [69] allow us to deal
with noisy patch data. In section 4.2 we concentrate on the registration phase,
while in section 4.3 the focus is on the integration phase. Experimental results
on real-live data, noiseless - and noisy simulated data are given in section 4.4 to
show the practicality, the accuracy and robustness of the developed automatic
patch registration and integration algorithm for facial surface acquisition. A
final conclusion is given in section 4.5.

4.2 Patch registration framework

Our complete automatic registration algorithm for aligning multiple partially
overlapping surfaces or surface patches consists of a coarse-to-fine strategy as in
[80] resulting into four stages. First, a robust but less accurate pair-wise crude
registration between every pair of patches is calculated in subsection 4.2.1
based on point correspondences, which are established by comparing directed
point-signatures calculated from the VIS representations. A pose clustering
procedure [83] selects the best rigid transformation from valid transformations
that map corresponding point pairs, while making their directed (normal)
components coincide. Local 2-D geometry histograms calculated from the VIS
representations are used as point-signatures, which are an improved variant of
the spin-images in [84]. Second, a selection of all pair-wise crude registrations
are combined into a multi-view crude registration in subsection 4.2.2 by using
a minimum spanning tree algorithm (MST) like [80]. We define the pair-wise
transformation cost in terms of the number of inliers supported by the trans-
formation. The result of the MST algorithm is a non-redundant set of relative
pair-wise transformations that transform all patches in the same coordinate
system. This set of initial transformations is further improved, in a third step
(subsection 4.2.3), by applying pair-wise fine registrations, which are less ro-
bust in terms of initialization but more accurate. These fine registrations are
calculated iteratively by a gradient descent minimization of a distance error
criterion, based on the continuous VIS representation. In order to deal with
partial overlap between patches, a novel deterministic outlier detection func-
tion is defined, which is independent of the relative pose or distance histograms
between two partial surfaces. Both the minimization and outlier handling are
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defined and combined using the theoretical robust surface registration frame-
work from chapter 3. Finally, in a fourth step elaborated in section 4.2.4,
we cope with pair-wise registration error accumulation by applying a simul-
taneous multi-view fine registration of all partial surfaces with intermediate
integrations. The fine registration of a patch with an intermediate integrated
surface is similar to the pair-wise fine registration. A common representation
is used throughout the whole registration pipeline. The four stages will be
elaborated in the subsequent sections, while shortly introducing related issues
and alternatives. For an exhaustive and more elaborated related work review,
we refer the reader to Appendix D.

4.2.1 Pair-wise crude initialization

Figure 4.2: The purpose of pair-wise crude registration: Given two patches
within their coordinate systems, bring them both into a common coordinate
system by applying an initial pose estimate.

The first step in our registration pipeline is the crude alignment of patch
pairs starting from an arbitrary relative pose. The purpose of pair-wise crude
registration or initialization is depicted in figure 4.2. Given a patch being the
target surface and a patch being the floating surface both in their own coordi-
nate system without any prior positioning knowledge, the goal is to reposition
the floating surface within the coordinate system of the target surface, such
that overlapping parts of the surfaces initially align. Crude registration is
considered successful if it results in a proper initialization for a following fine
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registration. Having a more accurate crude registration does have the advan-
tage that the fine registration can converge more robustly and within fewer
iteration steps.

Crude registration is often solved manually or with a priori knowledge
about the geometry of the imaging process. The former is done by letting a user
indicate point correspondences or rotate and translate the patches manually.
This is a common approach in many commercial scanner systems. The latter
is done mechanically or based on calibration information of the used scanner.
Of course these are scanner dependent and sometimes additional mechanical
tracking hardware is required. Two different approaches for automatic crude
registration without knowledge about the 3D sensor exist: a pose search ap-
proach and a correspondence search approach. In a pose search approach a vast
amount of pose estimates to initialize a pose refinement algorithm are tested
and the best result after fine registration is retained. Correspondence search
approaches are computationally more interesting and try to establish point
correspondences between the floating and the target surfaces by constructing
and comparing point-descriptors (special features or point-signatures). Based
on these correspondences a transformation estimate is determined in a robust
way, in order to deal with possible false correspondences.

Our robust pose estimation is a correspondence search approach based on
directed point-signatures, which are descriptors of the local geometry around
a point r on a surface, in combination with a robust voting scheme similar to
[83]. The directed component of the point-signature is the normal n in the
point r to the patch surface. The point-signature is an improved variant of
the spin-images defined by Johnson [84].

A spin-image is a mapping of the local 3D geometry around a point r to a
2D histogram. To create a spin-image of a point r, a plane with parameters
(u, v) through r, parallel to the normal n, is created. Along the vertical axis
of the spin-image the distance vi of every point r′i in the neighborhood of r
to the tangent plane at point r is plotted, while along the horizontal axis the
distance ui between r and r′i projected on the tangent plane according to the
normal in r is plotted. Based on the spin-map coordinates, which are similar
to a local cylindrical mapping,

ui =
√
‖r− r′i‖2 − (n · (r − r′i))2

vi = n · (r − r′i)
(4.1)

one or more bins (u, v)i in the spin-image are incremented for every point
r′. The plane is then rotated (spinned) around the normal n for a finite
number of angles θ, hence the name spin-image. An important advantage of
the spin-images is that they produce a local shape description of the patch
surface, which is invariant under rigid motion. However, traditional spin-
images have several shortcomings. First of all, they are created based on a
mesh representation of the patches and as such are dependent on the surface
sampling. Thanks to a bilinear interpolation the influence of a vertex for a
particular bin is distributed over the (four) surrounding bins, but in order
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to create consistent spin-images at least a uniform mesh surface sampling
is necessary. Secondly, a point laying at the outer border of a patch or at
the border of a hole in the patch will generate an incomplete spin-image,
while in another patch the same corresponding point may not lay at a border
and generate a complete spin-image. Both spin-images of the same point
in different patches will show small resemblance. Thirdly, determination of
neighboring points of every point r for which a spin-image is created, together
with an additional bilinear interpolation is computational expensive. Finally,
[84] proves, by experiment, that the sampling frequency between two different
patches may differ only at the condition that the bins are big enough. However,
bigger bins lead to a lower resolution and a lower descriptive power of the spin-
images. The bottom line is that working with mesh-based or traditional spin-
images requires spin-image parameter fine-tuning towards the mesh tessellation
and therefore requires some expertise.

To overcome the shortcomings of mesh-based spin-images we propose a new
way to calculate spin-images, based on the VIS representation of the patches,
which we call Variational Implicit Surface Spin-images or VISS-images, as
follows. A plane Im through a point r of a patch and its normal n is defined
and is equidistantly sampled at points {bi| bi ∈ Im} corresponding to the
centers of the bins (u, v) in Im. Every sampling point of the plane is evaluated
in the VIS d(r) of the patch (cf. section 3.2.3) and the corresponding bin (u, v)i

is then incremented with a value inversely proportional to the function value
d(bi) , for instance:

(u, v)i = (u, v)i +
1

max(1, |d(bi)|γ)
(4.2)

with γ ≥ 1. The plane is then rotated around the normal in r over an angle θ
and every point associated to each bin center is evaluated again and the bin
values are updated. This is done over angles θi = i2π/s with i = 1, . . . , s − 1
where s determines the accuracy of the spin-images. Plane points bi close to
the patch will have a larger entry in the spin-image than points further away.
A larger value of γ will generate a more accurate VISS-image at the condition
that s is high. However, the VISS-image is then dependent on the starting
position of the plane. A lower value of γ will generate a smoother VISS-image,
less dependent on the starting position of the plane Im, due to the decreased
suppression of plane bin center points bi further away from the patch surface.

VISS-images, compared to the classic spin-images, are independent of the
patch surface sampling and thanks to the interpolation and extrapolation prop-
erties of the VIS representation, they are more reliable at borders and holes.
A VIS representation only needs to be calculated once and the images are
generated based on simple function evaluations, which is more efficient and
easier than determining spin-map coordinates for every point in the neighbor-
hood of a point r. Furthermore, no extra bilinear interpolation is necessary.
Figure 4.3 depicts two spin- and VISS-images of a corresponding point-pair
in between a target and a floating patch with partial overlap. The point
on the floating patch is situated in the vicinity of the patch border. It is
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(a) (b) (c) (d)

Figure 4.3: Comparison between spin-images (a,b) and VISS-images (c,d) of a
corresponding point pair on different patches , where the point of the second
patch lies in the vicinity of a border (b,d).

clearly observed that the corresponding spin-image (figure 4.3(b)) is incom-
plete, therefore showing small resemblance with the spin-image of the point
on the target patch (figure 4.3(a)). In contrast, the resemblance between the
two VISS-images (figure 4.3(c) and (d)) is preserved, due to the extrapolation
of the border. Furthermore, it is seen that the VISS-images are smoother than
the spin-images. Values in neighboring bins of VISS-images are more alike and
the image clearly gives a better continuous approximation of a 2D geometry
histogram. Spin-images are much more dependent on the number of vertices
in a mesh and whether a vertex falls within a bin or not, despite the use of
bilinear interpolation.

Corresponding point-pairs between a floating and a target patch are found
by calculating VISS-images for a large number of randomly selected points
in both patches and by calculating a similarity measure, for instance, the
normalized correlation coefficient, between them.

corr(Im1, Im2) =
cov(Im1, Im2)

σIm1
σIm2

(4.3)

where cov is the covariance normalized by σ being the standard deviation,
ensuring |corr| ≤ 1. Based on this similarity measure we further compared
spin- and VISS-images in table 4.1 for three different sets of point-pairs in
between the floating and target patch. The first set consists of corresponding
points both of them not laying in the vicinity of a patch border. The second
set is similar, but one of the two points within a pair lays close to a patch
border. The last set consists of non-corresponding points. Each set contains
ten point-pairs based on which the average correlation results in table 4.1
are determined. It is observed that VISS-images are capable of recognizing
corresponding point-pairs even for points near borders. The latter are classified
into non-corresponding points using the spin-images.

Given the multitude of possible correspondences between all point-signatures
on the floating and target patches, a robust search procedure is required to
filter an acceptable subset. Due to the partial overlap false correspondences
are incorporated. It is thus important to distinguish correct from incorrect
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spin-images VISS-images

corresponding point-pairs, no border point 0.8 0.95

corresponding point-pairs, one border point 0.5 0.9

non-corresponding point-pairs 0.45 0.7

Table 4.1: Averaged correlation coefficients for spin-images and VISS-images
, between points of a floating and a target patch.

correspondences and to select the best correspondences, while determining a
rigid transformation based on the correspondences, to recover an estimate of
the relative position between the two patches. A simple and naive way is to
select the best correspondences based on the similarity of the point-signatures.
We use a pose clustering approach as proposed in [83]: for every possible rigid
transformation that translates a point to its corresponding point and that
makes their normal directions coincide, votes are accumulated. This is done
for every established corresponding point-pair. Finally, the transformation
that receives the maximum number of votes is selected. Using a voting scheme
is robust, because every good corresponding point pair will contribute to the
best transformation, while incorrect point pairs will vote on randomly different
places in the voting scheme.

The reason for this registration method, based on directed VISS-images in
combination with a voting scheme, being a crude registration or initialization
is twofold. The most important reason is the quantization of the voting scheme
such that the transformation is only correct within a quantization error. Sec-
ondly, to speed up computations, only a subset of all the points on the patches
is used for finding correspondences based on the VISS-images. This makes
the registration less accurate than fine registration methods. However, the
method is robust and independent of the initial poses, due to the VISS-images
combined with a voting scheme, which is applicable to a wide range of object
surfaces besides faces.

4.2.2 Multi-view crude initialization

When more than two or multiple patches have to be initialized, a multi-view
crude registration is needed. In this case the absolute pose estimate of every
patch into a common coordinate frame, instead of pair-wise relative poses, is
searched for, which is illustrated in figure 4.4. The common strategy for multi-
view crude registration is to perform consecutive pair-wise crude registrations.
However some new complications are introduced in a multi-view setup: (1)
Which patch pairs will be registered? (2) Danger for creating inconsistent
poses.

During pair-wise crude registration, relative pose estimates are calculated
between every pair of patches. However, some registrations are better than
others and some are even incorrect, because of the limited amount or lack of
overlap. In multi-view crude registration, we select a non-redundant set of best



4.2 Patch registration framework 81

Figure 4.4: The purpose of multi-view crude registration: Given multiple
patches within their own coordinate systems, bring all of them into a com-
mon coordinate system by applying initial pose estimates.

Figure 4.5: Illustration of the Minimum Spanning Tree algorithm

pair-wise registrations that gives an initial estimate of the absolute positions
of all patches into the coordinate system of a reference patch. The quality of a
single pair-wise registration is measured by the number of transformation in-
liers, an inlier being defined as a corresponding point-pair with an inter-point
distance below a certain threshold. Inliers are corresponding point-pairs spa-
tially supporting the pair-wise crude transformation and the number of inliers
is a measure for or indication of the registration quality. More inliers indi-
cate more acceptable corresponding point-pairs, due to the amount of overlap,
resulting in a better transformation estimate. A minimum spanning tree algo-
rithm (MST) is then used to select a (minimum) set of P − 1 transformations
to transform all P patches into a common coordinate system, maximizing the
number of inliers. The MST has branches such that all patches are connected
(figure 4.5) , while the sum of the costs is minimized, and does not generate
cyclic connections that could create inconsistent poses.
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4.2.3 Pair-wise fine registration

Figure 4.6: Given an initial pair-wise pose estimate between a floating and a
target patch, the purpose of pair-wise fine registration is to refine the initial
pose estimate into an optimal pose estimate.

To improve the initial estimates before the computationally expensive multi-
view fine registration (section 4.2.4), we first apply computationally cheaper
pair-wise fine registrations, illustrated in figure 4.6, on the minimum set of
P − 1 transformations obtained by the previous multi-view crude registration
in the third step of the overall algorithm.

Given an initial pair-wise pose estimate between a floating and a target
patch, the purpose of pair-wise fine registration is to refine the initial pose
estimate into an optimal pose estimate. The most frequently used fine reg-
istration algorithm is the iterated closest point algorithm (ICP) introduced
in [59] based on mesh representations of both the floating and target patches,
where the distance between corresponding points, being closest points, is itera-
tively minimized. However, the basic ICP algorithm has several shortcomings.
Firstly, when aligning point sets, both are typically two different samplings of
the same shape. Even when the patches are perfectly aligned, the distance
between a pair of best matching points can be nonzero. Secondly, the original
algorithm in [59] was proposed for the registration of point sets with complete
overlap. When dealing with partial overlap, many points of one patch will not
have a corresponding partner on the other patch. However, points without
partner do get matched to some point on the other patch. Such incorrect
matches are referred to as outliers due to partial overlap. The final problem is
the very expensive closest point search. A naive closest point search requires
Nf × N t point-to-point distance computations for every iteration, where Nf

are the number of points on the floating patch and N t are the number of points
on the target patch.

In order to overcome the shortcomings of the basic ICP algorithm (cf. ap-
pendix D), we apply the robust surface registration framework from chapter 3.
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The floating patch is represented as a set of points Sf = {rf
j |j = 1, . . . , Nf},

while the target patch is represented by a variational implicit surface St =
dt(r). Because no local surface deformations are necessary, a rigid transfor-
mation model, consisting of a translation and a rotation, suffice to register the
floating patch with the target patch.

Sf∗ = T(Sf , θ) = {T(rf
j , θ)|j = 1, . . . , Nf} (4.4)

with
T(rf

j , θ) = Rrf
j + t (4.5)

where R is a rotation matrix parameterized using euler angles ωx, ωy and ωz

constituting three consecutive rotations around the basis axes of the coordinate
system:

R(ωx, ωy, ωz) = Rz(ωz) ◦ Ry(ωy) ◦ Rx(ωx) (4.6)

and t is a translation vector according to the same basis axes:

t = [tx, ty, tz]
T (4.7)

The complete set of rigid transformation parameters to estimate is θ = [ωx, ωy,
ωz , tx, ty, tz], which is a six-dimensional transformation parameter vector. Due
to the rigidity of the transformation the regularization ‖L(θ)‖2 = 0, such that
p(θ) = cte in (3.15) for every possible transformation instance.

Using the rigid transformation model and the patch representations the
individual point similarities in (3.18) are defined with predefined distances
dj(θ) = 0 independent of the parameters θ, ensuring the floating surface to
be aligned onto the target surface:

sj(θ) = dt(T(rf
j , θ)) for j = 1, . . . , Nf (4.8)

Note that no explicit point correspondences are used in (4.8) in contrast to
ICP and (3.17). The similarity measures and the transformation model are
combined into an objective function according to the MAP formulation of
section 3.3.3. Using (3.24), (3.25) and the fact that log p(θ) = cte we see that
the noise σ estimation is irrelevant for optimization over θ and can be omitted.
Noise in the target surface is coped with using the smoothing properties of
variational implicit functions during VIS fitting. Furthermore, the log model-
likelihood term in (3.24) vanishes. The simplified objective function without
outlier handling becomes:

E(θ) =

Nf∑

j=1

sj(θ)2 (4.9)

Proceeding with the theory from section 3.3.3, outliers are dealt with by intro-
ducing a latent variable outlier map z and an outlier-process. Assuming that
outliers are solely due to the partial overlap, a regular latent variable with
very strong prior knowledge as in (B.19) based on the variational boundary
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function (VBF) bt(r) of the open target patch surface defined in section 3.2.3
can be applied. This assumption is valid for the facial patches we are work-
ing with. However, explained in section 3.3.3, a combined deterministic and
probabilistic latent variable can be used in case the assumption is incorrect.
Thanks to the interpolation and extrapolation properties of bt(r), points in 3D
located directly above and below the patch surface St will evaluate positive
in bt(r), while points next to and far away (outliers) will evaluate negative.
Indeed, starting in a point in the middle of St and approaching the border
or boundary of St, the function bt(r) will gradually decrease to zero. When
traversing the border this decrease will continue and bt(r) becomes negative.
Outliers due to partial overlap will evaluate negative, while inliers will evaluate
positive in bt(r). Therefore, a deterministic outlier detection function (B.19)
can be defined as:

zj = f(rf
j (θ)) = H

(
bt(T(rf

j , θ)) − t
)

(4.10)

with H(x′) the Heaviside function (H(x′) = 0 for x′ < 0, H(x′) = 1 for
x′ > 0). The threshold t is relatively easy to determine compared to other
outlier detection and rejection thresholds found in literature (cf appendix D),
since it only depends on the target patch and the constraints that create the
function bt(r). A threshold t equal to or close to zero will be appropriate.

Note that, using (4.10) leads to a binary variable zj = {0, 1}: rf
j is either in

or out.
The resulting MAP objective function with outlier handling becomes:

E(θ, z) =

Nf∑

j=1

h(sj(θ), α(zj), β(zj)) (4.11)

where
h(x, α(z), β(z)) = α(z)x2 + β(z) (4.12)

with
α(z) = z β(z) = −(1 − z) log δ (4.13)

With δ the uniform outlier distribution parameter. The difference of (4.12)
and (4.13) with (B.7) and (B.8) is the elimination of σ as an extra parameter,
due to reasons given previously.

As mentioned in section 3.3.4, the optimal pose estimate solution can be
found through an iterative joint optimization, leading to a dual updating pro-
cedure similar to an EM optimization. A sequence of parameter estimates

{θ̂(m)|m = 0, 1, . . .} is obtained by alternating the following two steps:

LV-step: On the (m + 1)th iteration, the latent variables are eliminated by
simple deterministic function evaluations using (4.10). Similar to (B.20) and
(B.21) the following equivalent M-estimator is created:

ρ(x, α, β) = h(x, α(H(x′)), β(H(x′)) (4.14)
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such that

E(θ) =
Nf∑

j=1

ρ(sj(θ), α, β) (4.15)

with
ρ(sj(θ), α, β) = h(sj(θ), α(f(rf

j (θ̂
m

))), β(f(rf
j (θ̂

m
)))) (4.16)

M-step The ML parameters θ̂
(m+1)

are then updated minimizing the energy
in (4.15) with fixed latent variable values or equivalently using (4.5), (4.8),
(4.10), (4.12) and (4.13):

E(θ) =

Nf∑

j=1

[
f(rf

j (θ̂
m

))
[
dt(Rrf

j + t)
]2

− (1 − f(rf
j (θ̂

m
))) log δ

]
(4.17)

The ML parameters should satisfy ∂E(θ)/∂θ = 0 and are updated similar to
(3.44). Due to the smooth and analytical properties of VIS representations,
first derivatives of (4.17) towards every parameter can always be computed and
are determined analytically. The actual minimization of (4.17) is accomplished
through a six dimensional conjugate gradient search framework instead of the
regular Steepest-Descent gradient search in (3.44):

θ(m+1) = θ(m) − s∇(m+1)
conj E(θ) (4.18)

with ∇(m+1)
conj E(θ) the conjugate gradient of E(θ) on the m + 1th iteration

computed using regular gradient ∇ information, according to:

∇(m+1)
conj = ∇(m+1) + γ(m)∇(m)

conj (4.19)

with

γ(m) =

(
∇(m+1) −∇(m)

)
· ∇(m+1)

∇(m) · ∇(m)
(4.20)

Old gradient information is taken into account in order to avoid the zig-zagging
behavior of regular Steepest-Descent algorithms and as a consequence faster
convergence is obtained. The initial conjugate gradient at the first iteration

m = 0 is set equal to the regular gradient:∇(1)
conj = ∇(1). The optimal step size

s in the direction of the conjugate gradient is determined using a line mini-
mization. The first derivatives for gradient calculations are straightforwardly

computed using the Chain-Rule. Note that the term (1 − f(rf
j (θ̂

m
))) log δ

in (4.17) originating from the outlier-process distribution is constant during
the M-step, therefore vanishing during derivative calculations. As a result,
the choice of δ is of low (no) importance, when using a deterministic outlier
detection function. However, having a combined random and regular latent
variable zj , the choice of δ is of importance for the random variable during the
LV-step.
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After applying pair-wise fine registration, the patches can be transformed
into a common coordinate system based on the P − 1 refined relative trans-
formations and the MST. However, when dealing with noisy data and partial
overlap, pair-wise registration errors will be accumulated in this way. To
correct these errors we eventually apply a multi-view simultaneous fine regis-
tration as explained in the next section.

4.2.4 Multi-view fine registration

Figure 4.7: Illustration of multi-view fine registration. Given a set of initial
absolute pose estimates , find the optimal absolute pose estimates

The purpose of multi-view fine registration is depicted in figure 4.7 and
is the last registration step to accomplish. The common strategy for multi-
view fine registration is similar to the crude case and is to perform consecutive
pair-wise fine registrations. However, again some complications are introduced
compared to the pair-wise fine registration: (1) building up of consecutive pair-
wise registration errors and (2) inconsistent poses. The latter is solved using
the MST from section 4.2.2. To cope with the former complication, a simulta-
neous registration of a patch with every other patch can be performed. Doing
so, doesn’t suffer from error-build up, but the complexity grows exponentially
with the number of patches. Alternatively, an intermediate integration of all
the simultaneous target patches can be used to register a floating patch like
[81, 82].

Our multi-view fine registration is very similar to the pair-wise fine registra-
tion. The only difference between them is the target patch used for registration.
In the pair-wise case the target patch consisted of one other patch, while in the
multi-view case the target patch is an integrated version of multiple patches ex-
cept for the floating patch itself. In fact integration and registration are merged
into one optimization step like [81, 82], while traditionally they were performed
separately. The integration of different patches {St

k|k = 1, . . . , P − 1} into one
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integrated target surface Sint with integrated VIS D(r) representation is done
with the integration method described in section 4.3.

The transformation model remains unchanged and is defined in (4.5). The
individual point similarities defined in (4.8) are measured using an integrated
signed distance surface D(r) representation. When having a sufficient number
of patches covering an object or when incorporating the floating patch to be
registered into the integrated target patch, no outlier detection and rejection
is needed during registration of a floating patch, because total overlap instead
of partial overlap is present. However when not having enough patches or
the floating patch is not incorporated into the model patch, outliers need
to be accounted for using the individual patch weighting functions w∗

k(r) for
integration defined in (4.25) of section 4.3.1. Instead of (4.10), the latent
variable is then determined using the following deterministic outlier detection
function:

zj = f(rf
j (θ)) = H

(
max{w∗

k(rf
j )|k = 1, . . . , P − 1}

)
(4.21)

Replacing, (4.10) with (4.21) and dt(r) with D(r), the LV-step (4.15) and M-
step (4.17) are obtained. The same conjugate optimization strategy is used,
by taking the derivative of (4.17) with respect to θ and setting it equal to zero.
The derivative of the function D(r) in a point r, needed for optimization, is
more complicated, but can still be evaluated analytically (4.28).

To conclude, the complete algorithm for multi-view fine registration is de-
scribed in pseudo-code:

Initialize
for k = 1, . . . , P do

calculate dt
k(r) and w∗

k(r) from St
k

end
procedure
repeat

for k = 1, . . . , P do
calculate Sint = D(r) based on all but one patches (section 4.3.1)
register St

k with Sint based on D(r),(4.21), (4.15) and (4.17)
transform St

k, dt
k(r) and w∗

k(r)
end

until convergence;

It must be noted that the rigid transformation of a variational implicit
function is straightforward. The basis of the polynomial term together with
the location of the constraint points need to be transformed, while the RBF
coefficients remain the same. No extra variational implicit function fitting is
required.



88 Facial surface acquisition

4.3 Patch integration

Besides registration, all the patches are to be integrated into a single facial sur-
face or entity. This is accomplished during the integration phase elaborated in
this section, which is merged with the multi-view fine registration from section
4.2.4. Furthermore, besides shape integration an additional texture integra-
tion is required as well. Shape and texture integration within this section are
based on weighted averages of variational implicit surfaces (VIS) and varia-
tional texture functions (VTF), respectively. The weighting functions, which
give a local measure of confidence, are also constructed using the VIF ma-
chinery from section 3.2.1 based on confidence weight constraints, generating
variational weighting functions (VWF). In section 4.3.1 the shape integration
is elaborated, while section 4.3.2 focuses on the texture integration. For an
overview of existing integration algorithms we refer the interested reader to
appendix D.

4.3.1 Shape integration

Figure 4.8: The purpose of shape integration is to combine multiple overlap-
ping patches into a single complete surface, while taking into account local
patch quality.

The purpose of shape integration is to combine multiple overlapping patch
surfaces into a single complete surface, while taking into account local patch
quality, shown in figure 4.8. Surface integration methods differ by the type of
input data used, unorganized or connected point sets, and the type of surface
representation, parametric or implicit. The most successful and popular in-
tegration techniques are the volumetric (implicit) integration methods as was
first proposed by [85].

Volumetric integration of different patches {Sk|k = 1, . . . , P} into a single
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surface, as proposed by [85], uses a discrete, grid-based, implicit function D(r),
representing a weighted average of signed distances to multiple patches. The
resulting integrated surface is defined as the zero-valued iso-surface D(r) = 0.

D(r) =

∑P
k=1 wk(r)dk(r)
∑P

k=1 wk(r)
(4.22)

dk(r) is a signed distance function of patch Sk = {r|dk(r) = 0}. wk(r) is a
weight function, which locally gives a measure of confidence for the function
dk(r), where the confidence measures are derived from [86] for optical trian-
gulation scanners. The purpose of the weight functions is to combine surface
points measured within multiple patches while taking into account the individ-
ual quality of the multiple measurements, resulting in a weighted combination
of measurements from a single surface point. The functions dk(r) and wk(r)
are constructed on a regular three-dimensional grid, by shooting rays through
every grid-point and the 3D sensor location of the patch acquisition. Final
surface tessellation or mesh extraction from (4.22) is obtained using Marching
Cubes [87].

Interesting properties of this volumetric integration (e.g. outlier robust-
ness, incremental update, incorporation of range uncertainty, . . . ) are enlisted
in [85]. However, several shortcomings and issues are to be dealt with. Firstly,
a disadvantage of the ray shooting algorithm is the dependency of the resulting
signed distance functions on the sensor location, which may not be known. It
is also preferable to incorporate patch normals during build up of the distance
functions in order to cope with sharp structures in the patch shape. Secondly,
a major drawback of these traditional volumetric integration methods is the
use of a 3D grid, such that the final surface resolution is limited by memory
requirements and computational complexity. Thirdly, it still remains unan-
swered to what extent grid-based signed distance build-up is sensitive to the
presence of noise within the patch data. Is the final signed distance value in
each grid-point reliable, when the input patch is very noisy (larger than the
grid sampling size,e.g.) and does this affect the final integration? Especially
patch normal information is severely influenced by noise. Building up the
signed distance function with incorporation of these corrupted normals will
lead to a wrong integration result. Finally, every surface integration method
also has to cope with the presence of holes in some of the patches. This is
typically solved after integration and mesh extraction or during integration
requiring additional overhead and/or grid-point classifications. No volumetric
integration method uses a hole filling inherent representation.

We tackle the volumetric shape integration problem using the VIF machin-
ery from sections 3.2.1, retaining the desirable properties enlisted in [85], but
at the same time resolving current limitations of volumetric integration. In
a first instance, the signed distance functions dk(r) in (4.22) for every patch
are replaced with the VIS representations of the patches dk(r). In a second
instance, the weight functions wk(r) are replaced by variational implicit weight
functions (VWF) w∗

k(r) based on range uncertainty or point confidences de-
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fined in [85]. The border ∂Sk of every patch Sk and the distance d(rki, ∂Sk)
of every point rki in Sk to the border for i = 1, . . . , Kk, with K the number
of points on patch Sk, are determined. For every 3D point rki of a patch Sk a
corresponding weight wki (point confidence) is calculated according to:

c′ki = w′ log(1 + w′′d(rki, ∂Sk))

c′′ki = 2
π

arcsin(nki, sk)

wki = c′kic
′′
ki

(4.23)

c′ki gives lower weights to points near a patch border, because borders of
patches are often less reliable. Note that these weights are exactly the same as
the boundary constraints in section 3.2.3, with (w′, w′′) equal to (1/ log(100),
99/(maxid(rki, ∂Sk))). c′ki takes into account the angle between the normal
nki in a point of a patch Sk and the sensor direction sk from which the patch
was captured. Points at grazing angles receive lower weights. If the sensor
direction sk is not known, it is approximated by the average normal of all the
points on the patch Sk:

sk =
1

Kk

Kk∑

i=1

nki

‖nki‖
(4.24)

wki combines c′ki and c′′ki. Figure 4.9 shows c′ki (right), c′′ki (middle) and the
combined weights wki (left) on an exemplar patch.

Figure 4.9: c′ (right), c′′ (middle) and the combined weights w (left) from
(4.23) on an exemplar patch. The color-maps range from 0 (blue) to 1 (red).

Based on the points {rki|i = 1, . . . , Kk} of a patch Sk, being the constraint
points, and there weights {wki|i = 1, . . . , Kk}, being the function constraints,
a new variational implicit function wk(r) can be constructed (section 3.2.1).
Doing so, local on-patch confidence information is extrapolated to off-patch
positions (see figure 4.11) and combined with the distance function dk(r) a
new weight function w∗

k(r) per patch can be defined:

w∗
k(r) = wk(r)H (td − |dk(r)|) H (wk(r) − tw) (4.25)

with H(x) the Heaviside function. The threshold td is introduced to eliminate
the influence of a patch to points in front or behind the patch which are
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further away than td, so that thin objects can be reconstructed. Two patches
at opposite sides of an object should not influence each other. The threshold
tw is the same as t for the outlier handling of section 4.2.3 in (4.10) and limits
the influence of a patch outside his border. Hole filling consists in a good
determination of this threshold tw or by not taking into account borders of
small holes in the patches for the determination of the distances d(rki, ∂Sk) in
(4.23). Using w∗

k(r) and dk(r) instead of wk(r) and dk(r) in (4.22) we obtain:

D(r) =

∑P
k=1 w∗

k(r)dk(r)
∑P

k=1 w∗
k(r)

(4.26)

Figure 4.10: Three mesh tessellations of the exemplar patch VIS d(r), (left)
mesh for d(r) = 0, which is the original surface with extrapolations and in-
terpolations. (middle) mesh at distance d(r) = 2. (right) mesh at distance
d(r) = 6. These tessellations are used to visualize the extrapolation properties
of the VWF and VTF in figure 4.11 and 4.13, respectively.

Figure 4.11: Visualization of the VWF extrapolation properties, based on the
tessellations in figure 4.10. Confidence weight information on the patch surface
is smoothly extrapolated towards points off the surface, which is needed for
integration.

A final mesh tessellation of the zero iso-distance surface D(r) = 0 is ob-
tained using Marching Triangles (MT) [88]. The most interesting property of
MT compared to Marching Cubes (MC) is that no 3D grid is needed. Only,
three requirements are needed to use MT. Firstly, a seed triangle is needed to
initialize the growing. One or more triangles of the original patches can be
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used and projected on the zero iso-surface of D(r) as seed triangles. Secondly,
evaluation of the implicit function must be possible for every point in 3D. This
is done with (4.26). Finally, it must be possible to determine the derivative of
the implicit function in a 3D point. To calculate the derivative of D(r) in an
arbitrary 3D point r the patches that have an influence on the point are to be
determined.

K = {k|H (td − |dk(r)|) H (wk(r) − tw) = 1, for k = 1, . . . , P} (4.27)

Then, the derivative of D(x) based on the subset patches K is calculated
analytically as:

∂D(r)

∂r
=

A1 − A2

B2
(4.28)

with
A1 =

∑
k∈K

∂wk(r)
∂r

dk(r) +
∑

k∈K wk(r)∂dk(r)
∂r

A2 =
∑

k∈K
∂wk(r)

∂r

∑
k∈K wk(r)dk(r)

B =
∑

k∈K wk(r)

(4.29)

By making use of variational implicit surfaces and weight functions of the
patch surfaces and weights some limitations of current volumetric integration
methods are overcome. No memory inefficient 3D grid is used, such that the
final resolution or accuracy is not limited by memory requirements. Hole filling
does not require an extra step because of the interpolation and extrapolation
properties of the representations. Furthermore, the variational representations
are sensor location independent and take into account surface normal infor-
mation during representation build-up. Finally, useful smoothing properties
of VIF [69] can be used when dealing with noisy patch data.

4.3.2 Texture integration

In a final stage of the complete face acquisition algorithm from partial surfaces,
a texturing of the integrated surface obtained in section 4.3.1 (after applying
MT) is performed using texture integration, which is depicted in figure 4.12.
The amount of literature concerning texture integration or blending is limited
compared to shape integration. Texture contributions from different patches
are typically weighted during blending. Disadvantages of current texture in-
tegrations methods [89, 90, 91] are the need for integrated surface extraction
before texture weight determination and the dependency of the weights on the
relative poses of the patches, which makes the texture weights and blending
sensitive to the accuracy of the patch registrations.

