
Exploring search space trees using an adapted version of Monte Carlo tree search
for combinatorial optimization problems

Jorik Jookena,∗, Pieter Leymana,b,c, Tony Wautersd, Patrick De Causmaeckera

aDepartment of Computer Science, KU Leuven Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
bDepartment of Industrial Systems Engineering and Production Design, Ghent University, Technologiepark Zwijnaarde 46, 9052 Zwijnaarde,

Belgium
cIndustrial Systems Engineering, Flanders Make@UGent, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium

dDepartment of Computer Science, CODeS, KU Leuven, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium

Abstract

In this article we propose a heuristic algorithm to explore search space trees associated with instances of combinatorial
optimization problems. The algorithm is based on Monte Carlo tree search, a popular algorithm in game playing that is
used to explore game trees and represents the state-of-the-art algorithm for a number of games. Several enhancements
to Monte Carlo tree search are proposed that make the algorithm more suitable in a combinatorial optimization con-
text. These enhancements exploit the combinatorial structure of the problem and aim to efficiently explore the search
space tree by pruning subtrees, using a heuristic simulation policy, reducing the domains of variables by eliminating
dominated value assignments and using a beam width. The algorithm was implemented with its components specif-
ically tailored to two combinatorial optimization problems: the quay crane scheduling problem with non-crossing
constraints and the 0-1 knapsack problem. For the first problem our algorithm surpasses the state-of-the-art results
and several new best solutions are found for a benchmark set of instances. For the second problem our algorithm
typically produces near-optimal solutions that are slightly worse than the state-of-the-art results, but it needs only a
small fraction of the time to do so. These results indicate that the algorithm is competitive with the state-of-the-art for
two entirely different combinatorial optimization problems.

Keywords: Combinatorial optimization, Monte Carlo tree search, Quay crane scheduling problem with non-crossing
constraints, 0-1 Knapsack problem

1. Introduction

The operations research community has shown an increasing interest in approaches that use machine learning to
solve combinatorial optimization problems. One of the main advantages of these approaches is that they can help to
improve certain human-made algorithmic decisions. Some of these approaches rely almost exclusively on machine
learning (e.g. [1, 2] and [3]), whereas other approaches combine machine learning with ideas found in more traditional
approaches to solve combinatorial optimization problems (e.g. [4] and [5]). In this article, we follow the latter setting
and we propose several adaptations for the Monte Carlo tree search algorithm [6], originally used in game playing,
in order to efficiently explore the search space associated with a problem instance of a combinatorial optimization
problem.

∗Corresponding author
Email addresses: jorik.jooken@kuleuven.be (Jorik Jooken), pieter.leyman@ugent.be;pieter.leyman@kuleuven.be (Pieter

Leyman), tony.wauters@kuleuven.be (Tony Wauters), patrick.decausmaecker@kuleuven.be (Patrick De Causmaecker)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License CC© BY:© $\© =©
DOI: https://doi.org/10.1016/j.cor.2022.106070

Preprint submitted to Computers & Operations Research November 16, 2022

https://doi.org/10.1016/j.cor.2022.106070

Solving such a problem instance boils down to finding an assignment of values to the decision variables such
that all constraints are met and the objective function is minimized (without loss of generality). In case the domains
of all decision variables are finite sets, the set of all feasible solutions can be represented by means of a rooted tree
that represents the complete search space. The search space tree, and thus the set of all solutions, is often too big to
exhaustively enumerate in a reasonable time. Nevertheless, there are many well-known techniques that still make use
of this tree to solve the optimization problem. Each technique copes with this issue of a large search space in its own
way. An example of a technique that can be used to explore a search space tree is branch-and-bound, which can skip
exploring entire subtrees by proving that the set of solutions in a subtree are all worse than another solution. Other
techniques cope with this issue by sacrificing the optimality guarantee of the algorithm in return for a time gain. These
heuristic techniques only explore a subset of all feasible solutions and choose the best one in this subset (e.g. beam
search). Finally, there are techniques that also only explore a subset of all solutions, but they do not explicitly use the
search space tree to do so (e.g. several metaheuristics and algorithms based on local search).

The main contributions of this article are twofold. First, the article presents a heuristic algorithm to explore search
space trees that is based on Monte Carlo tree search, a popular reinforcement learning algorithm for game playing
[7, 6]. We show that this algorithm can be modified in several ways to combine machine learning with ideas found
in more traditional approaches for solving combinatorial optimization problems. These modifications all exploit the
combinatorial structure of the problem to efficiently explore the search space. The proposed algorithm is able to
prune large parts of the search space tree by using bounds on the objective function value. Furthermore, it is possible
to integrate heuristic, problem specific information into the algorithm by means of a heuristic simulation policy and
the domains of the decision variables can be reduced by eliminating dominated value assignments (more details will
follow later in Section 4). The algorithm has the ability to automatically learn how to navigate through the search space
tree, just like regular Monte Carlo tree search for game playing can learn this for game trees. To speed up this learning
process, and hence to keep learning in a very big search space manageable, the algorithm employs the idea of using a
beam width (see for example [8]). By doing this, the search space is explicitly shrunk by removing possible solutions
that do not look promising. The current article is the first study that uses all of these modifications at the same time. We
will show that these modifications greatly improve the results in comparison with the non-modified version and that
omitting any of the modifications yields (sometimes drastically) worse results. Second, the algorithm was empirically
validated on two case studies using a set of extensive experiments requiring around 1,050 CPU-hours. For each case
study, we instantiated the proposed algorithm by tailoring the problem specific components of the algorithm (i.e. we
used a custom heuristic simulation policy, custom bounds on the objective function values and custom dominance
rules for each case study). The first case study concentrates on the quay crane scheduling problem with non-crossing
constraints [9, 10], which is classified in literature as [1D||CMax] according to the classification scheme proposed in
[11]. For this case study, our algorithm surpasses the state-of-the-art results and several new best solutions are found.
The second case study concentrates on one of the most studied combinatorial optimization problems: the 0-1 knapsack
problem [12]. For this case study our algorithm typically produces near-optimal solutions that are slightly worse than
the state-of-the-art results, but it needs only a small fraction of the time to do so.

