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Abstract

The 0-1 knapsack problem is an important optimization problem, because it arises as a special case of a wide variety of
optimization problems and has been generalized in several ways. Decades of research have resulted in very powerful
algorithms that can solve large knapsack problem instances involving thousands of decision variables in a short amount
of time. Current problem instances in the literature no longer challenge these algorithms. However, hard problem
instances are important to demonstrate the strengths and weaknesses of algorithms and this knowledge can in turn be
used to create better performing algorithms. In this paper, we propose a new class of hard problem instances for the 0-1
knapsack problem and provide theoretical support that helps explain why these problem instances are hard to solve to
optimality. A large dataset of 3240 hard problem instances was generated and subsequently solved on a supercomputer,
using approximately 810 CPU-hours. The analysis of the obtained results shows to which extent different parameters
influence the hardness of the problem instances. This analysis also demonstrates that the proposed problem instances
are a lot harder than the previously known hardest instances, despite being much smaller.

Keywords: combinatorial optimization, 0-1 knapsack problem, problem instance hardness.

1. Introduction

Many interesting combinatorial optimization problems are NP-hard. For such problems, it is not known whether
algorithms exist that can solve1 them in polynomial time. In fact, almost all researchers believe that such algorithms do
not exist [11]. However, this does not rule out the possibility that most problem instances could potentially be solved
very quickly. Indeed, for several NP-hard problems there are many problem instances from the literature that have
already been solved in a reasonable amount of time. For some problems, the sizes of the problem instances that have
been solved are small to moderate (e.g. for the quadratic assignment problem [23, 24]), whereas for other problems
even very large problem instances involving thousands of decision variables have been solved (e.g. for a weakly
NP-hard problem like the 0-1 knapsack problem [25, 33], but also for strongly NP-hard problems like the travelling
salesman problem [2, 3] and the Hamiltonian completion problem [16]). Especially this last category of problems is
remarkable and the algorithms used to solve these problems are often the result of years of research focused on finding
algorithmic improvements. For the 0-1 knapsack problem, the Combo algorithm [25] is such an algorithm which can
solve many problem instances involving thousands of items in a matter of (milli)seconds. For this reason, the 0-1
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knapsack problem is often considered to be an easy NP-hard problem [33], notwithstanding the fact that it has been
challenging in the past for many years to solve large knapsack problem instances.

When such powerful algorithms exist, it is not always an easy task to create benchmarks that challenge these
algorithms, because it is not always known how to create hard problem instances. Furthermore, it is not always clear
which problem instance features, apart from the size, influence their hardness. Another reason why it can be difficult
to create such problem instances, is because these hard problem instances often must obey certain combinations of
constraints that are difficult to fulfill at the same time. Despite this challenge, such problem instances are important
because these provide insights into the weaknesses and strengths of certain algorithms and also provide valuable
insights into the problem as a whole. This knowledge can in turn be used to design more efficient optimization
approaches. This is precisely one of the goals of benchmarks and thus such hard problem instances should ideally be
contained in benchmarks. In the current benchmarking landscape, such hard problem instances are unfortunately not
always included.

For the 0-1 knapsack problem, several classes of hard problem instances are known. For example, [9] proposed a
class of problem instances for which he was able to prove that the running time of all algorithms with certain specific
properties must be at least exponential in the number of items. These problem instances are mainly of theoretical
importance, but cannot be tested on actual implementations for solving the 0-1 knapsack problem, because the number
of digits required to represent the integer coefficients is also of the same order of magnitude as the number of items
and most implementations for solving the 0-1 knapsack problem only support 32-bit or 64-bit integers. The problem
instances proposed by [33] in “Where are the hard knapsack problems?” form another well known example of hard
problem instances. In contrast with the instances of Chvátal, Pisinger’s instances are more practical and were empiri-
cally shown to be hard to solve for exact algorithms for the 0-1 knapsack problem. In the current paper, we build upon
this line of research concerned with hard problem instances for the 0-1 knapsack problem.

The main contributions of this paper are as follows:

1. We introduce a new class of hard problem instances for the 0-1 knapsack problem for which two theorems are
proven that help characterize why these problem instances are hard. These theorems provide further insight
into solutions that are hard to prune from the search space and the structure of optimal solutions. Since the
0-1 knapsack problem is a fundamental problem and it is a special case of several packing related problems
[6, 22, 30], this work is also of wider interest.

2. A large dataset of 3240 hard problem instances of the proposed class was systematically generated using a
full factorial design of experiments. A big computational effort was made to solve these instances on a set of
20 nodes in a supercomputer center, needing approximately 810 CPU-hours to complete all experiments. We
envision two ways in which this dataset can be useful. The first use of this dataset is for researchers in the
cutting and packing community who are interested in the 0-1 knapsack problem. Since, in our opinion, good
benchmarks must contain a wide variety of problem instance classes, we propose to use our dataset as part of
a larger benchmark set of problem instances containing several problem instance classes (e.g. the instances
of [33]). Most problem instances in the dataset that we propose are very challenging. The dataset has been
made publicly available at https://github.com/JorikJooken/knapsackProblemInstances, making it
easy for anybody who wishes to integrate our dataset in their own benchmarks. Secondly, this dataset can be
used by researchers in the field of algorithm runtime prediction (see e.g. [15]), where the goal is to predict the
runtime of an algorithm based on problem instance features. To make this dataset more widely useful outside of
the cutting and packing community, the problem instances have been characterized in terms of the parameters
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that were used to generate them and the runtimes and optimal solutions of all problem instances have been
recorded such that computationally expensive algorithm runs do not have to be repeated.

3. The analysis of the computational experiments provides insight into how different parameters of the proposed
problem instance generator influence the hardness of the problem instances. This analysis also reveals that
the proposed problem instances are several orders of magnitude harder than the previously hardest problem in-
stances, despite being much smaller than those instances. The hardest problem instances from this paper require
60 times more CPU time than the previously hardest problem instances. Hence, this class of problem instances
expands the knowledge of the cutting and packing community and poses a new challenge for practitioners.

The rest of this paper is structured as follows: in Sect. 2 a formal description of the 0-1 knapsack problem is given.
An overview of relevant literature and related work is given in Sect. 3. The proposed hard class of problem instances
for the 0-1 knapsack problem is described in Sect. 4. We discuss several theoretical properties of this hard class of
problem instances in Sect. 5. The experimental setup and the analysis of the obtained results will be discussed in Sect.
6. Finally, the key points of this paper and further challenges for future work will be given in Sect. 7.

2. Problem description

The 0-1 knapsack problem is a classical NP-hard optimization problem [21]. In this problem, one is given a
knapsack with an integer capacity c and a set of n items, which each have an integer profit pi and an integer weight
wi. The goal is to select a subset of items to put into the knapsack such that the total value is maximized and the total
weight does not exceed the knapsack capacity. This problem can be written as the following optimization problem:

maximize
n

∑
i=1

pixi (1a)

subject to
n

∑
i=1

wixi ≤ c, (1b)

xi ∈ {0,1}, ∀i ∈ {1,2, . . . ,n} (1c)

Here, the problem variables are the knapsack capacity c, the number of items n and their associated weights wi

(i= 1, . . . ,n) and profits pi (i= 1, . . . ,n). The n binary decision variables xi (i= 1, . . . ,n) indicate whether item i should
be put into the knapsack. The objective function (1a) represents the total value of the selected items, whereas constraint
(1b) represents the capacity constraint and constraints (1c) impose the decision variables to be binary variables. In
what follows, we will assume the weights and profits to be strictly positive. We do not lose generality through this
assumption, because the other cases can be transformed to an equivalent problem instance with only strictly positive
weights and profits [21]. Finally, to avoid trivial cases it is also assumed that ∑

n
i=1 wi > c and that wi ≤ c (i = 1, . . . ,n).