Our texture integration is performed in the same way as the shape inte-
gration of the previous section. Instead of a weighted combination of VIS
representations, three weighted combinations of variational implicit texture
functions (VTF) is performed. The weight functions are the same as for shape
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Figure 4.12: The purpose of texture integration is to combine multiple over-
lapping textures into a single smooth texture map.

integration, being independent on the relative poses and therefore being inde-
pendent of registration errors. Furthermore, no integrated surface extraction
is needed prior to texture weight computation.

During patch acquisition, for every point {rki|i = 1, . . . , Kk} of every patch
{Sk|k = 1, . . . , P} an RGB triplet (rki, gki, bki) is acquired besides 3D loca-
tion information. Three VTFs trk(r), t

g
k(r) and tbk(r) for every patch Sk are

constructed based on the constraint points {rki|i = 1, . . . , Kk} and function
constraints

{trk(rki) = rki|i = 1, . . . , Kk}

{tgk(rki) = gki|i = 1, . . . , Kk}

{tbk(rki) = bki|i = 1, . . . , Kk}

(4.30)

using the VIF machinery from section 3.2.1. Doing so, on-patch texture in-
formation is extrapolated towards off-patch locations (see figure 4.13). Using
trk(r), t

g
k(r) and tbk(r), integrated texture functions R(r), G(r) and B(r) are

obtained based on weighted sums similar to the shape integration in (4.26):

R(r) =
PP

k=1
w∗

k(r)tr
k(r)P

P
k=1

w∗

k
(r)

G(r) =
PP

k=1
w∗

k(r)tg

k
(r)P

P
k=1

w∗

k
(r)

B(r) =
PP

k=1
w∗

k(r)tb
k(r)P

P
k=1

w∗

k
(r)

(4.31)

Texturing of the integrated surface mesh obtained using MT on (4.26), is
then accomplished by evaluating every mesh vertex of the integrated surface
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into R(r), G(r) and B(r) of (4.31), resulting in an integrated RGB triplet for
every mesh vertex. By making use of variational implicit texture and weight
functions, the same advantages enumerated in section 4.3 are valid for the
texture integration as well.

Figure 4.13: Visualization of the VTF extrapolation properties, based on
the tessellations in figure 4.10. Texture information on the patch surface is
smoothly extrapolated towards points off the surface, which is needed for in-
tegration. In this example the red VTF tr(r) is used.

4.4 Results

This section shows some experimental results of our 4-step registration and in-
tegration algorithm on real-live, noiseless and noisy simulated data. The data
was acquired using a 3D active range scanning camera (ShapeCam, Eyetron-
ics, Leuven, Belgium [92]) and associated ShapeWare reconstruction software.
Human faces are fairly complicated objects to acquire. The nose typically
causes a lot of problems, because of the amount of curvature and being par-
tially occluded in different patches. Hair and eyebrows introduce severe noise
and local surface misinterpretations. A last difficulty is the non-rigidity, like
swallowing, of the face during acquisition of different patches, which introduces
imperfect surface matches between patches.

Two different aspects are analyzed: robustness in terms of initialization
(being completely automatic) and accuracy. Robustness in terms of initializa-
tion, is mainly determined by the crude registration, while accuracy is mainly
dependent on the fine registration. The crude registration is successful if it
outputs a good initialization for the fine registration to converge to an accu-
rate result. The feasibility of the algorithm is shown in section 4.4.1 on real
live-data. Based on this data set, a further comparison between VISS-images
and spin-images is made. Furthermore, the integration power is illustrated
as well, based on very erroneous individual real-live patch acquisitions. Due
to the lack of ground truth knowledge of the individual patches within the
real-live data set we create a simulated data set in section 4.4.2, to analyze
accuracy in terms of registration and transformation parameter errors. Using
the simulated data set, the pair-wise fine registration of section 4.2.4 is also
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briefly compared with an ICP fine registration technique [93]. Furthermore,
the same data set is applied to show a texture integration of artificial higher
frequency individual patch textures compared to regular non dynamic skin
texture. To illustrate a strategy based on VIFs to handle noise, a final noisy
data set is created in section 4.4.3.

4.4.1 Real-live data set

The first data set used is a real-live face acquisition, shown in figures 4.14
and 4.15, consisting of 11 patches. Notice the very bad nose reconstruction
in the close-up images of figure 4.14, together with holes typically located at
the nose and the eyebrows. Observe the wrongfully aligned textures in some
patches of figure 4.15, due to a time-delay between texture and geometry image
(e.g. figure 4.1(middle)) capturing for a single patch acquisition. Normally, the
individual patches are first cleaned up manually with the ShapeWare software,
which involves smoothing, hole filling, texture alignment and deletion of bad
parts. We choose not to perform the manual cleanup to reduce the manual
work to a minimum and to illustrate the feasibility and robustness of our
method to bad input data.

Figure 4.14: Real-live data set consisting of 11 patches. Included are two close-
ups of the nose in two different patches to illustrate bad nose acquisitions due
to misinterpretations and occlusions during acquisition.

For the pair-wise crude registration, we selected randomly 500 points on
every patch for which VISS-images were computed. The VISS-image resolution
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Figure 4.15: 11 patches of the real-live data set rendered with texture infor-
mation. Note the bad texture alignments in some patches, due to a time-delay
between texture and geometry image (e.g. figure 4.1(middle))acquisitions.

was 15× 15 bins with a bin size of 2 by 2 mm. Other VISS-image parameters
are: s = 36, γ = 4. For the voting scheme, three quantization resolutions
are defined. The translation vector has quantization intervals of 20mm, the
rotation vector has intervals of 0.2 mm and the rotation angle has intervals of
0.0066 rad. This results in a very coarse six-dimensional voting scheme when
converting the rotation vector and angle into euler angles. Despite the low
resolution of the VISS-images and low quantization resolution of the voting
scheme, the crude registration manages to initialize the fine registrations well
enough in order for them to converge successfully as can be seen in figure
4.16. Of course by increasing both resolutions better crude registrations can
be obtained at the expense of computation time and memory.

Figure 4.16: Progress of the algorithm on the real-live data set: (a) initial
situation, (b) after multi-view crude registration, (c) after pair-wise and multi-
view fine registration, (d) surface integration , (e) texture integration.
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Transf. VISS Spin

T1 213 139

T2 176 132

T3 144 101

T4 138 96

T5 128 77

T6 121 70

T7 117 70

T8 117 66

T9 105 59

T10 104 58

Avg(1-10) 136.3 86.8

Avg(1-110) 61.5 37.5

Table 4.2: The number of inliers per transformation (T), found by VISS-images
and spin-images

In section 4.2.1 some advantages of the VISS-images compared to spin-
images were listed and shortly illustrated. Here, a further comparison is made
based on the number of transformation supporting inliers (cf. section 4.2.2)
obtained with both point-signatures using the same resolution parameters. Be-
ing an inlier or correct point-pair is defined as: An established corresponding
point-pair obtained through normalized correlation between point-signatures,
lying in each others proximity after applying the computed crude transforma-
tion. Proximity of point-pairs is limited to 15mm according to the translation
resolution of 20mm. Doing so, an indication on the number of correct point-
pairs is obtained and given in table 4.2. The average amount of inliers over the
P − 1 = 10 with P = 11 best transformations selected after multi-view crude
registration and over all possible 110 pair-wise transformations are given as
well in table 4.2. It is clearly observed that comparing VISS-images performes
better than spin-images in terms of the amount of transformation support-
ing inliers. The average over all possible transformations is much lower for
both spin- and VISS-images, but one has to keep in mind that not all patch-
pairs share a common overlap. Additionally, from the 110 transformations,
we visually examined the amount of satisfying transformations found by the
VISS-images (72 out of 110) and spin-images (53 out of 110). 72 for the VISS-
images is considered to be good knowing that not all 110 transformations are
valid or realistic.

A visual result of the integration power is given in figure 4.17. A close-up
of the final integrated nose is given. Keeping in mind the bad partial nose
acquisitions in figure 4.14, we see that the result is quite acceptable, but not
yet perfect. This can be resolved by deleting some really bad nose parts in
the individual patches, like in the closeup images of figure 4.14. Alternatively,
more patches could be acquired so that more measurements of the same data
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is incorporated, downgrading the contribution of erroneous measurements. A
third option is to define a weight function similar to c′ki and c′′ki in (4.23),
that detects bad parts like the close-ups in figure 4.14 and gives them a lower
weight during integration. Due to the lack of ground truth knowledge no
further analysis can be performed. The quantification of accuracy is obtained
in the next section, using a simulated data set with ground truth incorporation.

Figure 4.17: Close-up of the nose after integration

4.4.2 Simulated data set

The second data set is a noiseless simulated data set illustrated in figure 4.18.
Starting from a complete 3D surface of a face obtained using the ShapeWare
software and some additional manual editing, 10 partially overlapping patches
were cut out of the 3D surface. Subsequently, all patches except one were ran-
domly translated from 0 to 50 mm in every direction and rotated between 0
and 10 degrees around every axis in 3D. The goal of the registration process is
to align the patches into the coordinate system of the unchanged patch. By do-
ing so we can compare the registration per patch with the ground truth, being
the starting model which lies in the same coordinate system. The registration
accuracy per patch can then be calculated as the mean and the standard devi-
ation in mm of the absolute function evaluations of the patch points into the
variational implicit surface of the original complete 3D surface. The crude reg-
istration parameters are the same as for the previous data set. The threshold
t and tw needed during pair-wise and multi-view fine registration respectively,
are set to 0. The influence threshold td is set to 15 mm.

Figure 4.19 depicts the progress of the algorithm on the noiseless simulated
data set. The absolute local surface differences or registration errors, obtained
using absolute VIS evaluations, between the final integrated result in figure
4.19(d) and the ground truth surface in figure 4.18(a) are shown in figure
4.18(e) using a gray-map ranging from 0 mm (black) to 1 mm (white). It is
observed that the final result is more than satisfying in terms of local surface
accuracies. The average and standard deviation of the local surface differences
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Figure 4.18: Simulated data set: (a) Ground truth shape. (b) Ground truth
texture. (c) and (d) two exemplar patches of 10 patches obtained from the
complete surface. (e) Local comparison of the final integration in figure 4.19
(d) with the ground truth surface (a) using absolute VIS evaluations

Figure 4.19: Progress of the algorithm on the simulated data set: (a) initial
situation, (b) after multi-view crude registration, (c) after pair-wise and multi-
view fine registration, (d) surface integration , (e) texture integration.

after integration are 0.0223 mm and 0.0361 mm respectively. Similarly, indi-
vidual patch averages and standard deviations of local registration errors after
the different algorithmic steps are enumerated in table 4.3. Thanks to the
notion of pair-wise ground truth transformation parameters, remaining trans-
formation parameter errors after registration can be computed as in table 4.4
for pair-wise fine registrations after the P −1 = 9 extracted crude registrations
using the MST method during the multi-view crude registration step.

In table 4.3, it is observed that the mean absolute error over all patches
(except the first) drops from 8.9 mm (multi-view crude) over 0.03 mm (pair-
wise fine) to 0.01 mm (multi-view fine). The first patch S1 was not altered
from its ground truth position. Therefore small registration errors are obtained
for the first patch, which are not incorporated into the total registration er-
ror calculations. Taking into account table 4.4, while analyzing table 4.3, we
see that the pair-wise fine registration severely increases the registration qual-
ity. The multi-view fine registration further reduces the registration error, but
the reduction is not severe because of the already nice results obtained after
the pair-wise fine registrations. It is therefore interesting to apply pair-wise
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Patch MV Crude PW fine MV fine

µ σ µ σ µ σ

S1 3.6e-6 2.9e-6 3.6e-6 2.9e-6 3.6e-6 2.9e-6

S2 16.844 7.1940 0.0383 0.0277 0.0185 0.0173

S3 8.0178 4.8434 0.0505 0.0405 0.0185 0.0179

S4 7.6327 3.0579 0.0630 0.0655 0.0200 0.0152

S5 3.0873 2.0597 0.0015 0.0013 0.0034 0.0020

S6 11.902 5.4532 0.0355 0.0316 0.0175 0.0175

S7 6.0803 3.7855 0.0014 0.0012 0.0035 0.0022

S8 7.6714 2.8056 0.0013 0.0010 0.0043 0.0028

S9 7.2438 4.1538 0.0313 0.0300 0.0240 0.0224

S10 10.8515 5.4650 0.0353 0.0269 0.0131 0.0141

Total 8.8990 5.9924 0.0287 0.0381 0.0137 0.0161

Table 4.3: Averages µ and standard deviations σ in mm of the local surface
registration errors for every patch {Sk|k = 1, . . . , 10} separately and all the
patches (except the first patch S1) combined (Total).

T1 T2 T3 T4 T5 T6 T7 T8 T9

tx -0.004 -0.095 0.052 0.001 -0.001 0.003 <1e-3 0.089 -0.007

ty -0.013 0.099 -0.220 -0.002 0.008 -0.002 0.003 -0.075 0.009

tz -0.011 0.210 0.187 0.005 0.004 -0.005 0.005 0.040 0.002

ωx <1e-3 -0.001 0.002 <1e-3 <1e-3 <1e-3 <1e-3 0.001 <1e-3

ωy <1e-3 0.002 -0.001 <1e-3 <1e-3 <1e-3 <1e-3 0.001 -<1e-3

ωz <1e-3 <1e-3 <1e-3 <1e-3 <1e-3 <1e-3 <1e-3 0.002 <1e-3

Table 4.4: Remaining pair-wise transformation parameter θ =
[tx, ty, tz , ωx, ωy, ωz] errors for pair-wise fine transformation estimates
{Tk|k = 1, . . . , 9} after the P − 1 = 9 extracted crude registrations using the
MST method during the multi-view crude registration step. tx, ty and tz in
mm. ωx, ωy and ωz in rad (radial).

fine registrations after multi-view crude and before multi-view fine registra-
tion, because the latter is computationally more expensive. The multi-view
fine registration only needed 5 iterations before convergence. Comparing the
pair-wise fine registration error and the multi-view fine registration error intra
patch-wise, it is seen that the error is mostly reduced but is sometimes slightly
increased. This copes with the main idea of multi-view simultaneous registra-
tion trying not only to reduce but also to redistribute pair-wise registration
errors.

Starting from the P − 1 selected best pair-wise crude registrations using
the MST during multi-view registration, we initialize both our pair-wise fine
registration algorithm from section 4.2.3 and an ICP related fine registration
[93]. The ICP algorithm uses point-based surface representations for both the
target and the floating surface and outliers are dealt with using a maximum
distance threshold in between corresponding points. One of the pair-wise cases
is shown in figure 4.20. The starting position after pair-wise crude registration
is shown in 4.20(b). The ICP and our result are shown in 4.20(a) and (c)
respectively. For both results local surface differences are visualized using a
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Figure 4.20: (c) The pair-wise fine registration of section 4.2.3 based on VIS
target surface representations and a deterministic outlier detection function,
compared with an ICP related fine registration (a), both starting from the
same crude initialization (b)

color-code ranging from -3 mm (red) to 3 mm (green). The outlier threshold for
the ICP algorithm was determined using a trial and error approach after which
the best result was retained. It is seen that the registration accuracy with our
registration algorithm is superior. The other 8 cases generated similar results.
However, it must be noted that the used ICP algorithm is not one of the best
to deal with partial overlap, but it was the only implementation available at
the time of validation. Furthermore, a huge variety of ICP algorithms exist
in literature, making it difficult to choose a golden standard ICP algorithm to
compare with.

A final illustration (see figure 4.21) based on the simulated data set, from
this section, concerns the ability of the texture integration, elaborated in sec-
tion 4.3.2, to cope with high frequency or highly detailed textures. Typical
face textures are of low variation. Therefore, the facial texture information
from the ground truth facial surface in figure 4.18 is replaced with artificial
texture incorporating higher color variance and the textures of the individual
patches are altered accordingly as well. The shape integration result from
figure 4.19(d) is evaluated within the integrated texture functions (4.31) to
obtain the textured result in figure 4.21(a). Comparing the result with the
ground truth 4.21(b), we can conclude that the texture integration is indeed
capable to cope with high variance containing textures, besides regular facial
textures.
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Figure 4.21: Illustration of the texture integration ability to cope with high
dynamic textures. (a) reconstructed texture after texture integration with
close-up. (b)ground truth texture with close-up.

4.4.3 Noisy simulated data set

The third and final data set is a noisy synthetic data set (see figure 4.22)
constructed in the same way as the previous data set, except that we add noise
to the patch point coordinates. The noise is normally (gaussian) distributed
with zero mean and 0.5 mm standard deviation. The purpose of this data set
is to show that the smoothing properties of the variational implicit surfaces
render the registration scheme robust to noise. The smoothing is introduced
into all 4 registration steps by substituting a smoothed VIS ds

k(r) for the
original VIS dk(r). To create the functions ds

k(r) from the noisy data we choose
to use the spline smoothing technique during fitting described in section 3.2.1
using (3.11), with a smoothing parameter ν = 32. Figure 4.23 depicts the
progress of the algorithm on the noisy simulated data set.

VISS-images are mainly determined by the variational implicit surface
dk(r) of the patch Sk, the location of the point r and its normal direction
from which the plane I is constructed. Especially the function dk(r) and the
normal directions have a major influence on the images, more than the point
locations. The latter only has a small translation effect, while the former two
have a more complex and a rotation effect, respectively. Creating a smooth
function ds

k(r) reduces the noise influence on the VIS representation. To cor-
rect the normal directions from noise influences the gradient of the smoothed
ds

k(r) is computed in every patch point and used as smoothed normal. Finally,
the noisy patch vertex or point locations can be corrected by projecting the
points locally onto the zero-distance surface of ds

k(r) using (3.46). However,
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Figure 4.22: Noisy Simulated data set: (a) Ground truth shape. (b) Noiseless
Ground truth texture. (c) and (d) two noisy exemplar patches of 10 patches
obtained from the complete surface and additive gaussian noise. (e) Local
comparison of the final integration in figure 4.23 (d) with the noiseless ground
truth surface in (a) using absolute VIS evaluations

Figure 4.23: Progress of the algorithm on the noisy simulated data set: (a)
initial situation, (b) after multi-view crude registration, (c) after pair-wise and
multi-view fine registration, (d) surface integration , (e) texture integration.

this latter correction concerning the point locations is not done, because crude
registration succeeded, by experiment, without it. Using spin-images instead
of the smoothed VISS-images failed to give proper crude initializations, due
to the sensitive nature of spin-images towards noisy mesh representations. A
spin-image is dependent on the exact location of a point r with its normal and
neighboring points, which are all corrupted by noise. In order for spin-images
to succeed a noiseless mesh representation is to be extracted from the noisy
mesh representation.

Using ds
k(r) instead of dk(r) in (4.8) and (4.26) render the pair-wise and

multi-view fine registrations, respectively, robust against noise. Doing so, gra-
dient computations, needed for the conjugate-gradient optimization, are now
noiseless and smooth. This is comparable with the signed Distance Trans-
form determination based on filtered normals in [81]. Incorporation of a noise
estimation in (4.9) would not resolve the problem of noisy gradient calcula-
tions. Furthermore, such a noise estimation only influences the amount of
transformation regularization, which is always zero for rigid transformations.
Therefore the noise estimation in (4.9) was not needed and was neglected. Fi-
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Patch MV Crude PW fine MV fine Noise

µ σ µ σ µ σ µ σ

S1 0.413 0.312 0.413 0.312 0.413 0.312 0.414 0.313

S2 8.629 3.563 0.4391 0.3313 0.4163 0.3156 0.4096 0.31

S3 7.582 4.628 0.426 0.321 0.425 0.321 0.411 0.311

S4 14.55 3.970 0.418 0.317 0.413 0.312 0.411 0.310

S5 3.878 2.420 0.411 0.312 0.411 0.312 0.410 0.312

S6 6.478 3.307 0.413 0.312 0.416 0.314 0.409 0.309

S7 10.94 5.763 0.4179 0.313 0.416 0.312 0.414 0.310

S8 10.94 6.145 0.413 0.329 0.416 0.318 0.409 0.314

S9 4.541 2.867 0.413 0.313 0.415 0.315 0.409 0.309

S10 4.541 2.867 0.413 0.313 0.415 0.315 0.409 0.309

Total 8.353 5.308 0.420 0.318 0.415 0.314 0.410 0.310

Table 4.5: Averages µ and standard deviations σ in mm of the local surface
registration errors for every noisy patch {Sk|k = 1, . . . , 10} separately and all
the patches (except the first patch S1) combined (Total).

nally, substituting dk(r) with the smooth function ds
k(r) in (4.26) also results

in a smooth noise free final surface shape integration.

The absolute local surface differences between the final integrated result
in figure 4.23(d) and the noiseless ground truth surface in figure 4.22(a) are
shown in figure 4.22(e) using a gray-map ranging from 0 mm (black) to 1
mm (white). It is observed that the final result is smooth instead of noisy
and is more than satisfying in terms of local surface accuracies. The average
and standard deviation of the local surface differences after integration are
0.0864 mm and 0.0901 mm respectively. Similar to the previous section using
the noiseless synthetic data set, registration error and transformation error
analyzes per patch are made in table 4.5 and table 4.6 respectively. The
mean absolute error (by comparing the registrations of the noisy patches to a
noiseless ground truth) over all patches (except the first) drops from 8.4 mm
(multi-view crude) over 0.420 mm (pair-wise fine) to 0.416 mm (multi-view
fine). The remaining registration error is mainly equal and due to the noise,
with average absolute noise level of 0.41 mm, so that we can conclude that
the registration was performed robustly and successfully. Comparing these
numbers with the accuracy after integration we see that a major amount of the
noise present in the patch data is eliminated during integration. Finally, the
transformation parameter errors in table 4.6 after pair-wise fine registrations
are satisfying and acceptable in practise.

Note that, the simulated noise we added does not necessarily occur in
reality, but when knowing the noise distribution of the 3D acquisition system or
the noise per patch data point, one of the smoothing techniques, besides spline-
smoothing, enlisted in [69] can be applied. As a consequence, the main strategy
and robustness of the algorithm against noise, does not change depending on
the type of noise.
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T1 T2 T3 T4 T5 T6 T7 T8 T9

tx -0.097 0.274 0.143 0.073 -0.021 0.235 -0.006 0.064 -0.057

ty 0.007 0.455 -0.382 -0.014 0.083 -0.196 -0.058 0.049 0.019

tz -0.088 0.392 0.179 0.078 -0.031 -0.022 0.035 0.003 -0.014

ωx <1e-3 <1e-3 0.003 -0.001 -0.002 0.005 -0.001 <1e-3 -0.001

ωy -0.001 0.007 -0.001 -0.001 0.001 0.002 <1e-3 <1e-3 -0.002

ωz 0.001 -0.001 <1e-3 <1e-3 -0.001 0.007 <1e-3 -0.004 <1e-3

Table 4.6: Remaining pair-wise transformation parameter θ =
[tx, ty, tz , ωx, ωy, ωz] errors for pair-wise fine transformation estimates
{Tk|k = 1, . . . , 9} on the noisy patches after the P − 1 = 9 extracted crude
registrations using the MST method during the multi-view crude registration
step. tx, ty and tz in mm. ωx, ωy and ωz in rad (radial).

4.5 Conclusion

Facial surfaces as part of the craniofacial database were acquired using a pho-
togrammetric active 3D acquisition device. Advantages included, portability
and upright position acquisition. However, due to the limited viewing-angle
of the camera a complete facial surface needed to be assembled from multi-
ple partial surface acquisitions. To build a complete database an automatic
assembling procedure for the facial surface acquisition was required.

We presented an automatic, robust and accurate registration and integra-
tion algorithm for 3D surface building from separate patches, without any
prior knowledge. We used a variational implicit surface representation of the
patches, which is a volumetric representation not requiring a memory ineffi-
cient and resolution-limiting 3D grid. The VIS representation had useful prop-
erties for solving the different tasks and had interesting smoothing properties
to deal with noisy data. First, a pair-wise crude registration was solved by
making use of directed point-signatures in combination with a voting scheme.
Shortcomings of spin-images for use as point-signatures were solved by creating
VISS-images increasing the quality and the robustness of the point-signatures.
A minimum spanning tree (MST) was used to convert the pair-wise crude
registrations into a multi-view crude registration resulting in a set of best
transformations, according to the number of transformation inliers, needed to
transform all the patches into a common coordinate system. This set of best
transformations was further refined by applying pair-wise fine registrations.
We defined an objective function, according to chapter 3, based on the VIS
representation of the target patch. The optimization was accomplished by
a six dimensional conjugate gradient search for the transformation parame-
ters, instead of finding corresponding points between floating patch and target
patch. We also defined a novel variational implicit function for an improved
outlier detection and rejection during optimization. In contrast to traditional
outlier detection systems, the outlier detection function depended on the tar-
get patch only, resulting in an easier outlier threshold setting. Additionally, a
combined random/deterministic outlier variable could be used when outliers
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are not solely introduced by partial overlap. Finally, accumulation of pair-
wise registration errors was dealt with by applying a multi-view simultaneous
fine registration. Solving this registration was similar to the pair-wise fine
registration except that the target patch was replaced by an intermediate vol-
umetric integration of patches. The integration itself was also based on the
VIS representations such that integration and registration could be unified.

By making use of variational implicit surface and function representations
of the patch surfaces, textures and weights we solved limitations of current
volumetric integration methods. No memory inefficient 3D grid was used,
such that the final resolution or accuracy is not limited by memory require-
ments. Hole filling did not require an extra step because of the interpolation
and extrapolation properties of the chosen representations. Furthermore, the
representation had useful smoothing properties when dealing with noisy input
data. Texture integration was performed similarly to shape integration, mak-
ing use of the same weight functions in order to reduce the texture influence
of low confidence patch points.

We performed experiments on real-live data, noiseless and noisy simulated
data. The real-live data set showed the robustness of the algorithm to bad
data. In order to improve the final quality of the 3D model, some really bad
data parts in the patches were to be deleted or more patches are to be taken
in order to reduce the effect of the bad parts in the final integration. The
noiseless data set showed the accuracy of the algorithm. The noisy simulated
data set illustrated that the smoothing properties of the VIS representation
can be used to make the algorithm robust against noisy input data.

Having acquired the complete facial surface and a set of ultrasound thick-
ness measurements, the final prerequisite for a facial entry within the craniofa-
cial database is to establish dense point correspondences with a reference face.
The complete facial surface registration is dealt with in the next chapter.



Chapter 5

Facial surface registration

5.1 Introduction

Why inter-subject facial surface registration? The third and last pre-
requisite for our craniofacial database is to register facial surfaces to perform a
statistical inter-subject facial analysis (chapter 6) and to construct a statistical
craniofacial model. As a result of the patch integration and the final tessel-
lation presented in the previous chapter, every facial surface in the database
is represented as a dense set of connected 3D points. However, the acquired
faces within the database, until now, do not have the same amount of 3D
points sharing the same connectivity and corresponding texture information.
To tackle this problem, the 3D points with known connectivity of a carefully
constructed generic reference face are mapped or non-rigidly registered onto
the faces in the database, which was already illustrated in figure 1.3. Using the
definitions of chapter 3, the generic reference face is the floating surface while
the faces in the database are the target surfaces. The result of inter-subject
facial surface registration is that for every point on one surface the correspond-
ing point on every other surface in the database is known. Furthermore, the 52
face landmarks, in which ultrasound tissue depths were measured, are a sub-
set of the dense points, such that corresponding inter-subject facial anatomical
landmarks are known as well. Gathering texture information within the reg-
istered points is accomplished by evaluating the points within the integrated
variational texture functions (4.31) of the target faces.

Requirements The facial surface registration methodology must be robust
against noise and must be able to cope with outliers due to partial overlap
or missing data. Missing data are due to the fact that the 3D surface ac-
quisition device is not able to acquire 3D information from hairy or covered
regions in the face, generating incomplete 3D surface acquisitions with holes or
missing data. An example is visible in figure 1.3: due to the presence of side-
whiskers, the 3D facial surface contains holes or misses 3D surface information
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at the location of the whiskers. Noise robustness is not necessarily required
for small errors in the target surface, because these were smoothed after shape
integration in section 4.3.1, but rather because of the non-rigid nature of the
registration. Indeed, non-rigid surface registration requires an iterative proce-
dure alternating between finding corresponding points and calculation of the
transformation geometrically aligning corresponding points. Hence, an inter-
mediate estimate of the point correspondences during registration is typically
erroneous, especially at the beginning of the registration, where the shapes of
the floating and the target surface are still very different.

Shortcomings of existing methods The establishment of dense point cor-
respondences using a non-rigid surface registration in between two surfaces is
fairly complicated due to the the non-rigid nature of the registration problem.
Furthermore, it is a well known fact that the quality of the statistical model
extracted afterwards is dependent on the quality and the consistency of the
established dense point correspondences. A short overview of related work
concerning non-rigid facial surface registration for shape modeling is given in
appendix F. Several authors simplify the non-rigid registration problem by
user intervention to obtain a better initialization [94, 95, 96]. However, the
final result is then dependent on the quality of the user intervention guiding
the registration. Furthermore, it is time-consuming when applied to a large
database. Alternatively, [97, 98] solve the problem in 2D instead of 3D us-
ing a 3D-2D mapping. However, a 3D-2D mapping incorporates the danger
of loosing 3D surface information, especially in regions with high curvature.
Therefore, we prefer to solve the problem in 3D instead. A non-rigid registra-
tion technique in 3D without user intervention is the robust point matching
(RPM) algorithm [71], which we mention here, because it is closely related to
our non-rigid surface registration method. The RPM algorithm is designed to
establish correspondences between two point-sets and to determine a non-rigid
Thin Plate Sline (TPS) based transformation mapping the corresponding point
sets onto each other. Basically, two techniques are applied to tackle the non-
rigid registration, soft-assign (for correspondence updating) and deterministic
annealing (for TPS transformation updating). Thanks to the latter, severe
shape differences between the initial floating point set and the target point
set are slowly but deterministically reduced, such that no user-intervention is
needed while remaining in 3D. In theory, the RPM algorithm could be directly
applied to the surface matching problem by representing both floating and tar-
get surfaces as dense point-sets. However, the original RPM cannot handle a
huge amount of points which is shown in [99], due to the size of the soft-assign
matrix which is dependent on the amount of floating and target points and
due to a direct implementation of the TPS deformation. Furthermore, a point
based target surface representation leads to sampling errors within the final
correspondences similar to the ICP algorithm for rigid patch pose refinement.
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Our approach Our surface registration method also uses a TPS based non-
rigid transformation which is optimized similar to [71] and is embedded within
the robust surface registration framework of chapter 3 to deal with partial
overlap. A resemblance between the TPS deformation and the VIF theory of
section 3.2.1 can be shown, such that the VIF fitting and evaluating approxi-
mation machinery can be applied to calculate and evaluate the TPS transfor-
mations, making the algorithm feasible for a vast amount of floating surface
points. Furthermore, the target surface is represented using a VIS, such that
no sampling errors are contained within the final correspondences and such
that the establishment of corresponding points during registration for a large
amount of points remains computationally feasible. The theoretical aspects of
the non-rigid facial surface registration method are given in section 5.2, based
on the robust registration framework using VIS representations from chapter 3.
Section 5.3, briefly touches on the problem of selecting of reference face. Some
results are depicted in section 5.4, while a possible validation is discussed.

5.2 Facial surface registration framework

To tackle the problem of transforming a complete reference facial surface, be-
ing the floating surface, towards a possible incomplete facial surface within
the database, being the target surface, a proper non-rigid TPS transformation
model and similarity measure, based on VIS target surface representations,
are chosen in section 5.2.1. Both the non-rigid transformation model and sim-
ilarity measure are combined into a single objective function in section 5.2.2
using the framework of section 3.3.3 restating the registration problem into a
MAP estimation problem. Outliers, due to partial overlap or missing data,
are dealt with using a deterministic outlier detection function and probabilis-
tic outlier-process, similar to the outlier handling during fine registrations of
patches in section 4.2.3. Because of the non-convex nature of the object func-
tion a deterministic annealing optimization is applied, through deterministic
manipulation of the noise estimate parameter.

Throughout this section the floating surface, being the reference face, is
represented as set of points Sf = {rf

j |j = 1 . . . , Nf} and the target surface,
being a facial surface from the database, is represented using a variational
implicit surface (VIS) St = dt(r). Because faces in the database are open
surfaces the VIS is augmented with a variational boundary function (VBF)
bt(r). The goal of the facial surface registration is to find the correspond-
ing geometrical relationship and to transform the floating surface towards
the target surface. The latter can then be represented using a set of points
St = {rt

j |j = 1 . . . , Nf} describing the target surface geometry, such that

point couples {(rf
j , rt

j)|j = 1 . . . , Nf} are in correspondence and such that the
amount of points on the target surface equals the amount of points on the
floating surface while sharing the same connectivity.
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5.2.1 Similarity measure and Transformation model

The similarity criterium should express that the floating surface point positions
are optimal, when the points are on the zero-distance surface of the target
VIS dt(r), such that they describe the target surface geometry. Therefore an
individual point similarity measure as in section 4.2.3 with predefined distances
dj(θ) = 0 independent of θ will suffice, ensuring the floating surface to be
aligned onto the target surface:

sj(θ) = dt(T(rf
j , θ)) for j = 1, . . . , Nf (5.1)

A rigid transformation model T(r, θ) as in section 4.2.3 will not suffice to
tackle the facial surface registration problem. Floating surface points are then
restricted to rotate and translate and therefore are not capable of describing
the geometry or shape of the target facial surface of different subjects. Instead
a non-rigid transformation model is needed, allowing local surface deforma-
tions, such that the geometry of the floating surface can be altered towards
the shape of the target surface. We choose a generic non-rigid TPS transforma-
tion model obtained by a parametrization of the transformation as a weighted
sum of functionals, being generic basis functions, similar to the variational
implicit functions in (3.3) incorporating a mathematical regularization. The
regularization includes a function smoothness measure, ensuring local surface
consistencies after transformation and a smooth transition of the floating sur-
face towards the target surface. The non-rigid TPS transformation model is
mathematically well defined and is applicable to a wide range of surfaces from
different objects due to their generic nature.

Using a homogenous coordinate notation [rx, ry, rz , 1]T, with T the vector
transpose, for a 3D point r the TPS transformation according to [71] is defined
as:

rf∗
j = T(rf

j , θ) = Crf
j + φ(rf

j )Λ (5.2)

,where C is a 4x4 rigid transformation matrix in which rotation and transla-
tion are combined compared to (4.5). Additionally a scaling and skew can be
incorporated as well, rendering the rigid transformation into an affine transfor-
mation. Λ is a Nf ×4 non-rigid warping coefficient matrix. The 1×Nf vector
φ(rf

j ) is related to the thin-plate spline Nf × Nf kernel matrix Φ with com-

ponent values φi(r
f
j ) = ‖rf

j − rf
i ‖ for i = 1, . . . , Nf . Using the spline notation

in (5.2) the deformation is decomposed into a rigid (affine) and a non-rigid
(non-affine) subspace resulting into the following transformation parameters
θ = [{Cij |i = 1, . . . , 3; j = 1, . . . , 4}, {Λij|i = 1, . . . , Nf ; j = 1, . . . , 3}]. The
last row of C = [0001] and the last column of Λ consist of fixed values equal
to zero, due to the homogenous coordinate notations.