The rest of this article is organized as follows: in Section 2 the Monte Carlo tree search algorithm for game playing
is explained. An overview of the relevant literature for this article is given in Section 3, followed by the adaptations
that we propose for Monte Carlo tree search in the context of combinatorial optimization (Section 4). Next, in Section
5 the quay crane scheduling problem with non-crossing constraints is introduced and the different problem specific
components of the proposed algorithm are concretely demonstrated for this problem. Similarly, the same structure is
followed in Section 6, but this time for the 0-1 knapsack problem. The computational results for both case studies are
discussed in Section 7. Finally, a conclusion and possible ideas for future work are given in Section 8.

2

2. Monte Carlo tree search for game playing

Monte Carlo tree search is a heuristic search algorithm that is popular in game playing. Variants of this algorithm
have been successfully applied to a variety of games (e.g. Havannah [13], Amazons [14], Lines of Action [15], Hex
[16], Go [17], chess and Shogi [18]) and represent the state-of-the-art approach for many of them. The algorithm is
capable of learning to play promising moves in a turn-based game. It does this by iteratively improving an estimate
of how good a move is by using Monte Carlo sampling. Initially, these estimates are highly uncertain, but as more
samples are collected, the estimates become more accurate. Thus, the algorithm’s performance improves over time and
it effectively learns how to play the game. The algorithm performs Monte Carlo sampling on a game tree to estimate
the quality of the moves. A game tree is a tree in which each node represents a possible state of the game and the edges
between the nodes represent the possibility to go from one state to another state by playing a move. The root node
of the game tree represents the initial state of the game and leaf nodes correspond to final states (i.e. for two-player
games a leaf node represents a state in which the game was won by one of the players). A detailed explanation of how
the algorithm operates on the game tree follows next.

The algorithm keeps track of a part of the game tree, which we will denote as the partial game tree further on.
The partial game tree is a subtree of the whole game tree with the same root node. Initially, the partial game tree only
consists of a single node: the root node of the game tree. The partial game tree is iteratively grown until a certain
computational budget is exhausted (e.g. a time limit or a number of iterations). In every iteration, one game is played
until the end. Playing one game until the end corresponds to walking along a path from the root of the game tree to a
leaf node. Every iteration consists of four phases:

Phase 1: Selection. The algorithm starts in the root of the game tree and will walk further down until it reaches a node
of the game tree that does not yet belong to the partial game tree. When the algorithm walks down the game
tree, it has to consecutively choose which child it will descend to. To make this decision, the algorithm tries
to find a good balance between exploitation (playing moves that seem very good) and exploration (playing
moves that have not been played very often in previous iterations in order to get a better estimate of how
good the move is). To do this, it treats the problem of selecting which child to descend to for every node as
a multi-armed bandit problem [19]. In a multi-armed bandit problem there is a player and there are k levers
l1, l2, ..., lk. With every lever li we associate a probability distribution Pi such that if lever li is pulled, the
player receives a random reward sampled from Pi. These probability distributions are unknown to the player.
The player will play multiple rounds and in each round the player will pull exactly one lever. The objective
of the multi-armed bandit problem is to find a policy that determines which lever the player should pull in
every round in order to maximize the expected sum of the received rewards. In the context of Monte Carlo
tree search, this problem has to be solved every time a child node has to be selected from a given parent
node. Hence, the levers in the multi-armed bandit problem correspond to the children of a node of the game
tree in Monte Carlo tree search. The rewards correspond to 0 or 1 for a loss and win, respectively. Kocsis
and Szepesvári solve this problem in their UCT algorithm [20] for Monte Carlo tree search by selecting the
child for which the expression:

numberWins(parent,child)
numberVisits(child)

+

√
2 · ln(numberVisits(parent))

numberVisits(child)
(1)

is maximized1. Here, numberVisits(v) denotes the number of iterations in which node v was visited (be-
longed to a generated path) and numberWins(v,w) denotes the number of iterations in which the edge from

1In [20], it was mentioned that the algorithm has to be implemented such that division by zero is avoided. Our approach to this corner case will
be explained later in Section 4.

3

parent node v to child node w was followed and the game was won (by the player whose turn it is in the
game state associated with node v). By maximizing this expression, the algorithm attempts to find a good
balance between exploitation and exploration. The first term of this expression is the average win ratio and
will be high for good moves, whereas the second term of this expression will be high for moves that have not
been explored very often. It has been shown in [21] that this policy is optimal in the sense that the expected
sum of rewards is asymptotically (when the number of rounds goes to infinity) as high as possible over all
possible policies.

Phase 2: Expansion. The algorithm has arrived in a node which it has never visited before. For this node there is no
information available from previous iterations to assess how good the possible moves are. The partial game
tree is extended by adding this node to the tree.