3. Literature overview

The purpose of this section is to give an overview of relevant research for the 0-1 knapsack that helps to provide
a context for the results in this paper. Hence, it is not exhaustive, but rather several important topics are discussed in
more detail. For a more complete overview, the interested reader is referred to [21] and [34].
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Although the 0-1 knapsack problem is NP-hard, it is one of the easier problems within this complexity class. It
can be solved in pseudopolynomial time with a time complexity of O(nc) [5]. Additionally, several (fully) polynomial
time approximation schemes exist [7, 19, 20]. However, not all of these algorithms are necessarily practical and may
lead to large running times. A lot of attention has been devoted in the literature to developing algorithms that have a
good performance on a large number of problem instances. Most successful algorithms rely on either the principles
of branch-and-bound, dynamic programming or a hybrid of both, in which dynamic programming states that cannot
lead to optimal solutions are fathomed based on bounds. Another crucial concept that is used by these algorithms,
is the concept of cores. It has been observed for many problem instances that the structure of the optimal solution
often relies on only a small subset of items, which form the core [21]. There are several variations for the precise
definition of what a core is and most of them require the optimal solution to be known in order to determine the exact
core. In this paper, we will use the definition by [4]: if we define the rank of an item as the index in the list that is
obtained by sorting the items in decreasing order of their profit-weight ratio pi

wi
, then the core consists of all items with

a rank between the minimum and maximum rank of an item for which the decision variable xi has a different value in
the optimal solution to the 0-1 knapsack problem and the optimal solution to its linear relaxation. Since the optimal
solution is not known before solving the problem instance, there are several strategies to deal with finding the core.

[26] proposed MT1. This is a branch-and-bound algorithm for the 0-1 knapsack problem, using a new upper bound
which improved the upper bound from [10]. Martello and Toth later improved MT1 by proposing MT2 [27]. In this
algorithm, they used a stronger upper bound and integrated the concept of cores, by first determining an approximate
core of a fixed size, which is then solved by MT1. Pisinger proposed another branch-and-bound algorithm, called
Expknap [31], in which the size of the core gradually expands (i.e. an expanding core). Pisinger later also proposed
Minknap [32], an algorithm based on dynamic programming for which unpromising states are fathomed. Pisinger
was able to prove that this algorithm enumerates the smallest possible core. Finally, [25] proposed Combo in 1999,
which is based on a combination of various ideas. It has great similarities with Minknap, but also uses cardinality
constraints which are surrogate relaxed to the original problem. Several algorithmic ideas are gradually introduced
in Combo, depending on the number of encountered dynamic programming states. Although Combo was introduced
more than twenty years ago, it still represents the current state-of-the-art. This is not surprising, considering that it
was the result of more than two decades of research and the results that it obtained left little room for improvement.
Combo can solve most instances from the literature (even the largest ones containing several thousands of items) in a
matter of (milli)seconds. It has for example been observed that frequently the sorting time of O(nlog(n)) (to sort the
items in decreasing order of their profit-weight ratio) is the dominant term [21, 32], and thus this algorithm is very
fast. This is an impressive achievement, considering that the 0-1 knapsack problem is NP-hard. It also illustrates the
difficulty that researchers have experienced to find hard problem instances that could challenge Combo, because it is
such a powerful algorithm. Later in Section 6, it will become clear that the problem instances from this paper fill this
gap.

There are several papers in the literature that specifically focus on hard problem instances for the 0-1 knapsack
problem. Most of these hard problem instances are mainly of theoretical importance, with the instances of [33] and
[38] as important exceptions. Unlike the instances from [33] and [38], those theoretically important instances cannot
be tested on actual implementations for solving the 0-1 knapsack problem, because the number of digits required to
represent the integer coefficients is at least of the same order of magnitude as the number of items n, whereas most
implementations for solving the 0-1 knapsack problem only support 32-bit or 64-bit integers. [9] proposed a class of
problem instances for which he was able to prove that the running time of all algorithms with certain specific properties
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must be at least exponential in n. Chvátal’s results were later also extended by [13] and [18]. These extensions differ
in the assumptions that they make about the power of the algorithms that are used to solve the problem instances. [13]
study algorithms based on using lifted cover inequalities, whereas [18] allow the algorithms to use memoization and
strong bounds. The sizes of the coefficients considered in these three papers are all extremely large. The instances
proposed by [33] in “Where are the hard knapsack problems?” are more practical. Pisinger proposed 13 different
classes of problem instances and has empirically shown that several of these problem instances are hard to solve for
exact knapsack solvers. In contrast with the three previous papers, no theoretical guarantees are given for Pisinger’s
instances, but rather the actual performance of existing algorithms is considered. Hence, Pisinger’s work is the closest
resemblance from the literature to the current paper, although in contrast with [33] our instances allow us to provide
both theoretical and empirical results (see Sect. 5 and 6 respectively). Recently, [38] introduced a set of problem
instances that is even more diverse than the already diverse set of instances from [33]. They identify different regions
in the problem instance space and manually determine a set of target points, representing combinations of features of
problem instances that are not present in existing datasets. [38] state that they were mainly interested in “filling ‘holes’
in the instance space or pushing beyond the outer boundary of the existing instances in directions which appear to
correspond to more difficult instances”. Hence, the primary objective of [38] was to generate more diverse problem
instances. After determining the set of target points, they use genetic algorithms to evolve a new set of problem
instances with an objective function that attempts to minimize the distance (in terms of a set of features) between the
newly created problem instances and the target points. As we will later show, while these instances add the intended
diversity to available benchmark instances, they are not necessarily harder.

4. Problem instance generator

The problem instance generator that we propose is a stochastic generator that expects seven parameters (n, c,
g, f , ε , s and b) as input and will produce a problem instance for the 0-1 knapsack problem as output. Here, the
parameters n, c, g, s and b should be positive integers, whereas f and ε should be positive real numbers. Additionally,
b should be greater than 1. Many different combinations of parameter values will yield valid problem instances and in
principle any of those combinations could be used to generate problem instances. However, by appropriately choosing
the parameters we obtain several nice theoretical properties. These properties influence for example the structure of
optimal solutions and the existence of solutions that are hard to prune from the search space. Hence, in the rest of this
paper we will assume several other relationships between the parameters that reflect the intended use of the problem
instance generator. These relationships will be made explicit in Section 5 when the properties will be discussed. For
now, however, we will explain the problem instance generator in its full generality without going into too much detail
about the expected relationships between the parameters. The problem instances proposed in this paper can also be
seen as a more powerful generalization of problem instances that have been proposed by us before [17].

Before we give the precise description of the proposed problem instances, we attempt to give some intuition. The
problem instances from this paper consist of items that can be partitioned into several groups with exponentially de-
creasing profits and weights. Items within the same group have similar profits and weights, but are slight perturbations
of each other. The last group differs from the other groups and consists of items with uncorrelated small profits and
weights. This last group does not significantly affect the value of the optimal solution, but introduces items with a
large variety of profit-weight ratios, which can potentially lead to large cores. The parameters of the proposed problem
instance generator affect several properties from this paragraph such as the number of groups, the relative size of the
groups, the degree of perturbation and the ratio between the exponentially decreasing profits and weights.
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More specifically, the generator will produce a problem instance for which there are n items and a knapsack with
capacity c. Every item belongs to one of g different groups of items. The parameter f influences the number of items
in the different groups and it represents (at least approximately) the fraction of items that belong to the last group. The
remaining items are equally distributed over the first g− 1 groups. We define m as the number of items in group i

(1≤ i≤ g−1). We write “approximately”, because the situation is a bit more complicated, since n f is not necessarily
an integer and n(1− f ) is not necessarily divisible by g− 1. To be more precise, the first g− 1 groups each contain
exactly m = b n−bn f c

g−1 c items, whereas the last group contains the remaining n− (g− 1)m items. This last expression
is indeed approximately equal to n f , as desired. The items will be placed one by one in consecutive groups until the
groups contain the desired number of items. For every item j (1≤ j ≤ n) two small integers r1, j and r2, j are sampled
uniformly at random between 1 and s. If item j belongs to group i (with 1≤ i≤ g−1), its profit p j and weight w j are
set to p j =

⌊(
1
bi + ε

)
c
⌋
+ r1, j and w j =

⌊(
1
bi + ε

)
c
⌋
+ r2, j. Finally, if item j belongs to the last group, its profit p j

and weight w j are set to p j = r1, j and w j = r2, j. By defining the problem instances in this way, several nice theoretical
properties can be proven. This will be the topic of the next section.

In the rest of this paper, we will refer to these problem instances as noisy multi-group exponential (NMGE) problem
instances. This name is based on the fact that the items belong to multiple groups, where the profits and weights of
items amongst the first g−1 groups are exponentially decreasing with approximately a factor of b. The parameter ε ,
the floor function and the randomly generated integers r1, j and r2, j (1 ≤ j ≤ n) are the reason why the factor is not
exactly equal to b and can be interpreted as a kind of noise.

5. Theoretical properties

The theoretical properties in this section give further insight into the structure of the problem instances and help
us to explain why these are hard to solve. We will state, prove and discuss these properties.