Equivalently, the TPS transformation can be decomposed into three sepa-
rate transformations according to three coordinate axes b ∈ {x, y, z}:

rf∗
bj = mb(r

f
j ) = cbr

f
j +

Nf∑

i=1

λibφi(r
f
j ) for b ∈ {x, y, z} (5.3)
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with cb a 1× 4 vector, which is one of the first three rows of C in (5.2). Simi-
larly , λib is an element of one of the first three columns in Λ. Analyzing (5.3)
a great resemblance with the definition of a variational implicit function in
(3.3) is observed. Indeed, defining the polynomial term in (3.3) as v(r) = cr
and using a 3D TPS or biharmonic spline as RBF φ(‖r− ri‖) = ‖r− ri‖, (3.3)
is exactly the same as (5.3). This suggest that the VIF machinery from section
3.2.1 can be used to determine non-rigid TPS transformation parameters based
on constraint points and function constraints. Given a set of corresponding
points {(rf∗

j , rf
j )|i = 1, . . . , Nf}, the constraint points are the floating sur-

face points {rf
j |i = 1, . . . , Nf} and the function constraints are defined as

{hbj = rf∗
bj |i = 1, . . . , Nf} for b ∈ {x, y, z}. Three variational mapping func-

tions (VMF), mb(r) with b ∈ {x, y, z} can then be constructed according to
(3.5). Using TPSs, a smooth transition of the function mb in between consec-
utive constraint points is obtained, while interpolating through the function
constraints. Furthermore, the transformation regularization ‖L(m)‖2 is the
same as in (3.10) and when dealing with noisy or erroneous correspondences
additional spline-smoothing according to (3.11) and (3.12) can be applied.

The transformation regularization using the notation of (5.2) is equivalent
to:

‖L(θ)‖2 = trace(ΛTΦΛ) with Φij = ‖rf
i − rf

j ‖ (5.4)

Note that the original floating surface points are used as constraint points
in the TPS kernel Φ. So loosely speaking, the TPS kernel contains infor-
mation about the floating point-set’s internal structural relationships. In
other words, the transformation model likelihood in (3.15) using (5.4), in-
corporates prior knowledge concerning the floating surface. Regularization
comes down to constraining the non-rigid transformation subspace in (5.2),
not to deform the internal structure of the floating surface too arbitrarily. De-
termination of the transformation parameters based on corresponding points
Sf = {rf

j |j = 1 . . . , Nf} and Sf∗ = {rf∗
j |j = 1 . . . , Nf} with additional spline-

smoothing ν > 0 using the notation of (5.2) is obtained solving the following
closed form linear system similar to (3.12):

(
Φ + νI Sf

SfT

0

)(
Λ

C

)
=

(
Sf∗

0

)
(5.5)

where Sf and Sf∗ are notated as Nf × 4 matrices consisting of concatenated
homogeneous points rf

j and rf∗
j for j = 1 . . . , Nf in every row.

Due to the link between (5.2), (5.4) and (5.5) with the VIF machinery,
properties of VIFs are also valid for the non-rigid TPS transformation model.
Furthermore, the algorithmic improvements implemented in the FastRBFTM

library [68] to solve (5.5) and to evaluate (5.2) can be applied, making the
registration method applicable for many floating surface points.
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5.2.2 Objective function and Optimization

The non-rigid surface registration objective function, combining both the sim-
ilarity measure and the non-rigid transformation model from the previous
section, is obtained using the theoretical framework of section 3.3.3, while
handling outliers due to missing data or partial overlap. Assuming that out-
liers are solely due to the partial overlap, a regular latent variable with very
strong prior knowledge as in (B.19), which is exactly the same as (4.10), based
on the variational boundary function (VBF) of the open target facial sur-
face bt(r), defined in section 3.2.3, can be applied. This assumption is valid
for the facial surfaces after facial acquisition. However, as explained in sec-
tion 3.3.3, a combined deterministic and probabilistic latent variable can be
used in case the assumption is incorrect. Defining the set of ML-parameters
Θ = {θ, σ} = {C, Λ, σ}, including the unknown noise standard deviation, the
objective function becomes:

E(Θ, z) = S(Θ, z) + ν‖L(θ)‖2 (5.6)

The second term is the negative log model-likelihood and is defined in (5.4) for
the non-rigid TPS based transformation model. The first term is the negative
log complete data-likelihood, which is dependent on a regular outlier latent
variable map z and is defined as:

S(Θ, z) =

N∑

j=1

h(sj(θ), α(zj), β(zj)) (5.7)

where

h(x, α(z), β(z)) = α(z)x2 + β(z) (5.8)

with

α(z) = 1
2σ2 z β(z) = −(1 − z) log δ + z log

√
2πσ (5.9)

The optimal solution is found through a joint parameter estimation, leading
to a dual updating procedure. A sequence of parameter estimates {Θ(m)|m =
0, 1, . . .} is obtained by alternating the following two steps:

LV-step: On the (m + 1)th iteration, the latent variables are eliminated
from the complete negative log data-likelihood S(Θ, z), by simple determin-
istic function evaluations using (4.10). Doing so, an equivalent M-estimator ρ
is constructed such that

S(Θ) =

Nf∑

j=1

ρ(sj(θ), α, β) (5.10)

with

ρ(sj(θ), α, β) = h(sj(θ), α(f(rf
j (θ̂

(m)
))), β(f(rf

j (θ̂
(m)

)))) (5.11)
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M-step The ML parameters Θ̂(m+1) are then updated minimizing the en-
ergy in (5.6), where (5.7) is replaced by (5.10) with fixed latent variable values
or equivalently using (5.2), (5.1), (4.10), (5.8) and (5.9):

E(Θ) = S(Θ) + ν trace(ΛTΦΛ) (5.12)

with

S(Θ) =
∑Nf

j=1 f(rf
j (θ̂

(m)
))

[
1

2σ2

(
dt(Crf

j + φ(rf
j )Λ)

)2

+ log
√

2πσ

]
− . . .

∑Nf

j=1(1 − f(rf
j (θ̂

(m)
))) log δ

(5.13)
Optimization of (5.12) using the analytical Steepest-Descent approach requires
the explicit construction of the TPS kernel Φ during line minimization after
gradient derivation. However, the size of the spline kernel (Nf ×Nf) is depen-
dent on the amount of floating surface points and rapidly becomes impractical
to work with. Instead an ICP alike optimization is performed using the im-
plicit to explicit conversion in (3.46). Additional motivations for doing this,
are the vast amount of parameters to estimate and the availability of a closed
form transformation parameter calculation (5.5). Furthermore, during trans-
formation determination or fitting and evaluation the domain decomposition
and multi-pole algorithmic improvements of the FastrbfTM toolbox can be ap-
plied, such that the spline kernel is never explicitly constructed keeping the
computational complexity equal to O(Nf log Nf ) instead of O(Nf3

). Mak-
ing the optimization explicit instead of implicit comes down to replacing the
similarity measure defined in (5.1) with a similarity measure based on point-
correspondences similar to (3.17) with predefined distances dj = 0 :

sj(θ) = ‖rt
j − T(rf

j , θ)‖ (5.14)

with rt
j the corresponding point on the target surface St of the point rf

j on

the floating surface Sf . Doing so, the M-step itself becomes a dual update
alternating between a correspondence update and a transformation and noise
parameter update. First 5.12 is simplified by only retaining the inlier points

rf
j ∈ J = {rf

j |zj = f(rf
j (θ̂

m
)) = 1 ∧ j = 1, . . . , Nf} after the LV-step, due to

the binary nature of the latent variable. Furthermore, the log δ contribution
of outliers is a constant after the LV-step, independent of the transformation
parameters, therefore vanishing during the M-step optimization:

E(Θ) =
∑

j∈J

[
1

2σ2
‖rt

j − T(rf
j , θ)‖2 + log

√
2πσ

]
+ ν trace(ΛTΦΛ) (5.15)

To solve this energy function, first a set of correspondences is to be estab-
lished during a correspondence update. Then based on the correspondences,
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the ML-parameters are improved during a transformation update. However,
the objective function in (5.15) extracted from (5.13) is fairly non-convex, due
to the amount of parameters to update, the non-rigid nature of the transforma-
tion model and the presence of erroneous correspondences. The latter occurs
mainly during the first iterations of the surface registration algorithm because
of the severe difference in shape between the floating and the target surfaces
after initialization. To cope with the non-convexity, we apply a determinis-
tic annealing optimization, where the idea is to choose a control parameter
changing the shape of the equivalent M-estimator (5.11) to construct a convex
approximation of the objective function. The control parameter is slowly ad-
justed such that the objective function increasingly approximates the original
non-convex estimation. Therefore, instead of treating the noise as an extra
parameter to estimate, within the equivalent M-estimator, we replace it by a
newly introduced deterministic parameter σ2 = Tσ similar to [71]. The anneal-
ing is accomplished by gradually reducing Tσ during the surface registration
process. For a certain Tσ setting the correspondences and the transformation
parameters are updated according to:

Correspondence-update: During this step a set of correspondences is es-
tablished for the inlier points rf

j ∈ J for j = 1, . . . , NJ, with NJ the number
of inliers, according to:

rt
j = T(rf

j , θ) − dt(T(rf
j , θ))

∇dt(T(rf
j , θ))

‖∇dt(T(rf
j , θ))‖

(5.16)

Transformation-update: Based on the correspondences from the previous
step the ML-parameters are to be updated according to (5.15) with σ2 = Tσ

or equivalently:

θ(m+1) = argminθ




∑

j∈J

‖rt
j − T(rf

j , θ)‖2 + 2Tσν trace(ΛTΦΛ)



 (5.17)

Note that the term 2Tσ log
√

πTσ is eliminated, due to its independency on
θ = {C, Λ}. Solving (5.17) based on the corresponding points Sf = {rf

j ∈ J}
and St = {rt

j ∈ J} is accomplished using the following closed form linear
system: (

Φ + 2TσνI Sf

SfT

0

)(
Λ

C

)
=

(
St

0

)
(5.18)

where Sf and St are notated as NJ × 4 matrices consisting of concatenated
homogeneous points rf

j and rt
j for j = 1 . . . , NJ in every row. The size of the

spline kernel Φ is now NJ × NJ and is only dependent on the amount of in-
lier points. Note that the transformation parameters are determined based on
the original positions of the floating surface points, resulting in a single final
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transformation after optimization instead of a set of consecutive transforma-
tions. After every transformation parameter the process (LV- and M-step) is
repeated for a different setting of Tσ. Outliers are transformed as well, because
an outlier can become an inlier in between different registration iterations and
vice versa. Furthermore, after convergence missing data is recompleted by
transforming the outlier points using the transformation based on the inliers.

Annealing: The deterministic control parameter Tσ is updated after every
iteration or LV- and M-step execution according to a linear annealing scheme

T
(m+1)
σ = rT

(m)
σ with 0 < r < 1 the annealing rate. Starting at T

(0)
σ = T init

σ

the number of iterations is determined until T
(m+1)
σ drops below a predefined

value T final
σ < T init

σ . The higher Tσ the lower the confidence in the correspon-
dences and based on (5.18) we see that the deformation of the floating surface
is restricted. The lower Tσ the higher the confidence in the correspondences
and the deformation of the floating surface is flexible. This is the key point
behind the deterministic annealing optimization: the registration is performed
using a coarse-to-fine matching strategy. First the global floating and target
surface differences are eliminated and slowly, but deterministically, the local
surface differences are eliminated. We believe that, if a person was asked to
fit an elastic rubber mask of a face onto a solid sculpture of a different face,
he or she would also start with a global adaption of the mask, while slowly
but surely compensating for smaller and smaller differences, similar to the an-
nealing used during optimization. Using the annealing scheme, the complete
facial surface registration is described in pseudo-code as:

Initialize
Tσ = T init

σ , C = I and Λ = 0
procedure
while Tσ ≥ T final

σ do
LV-step

Update inliers and outliers using (4.10)
M-step

Update correspondences using (5.16)
Update transformation using (5.18)

Annealing
Tσ = rTσ

end

To conclude this section we must note that the simplification of (5.15)
extracted from (5.13), when having a combined (regular and random) latent
variable is quite similar. Outlier points for which z′j = f(rj(θ)) = 0, with
f(rj(θ)) according to (B.19), and for which z′′j = bj = 0, with bj according to
(B.16), are neglected to determine J and the matrix part Φ + 2TσνI in (5.18)
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becomes Φ + 2TσνB with:

B =




1/b1

. . .

1/bNJ



 (5.19)

Doing so, the spline smoothing is made individual point inlier-belief bj de-
pendent during transformation parameter updating. Points with a higher
inlier-belief should be obeyed or interpolated more than points with lower
inlier-belief allowing to be more approximated instead of interpolated in favor
of smoothness.

5.3 Reference face

The choice of reference face, being the floating surface, is of importance. Ide-
ally the reference face should not differ too much from the target faces in order
to guarantee a proper non-rigid surface registration outcome. Starting to build
a database, a specific face from the database can be selected as reference face,
but it is not advisable to use for example the face of a young man as floating
surface to register with the face of an old woman as target surface. Further-
more, a statistical model extracted from registered faces is biased towards the
reference face. Ideally, the average face of the database is selected, due to its
central position within the database, not differing too much from every face in
the database and eliminating the model bias towards a specific face. However,
the average face can only be determined based on registered faces, leading to
a chicken and egg paradigm. To cope with this, multiple non-rigid registra-
tion runs throughout the whole database are performed. The first run, uses a
specific face from the database, which is complete and for which a consistent
uniform tessellation is obtained. After the non-rigid registration of every face
in the database with the specific face the average face is computed and used
as the reference face during a second run. This is repeated until the change in
average face drops below a certain accuracy threshold.

The resulting reference face is shown in figure 5.1. The reference tessel-
lation in figure 5.1(a) consists of 9327 vertices and 18311 triangles encoding
the connectivity. In order to speed up calculations, not all vertices are used
as floating surface points during registration. Instead, a subset of 1516 points
is selected, shown in figure 5.1(b), such that more points are retained in ar-
eas with higher curvature information. After registration, the complete set of
vertices with known connectivity is transformed using the transformation ob-
tained with the subset of floating surface points. Moreover, additional points
indicated on the reference face are automatically indicated on every face of the
database using the obtained transformations. In figure 5.1(c), the reference
face is depicted with indicated 52 face landmarks plus the nose tip using a dis-
tinctive color per landmark for visual validation of the non-rigid registration
in the next section.
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Figure 5.1: Illustration of the reference face, being the average face of the
database. (a) The reference tessellation. (b) Shaded rendering with the points
indicated used during non-rigid registration. (c) Same shaded rendering, with
the 52 face landmarks indicated using a distinctive color for every landmark.
This is shown to compare the landmark consistency registration results in
figure 5.2(c) with the landmark positions of the reference face

5.4 Results

The registration strategy from the previous section while making use of the
non-rigid registration method from section 5.2, is applied to our database
consisting of 393 target faces. The choice of user-specific regularization ν in
(5.15) is dependent on the amount of floating surface points and by experience
and experiments ν = Nf = 1516 is a good value. Doing so, an annealing
scheme with T init

σ = 1, T final
σ = T init

σ /500 and r = 0.9 is appropriate and is
used.

Five non-rigid surface registration results after the last registration run
with the reference face of figure 5.1 are depicted in figure 5.2. In figure 5.2(a)
shaded renderings of the five original target surfaces, originating from different
faces after facial acquisition (chapter 4), are shown. Note the incompleteness
of the original faces due to missing data acquisition. The mesh tessellations
and shaded renderings of the faces after non-rigid surface registration are il-
lustrated in figure 5.2(b) and (c), respectively. Observe that the five results
are represented by the same amount of points sharing the same connectiv-
ity, therefore being registered to each other besides the reference face as well.
Furthermore, we see that only the facial part corresponding with the reference
face is retained while missing parts are completed. Similar results are obtained
for all the other faces in the database.

Based on the results we are particulary interested in the analysis of two
different validation aspects: accuracy and consistency. The former aspect is
discussed in section 5.4.1 and the latter is discussed in section 5.4.2
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Figure 5.2: Five (Top to bottom) non-rigid surface registration results. (a)
Original target surface . (b) The target surface tessellation after non-rigid
registration. (c) A shaded rendering of the registration result with two sets of
53 indicated face landmarks. The colored face landmarks are the landmarks
obtained by transforming the face landmarks of the reference face after reg-
istration. The black face landmarks are manually indicated face landmarks,
using a blue eyeliner pencil during tissue-depth acquisition. Additionally the
nose tip was indicated manually as well.
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5.4.1 Accuracy

Figure 5.3: Accuracy analysis of the five results from figure 5.2. (a) - (e)
correspond to top to bottom faces in 5.2. The error range is from 0 mm
(black) to 2 mm (white)

The accuracy aspect analyzes how well the transformed floating surface
describes the shape or geometry of the target surface and can for instance be
obtained by computing the local surface errors ej = dt(T(rf

j , θ)) using the
VIS of the original target surface, which is shown in figure 5.3. It can be
seen that the accuracy of the results is satisfying and usable in practice: the
transformed floating surface is a accurate enough description of the target
surface geometry. The only minor result is the cheek area of the fourth face
(figure 5.3(d)), originating from an older woman. This is mainly because the
reference face is quite young compared to the fourth face and because less
floating surface points are sampled within the cheek area. The cheek area of
the older woman contains more surface curvature than the reference face. This
can be resolved by using more points in the cheek area, trading off computation
speed for accuracy.

5.4.2 Consistency

The consistency aspect analyzes how well corresponding points on different
faces are correct or consistent. The quality of the shape model is mainly de-
pendent on this consistency aspect but is much harder to analyze or validate
compared to the accuracy aspect. A first attempt is to visually inspect the
consistency of certain key facial points like the 52 anatomical face landmarks at
which tissue depths were measured (cf. appendix C) plus the nose tip depicted
in figure 5.2(c). The colored face landmarks are obtained by transforming the
landmarks of the reference face after registration and the color-code is accord-
ing to the reference face in figure 5.1(c). It is visually seen that corresponding
face landmarks are located at corresponding anatomical landmarks over the
five faces and the reference face. However, a proper quantification of the con-
sistency as such cannot be obtained. A second attempt is to compare the same
face landmarks (colored) with the manually indicated face landmarks (black)
during tissue-depth acquisition , using a blue eyeliner pencil. Additionally the
nose tip is indicated manually as well. Visually it is seen that both black and
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colored landmarks are very alike. However, we know that the consistency of
the black landmarks themselves is not optimal due to the manual indication,
being error-prone, and therefore cannot be used as ground truth for consis-
tency quantification. A proper consistency quantification can be obtained by
analyzing whether the knowledge of correspondences within a set of training
faces is capable of explaining, or is consistent with the correspondences of a
test face not part of the training set. This can be accomplished by using the
training faces to build up a shape model and to register this model, being the
floating surface now, with the surface of the test face. The model registration
result can then be compared with the correspondences of the test face. Due to
the fact that a shape model is to be constructed we postpone the consistency
validation of the non-rigid registration to chapter 6 after we elaborated the
statistical model construction and registration.

5.5 Conclusion

The last prerequisite for our craniofacial database was to obtain registered
inter-subject facial surfaces to construct a statistical craniofacial model. There-
fore, the 3D points with known connectivity of a carefully constructed generic
reference face were mapped or registered non-rigidly onto the faces in the
database. The facial surface registration methodology had to be robust against
noise and had to be be able to cope with outliers due to partial overlap or miss-
ing data. Therefore we reformulated the registration problem within the robust
surface registration framework of chapter 3. The reference face was considered
to be the floating surface represented as a set of floating points, while a face
from the database was considered to be the target surface represented with
a VIS such that no sampling errors occurred. A proper non-rigid TPS based
transformation model and similarity measure, based on the VIS target surface
representation, were chosen and both were combined into a single objective
function. To handle a vast amount of floating surface points, we used the
VIF theory and algorithmic improvements to update and evaluate the trans-
formation. Outliers were dealt with using an outlier detection function equal
to the one used in the previous chapter. A deterministic annealing optimiza-
tion strategy altering between inlier, point correspondence and transformation
updates was applied to cope with the non-convex nature of the objective func-
tion. Some results were shown to perform a validation concerning accuracy
and consistency. The former was easy to analyze and was acceptable. The lat-
ter was more difficult to analyze, but already some visual consistency results
were shown and were promising.

Using the theoretical aspects given in this second part of the thesis, a
facial database for craniofacial purposes can be built while minimizing the
required amount of manual labor. In the next and final part of the thesis we
acquire a database according to appendix C and chapters 4 and 5. Further
details about the database and the construction of a statistical craniofacial
model based on the database are given in chapter 6. Furthermore, additional
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correspondence consistency validation is given as well based on the model.
The proposed statistical craniofacial model together with alternative models
are used in chapter 7 to perform craniofacial reconstructions based on a dry
skull substrate, which is validated in chapter 7 as well.
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Chapter 6

Statistical craniofacial

modeling

6.1 Introduction

Within this third and final part of the thesis, the focus is upon the main
application: statistical craniofacial modeling and reconstruction. The term
statistical concerns both the modeling and the reconstruction methodology
making the overall approach completely probabilistic. Given a skull specimen,
the reconstruction step, elaborated in the next chapter, tries to find the facial
solution that is most probable, according to a statistical craniofacial model.
This chapter concentrates on the construction of the statistical craniofacial
model capturing the relationship between skull and skin surfaces.

In order to eliminate template-related model bias and to minimize the
unrealistic character of craniofacial reconstructions, we propose a flexible sta-
tistical craniofacial model constructed from a database of facial entries ac-
quired following the procedures presented in chapter 4 and [1, 2] (appendix
C), and co-registered following the non-rigid registration procedures of chap-
ter 5. Every facial entry within the database consists of a facial shape (with
inter-subject point correspondences), gray-value texture, tissue-depth at the
52 anatomical skin landmarks and property information (gender, age, BMI). A
multi-variate Gaussian model is fit to he samples in the database by Principal
Component Analysis (PCA) generating an average, being the model template,
and a correlation-ranked set of principal components, being the transformation
model, modeling the combined population-dependent variance and covariance
of complete skin surface shape, gray-value texture, 52 anatomical face land-
marks with tissue depths and property (age, BMI and gender) values, being
the model template information. The craniofacial model template can be clas-
sified as a complete facial surface template from which a single most plausible
reconstruction is obtained based on the analyzed knowledge of multiple faces.
The incorporation of gray-value texture variation generates a more lifelike re-
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construction based on a texture map which co-varies with facial geometry,
property value and tissue depth information, leading to a more, but not too,
specific texture map, compared to an average texture map. The creation of
more specific reconstructions matching the subject properties estimated during
an anthropological examination is obtained by modeling and removing facial
variations originating from property differences in the facial database. The
result is a property normalized craniofacial model.

The craniofacial model can be considered as an elastic mask of which
the elasticity is defined as the statistically allowed correlated variation. By
changing the statistical model parameters between the statistically determined
boundaries, the mask is deformed in a face-specific way only. This mask flexi-
bility constitutes a non-rigid statistical transformation model and can be used
to solve different registration problems like the complete facial surface regis-
tration and the skull registration or reconstruction. The latter is elaborated
in the next chapter. The former is similar to chapter 5 and is accomplished
by using the average face of the database, being the model template, again
as the floating surface, but the generic non-rigid TPS transformation used in
chapter 5 is replaced by face-specific deformations extracted from facial covari-
ance knowledge within the model. Basically, the incorporation of covariance
knowledge between different facial information parts is the major difference
of the statistical model proposed here, with existing models for craniofacial
reconstruction. Eliminating subsequently covariance between different infor-
mation parts (shape, thickness, . . . ) from the model leads to more traditional
craniofacial models working with a single facial template in combination with
generic transformation models (e.g TPS based).

The remainder of this chapter is organized as follows. We start with a short
description and some remarks concerning the database in section 6.2. Based
on the acquired and registered database the construction and completeness of
the statistical model is given in section 6.3. Aspects of using a statistical model
to solve the facial surface registration problem are given in 6.4, such that a fur-
ther correspondence consistency validation is obtained. Model manipulation
according to facial properties is elaborated in section 6.5.

6.2 Database

Using the methodologies described in chapters 4 and 5 of the second part
concerning shape and texture information and described in [1, 2] (appendix
C) concerning tissue depth information, a facial database is acquired and reg-
istered. A single facial entry has: (1) a facial surface in upright position
described with dense corresponding points, (2) a gray-value converted texture
for every point on the facial surface, (3) 52 specific anatomical landmarks or
points on the facial surface, (4) 52 ultrasound soft-tissue depths measured
within the facial landmarks and (5) a BMI, age and gender value. The reason
for using gray-valued instead of RGB-valued texture information is twofold.
Firstly, we believe that using gray-valued texture information, containing fewer
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(unknown) details, is less dangerous to trigger the recognition process into the
wrong direction. The texture information is always difficult to guess correctly
based on the skull, such that the task of texture must be limited to: ”giving
an idea of lips, eyebrows, etc. without specific clues if they are not known”.
Secondly, the colored texture information is of low quality for the majority of
the facial entries in the database due to a malfunctioning of the 3D acquisition
camera.

Figure 6.1: Database property distributions. BMI (top row) and AGE (bottom
row) histograms for both males (left column) and females (right column).

Within the database we have a total of 393 persons of which 168 are male
and 225 are female. BMI and age distributions of the database are depicted
in figure 6.1. The minimum, maximum and average age are 18/72/24 and
16/91/34 for males and females respectively. The majority of the entries are
young individuals, due to the fact that Leuven has a major student popula-
tion. Furthermore, the majority of the older people are female. Note that this
is not the most ideal age variation and distribution for statistical modeling
and manipulation and will have to be kept in mind during section 6.5 con-
cerning property manipulation. The minimum, maximum and average BMI
are 16.9/36.5/22.8 and 16/34.2/22.2 for males and females respectively. The
majority of the population is situated around 22-25, being considered normal:
not to skinny or obese.
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6.3 Statistical model

Based on the database described in the previous section a statistical craniofa-
cial model, modeling the combined population-dependent variance and covari-
ance of complete skin surface shape and texture, 52 anatomical face landmarks
with tissue depths and property (age, BMI and gender) value information, is
constructed and explored within this section. The model construction is ac-
complished using principal component analysis (PCA) after conversion of the
facial entries to facial vector descriptions in section 6.3.1. Analysis of the
model validity (accuracy and generalization) is given in section 6.3.2.

6.3.1 Construction

Based on the dense inter-subject correspondences obtained using the non-rigid
surface registration procedure from chapter 5, the database can be represented
using vector descriptions of the faces {Fk|k = 1, . . . , K} with K = 393 the
number of faces and with F = [Fs,Fg,Flm,Ftd, Fp]T a column vectorial rep-
resentation of a single face, with T meaning the transpose of a vector, where
Fs is the facial surface, Fg the gray value texture, Flm the face landmark posi-
tion, Ftd the tissue depth and Fp the property information using the following
vector representations:

Fs = [rs
1x, rs

1y , rs
1z, . . . , r

s
Nx, rs

Ny, rs
Nz ]

Fg = [g1, . . . , gN ]

Flm = [rlm
1x , rlm

1y , rlm
1z , . . . , rlm

Lx, rlm
Ly , rlm

Lz ]

Ftd = [d1, . . . , dL]

Fp = [b, a, s]

(6.1)

N is the number of 3D points on a facial surface (9327 in our case) and
L the number of face landmarks (52 in our case). gi is the gray value of
the point rs

i on the facial surface, while di is the tissue depth value of the
rlm

i face landmark point. Both b(BMI) and a(age) have continuous values,
while the s(sex/gender) values are initially discrete (-1 for females and +1
for males) but are converted to continuous values according to appendix D
in order to differentiate between the male and female alikeness of faces. The
more positive/negative a gender value the more male/female a face appears to
be. A value of zero corresponds to a genderless looking face. As mentioned in
chapter 5, some facial entries are incomplete due to the presence of hair during
3D acquisition, resulting into missing shape and texture information values
within the corresponding facial vector descriptions which are to be completed
before a proper PCA can be conducted. Missing shape information refilling is
obtained trough the non-rigid facial surface registration method explained in
chapter 5. Corresponding missing texture information refilling is accomplished
using a probabilistic missing data PCA procedure described in [100].

Ensuring corresponding point coordinates, gray-values, tissue depths and
property values on the same row of column vector descriptions from different
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faces, a face can be represented as a single point in a (3×N +N +3×L+L+3)
dimensional face space. Within this face space new acceptable faces can be
expressed as linear combinations of the faces in the database:

M(w) =
∑K

k=1 wkFk (6.2)

with reasonable limits on the range of the parameter values wk. A craniofacial
model can then be defined as the set of faces M(w) = [M s(w), Mg(w), M lm(w),
M td(w), Mp(w)]T parameterized by the coefficients w = (w1, . . . , wK). How-
ever, such a high dimensional face space which is discretely encoded using
facial samples is rather impractical to work with. Therefore a probability
distribution is associated to this linear face space by fitting a multivariate
normal distribution to the data set of K faces, resulting into a continuous
parametrization and a dimension reduction of the face space. The multivari-
ate normal distribution fitting is accomplished using a Principal Component
Analysis (PCA) of the covariance matrix X constructed from the mean nor-

malized faces F̆k = Fk − F with F = 1
K

∑K
k=1 Fk the average face (shown in

figure 6.2 (a)):

X = 1
K

FFT with F = [F̆1|F̆2| . . . |F̆K ] (6.3)

PCA computes the eigenvectors U = {Uk|k = 1, . . . , K − 1} and eigenvalues
Σ = {σ2

k|k = 1, . . . , K − 1} of the covariance matrix X , which can be achieved
using a Singular Value Decomposition of the covariance matrix [101]. PCA
performs essentially a basis transformation to an orthogonal coordinate system
(eigenspace) spanned by the eigenvectors or principal components U of the
covariance matrix in descending order according to their associated eigenvalues
σ2

1 ≥ σ2
2 ≥ . . . ≥ σ2

K−1, representing the variances of the data along each
eigenvector. In theory a total amount of K−1 eigenvectors and eigenvalues can
be extracted based on K faces in the database. However the lower components
contain very small and useless variance information (see figure 6.2(b)) and can
be discarded, leading to a dimension reduction. In practice a number D = 41
smaller than K − 1 = 392 components are retained modeling 98% of the total
variance in the database. The remaining 2% variance is regarded as noise and
is discarded. The statistical craniofacial model is then defined as the set of
faces M(c) = [M(c)s, M(c)g, M(c)lm, M(c)td, M(c)p]T parameterized by the
coefficients c = (c1, . . . , cD) according to:

M(c) = F +
∑D

k=1 Ukck = F + Uc (6.4)

where Uk = [Us
k,Ug

k,Ulm
k ,Utd

k ,Up
k]T, because different rows of an eigenvec-

tor influence different aspects of the facial information. Us affects the facial
surface information, Ug influences the gray value texture information, Ulm

changes the face landmark position information, Utd affects the tissue depth
information and Up is related with the property information. In addition
PCA provides an estimate of the probability density within the face space in
terms of the Mahalanobis-distance MD to the origin or average face of the
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eigenspace:

p(c) ∼ MD(c) =
1√
2π

exp

(
−1

2

D∑

k=1

c2
k

σ2
k

)
(6.5)

Figure 6.2: (a) the average face of the database. Tissue-depths are visual-
ized within the appropriate facial landmarks using a color-code ranging from
0 (blue) to 15 (red) mm. The average BMI = 22.4, age = 30 and gender =
-0.1 (slightly female but mainly genderless). (b) cumulative percentage vari-
ance curve (solid line). Horizontal axis: the number of principal components
incorporated. Vertical axis: percentage of the total variance captured by the
number of components. 98% variance is captured using only 41 of the 392
principal components (dotted lines)

Using (6.4), every facial entry in the database can be represented using the
parametric representation of the statistical model. Indeed, instead of using
a vector description as in (6.1), the facial entry can now be modeled as the
sum of the averaged face and a weighted linear combination of the principal
modes of variation. The parameters describing the facial entry are the weights
c in this linear combination. A probability value can be associated to each
set of parameters or facial entry using (6.5), with maximal probability for the
average face. By altering the parameters, in between statistically determined
boundaries (−3σk ≤ ck ≤ 3σk) learned from the database, faces spanning a
face space similar to the database can be generated. The average face can be
altered in a face-specific way by changing the coefficients or parameters c. In
figure 6.3 the effects on the average face by changing the model parameters
associated to the first three modes of variation are shown. The first mode
of variation seems to characterize the difference between young males and
old females. The second mode characterizes the facial differences between
compressed and elongated faces along an anterior-posterior axis. The third
mode of variation incorporates besides a type of facial structure difference also
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a difference in BMI. These principal modes of variation can be considered being
face-specific deformations, because they were learned based on faces, while
staying within statistical boundaries a facial plausible outcome is guaranteed.

Figure 6.3: Visualization of the first (top row), second (middle row) and third
(bottom row) principal modes of variation or face-specific deformations. From
left to right appropriate principal component weights ck go from −3σk over
−1.5σk and 1.5σk to 3σk. Tissue depths are visualized similar

Alternating or updating the average face using restricted weighted com-
binations of principal components as in figure 6.3 is the key point of using
a statistical model for skull reconstruction purposes. Within the craniofa-
cial model context and nomenclature defined in chapter 2, we see, based on
(6.1)and (6.4), that the average face is the craniofacial model template incor-
porating shape, texture, tissue depth and property values, being the model
template information and that the set of principal components is the cran-
iofacial transformation model consisting of face-specific deformations. The
craniofacial model template can be classified as a complete facial surface tem-
plate from which a single most plausible reconstruction is obtained based on
the analyzed knowledge of multiple faces.
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6.3.2 Model validity

By altering the parameters, in between statistically determined boundaries
in figure 6.3 it is already preliminary shown that the model is capable of
generating new and plausible faces. In this section we try to analyze the
model sufficiency or whether the model is capable of creating valid example
faces within a reasonable accuracy. For this, samples of the database can be
used to examine how well a wider population can be modeled. However, one
has to keep in mind that the test is only valid for the database on which it is
run. Two sufficiency tests adapted from [102] are performed .

Model accuracy

The first test analyzes how well facial entries, within the set used to create
the model or training set, are described in terms of accuracy using models
capturing different amounts of total database variance expressed in percentage.
The question to be answered is: How many percentage variance is sufficient?
In a first instance the number of principal components needed to describe
a certain amount of variance is determined to construct model descriptions
of the facial entries within the training set. Subsequently, the accuracy of
the shape is computed by calculating the Root-Mean-Squared-Error (rmse) of
the distances between corresponding points of the model description and an
original facial entry of the training set. The accuracy of the thickness and
texture information is computed as the average absolute difference between
the model description and the facial entry thickness and texture information.
The property value accuracy is the absolute difference between both. This
is done for every facial entry in the database and the accuracy results for
the different facial information parts are averaged and given in table 6.1. As
expected the accuracy error decreases as the percentage of modeled variation
increases, becoming zero using 100% database variance. However, the number
of principal components increases. Already mentioned in previous section,
typically 98% is used in literature, at which level we see that the number of
required principal components is limited to 41 instead of 392 and at which the
accuracy errors are acceptable.