Phase 3: Simulation. The algorithm will further walk down the game tree until a leaf node (a terminal game state) is
reached. There are many possible policies to walk down the game tree. However, in the most basic version
of Monte Carlo tree search, the policy recursively selects uniformly at random one of the available children
of the current node until a leaf node is reached.

Phase 4: Backpropagation. The outcome of the game is evaluated by inspecting the game state associated with
the leaf node. This information is backpropagated to all nodes v of the constructed path that belong to the
partial game tree by updating numberVisits(v) and numberWins(v,w) (i.e. numberVisits(v) is incremented
and numberWins(v,w) is incremented if and only if the player whose turn it is in the game state associated
with v has won the game). The effect of this is that moves that were played during this iteration by the
winner of the game will be more likely to be played again in future iterations.

These four phases are depicted in Figure 1. A partial game tree is shown for a turn based two-player game with
a green player and a blue player (we refer readers of the physical journal to the online version of the paper, where
colors are available). The colours of the nodes represent whose turn it is. For every node and edge, respectively
numberVisits(v) and numberWins(v,w) are indicated. The moves that are played in Phase 1 are indicated by the
arrows. In Phase 2, the partial game tree is extended and consists of ten nodes after the extension. Next, the algorithm
walks further down the game tree in Phase 3 and ends in a final state in which the green player has won the game.
Finally, the outcome of this game is backpropagated in Phase 4 by updating numberVisits(v) and numberWins(v,w)
for all nodes and edges of the generated path in the partial game tree.

3. Literature overview

The algorithm that we propose in this article is a heuristic search algorithm based on Monte Carlo tree search that is
enhanced in several ways in the context of solving combinatorial optimization problems. This algorithm was validated
on two different case studies: the quay crane scheduling problem with non-crossing constraints (more specifically, the
version that is known in literature as [1D||CMax]) and the 0-1 knapsack problem. Hence, the relevant literature for this
article comes from several different contexts. In this section, we will give an overview of related work concerning
Monte Carlo tree search and we will also give an overview of the literature concerning the two problems from the case
studies. The overviews are not meant to be exhaustive, but rather discuss the most important results relevant for this
article. We refer the interested reader to [22], [23] and [12] for a more complete overview of respectively Monte Carlo
tree search, the quay crane scheduling problem and the 0-1 knapsack problem.

3.1. Monte Carlo tree search

In this subsection we will discuss Monte Carlo tree search from the perspective of adaptations that have been
proposed for the different phases of the algorithm as well as other contexts than game playing in which adaptations

4

Figure 1: The four phases of an iteration of Monte Carlo tree search. Here, numberVisits(v) and numberWins(v,w) are indicated
for every node and edge, respectively.

of Monte Carlo tree search have been used. Chaslot et al. propose progressive bias [24] to improve Monte Carlo tree
search by changing expression (1) that is used to select children in Phase 2 of the algorithm. They add a weighted
term to the expression that enables them to embed domain specific knowledge into the expression. In this term, a
heuristic value is calculated for every possible child (moves that seem to be better according to the heuristic, get a
higher value). The weight of this term (and hence the bias) becomes smaller after every iteration and goes to zero
as the number of iterations goes to infinity. Winands et al. [25] further build upon this idea. They use this adapted
expression only after the nodes have been visited a fixed number of times (and use the same policy as in the simulation
phase otherwise) in order to avoid spending too much time on computing the heuristic values. Gelly et al. [26] embed
domain specific knowledge into the selection phase of Monte Carlo tree search by integrating heuristic values for the
moves that were calculated offline. Instead of initialising the values numberVisits(v) and numberWins(v,w) by 0, the
heuristic values are used to appropriately initialise them, leading to a hot-start of the algorithm. Li et al. [27] propose
a different static selection policy that optimally allocates a limited computing budget to maximize a lower bound on
the probability of correctly selecting the best action at each node (whereas many papers focus on maximizing the
cumulative rewards). Zhang et al. [28] recently proposed a closely related selection policy, which is dynamic instead
of static. Baier and Winands [8] proposed Beam Monte Carlo tree search in which the number of traversed nodes at a
given depth is restricted as soon as a certain number of iterations has been performed at that depth by only keeping the
w most visited nodes. This idea is very similar to one of the modifications that we proposed in the context of Monte
Carlo tree search for combinatorial optimization in this article (subsection 4.5), except for two differences. We keep
the w most promising nodes according to the average objective function value instead of number of visits and the beam
width restriction is applied for every level after a certain time has passed depending on the depth of the tree instead of
a fixed number of iterations.

5

Winands et al. [29] focus on improving the simulation in Phase 3 of the algorithm. Instead of only evaluating the
final game state as a winning state or losing state, they also attempt to prove for intermediate states the game-theoretic
value (i.e. deciding whether a state is a proven loss or win). In case the game-theoretic value of a node can indeed
be proven, the iteration is stopped and this value is backpropagated such that its outcome can be used again for future
iterations. Drake et al. [30] attempt to improve the simulation by using domain specific knowledge. They use heavy
playouts, in which a heuristic is used that is specifically tailored to the game under consideration as opposed to the
default random move policy. Another approach is followed by AlphaGo [17], in which an artificial neural network
is trained to predict the outcome of a game. Here, the game is not simulated in the simulation phase, but instead the
outcome of the game is predicted and this value is used for backpropagation.