5.1. Near-optimal solutions

The NMGE problem instances from this paper were constructed such that there are many feasible solutions for
which the objective function value is relatively close to the optimal objective function value. This makes it hard for
algorithms to prune such solutions from the search space based on calculating lower and upper bounds. Hence, the
existence of such solutions might make algorithms for the 0-1 knapsack problem slow, because large parts of the
search space must be explored to guarantee finding an optimal solution. In this subsection, we will prove that all
inclusionwise maximal solutions have an objective function value relatively close to the optimal objective function
value. We define the notion of an inclusionwise maximal solution in the following definition:

Definition 1. Consider a problem instance ω consisting of a knapsack with capacity c and n items with profits

pω,1, pω,2, . . . , pω,n and weights wω,1,wω,2, . . . ,wω,n. A solution xω,1,xω,2, . . . ,xω,n is called inclusionwise maximal

relative to ω if it is a feasible solution (i.e. ∑
n
i=1 wω,ixω,i ≤ c) and there does not exist an item j that can be added to

the knapsack without violating the capacity constraint (i.e. @ j : xω, j = 0∧wω, j +∑
n
i=1 wω,ixω,i ≤ c).

Note that it is easy to find an inclusionwise maximal solution (e.g. by greedily adding items to the knapsack as
long as the capacity constraint is not violated). Hence, for the problem instances that we propose in this paper, it is
easy to find near-optimal solutions, but hard to find optimal solutions. Any optimal solution has to be an inclusionwise
maximal solution, because the profits of the items are assumed to be positive integers. In this subsection, we will
prove that inclusionwise maximal solutions are indeed near-optimal. We will do this by proving a lower bound for
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Table 1: Overview of commonly occurring expressions

Expression Description

n The number of items of a problem instance
c The capacity of the knapsack
g The number of groups of items of a problem instance
f The approximate fraction of items in the last group (group g)
ε A noise parameter
s An upper bound for profits and weights of items in group g
b The base of the exponent used for the exponentially decreasing profits and weights

Ω(n,c,g, f ,ε,s,b) The set of all problem instances that can be generated using the given parameters
ω A problem instance from the set Ω(n,c,g, f ,ε,s,b)

pω, j The profit of item j for problem instance ω

wω, j The weight of item j for problem instance ω

xω, j A binary decision variable indicating whether item j from ω should be included into the knapsack
r1, j ,r2, j Two randomly generated integers between 1 and s for item j

pω, j =
⌊(

1
bi + ε

)
c
⌋
+ r1, j The profit of item j from ω in case it belongs to group i (for 1≤ i≤ g−1)

pω, j = r1, j The profit of item j from ω in case it belongs to group g

wω, j =
⌊(

1
bi + ε

)
c
⌋
+ r2, j The weight of item j from ω in case it belongs to group i (for 1≤ i≤ g−1)

wω, j = r2, j The weight of item j from ω in case it belongs to group g
m = b n−bn f c

g−1 c The exact number of items in group i (for 1≤ i≤ g−1)
n− (g−1)m The exact number of items in group g

d At least one item from group d cannot be included into the knapsack for any inclusionwise maximal solution
D The set of all indices of items in group d
F The set of all indices of items in the first g−1 groups
L The set of all indices of items in the last group (group g)

α,β The objective function value of any inclusionwise maximal solution is at least as large as α(c−β )
γ,δ The objective function value of any inclusionwise maximal solution is at most as large as γ +δc

z Any inclusionwise maximal solution has at least z items from group g included into the knapsack

the worst-case performance ratio between the objective function value of an inclusionwise maximal solution and an
optimal solution (Theorem 1).

The generated problem instances depend on the parameters of the problem instance generator (n, c, g, f , ε , s and b)
and the random values that are generated for the profit and weight of each item. We will denote by Ω(n,c,g, f ,ε,s,b)

the set of all problem instances that can be generated by the problem instance generator using the given parameters.
We will be interested in the worst-case performance ratio between the objective function value of an inclusionwise
maximal solution and an optimal solution over the problem instances from this parameterized set. Note that the
set Ω(n,c,g, f ,ε,s,b) is finite. It contains precisely s2n problem instances, because the problem instance generator
independently generates a random integer between 1 and s for the profit and weight of each item. Before we can prove
Theorem 1, we first need to prove three technical lemmas. Since there are quite a lot of different parameters involved
in the problem instance generator, we added the description of several commonly occurring expressions in Table 1
to make it easier for the readers to follow these lemmas. Some of these expressions will only be defined later in the
paper, but are already mentioned in this table.

The first lemma characterizes for every problem instance certain specific groups for which the items cannot all be
contained in the knapsack at the same time.

Lemma 1. Let ω ∈ Ω(n,c,g, f ,ε,s,b) be a problem instance and xω,1,xω,2, . . . ,xω,n be an inclusionwise maximal

solution relative to ω . If d is an integer such that 1≤ d ≤min(g−1,blogb(m)c), then there exists an item j in group

d which is not included in the knapsack (i.e. xω, j = 0).

Proof. Recall from the description of the problem instance generator that the first g−1 groups of items each contain
exactly m = b n−bn f c

g−1 c items, and item j in group i has a weight of b( 1
bi + ε)cc+ r2, j for some integer r2, j between 1

and s. For ease of notation, we define D as the set of all indices of items in group d. Including all items of group d in
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the knapsack would violate the capacity constraint, because

∑
k∈D

wω,k ≥
(⌊( 1

bd + ε

)
c
⌋
+1
)

m >
(( 1

bd + ε

)
c−1+1

)
m≥ c

m
bd ≥ c

m
blogb(m)

= c

Hence, there must be some j ∈ D such that xω, j = 0, because otherwise ∑k∈D xω,kwω,k > c.

Since all items have a profit-weight ratio close to 1, except for items in the last group for which the profits and
weights are very small, we expect the objective function value of any inclusionwise maximal solution to be relatively
close to the knapsack capacity c, because it is always possible to nearly fill the knapsack. Lemma 2 formalizes this
intuition and demonstrates a lower bound for the objective function value of any inclusionwise maximal solution.

Lemma 2. Let ω ∈ Ω(n,c,g, f ,ε,s,b) be a problem instance, let xω,1,xω,2, . . . ,xω,n be an inclusionwise maximal

solution relative to ω and let d = min(g− 1,blogb(m)c). The objective function value of any inclusionwise maximal

solution xω,1,xω,2, . . . ,xω,n is at least as large as α(c−β ), where α =

⌊(
1

bg−1 +ε

)
c

⌋
+1⌊(

1
bg−1 +ε

)
c

⌋
+s

and β =
⌊(

1
bd + ε

)
c
⌋
+ s+

s(n−m(g−1)).

Proof. Because of Lemma 1, there exists an item j in group d such that xω, j = 0. It follows that ∑
n
i=1 wω,ixω,i >

c−
(⌊(

1
bd + ε

)
c
⌋
+ s
)

, because otherwise we could include item j and thus xω,1,xω,2, . . . ,xω,n would not be an
inclusionwise maximal solution relative to ω .

Let F denote the set of all indices of items that belong to the first g− 1 groups and let L denote the set of all
indices of items that belong to the last group. Since the number of items in L is equal to n−m(g− 1), we also have
the inequality:

∑
i∈L

wω,ixω,i ≤ s(n−m(g−1))

We can now derive a lower bound for the objective function value of xω,1,xω,2, . . . ,xω,n:

n

∑
i=1

pω,ixω,i ≥ ∑
i∈F

pω,ixω,i = ∑
i∈F

wω,i
pω,i

wω,i
xω,i ≥min

i∈F

( pω,i

wω,i

)
∑
i∈F

wω,ixω,i

Since

min
i∈F

( pω,i

wω,i

)
≥

⌊(
1

bg−1 + ε

)
c
⌋
+1⌊(

1
bg−1 + ε

)
c
⌋
+ s

= α

and

∑
i∈F

wω,ixω,i =
n

∑
i=1

wω,ixω,i−∑
i∈L

wω,ixω,i

> c−
(⌊( 1

bd + ε

)
c
⌋
+ s
)
−∑

i∈L
wω,ixω,i ≥ c−

(⌊( 1
bd + ε

)
c
⌋
+ s
)
− s(n−m(g−1)) = c−β

we obtain
n
∑

i=1
pω,ixω,i > α(c−β ), as desired.
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Expected relationships between the parameters: By choosing the parameters of the problem instance generator
such that c is much larger than sbg, c is much larger than sn, bd is much larger than 1 and ε is approximately 0, we
obtain that α is approximately 1 and c is much larger than β . Hence, by choosing the parameters like this, the objective
function value of any inclusionwise maximal solution is indeed relatively close to c, as desired.