Model generalization

The second test analyzes how well facial entries, not part of the training set or
test faces, are described in terms of accuracy using models based on different
amounts of training faces. Having enough training data we expect the model
to be able of describing unseen or test faces quite accurately or to generalize
well. The question then becomes: how many training faces are sufficient?
Table 6.1, gives the target accuracy for a specific percentage of variance (98%)
and having enough training faces the same accuracy results are expected for
the test faces. For different amounts of training data we select test faces not
used to build up the model. The model parameters of a test face F are obtained
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Perc. Var. 90 95 98 99 99.9 100

Nr PC 13 22 41 62 176 392

Shape 1.08 0.76 0.47 0.33 0.09 0.00

Thickness 1.79 1.72 1.58 1.32 0.56 0.00

Texture 0.062 0.061 0.059 0.057 0.039 0.00

BMI 1.93 1.82 1.59 1.43 0.45 0.00

Age 7.5 5.7 3.5 2.2 0.2 0.00

Gender 0.38 0.26 0.09 0.02 0.01 0.00

Table 6.1: Accuracy evolution by increasing the total database variance cap-
tured by the model. Nr PC are the amount of principal components required
to model the desired variance in percentage. Shape and thickness are expressed
in mm, texture ranges from 0 to 1 and has no specific unit. BMI, age (in years)
and gender are the errors concerning the properties.
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Figure 6.4: Shape accuracy evolution for different amounts of training data
(solid curve). Target shape accuracy (dotted line) Horizontal axis: nr of train-
ing faces, Vertical axis: averaged rmse.
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as:
c = UT(F − F) (6.6)

These model parameters are then used in (6.4) to create the model description
of the test face and the same accuracy calculations from the previous test are
performed. This is done for 200 test faces per amount of training faces were
both test faces and training faces are randomly selected. The accuracy results
of all the 200 test faces for a certain amount of training data are averaged.
Figure 6.4 depicts the shape accuracy evolution with increasing amount of
training faces. Similar results were obtained for the other facial information
parts. It can be seen that the accuracy errors approach their in-training-set
values as more training faces are added. Despite the small difference at the
end of the curve (using 392 training faces) we can conclude that the amount
of training faces in our database seems sufficient when modeling 98% of the
training data variance. The only beneficial effect of adding more examples is
a better represented remaining 2% of the population.

6.4 Model based facial surface registration

As mentioned earlier, the key point of using the statistical model , being a
craniofacial model for skull reconstruction purposes, is the ability to deform
or transform the average face non-rigidly using restricted weighted combina-
tions of principal components. More generally, the statistical model can be
placed within the registration framework of chapter 3 to tackle other non-rigid
registration problems, like the facial surface registration, as well. The average
face, being the model template, is the floating surface. The target surface
depends on the registration problem and can either be another facial surface,
during facial surface registration, or a skull surface, during skull registration.
A proper similarity criterium depending on the registration problem is deter-
mined based on the model template information. The transformation model,
being statistical, is the key point of using a statistical model for registration
purposes.

Applying the statistical model for skull registration is elaborated in the
next chapter. In this section we use the statistical model to tackle the facial
surface registration problem similar to chapter 5. Doing so, correspondence
consistency validation can be obtained. First we elaborate the required regis-
tration components in section 6.4.1 after which the results are given in section
6.4.2.

6.4.1 Registration framework

Quite a few registration components are similar to the ones defined in section
5.2. The same similarity measure and outlier process are applied. The floating
surface, being the average face, is represented by a set of points Sf = {rf

j |j =

1 . . . , Nf} which are either the complete set or a subset of the average facial

surface information Sf ⊆ F
s

or {rf
j = rs

j |j = 1 . . . , Nf} with Nf ≤ N .
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The target surface, being a facial surface, is represented using a VIS St =
dt(r) augmented with a VBF bt(r) in case target facial shape information is
missing. The main two differences with section 5.2 are the transformation
model, being statistical based instead of TPS based, and the optimization,
using an analytical gradient descent approach instead of an ICP approach
with deterministic annealing.

Combining (6.4) and (6.5), we have a statistical non-rigid transformation
model parameterized as a weighted sum of face specific deformations or prin-
cipal components (6.4) incorporating a statistical regularization (6.5). The
regularization includes a statistical facial plausibility according to a face space
distribution. Therefore, the prior transformation model distribution will favor
transformation parameters generating more plausible facial instances. Further-
more, the statistical transformation model ensures that the floating surface is
deformed in a face-specific way only. However, the current transformation
model is not capable of rotating and translating the floating surface, due to
the fact that faces of the database are rigidly aligned with the average face
prior to PCA computation and as such no rigid transformation knowledge is
incorporated. The PCA based transformation of a floating surface point rf

j

including a rigid body can be defined as:

rf∗
j = T(rf

j , θ) = Rrf
j + t + Us

j c (6.7)

with R a rotation matrix (4.6) and t a translation vector (4.7) both defined ac-
cording to three basis axes with their origin placed in the geometric mean of the
average face (o =

∑N
j rs

j/N). c = {ck|k = 1, . . . , D} are the weights or statis-
tical model parameters for the principal components in the eigenvector matrix
U and Us

j is the row of the eigenvector matrix influencing rf
j . The complete set

of transformation parameters becomes θ = [ωx, ωy, ωz, tx, ty, tz, c]. Because no
regularization is needed for the rigid transformation body the prior parameter
distribution p(θ) or transformation model likelihood reduces to p(c) equal to
(6.5), resulting in

‖L(θ)‖2 =
1

2

D∑

k=1

c2
k

σ2
k

(6.8)

,regularizing the deformation towards plausible facial solutions. The prior
knowledge about the registration problem expressed in the deformation through
this negative log model likelihood is based on the variances σ2

k incorporated
in a facial database. In other words, the registration is performed keeping in
mind (6.8) and based on (6.7) the knowledge of multiple faces from a database.

Excluding the outlier process for simplification purposes, without loss of
generality, the objective function defined in (4.17) using (6.7) and (6.8) be-
comes:

E(Θ) =

Nf∑

j=1

[
1

2σ2
dt(Rrf

j + t + Us
j c)

2 + log
√

2πσ

]
+ ν

1

2

D∑

k=1

c2
k

σ2
k

(6.9)
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with Θ = {θ, σ} incorporating the noise standard deviation besides the trans-
formation parameters. Note that the number of parameters to estimate is D+7
with D = 41 for a statistical model capturing 98% variance. Furthermore, the
number of parameters is independent on the amount of floating surface points
in contrast to the TPS based transformation parameters. Therefore we opted
for a gradient descent optimization approach to minimize (6.9). Doing so, no
explicit correspondences are required and the non-convexity of the objective
function is well behaved such that no deterministic annealing on the noise
parameter is needed. Instead the noise parameter is treated as an extra pa-
rameter to update or estimate.

The transformation parameters are updated by executing one step of New-
ton’s method for object function optimization, which is a gradient descent
method based on the gradient ∇E(θ) and the Hessian H(θ) with (Hij =
∂2E(θ)/∂θi∂θj) resulting into:

θ(m+1) = θ(m) − sH(θ)−1∇E(θ) (6.10)

The gradient is calculated analytically ∇E(θ) = [∂E/∂θ1, . . . , ∂E/∂θD+6]
T

based on the first derivatives of (6.9) to every parameter in θ. H(θ) is based
on the second derivatives and is computed by numerical differentiation from
the analytically calculated first derivatives. The gradient ∇E(θ) defines the
search direction for the parameter update. The Hessian captures information
about an appropriate order of magnitude of updates in each parameter and
is updated every 50 e.g. iterations. The optimal step-size s is found by line-
minimization. The update of σ in case of gaussian noise and no outlier process
is:

σ(m+1) =

√√√√ 1

Nf

Nf∑

j=1

dt(T(rf
j , θ(m)))2 (6.11)

This updating process is iteratively repeated until convergence occurs after
which a final set of transformation parameters is obtained. Corresponding
points for the floating surface points are then obtained using (6.7). Because
the eigenvectors are extracted from the covariance matrix X , they describe co-
varying changes between the different facial surface parts or points. Changing
a subset of facial surface points, being the floating points, results in a co-
varying change of other facial surface points {rf

i = rs
i |i = 1 . . . , N − Nf} 6=

{rf
j |j = 1 . . . , Nf} not used during registration. Therefore, corresponding

points for the latter after registration can be obtained using (6.7) as well with
the same transformation parameters applied on the relevant rows Us

i of the
eigenvector matrix. In fact, correspondence knowledge in the floating surface
points after registration is statistically interpolated based on the covariance
knowledge incorporated in the eigenvectors.

Having elaborated the framework for facial surface registration based on
the statistical model, it is interesting to compare the statistical transformation
defined in (6.7) with the TPS based transformation. To pronounce similarities
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the TPS transformation defined in (5.2) is rewritten into:

rf∗
j = T(rf

j , θ) = Rrf
j + t + φ(rf

j )Λ (6.12)

by using a rigid instead of an affine subspace through the incorporation of
scale and skew into the non-rigid subspace. It is clearly observed that both
(6.7) and (6.12) consist of a rigid and a non-rigid subspace. The eigenvec-
tors and the spline kernel are responsible for the non-rigid deformation con-
tribution, but the difference is that the eigenvector matrix is built from the
covariance matrix expressing the internal relationship of inter-subject float-
ing surface points from multiple faces while the spline kernel expresses the
internal relationship of floating surface points originating from a single refer-
ence face. Using a TPS based generic transformation the prior knowledge or
model-likelihood used during registration consist of a single reference face or
template in combination with a certain generic smoothness constraint, regu-
larizing the generic deformation of the template. Correspondence information
in the floating surface points after registration is mathematically smooth but
generically interpolated to establish additional correspondences. Using a PCA
based or face-specific transformation the prior knowledge or model-likelihood
used during registration consists of multiple reference faces expressed by the
eigenvectors and is regularized according to the eigenvalues, generating facial
plausible solutions. Correspondence information in the floating surface points
after registration is mathematically statistical but face-specifically interpolated
to establish additional correspondences. The difference between the PCA and
TPS based transformations and interpolations is depicted in figure 2.9 for a
facial nose tip manipulation.

Alternatively, we can state that the statistical transformation model uses
dense correspondence knowledge from a facial training set to establish dense
correspondences with a new unseen face. This can be used to analyze the
correspondence consistency within the database, which is done in the following
section.

6.4.2 Results

Consistency validation

The quality of the statistical model concerning the facial shape information
is related to the established dense inter-subject correspondences. The most
important prerequisite for model building is the consistent determination of
the correspondences in between inter-subject surfaces of the database, which
is not straightforward to validate due the lack of proper ground truth informa-
tion. As mentioned in chapter 5, a proper consistency quantification can be
obtained by analyzing whether the knowledge of correspondences within a set
of training faces is capable of explaining or is consistent with the correspon-
dences of a test face not part of the training set. Using the statistical model
machinery from this chapter we are able to conduct such a test. Recall from
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the previous section that the eigenvector matrix contains inter-subject corre-
spondence structural relationship knowledge being used during model based
facial surface registration. In other words, correspondence knowledge from a
training set is contained within the statistical model and can be used to vali-
date whether the correspondences established on a test face , not part of the
training set, using the TPS based registration framework (cf. section 5.2) are
consistent with the correspondences within the training set using the statisti-
cal model based registration framework (cf section 6.4.1) applied on the test
face.

To perform the consistency test a leave-one-out strategy is conducted. Ev-
ery facial entry from the database is lifted from the database in turn, being
the test face with known TPS based correspondences, while every other face
is used to build up the model according to section 6.3. Sequently the model is
registered with the test face according to section 6.4.2 to establish statistical
model based correspondences. The same subset of 1516 floating surface points
used for the TPS based facial surface registration of chapter 5 and visualized in
figure 5.1(b) are used to perform the model based registration. Similarly, other
corresponding points are obtained after the registration by evaluating the final
transformation in the facial surface points of the average face not used during
registration. The user-specific amount of regularization during model based
registration is set equal to one ν = 1, making the amount of regularization
equal to the true statistical boundaries of the facial population. Increasing the
value of ν would favor more averaged facial registration solutions restricting
flexibility while decreasing ν would allow to obtain facial implausible solutions
according to our database. After model based facial surface registration dense
TPS based {rTPS

kj |j = 1, . . . , N} and model based {rPCA
kj |j = 1, . . . , N} point

correspondences on the k’th test face are inherently known and are compared
by calculating the euclidian distances dkj = ‖rTPS

kj − rPCA
kj ‖, being local cor-

respondence differences or errors, in between both sets of points. Based on

these local errors a single rmsek =
√∑N

j=1 dkj/N for the k’th face is com-

puted. This is done for every face of the database k = 1, . . . , K, such that
an averaged rmse is obtained rmse =

∑K
k=1 rmsek/K. Furthermore, a sin-

gle rmsej =

√∑K
k=1 dkj/K of local correspondence differences is obtained as

well and is depicted in figure 6.5(a) using the facial geometry of the average
face. Doing so, a spatial distribution of the point correspondence differences is
created and visualized. Having a sub-millimeter global rmse = 0.72mm and
observing the local rmse in figure 6.5(a), we can conclude that the TPS based
correspondences are accurately described using the statistical model based cor-
respondences. Equivalently, we can conclude that the analyzed or statistical
knowledge of correspondences within a training set is capable of finding the
correspondences of an unseen test face such that the correspondences obtained
in chapter 5 are considered to be consistent throughout the database.
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(a) (b)

Figure 6.5: Model based registration results. (a) rmse of local correspondence
differences using the same subset of floating surface points defined in section
5.3 for consistency validation. (b) rmse of local correspondence differences
using the 52 face landmarks to analyze the co-varying facial surface results.
The gray-color code ranges from 0 (black) to 3.5 mm (white)

Reconstruction preview

The model based registration framework in section 6.4.1 is tailored for the
registration of facial surfaces originating from different individuals. The main
application of the statistical model is craniofacial reconstruction elaborated in
chapter 7. However, the methodology for craniofacial reconstruction is quite
similar, except for a few differences. One of the main differences is the set
of floating surface points used during registration. Due to the fact that skull
relating information, being tissue depths, is limited too the 52 face landmarks,
the floating surface point set consist of these sparse set of landmarks instead
of dense facial surface points. Similar too section 6.4.1, because the eigenvec-
tors are extracted from the covariance matrix X incorporating different facial
information parts, they describe co-varying changes between the different in-
formation parts. Changing the facial landmarks and tissue depths e.g. results
in a co-varying change of facial surface. For the craniofacial recosntruction
problem it is interesting to examine the statistical influence of the 52 land-
marks on the remaining facial surface. Therefore we conducted a second but
very similar test to analyze the strength of the co-varying knowledge between
the sparse set of landmarks and the remaining facial surface points. The same
test setup and analysis is used as before except that the floating surface points
from the previous test are replaced by the sparse set of 52 face landmarks.
The global rmse = 1.38mm and the local rmse results are depicted in figure
6.5(b). The performance is lower than the first test using 1516 floating surface
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points, which is quite logical. However, keeping in mind the limited amount of
evidence (52 floating surface points) used during registration, we can conclude
that the co-varying power between the facial surface points encoded in the
eigenvectors of the statistical model is quite strong. Equivalently, the statisti-
cal interpolation of the facial surface information based on the face landmark
information after registration is within a desirable accuracy.

Besides the amount of floating surface points used during registration, An-
other difference between statistical model based facial surface and skull regis-
tration is the requirement for model property manipulation prior to registra-
tion for the latter, which is explained in the following section.

6.5 Facial property normalization

Within the craniofacial work-flow defined in chapter 2, the anthropological
examination generates a set of skull properties, which are considered to be
hard constraints to guarantee a proper recognition result. Therefore the cran-
iofacial model is to be adapted accordingly. Traditionally, a subpopulation,
having similar properties, of the database is selected and is used to build a
craniofacial model. However, besides related issues given in section ??, we see
in section 6.2 that our database is not particulary suited to do this. Quite a
few subpopulations have limited facial samples, resulting in inferior and non-
flexible statistical models extracted from those subpopulations. Furthermore,
facial variations not originating from differences in properties are thrown away.
Instead we opt to learn and to remove or eliminate facial variations originat-
ing from property differences within the database while retaining all the other
facial variations. The advantage is that under-sampled subpopulations can
be represented by the interpolating nature of the learning process. After the
elimination process, a property normalized statistical craniofacial model is ob-
tained having enough flexibility, while the skull properties are obeyed as a
hard constraint prior to skull registration. Section 6.5.1 explains the learning
process, while section 6.5.2 concentrates on the removing process.

6.5.1 Learning

Having a database of different sub-populations, it is interesting to learn de-
formations originating from differences in property values between different
sub-populations to simulate changes in age, BMI and gender on faces. In
figure 6.3 we already saw that the first principal component incorporated a
change in age and gender, while the third component incorporated a change in
BMI. However using the first component in order to manipulate a face in terms
of age/gender would also cause a simultaneous change in gender/age which is
not practical for ageing or changing gender only simulations respectively. Us-
ing the third component to change the BMI property of a face would also
cause a simultaneous change in face geometry not originating from a change in
BMI, which is not useful for a change in BMI only simulation. Furthermore,



6.5 Facial property normalization 141

other components besides the first and the third may incorporate changes in
properties. In this section we explain the extraction of independent property
related variations and deformations originating from differences in property
values while the fundamental geometry of faces is retained.

Expressing the original data in terms of principal components (6.4) is in
fact a description of the data in terms of variances and covariances (6.3).
The goal is to find proper directions in the principal component space related
to property variations Fp = [b, a, s]. The extraction of property dependent
variations from the statistical model is obtained by finding three orthogonal
basis vectors in the coordinate system spanned by the eigenvectors, describing
a separate independent change of b, a and s. Since this can be achieved
by an infinite number of linear combinations of the eigenvectors, the linear
combination that has the smallest Mahalanobis-distance MD (most probable)
to the origin of the eigenspace is searched for ensuring minimal shape variation
and therefore retaining the fundamental geometry. According to [103] this can
be solved by a constrained least-square optimization. Let vb, va and vs be the
three unknown basis vectors, defined in a D-dimensional eigenspace, describing
a unit change of BMI, age and gender respectively. The Mahalanobis-distance
MD of these three vectors is given by:

MD(vx) =
∑D

k=1
v2

xk

σ2

k

for x ∈ {b, a, s} (6.13)

The weights vxk of the linear combination discribing the unit vectors are similar
to the parameters ck describing faces in 6.4. Taking into account that b, a and s
values depend only on the last three rows of the eigenvector matrix U , the sub-
matrix Up consisting of the last three rows of U can be used. Minimization of
the Mahalanobis-distance MD subject to the constraint of independent BMI,
age and gender change by one unit is done solving the following Lagrange
functional L:

L(vx, lx) =
∑D

k=1
v2

xk

σ2

k

− lTx [Upvx − ex]

x ∈ {b, a, s}

eb =




1

0

0



 , ea =




0

1

0



 , es =




0

0

1





(6.14)

The vectors lx for x ∈ {b, a, s} are the Lagrange multipliers. The vectors ex

for x ∈ {b, a, s} are three unit vectors perpendicular onto each other, therefore
being independent. The Lagrange functional L(vx, lx) is solved by calculating
the derivatives with respect to all the variables lx and vx, resulting into the
following two linear equations:

2A−1V = UpT

Q

UpV = I
(6.15)
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where,

A =




σ2

1

. . .

σ2
D





V =
[

vb va vs

]
Q =

[
lb la ls

]

(6.16)

The three basis vectors in V are then given as:

V = AUpT

[UpAUpT

]−1 (6.17)

While vb describes a change of BMI by one unit with constant age and gender
having minimal MD and therefore generating the most plausible minimal facial
shape variation, va and vs alter age and gender correspondingly.

A visualization of the age basis vector va using a normalized scattered data
plot of the facial samples in the database according to the first three principal
components is given in figure 6.6(a). Using the color-codes, it is observed
that the vector va indeed describes a direction in which the age property
value of the faces changes accordingly. Additionally, we determined another
age basis vector v′

a, without the BMI and gender independency constraints
encoded in ex for x ∈ {b, a, s} and is visualized in 6.6(b). Although, the
alternative vector also visually describes a change in age, it is observed that
the contribution of the first principal component to v′

a is bigger than va.
Because the first principal component incorporates a gender change besides
an age change as well (due to our database content cf. section 6.2), using
v′

a instead of va would result in a gender change during ageing simulations,
which is not wanted. Similar results are obtained for the BMI vector vb and
the gender vector vs.

6.5.2 Removing

Having learned the property basis vectors or directions, properties of a face
can be altered by adding a certain amount of these basis vectors to their model
parameter descriptions, generating appropriate property manipulations. The
effects caused by adding an amount of these basis vectors to the average face
in figure 6.2(a) are shown in figure 6.7.

Manipulating or normalizing faces within the database, according to a given
set of skull property values [bs, as, ss], is the key point to removing facial
variation due to property differences from the statistical craniofacial model.
Given a facial sample of the database with property values [b, a, s], the basis
vectors vx, weighted by appropriate differences △x = xs − x for x ∈ {b, a, s},
are subtracted from the facial model parameters c of the facial entry:

c̃ = c − V




△b

△a

△s



 (6.18)
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(a)

(b)

Figure 6.6: Visualization of the two age basis vectors (colored lines) va (a)
and v′

a (b) .Top left, scattered data plot of faces from the database plotted as
3D points using normalized facial model parameters of the first three principal
components {ck/σk|k = 1, . . . , 3}. The color values correspond to the age
value of the faces. Top right, bottom left and right, similar but a 2D plot
instead of a 3D plot against the first and second, first and third, second and
third principal components respectively.
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Figure 6.7: Illustration of property value changes applied onto the average
face. Top row, BMI simulation going from 20 over 25 and 30 to 35. Middle
row, Age manipulation going from 20 over 40 and 60 to 80 years old. Bottom
row, Gender value change going from -2 over -1 and 1 to 2.

such that a property normalized facial entry is obtained according to:

F̃ = F + U c̃ (6.19)

This is done for every facial sample in the database {Fk|k = 1, . . . , K}. As
such, a new database is obtained which is centered around and only contains
the given property values of the skull specimen. Every face in the database
has now the same property values equal to the given values. The remaining
variability in this property value normalized population is smaller than the
original population and can be calculated by applying a new PCA to the
normalized set of instances {F̃k|k = 1, . . . , K}. The result is a new property
value normalized statistical model:

M̃(c) = F̃ +

D−3∑

k=1

Ũkck = F̃ + Ũc (6.20)

with

F̃ =
1

K

K∑

k=1

F̃k (6.21)
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and
Ũk = [Ũs

k, Ũg
k, Ũlm

k , Ũtd
k ]T (6.22)

There is no more eigenvector part Ũp
k influencing the property information,

because the variance and covariance of property information within the nor-
malized database is zero. The new eigenvector or principal component basis Ũ
models the face-specific differences within a certain sub-population according
to the property values of the given skull specimen. Doing so, a set of given
skull property values for a particular target skull can be imposed as a hard
constraint prior to skull registration.

6.6 Conclusion

In this chapter we presented a statistical craniofacial model for skull recon-
struction purposes, modeling the combined population dependent variance and
covariance of skin surface shape, texture, tissue depths and properties. The
model was constructed from a database of 393 individuals, using principal com-
ponent analysis, generating an average face, being the model template, com-
bined with a set of face-specific deformations or principal components, being
the transformation model. The model capacity was examined for in-training
and unseen faces and appeared to be sufficient in terms of incorporated per-
centage variance and number of training samples.

The statistical model, being an elastic mask, was embedded within the
registration framework of chapter 3 to tackle a model-based facial surface reg-
istration problem and was compared to the TPS based approach in chapter 5.
Doing so, a further correspondence consistency validation was performed with
satisfying results. Furthermore a slight preview concerning skull instead of fa-
cial surface registration was given by using the sparse face landmarks instead
of dense surface points as floating surface points. This showed an appropriate
strength of the co-varying facial information knowledge incorporated in the
eigenvector matrix to solve skull registrations based on a limited amount of
registration evidence.

An additional prerequisite for a model being a valid craniofacial model was
the ability to normalize or alter the model based on a given skull property
set obtained from an anthropological examination. Instead of selecting a sub-
population from the database we opted to learn and to remove facial variations
from the model originating from differences in property values. The result was
a flexible (containing enough variation) but property normalized statistical
craniofacial model such that skull properties are obeyed as a hard constraint
prior to skull registration.

The reason for our model being statistical is because it is constructed based
on the covariance matrix of the facial training data. Therefore analyzed knowl-
edge of multiple faces is incorporated within the model and is used during skull
reconstruction which is explained in the following chapter. Basically, the in-
corporation of covariance knowledge between different facial information parts
is the major difference of the proposed statistical model with existing models
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for craniofacial reconstruction. Eliminating subsequently covariance between
different information parts from the model leads to more traditional craniofa-
cial models working with a single facial template in combination with generic
transformation models (e.g TPS based). Therefore, in the next chapter, we
present three alternative craniofacial models by subsequently eliminating co-
variance information in order to compare our model with more traditional
models. Independent of the craniofacial model choice a proper skull registra-
tion framework similar to section 6.4.1 using appropriate skull representations
is elaborated in the next chapter to tackle the skull registration.



Chapter 7

Statistical craniofacial

reconstruction

7.1 Introduction

Using the robust statistical surface registration framework, presented in chap-
ter 3, this chapter discusses the final step in the CFR work-flow (section 2.2):
reconstruction of the most plausible face from a given skull specimen. The
choice of craniofacial model reflects our prior knowledge on the reconstruction
problem, for which several choices exist. If the statistical facial model of the
previous chapter is used, then the most plausible face is defined according to a
facial distribution incorporating the knowledge of multiple faces. Furthermore
the complete approach, both model and registration, is probabilistic. How-
ever, other (more traditional and non-statistical) models can be used as well
by changing the most plausible face definition accordingly, e.g. based on the
knowledge of a single face. Similarly, several choices of skull representations to
represent the skull data exist as well. The only prerequisite is being compat-
ible with the craniofacial model template. However, one has to keep in mind
that a virtual copy of the skull is never anexact copy and that additional noise
and outliers are incorporated during skull representation build up.

Within the registration framework context and nomenclature, CFR consists
of a floating and target surface, transformation model, similarity measure and
a robust objective function to optimize. Here, the target surface is the skull
surface. The craniofacial model (model template and transformation model)
determines the floating surface. The similarity measure is defined based on
the choice of skull representation, which is almost inevitably corrupted by
noise and outliers. Skull registration is then obtained by constructing and
optimizing a robust objective function combining a transformation model and
similarity measure, while being robust against noise and outliers.

This chapter elaborates and combines the different components needed for
craniofacial reconstruction. We start with a general statistical based registra-

147
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tion framework for craniofacial reconstruction in section 7.2, which is applica-
ble to a wide range of craniofacial models and skull representations. Next, we
give details of the full statistical craniofacial model from the previous chapter
in section 7.3. Additionally, three alternative models are derived from the pro-
posed model by progressively eliminating incorporated covariance knowledge.
Doing so, we mimic several traditional craniofacial models while casting them
in the registration framework as well. Then, we propose an implicit skull rep-
resentation making use of variational implicit surfaces in section 7.4 in order
to obtain a completely automatic reconstruction procedure. Additionally, we
construct a more traditional craniometric skull representation as well, lead-
ing to a semi-automatic reconstruction procedure. Both skull representations
are straightforwardly inserted into the registration framework. Results for
the different craniofacial models and skull representations embedded within
the statistical registration framework are given in section 7.5, while trying to
perform a proper craniofacial reconstruction validation.

7.2 Craniofacial reconstruction framework

Basically, craniofacial reconstruction (CFR) can be formulated as presented
in chapter 3 by selecting the appropriate components and outlier handling.
In this section we start from the craniofacial reconstruction formulation and
convert it into the surface registration formulation of section 3.3 in chapter 3.
The abstract statistical craniofacial reconstruction formulation is: What is the
most plausible or probable face (Recon) , according to a craniofacial model
(Model), given the (erroneous) skull data (Skull) ? Mathematically, this is
similar to maximizing the following conditional probability:

Recon = argmax Modelp(Model|Skull) (7.1)

In order to solve this question a proper craniofacial model and skull rep-
resentation is required. Suppose we have a complete skull surface, which is
the target surface St in the registration context, represented such that the
distance D(St, r) for points r to the skull surface can be obtained. Further-
more, suppose we have a craniofacial model, consisting of a model template,
being the floating surface Sf , and a transformation model T(r, θ) with reg-
ularization functional ‖L(θ)‖2. Finally, suppose that the complete set or a

subset of model template points, being the floating surface points {rf
j |j =

1, . . . , Nf}, contains distance to skull model template information, being the
predefined distances dj(θ), such that a link, being the individual point similari-

ties sj(θ) = D(St, T(rf
j , θ))−dj(θ), between both the model and the skull can

be established at these points. Then the statistical craniofacial reconstruction
formulation can be converted into a probabilistic surface registration formula-
tion: What are the most probable parameters, according to a prior transforma-
tion model, transforming the floating surface towards noisy target surface data
while increasing matching quality. Using (3.19) and (3.20) the mathematical
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formulation in (7.1) is converted into the following MAP formulation:

Recon = argminθ

(
− log p(St|θ) − log p(θ)

)
(7.2)

The second term is the model-likelihood as defined in (3.15), which is com-
pletely dependent on the choice of craniofacial model (cf section 7.3). The first
term is the complete data-likelihood as is dependent on the individual point
similarities extracted from the model template information combined with the
skull representation (cf section 7.4). Dealing with noise or small errors within
the individual point similarities the data-likelihood is modeled using a gaussian
probability density function (3.22), such that the complete set of parameters to
estimate includes a noise standard deviation Θ = {θ, σ}. Additionally, outlier
robustness is accomplished using a complete-process modeling for the data-
likelihood combining an inlier- and outlier-process, through the introduction
of an outlier latent variable map z. Having a complete skull surface, outlier
presence is mainly due to the skull digitization process (CT scanning with
amalgam teeth fillings for example) and the skull representation build up (in-
correctly indicated craniometric landmarks, for example). Due to the limited
knowledge about the outlier generation process and due to the non-binary na-
ture of the outliers we propose to use a random latent variable map. Having
an incomplete skull, additional outliers are present due to partial overlap and
the random latent variable can then be combined with a regular latent variable
with strong deterministic knowledge as explained in section 3.3.3. For simplic-
ity reasons, without loss of generality, we assume a complete skull surface is
at hand. Incorporating outlier handling, the first term in (7.2) is then:

p(St|θ) =
∑

z

p(St, z|θ) =
∑

z

p(St|z, θ)p(z) (7.3)

with p(z) defined in (B.2) using fractional a-priori outlier knowledge and
p(St|z, θ) being the complete-process defined in (B.1). Similar to section 3.3.3,
using an uniform outlier process distribution po(sj) = δ and taking the nega-
tive log likelihoods of (7.2), we obtain the following objective function:

E(Θ, z) = S(Θ, z) + ν‖L(θ)‖2 (7.4)

with

S(Θ, z) =

N∑

j=1

h(sj(θ), α(zj), β(zj)) (7.5)

where
h(x, α(z), β(z)) = α(z)x2 + β(z) (7.6)

and

α(z) = 1
2σ2 z β(z) = −(1 − z) log δ + z log

√
2πσ (7.7)

The optimal solution is found through a joint parameter estimation, leading to
a dual updating procedure. Due to the probabilistic nature of the outlier map
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being a random latent variable map, the joint estimation can be obtained using
an Expectation-Maximization (EM) optimization. A sequence of parameter es-
timates {Θ(m)|m = 0, 1, . . .} is obtained by alternating the following two steps:

E-step: Taking into account (7.3), on the (m + 1)th iteration, the latent vari-
ables are eliminated from the complete negative log data-likelihood S(Θ, z)
trough out-integration, by computing the conditional expectation E[x|y] of
the complete negative log data-likelihood:

S(Θ) = E[S(Θ, z)|z] (7.8)

w.r.t the posterior p(z|St, Θ). In other words, during the E-step the values
of the latent variables zj in the negative complete log data-likelihood (B.5)
are replaced by the posterior p(zj |sj , Θ) values. Following the Mean Field
strategy and using the easily interpretable prior outlier parameter κ of section
3.3.3, concerning the random latent variable choice, we obtain the following
equivalent M-estimator:

S(Θ) =

Nf∑

j=1

ρ(sj(θ), α, β) (7.9)

with
ρ(sj(θ), α, β) = h(sj(θ), α(z

(m+1)
j ), β(z

(m+1)
j )) (7.10)

where

z
(m+1)
j = bj(Θ̂

(m)) =
p(sj|Θ̂(m))

p(sj|Θ̂(m)) + λ
(7.11)

and where λ is related to κ according to (B.18). Note that zj is also dependent
on the noise standard deviation σ estimate besides the model parameters θ of
the previous iteration. The estimated values of the latent outlier variables at
the (m+1)th iteration reflect the inlier-belief or confidence for a certain indi-
vidual point similarity, which is taken into account during the M-step.

M-step The ML parameters Θ̂(m+1) are then updated minimizing the energy
in (7.4), where (7.5) is replaced by (7.9) with fixed latent variable values:

E(Θ) = S(Θ) + ν‖L(θ)‖2 (7.12)

The transformation parameters are updated by executing one step of Newton’s
method for object function optimization, which is a gradient descent method
based on the gradient∇E(θ) and the Hessian H(θ) with (Hij = ∂2E(θ)/∂θi∂θj)
resulting into:

θ(m+1) = θ(m) − sH(θ)−1∇E(θ) (7.13)

The gradient is calculated analytically based on the first derivatives of (7.12) to
every parameter in θ. H(θ) is based on the second derivatives and is computed
by numerical differentiation from the analytically calculated first derivatives.
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The gradient ∇E(θ) defines the search direction for the parameter update.
The Hessian captures information about an appropriate order of magnitude
of updates in each parameter and is updated every 50 e.g. iterations. The
optimal step-size s is found by line-minimization. The update of σ in case of
gaussian noise and the outlier process is:

σ(m+1) =

√√√√√
∑Nf

j=1 z
(m+1)
j sj(θ̂

(m)
)2

∑Nf

j=1 z
(m+1)
j

(7.14)

This EM updating process is iteratively repeated until convergence occurs
after which a final set of transformation parameters is obtained. These can
then be used to transform other model template surface points, besides the
landmark points used during registration, and other information (e.g. texture)
in order to acquire a complete craniofacial reconstruction. Having presented
the general probabilistic based skull registration framework, specific cranio-
facial model and skull representation choices are given in the following two
sections of this chapter, starting with the craniofacial models.