Gelly et al. [31] focus on improving Phase 4 of Monte Carlo tree search. In some games, all permutations of a set
of moves lead to the same game state. To be able to share information amongst different states, they use the outcome
of games in which an action a was played not only to update the node in which action a was played, but also all nodes
in the subtree that has this node as root node. This provides a biased, but rapid value estimate. In their MC-RAVE
algorithm [31], this bias decreases after many iterations by introducing a weight for the biased term that goes to zero
as the number of iterations increases. Another attempt to improve the backpropagation phase can be found in [32].
Because the estimates of quality of the moves get better after every iteration, the estimates get more and more reliable.
To account for this, a weight factor is introduced that gives a higher weight to iterations that are deemed more reliable.

Adaptations of Monte Carlo tree search have also been used in other contexts than game playing. It has been used
in the context of constraint satisfaction problems by Previti et al. to obtain good results for structured instances of
the SAT problem [33]. Satomi et al. [34] adapt Monte Carlo tree search to solve large-scale quantified constraint
satisfaction problems in real-time. Perez et al. [35] use Monte Carlo tree search to build a controller for the physical
travelling salesman problem (a real-time game). Two other surprising application domains for Monte Carlo tree search
can be found in the work of Tanabe et al. where Monte Carlo tree search was used in a security context to detect wolf
attacks [36] and the work of Dieb et al. [37] in which the task of automatic complex material design is studied.

It is also worth mentioning other uses of Monte Carlo tree search in a combinatorial optimization context and
highlighting the most important differences with respect to the present article. In the work of Sabar et al. [38] Monte
Carlo tree search is used in a hyper-heuristic [39] as a high level selection strategy to select a low-level heuristic.
The most important difference with the present article is that the tree on which the algorithm operates is completely
different. In the tree on which the algorithm operates in the work of Sabar et al., every node represents a low-level
heuristic (e.g. a specific perturbation operator) and every path in the tree corresponds to a sequence of low-level
heuristics. The goal is to find a sequence of low-level heuristics that can be applied to an initial starting solution
in order to obtain a good solution. In the present article on the contrary, the tree on which the algorithm operates
represents the search space of all possible assignments of values to decision variables and the goal is to find a leaf
node (representing a solution in which all variables have been instantiated) for which the objective function value is
as small as possible (without loss of generality). Another use of Monte Carlo tree search was reported in the work of
Sabharwal et al. [40], in which Monte Carlo tree search was used to guide the node selection heuristic for the Mixed
Integer Programming (MIP) solver CPLEX to select which node to expand. Again, the tree on which the algorithm
operates is very different from the search space tree in the present article. Every node of the tree represents the solution
of a linear programming relaxation of a mixed integer program and every edge corresponds to a branching decision
for a non-integer variable. Furthermore, in the work of Sabharwal et al., no solution is constructed in the simulation
phase of the algorithm, but instead a bound on the objective function value is used for the backpropagation phase.

We now turn our attention to literature in which the tree on which Monte Carlo tree search operates is the search
space tree associated with a problem instance (as is also the case in the current article). Chaslot et al. [41] use Monte
Carlo tree search to solve production management problems and obtain better solutions than an evolutionary planning
heuristic. Liu et al. [42] propose a smart directed acyclic graph scheduling algorithm based on Monte Carlo tree
search, in which suboptimal parts of the search space are pruned using a custom dual bound. Rosin [43] proposes
the Nested Rollout Policy Adaptation algorithm (a variant of Monte Carlo tree search in which the rollout policy is

6

gradually adapted). They use this algorithm to produce good solutions for instances of Crossword Puzzle Construction
and Morpion Solitaire. A more classical problem is tackled by Grelier et al. [44]. They combine several dedicated
heuristics for the weighted vertex covering problem with Monte Carlo tree search and provide empirical evidence for
the advantages and disadvantages of the different algorithmic variants. Similarly, Cazenave et al. [45] use the Nested
Rollout Policy Adaptation algorithm and Nested Monte Carlo Search [46] (another Monte Carlo tree search variant)
for solving the graph colouring problem. Although the results obtained by [45] do not surpass the state-of-the-art, they
are almost as good (or equally good) for several problem instances. Runarsson et al. [47] compare the pilot method
with Monte Carlo tree search to solve the Job Shop Scheduling problem [48] and conclude that the latter algorithm
often outperforms the former one. Edelkamp et al. [49] use the Nested Rollout Policy Adaptation algorithm to solve
several variations of classical problems in logistics: a vehicle routing problem, a motion planning problem and a
container packing problem. For each problem, they report a promising solution for one problem instance.

As we can see from this subsection, several variants of Monte Carlo tree search have been proposed throughout
the years. Given that the literature on Monte Carlo tree search is very large, it is not surprising to see that some of the
enhancements from the current article (see Section 4) also appear in a limited number of other articles. However, they
typically appear in isolation, whereas the current article is the first study that uses all enhancements at the same time.
As we will later show in Section 7, the effect of omitting one or more of these enhancements can be quite big and the
best results are obtained when all the enhancements are used. Using all enhancements at the same time is especially
important for the most challenging problem instances.