Lemma 2 gives us an expression that bounds the objective function value of any inclusionwise maximal solution
from below. The last lemma that we need before we can prove Theorem 1, will provide an upper bound for the
objective function value of the optimal solution for a problem instance. We can again intuitively expect that this upper
bound will be relatively close to the knapsack capacity c, because all items have a profit-weight ratio close to 1, except
for items with small weights and profits in the last group. This intuition is made more precise in Lemma 3.

Lemma 3. Let ω ∈ Ω(n,c,g, f ,ε,s,b) be a problem instance and let x∗
ω,1,x

∗
ω,2, . . . ,x

∗
ω,n be an optimal solution for

ω . The objective function value of the optimal solution x∗
ω,1,x

∗
ω,2, . . . ,x

∗
ω,n is at most as large as γ + δc, where γ =

s(n−m(g−1)) and δ =

⌊(
1

bg−1 +ε

)
c

⌋
+s⌊(

1
bg−1 +ε

)
c

⌋
+1

.

Proof. Let F denote the set of all indices of items that belong to the first g−1 groups and let L denote the set of all
indices of items that belong to the last group. We can now derive an upper bound for the objective function value of
the optimal solution x∗

ω,1,x
∗
ω,2, . . . ,x

∗
ω,n by writing it as a sum of two terms and deriving an upper bound for each term:

n

∑
i=1

pω,ix∗ω,i = ∑
i∈L

pω,ix∗ω,i + ∑
i∈F

pω,ix∗ω,i

For the first term, we have ∑
i∈L

pω,ix∗ω,i ≤ s(n−m(g−1)) = γ and for the second term we have:

∑
i∈F

pω,ix∗ω,i = ∑
i∈F

wω,i
pω,i

wω,i
x∗ω,i ≤max

i∈F

( pω,i

wω,i

)
∑
i∈F

wω,ix∗ω,i

≤

⌊(
1

bg−1 + ε

)
c
⌋
+ s⌊(

1
bg−1 + ε

)
c
⌋
+1

∑
i∈F

wω,ix∗ω,i ≤

⌊(
1

bg−1 + ε

)
c
⌋
+ s⌊(

1
bg−1 + ε

)
c
⌋
+1

c = δc

such that
n
∑

i=1
pω,ix∗ω,i ≤ γ +δc, as desired.

Expected relationships between the parameters: By choosing the parameters of the problem instance generator
such that c is much larger than sbg and c is much larger than sn, we obtain that c is much larger than γ and δ is
approximately 1. Hence, by choosing the parameters like this, the objective function value of an optimal solution is
indeed relatively close to c, as desired.

We are now ready to prove the main theorem of this subsection, which states that inclusionwise maximal solutions
are indeed near-optimal by showing a lower bound for the worst-case performance ratio between the objective function
value of an inclusionwise maximal solution and an optimal solution.

Theorem 1. Let ω ∈ Ω(n,c,g, f ,ε,s,b) be a problem instance, let xω,1,xω,2, . . . ,xω,n be an inclusionwise maximal

solution relative to ω and let x∗
ω,1,x

∗
ω,2, . . . ,x

∗
ω,n be an optimal solution for ω . The ratio between the objective function

value of the inclusionwise maximal solution xω,1,xω,2, . . . ,xω,n and the optimal solution x∗
ω,1,x

∗
ω,2, . . . ,x

∗
ω,n is at least

9



as large as α(c−β )
γ+δc , where α =

⌊(
1

bg−1 +ε

)
c

⌋
+1⌊(

1
bg−1 +ε

)
c

⌋
+s

, β =
⌊(

1
bd + ε

)
c
⌋
+ s+ s(n−m(g− 1)), γ = s(n−m(g− 1)) and

δ =

⌊(
1

bg−1 +ε

)
c

⌋
+s⌊(

1
bg−1 +ε

)
c

⌋
+1

.

Proof. Using Lemma 2 and Lemma 3, we immediately obtain:

min
ω∈Ω(n,c,g, f ,ε,s,b)

∑
n
i=1 pω,ixω,i

∑
n
i=1 pω,ix∗ω,i

≥
minω∈Ω(n,c,g, f ,ε,s,b) ∑

n
i=1 pω,ixω,i

maxω∈Ω(n,c,g, f ,ε,s,b) ∑
n
i=1 pω,ix∗ω,i

≥ α(c−β )

γ +δc

Expected relationships between the parameters: By combining the parameter choices of Lemma 2 and Lemma 3,
we obtain that α is approximately 1, c is much larger than β , c is much larger than γ and δ is approximately 1. Hence,
by choosing the parameters like this, inclusionwise maximal solutions are indeed near-optimal, as desired.

We finish this subsection by briefly illustrating Lemma 2, Lemma 3 and Theorem 1 with a numerical exam-
ple. For any problem instance ω ∈ Ω(103,1010,11,10−1,10−5,300,2) and any inclusionwise maximal solution
xω,1,xω,2, . . . ,xω,n relative to ω , we have m = 90, d = 6, α ≈ 0.99997 and β ≈ 0.016c such that the objective
function value of the solution xω,1,xω,2, . . . ,xω,n is at least as large as α(c− β ) ≈ 0.984c. For any optimal so-
lution x∗

ω,1,x
∗
ω,2, . . . ,x

∗
ω,n, we have γ ≈ 0.000003c and δ ≈ 1.00003 such that the objective function value of the

optimal solution x∗
ω,1,x

∗
ω,2, . . . ,x

∗
ω,n is at most as large as γ + δc ≈ 1.00003c. Hence, the worst-case ratio between

the objective function value of an inclusionwise maximal solution and an optimal solution for any problem instance
ω ∈Ω(103,1010,11,10−1,10−5,300,2) is at least as large as α(c−β )

γ+δc ≈ 0.98397. This means that the optimality gap is
at most as large as 1−0.98397≈ 1.603% and so xω,1,xω,2, . . . ,xω,n is near-optimal.

5.2. Varying profit-weight ratios in optimal solutions

Recall from Sect. 3 that most successful algorithms for solving the 0-1 knapsack problem rely on so-called cores.
These algorithms use the observation that for many typical problem instances the structure of an optimal solution
is often very similar to the structure of a certain greedy solution, except for items in the core [27, 31, 32]. The
greedy algorithm first sorts the items in decreasing order of their profit-weight ratio (i.e. such that pi

wi
≥ pi+1

wi+1
,∀i ∈

1,2, . . . ,n− 1). The algorithm then goes over the items one by one in this order and greedily adds an item to the
knapsack if this does not violate the capacity constraint. This greedy solution is also used to find the optimal solution
of the linear relaxation of the 0-1 knapsack problem (in which fractions of an item can be added to the knapsack). The
core then consists of all items for which its rank is between the minimum and maximum rank of an item for which
xi is different in the optimal solution for the 0-1 knapsack problem and the optimal solution for its linear relaxation.
This definition of the core concept implies that the optimal solution should be known in order to determine the core.
Algorithms like Expknap, Minknap and Combo deal with this problem by using expanding cores (see Sect. 3). These
algorithms rely on forward-backward dynamic programming starting from an item set that only contains the break
item and this set is gradually expanded. When the algorithm terminates, it will have enumerated a core.

In case the core is really big, such algorithms might become slow. In order to construct problem instances with
big cores, one could try to enforce items to have a wide variety of profit-weight ratios. However, this will often just
result in the items with low profit-weight ratio not being part of the optimal solution. Thus, great care must be taken
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to construct such problem instances. For the NMGE problem instances from this paper, the items from the first g−1
groups all have a profit-weight ratio close to 1, whereas the items from the last group have a wide variety of profit-
weight ratios. By carefully choosing the parameters of the problem instance generator, we can guarantee that any
optimal solution must contain at least z items from the last group of items, for any integer z between 0 and the size of
the last group. This is precisely due to the (somewhat complicated) way in which the weights of the items are defined.
This statement is formalized and proven in the following theorem.

Theorem 2. Let ω ∈Ω(n,c,g, f ,ε,s,b) be a problem instance. If z is an integer between 0 and n− (g−1)m (the size

of the last group) such that c
bg−1 − (g−1)m(εc+ s)≥ sz, then any inclusionwise maximal solution xω,1,xω,2, . . . ,xω,n

relative to ω contains at least z items from the last group.