7.3 Craniofacial models

The choice of craniofacial model mainly influences the transformation model
and therefore the model likelihood term in (7.2) and the transformation pa-
rameters θ to estimate during the M-step. Furthermore, the model template
influences the amount of floating surface points used during registration and
the predefined distances, depending on the face-skull relating information con-
tained within the database from which the model is deducted. Having a
database containing both complete skull and facial surfaces, the floating sur-
face points could be a set of skull surface points, while the predefined distances
are equal to zero ensuring the model skull surface to be aligned with the target
skull surface after registration. Having a database similar to ours, the rela-
tionship between the model template and the skull is defined in L = 52 face
landmarks with ultrasound tissue depths. Therefore the floating surface points
are considered to be the anatomical facial landmarks, while the predefined dis-
tances are equal to the tissue depths. The registration purpose is to reposition
the facial landmarks at a distance to the skull equal to the according tissue
depths.

In this section, we define four craniofacial model choices based on our
database. The relationship between the models and the skull is always defined
in L face landmarks, being the floating surface points , combined with tissue
depths. Necessary details concerning the transformation model, predefined
distances and registration result interpolation of these four models are given.
Starting from the statistical model in chapter 6, being our primary choice, the
three other models are derived by eliminating subsequently facial covariance
knowledge, resulting in two statistical-based and two TPS-based craniofacial
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models. The former two contain a statistical based transformation model, due
to the presence of appropriate covariance knowledge. The latter two contain
a TPS based transformation model, due to the lack of appropriate covariance
knowledge. We start with the statistical based choices after which the TPS
based choices are presented and discussed.

7.3.1 Statistical based

First model (M0)

The first craniofacial model M0 , being our primary choice, is the statistical
model M(c) defined in the previous chapter after a property normalization
M̃(c) = M0. This property normalization is done to obey a given set of skull
properties prior to CFR and is feasible thanks to the covariance information
between property values and other facial information parts (cf. section 6.5).
During registration a set of model parameters c is estimated alternating the
normalized average face landmark locations, being the floating surface points

{rf
j = r̃

lm

j |j = 1, . . . , L}, accordingly. Additionally, similar to section 6.4,
a rigid transformation is incorporated to align the model instance with the
skull in the same coordinate system. Therefore, the floating surface point
transformation for the first model (M0) is defined as:

T(rf
j , θ) = Rr̃

lm

j + t + Ũ lm
j c (7.15)

with Ũ lm
j three rows of the eigenvector matrix influencing the coordinates of

r̃
lm

j and θ = [ωx, ωy, ωz, tx, ty, tz, {ck|k = 1, . . . , D − 3}]. D are the number of
principal components retained, modeling 98% variance, while D − 3 are the
number of principal components retained after property normalization. Using
(7.15) the face landmarks are transformed in a face-specific way only due to
the inter-landmark covariance knowledge coded in Ũ lm

j . Furthermore, thanks
to the incorporation of thickness covariance, the predefined distances, being
normalized tissue depths, are dependent on the model parameters and are
alternated as well:

dj(θ) = d̃j + Ũ td
j c (7.16)

with Ũ td
j a single row of the eigenvector matrix affecting d̃j . Because no regu-

larization is needed for rigid transformations the prior parameter distribution
p(θ) reduces to p(c) resulting in the following model regularization:

‖L(θ)‖2 =
1

2

D−3∑

k=1

c2
k

σ̃2
k

(7.17)

regularizing the deformation towards plausible facial solutions. The prior
knowledge about the reconstruction problem expressed in the deformation
through this log model-likelihood is based on the variances σ̃2

k incorporated
in a facial database. In other words, the reconstruction is performed based
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on ((7.15)and (7.16)) and keeping in mind (7.17) the covariance of multiple
reference face landmarks combined with tissue depths from a database. Al-
ternatively, facial plausibility is expressed in terms of facial surface combined
with facial tissue depth probability. The craniofacial model compared to which
the most plausible facial solution is searched for during registration is in fact
a facial distribution containing combined facial surface and thickness informa-
tion.

Finally, thanks to the covariance knowledge between landmarks with tissue
depths and other facial surface points with gray texture values captured in Ũs

and Ũg, the co-varying textured facial surface estimate or reconstruction is
obtained using:

F s
est = {Rr̃

s

i + t + Ũs
i c|i = 1, . . . , N}

F g
est = {g̃i + Ũg

i c|i = 1, . . . , N}
(7.18)

with N the number of facial template surface points. As a result the regis-
tration defined in the facial landmarks only is statistically interpolated and
extrapolated in order to obtain a final textured reconstruction result.

Second model (M1)

The second craniofacial model M1 is quite similar to the previous one, with
the only exception that covariance knowledge between thicknesses and facial
surface shape/geometry is eliminated. Suppose no database with combined fa-
cial surface and tissue-depth information is available, but instead two separate
databases for facial surface, {FA

k |k = 1, . . . , KA} with FA = [Fs,Fg,Flm,Fp]T

and tissue depths {FB
k |k = 1, . . . , KB} with FB = [Ftd,Fp]T are used, based

on the vector definitions in (6.1). In this case no covariance between thick-
nesses and facial geometry can be established and used during reconstruc-
tion, instead two separate statistical models (MA

1 (cA), MB
1 (cB)) must be con-

structed and applied, constituting the second craniofacial model. Similar to
model M0, both databases can be normalized towards a given set of skull prop-
erties based on the property covariance resulting in two separate normalized
models (M̃A

1 (cA), M̃B
1 (cB)) = M1. However, there is no statistical connection

anymore between ŨA and ŨB, so that varying thicknesses/facial surfaces do
not cause co-varying facial surface/thickness respectively. The floating surface
point transformation is dependent on M̃A

1 (cA) and is defined as:

T(rf
j , θ) = Rr̃

lm

j + t + ŨAlm
j cA (7.19)

and the predefined distances, being normalized tissue depths of the thickness
database, are dependent on M̃B

1 (cB):

dj(θ) = d̃j + ŨBtd
j cB (7.20)
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The complete set of parameters is now θ = [ωx, ωy, ωz, tx, ty, tz , c
A, cB], while

the model-likelihood and the regularization become:

p(θ) = p(cA)p(cB)

‖L(θ)‖2 = 1
2

∑DA−3
k=1

(cA
k )2

(σ̃A
k

)2
+ 1

2

∑DB−3
k=1

(cB
k )2

(σ̃B
k

)2

(7.21)

,regularizing the deformation towards facial plausible solutions. The difference
with M0 is that plausibility is not expressed in terms of thicknesses combined
with facial surfaces, but both independently from each other. In other words
it is possible to generate a plausible facial landmark and a plausible tissue-
depth configuration, but when combined and evaluated within M0 it is not
guaranteed to be plausible. Alternatively, the craniofacial model compared to
which the most plausible facial solution is searched for during registration is
in fact two separate independent distributions, one containing facial surface
information and one containing thickness information.

Finally, thanks to the covariance between landmarks (without tissue depths)
and complete facial surfaces with gray texture values captured in ŨAs and
ŨAg, the co-varying textured facial surface estimate or reconstruction can be
obtained. Just replace Ũs,Ũg and c in (7.18) by ŨAs,Ũg and cA respectively.

Both M0 and M1 are statistically based craniofacial models. Face land-
marks and tissue depths are transformed in a face-specific way only while re-
maining in between statistically determined boundaries in order to guarantee
facial plausibility. The transformation and plausibility is based on the knowl-
edge of multiple reference faces within a database. The following two models,
presented in the next section, use a single, instead of multiple, reference face,
therefore throwing away a lot of covariance knowledge.

7.3.2 TPS based

Third model (M2)

The third craniofacial model M2 only uses the covariance of property values
with other facial information parts in order to create a property normalized
facial database. However, variances and covariances of face landmarks with
tissue depths and complete textured facial surfaces are eliminated, resulting
in the average normalized face or a specific normalized face of the database
being the craniofacial model template with no knowledge of face-specific de-
formations and plausibility. Instead, a generic transformation model based

on TPS is used as in chapter 5. We select the average normalized face ¯̃F
as model template such that the average normalized facial landmarks are the

floating surface points {rf
j = r̃

lm

j |j = 1, . . . , L}. The floating surface point
transformation for the third model (M2) is similar to (5.2) and (6.12):

T(rf
j , θ) = Rr̃

lm

j + t + φ(r̃
lm

j )Λ (7.22)
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and the predefined distances, being the average normalized tissue depths, are
not changed due to the lack of covariance knowledge:

dj(θ) = d̃j (7.23)

The complete set of parameters is now θ = [ωx, ωy, ωz, tx, ty, tz, Λ], while the
regularization becomes:

‖L(θ)‖2 = trace(ΛTΦΛ) with Φij = ‖r̃lm

i − r̃
lm

j ‖ (7.24)

This is a smoothness regularization on the non-rigid deformation parameters
Λ preventing the non-rigid subspace from behaving too arbitrarily. As al-
ready mentioned in chapter 5, the TPS kernel Φ is built based on the floating
surface points containing information about their internal structural relation-
ship. Using a TPS based generic transformation the prior knowledge or model-
likelihood used during skull registration consists of a generic smoothness con-
straint, regularizing the generic deformation of the template. Alternatively,
the craniofacial model compared to which the most plausible facial solution is
searched for during registration is a single reference face. Finally, the textured
facial surface estimate or reconstruction after model registration is computed
according to:

F s
est = {Rr̃

s

i + t + φ(r̃
s

i )Λ|i = 1, . . . , N}

F g
est = {g̃i|i = 1, . . . , N}

(7.25)

The registration result based only on the facial landmarks is generically and
smoothly interpolated in order to obtain a final reconstruction surface result
after skull registration. The texture values are equal to the averaged normal-
ized texture values and are not changed according to the facial surface due the
lack of proper covariance knowledge.

Fourth model (M3)

The final craniofacial model M3 is very similar to the previous one except
that the craniofacial model template is now the average of the non-normalized
database, not using any covariance information at all. The details for this
model are the same as in (7.22),(7.24) and (7.25) except that the average

property normalized template information ¯̃F is replaced by the average non-
normalized template information F̄ .

Note that these two TPS based models (M2, M3) are similar to more tradi-
tional craniofacial models found in literature. The first (M2), uses a generic or
specific model template adapted towards a given set of skull properties and the
second (M3) uses a non-adapted generic model template. Both combine the
model template with a generic deformation model, such that prior knowledge
is restricted to a single reference face combined with a smoothness constraint.
Similar to the previous two statistical based craniofacial models these two
models are perfectly applicable within the registration framework of section
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7.2. The same gradient descent optimization is used due to the fact that the
predefined distances are not equal to zero (making the ICP approach difficult
to apply) and because the amount of floating surface points, influencing the
amount TPS transformation parameters, is limited.

7.4 Unknown skull representations

The choice of skull representation defines the current distance D(St, r) compu-
tation and the individual point similarity measures, therefore influencing the
inlier-process component within the data-likelihood term of (7.2). The only
major prerequisite for a skull representation to be appropriate is its compat-
ibility with the craniofacial model. In our case this means that one has to
be able to calculate the current distances within the 52 face landmarks of the
model template. In this section we give details of two such model compatible
skull representations usable within the registration framework. The first and
primary skull representation that we propose is an implicit skull representa-
tion. The second is a more traditional craniometric skull representation based
on manually indicated craniometric or anatomical skull landmarks.

7.4.1 Implicit

Figure 7.1: Illustration of the implicit skull representation St = dt(r). (a)
Three slices trough the VIS of the skull visualized with a color map coding
distances to the skull surface. (b) The relationship between a face landmark
and the VIS.

The first and primary choice is an implicit skull representation, depicted in
figure 7.1, leading to a fully automatic reconstruction because no manual inter-
action is required. The implicit or signed Distance Transform representation
of the skull, being the target surface St, is obtained using the VIS machinery
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of section 3.2.2 St = dt(r) and encodes for every 3D point an approximate
shortest euclidian distance perpendicular to the skull surface, zero on the sur-
face, positive outside and negative inside. The implicit surface based indi-
vidual point similarities used during registration are based on the comparison
of the signed distance transform values, being the current distance computa-
tions D(St, T(rf

j , θ)) = dt(T(rf
j , θ)), with the ultrasound tissue depths, being

the predefined distances dj(θ), in the 52 facial landmarks, being the floating

surface points rf
j :

s∗j (θ) = sj(θ) + ǫ = dt(T(rf
j , θ)) − dj(θ) + ǫ (7.26)

A face landmark rf
j must be positioned such that the VIS value in the face land-

mark dt(T(rf
j , θ)) is equal to the thickness value dj(θ) of the face landmark.

However, distances based on a VIS and distances measured with ultrasound
are not exactly equal. The inequality between them is modeled as additive
gaussian distributed noise ǫ with standard deviation σ. Therefore the inlier
distribution for the implicit skull representation is:

p(St|Θ) =

Nf∏

j=1

1√
2πσ

exp

(
− 1

2σ2

(
dt(T(rf

j , θ)) − dj(θ)
)2
)

(7.27)

with Nf the number of floating surface points equal to the number of facial
landmarks Nf = L. Furthermore, besides noise handling, outlier handling is
needed as well for two reasons. Firstly, for landmarks situated at the forehead
area, for example, both ultrasound and VIS values are very similar, but for
landmarks situated in the cheek area both values are very dissimilar. Secondly,
a CT scan of a skull with amalgam teeth filling will generate a disrupted VIS
in the area of the teeth. Using (7.27) combined with outlier handling, the first
term in the CFR objective function (7.12) during the M-step, becomes:

S(Θ) =
∑Nf

j=1 bj(Θ̂
(m))

[
1

2σ2

(
dt(T(rf

j , θ)) − dj(θ)
)2

+ log
√

2πσ

]
−

∑Nf

j=1(1 − bj(Θ̂
(m))) log δ

(7.28)

with Θ = {θ, σ}. bj(Θ̂
(m)) is obtained during the E-step using (7.27) in (7.11).

Details concerning the second term ν‖L(θ)‖2, the floating surface point trans-

formation T(rf
j , θ) and the predefined distance alternation dj(θ) are dependent

on the choice of craniofacial model and were given previously in section 7.3.

7.4.2 Craniometric

The craniometric skull representation St = {(slm
j ,nlm

j )|j = 1, . . . , L} used

for CFR is based on L manually indicated craniometric skull landmarks slm
j

(anatomically corresponding with the L face landmarks in the model) and
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Figure 7.2: Illustration of the craniometric skull representation. (a) Skull sur-
face with indicated craniometric skull landmarks and normal information. (b)
The relationship between a face landmark and a corresponding skull landmark

surface normal information nlm
j , illustrated in figure 7.2. Current distances

D(St, T(rf
j , θ)) = ‖slm

j − T(rf
j , θ)‖ are then obtained by calculating the dis-

tance between face landmarks rf
j and corresponding skull landmarks (which

are known prior to registration). The craniometric individual point similar-
ities used during registration are based on the comparison of the distance
‖slm

j −T(rf
j , θ)‖ with the ultrasound tissue depths dj(θ), in the 52 facial land-

marks rf
j :

s∗d
j (θ) = sd

j (θ) + ǫd = ‖slm
j − T(rf

j , θ)‖ − dj(θ) + ǫd (7.29)

A face landmark rf
j must be positioned such that the distance to the corre-

sponding skull landmark is equal to the thickness value of the face landmark.
However, as mentioned in section 3.3.2, having predefined distances not equal
to zero, the similarity measures in 7.29 are ill-defined. Spherical possibilities for
the repositioning of the face landmarks are created, resulting in a disrupting of
the target skull surface geometry or shape. To solve this problem, additional
target surface information and prior knowledge besides corresponding point
positions is to be incorporated within the similarity measure favoring certain
positions along the spheres of possibilities. Knowing that ultrasound tissue
depth measurements were taken perpendicular to the skull surface, guarantee-
ing the best ultrasound signal, we can use the skull surface normal information
nlm

j in the skull landmarks to favor spherical possibilities along the positive
direction of the normal. Doing so, the individual point similarity measure in
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(7.29) is augmented with an additional individual point similarity measure:

s∗a
j (θ) = sa

j (θ) + ǫa = 1 −
vj(θ) · nlm

j

‖vj(θ)‖‖nlm
j ‖ + ǫa (7.30)

with vj(θ) = slm
j − T(rf

j , θ) the measuring direction. Using (7.29) combined
with (7.30), a face landmark must be positioned at a distance to the corre-
sponding skull landmark equal to the thickness value in the face landmark,
while the angle between the measuring direction, which is the direction of
the line trough the skull landmark and the face landmark, and the normal
direction in the skull landmark must be equal to zero. Doing so, the cranio-
metric based similarity criterium expressing the goodness of fit between this
skull representation and a set of face landmarks is based on the procedure
for measuring the tissue depths in the database with ultrasound measuring
technology. Note that the additional similarity measure is not needed using
the implicit skull representation because mapping possibilities are restricted to
lay on iso-distance surfaces retaining the target surface geometry at different
distances from the zero-distance surface.

However, the indicated craniometric skull landmarks are not error free.
Besides the fact that the virtual copy of the skull is only an approximation of
the real skull specimen, additional errors are introduced during skull landmark
indication. These errors have an effect on the first part of the similarity cri-
terium (7.29) and are modeled as additive gaussian distributed noise ǫd with
standard deviation σd. Furthermore, the normals in the skull landmarks are
only approximations of the real surface normal. These errors have an influence
on the second part of the similarity criterium (7.30) and are modeled as ad-
ditive gaussian distributed noise ǫa with standard deviation σa. Suppose that
the distance error ǫd and the angle error ǫa are independent then the inlier
distribution for the craniometric skull representation can be defined based on
the product of two normal distributions:

p(St|Θ) =

Nf∏

j=1

p(sd
j |Θ)p(sa

j |Θ) (7.31)

with

p(sd
j |Θ) =

1√
2πσd

exp

(
− 1

2σ2
d

(
‖slm

j − T(rf
j , θ)‖ − dj(θ)

)2
)

(7.32)

and

p(sa
j |Θ) =

1√
2πσa

exp



− 1

2σ2
a

(
1 −

vj(θ) · nlm
j

‖vj(θ)‖‖nlm
j ‖

)2


 (7.33)

Nf is the amount of floating surface points equal to the number of facial
landmarks Nf = L. Besides noise handling, outlier handling is needed as
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well due to the fact that certain skull landmark indications and normal com-
putations can contain gross errors due to the manual intervention which is
dependent on the expertise of the anthropologist performing the reconstruc-
tion. Having two individual point similarities the function defined in (7.6) to
obtain an equivalent M-estimator becomes the sum of two similar functions
h(x, α(z), β(z)) = hd(xd, α(z), β(z)) + ha(xa, α(z), β(z)) using appropriately
σd and σa in (7.7) and with xd and xa equal to sd

j (θ) and sa
j (θ), respectively.

Using (7.31),(7.32) and (7.33) combined with outlier handling, the first term
in the CFR objective function (7.12) during the M-step, being the conditional
expectation of the complete negative log data-likelihood becomes:

S(Θ) =
∑Nf

j=1 bj(Θ̂
(m))

[
1

2σ2

d

(
‖slm

j − T(rf
j , θ)‖ − dj(θ)

)2

+ log
√

2πσd

]
+

∑Nf

j=1 bj(Θ̂
(m))

[
1

2σ2
a

(
1 − vj(θ)·nlm

j

‖vj(θ)‖‖nlm
j ‖

)2

+ log
√

2πσa

]
−

∑Nf

j=1(1 − bj(Θ̂
(m))) log δ

(7.34)

with Θ = {θ, σd, σa}. bj(Θ̂
(m)) is obtained during the E-step using (7.31)

in (7.11). (7.34) seems a bit overwhelming, but is perfectly differentiable for
optimization purposes. Similar to the implicit skull representation, details
concerning the second term ν‖L(θ)‖2 being the negative log model-likelihood

in (7.12), the floating surface point transformation T(rf
j , θ) and the predefined

distance alternation dj(θ) are dependent on the choice of craniofacial model
and were given previously in section 7.3.

7.5 Results and validation

In this section results and a validation, concerning the CFR framework, the
craniofacial models and the skull representations, are given. Therefore a val-
idation framework is proposed to substantiate on a scientific basis the added
value of reconstruction methods during crime-scene investigations. Issues we
want to analyze concern the added value of a statistical model for CFR, the
use of an implicit versus a traditional craniometric unknown skull representa-
tion and the performance of noise and outlier robustness in the proposed CFR
framework.

A proper craniofacial reconstruction validation requires skull information,
according ground truth facial knowledge and a facial comparison methodology.
Furthermore, in order to be representative, validation should not be limited
to a single case. Therefore we constructed and applied two different valida-
tion databases. The first database is a clinical patient database and is used
to simulate realistic reconstruction scenarios. The second database, being the
database from which the model is build, is used for simulating controlled noisy
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and outlier skull data points in a craniometric skull representation. Follow-
ing a cross-validation approach, each facial sample can be removed, in turn,
from the databases and used as a test case. The resulting reconstructed facial
skin surface can then be compared quantitatively and qualitatively, using the
facial comparison methodology, with the skin surface of the test case repre-
senting the ground truth. Doing so for all the faces within a database, overall
reconstruction performances can be obtained.

We start with the explanation of the facial comparison methodology. Then
the results based on the patient database are given and discussed after which
we do the same for the model database. We end with two final teasers, a
victim identification case and an anthropological Neanderthal reconstruction.

7.5.1 Facial comparison

The purpose of the facial comparison is to give a quantitative and qualita-
tive reconstruction evaluation. The quantitative evaluation is based on local
surface differences and expresses the reconstruction performance in terms of
accuracy. Furthermore a spatial map of the reconstruction accuracies of each
facial region can be provided. However, the final goal of craniofacial recon-
struction is not reconstruction accuracy, but rather recognition or identifica-
tion success. Therefore, a qualitative measure, based on a statistical surface
model, is computed and expresses the reconstruction performance in terms of
recognition.

Quantitative evaluation

Suppose we have a set of facial reconstructions {FR
l |l = 1, . . . , R} with accord-

ing ground truth (GT) facial information {FGT
l |l = 1, . . . , R}. The quantita-

tive evaluation of a single reconstruction is based on the distances dli = ‖rsR
li −

rsGT
li ‖, being local surface errors, between corresponding points {(rsR

li , rsGT
li )|i =

1, . . . , N} on the lth reconstruction surface and the lth GT surface. Note that
corresponding points are not equal to closest points, such that the local errors
are not underestimated. These local surface errors are used to determine a

global root mean squared error value (rmsel =
√∑N

i=1 d2
li/N) for a single

reconstruction. Doing this for all the reconstruction we obtain an averaged
overall global rmse (rmse =

∑R
l=1 rmsel/R). Additionally we also compute

an overall local rmse (rmsei =
√∑R

l=1 d2
li/R, which can be visualized using

the shape of the average face for example.

Qualitative evaluation

In order to examine the performance in terms of 3D face identification, we
construct a statistical facial surface model M s(g) = Fs+Usg with g = {gj|j =
1, . . . , D} based on the facial surfaces {Fs

k|k = 1, . . . , K} within the model
database. Based on this facial surface model we have a set of parameters
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{gk|k = 1, . . . , K + 1} for every face in the database including the GT facial
surface, where gK+1 = gGT is obtained according to:

gGT = (FsGT − Fs)/Us (7.35)

Additionally, the model description gR of a reconstruction is obtained as well
similar to (7.35).Then we compare the reconstruction with every face in the
database including the GT using a similarity measure or distance between
faces in the face-space defined in [104] based on the cosine of the angle be-
tween scaled model descriptions ĝ = {gj/σj |j = 1, . . . , D} according to the
standard deviations σj being the square root of the eigenvalues belonging to
the eigenvectors in Us.

dA(ğk, ğR) = 1 − ğk · ğR

‖ğk‖‖ğR‖
(7.36)

The smaller dA(ğk, ğR) between the reconstruction and a face from the database
the more alike the two are. Based on this similarity measure a rearranging of
the database can occur starting with the most similar face and ending with
the most dissimilar face. If the GT facial surface is situated on the nth place
in this rearranged database, then we say that the reconstruction recognition
success is of rank n. Of course a rank 1 reconstruction is a perfect recog-
nition. Because these tests are dependent on the batch size (the number of
faces in the database) the rankings are expressed in percentage. A rank 1%
is a reconstruction for which the GT is situated within the first percentage of
the rearranged database. A typical visualization of recognition performance
is the cumulative recognition curve. On the horizontal axes (X) the rank in
percentage of the reconstructions is shown, while on the vertical axes (Y) the
percentage of reconstructions having a rank smaller than or equal to the rank
on the X axes is shown. A good recognition performance curve is one with a
high Y% value for the 1% X value and a small X% value for the 100% Y value.

Having the material to evaluate a reconstruction both in terms of accuracy
and recognition we can elaborate the tests and results based on the patient
database and the model database. We start with the patient database in the
next section.

7.5.2 Patient database

Material

A first set of validation results of the proposed craniofacial reconstruction
method is based on a database of 12 clinical patient cases. For every case we
acquired the complete skull surface using a clinical CT scanning protocol. The
skin surface in standard upright position is acquired with the photogrammetric
3D scanner (ShapeCam, Eyetronics). Subsequently, the statistical model of
chapter 6 is fitted to the skin surface according to section 6.4.1, generating a
model description for every case as in figure 7.3. Each facial sample from the
validation database is used as a test case. The resulting reconstructed facial
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skin surfaces can then be compared quantitatively and qualitatively, with the
model skin surface description of the test case representing the ground truth.
Thanks to the model based GT registration, corresponding points are obtained
to perform the quantitative facial comparison.

(a) (b) (c)

Figure 7.3: Ground truth illustration for a case from the patient database.
(a) skull acquired with a CT scanner. (b) GT facial surface obtained by a
model-based facial surface registration onto the 3D eyetronics acquisition. (c)
similar as (b) but rendered with texture information.

For every case we register the four different craniofacial models (M0, M1

, M2, M3) using the EM craniofacial reconstruction framework over a range of
kappa values κ = [1.5; 3.5] in steps of 0.2 based on two craniometric (CM)
point based skull representations and the implicit (V IS) representation of the
skull. The first craniometric representation (CM1) is an indication of 52 skull
landmarks without knowledge of the GT face belonging to the skull. The
second (CM2) is a better indication with knowledge of the GT. For both cran-
iometric representations the normals on the skull surface are determined still
incorporating errors for reasons explained earlier, so CM2 is considered a good
but not perfect indication. The user-specific amount of regularization is set
equal to one (ν = 1) for the statistical based craniofacial models and ν = Nf

for the TPS based models. A total amount of 4(models) x 3(representations)
x 11(κ values) reconstructions is made for every case.

Global rmse and kappa influence

A quantitative evaluation for every reconstruction is determined such that we
obtain an overall global rmse (averaged over the 12 cases) for a certain re-
construction setup (choice of model, representation, kappa value), which is
depicted in figure 7.4. From these results, we see that the performance of the
TPS based models M2 and M3 is inferior compared to the statistical based
models M0 and M1. Concerning the kappa value influence a few things can be
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Figure 7.4: Vertical axes: overal global RMSE over 12 cases for a reconstruc-
tion setup. Horizontal axes: kappa value. Top Left: CM2 skull representation.
Top Right: CM1 skull representation Bottom Left: V IS skull representation.
solid Blue curves: M0, dotted Green curves: M1 , solid Red curves: M3, dotted
Black curves: M2

observed. For the CM2 representation the results are quite constant over the
whole kappa range, indicating that no severe outliers are present in this skull
representation, which was predictable knowing that the CM2 representation is
based on a good craniometric landmark indication. The choice of kappa value
for this representation is of low importance. The results in terms of kappa
value based on the CM1 seem to be similar, but the curve stabilities are less
pronounced, indicating the presence of more outliers compared to the CM2

representation. However it is hard to make any conclusions for this represen-
tation in terms of kappa value, because the quality of the manual indicated
landmarks over the 12 cases is very variable and not equal for all cases. The
V IS representation on the other hand is very similar over the 12 cases in terms
of quality, so that a proper kappa value analysis is possible. The curves in fig-
ure 7.4 (Bottom Left) show an increase in rmse with increasing kappa values,
suggesting lower kappa values for better reconstructions based on this implicit
representation. The increase in rmse is due to the fact that we compare VIS
values with ultrasound thickness values, which are not measured entirely the
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same way. For landmarks situated around the forehead for example both val-
ues are very similar, but for landmarks situated in the cheek area both values
are very dissimilar. The implicit skull representation used in combination with
ultrasound thicknesses is characterized by a severe amount of outliers. Increas-
ing the kappa value comes down to believing or trusting the VIS/ultrasound
value relationship in more landmarks including outliers, influencing the CFR
registration wrongfully. Another observation is that the model M1 is less in-
fluenced by the choice of kappa value compared with model M0. This is due to
the fact that thickness values and facial geometry change independently using
M1, while a co-varying change is used within M0 during registration. An out-
lier VIS/ultrasound value relationship influences both thickness and surface
estimates within M0, while the influence is mostly limited to the thickness
estimate within M1. Combined thickness and facial surface plausibility de-
creases more rapidly than independent thickness and facial surface plausibility
with increasing believe in the VIS/ultround value relationship.

Figure 7.5: Local surface reconstruction results for the case depicted in figure
7.3
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Local rmse accuracy

For further analysis we select the reconstruction with the best kappa value for
every combination of model and skull representation per case. The best κ value
is the one having the lowest rmse of all reconstructions made over the κ range,
such that a single reconstruction becomes the representative for a certain case
reconstruction setup consisting of the choice of model and skull representation.
The local surface differences of these representative reconstructions can be
visualized using the geometry of the reconstructed face in combination with a
color-map. The results for the single case in figure 7.3 are depicted in figure
7.5 by means of a color-map ranging from 0 mm(black) to 7 mm (white).
The first two columns show the results obtained based on the CM2 skull
representation made with the four different models (M0 −M3). The following
two columns show the results obtained based on the CM1 craniometric skull
for each of the four different models (M0 − M3). The final two columns show
the results obtained based on the implicit V IS skull representation made with
the four different models (M0−M3). For 12 cases we obtain overall local rmse
surface differences, shown in figure 7.6 using the averaged facial geometry of
the database. The ordering of the figure is the same as figure 7.5, except that
the rows and columns are switched. Figures 7.6 and 7.5 use the same color-map
range. Note that a small difference in overal global rmse as (figure 7.4) can
incorporate more pronounced differences in overall local surface rmse errors
(figure 7.6). This is important while analyzing overall global rmse errors.
It is observed that the nose and the mouth region are the most difficult to
reconstruct for all models and skull representations, which is due to the limited
underlying skull information in those regions.

Recognition

Comparing two surfaces (reconstruction vs GT) based on local surface differ-
ences is interesting for evaluating the reconstruction performance in terms of
accuracy and provides a spatial map of the difficulty of each facial region to
be reconstructed. However, the final goal of cranio-facial reconstruction is not
reconstruction accuracy per se, but rather recognition or identification success.
Using the qualitative facial comparison, the ranking results in percentage of
the representative reconstructions for every case are shown in figure 7.7. A
more typical visualization of recognition performance is depicted in figure 7.8
using cumulative recognition curves.

Model and skull representation comparisons

Observing figures 7.5, 7.6, 7.7 and 7.8 a few conclusions can be drawn concern-
ing the craniofacial models and skull representations. A global observation is
the fact that accuracy is related with recognition and vice versa.

CFR models: Starting with M3 we see that this model has the worst per-
formance both in terms of identification and accuracy. Especially the mouth,
chin and nose regions are poorly reconstructed (figure 7.6). If we compare M3



7.5 Results and validation 167

Figure 7.6: Overall local rmse surface reconstruction results over 12 cases,
depicted on the geometry of the average face from the database

with M2 in all the validation figures we clearly see that the incorporation of
attribute or property covariance gives a positive contribution to the quality of
the reconstructions both in terms of accuracy and in terms of recognition. It is
clearly necessary to obey the property values, by manipulating the craniofacial
model to improve the results. Comparing M2 (statistical-based) to M1 (TPS-
based) it is observed that a major positive contribution is obtained by using
face-specific deformations, extracted from facial surface and landmark covari-
ance information and encoded into the eigenvectors. Incorporating statistical
knowledge of multiple reference faces is clearly better than using only one ref-
erence face in combination with a generic TPS deformation. Furthermore, we
believe, however not proven by the current tests, that reconstructions made
based on a combination (weighted average e.g.) of multiple reconstructions
starting from several reference faces in combination with generic deformations
incorporate the danger that the final result is corrupted by possible inferior sin-
gle reconstructions as the ones based on M3 or M2. For this reason, we prefer
to make a single reconstruction based on the statistical knowledge of mul-
tiple faces during registration instead of combining multiple reconstructions
after registrations. Finally, comparing M1 with M0, only a slight difference
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Figure 7.7: % rankings for the 12 cases of the best representative reconstruc-
tions for the CM2, CM1, V IS skull representations and the 4 different models
(M0, M1, M2, M3)

is observed, sometimes in favor of M1 and sometimes in favor of M0. Based
on these tests, it is not really clear whether and/or when the incorporation
of thickness covariance improves or reduces the reconstruction quality. More
controlled tests comparing M1 and M0 are given further on. Concerning the
different craniofacial models (M0 −M3) we can conclude for now, that the in-
corporation of property and facial surface/landmark covariance improves the
reconstruction quality both in terms of accuracy and in terms of recognition
performance.

Unknown skull representations: Concentrating on the statistical mod-
els M1 and M0, we can make a few conclusions about the different skull repre-
sentations as well. Both M1 and M0 generate excellent reconstructions based
on the CM2 representation. The cumulative recognition curves in figure 7.7
(top) are even flawless. However, the quality severely drops when using the
CM1 representation. This indicates that a reconstruction result based on a
craniometric skull representation is very dependent on the quality of the land-
mark indication, which is related to the expertise of the anthropologist making
the reconstruction. The results based on the implicit V IS representation are
situated in between the results based on the CM1 and CM2 representations re-
sulting into the following skull representation ordering: CM2 > V IS > CM1.
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Figure 7.8: Cumulative recognition curves of the best representative recon-
structions for the CM2, CM1, V IS skull representations and the 4 different
models (M0, M1, M2, M3)

Observing figure 7.6 in terms of accuracy, we see that the spatial local error
map based on the V IS representation for the models M1 and M0 is slightly
better than the error maps for the CM1 representation. In terms of iden-
tification, we observe in figure 7.7, that errors in recognition, when present,
are less severe with the V IS representation resulting in a better cumulative
recognition curve in figure 7.8. Keeping in mind that the CM1 representation
is based on a more realistic landmark indication in practice compared to CM2

and that a completely automatic reconstruction, excluding human subjectiv-
ity, can be generated based on the V IS representation, we conclude that the
V IS representation is a good skull representation to use in practice despite the
weak comparison of ultrasound thicknesses with VIS values, resulting in a low
kappa value choice. The reconstruction result based on the implicit represen-
tation, which is obtained completely automatically, can be used to generate an
initial reconstruction. Subsequently, skull landmarks with some initial facial
knowledge can then be indicated to refine the result if preferred.
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Figure 7.9: Overall global rmse results over the 12 cases, with the EM skull
registration framework, Without the E-step and without the MAP formula-
tion for every craniofacial model (M0, M1, M2, M3) and skull representations
(CM2, CM1, V IS)

Robustness performance

To validate the contribution of the robust EM CFR framework, two more re-
constructions per setup (choice of case, skull representation and craniofacial
model) are made. The first eliminates the robustness against outliers by elim-
inating the E-step during registration. The latent variables zj are set equal to
one at initialization and are not updated during registration. The second elim-
inates the noise estimation σ of the skull representation by not using the MAP
formulation of the registration problem. The results are shown in figure 7.9
using the overall global rmse over the 12 cases. For every model and skull rep-
resentation the elimination of the E-step clearly decreases the reconstruction
quality. This decrease in quality is less severe using the CM2 skull represen-
tation compared to the other skull representations, because the amount and
severity of outliers is lower within the CM2 representation. Eliminating the
estimation of skull representation noise during registration further decreases
the reconstruction quality severely, even when using the outlier free but noisy
CM2 representation. Based on these comparisons we can conclude that it is
important to deal with the noise in the skull representations and to deal with
the presence of outliers compared to the noise level during registration. Fur-
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thermore we observe that the proposed EM skull registration framework is a
valuable tool to cope with such noise and outliers.