3.2. The quay crane scheduling problem with non-crossing constraints

Quay cranes are used in ports for the loading and unloading of the bays of a container vessel. In order to guarantee
an efficient execution, an important problem that arises in this context consists of finding a schedule for the quay
cranes such that some quality criteria (e.g. the makespan or crane utilization rate) are optimized. The quay crane
scheduling problem was first formulated by Daganzo in 1,989 [50]. They proposed an MIP to solve the quay crane
scheduling problem, which was later improved in 1,990 by Peterkofsky et al. [51]. These two seminal papers attracted
a lot of attention to this problem and led to a vast amount of literature that is concerned with modeling and solving
it. The models in literature all describe the same concept of quay crane scheduling, but differ significantly in several
aspects (e.g. the level of detail of the tasks, the objective function to be optimized, the given problem parameters and
constraints). From the point of view of combinatorial optimization, this makes it difficult to compare the different
models, because a problem instance for one formulation of the problem is not necessarily a valid problem instance
for another formulation. Recently, a classification scheme was proposed by Boysen et al. [11] to group the different
formulations in different classes according to three criteria: the terminal layout, the characteristics of the container
moves and the objective function. The problem that we study in this article is classified with the name [1D||CMax]

according to the classification scheme of Boysen et al. [11]. In this problem the terminal layout can be considered to
be a one-dimensional line along which both the quay cranes and bays are located. There are no special characteristics
of the container moves and the objective function that has to be minimized is the makespan (the last completion time
of a bay). For this reason, we will restrict the rest of this subsection to an overview of related literature for the problem
[1D||CMax] instead of general quay crane scheduling literature.

Zhu and Lim [52] model the quay crane scheduling problem as an integer program, which they solve by a branch-
and-bound algorithm and also propose a simulated annealing algorithm for larger instances. This approach is signifi-
cantly improved by Lim et al. [53] by making the crucial observation that instead of directly focusing on the schedule
itself, it suffices to focus on the allocation of quay cranes to bays. More specifically, they prove that there exists an
optimal schedule for their problem such that the cranes move in only one direction and this schedule can be derived
from the allocation of quay cranes to bays. They also prove that the quay crane scheduling problem with non-crossing
constraints is NP-hard and propose an approximation algorithm which guarantees an approximation factor of 2. Lee
et al. [54] also propose an MIP for small problem instances and a genetic algorithm for larger problem instances. Lee
and Chen [9] later realised that the models from [52], [53] and [54] can lead to solutions in which two quay cranes

7

would have to occupy the same position at the same time and they propose an MIP that mitigates this deficiency (the
specific quay crane scheduling problem that is studied in the present article follows the model proposed in [9]). They
also propose a heuristic two-stage algorithm, which they call enhanced best partition (EBP). In the first stage of the
algorithm, the bays are partitioned into consecutive areas such that the resulting solution guarantees an approximation
factor of 2. In the second stage, this solution is improved by merging adjacent areas into one area until no further im-
provements can be found. Lee and Wang [55] study an extension of [1D||CMax]: the integrated discrete berth allocation
and quay crane scheduling problem and propose an MIP for small problem instances and a genetic algorithm for larger
instances. Another extension is studied in [56], where the quay crane scheduling problem is integrated into the truck
scheduling problem. They propose both an MIP and an algorithm based on Particle Swarm Optimization to solve the
problem. Santini et al. [10] improve the MIP model of Lee and Chen [9] by introducing a family of valid inequalities
such that the set of feasible solutions does not change, but the efficiency of the MIP solver CPLEX is greatly affected.
Finally, Zhang et al. [57] propose an approximation algorithm for [1D||CMax] and prove that their approximation factor
is smaller than 2 (the best known approximation ratio until then). The achieved approximation ratio is 2− 2

m+1 , where
m denotes the number of quay cranes.

3.3. The 0-1 knapsack problem

The 0-1 knapsack problem is a classical problem which has already received attention for several decades. In this
problem, the goal is to select several items from a given set of n items to include in a knapsack with limited capacity
c such that the sum of the weights of the selected items does not exceed c and the sum of their profits is maximized.
The problem is NP-hard [58], but it can be solved in pseudo-polynomial time (see e.g. [59] for a solution with a
worst-case time complexity of O(n · c)) and several fully polynomial time approximation schemes exist (see e.g. [60],
[61], [62] and [63]). This is mainly interesting from a theoretical point of view, but it does not immediately give rise
to algorithms with a good practical performance [12]. However, such practical algorithms do exist. Many of these
algorithms are based on ordering the items according to the ratio between the profit and the weight of an item. This
ordering can be used to efficiently solve the linear programming relaxation of the 0-1 knapsack problem and this gives
rise to a well known upper bound by Dantzig [59]. This ordering is also used by a simple greedy heuristic that selects
items in this order as long as the knapsack capacity is not exceeded. The resulting solution often differs from the
optimal solution by only a few items whose profit-weight ratio is close to a certain distinguished item called the split
item [12]. Martello et al. [64] proposed an algorithm that first determines a small subset of items, which is called the
core, such that for items in the core it is usually difficult to decide whether they will belong to an optimal solution,
whereas for items outside of the core this decision is usually easy. Next, the algorithm optimally selects items from the
core and combines these with items outside of the core. A drawback of this algorithm is that the core size is fixed, but
it is very difficult to know beforehand which core size will be appropriate. This drawback was tackled by Pisinger [65],
who proposed a branch-and-bound algorithm where the core is adaptively extended each time the algorithm reaches
the border of the core. This was later improved even further by Pisinger [66] by handling the core enumeration process
more efficiently. Finally, Martello et al. [67] proposed a combination of all the previous techniques, which resulted in
their famous Combo algorithm. Although this algorithm was invented more than twenty years ago, it still represents
the current state-of-the-art (see e.g. [68], [69], [70] and [71] for relatively recent articles that support this claim). It is
able to exactly solve many problem instances containing several thousands of items in a matter of (milli)seconds. In
an attempt to find the most challenging knapsack problem instances, Pisinger [72] has proposed 15 different classes
of instances. Recently, another class of very hard problem instances was proposed in [73]. Later in Section 7, we
will focus in more detail on the most difficult class of problem instances proposed in [72] (strongly correlated spanner
instances) and the class proposed in [73] (noisy multi-group exponential problem instances).