Proof. The weight of item j in group i (1 ≤ i ≤ g− 1) is defined as wω, j = b( 1
bi + ε)cc+ r2, j, and thus we have the

inequality: ( 1
bi + ε

)
c < wω, j ≤

( 1
bi + ε

)
c+ s

We can slightly rewrite this to obtain a form that will be more useful in the next paragraph:

bg−1−i

bg−1 c+ εc < wω, j ≤
bg−1−i

bg−1 c+ εc+ s

Let F denote the set of all indices of items that belong to the first g−1 groups. If we select l items from F , there exists
some nonnegative integer k such that:

k
bg−1 c+ lεc < ∑

a∈F
wω,axω,a ≤

k
bg−1 c+ l(εc+ s)

The above expression is obtained by taking the sum of l inequalities corresponding to the l selected items from F .
For the inclusionwise maximal solution xω,1,xω,2, . . . ,xω,n, it must be true that k ≤ bg−1− 1, because otherwise the
capacity constraint would be violated since for k ≥ bg−1 we have:

n

∑
a=1

wω,axω,a ≥ ∑
a∈F

wω,axω,a >
bg−1

bg−1 c+ lεc≥ c

Since k ≤ bg−1−1 and l ≤ (g−1)m (the number of items in F), we also obtain:

c− ∑
a∈F

wω,axω,a ≥ c−
(bg−1−1

bg−1 c+(g−1)m(εc+ s)
)
=

c
bg−1 − (g−1)m(εc+ s)≥ sz

Because of this inequality and the fact that xω,1,xω,2, . . . ,xω,n is an inclusionwise maximal solution, it must contain at
least z items from the last group.

Although problem instances with large cores tend to be harder to solve, great care must be taken in interpreting
Theorem 2. One might be tempted to think that choosing the parameters of the problem instance generator such that z

is large, will automatically lead to hard problem instances. However, this is not necessarily true, because in this case
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Theorem 2 also reveals a part of the structure of the optimal solution and the problem instance can be reduced to a
smaller problem instance in some cases. This potential pitfall will also come back later in the experiments section.
Hence, Theorem 2 gives additional insight into the structure of the optimal solution and problem instances for which
this structure is revealed tend to be easier.

6. Experiments

We have systematically generated a large set of hard NMGE problem instances using the problem instance gen-
erator described in this paper. A full factorial design of experiments was used, where we have generated a prob-
lem instance for every combination of parameters with n ∈ {400,600,800,1000,1200}, c ∈ {106,108,1010}, g ∈
{2,6,10,14}, f ∈ {0.1,0.2,0.3}, ε ∈ {0,10−5,10−4,10−3,10−2,10−1}, s ∈ {100,200,300} and b ∈ {2}. The param-
eters were chosen such that (for most combinations) the assumptions explained in Section 5 are met. For the integer
parameter b, we made the decision to always set b = 2 in the experiments for several reasons. This parameter occurs
as the base of an exponent and hence it is very sensitive. If we consider problem instances where b ≥ 3, there are
many problem instances for which the assumptions mentioned in Sect. 5 are not met since for example c < sbg for
many combinations. As a result, choosing b ≥ 3 would lead to many degenerate problem instances in which not all
groups are pairwise disjoint (i.e. the profits and weights of items in different groups are almost equal to each other)
and this only complicates the interpretation of the results. Finally, choosing b = 2 also results in a dataset which is
more manageable and this also allows us to generate more combinations for the other parameters. The resulting dataset
contains 5 ·3 ·4 ·3 ·6 ·3 ·1 = 3240 problem instances. The experiments were all conducted on the ThinKing cluster of
the Flemish Supercomputer Center (VSC), using 10 GB RAM memory for each run and powerful CPUs with a clock
rate of 2.5 GHz. Completing all the experiments on this hardware took around 810 CPU-hours.

6.1. Preliminary experiment

It is hard to make general statements about the hardness of a problem instance with regard to all possible algo-
rithms. Hence, the hardness of a problem instance is often characterized as empirical hardness by measuring the
runtime of a certain algorithm. It is often the case that one algorithm performs better on problem instances with
one specific structure whereas other algorithms perform better on problem instances with another structure. For the
0-1 knapsack problem, however, it is widely known that the Combo algorithm [25] is superior to all other avail-
able algorithms that have been developed so far on a large set of problem instances. This has already been em-
pirically demonstrated before by [25] and also by [33] for a large set of problem instances consisting of 31,800
problem instances from 13 different classes. To verify that this observation also holds for our instances, we have
performed a preliminary control experiment in which we compared Combo2 with two other algorithms, namely
Expknap3 [31] and Minknap23 [32]. The code for these three algorithms has been previously made available at
http://hjemmesider.diku.dk/~pisinger/codes.html.

Since the problem instances that we propose are very hard, it would be computationally infeasible to run these three
algorithms on all 3240 problem instances. Hence, we have decided for this preliminary experiment to run these three
algorithms on 100 randomly selected problem instances from the whole dataset, using a time limit of 7200 seconds
per run. From this preliminary experiment it was indeed reconfirmed that Combo was a lot faster than Expknap and

2The variable MAXSTATES was increased to 450,000,000 to avoid running out of memory.
3The code was slightly changed to be able to handle 64-bit integers instead of 32-bit integers.
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Minknap. More specifically, there were only 6 problem instances out of 100 which could not be solved by Combo
within the time limit, whereas there were 79 and 34 such instances for Expknap and Minknap respectively. Hence, in
the rest of this paper we will use the runtime of Combo to empirically measure the hardness of the problem instances.

6.2. Comparison with other problem instances

6.2.1. Comparison with problem instances from [33]

We compared the NMGE problem instances from this paper with the problem instances from [33]. One of the main
goals of [33] was to empirically demonstrate that there exist problem instances with a certain structure that are hard
to solve for exact algorithms for the 0-1 knapsack problem, despite the fact that many large problem instances can be
solved in several (milli)seconds. This goal is aligned with one of the main goals of this paper. Pisinger’s dataset is well
known and has been widely used by various other researchers. It consists of 13 different classes of problem instances
which collectively yield 31,800 problem instances. These problem instances, their solutions and the runtimes by
Combo have previously been made available at http://hjemmesider.diku.dk/~pisinger/codes.html.

To be able to make a fair comparison with our instances, we have rerun the 3000 most difficult problem instances
from [33] on the same hardware as our instances using a time limit of 7200 seconds per run. The evaluation metric
that we use to compare the hardness of the problem instances is the PAR2 score4. The PAR2 score is equal to the
runtime of an algorithm, but penalizes algorithm runs that do not produce the correct solution within the time limit by
assigning a score of 2 · 7200 = 14,400 seconds. The PAR2 scores of the 3000 most difficult problem instances from
[33] (Pisinger3000) and the problem instances from this paper are shown in the boxplots in Fig. 1. We also indicated
the average runtimes (thick dots) and the time limit (horizontal line).

Figure 1: PAR2 scores for different problem instances

These boxplots show that the instances that we propose in this paper are several orders of magnitude harder than
the hardest instances that were previously known. Note that the results are shown on a logarithmic scale. Although
the median PAR2 scores for both datasets are still relatively low (8.73 · 10−1s for the instances in this paper versus
2.38 · 10−1s for Pisinger3000), it is more interesting to look at the hardest problem instances on the right side of the

4We have chosen PAR2 instead of the more widely used variant PAR10 to decrease the effect of runs that do not produce the result within the
time limit.
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Table 2: Summary of the boxplots from Figs. 1-3 and 7-12

Boxplot Left whisker First quartile Second quartile Third quartile Right whisker Average Timeouts

Fig. 1: this paper 3.45 ·10−2 s 1.74 ·10−1 s 8.73 ·10−1 s 2.03 ·101 s 5.02 ·101 s 1.24 ·103 s 263
Fig. 1: Pisinger3000 1.38 ·10−2 s 7.96 ·10−2 s 2.38 ·10−1 s 1.09 ·100 s 2.59 ·100 s 1.15 ·100 s 0