While these tests simulated realistic reconstruction scenarios, it is quite
difficult to control the quality of the skull representation in terms of noise
and outliers. Therefore we constructed additional tests based on the model
database in the next section.

7.5.3 Model database

Material

A second set of validations is obtained using the facial database to build up
the craniofacial models in order to have a better control of the noise and out-
liers present in the skull representation. Each facial sample is removed, in
turn, from the model database and used as a test case resulting in 393 test
cases. The remaining facial entries are used to create the different craniofa-
cial models. Because of the lack of complete skull surface information in the
model database, the implicit skull representation cannot be used. Instead we
use a better controlled, compared to the patient database, craniometric skull
representation. Starting from the face landmarks on the facial surface the
thicknesses of the person are set out along the inward normal direction of the
facial surface creating a set of skull landmarks and skull normals (being the
facial normals). Using these skull landmarks and normals an noiseless relation-
ship according to (7.29) combined with (7.30) exists with the face landmarks.

Noise robustness

To examine the influence of noise or small errors in the skull representation we
gradually add gaussian distributed noise to the 3D positions of the skull land-
marks. A skull landmark is displaced using a uniformly distributed random
direction in combination with a gaussian distributed step-size in the random
direction, resulting into spherical displacements of certain magnitudes. The
amount of noise or the noise standard deviations are 0, 1, 2, 3 and 4 mm,
resulting in five CM skull representations per face in the database. Every
model (M0, M1, M2, M3) is used to make reconstructions over a kappa range
κ = [1.5; 3.5] in steps of 0.2 based on the five CM skull representations with
different levels of inserted noise. Note that gaussian distributed noise can gen-
erate errors much bigger than the chosen standard deviation. In other words
the maximum errors are not limited to 4 mm.

Figure 7.10 depicts the overall global rmse averaged over 393 cases as a
function of kappa similar to figure 7.4. Based on these plots we select a single
kappa value for every craniofacial model having the lowest overall global rmse,
resulting in a representative reconstruction for every model and noisy skull
representation. Doing so, we can construct figures 7.11 and 7.12 similar to
figures 7.8 and 7.9 to compare the different craniofacial models and to vali-
date the contribution of the EM skull registration framework in the case of
noise present in the skull representation. Increasing the noise level or reducing
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Figure 7.10: The overall global rmse results for five different noise levels in
a CM skull representation in function of kappa. Vertical axes: overall global
rmse over 393 cases for every model. Horizontal axes: kappa value.

the skull landmark quality clearly reduces the reconstruction qualities both
in terms of accuracy and recognition, which was already observed comparing
the CM1 with the CM2 skull representations in the clinical patient database.
Furthermore, the conclusions made previously concerning the different cranio-
facial models based on the clinical patient database are again confirmed when
observing figures 7.10, 7.11 and 7.12. However, a more detailed kappa analysis
and model comparison can be given. A higher kappa value is preferred when
the amount of noise is limited. Every skull landmark is quite trustworthy and
gives a positive contributing to the noise level and model parameter estima-
tion. No real outliers are present or were inserted. Increasing the noise level
decreases slightly the optimal choice of kappa value. Still no severe outliers are
inserted as such, but the chance of having skull landmarks of different quality
is higher compared to low noise levels and as a result some skull landmarks
are treated as outliers compared to the other skull landmarks. Trusting the
complete set of skull landmarks when the noise level is high is not advisable,
so a lower value of kappa is preferred. The statistical models M0 and M1

clearly increase the reconstruction quality when the amount of noise is limited
compared to M2 and M3. The statistical interpolation (models M0 and M1)
of the complete facial surface using co-varying surface information based on
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Figure 7.11: Cumulative recognition curves for 393 cases using the four differ-
ent craniofacial models based on five different noise levels in the skull repre-
sentation.

a set of face landmarks derived from quite noiseless skull landmarks is bet-
ter than generic TPS based interpolation (models M2 and M3). Despite a
smaller difference, the performance of M0 and M1 is still better with increas-
ing noise. The difference between M0 and M1 is more pronounced compared to
the clinical patient database validation tests. When the link between the skull
representation and the model through the use of a similarity criterium is strong
or not corrupted by a high amount of noise then the incorporation of thickness
covariance (M0) improves the reconstruction quality. Up to a noise level of
2mm the results based on M0 are better both in terms of reconstruction ac-
curacy (figures 7.10 and 7.12) and reconstruction identification success (figure
7.11). When the amount of noise increases we observe that the performance
of M0 and M1 become comparable (figure 7.10). However, the performance
of M0 is less dependent on the choice of kappa value. A global Craniofacial
transformation model regularization is needed to cope with very noisy skull
representations and the flexibility of M0 is more restricted than M1 trough the
combined thickness and facial surface plausibility. M1 is allowed to interpo-
late the noisy skull landmarks more than M0, which is not preferred. Lowering
the kappa value is equal to mistrusting the noisy skull landmarks and down
weighting the contribution of the most corrupted landmarks for the parame-
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Figure 7.12: Overall global rmse over 393 cases of the representative recon-
structions using the EM skull registration framework and the best kappa value,
Without the E-step or outlier robustness and without the MAP formulation or
noise robustness for every craniofacial model (M0, M1, M2, M3) and five CM
skull representations with different noise levels

ter estimation. In that sense the choice of kappa value is an additional kind
of regularization, but more individual skull landmark based, helping both M0

and M1 but mostly M1 to improve the skull landmark approximation. Further
increasing the noise level as in the CM1 skull representation for the clinical
patient database, can result in a slight improved performance of M1 compared
to M0. Finally, observing figure 7.12 we clearly see an improvement in terms
of noise robustness using the statistical MAP formulation (NO E) of the regis-
tration problem. Incorporating robust statistical estimation (EM) for outlier
detection mainly improves the robustness within higher noise levels, but the
contribution is limited because no severe outliers were incorporated into the
simulated noisy skull representations. Using no noise robust registration (NO
MAP) has a huge effect on the statistical models M0 and M1. Eliminating the
statistical model regularization during registration can lead to facial instances
outside the determined statistical boundaries, which have a very low facial
plausibility shown in figure 7.13.



7.5 Results and validation 175

Figure 7.13: (a) A facial example generated based on noisy skull landmarks
with the proposed EM framework and a statistical craniofacial model. (b) A
facial example generated outside the statistical boundaries with very low facial
probability based on the same noisy skull landmarks and statistical craniofacial
model without the proposed EM framework for model registration

Outlier robustness

To examine the influence of outliers or gross errors in the skull representation
we gradually insert an amount of outliers into a gaussian distributed noisy
skull representation with standard deviation 1mm. An outlier skull landmark
is selected randomly from the 52 skull landmarks and is displaced using a uni-
formly distributed random direction in combination with a fixed step-size of
6mm in the random direction. The choice of 6mm is made to ensure severe
outliers compared to the noise level of 1mm. The amount of outliers, which are
inserted are 0%, 5%, 10%, 20% and 40% of the 52 skull landmarks, resulting
in five CM noisy skull representations with different amounts of outliers per
face in the database. Every model (M0, M1, M2, M3) is used to make recon-
structions over a kappa range κ = [1.5; 3.5] in steps of 0.2 based on the five
CM skull representations with different amounts of inserted outliers.

Figure 7.14 depicts the overall global rmse over 393 cases as a function of
kappa similar to figure 7.4 and 7.10. Based on these plots we select a single
kappa value for every craniofacial model having the lowest overall global rmse,
resulting in a representative reconstruction for every model and noisy skull
representation with a ceratin amount of outliers. Doing so, we can construct
figures 7.15 and 7.16 similar to figures 7.11 and 7.12 to compare the different
craniofacial models and to validate the contribution of the EM skull regis-
tration framework in the case of outliers present in the skull representation.
A first observation is the robustness to outliers for the four different models
embedded into the EM framework. Especially when observing the recognition
performance curves in figure 7.15. Secondly, according to figure 7.14, a high
kappa value is preferred when the amount of outliers is limited, because the
majority of the skull data gives a proper noise level estimation of 1mm accord-
ing to which the few outliers can be easily detected and rejected even with a
high kappa value. A kappa value which is too low discards non-outlier or inlier
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Figure 7.14: The overall global rmse results for five different amounts of out-
liers in a CM skull representation in function of kappa. Vertical axes: overall
global rmse over 393 cases for every model. Horizontal axes: kappa value.

skull landmarks. Increasing the amount of outliers results into a lower pre-
ferred kappa value, because fewer skull landmarks are trustworthy to estimate
the proper amount of noise according to which the outliers are to be detected.

Concentrating onto the statistical models M0 and M1 in figure 7.14, we
observe that the increase of rmse for M0 is more severe with increasing kappa
value and an increase of the amount of outliers. A skull landmark displacement
has mainly an influence on the first condition in the craniometric skull similar-
ity criterium, resulting in a more difficult correct thickness estimation. This
thickness relationship based on an outlier, influences severely both thickness
and surface estimates within M0, while the influence is mostly limited to the
thickness estimate within M1. The same difference in kappa sensitivity was ob-
served using the implicit skull representation in the clinical patient database,
which was characterized by an amount of outliers present in the VIS/ultra-
sound thickness value relationship. Finally, observing figure 7.16, we see the
same improvements as in figure 7.12 using the proposed EM skull registration
framework for every craniofacial model, but now in terms of outlier robustness.
The positive contribution of the robust statistical estimation (E-step during
EM) is more pronounced compared to the noisy skull representations in figure
7.12, because severe outliers were now explicitly incorporated.
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Figure 7.15: Cumulative recognition curves for 393 cases using the four differ-
ent craniofacial models based on five different amounts of outliers in the skull
representation

7.5.4 Forensic and Archeological cases

The primary application for our craniofacial reconstruction methodology is
victim identification. Besides forensic related reconstructions, archeological
facial reconstructions could also be tackled with our methodology. In this sec-
tion both a forensic and a archeological attempted craniofacial reconstruction
example are given as final teasers before we conclude this chapter in the next
section.

Forensic case

The forensic related reconstruction concerns a skull found in Belgium in April
2006. The anthropological examination estimated the skull gender to be female
and the age to be 45 years old. Furthermore a BMI of 22.5 (slender woman)
was estimated. Based on the validation results from the previous two sections,
our primary craniofacial model choice is the model defined in chapter 6, while
using (7.15), (7.16), (7.17) and (7.18). Our primary skull representation choice
is the implicit representation defined in section 7.4.1, generating a complete
automatic craniofacial reconstruction while being acceptable in terms of ac-
curacy and recognition. The user-specific amount of regularization was set
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Figure 7.16: Overall global rmse over 393 cases of the representative recon-
structions using the EM skull registration framework and the best kappa value,
Without the E-step or outlier robustness and without the MAP formulation or
noise robustness for every craniofacial model (M0, M1, M2, M3) and five CM
skull representations with different amounts of outliers

equal to one. ν = 1. Based on the kappa analysis in figure 7.4 we selected
a kappa value κ = 2. The reconstruction result based on the anthropological
examination is given in figure 7.17. Alternative property values are depicted
in figure 7.18.

Archeological case

The archeological reconstruction concerns the skull of a Neanderthaler [105],
illustrated in figure 7.19. A virtual reassembling of the skull based on skull
fragments was accomplished by Prof. Dr. C.P.E. Zollikofer and Dr. M. Ponce
de Len from the University of Zürich. Furthermore, they indicated the 52 skull
landmarks on the skull according to the protocol given in appendix F. An ex-
change of the complete skull data was infeasible due to contractual constraints
such that the skull representation choice is a craniometric representation based
on the indicated skull landmarks. We used the statistical craniofacial model
from chapter 6 and selected a kappa value κ = 3. In a first instance the
user-specific amount of regularization was set equal to one, resulting into the
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Figure 7.17: Forensic related real reconstruction case of a skull found in Bel-
gium

Figure 7.18: Alternative property choices for the forensic case. (a) original
from figure 7.17 (b) BMI = 17 (c) BMI = 28 (d) Age = 80

Figure 7.19: Illustration of the Neanderthaler skull with indicated skull land-
marks
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Figure 7.20: Neanderthaler reconstructions based on the skull landmarks with
varying user-specific regularization. (a) ν = 1 (b) ν = 0.1 (c) ν = 0.05

reconstruction of figure 7.20(a). It is observed that the final outlook resembles
the face of a modern man, because the database, used to construct the cranio-
facial model, contains facial information from living subjects of today instead
of Neanderthaler specimens. Setting ν = 1 constrains the reconstruction to
stay within the statistical boundaries of a modern population. In other words,
a trade-off between modern facial plausibility and skull data fidelity is present,
favoring plausible solutions. By lowering the user-specific amount of regular-
ization we obtain the reconstruction results in 7.20(a) and (b) for ν = 0.1
and ν = 0.01 respectively. Doing so, the trade-off is changed in favor of the
skull data fidelity and it is observed that the reconstructions tend towards the
facial outlook of a (possibly) Neanderthaler. Lowering the statistical bound-
ary constraints or the statistical regularization allows the reconstruction of
faces a-typical to the database. Very speculatively, we can state that the three
reconstructions in figure 7.20 show an evolution of a modern man towards a
Neanderthaler and vice-versa. While the reconstruction in 7.20(c) shows the
Neanderthaler outlook, the reconstruction in 7.20(a) shows the outlook of the
modern man version based on the Neanderthaler skull. The facial outlook in
figure 7.20(b) is a version in between the stone-age Era and the modern-age
Era.

7.6 Conclusion

This chapter presented the different components needed for craniofacial re-
construction. We proposed a statistical reconstruction approach: What is the
most plausible or probable face, according to a craniofacial model, given the
(erroneous) skull data ?. In order to find the most plausible face a probabilis-
tic EM skull registration framework applicable to a wide range of craniofacial
model and skull representation choices was given. The choice of craniofacial
model mainly influences the transformation model. Furthermore, the model
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template influences the amount of floating surface points used during registra-
tion and the predefined distances, depending on the craniofacial relating in-
formation contained within the database from which the model was deducted.
We defined and proposed two statistical based and two TPS based craniofa-
cial model choices deducted from our database, starting with the model from
chapter 6 and by subsequently eliminating covariance knowledge. The choice
of skull representation determined the current distance computations and the
individual point similarity measures, therefore influencing the inlier-process
component within the data-likelihood term. The first and primary skull rep-
resentation choice that we proposed was an implicit skull representation. The
second choice was a more traditional craniometric skull representation based
on manually indicated craniometric or anatomical skull landmarks.

A first set of validation tests were performed based on a clinical patient
database, simulating realistic reconstruction scenarios. Two craniometric skull
representations of different quality were used in addition with an implicit skull
representation based on variational implicit surfaces per case in the database.
A second set of validation tests were performed based on the model database,
through a leave-one-out procedure, simulating controlled noisy and outlier
skull data points in a craniometric representation. Reconstruction evaluations
were obtained based on a quantitative and a qualitative comparison of the
reconstructed facial surfaces with the ground truth facial surfaces. The quan-
titative measures were a global and a local rmse of the remaining distances
between corresponding points on the surfaces of the reconstruction and the
ground truth. The qualitative measure was a recognition or identification suc-
cess rank obtained by comparing the reconstruction with faces in a database
including the ground truth using a similarity measure or distance between
faces using the cosine of the angle between re-scaled model descriptions.

Based on the validation tests a few conclusions could be drawn concerning
the craniofacial models incorporating different kinds of covariance information.
Firstly, a clear improvement in reconstruction performance was obtained sim-
ulating and eliminating property related variance, restricting the facial surface
and thickness variation according to a given set of skull properties derived from
an anthropological examination. Secondly, a major improvement in recon-
struction performance was gained using face-specific deformations extracted
from facial surface and landmark covariance. Statistical knowledge or internal
structural relationships of multiple faces was used instead of a single inter-
nal structural relationship to deform the averaged model template. Thirdly,
a varying improvement could be obtained incorporating thickness covariance,
depending on the skull representation. Based on a noiseless and outlier free
skull representation, the co-varying knowledge between thicknesses and facial
surfaces improved the reconstructions significantly. The improvement was less
significant but still present when the amount of severe outliers was increased.
However, a proper choice of kappa was necessary, because outliers had an in-
creased influence on both thickness and facial surface estimations compared
to the independent co-varying thicknesses and facial surfaces. Increasing the
noise level in the skull representations lead to comparable results between the
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models with and without thickness covariance. However, the choice of kappa
became more important for the statistical model without thickness covariance,
because extra fine-tuning was needed to restrict the independent flexibility
between thicknesses and surfaces in a noisy setup. Incorporation of thickness
covariance was interesting when the link between the skull representation and
the model expressed in the similarity criterium was strong. Increasing the noise
level weakened the link, such that the contribution of thickness covariance was
reduced, until the noise level was too high and no more positive contribution
was observed. Incorporating thickness covariance in the presence of outliers
was useful if the outliers were properly detected and down-weighted.

The semi-automatic results based on the craniometric skull representation
were dependent on the quality of the manually indicated landmarks, related
with the expertise of the anthropologist. A realistic indication without knowl-
edge of the ground truth facial surface was very noisy and error prone, favoring
slightly the craniofacial model without thickness covariance. A good skull land-
mark indication lead to flawless recognition results independent of kappa using
the more statistical based craniofacial models. A proper anthropological train-
ing was therefore advised in order to improve the skull landmark indications
and as such the reconstructions. Complete automatic reconstruction results,
eliminating human subjectivity, were obtained using the implicit skull repre-
sentation. This representation was characterized less noisy than the realistic
craniometric representation but a severe amount of outlier VIS/ultrasound
value relationships were present. Therefore, better reconstruction results were
obtained using a lower kappa value. The proposed statistical craniofacial model
was slightly favored with this skull representation compared to the statistical
model without thickness covariance, but the dependency on kappa was more
pronounced because of the increased influence of outliers through the use of
thickness covariance. Finally, the validation tests clearly showed an improved
robustness against noise and outliers within the skull representation using the
proposed robust EM skull registration framework. The MAP formulation lead
to robustness against noise or small errors, while the further embedding into
an EM formulation of the registration problem leaded to robustness against
outliers or gross errors as well.

In the following chapter we give a general conclusion and some future work
issues concerning the methodologies proposed and developed in this thesis.



Chapter 8

Conclusions and future

directions

8.1 Craniofacial reconstruction

When confronted with a corpse that is unrecognizable due to its state of de-
composition, skeletonisation, mutilation or incineration, and if no other iden-
tification evidence is available, craniofacial reconstruction could be considered
to help the investigation out of an impasse. Forensic facial reconstruction aims
at estimating the facial outlook associated to an unknown skull specimen for
victim identification. All facial reconstruction techniques were based on the
assumed relationship between the soft tissue envelope and the underlying skull
substrate. Manual reconstruction methods required a lot of anatomical and
artistic modeling expertise and are as a result subjective and time consuming.
The development of software for computerized facial reconstructions of an in-
dividual would be of benefit to various law enforcement agencies, by allowing
faster, easier and more efficient generation of multiple representations of an
individual.

8.1.1 Computerized reconstruction

Computer-based methods were essentially a virtual mimicking of manual re-
construction techniques. A general work-flow for computerized techniques
could be defined involving an anthropological examination influencing the
choice of craniofacial model. Subsequently this model was deformed or trans-
formed towards a virtual copy of the skull based on a similarity criterium
extracted from a skull representation. The proper transformation parameters
were determined by optimizing an objective function combining the similarity
criterium and the craniofacial transformation model.

Besides the issues about craniofacial reconstruction in general, a number
of choices were to be made and a number of implementation issues were to
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be dealt with while designing a computerized reconstruction technique. For
every step in the general work-flow several choices exist and problems were to
be coped with.

8.1.2 Our approach

We proposed a complete statistical approach for computer-aided craniofacial
modeling and reconstruction. The philosophy behind the reconstruction tech-
nique was to find the most plausible or probable face, according to a face dis-
tribution or model, given the erroneous skull data. A statistical craniofacial
model for reconstruction was used, eliminating the model-bias and minimizing
the unrealistic character of the reconstructions caused by large generic model
deformations, incorporating the combined population-dependent variance and
covariance of complete skin surface shape, 52 anatomical face landmarks with
ultrasound tissue depths, property (age, BMI and gender) values and skin sur-
face gray-value texture information, calculated from an elaborate database of
faces measured in an upright position. Furthermore, statistical manipulation
or simulation of properties was used to fine-tune the model towards a given
set of skull properties. The model could be considered as an elastic mask with
elastic hemi-spherical dowels on the inside of the mask at the landmark loca-
tions, which was subsequently fitted to the skull such that the virtual dowels
touched the skull. The elastic deformation of the transformation model was
based on the statistical likelihood as learned from a database of nearly 400
subjects.

In order to build up the statistical craniofacial model and to use it for
craniofacial reconstruction several registration subtasks were to be tackled.
(1) The acquisition of 3D skin surface and tissue-depth information in an up-
right position, measured over a sufficiently large and diverse population which
were subsequently stored in a database together with the subject’s age, Body
Mass Index (BMI), gender and ancestry information. (2) The establishment
of inter-subject surface dens correspondences to perform statistical modeling.
(3) Statistical modeling of the population-dependent variation and covaria-
tion of skin surface shape and tissue depth, fine-tuned towards a given set of
skull properties (ancestry, age,...). (4) Fitting of this statistical model to the
individual craniofacial skeleton. (5) Validation of the complete craniofacial
reconstruction approach.

The whole procedure (1-5) involved a number of registration undertak-
ings. First in subtask (1), complete facial surfaces were assembled from par-
tial surface patches using a rigid transformation model. Second in subtask
(2), surfaces of different subjects were matched to each other using a non-rigid
Thin Plate Spline based deformation model. In subtask (3), the observed
inter-individual deformations were statistically modeled via Principal Compo-
nent Analysis, assuming a multivariate normal distribution. This model was
matched in a first instance to the facial surfaces of the different subjects in
the database using a transformation model based on the learned statistical de-
formations to analyze the quality of the Thin Plate Spline based registrations
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in the previous subtask. Finally in subtask (4), this facial model (including
the soft-tissue thicknesses) was aligned with the (virtual) skull specimen using
again the transformation model based on the learned statistical deformations.

8.2 Methods

8.2.1 Robust surface registration framework

Surface registration referred to the establishment of the geometrical relation-
ship between two or more surfaces. We presented a robust, statistical, surface
registration framework that optimized an inter-surface distance measure over
the parameters that defined the geometric transformation. We used a memory
efficient, continuous, smooth and analytical, implicit surface representation,
which has particularly interesting properties for registration purposes. In ad-
dition, a variational boundary function to retain the boundary concept within
an implicit surface representation for open surfaces was created.

Components generally needed for registration were introduced and elab-
orated while focussing on the use of implicit surfaces and a robust statisti-
cal objective function. We proposed to use a statistical Maximum a Posteri-
ori (MAP) derivation of an objective function to combine a geometric-based
similarity measure and the transformation regularization. MAP approaches
have proven to be very useful theoretical frameworks, equipped with a set of
powerful and well developed mathematical techniques having a sound philo-
sophical underpinning. Furthermore, all the assumptions were clear and on
the table. Robustness against noise was easily obtained by stating that the
similarity measure instances (for a certain set of transformation parameters)
within the floating surface points were generated by a statistical modeled noisy
inlier-process. Robustness against outliers was obtained by stating that the
same similarity measure instances or samples were either or partially gener-
ated by a probabilistic inlier-process or/and an outlier-process constituting a
complete-process. Doing so, an outlier latent variable was introduced encoding
the amount of inlier-belief and outlier-belief for a similarity measure value in
a floating surface point and was therefore a kind of confidentiality variable.
Four modeling choices for the outlier latent variable were given dependent on
the prior knowledge concerning the outlier generating process. The complete-
process modeling leaded to a joint optimization, similar to the EM algorithm,
of transformation parameters and outlier latent variables.

Equivalent M-estimators after outlier latent variable elimination were con-
structed for the different kinds of latent variable choices. Doing, so we were
able to analyze outlier influences. The construction of the M-estimators was
obtained during the E-step of the joint estimation regarded as a general inter-
pretable EM optimization. Thanks to the implicit surface representations no
additional correspondence search was needed and a straightforward Steepest-
Descent M-step optimization could be applied. Furthermore, well established
optimization routines for robust statistics were directly applicable on the ex-
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plicit outlier-process formulations due to the unification with robust M-estimators.
The final result was a better underpinned objective function with quasi self-
regulating robustness against noise and outliers.

Future directions concerning the robust statistical surface registration frame-
work include the incorporation of additional surface information besides ge-
ometry. Using the same VIF machinery, texture and curvature information on
the target surface can be extrapolated towards the floating surface, such that
the similarity measure can contain texture and curvature match evaluations
as well. The surface registration framework was applied to tackle the patch,
complete facial surface and skull registration tasks, but we are sure that other
registration undertakings can be solved using the framework.

8.2.2 Facial surface acquisition

Facial surface entries within the craniofacial database were acquired using a
photogrammetric active 3D acquisition device. Advantages included, portabil-
ity and upright position acquisition. However, due to the limited viewing-angle
of the camera a complete facial surface was assembled from multiple partial
surface acquisitions. To build a complete database it was interesting to develop
an automatic assembling procedure for the facial surface acquisition.

We presented an automatic, robust and accurate registration and integra-
tion algorithm for 3D surface building from separate patches, without any
prior knowledge. We used a variational implicit surface representation of the
patches. The VIS representation had useful properties for solving the differ-
ent tasks and had interesting smoothing possessions to deal with noisy data.
First, a pair-wise crude registration was solved by making use of directed point-
signatures in combination with a voting scheme. Shortcomings of spin-images
for use as point-signatures were solved by creating VISS-images increasing the
quality and the robustness of the point-signatures. A MST was used to convert
the pair-wise crude registrations into a multi-view crude registration resulting
in a set of best transformations, according to the number of transformation
inliers, needed to transform all the patches into a common coordinate system.
This set of best transformations was further refined by applying pair-wise fine
registrations. We defined an objective function according to the surface regis-
tration framework, based on the VIS representation of the target patch. The
optimization was accomplished by a six dimensional conjugate gradient search
framework according to the transformation parameters, instead of finding cor-
responding points between floating patch and target patch. We also defined a
novel variational implicit function for an improved outlier detection and rejec-
tion during optimization. In contrast to traditional outlier detection systems,
the outlier detection function depended on the target patch only, resulting in an
easier outlier threshold setting. Finally, accumulation of pair-wise registration
errors was dealt with by applying a multi-view simultaneous fine registration.
Solving this registration was similar to the pair-wise fine registration except
that the target patch was replaced by an intermediate volumetric integration
of patches. The integration itself was also based on the VIS representations
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such that integration and registration could be unified.
By making use of variational implicit surface and function representations

of the patch surfaces, textures and weights we solved limitations of current
volumetric integration methods. No memory inefficient 3D grid was used,
such that the final resolution or accuracy was not limited by memory require-
ments. Hole filling did not require an extra step because of the interpolation
and extrapolation properties of the chosen representations. Furthermore, the
representation had useful smoothing properties when dealing with noisy input
data. Texture integration was performed similarly to shape integration, mak-
ing use of the same weight functions in order to reduce the texture influence
of low confidence patch points.

We performed experiments on real-live data, noiseless and noisy simulated
data. The real-live data set showed the robustness of the algorithm to bad
data. In order to improve the final quality of the 3D model, some really bad
data parts in the patches were to be deleted or more patches are to be taken
in order to reduce the effect of the bad parts in the final integration. The
noiseless data set showed the accuracy of the algorithm. The noisy simulated
data set illustrated that the smoothing properties of the VIS representation
can be used to make the algorithm robust against noisy input data.

The proposed algorithm is based on geometric properties of the patches
only. Future research will also focus on incorporating other information, like
texture, into the different steps of the algorithm. Furthermore, other and
better confidence definitions for patch points to cope with bad data during
integration are to be explored.

8.2.3 Facial surface registration

The last prerequisite for our craniofacial database was to obtain registered
inter-subject facial surfaces to construct a statistical craniofacial model. There-
fore, the 3D points with known connectivity of a carefully constructed generic
reference face were mapped or registered non-rigidly onto the faces in the
database. The facial surface registration methodology had to be robust against
noise and had to be be able to cope with outliers due to partial overlap or miss-
ing data. Therefore we reformulated the registration problem within the prosed
robust surface registration framework. The reference face was considered to
be the floating surface represented as a set of floating points, while a face
from the database was considered to be the target surface represented with
a VIS such that no sampling errors occurred. A proper non-rigid TPS based
transformation model and similarity measure, based on the VIS target surface
representation, were chosen and both were combined into a single objective
function. To handle a vast amount of floating surface points, we used the
VIF theory and algorithmic improvements to update and evaluate the trans-
formation. Outliers were dealt with using an outlier detection function equal
to the one used during patch registration, incorporating strong outlier prior
knowledge. A deterministic annealing optimization strategy while alternating
between inlier, point correspondence and transformation updates was applied
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to cope with the non-convex nature of the objective function.
Some results were shown to perform a validation concerning accuracy and

consistency. The former was easy to analyze and was acceptable. The latter
was more difficult to analyze, but already some visual consistency results were
shown and were promising. Further consistency validation, with satisfying
results, was obtained using the model derived from the TPS based correspon-
dences. The statistical model, being an elastic mask, was embedded within
the proposed surface registration framework to tackle a model-based facial
surface registration problem and the results were compared to the TPS based
approach for unseen facial surfaces.

Similar to the patch registration, future research will focus on the incor-
porating of other facial information, like texture and curvature, using the VIF
machinery. Furthermore, a simultaneous TPS based correspondence establish-
ment and model building is thinkable to obtain a better final model quality.
After a first run of TPS based registrations an initial model, incorporating lim-
ited overall database variance information, can be constructed and the model
based facial surface registration approach can be used to obtain a facial entry
approximation. This approximation is then used to initialize (better than then
the average face) a second TPS based registration run for every facial entry in
the database. The whole process can be repeated with increasing amount of
overall variance captured in the model to further initialize an additional TPS
based registration run, until the initializations are accurate enough without
an additional TPS based registration.

8.2.4 Statistical craniofacial model

We proposed a statistical craniofacial model for skull reconstruction purposes,
modeling the combined population dependent variance and covariance of skin
surface shape, texture, tissue depths and properties. The model was con-
structed, based on a database consisting of 393 individuals, using principal
component analysis generating an average face, being the model template,
combined with a set of face-specific deformations or principal components,
being the transformation model. The model capacity was examined for in-
training and unseen faces and appeared to be sufficient in terms of incorpo-
rated percentage variance and number of training samples.

The statistical model, being an elastic mask, was embedded within the
surface registration framework to tackle a model-based facial surface registra-
tion problem and was compared to the TPS based approach. Furthermore a
slight preview concerning skull instead of facial surface registration was given
by using the sparse face landmarks instead of dens surface points as floating
surface points. This showed an appropriate strength of the co-varying facial
information knowledge incorporated in the eigenvector matrix to solve skull
registrations based on a limited amount of registration evidence.

An additional prerequisite for a model being a valid craniofacial model was
the ability to manipulate or alternate the model based on a given skull property
set obtained from an anthropological examination. Instead of selecting a sub-
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population from the database we opted to learn and to remove facial variations
from the model originating from differences in property values. The result was
a flexible (containing enough variation) but property normalized statistical
craniofacial model such that skull properties are obeyed as a hard constraint
prior to skull registration. The incorporation of gray-valued texture variation
generated a more lifelike reconstruction based on a texture map deducted from
facial geometry, property value and tissue depth information. We believed that
using gray-valued instead of colored texture information was less dangerous to
trigger the recognition process into the wrong direction.

Future directions includes the use of alternative statistical modeling tech-
niques besides principal component analysis, not necessarily assuming a multi-
variate normal distribution of the facial data. Explorations consists of Partial
Least Square (PLS) models and non-linear based statistical models. Although
for the latter a better distributed database is required. Furthermore, ageing
is known to be a non-linear process. Therefore, it would be interesting to
expand the database with facial entries over a diverse age range and to model
the ageing non-linearly, while comparing it with the linear age simulation.

8.2.5 Skull registration

We proposed a statistical reconstruction approach: What is the most plausible
or probable face, according to a craniofacial model, given the (erroneous) skull
data ?. In order to find the most plausible face a probabilistic EM skull
registration framework, based on the presented surface registration frame-
work, applicable to a wide range of craniofacial model and skull represen-
tation choices was given. The choice of craniofacial model mainly influenced
the transformation model. Furthermore, the model template influenced the
amount of floating surface points used during registration and the predefined
distances, depending on the craniofacial relating information contained within
the database from which the model was deducted. We defined and elaborated
two statistical based and two TPS based craniofacial model choices deducted
from our database, starting with the proposed statistical model and by subse-
quently eliminating covariance knowledge. The choice of skull representation
determined the current distance computations and the individual point simi-
larity measures, therefore influencing the inlier-process component within the
data-likelihood term. The first and primary skull representation choice that
we proposed was an implicit skull representation. The second choice was a
more traditional craniometric skull representation based on manually indi-
cated craniometric or anatomical skull landmarks.

A first set of validation tests were performed based on a clinical patient
database, simulating realistic reconstruction scenarios. Two craniometric skull
representations of different quality were used in addition with an implicit skull
representation based on variational implicit surfaces per case in the database.
A second set of validation tests were performed based on the model database,
through a leave-one-out procedure, simulating controlled noisy and outlier
skull data points in a craniometric representation. Reconstruction evaluations
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were obtained based on a quantitative and a qualitative comparison of the
reconstructed facial surfaces with the ground truth facial surfaces. The quan-
titative measures were a global and a local rmse of the remaining distances
between corresponding points on the surfaces of the reconstruction and the
ground truth. The qualitative measure was a recognition or identification suc-
cess rank obtained by comparing the reconstruction with faces in a database
including the ground truth using a similarity measure or distance between
faces using the cosine of the angle between re-scaled model descriptions.