8

4. Monte Carlo tree search for combinatorial optimization

We propose an adapted version of Monte Carlo tree search for game playing (see Section 2) that is more suitable
for solving a combinatorial optimization problem. We assume that all decision variables are discrete, although in some
cases the algorithm remains applicable even when the decision variables are continuous, as will be demonstrated in
Section 5. By leveraging the combinatorial structure of a problem, the algorithm can be enhanced in several ways,
which are discussed in this section. Later in Section 5 and 6, we will illustrate these enhancements by tailoring
them to the specific combinatorial optimization problems of the two case studies. In this section we will employ the
standard terminology used for combinatorial optimization problems and we refer readers who are unfamiliar with this
terminology to [74].

The algorithm will operate on the search space tree associated with a problem instance. Every node in this search
space tree represents a partial solution (i.e. a solution for which at least one decision variable has not yet been assigned
a value) except for the leaf nodes, which represent solutions in which all decision variables have been instantiated. The
root of the tree corresponds to a partial solution in which no decision variable has been instantiated yet. Every edge
represents the assignment of a value to a decision variable and all the edges on the same level of the tree correspond
to value assignments to the same decision variable. Here, we assume that a natural ordering of the decision variables
exists, which can often be obtained by modeling the optimization problem as making a natural sequence of decisions
(note that the ordering of the decision variables often follows directly from the other components of the algorithm,
as we will show later). We refer the interested reader to [75] for an overview of heuristics that can be employed in
case such a natural ordering does not exist. Every path from the root of the tree to a leaf node contains every decision
variable exactly once. With this search space representation, solving the optimization problem now corresponds to
finding a path from the root to a leaf node such that the associated solution is feasible and its objective function value
is as small as possible. With this in mind, the algorithm will keep track of the best found feasible solution and the final
result of the algorithm is the best solution found after all iterations have been executed.

An example of a search space tree is given in Figure 2. For this problem instance, there are two decision variables
X and Y that both have the same domain {1,2,3}. The search space tree is associated with a toy problem instance with
objective function (X −Y)3−|X −Y | (to be minimized) and a single constraint X 6= Y . The search space tree begins
by enumerating the domain of X on the first level, followed by an enumeration of the domain of Y on the second level.
The root node corresponds to a partial solution in which no decision variable has been instantiated yet. This node has
three children, each of which corresponds to a partial solution where the decision variable X has been instantiated.
The leaf nodes of the tree correspond to solutions (either feasible or infeasible) in which all decision variables have
been instantiated. These solutions are marked in green and red, respectively, with the optimal feasible solution having
X = 1, Y = 3 and an objective function value of -10.

Figure 2: An example of a search space tree for a toy problem instance

The algorithm from the previous section was designed for game playing, but in this article the scope is combi-
natorial optimization. The similarity between these two is that there is the concept of a game tree in game playing

9

and the concept of a search space tree in combinatorial optimization. Finding a solution for a problem instance of
a combinatorial optimization problem can also be thought of as a kind of game in which the moves correspond to
assigning a value to a decision variable. However, there are certain important differences between game playing and
combinatorial optimization and these differences are the reason for the changes that we propose to the Monte Carlo
tree search algorithm from the previous section. These differences are as follows:

• First, there are typically only at most three possible outcomes for a game (win, loss and sometimes tie), whereas the
objective function value of a problem instance of a combinatorial optimization problem can be any real number.

• Second, the possible moves for a game are determined by the rules of the game and thus cannot be freely chosen,
but the possible values that can be assigned to the decision variables for a problem instance of a combinatorial
optimization problem depend on what these decision variables are (i.e. how the problem is modeled). Note
that the same combinatorial optimization problem can often be modeled in several ways such that each one
has different decision variables, leading to very important consequences regarding for example the strength of
bounds that can be derived from the model or the size of the search space.

• Third, there are several games that start from a fixed game state (e.g. chess and Go) and hence there is precisely one
game tree associated with every game. For combinatorial optimization, however, there is one search space tree
associated with every problem instance (as opposed to one search space tree for every problem). Since we are
typically interested in solving several problem instances, this puts an additional burden on the available time.

• Fourth, the search spaces in the context of combinatorial optimization tend to be several orders of magnitude larger
than the number of game states for game playing. For instance, the number of game states for Go and chess are
at most equal to 10171 [76] and 1047 [77], respectively, whereas the number of solutions for a problem instance
with 1,000 binary decision variables is equal to 21,000 > 10300. However, the search spaces in the context of
combinatorial optimization tend to have a certain structure that can be exploited to efficiently search them (e.g.
using dominance and bounding rules). These differences motivate the enhancements that we propose, which are
discussed next.