Fig. 2: this paper, n≤ 500 3.80 ·10−2 s 1.30 ·10−1 s 3.91 ·10−1 s 5.97 ·100 s 1.47 ·101 s 6.92 ·102 s 30
Fig. 2: Pisinger3000, n≤ 500 1.38 ·10−2 s 1.76 ·10−1 s 5.88 ·10−1 s 1.86 ·100 s 4.36 ·100 s 1.32 ·100 s 0
Fig. 2: this paper, 501≤ n≤ 1000 3.45 ·10−2 s 1.74 ·10−1 s 9.90 ·10−1 s 2.19 ·101 s 5.43 ·101 s 1.31 ·103 s 167
Fig. 2: Pisinger3000, 501≤ n≤ 1000 2.56 ·10−2 s 2.00 ·10−1 s 1.05 ·100 s 2.62 ·100 s 5.71 ·100 s 2.34 ·100 s 0
Fig. 2: this paper, n > 1000 4.30 ·10−2 s 2.55 ·10−1 s 1.49 ·100 s 4.63 ·101 s 1.14 ·102 s 1.55 ·103 s 66
Fig. 2: Pisinger3000, n > 1000 1.66 ·10−2 s 5.04 ·10−2 s 1.10 ·10−1 s 3.99 ·10−1 s 9.20 ·10−1 s 8.37 ·10−1 s 0

Fig. 3: initial population 1.02 ·10−2 s 1.49 ·10−2 s 2.73 ·10−2 s 4.45 ·10−2 s 8.90 ·10−2 s 3.59 ·10−2 s 0
Fig. 3: evolved instances 9.45 ·10−3 s 1.27 ·10−2 s 2.26 ·10−2 s 3.19 ·10−2 s 6.03 ·10−2 s 2.59 ·10−2 s 0
Fig. 3: this paper small instances 3.45 ·10−2 s 9.93 ·10−2 s 1.73 ·10−1 s 3.22 ·10−1 s 6.32 ·10−1 s 2.99 ·10−1 s 0

Fig. 7: n = 400 3.80 ·10−2 s 1.30 ·10−1 s 3.91 ·10−1 s 5.97 ·100 s 1.47 ·101 s 6.92 ·102 s 30
Fig. 7: n = 600 3.76 ·10−2 s 1.45 ·10−1 s 7.72 ·10−1 s 1.14 ·101 s 2.81 ·101 s 1.14 ·103 s 49
Fig. 7: n = 800 3.81 ·10−2 s 1.72 ·10−1 s 1.00 ·100 s 2.26 ·101 s 5.36 ·101 s 1.31 ·103 s 55
Fig. 7: n = 1000 3.45 ·10−2 s 2.13 ·10−1 s 1.37 ·100 s 3.33 ·101 s 7.91 ·101 s 1.49 ·103 s 63
Fig. 7: n = 1200 4.30 ·10−2 s 2.55 ·10−1 s 1.49 ·100 s 4.63 ·101 s 1.14 ·102 s 1.55 ·103 s 66

Fig. 8: c = 106 3.45 ·10−2 s 1.02 ·10−1 s 1.78 ·10−1 s 4.00 ·10−1 s 8.33 ·10−1 s 4.31 ·10−1 s 0
Fig. 8: c = 108 6.35 ·10−2 s 3.45 ·10−1 s 3.11 ·100 s 1.76 ·101 s 4.25 ·101 s 2.57 ·101 s 0
Fig. 8: c = 1010 3.80 ·10−2 s 5.94 ·10−1 s 3.22 ·101 s 4.23 ·103 s 6.47 ·103 s 3.68 ·103 s 263

Fig. 9: g = 2 3.80 ·10−2 s 1.19 ·10−1 s 1.82 ·10−1 s 3.21 ·10−1 s 6.22 ·10−1 s 2.57 ·10−1 s 0
Fig. 9: g = 6 4.34 ·10−2 s 8.21 ·10−1 s 2.27 ·100 s 8.97 ·100 s 2.07 ·101 s 9.49 ·100 s 0
Fig. 9: g = 10 3.81 ·10−2 s 1.82 ·10−1 s 1.77 ·101 s 1.95 ·102 s 4.86 ·102 s 1.47 ·103 s 71
Fig. 9: g = 14 3.45 ·10−2 s 1.80 ·10−1 s 3.66 ·100 s 1.00 ·103 s 1.85 ·103 s 3.47 ·103 s 192

Fig. 10: ε = 0 4.67 ·10−2 s 1.88 ·10−1 s 7.25 ·10−1 s 2.36 ·101 s 5.78 ·101 s 9.07 ·102 s 33
Fig. 10: ε = 10−5 3.81 ·10−2 s 2.01 ·10−1 s 1.47 ·100 s 5.69 ·101 s 1.41 ·102 s 1.99 ·103 s 73
Fig. 10: ε = 10−4 3.45 ·10−2 s 1.67 ·10−1 s 1.03 ·100 s 2.03 ·101 s 4.42 ·101 s 1.49 ·103 s 51
Fig. 10: ε = 10−3 3.76 ·10−2 s 1.40 ·10−1 s 4.80 ·10−1 s 1.87 ·101 s 4.41 ·101 s 1.69 ·103 s 61
Fig. 10: ε = 10−2 4.49 ·10−2 s 1.63 ·10−1 s 8.92 ·10−1 s 2.93 ·101 s 7.25 ·101 s 1.28 ·103 s 45
Fig. 10: ε = 10−1 5.21 ·10−2 s 2.09 ·10−1 s 7.84 ·10−1 s 1.26 ·101 s 2.97 ·101 s 5.89 ·101 s 0

Fig. 11: f = 0.1 3.45 ·10−2 s 1.42 ·10−1 s 7.56 ·10−1 s 1.40 ·101 s 3.41 ·101 s 1.27 ·103 s 92
Fig. 11: f = 0.2 4.34 ·10−2 s 1.80 ·10−1 s 8.53 ·10−1 s 2.18 ·101 s 5.37 ·101 s 1.18 ·103 s 83
Fig. 11: f = 0.3 3.81 ·10−2 s 2.16 ·10−1 s 1.05 ·100 s 3.16 ·101 s 7.58 ·101 s 1.25 ·103 s 88

Fig. 12: s = 100 4.51 ·10−2 s 1.76 ·10−1 s 1.00 ·100 s 2.76 ·101 s 6.84 ·101 s 1.21 ·103 s 86
Fig. 12: s = 200 3.80 ·10−2 s 1.70 ·10−1 s 8.76 ·10−1 s 2.09 ·101 s 4.99 ·101 s 1.28 ·103 s 91
Fig. 12: s = 300 3.45 ·10−2 s 1.72 ·10−1 s 7.31 ·10−1 s 1.66 ·101 s 4.10 ·101 s 1.22 ·103 s 86

third quartile. The third quartile is 2.03 ·101s for the instances in this paper versus 1.09 ·100s for Pisinger3000. There
were 263 out of 3240 problem instances from our dataset which could not be solved by Combo within the time limit
of 7200 seconds, whereas there were 0 out of 3000 such problem instances for Pisinger3000. The hardest problem
instance from Pisinger3000 only took 1.21 ·102s to solve versus more than 7200 seconds for the instances in this paper,
which yields a ratio of around 60. The average PAR2 scores are quite different as well: 1.24 ·103s for the instances in
this paper versus 1.15 ·100s for Pisinger3000. These numbers are also summarized in Table 2. Hence, these numbers
indicate that the NMGE problem instances from this paper are harder than the problem instances from Pisinger3000.

It is also remarkable that the problem instances from this paper are relatively small in comparison with Pisinger3000

(see Table 3). The problem variables n and c have a direct impact on the size of the search space (e.g. Combo has a
worst-case time complexity of O(nc) [25]). The average values for n and c for the problem instances in Pisinger3000

are both approximately five times larger than for this paper and the ratio between the average PAR2 score is approxi-
mately 1078.26. Hence, we can conclude that our problem instances are harder to solve, despite much smaller search
spaces.

We also grouped the problem instances from this paper and Pisinger3000 into three coarse bins based on the
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Table 3: Comparison of the number of items n, the knap-
sack capacity c and the average PAR2 score for
the problem instances from this paper and [33]

Problem instances average n average c average PAR2 score

this paper 800.0 3.37 ·109 1.24 ·103 s
Pisinger3000 4022.0 1.52 ·1010 1.15 ·100 s

number of items n. For the problem instances in the first, second and third bin we respectively have n ≤ 500, 501 ≤
n≤ 1000 and n > 1000. The boxplots for each of these can be found in Fig. 2. This figure shows that the conclusions
that could be drawn when comparing both datasets as a whole (Fig. 1) can also be drawn when comparing both
datasets for every bin individually. The ratios between the average PAR2 scores for both datasets are respectively
524.24, 559.83 and 1851.85 for the first, second and third bin. This indicates for every bin that the problem instances
from this paper are harder than the problem instances from Pisinger3000 and the ratios between the average PAR2
scores increase for increasing values of n.