Based on the validation tests a few conclusions could be drawn concerning
the craniofacial models incorporating different kinds of covariance information.
Firstly, a clear improvement in reconstruction performance was obtained sim-
ulating and eliminating property related variance, restricting the facial sur-
face and thickness variation according to a given set of skull properties de-
ducted from an anthropological examination. Secondly, a major improvement
in reconstruction performance was gained using face-specific deformations ex-
tracted from facial surface and landmark covariance. Statistical knowledge or
internal structural relationships of multiple faces was used instead of a sin-
gle internal structural relationship to deform the averaged model template.
Thirdly, a varying improvement could be obtained incorporating thickness
covariance, depending on the skull representation. Based on a noiseless and
outlier free skull representation, the co-varying knowledge between thicknesses
and facial surfaces improved the reconstructions significantly. The improve-
ment was less significant but still present when the amount of severe outliers
was increased. However, a proper choice of kappa was necessary, because out-
liers had an increased influence on both thickness and facial surface estima-
tions compared to the independent co-varying thicknesses and facial surfaces.
Increasing the noise level in the skull representations leaded to comparable
results between the models with and without thickness covariance. However,
the choice of kappa became more important for the statistical model with-
out thickness covariance, because extra fine-tuning was needed to restrict the
independent flexibility between thicknesses and surfaces in a noisy setup. In-
corporation of thickness covariance was interesting when the link between the
skull representation and the model expressed in the similarity criterium was
strong. Increasing the noise level weakened the link, such that the contribution
of thickness covariance was reduced, until the noise level was to high and no
more positive contribution was observed. Incorporating thickness covariance
in the presence of outliers was useful if the outliers were properly detected and
down-weighted.

The semi-automatic results based on the craniometric skull representation
were dependent on the quality of the manually indicated landmarks, related
with the expertise of the anthropologist. A realistic indication without knowl-
edge of the ground truth facial surface was very noisy and error prone, fa-
voring slightly the craniofacial model without thickness covariance. A good
skull landmark indication leaded to flawless recognition results independent of
kappa using the more statistical based craniofacial models. A proper anthro-
pological training was therefore advised in order to improve the skull landmark
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indications and as such the reconstructions. Complete automatic reconstruc-
tion results, eliminating human subjectivity, were obtained using the implicit
skull representation. This representation was characterized less noisy than the
realistic craniometric representation but a severe amount of outlier VIS/ultra-
sound value relationships were present. Therefore, better reconstruction re-
sults were obtained using a lower kappa value. The proposed statistical cranio-
facial model was slightly favored with this skull representation compared to the
statistical model without thickness covariance, but the dependency on kappa
was more pronounced because of the increased influence of outliers through
the use of thickness covariance. Finally, the validation tests clearly showed
an improved robustness against noise and outliers within the skull represen-
tation using the proposed robust EM skull registration framework. The MAP
formulation leaded to robustness against noise or small errors, while the fur-
ther embedding into an EM formulation of the registration problem leaded to
robustness against outliers or gross errors as well.

Future directions mainly concentrate on the improvement or replacement
of the VIS/ultrasound relationship for the implicit skull representation. In-
stead of using ultrasound thicknesses we could use a CT based facial database
with complete skull surface information. The ultrasound thicknesses can then
be replaced by VIS values in the face landmarks calculated from the VIS of the
complete skull surfaces in the database. The craniofacial model can then use a
VIS/VIS value relationship instead, which will result in lesser outliers during
registration and thus more information to guide the reconstruction. Further-
more we will not be limited to 52 face landmarks, because VIS values can be
automatically calculated for a larger subset of facial surface points. Addition-
ally, care must be taken to set-up a proper face-pool validation framework.
A more realistic, human subjective, identification process can be simulated
by generating face-pool tests. Given an image of a reconstruction and a set
of possible candidate images extracted from the database, a human observer
is asked to indicate the face from the face-pool most similar to the given re-
construction. However, it is very difficult to generate realistic face-pool tests.
Finally, a proper influence analysis of erroneous skull property predictions is
to be performed.

8.3 The end

Craniofacial reconstruction balances between the world of Art and Science.
Through the efforts of many people around the world the line is slowly but
surely shifted towards science to improve the practical relevance of craniofa-
cial reconstructions within crime-scene investigations and justice convictions.
I’m convinced that the value of craniofacial reconstructions can largely be im-
proved, when combined with appropriate facial recognition and identification
techniques, which is an active research topic as we speak.
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Appendix A

Robust Statistics for

surface registration

In this appendix we present two main approaches for robust statistics and
apply it to the surface registration problem. The first approach makes use of
robust estimators that are substituted for the classical estimators such as the
sum of squared errors (when the residuals are normally distributed). The sec-
ond approach models the outliers explicitly as well, which allows the modeling
of additional constraints such as, e.g. spatial coherence of outliers. Further-
more, it can be shown that for every such outlier process, an equivalent robust
estimator from the first approach can be constructed.

A.1 Robust statistics using estimators

Robust statistics addresses parameter estimation problems using an estimator
ρ(x, γ) which is a function of residual errors x and a scale parameter γ. Robust
statistics is widely applied for regression problems, however it is suitable to
apply to different estimation problems as well, e.g optical flow [74], image
reconstruction [75], image segmentation [76, 106], ... We will apply robust
statistics to deal with outliers during surface registration. Setting the residual
errors x equal to the measured point similarities x = sj(θ), the robust statistics
formulation of the surface registration problem amounts to:

argminθ

N∑

j=1

ρ(sj(θ), γ) (A.1)

When the residuals are normally distributed, the scale parameter is set equal
to the noise standard deviation γ = σ and the estimator becomes the optimal
Quadratic estimator:

ρ(sj(θ), σ) =
sj(θ)2

2σ2
(A.2)
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which gives rise to the standard Least-Squares estimation problem. The func-
tion ρ is called an M-estimator since it corresponds to the Maximum-Likelihood
parameter estimate similar to our MAP parameter estimate in (3.23). Compar-
ing (A.1) and (A.2) with the MAP objective function in (3.23) further similar-
ities between both registration problem formulations are observed. However,
two major differences are apparent. Firstly, as a result of the probabilistic
prior transformation model approach, the MAP objective function in (3.23) is
in fact a regularized instead of a standard least-square estimation. Secondly,
as a result of the probabilistic data-likelihood approach, the scale parameter
σ is treated as an extra ML-parameter to estimate, hence the log σ term in
(3.23). In contrast, M-estimators typically (not always) use a multiple of the
Median of Absolute Deviations (MAD) as a scale estimate which implicitly
assumes that the noise contamination rate is 50 %. Due to the strong similar-
ities between (3.23) and (A.2), outlier influence in (3.23) can be obtained by
analyzing the outlier influence of the equivalent M-estimator (A.2). The latter
is done according to the approach in [107], based on influence functions. The
influence function characterizes the bias that a particular measurement has on
the solution and is proportional to the derivative Ψ of the estimator ρ. For
the Quadratic (Q) estimator ρ(x, σ) = ( x√

2σ
)2 this is:

Ψ(x, σ) =
x

σ2
(A.3)

which is illustrated in figure A.1(a) and (b). For least-squares estimation, reg-
ularized or not, the influence of outliers increases linearly and without bound
(figure A.1(b)). To increase robustness against outliers, the estimator must
be more insensitive to outlier measurements. A robust statistics approach is
to select a robust M-estimator from a predefined cookbook of estimators from
which the redescending M-estimators are a popular choice [107]. Two such
redescending estimators examples are the Lorentzian:

ρ(x, σ) = log(1 + 1
2 (x

σ
)2) Ψ(x, σ) = 2x

2σ2+x2 (A.4)

and the Truncated Quadratic (TQ):

ρ(x, α, β) =

{
αx2 if |x| <

√
β/

√
α

β if |x| ≥
√

β/
√

α

Ψ(x, α, β) =

{
2αx if |x| <

√
β/

√
α

0 if |x| ≥
√

β/
√

α

(A.5)

which are both illustrated in figure A.1(c,d) and (e,f) respectively. Observing
the corresponding influence functions we see that both the estimators have a
saturating property. The influence of outliers redescends to zero.
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(a) (b)

(c) (d)

(e) (f)

Figure A.1: Different M-estimators (left side) and their outlier influence func-
tions (right side) (a,b) The Quadratic M-estimator with σ = 1 , (c,d) The
Lorentzian estimator with σ = 1 and (e,f) The Truncated Quadratic with
α = 0.5 and β = 5. The original Quadratic has a linear increasing outlier
influence and without bound, while both the Lorentzian and the Truncated
Quadratic have interesting saturating outlier influence properties.

A.2 Robust statistics using outlier-process mod-

eling

Alternatively, instead of selecting a predefined estimator one could also model
the outlier-process explicitly. According to [74, 75], a problem formulated in
terms of explicit outlier processes can be converted or viewed in terms of robust
statistics. An explicit outlier process formulation, however, is more general
than the original robust estimation. For example, due to the explicit nature
of the outlier process, constraints on the spatial organization of the outliers
can be formulated. Due to the unification with robust estimation defined in
[74, 75], equivalent M-estimators can be determined to analyze the influence
of outliers within an outlier process. Furthermore, well known deterministic
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continuation optimization routines for robust estimators (eg. deterministic
annealing) can be directly applied to the explicit outlier process formulation.

An outlier process explicitly introduces an outlier latent variable zj, which
signals whether the residual xj is an outlier, zj = 0, or not, zj = 1. This latent
variable can either be binary, zj = {0, 1}, suggesting a binary outlier process
or continuous, zj = [0, 1], suggesting a continuous outlier process. A general
outlier process formulation for transformation parameter θ estimation is then
defined as:

argmin(θ,z)

N∑

j=1

h(sj(θ), α(zj), β(zj)) (A.6)

where
h(x, α(z), β(z)) = α(z)x2 + β(z) (A.7)

Depending on the definition of α(z) and β(z) the outlier-process is either
continuous or binary. An example for the latter is α(z) = zα∗ and β(z) =
(1− z)β∗. The outlier-process formulation in (A.6) leads to a joint estimation
problem where besides the parameters θ also the outlier map of latent variables
z = {zj|j = 1, . . . , N} is to be estimated. According to [74, 75] and [77], the
latent variables z can be removed from the equation by first minimizing over
them, such that a new objective function solely in function of θ is obtained.
Alternatively, according to [76] the same result can be obtained by integrating
the latent variables z out of the equation following a mean-field technique:

argminθ

(
argminz

∑N
j=1 h(sj(θ), α(zj), β(zj))

)

argminθ

(∑
z

∑N
j=1 h(sj(θ), α(zj), β(zj))

) (A.8)

Doing so, leads to a dual-update of the surface registration problem. The
update of the outlier map z is alternated with the update of the parameters θ

and during either update the other estimate is kept fixed. Furthermore, after
minimization over z, for example, an equivalent M-estimator can be defined
as the infimum for various values z of a function h(x):

ρ(x, α, β) = inf
0≤z≤1

h(x, α(z), β(z)) (A.9)

The unified robust statistics formulation for the outlier process after latent
variable elimination then becomes:

argminθ

N∑

j=1

ρ(sj(θ), α, β) (A.10)

Doing so, an outlier influence analysis can be performed. In figure A.2 the
function h(x, α(z), β(z)) with α(z) = zα∗ and β(z) = (1 − z)β∗ is plotted
(dotted lines) for various values of the latent variable z and the infimum of
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this family is plotted in bold. Note that the infimum can be determined solely
based on the cases of h where z = 1 and z = 0, suggesting a binary valued
outlier-process z = {0, 1}. It is clearly observed that the infimum strongly
resembles the Truncated Quadratic (TQ) depicted in figure A.1(e) and defined
in (A.5) with α = α∗ and β = β∗. Therefore, the defined binary outlier process
shares the same outlier influence shown in figure A.1(f).

Figure A.2: Equivalent M-estimator for outlier processes obtained by mini-
mizing over the outlier map z. The bold line is the infimum of a function
h(x), while the dotted lines represent the evaluations of h(x) with different
values for the latent variable z. The parameters α = 0.5 and β = 5 were set
according to the same parameters of the Truncated Quadratic in figure A.1(e)
and defined in (A.5).

Note that in robust statistics alternative estimators besides M-estimators
exist. However due to the Maximum Likelihood nature of M-estimators, they
are the most equivalent estimators to our MAP objective function formulation.
A complete overview of robust statistics is outside the scope of this thesis.
In the next section we will continue the MAP objective function formulation,
while making use of explicit probabilistic outlier-processes and their equivalent
M-estimators to handle outliers.





Appendix B

Outlier robust MAP

estimation

In this appendix, following Fransens et al. [73], we will present a principled
approach to link the robust estimators presented in appendix A to a statistical
model of how the measurements, including the outliers, were generated. In-
deed, the outlier-process will be modeled as a statistical process as well, akin to
the inlier-process. As a result, making use of the theory expanded in appendix
A, we will be able to construct equivalent M-estimators for outlier rejection.
The final result will be an objective function with quasi self-regulating out-
lier robustness, depending on the kind of outliers, besides self-regulating noise
robustness obtained previously.

B.1 Complete process

We will model both the inliers and outliers as random variables within the
complete data log-likelihood resulting in a robust copy of the first term in
(3.23). The transformation model-likelihood or the second term in (3.23),
remains unchanged. Therefore, we will concentrate on the complete data log-
likelihood term from now on.

Suppose a data sample sj is generated by either an inlier-process or an
outlier-process, then the generating complete-process can be specified by con-
ditioning the sample likelihood on the state of a binary-valued latent variable
zj, signalling whether a data sample sj was generated by the inlier-process
zj = 1 or not zj = 0:

p(sj |zj, Θ) =

{
p(sj|Θ) if zj = 1

po(sj) if zj = 0

p(sj |zj, Θ) = p(sj |Θ)zjpo(sj)
(1−zj) for zj ∈ {0, 1}

(B.1)
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p(sj |θ) is a Gaussian1 probability density function (PDF) constituting the
inlier-process and was defined in (3.22). po(sj) is the outlier PDF constituting
the outlier-process for which several choices can be considered. First off all, if
some knowledge about the outlier generating process is known, then po(sj) can
be set to a known distribution. In most cases, however, no outlier generating
process knowledge is given and po(sj) can either be estimated similar to the
inlier-distribution or can be set to a fixed uniform distribution for example.
The latter is the case for our surface registration problems. Therefore, we
take a fixed outlier distribution, which is assumed to be uniformly distributed
po(sj) = δ. Spatial constraints on the outliers are typically incorporated us-
ing a proper modeling of zj depending on the prior knowledge of the outlier
problem besides the outlier PDF.

The latent variable (LV) can be non-probabilistic (deterministic) or prob-
abilistic (random). Deterministic latent variables are typically used within
robust statistics, while random latent variables are a theoretical continuation
of the probabilistic objective function formulation. We will first present the
derivation for random latent variables. Next, we discuss the special case of de-
terministic latent variables (dependent on the parameters θ by a non-random
function). Deterministic and random latent variable can then be combined
into a single, augmented, outlier latent variable. We also show how the robust
estimators presented in appendix A can be obtained starting from the latent
variable modeling approach.

B.2 Random Bernoulli distributed LV

The most general type of latent variable we consider is a random (probabilistic)
variable, where the binary latent variable zj is Bernoulli distributed and the
outliers are uniformly distributed (po(sj) = δ). The consequence is that the
outlier map z is a random map with an associated prior-distribution p(z). Let
P be the prior probability of zj being an inlier (i.e the fraction of observations
sj thought to be generated by the inlier-process) and let Po = 1 − P be the
prior probability of being an outlier (i.e the fraction of observations sj thought
to be generated by the outlier-process). Then, assuming z is i.i.d2, p(z) can
be specified as follows:

p(z) =

N∏

j

P zj P (1−zj)
o (B.2)

Note that spatial constraints on the outliers can be incorporated by choosing
an alternative and appropriate prior-distribution. For example, in [73], z is
considered a probabilistic random variable map modeled as a binary Markov
Random Field with associated Gibbs-prior distribution ensuring spatially co-

1In general, p(sj |θ) can be any probability density function, but in our application, we
have assumed the measurement noise to be Gaussian, hence the choice of this particular
PDF.

2i.i.d. = independent and identically distributed
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herent outliers. Due to the probabilistic nature of the latent random variable
we can write:

p(St|Θ) =
∑

z

p(St, z|Θ) (B.3)

Furthermore, assuming the outlier map z to be independent of the parameters
Θ the complete data-likelihood p(St, z|Θ) can be specified as:

p(St, z|Θ) = p(St|z, Θ)p(z) (B.4)

The first term in (3.23) can thus be reconstructed using the complete-process
p(sj |zj, θ) defined in (B.1) and taking the negative logarithm resulting in:

S(Θ, z) =

N∑

j=1

−zj log p(sj |Θ) − (1 − zj) log δ (B.5)

This complete-process (inlier- and outlier-process) formulation is similar to
the one defined in (A.6) leading to a joint estimation problem where besides
the parameters Θ also the outlier map z is to be estimated. Following [76] and
[73], the latent variable is out-integrated from (B.5):

S(Θ) =
∑

z

[∑N
j=1 −zj log p(sj |Θ) − (1 − zj) log δ

]

=
∑

z

[∑N
j=1 h(sj(θ), α(zj), β(zj))

] (B.6)

where
h(x, α(z), β(z)) = α(z)x2 + β(z) (B.7)

with
α(z) = 1

2σ2 z β(z) = −(1 − z) log δ + z log
√

2πσ (B.8)

such that:
ρ(x, α, β) =

∑

z

h(x, α(z), β(z)) (B.9)

Out-integration comes down to computing the conditional expectation E[x|y]
of the complete data negative log-likelihood:

S(Θ) = E[S(Θ, z)|z] (B.10)

w.r.t the posterior p(z|St, Θ). In other words, during integration the values
of the latent variables zj in the complete data negative log-likelihood (B.5)
are replaced by the posterior p(zj |sj , Θ) values. From (B.4) we see that these
posterior values conditioned on the observations sj are given by:

p(zj |sj, Θ) = p(sj |zj, Θ)p(zj) (B.11)

The solutions are obtained following a Mean Field strategy [108, 109] in
which the posterior is approximated by the closest factorisable distribution
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pf (zj|sj , Θ). In our case this approximation pf(zj |sj , Θ) can be set to a
Bernoulli distribution pb(zj|sj , Θ) over {0, 1} assigning a probability bj to zj

being 1 and probability (1−bj) to zj being 0. Minimizing the Kullback-Leibler
(KL) divergence between p(zj |sj , Θ) and pb(zj |sj , Θ) gives the Mean Field up-
date equations. Note that these equations based on the prior outlier map
distribution in (B.2) simply reduce to the Bayes estimate of bj :

bj = p(zj = 1|sj , Θ) =
p(sj |zj = 1, Θ)p(zj = 1)

p(sj |zj = 1, Θ)p(zj = 1) + p(sj |zj = 0, Θ)p(zj = 0)
(B.12)

Using (B.2) and (B.1) with po(sj) = δ, bj becomes:

bj =
p(sj|Θ)P

p(sj |Θ)P + δPo

(B.13)

such that the equivalent M-estimator in (B.9) becomes:

ρ(x, α, β) = h(x, α(b), β(b)) (B.14)

Combining (B.14) and (B.8) it is straightforward to see that the parameters
α and β of the equivalent M-estimator are dependent on the estimated σ of
the inlier-process and fixed prior outlier knowledge parameters P, Po and δ. In
order to simplify the choice of prior outlier parameter values, we combine the
three prior outlier parameters P, Po and δ into a single prior outlier parameter
λ according to:

λ =
δPo

P
(B.15)

such that

bj =
p(sj |Θ)

p(sj |Θ) + λ
(B.16)

and because log λ ≈ log δ we replace the log δ term in (B.5) with log λ. Chang-
ing the parameter λ changes the amount of outliers and inliers. A higher λ
suggests more outliers, while a lower λ suggests more inliers. A fine-tuning
of this parameter is required in order to obtain the best result. In statistics,
an observation sj is said to be abnormal with respect to a given normal dis-

tribution if the Mahalanobis distance MDj =
√

s2
j/σ2 exceeds a predefined

threshold. Equation (B.13) or (B.16) reflects the fraction bj of a sample sj

belonging to the inlier-distribution, called the inlier-belief. The outlier-belief
can then be defined similarly but in terms of λ as:

1 − bj =
λ

p(sj|Θ) + λ
(B.17)

The outlier-belief exceeds the inlier-belief if bj < 0.5 or p(sj |Θ) < λ, which
is equivalent to MD2

j > −2 log(λ
√

2πσ). Because of its dependence on σ,
the Mahalanobis distance threshold above which sj is considered abnormal
changes when σ is updated. Furthermore, observations are more easily rejected
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from classes with a broad distribution than from classes with a narrow one,
making the choice of λ dependent on the current registration problem and
target surface, leading to very different λ settings for every different target
surface to register. Because of these problems it is not clear how λ should
be chosen. Ideally, a sample sj should be considered abnormal if MDj > κ,
where κ ≥ 0 is an explicit Mahalanobis distance threshold that is equal for all
normal inlier-distributions alike. Therefore, we replace λ according to [106]
taking into account σ:

λ =
1√
2πσ

exp

(
−1

2
κ2

)
(B.18)

λ is now made inlier-distribution dependent and re-parameterized using the
more easily interpretable prior outlier parameter κ. According to [106], the ac-
tual choice of κ can be regarded as the choice of a statistical significance level
above which observations sj are considered outliers compared to the inlier-
distribution. Figures B.1(a) and (b) show the equivalent M-estimator and
outlier influence function respectively for the random latent variable modeling
with σ = 1 and κ = 2. The resulting M-estimator resembles the Contaminated
Gaussian (CG) estimator which is a continuous approximation of the Trun-
cated Quadratic with better second derivative properties. Note that the width
of the Gaussian within the CG in figure B.1(a) is approximately κσ = 2 and
thus dependent on the inlier-process σ and the prior outlier-process param-
eter κ. Furthermore, we see that the redescending of observation influences
in figure B.1(b) starts approximately at κσ = 2, which is of course related
with the width of the gaussian. The observation influence becomes zero at
approximately κσ = 4. In figures B.1(c) and (d) we have plotted the equiva-
lent M-estimators and influence functions for different values of κ = {1, 2, 3}.
It is observed that the width of the gaussian in the CG and the point of re-
descending are altered accordingly. Note that the same M-estimators in figure
B.1(c) could be obtained using κ = 2 with different σ = {0.5, 1, 1.5} values,
suggesting automatic adaptation of the M-estimator as a function of the inlier-
process σ estimate during optimization. In other words, except for the choice
of κ we have a self-regulating outlier rejection objective function. Due to the
use of κ instead of λ as prior parameter, the outlier-process is coupled with the
inlier-process, making the choice of κ easier compared to λ. This kind of ran-
dom latent variable choice is used for the skull registration problem. Outliers
within this registration problem are due to gross errors in the skull acquisition
process and the construction and choice of the skull representation. These
errors are treated probabilistically and a proper choice κ is to be determined.
Further details are given in chapter 7.

B.3 Deterministic LV

Consider a binary latent variable zj, but with very strong prior knowledge
encoded in a deterministic (non-probabilistic) outlier detection function f that
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2 2

(a) (b)
Kappa = 1
Kappa = 2
Kappa = 3

Kappa = 1
Kappa = 2
Kappa = 3

(c) (d)

Figure B.1: Equivalent M-estimator and outlier influence functions for the
random latent variable choice (a) and (b) σ = 1 and κ = 2. (c) and (d)
the same for σ = 1 but with different κ = 1, 2, 3 values Note that the same
M-estimators could be obtained using κ = 2 with different σ = 0.5, 1, 1.5
values , suggesting automatic adaption of the M-estimator in function of the
inlier-process σ estimate

directly determines wether an observation sj is either an inlier or outlier:

zj = f(sj(θ)) ∈ {0, 1} (B.19)

The first term in (3.23) can again be reconstructed using the complete-process
p(sj |zj, θ) defined in (B.1) and taking the negative logarithm resulting in (B.5).
However, the latent variable estimation within the joint estimation problem
simply reduces to a deterministic function evaluation instead of a minimization
or out-integration. Starting from (B.5):

S(Θ) =
∑N

j=1 [−zj log p(sj |Θ) − (1 − zj) log δ]
zj=f(sj(θ))

=
∑N

j=1 [h(sj(θ), α(zj), β(zj))]zj=f(sj(θ))

(B.20)

where h(x, α(z), β(z)) is the same as in (B.7) and (B.8), such that:

ρ(x, α, β) = h(x, α(f(x)), β(f(x))) (B.21)
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Analyzing (B.21) and (B.8) it is straightforward to see that the parameters α
and β are determined based on the estimated σ of the inlier-process and the
strong prior outlier knowledge encoded in the deterministic function z = f(x)
besides the outlier PDF prior knowledge. Note that a resulting objective
function using such a deterministic outlier detection function is completely
self-regulating with regard to outlier rejection. This kind of deterministic
latent variable choice is used for the patch registration and complete facial
surface registration problems. Outliers within these registration problems are
due to partial overlap between the target and floating surfaces. Individual
point similarities defined in section 3.3.2 measured in floating surface points rf

j

not belonging to the partial overlap are very erroneous and therefore outliers.
The deterministic function f generating binary valued latent variables can be
defined based on the VBF b(r) of the target surface. Further details are given
in chapters 4 and 5.

B.4 Combined deterministic and random LV

A final choice of latent variable that we consider is not really different from
the two previous, but rather a combination of them. Imagine an incomplete
skull substrate is given for skull registration or patch, and facial surfaces with
probabilistic outliers present in the partial overlap are given for the patch reg-
istration and facial surface registration respectively. To tackle these problems
we define a combined latent variable outlier map z = z′∧z′′ with ∧ a conjunc-
tion and (1−z) = (1−z′)∨(1−z′′) with ∨ a disjunction incorporating a regular
deterministic latent variable z′ outlier map and a random latent variable z′′

outlier map according to:
z′ = f(x) (B.22)

and

p(z′′) =

N∏

j

P z′′

j P
(1−z′′

j )
o (B.23)

The first term in (3.23) (complete data negative log-likelihood) can then be
reconstructed again using the complete-process p(sj |zj, θ) defined in (B.1) and
taking the negative logarithm:

S(Θ, z′, z′′) =

N∑

j=1

−[z′jz
′′
j ] log p(sj|Θ) − [(1 − z′j) + z′j(1 − z′′j )] log δ (B.24)

The latent variable elimination in the joint estimation is now itself a two-step
elimination. First the deterministic latent variable z′ is eliminated:

S(Θ, z′′) =
∑N

j=1

[
−[z′jz

′′
j ] log p(sj |Θ) − [(1 − z′j) + z′j(1 − z′′j )] log δ

]
z′

j=f(sj(θ))

=
∑N

j=1

[
h(sj(θ), α(z′j , z

′′
j ), β(z′j , z

′′
j ))
]
z′

j=f(sj(θ))

(B.25)
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where
h(x, α(z′, z′′), β(z′, z′′)) = α(z′, z′′)x2 + β(z′, z′′) (B.26)

with

α(z′, z′′) = 1
2σ2 [z′z′′]

β(z′, z′′) = −[(1 − z′) + z′(1 − z′′)] log δ + [z′z′′] log
√

2πσ

(B.27)

Then the remaining random latent variable z′′ is eliminated:

S(Θ) =
∑

z′′

[∑N
j=1 −[f(sj(θ))z

′′
j ] log p(sj |Θ) − . . .

[(1 − f(sj(θ))) + f(sj(θ)))(1 − z′′j )] log δ
]

=
∑

z′′

[∑N
j=1 h(sj(θ), α(f(sj(θ)), z′′j ), β(f(sj(θ)), z′′j ))

]

(B.28)

Following the out-integration strategy earlier for the random latent variable
we can define the equivalent M-estimator according to:

ρ(x, α, β) = h(x, α(f(x), b), β(f(x), b)) (B.29)

As a conclusion for this section we will give the general complete MAP
objective function from which we will start to solve the different registration
problems given in the relevant chapters:

E(Θ, z′, z′′) = S(Θ, z′, z′′) + ν‖L(θ)‖2 (B.30)

with S(Θ, z′, z′′) defined in (B.24) such that after latent variable estimation
the objective function becomes:

E(Θ) = S(Θ) + ν‖L(θ)‖2 (B.31)

with

S(Θ) =

N∑

j=1

ρ(sj(θ), α, β) (B.32)

where

ρ(sj(θ), α, β) = h(sj(θ), α(f(sj(θ)), bj), β(f(sj(θ)), bj)) (B.33)



Appendix C

Facial Thickness

Acquisition

Adapted from

S. De Greef, P. Claes, W. Mollemans, M. Loubele, D. Vandermeulen, P. Sue-
tens, G. Willems, Semi-automated ultrasound facial soft tissue depth registra-
tion : method and validation, Journal of forensic sciences, vol. 50(6), 7pages,
2005

C.1 Introduction

Besides facial surface information, tissue depths in 52 facial landmarks are
acquired as well for every facial entry within the database. Relevant details,
concerning thickness acquisition, are given in [1], which is a joint work of the
authors. To make the thesis complete, I have chosen to give a summarized
version of [1] in this appendix.

A mobile and fast, semi-automatic ultrasound (US) system is developed
for facial soft tissue depth registration. The system consists of an A-Scan ul-
trasound device connected to a portable PC with interfacing and controlling
software. 52 cephalometric landmarks are defined and the system is tested for
repeatability and accuracy by evaluating intra-observer agreement and com-
paring ultrasound and CT-scan results on 12 subjects planned for craniofacial
surgery, respectively.

We start with the description of the measuring system and an explanation
of the validation. Then limited results are given and discussed after which
we give a final conclusion concerning the Thickness acquisition. For further
details and illustrations of the results we refer to [1].
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C.2 Materials and Methods

Selection of Landmarks

Similar to the study performed by Brown et al. [110], the traditional land-
marks of Kolmann and Büchly [111] were compared with previous studies on
adult Caucasoid and other ultrasound studies. A total of 52 landmarks (LMs)
were finally selected, 10 located on the midline and 21 located bilaterally. The
selection of these landmarks was based on their presence in other studies (al-
lowing comparisons) but also on the ability to reliably locate these landmarks
in a standardized way on the face of the volunteers. An illustration of the
landmark location is shown in figure C.1

Figure C.1: Illustration of the landmark locations both on the skull and facial
surface in a frontal and lateral view.

Measurement Device

In order to reach an as large as possible volunteer group and considering the
pro’s and con’s of previous techniques, a mobile ultrasound (US) system was
selected and software was developed to minimize overhead in data processing
and storage. ”A-scan”as well as ”B-scan”ultrasound devices have been used
in former studies. Because of the complexity of the ”B-scan”image data, in
contrast to the simple 1D curves of the ”A-scan”-device, the increased storage
requirements and data transfer times as well as the bulky transducers of ”B-
scan”-devices, an ”A-scan”-device was selected (Epoch 4bTM , Panametrics,
Waltham, USA). This industrial ultrasound device is compact, mobile and
lightweight (2.6 kg, battery included) . A flat and small (6 mm diameter),
10MHz ultrasound transducer is used for accurately pointing to and analyzing
the landmarks. Furthermore, this device has a serial (RS-232) communication
port, for connection with a PC.

Control Software

A MatlabTM -based (The Mathworks Inc., Natick, MA, US) interface program
was created to speed up the registration process by partially automating data
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transfer and device setup. Except for the input of specific properties of the vol-
unteers and positioning of the transducer on the landmarks, the whole process
is controlled using a 3-button wireless infrared mouse. Mouse clicks control the
following tasks: (1) freezing or unfreezing the A-scan curve; (2) transferring
the curve from the ultrasound device to the PC, where the curve and the au-
tomatically calculated associated tissue depth are stored in the database; and
(3) proceeding to the next landmark with automatic changing of the device
settings. The tissue depths are calculated as the horizontal position (distance
to US transducer) corresponding to the maximal peak within a predefined in-
terval on the curve, called the gate. The settings of the Epoch 4b include
the magnification of the measured ultrasound signal (the gain), the distance
interval over which it is measured (the range) and the maximum peak detec-
tion window (the gate). These settings where originally based on the results
of former soft tissue depth studies and refined after a training period with the
”A-scan”-device.

Database Management

In order to easily extract specific data and perform statistical analysis, we
created a database using MySQL software (MySQL AB, Uppsala, Sweden).
The database is composed of 5 tables. One table contains all the personal
information of the volunteer: name, birthday, health status, weight, length,
facial profile, presence of dental prosthesis, plastic surgery, ethnic background,
registration date and space for extra comments. A second table contains 36
different categories based on gender (M/F), age (18-35y, 35-50y, 50+), body
mass index (-25, +25) and facial profile (concave, convex, straight). A third
table contains the 52 landmarks of the face. Based on the volunteer’s category
and the landmark to measure, the interface program retrieves the necessary
information, out of a fourth ”settings”table, for the automatic adjustment of
the Epoch4bTM such as the range, gain and detection gate. Finally, in the
fifth table, all the measurement results and corresponding curves are stored.

Registration Protocol

The registration procedure starts by entering the volunteer’s identity and phys-
ical properties in the computer. The patient is measured in an upright relaxed
position. With the probe as perpendicular as possible to the underlying bone
and using a classic neutral coupling echo-gel, tissue depth is measured taking
care not to indent the facial soft tissues. The correct transducer position is ob-
tained by first compressing and depressing the tissues in order to differentiate
the noise from the genuine US reflections. Secondly, the transducer orientation
is interactively determined such that the highest peak, corresponding to the
most perpendicular position of the transducer to the bone, is obtained. Fi-
nally, the compression on the soft tissue is maximally reduced avoiding losing
skin contact. This technique was first practised on (fresh) corpses in combina-
tion with needle puncturing. Three measurements are obtained, the highest
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Figure C.2: Thickness acquisition or registration setup

of which is taken into account for further statistics. As mentioned before, ex-
cept for the correct positioning of the transducer, the data treatment occurs
automatically using the mouse clicks (see figure C.2).