4.1. Domain reduction

When the algorithm arrives in a node, several decision variables have already been instantiated. The edges to
the children of the current node represent all the possible assignments of values to the current decision variable (i.e.
the domain is enumerated). By using problem specific information, it is sometimes possible to prove that a certain
value assignment to the current decision variable is dominated by another value assignment, given the current partial
solution. We make the concept of dominating more precise in the following definition:

Definition 1. Assume (without loss of generality) that we are dealing with a minimization problem and that there are
n decision variables a1,a2, . . . ,an, which can each be instantiated by a value of their finite domains d1,d2, . . . ,dn. Let
[a1← v1,a2← v2, . . . ,an← vn] denote a solution where decision variable ai has been instantiated with value vi ∈ di

(∀1≤ i≤ n) and let f ([v1,v2, . . . ,vn]) denote the objective function value associated with the solution [a1← v1,a2←
v2, . . . ,an← vn] (equal to ∞ if the solution is infeasible). Consider a partial solution [a1← v1,a2← v2, . . . ,ak ← vk]

where the first k < n values have already been instantiated. We say that value assignment ak+1← vxk+1 is dominated
by value assignment ak+1← vyk+1 (with vxk+1 ,vyk+1 ∈ dk+1), given the partial solution [a1← v1,a2← v2, . . . ,ak← vk]

if and only if
∀vxk+2 ∈ dk+2,vxk+3 ∈ dk+3, . . . ,vxn ∈ dn : ∃vyk+2 ∈ dk+2,vyk+3 ∈ dk+3, . . . ,vyn ∈ dn :
f ([v1,v2, . . . ,vk,vyk+1 ,vyk+2 , . . . ,vyn])≤ f ([v1,v2, . . . ,vk,vxk+1 ,vxk+2 , . . . ,vxn]).

Hence, in the context of combinatorial optimization such children that lead to dominated solutions can be removed,
despite the fact that they may represent feasible solutions.

10

4.2. Pruning subtrees by calculating bounds

When the algorithm reaches a node it has never visited before, a dual bound on the objective function is calculated
to determine whether it is worthwhile to continue building a solution in the current iteration or not. The bound that is
calculated is a lower bound for a minimization problem and an upper bound for a maximization problem, respectively.
This bound is compared with the best solution value found so far and, in case it is impossible to find a solution that
is better than this, the iteration is stopped. This bound is stored such that it can be used in further iterations without
having to recalculate the bound. If the bound is worse than the current best objective function value, the current node is
deleted as a child node of its parent node to avoid revisiting this node in further iterations (i.e. the subtree rooted at the
current node is pruned). After deleting a child node, it is possible that a parent does not have any children left, which
means in turn that there is no leaf node in the subtree rooted at the parent node that is better than the best solution
found so far. In this case, we can also delete this parent node as a child node of its own parent node. This process can
continue and hence deleting a node should be implemented in a recursive fashion such that the deletion of a node can
give rise to the subsequent deletion of ancestors of this node.

4.3. Using a heuristic simulation policy

The default simulation policy for the most basic version of Monte Carlo tree search, as described in Section 2,
chooses children uniformly at random until a leaf node is reached. In the context of combinatorial optimization,
however, often problem specific constructive heuristics are available to construct a solution. If one uses a heuristic for
the solution completion policy of Monte Carlo tree search, the algorithm can be seen as an algorithm that attempts to
learn to correct incorrect choices of the heuristic by selecting a different path in every iteration during the selection
phase, corresponding with different value assignments to the decision variables. Furthermore, since the heuristic is
executed starting from the root node of the tree in the first iteration of the algorithm, it is also guaranteed that the
solution quality of the algorithm is at least as good as the solution quality of the heuristic.

4.4. Selection Policy

To decide which child to descend to in the selection phase, the algorithm keeps track of two values (for all nodes
and edges, respectively): numberVisits(v) and averageOb jectiveFunctionValue(v,w). Here, numberVisits(v) denotes
the number of times that node v was visited and averageOb jectiveFunctionValue(v,w) denotes the average objective
function value over all iterations in which the edge between parent node v and child node w belonged to the generated
path. We constructed a similar expression as expression (1) that is used in Monte Carlo tree search for game playing
to select a child node. In this expression the first term is the average win ratio and is always between 0 and 1. We
replace this term by a similar term (applicable to combinatorial optimization problems) that is always between 0 and
1 and that represents the quality of the obtained solutions. We define the value normalizedScore(v,w) for all edges
between parent node v and child node w as follows: let v be a node, let visitedChildren(v) denote the set of children
of v that have been visited at least once and let unvisitedChildren(v) denote the set of children of v that have not been
visited before. We define score(v,w) as the rank of node w that we obtain by sorting the nodes in visitedChildren(v)
in increasing order of quality according to the value averageOb jectiveFunctionValue(v,w) (i.e. edges that seem more
promising get a higher score). Now normalizedScore(v,w) is defined as:

normalizedScore(v,w) =
score(v,w)

∑w′∈visitedChildren(v) score(v,w′)
(2)

Hence, during the selection phase the algorithm will select the child for which the following expression is maximized
(with ties broken in an arbitrary fashion):

normalizedScore(parent,child)+

√
2 · ln(numberVisits(parent))

numberVisits(child)
(3)

11

As mentioned in the previous section, the algorithm balances exploitation and exploration by maximizing this expres-
sion (the first term of this expression is high for promising value assignments, whereas the second term is high for
infrequently used value assignments). We cope with the issue that this term is undefined for children that have not been
visited before (because of division by 0) as follows: let k1 = |unvisitedChildren(v)| and let k2 = |visitedChildren(v)|,
where |.| represents the size of a set. To choose which child node to descend to, the algorithm selects with probability

k1
k1+k2

a child uniformly at random from the set of unvisited children and with probability 1− k1
k1+k2

the child for which
expression (3) is maximized.