Figure 2: PAR2 scores for different problem instances where n varies

6.2.2. Comparison with problem instances from [38]

[38] recently proposed problem instances that cover even more parts of the problem instance space than the in-
stances from [33]. To generate these new problem instances, they first identify a set of 26 target points that represent
combinations of features of problem instances that are not present in current datasets. For every target point, they
then use two genetic algorithms (for generating either weakly or strongly structured problem instances) that evolve an
initial population of problem instances towards the target point. The initial population consists of problem instances,
each having n = 1000 items, from the classes proposed by [33] as well as several newly introduced classes by [38]
and these collectively yield 4000 problem instances, whereas the evolved problem instances collectively yield 1300
problem instances.

An important remark is that the problem instances proposed by [38] have much smaller knapsack capacities than
those proposed by Pisinger and this leads to much smaller runtimes than those from [33] and this paper (see Table 4).
All problem instances from [38] can be solved within 1s by Combo. Hence, the comparison in this subsection was
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Table 4: Comparison of the number of items n, the knapsack
capacity c and the average PAR2 score for the initial
population from [38], the evolved problem instances
from [38] and small problem instances from this paper

Problem instances average n average c average PAR2 score

initial population 1000.0 2.61 ·105 3.59 ·10−2 s
evolved instances 1000.0 3.09 ·105 2.59 ·10−2 s

this paper small instances 1000.0 1.00 ·106 2.99 ·10−1 s

mainly carried out for the sake of completeness and we will particularly focus on (i) whether the evolved instances
are harder than those in the initial population, acknowledging that they were designed to be diverse rather than hard,
(ii) how these problem instances compare to the problem instances with the smallest knapsack capacity (c = 106) and
the same number of items (n = 1000) from this paper and (iii) whether the instances from the current paper further
increase the diversity of the problem instances with respect to several features.

The PAR2 scores of the problem instances in the initial population from [38], the evolved problem instances from
[38] and the small problem instances from the current paper can be found in Fig. 3. The three quartiles and the average
PAR2 score of the evolved problem instances are all slightly lower than those of the initial population (average PAR2
score of 3.59 ·10−2s for the initial population versus 2.59 ·10−2s for the evolved problem instances). The PAR2 scores
of the hardest evolved problem instances are also slightly lower than those of the initial population. Hence, these
numbers all lead to the conclusion that the evolved problem instances are not harder than the problem instances in the
initial population, although they are more diverse. The small problem instances from the current paper have knapsack
capacities that are on average 3.24 times larger than the evolved problem instances from [38] and have an average
PAR2 score that is 11.54 times as large. The ratios between the three quartiles are similar (they are 7.81, 7.65 and
10.09 for respectively the first, second and third quartile). This suggests that the small problem instances from the
current paper are also harder than those from [38] although they also have larger knapsack capacities and the relative
difference is not as large as in the case of the larger problem instances from the previous subsection (with an average
PAR2 score of 1.24 ·103s and an average knapsack capacity of c = 3.37 ·109).

Figure 3: PAR2 scores for small problem instances
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Since the problem instances from [38] were designed to be diverse, it is also interesting to investigate whether the
problem instances from the current paper further increase the diversity with respect to several features. To answer this
question, we used the Instance Space Analysis methodology developed by [40, 36, 37]. This methodology allows us
to visualize the problem instances in a two-dimensional space in which patterns regarding algorithm performance and
problem instance features can be visually observed. In order to obtain a two-dimensional representation of a problem
instance, a number of numerical features is calculated for each problem instance such that a problem instance can be
regarded as a point in a high-dimensional feature space. These points in a high-dimensional feature space can then
be projected to a two-dimensional space, by first preprocessing the features (e.g. scaling and normalization) and then
finding two appropriate linear combinations of the features (one for each dimension).

In this experiment we used the online tool MATILDA [35], which implements the Instance Space Analysis method-
ology. To find a projection from a high-dimensional feature space to a two-dimensional space, MATILDA uses the
PILOT method [29]. According to [38], this method finds a projection “such that algorithm performance and feature
values increase linearly from one edge of the instance space to the opposite, thereby assisting the visualisation of di-
rections of hardness and feature correlation to support insights”. For this experiment, we used 10 different numerical
features from [38]. These features were calculated for each problem instance from this paper and from [38].

We obtained the following projection matrix through MATILDA for projecting a problem instance as a point in a
10D (preprocessed) feature space to a 2D space:

[
Z1

Z2

]
=



−0.2453 0.6246
0.5633 −0.4492
0.1321 0.4560
−0.6168 −0.0480
−0.3160 −0.0847
−0.2619 0.1622
0.5660 −0.3642
0.2619 −0.0222
0.4804 0.4630
0.4333 0.3491



T 

Dominant Pairs
Correlation Coeff.

Approximation Gap
Possible Fix Prop.

First Weight
First Profit

Polyfit Quadratic
Even-Odd Likeness

Greedy Unused Capacity
Red. Coeff. Var. Effic.


These features all have the domain [0,1], except for the feature Correlation Coefficient, which has the domain

[−1,1], and the feature Even-Odd Likeness, which has the domain [0,10]. A precise description of these features can
be found in Table 2 from [38]. The projection gives rise to the 2D instance space shown in Fig. 4 for the problem
instances from this paper (blue), the initial population from [38] (red) and the evolved instances from [38] (green).
From this figure we can see that the evolved instances from [38] indeed add diversity to the initial population, as
intended by [38]. The problem instances from the current paper are situated in a smaller area, but further increase
the diversity of these two sets of problem instances by filling two previously unfilled gaps outside of the previous
boundary. The first filled gap is located near (Z1,Z2) = (2.5,2) and the second one is located near (Z1,Z2) = (2.5,0).

The Instance Space Analysis methodology also allows us to visually observe the hard regions of the problem
instance space. The PAR2 scores obtained by Combo are shown using colorbars in Fig. 5 (yellow colors correspond to
higher PAR2 scores and blue colors correspond to lower PAR2 scores). This figure visually confirms the conclusions
that we made earlier: Combo is able to solve most problem instances quite fast, except for the problem instances
located roughly near (Z1,Z2) = (2.5,0). It is interesting to see that the problem instances from the current paper
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Figure 4: 2D representation of the problem instances from this paper and [38] obtained using MATILDA [35]

around the first gap (near (Z1,Z2) = (2.5,2)) increase the diversity of the available problem instances, but do not
necessarily lead to (much) harder problem instances, whereas the problem instances around the second gap (near
(Z1,Z2) = (2.5,0)) are much harder.

Finally, we also show for two specific features (Dominant Pairs and Greedy Unused Capacity) how they are
distributed across the instance space (see Fig. 6). [38] describe the Dominant Pairs feature as the “proportion of
item pairs i, j for which pi ≥ p j and wi ≤ w j OR p j ≥ pi and w j ≤ wi , excluding identical items” and the Greedy
Unused Capacity feature as follows: “If the instance has no item pairs i, j such that wi 6= w j then this feature defaults
to 0. Otherwise it is defined as the capacity unused by the greedy solution, divided by the smallest non-zero difference
between any two items’ weights, then normalized using Eq. 2.”

normalized feature← tan−1(raw feature value/100)
π/2

(2)

This normalization step ensures that different features have comparable magnitudes. The raw features (with domain
R≥0) are transformed into normalized features (with domain [0,1]).

These two features have a remarkable pattern near the areas where the NMGE problem instances from this paper
are located. The Dominant Pairs feature seems to linearly decrease from the upper left corner of the instance space
to the lower right corner, except for the areas where the problem instances from this paper are located. Our problem
instances near the first gap ((Z1,Z2) = (2.5,2)) tend to have a high number of dominated pairs of items and this
suggests that such problem instances are easier to solve, since a dominated item can only be included in the optimal
knapsack packing if all of the items by which that item is dominated are also included. The Dominant Pairs feature is
much lower near the second gap ((Z1,Z2) = (2.5,0)) and these problem instances are also much harder. The Greedy
Unused Capacity feature is very high for most of our problem instances and reaches higher values than the problem
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Figure 5: Visualization of the PAR2 scores obtained by Combo

(a) Distribution of the Dominant Pairs feature (b) Distribution of the Greedy Unused Capacity feature

Figure 6: Distribution of two features

instances from [38]. In the most difficult area near the second gap this feature is always very high, suggesting that
this might be an important feature that correlates with instance hardness, although this feature alone is not sufficient
to predict problem instance hardness.

