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Abstract. Air pollution was the 4th leading risk factor for early death
in 2019. Models capable of forecasting nonlinear atmospheric phenomena
are difficult to train and optimize consistently. Island Transpeciation [21]
is a co-evolutionary neural architecture search technique that can train
and optimize architectures and hyperparameters of day-ahead forecast-
ing deep necural networks. Using several years of real-world historical
air-quality and meteorological data, we managed to outperform random
model search and previous machine learning techniques in accurately
predicting ozone across Belgium.
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1 Motivation

Around 400,000 premature deaths per year are caused by air pollution in Europe
[3] [9] [10]. Accurate forecasting allows governments to promptly warn the public
with low air-quality alerts [7]. Our objective is the search for accurate, country-
wide models, for next-day ground-level ozone (O3) [1] forecasting. This extended
encore abstract describes the prior work on Island Transpeciation [21].

2 Main contributions

We developed island transpeciation [20] [21] (Fig. 1), to optimize Deep Neural
Networks (DNN) [18] [11] [4] in forecasting. Co-evolution between different op-
timizers [14] [22] is achieved via the transpeciation evolutionary operator, under
a Neural Architecture Search (NAS) [6] [25] [24] setting. Contributions:

— A new Evolutionary Algorithms (EA) [23] operator: transpeciation.
— Island transpeciation: an automated parallel [17] [5] and distributed [12] [2]
NAS, featuring hardware hot-plugging and fault-tolerance.



2 K. Theodorakos et al.

— Multiple-Input Multiple-Output (MIMO), Nonlinear Auto Regressive eXoge-
nous (NARX) DNN: A single model prototype for country-scale air quality
forecasting,.

— Ozone forecasting deep learning model configuration suggestions.
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Fig. 1. Day-ahead ozone forecasting top-level view, using the island transpeciation
NAS [21]. The transpeciation operator (middle layer: species) allows the cooperation
and competition between incompatible optimizers via: transformation and migration of
candidate model solutions. In this illustration: Bayesian Optimization (BO) [15] island
cooperates with a Genetic Algorithm (GA) [16] [8] and Particle Swarm Optimization
(PSO) [19].

3 Results and Conclusion

MIMO NARX DNN (Fig. 1) can successfully predict country-wide, next-day Os
pollution episodes, on real-world time-series (46 Belgian monitoring stations [1]
data, from 1990 to 2018). The main negative is extended model training times.
This co-evolutionary meta-learning [13] approach balances model training times
versus model size trade-offs, via the asynchronous cooperation and competition
of the underlying optimizers. Finally, there should be a balanced consideration
between the number of islands and the total amount of NAS iterations.
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