Validation: Repeatability

Figure C.3: Skull (a) and skin (b) surface segmented from CT scan image
data. Textured skin surface (c) and virtual ultrasonography view (d)

For the repeatability evaluation of the US measurements a test group of
33 volunteers, composed of 19 males and 14 females with average age 39.0
years (s.d. 17 years) and average BMI 26.5 (s.d. 6.46), was measured twice
(US1, US2), with time intervals varying between 2 days and 2 months. Accu-
racy was tested comparing ultrasound with CT-scan results. Twelve patients
(11 females and 1 male with average age 19.7 years and average BMI 19.5)
consented to have their facial soft tissue depths ultrasonically registered (US)
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before acquisition of a total head CT-scan for preoperative osteotomy plan-
ning. Prior to the ultrasound registration, the 52 landmarks were marked on
the face using a blue eyeliner pencil and a 3D picture of the face was taken
using a 3D portable camera (ShapeCam, Eyetronics, Leuven, Belgium). The
skull surface (figure C.3(a)) and external surface of the skin (figure C.3(b))
were extracted from the CT images by simple thresholding of the CT values
(at a Hounsfield Unit value of 300 and -400, resp.). The extracted surfaces
are represented at sub-voxel precision as a mesh of triangular tiles using stan-
dard surface meshing software. The 3D facial surface obtained with the 3D
camera was automatically fitted to the CT-based skin surface (minimizing the
distance between the two surfaces using the method). This allows texturing of
the CT extracted skin surface with the texture obtained from the 3D picture
(figure C.3(c)) in order to determine the CT-coordinates of the exact landmark
locations as measured with ultrasound. A software program was developed to
perform virtual ”A-scan”ultrasonography (figure C.3(d)), allowing to measure
the CT-based soft tissue depths at the 52 different landmarks locations as in-
dicated by the blue points prior to ultrasound registration. The virtual US
probe is manually positioned on a 3D graphical rendering of the textured CT
skin surface at each skin-based landmark location. The algorithm then itera-
tively estimates the corresponding skull base point at which the normal to the
skull surface is as parallel as possible to the normal to the skin surface at the
skin landmark. This mimics the real ultrasound measuring protocol as closely
as possible. The distance between the skin landmark and corresponding skull
base point is stored as the associated CT soft tissue depth. Finally, in order to
examine the influence of gravity on the differences in tissue depths as measured
by CT and ultrasound, the external skin surface extracted from CT, measured
in supine position, was aligned for each individual with the 3D facial surface
obtained by the 3D camera in upright position. In order to limit the influence
of expected differences, the surface alignment is only based on corresponding
surface parts that are less than a maximal (2mm) distance apart.

Statistical Analysis

The intra-observer agreement was statistically analyzed with a paired t-test
and a Wilcoxon paired Signed Rank test. The latter procedure tests for the
null-hypothesis of the median of the paired differences to be zero. The accu-
racy of US measurements compared to CT-based measurements was statisti-
cally analyzed using the Wilcoxon paired Signed Rank test. Given the limited
(n = 12) number of observations, this non-parametric test was chosen since
it has a higher power efficiency (higher sensitivity for smaller sample sizes)
and higher robustness to violations of the normality assumptions. Confidence
intervals for the median of the differences were calculated for each landmark us-
ing a bootstrapping technique (resampling with replacement). Bland-Altman
graphs are constructed for selected landmarks to picture the relationship be-
tween differences, average values and confidence limits. A robust linear re-
gression between CT and ultrasound measurements was calculated to look for
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any linear bias (offset and/or slope) in either the ultrasound (time-to-distance
transformation based on estimated sound velocity in soft tissue) or the CT seg-
mentation thresholds. All tests were implemented using the MatlabTM 6R13
(The Mathworks Inc., Natick, MA, US) data analysis software.

C.3 Results and Discussion

Figure C.4: Absolute distances between 3D skin surface prior to US acquisition
(upright position) and 3D skin surface extracted from CT image data (in supine
position). The distances are shown here for one particular subject.

The repeatability study shows very few (n = 3) landmarks with a statis-
tically significant (p < 0.01) difference between the repeated runs. A closer
look at the protocol application during this first stage of the project indicated
that a slight change of transducer position had occurred between the first and
second measurements. Indeed, the position of the supra-orbitalis landmark
changed from ’on the eyebrow’ to ’just above it’ because of the eyebrow in-
terference. This probably explains the significant differences for LMs 12 and
33. Furthermore, the median difference for LM 32 is very small (< 0.5mm)
compared to the corresponding average thickness (4.6 mm). The slope coef-
ficient (a = 1.01) of the linear regression between CT and US measures, is
very close to 1. Any miscalibration of the ultrasound device, by an improper
setting of the sound velocity (set at 1452 m/s) in the measured soft tissue,
would result in a value substantially different from one. We can thus con-
clude that this setting is accurate enough, relative to the CT standard used.
The intercept value (b = 0.23) is close to zero. Any improper setting of the
thresholds used for defining the external skin and skull surfaces in the CT
images, would result in a constant offset relative to the US measures. Since
the CT images were acquired and processed with typical voxel dimensions of
0.5 mm x 0.5 mm in-plane and 0.9 mm transaxially, we can conclude that the
thresholds chosen are sub-voxel precise, on average. Careful examination of
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the Bland-Altman graphs for all landmarks shows a small subset of clear out-
liers both for CT and US based measures. However, upon visual inspection of
these graphs, no clear preference in any direction (positive or negative) or type
(CT or US) could be observed. Note that these outlier values do not influence
the results drawn by the Wilcoxon paired signed rank test, which is known to
be robust to outliers. Their existence, however, requires robust statistics to
be used when further processing the database. One practical consequence of
this finding is that, during acquisition of the US data, a left-right check on
the values obtained is calculated and the operator is given the opportunity
to reregister certain landmarks signalled to be outside an acceptable left-right
difference range (< 3mm). Since landmarks found to be statistically differ-
ent between CT and US were all located in the masseter region, we examined
whether the differences could be explained by the influence of gravity on the
soft tissue thicknesses between the upright position during the US acquisition
and the supine position in the CT-scan. Figure C.4 shows the typical pattern
as observed for an individual case. A zero-difference (dark) band running over
the naso-labial sulcus can be observed. When inspecting the aligned CT and
3D skin surface, the thickness of the regions in front of this zero-band seems
to decrease from 3D to CT whereas the opposite effect occurs for the region
behind. Although a relatively weak (r = 0.22) linear correlation could be
found between the (CT versus US) errors in the landmarks and the (3D minus
CT) distances between the skin surfaces in the upright and supine position,
paired per landmark and per subject, a more pronounced linear correlation
(r = 0.53) could be established between the median differences and distances.
We see that the larger (CT minus US) differences and (3D minus CT) dis-
tances are located precisely at the landmarks in the gonion-, supraglenoid-,
and ocllusal line region, substantiating the hypothesis that they are probably
due to the gravity effect.

C.4 Conclusion

Thanks to the progress in computer science and medical imaging technology
it was possible to create a fast, mobile and user-friendly facial soft tissue
depth acquisition system. Statistical analysis of the repeatability and accuracy
proved our system to be a reliable and accurate measurement tool. A correct
application of the protocol allows in 20 minutes the measurement of 52 facial
landmarks in a non-invasive, standardized and repeatable way. It will allow
(re)evaluation of older facial soft tissue depth data based on a large group of
subjects of different age, sex, race and build. An evaluation that shouldn’t
be limited to the facial soft tissue depth data but, as the actual tendency,
expanded to other facial features in order to increase the degree of accuracy
of the facial reconstruction.





Appendix D

Patch registration and

integration: An overview

D.1 Introduction

Not to overload chapter 4 and to keep the focus on the main application of
the thesis: craniofacial modeling and reconstruction, we have chosen not to
incorporate an exhaustive related work review concerning patch registration
and integration. The most relevant related work is referred to within chapter
4, while in this appendix a more elaborated review is given. For clarity, a
model in patch registration and integration literature is the final result or a
complete 3D acquisition of an object’s surface.

Mentioned in chapter 4, systems for measuring three dimensional data
have in common that for building complete models, some degree of human
intervention or a priori knowledge about the geometry of the imaging process
is necessary. The lack of fully automatic systems without any kind of a priori
knowledge or user intervention makes it very labor intensive and expensive
to make databases of 3D models. Most Three-dimensional model acquisition
systems generate several partial reconstructions that have to be combined for
building complete 3D models. The reason is that the acquisition system can
only compute 3D information of what can be ”seen”from a certain viewpoint.
We refer to the reconstruction from a single viewpoint as a patch. A complete
model is build from many patches and can be seen as a patchwork. The number
of views necessary is mainly determined by the complexity of the object. With
a more complex object, more views are needed and it becomes interesting to
have a fully automatic reconstruction system.

Combining several patches into a single model traditionally, involves two
main phases. First the patches need to be aligned into a common coordinate
frame, the registration phase. Secondly, the registered patches need to be
integrated into a single entity, which is the integration phase. The registration
phase itself can be considered as two different problems that need to be solved
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[81]. The first problem is a global registration problem where no a priori
information on relative positions and orientations of the patches is available
and the second is a pose refinement, where it is assumed that an initial estimate
of the exact positions is known. We refer to the former problem as crude
registration and the latter as fine registration. When more than two patches
are to be registered, both crude and fine pair-wise registrations need to be
combined into a multi-view registration.

D.2 Fine registration

The most famous fine registration algorithm is the iterated closest point al-
gorithm (ICP) introduced in [59], where the distance between corresponding
points is iteratively minimized. More or less at the same time, a very similar
algorithm was introduced in [112]. The difference is that [112] minimizes the
distance between a point and the tangent plane in its closest point partner.
The method in [112] is often referred to as point-to-plane ICP and [59] as
point-to-point ICP.

The basic ICP algorithm has several problems and has been improved by
many authors. Firstly, when aligning point sets, they are typically two different
samplings of the same shape. Even when the patches are perfectly aligned, the
distance between a pair of best matching points can be nonzero. A possible
solution is to look for corresponding points in between the available points,
by triangle interpolation for example when a mesh representation is available.
This problem was solved in chapter 4 using continuous implicit target patch
representations.

Secondly, the original algorithm in [59] was proposed for registration of
point sets with complete overlap. When dealing with partial overlap, many
points of one patch will not have a corresponding partner on the other patch.
However, points without partner do get matched to some point on the other
patch. Such incorrect matches are referred to as outliers. Dealing with outliers
can be done using two different strategies. The first approach is to replace the
function that is minimized , e.g. [113] using a LMSQ error function instead
of a classical LSQ estimator and [114] using M-estimation. The latter is sim-
ilar to our approach. The second approach is to identify the outliers and to
remove them from the list of matches, which is similar to our deterministic
outlier detection function. Both strategies are combined within our outlier
handling of section 3.3.3, through the use of a combined latent variable in-
corporating a deterministic regular latent variable and a probabilistic random
latent variable. A study of outlier classification (second strategy) is presented
in [115]. The simplest way to detect outliers is using a distance threshold
[116, 117, 118]. In [119] a new outlier distance threshold is calculated in every
iteration step, by analyzing the statistics of the distances between the point
pairs. A similar approach is done in [120]. In [121] a heuristic approach is
used and the distance threshold is set to t = cs, with s the range scanner res-
olution and c an empirically determined value based on the distance between
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the center mass of the points sets. Many other criteria have been used for
rejecting outliers [116, 117, 122, 123, 124, 125] and multiple criteria can be
combined [126]. Still, most outlier detection systems rely on the distance from
the floating patch to the target patch, which is dependent on the relative pose
between the two patches. Our deterministic outlier detection function does
not suffer from that shortcoming, because it is solely dependent on the target
patch.

The third problem of the basic ICP is the very expensive closest point, being
corresponding points, search. A naive closest point search requires Nf ∗ N t

point-to-point distance computations during every iteration, where Nf are the
number of points on the floating patch and N t are the number of points on the
target patch. Several methods have been developed to speed up the closest
point search. In [117, 127, 128, 129] K-D trees are used to speed up the search.
A simple but more popular method is to sub-sample the floating patch points.
This sub-sampling can be randomized [126, 130] or geometric. In [120, 131]
the principal of inverse calibration is used to speed up the search and in [132]
ICP is accelerated using a multi-z-buffer technique. This problem was solved
in chapter 4 using continuous implicit target patch representations, without
the need for explicit point correspondences during optimization.

An alternative fine registration method is given in [133], which is based on
the maximalization of mutual information and an excellent survey, about fine
registration, can be found in [134].

D.3 Crude registration

The most important problem with fine registration methods is that they per-
form an iterative optimization and as such are sensitive to local extremes. For
convergence, the algorithm needs a rather good estimate to start from. Due
to convergence dependency on the initial pose, fine registration is sometimes
referred to as constrained registration. Finding relative poses with arbitrary
differences in initial pose is referred to as unconstrained registration or crude
registration. Typically a coarse-to-fine strategy is used [80, 135]. First, a crude
registration is performed to give an initial estimate of the transformation.
Next, a fine registration is performed, computing an accurate transformation.
Crude registration is successful as long as it gives an accurate initialization for
the fine registration. Having a more accurate crude registration does have the
advantage that the fine registration can converge more robustly and within
fewer iteration steps.

Crude registration is often solved manually or with a priori knowledge
about the geometry of the imaging process. The former is done by interactive
indication of point correspondences [120] or manual rotation and translation of
the patches. This is a common approach in many commercial 3D acquisition
systems. The latter is done mechanically [118, 135, 136, 137, 138] or based
on calibration information of the scanner [139]. However, these are scanner
dependent and sometimes additional mechanical tracking hardware is required.
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Two different approaches for automatic crude registration without knowl-
edge about the 3D sensor are possible, a pose search approach and a corre-
spondence search approach. [59] already suggested an exhaustive pose search
method to initialize their ICP fine registration algorithm. In [140] the same
idea is implemented in parallel so that different possibilities can be checked
at the same time. In [141] a method is used based on the RANSAC prin-
ciple. They introduce a data-aligned rigidity-constrained exhaustive search
(DARCES) algorithm. However, such exhaustive approaches require huge
computational efforts. Less exhaustive pose search algorithms make use of
global descriptions of the surfaces. The idea is to compute global properties
that allows the recovery of the initial relative pose between patches. For exam-
ple, the center of gravity can be used to estimate an initial translation between
patches. In [142] a frequency domain pose search is performed, where texture
information is incorporated in order to disambiguate among different possi-
bilities Another global patch representation is the extended Gaussian Image
[143, 144]. However, when the amount of overlap between patches decreases,
the estimated transformation based on global descriptors and properties is less
robust and/or accurate enough.

For crude registration of partial overlapping patches it is advisable to use
a correspondence search approach based on local descriptors. A first cate-
gory of local descriptions, use special points, curves or regions and describe
these special structures with several parameters or invariant descriptions. Cor-
responding structures in between different patches are searched for in order
to determine the initial transformation. In [145] curves of extreme principal
curvature are calculated. In [146], bitangent point pairs are used and [80] ex-
tended them to bitangent curve pairs. In [147] curves of constant mean and
Gaussian curvature are used. A problem with these special structures is that
enough overlap in between different patches is needed in order to guarantee
the presence of these structures. Sometimes objects don’t have the special
structures at all, limiting their use.

An alternative category to determine corresponding points is to calcu-
late point-signatures or point statistics for a large amount of points on ev-
ery patch. In general, point-signatures are descriptions of the local geometry
around a point on the surface. By comparing point-signatures of different
patches, possible correspondences can be established, because corresponding
points will generate similar local geometry descriptions. Through comparing
point-signatures the 3D matching problem is often reduced to a 2D or 1D
matching problem. In [148] the intersection of a patch with a small sphere
centered in a patch point is computed. The intersection is a 3D curve, which
is projected onto the tangent plane of the point. The distance between the 3D
curve and its projection is used to create a 1D signature. In [149] a set of 2D
contours is used, which are the projections of geodesic circles onto the tangent
plane, where the normal variation along the geodesic circles is also encoded.
[135, 150, 151] propose spin-image point-signatures, which are in fact local
2D geometry histograms. One parameter of the histogram is the distance to
the tangent plane of the center point from all the surface points. The other
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parameter is the distance to the normal of the center point. [135, 151] uses
spin-images for object recognition and [150] applies them for surface registra-
tion. In [152, 153] a modified version of the spin-image is proposed, which is
called the surface point signature. One parameter of the histogram is the dis-
tance between the center point and every surface point. The other parameter
is the angle between the normal of the center point and the segment created
by the center point and every surface point. Instead of using point-signatures
one can also define triangle-signatures [154]. For all triangles on a patch a
2D histogram describing the relative position of the neighboring triangles is
computed. In [155] a token set or feature vector is attached to each triangle.

Once point-signatures are calculated for points on every patch, a set of pos-
sible corresponding points is established through point-signature comparisons.
However, it is impossible that every corresponding pair is correct, because of
the partial overlap between patches. It is thus important to determine the
transformation out of the correspondences in a robust manner, which is able
to distinguish correct from incorrect correspondences. A simple and naive
way is to select the best correspondences based on the comparison value of the
point-signatures. In [89] groups of correspondences are formed, according to
geometrically consistent conditions and the distance between correspondences.
This method is already better than the naive one, but it still fails when having
a small amount of overlap, because the grouping criterium rejects different
correspondences that are to close to each other. Having a limited amount
of overlap all good correspondences are grouped close to each other, so the
criterium has to be fine-tuned towards the amount of overlap. A robust and
elegant strategy is to use directed point-signature in combination with a voting
scheme [83]. A directed point-signature is a point-signature combined with a
directed component (e.g. the surface normal). All possible rigid transforma-
tions that translate a point to its corresponding point and that makes their
normal directions coincide is calculated and gets a vote in a voting scheme.
This is done for every corresponding pair and the transformation that gets the
most votes is selected.

D.4 Pair-wise versus Multi-view

So far only fine and crude registration algorithms between a pair of patches
were discussed. Finding the relative pose of two patches is referred to as pair-
wise registration. When more than two patches have to be registered, a multi-
view registration is needed. In this case the absolute poses of every patch into a
common coordinate frame, instead of the relative poses, is searched for. Again
a distinction between multi-view crude - and multi-view fine registration is
made. During multi-view registration some new complications are introduced.
A multi-view registration algorithm is often based on pair-wise registrations,
where the common strategy is to do consecutive pair-wise registration steps.
However, (1) which patch pairs will be registered? Patches with no overlap
should not be registered. Further complications are (2) the building up of
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registration errors and (3) inconsistent poses. In a crude registration context,
the former two complications are relevant. In a fine registration context, the
latter two complications are relevant.

Multi-view crude registration in [117] is solved by tracking the scanner in
combination with an interactive alignment. [82] and [81] also use scanner
knowledge to start from. In [156] the information about the sequence in which
the patches were recorded is used in order to know which pairs of patches are
to be registered. These methods as such are not considered fully automatic
without prior knowledge. In [157] a trial and error approach is performed
in some way corresponding to the way a human solves a jigsaw puzzle. All
possible patches are registered with a pair-wise registration based on spin-
images. A global solution is then found by evaluating the quality of pair-wise
registrations. Measures are introduced that allow local and global consistency
checks. All patches are registered such that a global consistent solution is
found based on local consistencies. In [80] a similar approach is taken, where
the quality of pair-wise registration is expressed in terms of the number of
transformation inliers. Subsequently, a minimum spanning tree is constructed
to select a minimal set of transformations that transform every patch into a
common coordinate system.

In a multi-view fine registration context the error build up and the incon-
sistent poses are the most important complications when using pair-wise fine
registrations and have been analyzed by several authors [112, 117, 131, 132,
158, 159, 160, 161]. Accuracy improvement has been studied by minimizing
a global error function. Another strategy besides a combination of consecu-
tive pair-wise registrations is perform a simultaneous registration of a floating
patch with every other patch being multiple simultaneous target patches . In
[128] the closest point on all the target patches is looked for. However, an
severe closest point computation cost increase is required. Other examples of
simultaneous registration are given in [158, 162, 163, 164] not suffering from
error-build up, but the complexity grows exponentially with the number of
patches. Instead of registering a floating patch with every target patch simul-
taneously one can also iteratively register every patch with an intermediate
integration of all the target patches until convergence [81, 82]. A final strat-
egy is to register patches sequentially to previously registered and integrated
patches as in [81], which is a good compromise between consecutive pair-wise
registrations and simultaneous registrations.

D.5 Integration

Surface integration methods differ by the type of input data used, unorga-
nized or connected point sets, and the type of surface representation, para-
metric or implicit. Examples of methods integrating unorganized point sets
are [165, 166], using parametric surfaces, and [167, 168], using implicit sur-
face representations. Since these methods do not require a specially organized
input set, they can be applied in more general situations. At the same time,
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however, these methods are less robust against noisy data, outliers and cannot
reliably integrate high curvature regions. The integration can be improved
using structured input data and parametric surfaces [169, 170], but accord-
ing to [85], they can still fail in areas of high curvature. The more successful
approaches use structured data, while hiding the topological problems in the
previous parametric surface based methods by using implicit volumetric repre-
sentations. Johnson et al. [89, 90] create surface occupancy grids, which were
the earliest and simplest volumetric representations. However, final surface
extraction, based on ridge-detection in the surface likelihood, is not robust
[85]. In [85, 171, 172], volumetric integration algorithms are presented that
construct a grid-based weighted signed distance function to the final surface.
Triangular surface representations or mesh tessellations are extracted using
Marching Cubes (MC) [87]. Interesting properties of volumetric integration
using signed distance functions on a grid, (e.g outlier robustness, incremental
update, incorporation of range uncertainty, . . . ) are listed in [85].

The algorithms using signed distance functions on a grid differ in the way
the implicit surface is constructed and the volumetric data is organized. A
disadvantage of the ray shooting algorithm used in [85] for signed distance
grid building, is that the signed distance functions are dependent on the sen-
sor location. Other authors [82, 171, 172] resolve this problem by constructing
the distance functions on the grid differently. It is also preferable to incorpo-
rate patch normals during build up of the distance functions in order to cope
with sharp structures in the model. A major drawback of these volumetric
integration methods is the use of a 3D grid, such that the final model resolu-
tion is limited by memory requirements and computational complexity. In [85]
this problem is alleviated by run length encoding of each 2D slice in the grid,
which depends on a complicated space carving procedure. In [172] grid octree
structures are used, which is a hierarchical representation capable of increasing
grid resolution locally. In [91] the octree idea with hierarchical space carving
is combined. Whether an octree or space carving is used, both methods intro-
duce additional overhead, like grid-point classification and octree building, in
order to cope with the memory problem. Furthermore, features smaller than
the grid sampling size will be missed.

Signed distance functions are superior to occupancy grids because integra-
tion and multi-view fine registration can be unified into a single step, while
traditionally they were performed separately. In [81] and [82] an implicit signed
distance field is used in order to have a common representation for both in-
tegration and registration, where the gradient of the distance field is used to
determine closest points for registration. The advantage of the volumetric
representation construction used in [81] compared to [82] is the use of filtered
normals, such that their algorithm is more robust against noise in the recon-
struction data. A disadvantage of both [81] and [82] is that a memory inefficient
and expensive grid is used as a discrete sampling of the signed-distance field,
which limits the final resolution and registration accuracy. This is a drawback
to all volumetric registration and especially integration approaches till now.

It still remains unanswered to what extent signed distance build-up is sen-
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sitive to the presence of noisy data. Is the final signed distance value in each
grid-point reliable, when the input patch is very noisy (larger than the grid
sampling size,e.g.) and does this affect the final integration? Especially patch
normal information is severely influenced by noise. Building up the signed
distance function with incorporation of these corrupted normals will lead to a
wrong result.

Every surface integration method also has to cope with the presence of
holes in some of the patches. A possibility is to perform hole filling after
the integration and final mesh extraction, which is difficult when the holes
are highly non-planar. In [85] hole filling is performed on the volume rep-
resentation, but special grid-point classification into near-surface, empty and
unseen is necessary. In [173] holes in the distance field are filled by fitting local
quadrics. No volumetric integration method so far uses a hole filling inherent
representation.

The amount of literature concerning texture integration or blending is lim-
ited compared to shape integration. In [89, 90] texture blending is accom-
plished using weighted averaging of overlapping textures from the original
contributing patches. Texture weights are dependent on the angle between
the consensus surface normal and the viewing direction or relative pose of the
patch. Pulli et al. [91] also perform a weighted texture blending, where the
weights depend on the angle between the viewing direction of the contributing
patch and the viewing direction of a virtual viewer, such that texture integra-
tion is view-dependent. Our texture integration is very similar to the shape
integration using VIF to represent color information. Doing so a viewing in-
dependent texture integration is obtained. Disadvantages of current texture
integrations methods [89, 90, 91] are the need for surface extraction before tex-
ture weight determination and the dependency of the weights on the relative
poses of the patches, which makes the texture weights and blending sensitive to
the accuracy of the patch registrations. Furthermore in [89, 90] additional vec-
tor information is stored for every point of the grid, thereby further increasing
the memory requirements.

We constructed a volumetric shape and texture integration technique in
section 4.3. The shape integration is intertwined with the multi-view fine-
registration in section 4.2.4. To cope with problems of current volumetric
integration techniques enlisted in the previous paragraphs within this section
we used variational implicit functions and VIS representations instead of im-
plicit grid representations. Doing so, several improvements were gained, e.g.
hole filling, dealing with noise, no expensive grid, no sensor dependency, . . .

D.6 Conclusion

As a conclusion, four different registration tasks (Crude/Fine pair-wise regis-
tration and Crude/Fine multi-view registration) and an integration task are
to be solved for complete surface acquisitions from partial surfaces. In order
to have a fully automatic registration and integration, without any kind of a
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priori knowledge or user intervention, more than one registration task needs
to be solved. First a global registration needs to be solved using a crude reg-
istration. Then a pose refinement is performed with a fine registration. When
more than two patches are to be registered, both crude and fine pair-wise reg-
istrations are to be converted into a multi-view registration, where additional
complications are present. Finally the registered patches are to be integrated
into one entity. One can choose the best algorithm available for every task and
combine them to have a fully automatic method, but it would be interesting
to have a common representation of the patches used, while solving every task,
like the combined multi-view fine registration and integration in [81, 82].

Our complete automatic registration algorithm in chapter 4 for aligning
multiple partially overlapping surfaces for the surface patches consists of a
coarse-to-fine strategy as in [80] resulting into four stages. First, a robust
but less accurate pair-wise crude registration between every pair of patches
is calculated based on point correspondences, which are established by com-
paring directed point-signatures calculated from the VIS representations. A
pose clustering procedure [83] selects the best rigid transformation from valid
transformations that map corresponding point pairs, while making their di-
rected (normal) components coincide. Local 2-D geometry histograms calcu-
lated from the VIS representations are used as point-signatures, which are an
improved variant of the spin-images in [84]. Second, a selection of all pair-wise
crude registrations are combined into a multi-view crude registration by using
a minimum spanning tree algorithm (MST) like [80]. We define the pair-wise
transformation cost in terms of the number of inliers supported by the trans-
formation. The result of the MST algorithm is a non-redundant set of relative
pair-wise transformations that transform all patches in the same coordinate
system. This set of initial transformations is further improved, in a third
step, by applying pair-wise fine registrations, which are less robust in terms of
initialization but more accurate. These fine registrations are calculated itera-
tively by a gradient descent minimization of a distance error criterion, based
on the continuous VIS representation. In order to deal with partial overlap be-
tween patches a novel deterministic outlier detection function is defined, which
is independent of the relative pose or distance histograms between two partial
surfaces. Both the minimization and outlier handling are defined and combined
using the theoretical robust surface registration framework from chapter 3. Fi-
nally, in a fourth step, we cope with pair-wise registration error accumulation
by applying a simultaneous multi-view fine registration of all partial surfaces
with intermediate integrations. The fine registration of a patch with an inter-
mediate integrated surface is similar to the pair-wise fine registration. For the
integration we use an implicit volumetric method. This integration also uses
the VIS representation, such that a common representation is used throughout
the whole reconstruction pipeline.





Appendix E

Non-rigid surface

registration: An overview

E.1 Introduction

In order to perform a statistical shape analysis or to construct a shape model,
dens inter-subject correspondences in between facial surfaces are needed. There-
fore, the 3D points with known connectivity of a carefully constructed generic
reference face are mapped or registered non-rigidly onto the faces in the database.
The generic reference face is the floating surface while the faces in the database
are the target surfaces to which the floating surface is registered. A non-rigid
transformation during registration is required due to the local differences in
geometry of both surfaces. The establishment of dens point correspondences
using a non-rigid surface registration in between two surfaces is fairly compli-
cated due to the the non-rigid nature of the registration problem. Furthermore,
it is a well known fact that the quality of the statistical model extracted after-
wards is dependent on the quality and the consistency of the established dens
point correspondences.

The facial surface registration methodology must also be robust against
noise and must be able to cope with outliers due to partial overlap or missing
data. The latter is because of the fact that the 3D surface acquisition device
used in chapter 4 is not able to acquire 3D information from hairy or covered
regions in the face, generating incomplete 3D surface acquisitions with holes
or missing data. The former, or noise robustness, is not necessarily due to
small errors in the target surface but rather due to the non-rigid nature of
the registration. An instance of point correspondences during registration is
typically erroneous, especially at the beginning of the registration, because
the shapes of the floating and the target surface are then very different. In
the following section a very short overview is given of non-rigid 3D surface
registration algorithms for shape-modeling. Note that alternative non-rigid
registration algorithms exist (e.g. [174, 175]), but these are not designed to
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deal with surfaces and are therefore not incorporated within the overview.

E.2 Short overview

In [176], the dependency of the shape model on the correspondence quality
is explicitly exploited. Dens correspondences are searched for, while minimiz-
ing the statistical model description length, being a model quality measure.
Floating and target surfaces are represented using parametric representations
and dens correspondences are defined using re-parameterizations of the sur-
faces. However, the optimization is not straightforward and a complicated
genetic optimization algorithm is therefore applied. Furthermore, severe sur-
face preprocessing is necessary as the technique can not cope with local surface
inconsistencies and missing data.

[177] describes the surfaces using features based on curvature information,
but then the shape of the floating an target surface may not differ to much.
The same problem is encountered in [178, 179], where the floating surface is
first rigidly aligned with the target surface, after which a brushfire algorithm
is initialized to fill in dens correspondences.

Several authors cope with this floating and target surface shape difference
problem by simplifying the non-rigid registration. The technique in [94] is
similar to [178, 179], but user-intervention is incorporated to guide the regis-
tration. Both [95] and [96] place manually a limited amount of corresponding
landmarks (9 and 15, respectively) in between the floating and target surface,
based on which an initial TPS non-rigid transformation is determined and
applied in order to bring the geometry of the floating surface closer to the
geometry of the target surface. Afterwards this new situation is used as a
starting point to derive dens correspondences being closest points in [95] and
using a coating procedure in [96]. However, the final result is then dependent
on the quality of the manual landmark indication.

An alternative simplification is to redescribe the 3D surfaces into 2D height
maps or images , based on a cylindrical 3D-2D mapping [97, 98]. The regis-
tration problem is then solved in 2D using optical flow [97] or a RBF trans-
formation with additional user indicated landmarks [98]. However, a 3D-2D
mapping incorporates the danger of loosing 3D surface information, especially
in regions with high curvature information. Therefore, we prefer to solve the
problem in 3D instead of a lower dimension.

A fairly complicated but interesting geodesic surface matching framework
is proposed in [180] and was first adopted by us and used in [7] for example.
During geodesic surface matching, corresponding points are points connected
through a minimal cost path (geodesic path), going from the floating surface
to the target surface, on a 4D cost surface, where the cost is determined based
on Euclidian distance and local curvature similarity between the end points
of the path. However, we experienced that a proper shape initialization was
required, such that we opted for a manual landmark placement generating an
initial TPS transformation in [7] like [95] , making the result dependent on
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the landmark qualities. Furthermore, the 4D cost function is defined on a
volumetric grid, such that the final resolutions and accuracies are dependent
on memory requirements.

The non-rigid robust point matching (RPM) algorithm [71], was used to
find initial landmark correspondences in between the 52 indicated face land-
marks of the faces, in which ultrasound thicknesses were measured, to deter-
mine an TPS transformation initializing the geodesic surface matching in [7].
The RPM algorithm basically applies two techniques to tackle the non-rigid
registration problem in between two point-sets, soft-assign (for correspondence
establishment) and deterministic annealing (for a TPS transformation update).
The reason for the RPM algorithm being able to cope with arbitrary initial
geometry difference is due to the deterministic annealing optimization. In
theory the RPM algorithm could be directly applied for the surface matching
problem by representing both floating and target surface as dens point-sets.
However the original RPM cannot handle a huge amount of points, due to the
size of the soft-assign matrix which is dependent on the amount of points and
due to a direct implementation of the TPS deformation. Furthermore, a point
based target surface representation leads to sampling errors within the final
correspondences similar to the ICP algorithm for rigid patch pose refinement.
The RPM is closely related with the non-rigid surface registration algorithm
in chapter 5. The same deterministic annealing optimization is applied to find
a TPS based non-rigid transformation. However the TPS transformation cal-
culations and evaluations are feasible for a huge amount of points, by making
use of the VIF machinery in chapter 3. Furthermore, the target surface is
represented using a VIS, such that no sampling errors are contained within
the final correspondences and such that the establishment of corresponding
points during registration for a huge amount of points is still computationally
feasible.





Appendix F

Continuous numeric gender

values

F.1 introduction

Principal component analysis requires numeric values for every facial infor-
mation part in the vectorial representations. In contrast to BMI and age it
is not straight forward to obtain a numeric value for the gender property. A
possible solution consists of assigning a discrete numeric value to males (e.g.
+ 1) and females (e.g -1). However, some facial entries have more pronounced
male/female facial features compared to other facial samples in the database.
It is well known fact that the difference between males and females is more
pronounced during aging. Younger persons constantly evolve starting from a
genderless childish outlook. Middle aged people are completely evolved show-
ing apparent gender differences. So instead of a discrete numeric value a more
continuous value is preferred in order to differentiate between the male and
female alikeness of faces. The more positive/negative a gender value the more
male/female a face appears to be. A value of zero corresponds to a genderless
looking face.

A potential way to obtain a continuous gender value is to define a numeric
scale and to manually score every facial entry in the database accordingly.
However, this is quite labor intensive and very subjective. Instead we propose
an automatic and objective continuous numeric gender value estimation using
a classifier based on the support vector machine methodology. Classification
learns a decision function associated to a set of labeled data points to predict
the values of unseen data. Support Vector Machines (SVM) is a powerful
methodology for solving problems in classification [181], function and density
estimation.
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F.2 SVM Classification to obtain continuous

values

The classification in our case is a binary (male/female) classification. This
classification divides two separate classes, which are generated from training
examples. Each example consists of data points combined with a binary label
+1 or -1. Using the SVM methodology and based on the training data the
two classes are separated by introducing and computing a separating hyper-
plane, which must maximize the margin between the two classes. This the
optimum hyperplane minimizing the distance between the closest +1 and -1
data points, which are known as support vectors. The decision whether an
unseen data sample is labeled +1 or -1 depends on the location of the data
sample according to the hyperplane. The continuous signed distance to the
hyperplane is determined and if it is above/below a certain threshold the data
sample is labeled +1/-1. We are not interested in the decision process using a
threshold. Instead we are interested in the continuous signed distance to the
hyperplane.

The data points we use represent facial surface geometry and the purpose
is to determine a continuous gender value based on the geometry. In a first
instance we compute a PCA model of the facial surface shape and texture
information to obtain a data reduction. Instead of using the facial surface
and texture vector representations we can now use the reduced PCA model
parameter descriptions as data points. In a second instance we label every
facial entry according to their gender using discrete values +1 (male) or -1
(female). Then a SVM is trained, using the available LSSVM toolbox [182]
for matlabTM , computing the optimal separating hyperplane in the PCA face-
space. Instead of using the trained SVM for classification purposes of unseen
facial data samples we extract the signed distance value of every training
data sample to the hyperplane, being the continuous gender values. A more
positive/negative distance to the hyperplane implies a more male/female alike
face being further away from the female/male class.
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