6.3. Influence of parameters on runtime

In this last subsection, we will investigate the influence of the various parameters of the problem instance generator
on the time that is needed to solve the generated problem instance. For every parameter, we partitioned the whole
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dataset (3240 problem instances) according to the different values which that parameter can take. The boxplots of the
PAR2 scores for every separate parameter can be found in Figs. 7-12. As before, we indicated the average runtimes by
thick dots and the time limit of 7200 seconds by a horizontal line. These figures contain quite a bit of information (i.e.
six different numbers for each boxplot, describing the two whiskers, the three quartiles and the average). In the rest of
this subsection, we will primarily focus on the general trends that we can see and only to a lesser extent on the precise
numbers. For the sake of completeness, we have included the precise numbers that can be derived from the different
boxplots in Table 2. For every figure, the maximum values of every column are marked in bold (higher values indicate
harder problem instances). Since we are interested in the hard problem instances, amongst these numbers most of our
attention will go to the numbers in the rightmost columns since the harder problem instances influence these columns
more. This is the case, because the boxplots in the figures indicate strongly right skewed distributions (note that the
boxplots are shown on a logarithmic scale).

This subsection can also be placed in the broader context of other studies that deal with so-called phase transi-

tions. These phase transitions were originally introduced in statistical mechanics, where they play an important role
for concepts such as superfluidity and superconductivity, but they have also been actively studied in the context of
combinatorial (optimization) problems under a slightly different meaning (see e.g. [14]). In the context of combinato-
rial optimization, it has been conjectured that for several NP-complete problems there exists at least one parameter and
one critical value for that parameter around which the difficulty of the problem instances drastically changes [8, 1].
Such phase transitions have for example been observed for the SAT problem [28] and the travelling salesman problem
[12, 39]. The parameters that will be discussed in this subsection can also be understood as phase transition parameters
as we can also observe clear changes in the difficulty of the problem instances, although these changes are less drastic
for some parameters than what has been observed for other problems.

6.3.1. Influence of n and c

Since the parameters n and c have a direct impact on the size of the search space, we can expect that increasing
these parameters will cause the PAR2 score to increase as well. This is indeed confirmed by our experiments as can
be seen in Figs. 7 and 8. By increasing n and c, the three quartiles of the PAR2 scores also increase. The average
PAR2 scores follow the same pattern. It is remarkable that even for the smallest problem instances, with n = 400, not
all problem instances could be solved within 7200 seconds. More specifically, there were 30 such problem instance
out of 648 amongst the group with n = 400. For the smallest values of c (106 and 108), all problem instances could
be solved within the time limit. For the largest value of c = 1010, however, there were 263 problem instances out of
1080 which could not be solved within 7200 seconds. Hence, the average PAR2 score for this last group (3.68 ·103s)
is not very far off the time limit. These summarizing statistics all indicate that the PAR2 scores indeed increase with
increasing n and c, which is consistent with what could be intuitively expected.

6.3.2. Influence of g

Unlike for n and c, it is not a priori clear which influence the parameter g has on the PAR2 scores. By looking at
Fig. 9, it becomes clear that the influence of g on the PAR2 scores is also more complicated than the parameters n

and c. For increasing values of g, the first and the second quartile first increase and then decrease, whereas the third
quartile and the average PAR2 score keep on increasing. The peaks occur at different values of g. The easiest problem
instances can be found in the groups with g = 2 (having an average PAR2 score of 2.57 · 10−1s) and g = 6 (having
an average PAR2 score of 9.49 · 100s). All instances in these two groups could be solved within the time limit. The
average PAR2 scores for g = 10 and g = 14 are much higher, namely 1.47 ·103s and 3.47 ·103s respectively.

20



Figure 7: PAR2 scores for different values of n

Figure 8: PAR2 scores for different values of c

Interestingly, we can also notice that for g = 2 and g = 6 there are respectively 520 and 198 problem instances in
the dataset for which Theorem 2 states that all items of the last group of items must belong to the optimal solution.
This number is lower for the other values of g, namely 78 for g = 10 and 0 for g = 14. Hence, Theorem 2 reveals a
part of the structure of the optimal solution and essentially reduces the problem instance to a smaller problem instance.
The results suggest that such problem instances are also easier for Combo, despite the fact that this algorithm is not
based on the ideas of Theorem 2. Another potential reason why problem instances with smaller values of g are easier,
is because for a fixed number of items n, the individual groups contain more items for smaller values of g. These larger
groups imply that within one group, there will be more dominated items (i.e. items that have at the same time a lower
profit and higher weight than another item). The existence of many dominated items can make the problem instance
easier, because such items can only be part of the optimal solution if all items by which these are dominated are part
of the optimal solution as well. This observation is also consistent with the conclusion that was made earlier using
Fig. 6a.
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Figure 9: PAR2 scores for different values of g

Figure 10: PAR2 scores for different values of ε

6.3.3. Influence of ε

As can be seen in Fig. 10, the influence of ε on the PAR2 scores is also more complicated than the cases of n

and c. The first, second and third quartile all have a different trend regarding increasing and decreasing. The average
PAR2 scores for ε = 0, ε = 10−5, ε = 10−4, ε = 10−3, ε = 10−2 and ε = 10−1 are respectively 9.07 ·102s, 1.99 ·103s,
1.49 · 103s, 1.69 · 103s, 1.28 · 103s and 5.89 · 101s. The most remarkable PAR2 score is associated with the largest
value of ε = 10−1. Amongst the six different choices for ε , this value deviates most from the condition that ε is
approximately 0 from Theorem 1, leading to easier problem instances. These numbers suggest that if ε gets too large,
the problems tend to become easier, but setting ε = 0 does not result in the hardest problem instances either. The
hardest problem instances can be found in the group with ε = 10−5.

6.3.4. Influence of f and s

The PAR2 scores for different values of f and s can be found in Figs. 11 and 12. The boxplots in these figures all
look very similar. The average PAR2 scores are all very close to each other: for f = 0.1, f = 0.2 and f = 0.3, these
are respectively 1.27 ·103s, 1.18 ·103s and 1.25 ·103s, whereas for s = 100, s = 200 and s = 300 these are respectively
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Figure 11: PAR2 scores for different values of f

Figure 12: PAR2 scores for different values of s

1.21 ·103s, 1.28 ·103s and 1.22 ·103s. Hence, varying these parameters does not affect the PAR2 scores a lot.
Theorems 1 and 2 are both formulated in terms of the parameters of the problem instance generator. The fact

that f and s do not influence the PAR2 scores a lot, can also be understood by looking at the resulting mathematical
expressions from these two theorems. These parameters do not occur in any dominant term (provided that the other
parameters are chosen as mentioned in Sect. 5 and this experiment).

7. Conclusions and further work

In this paper a new class of hard problem instances for the 0-1 knapsack problem was proposed. Two theorems
were proven that help explain why these problem instances are hard. These theorems characterize solutions that are
hard to prune from the search space and characterize the structure of optimal solutions. A large dataset of these hard
problem instances, consisting of 3240 problem instances, was generated using a full factorial design of experiments.
The optimal solutions of these problem instances were computed, using a supercomputer for approximately 810 CPU-
hours. A comparison with the hardest previously known instances revealed that the instances from this paper were
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several orders of magnitude harder, needing at least 60 times more CPU time to solve. The computational experiments
also revealed that several parameters greatly influenced the hardness of the problem instances whereas the influence
of other parameters was minimal.

Since the 0-1 knapsack problem is closely connected to several other problems, this work is likely to have a broader
impact on other problems as well. The 0-1 knapsack problem can be seen as a special case of several packing related
problems [6, 22, 30] and it is well known that any problem which can be formulated as a binary integer linear program
can be reduced to the 0-1 knapsack problem [21]. An important topic for future work is to investigate if the problem
instances from this paper can also be adapted to create hard problem instances for these closely related problems,
either as a special case or by extending them in their new context. Related to this, it could also be interesting to further
investigate whether it is possible to appropriately choose the parameters of generators of existing classes for the 0-1
knapsack problem such that these generated problem instances would have similar properties as the problem instances
proposed in the current paper and whether they would become harder to solve. Hard problem instances provide insights
into the strengths and weaknesses of different algorithms and this knowledge can subsequently be used to create better
performing algorithms. Hence, we hope that this work could lead to advancements of the state-of-the-art algorithms
for multiple problems.

This work also poses a new challenge for practitioners of the 0-1 knapsack problem. It is an open question whether
exact algorithms can be developed that perform better than the current state-of-the-art by exploiting the structure of
the proposed problem instances. These algorithms could for example use the theorems developed in this paper. It is
uncertain whether such an algorithm for the 0-1 knapsack problem would also perform better in general and thus this
challenge deserves further attention.
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