A numerical example is given in Table 1 for a minimization problem in which a parent node has five children to
choose from. The parent node has already been visited seven times and during these iterations, three different children
were visited while two children have never been visited before. These three children have an average objective function
value of 759.3, 753.0 and 751.3 (ordered in increasing order of quality). The second and the third column in this table
(numberVisits and averageOb jectiveFunctionValue) completely determine the values in all other columns.

Table 1: Numerical example of calculating the selection probabilities for a minimization problem

numberVisits averageOb jectiveFunctionValue score normalizedScore expression (3) selection probability

Child 1 3 751.3 3 3
1+2+3 1.64 0 %

Child 2 3 759.3 1 1
1+2+3 1.31 0 %

Child 3 1 753.0 2 2
1+2+3 2.31 60 %

Child 4 0 - - - - 20 %
Child 5 0 - - - - 20 %

Special care must be taken when the values averageOb jectiveFunctionValue(v,w) are updated if an iteration
produces an infeasible solution, because the objective function value of an infeasible solution is not meaningful. In
this case, the algorithm will add a flag to the node that was added in the expansion phase, which prevents the algorithm
from revisiting this node in any further iterations. Hence, the subtree rooted at this node is heuristically removed from
the search space tree and the values averageOb jectiveFunctionValue(v,w) remain unchanged, because the parent
node is regarded as having one less feasible child. This special case also illustrates the need for a well-performing
heuristic simulation policy, because the algorithm punishes infeasible solutions by removing the node from which the
heuristic simulation policy was started.

4.5. Directing the search by using a beam width

To be able to learn for a given parent node which child node will lead to promising solutions, the child nodes
should each be visited several times. However, the deeper the algorithm descends in the tree the more nodes there are
at a given depth. For large search space trees it is not computationally feasible to visit all nodes several times, because
if this were the case one could simply enumerate the whole search space. For this reason, we will shrink the search
space to focus only on the most promising parts. This is done as follows: let d be the number of decision variables
(i.e. the depth of the search space tree) and t be the number of seconds for which the algorithm is run. The algorithm
will work in d stages such that each stage takes t

d seconds. After stage i, the algorithm will only keep a beam of the
w most promising nodes at depth i of the search space tree (according to the value averageOb jectiveFunctionValue),
where w is an algorithm parameter that denotes the width of the beam. For the sake of computational efficiency, this
should be implemented in a lazy way such that one should not explicitly delete all but the w most promising nodes,
but instead indicate for those w nodes that they were not deleted and treat all other nodes as if they were deleted. Note
that if there are at most w nodes at a given depth, all nodes at this depth will be kept.

4.6. Generalizability

Although it is clear that the proposed algorithm could in principle be applied to any optimization problem where the
decision variables all have finite domains, it might work better on certain problems than on others. In this subsection

12

we will briefly highlight several desirable properties of a problem that make it well-suited for the proposed algorithm.
First, the algorithm can be expected to perform better when the domains of the decision variables are not too big. This
is the case, because in order to learn for a particular decision variable which value assignments tend to yield better
solutions, all possible value assignments to that variable should be tried out at least once and preferably several times.
Recall that for every edge (v,w) the value averageOb jectiveFunctionValue(v,w) is stored to guide the algorithm in the
selection phase and this value gets more accurate as more iterations are performed. Hence, the average branching factor
of the tree should not be too high. However, the number of decision variables (i.e. the depth of the tree) is a somewhat
less limiting factor, as will also become more clear in Section 7. Second, using stronger domain reduction rules will
likely have a positive effect on the algorithm’s performance and problems for which strong domain reduction rules
are available are better suited for the algorithm. This is immediately linked to the first point, because strong domain
reduction rules can eliminate more values from the domains of variables. Third, the tightness of the bounds used
for pruning subtrees and the complexity of computing them both play an important role in the algorithm. In case
tight bounds are available, large parts of the search space can be eliminated, allowing the algorithm to focus on more
promising parts of the search space. The complexity of computing the bounds has an immediate effect on the number
of iterations that the algorithm can perform in a given time. Usually it takes more time to compute stronger bounds,
so it is important that a good trade-off between tightness and complexity is found.

5. Case study A: quay crane scheduling problem with non-crossing constraints

The proposed algorithm was validated on two specific combinatorial optimization problems. In the first case study,
we focus on the quay crane scheduling problem with non-crossing constraints. In the crane scheduling literature, it is
classified with the name [1D||CMax] according to the classification scheme proposed in [11]. In this problem, we are
given a set of n bays B = {0,1, . . . ,n−1} on a container vessel and a set of m quay cranes K = {0,1, ...,m−1}. Both
the bays and the quay cranes are placed from left to right on a one-dimensional line, where the lower numbered bays
and quay cranes are more towards the left. An integer processing time pb is associated with every bay. The time it takes
for the quay cranes to move parallel to the bays is assumed to be negligible in comparison with the processing times.
The goal of the problem is to find a schedule that determines which quay crane has to process which bay at which time
such that the makespan (the last completion time of a bay) is minimized. Furthermore, there are several constraints
that need to be satisfied. The schedule has to be non-preemptive, which means that once a quay crane starts processing
a bay, the quay crane keeps on processing this bay until it is finished. Hence, every bay is processed by exactly one
quay crane. Because the quay cranes are located along a line from left to right, the quay cranes cannot cross each
other. More specifically, if quay crane k1 is processing bay b1 at the same time as quay crane k2 is processing bay b2,
with k1 < k2, then it must hold that b1 < b2. Finally, there are also constraints that indicate that at all times the quay
cranes must leave enough space for the other quay cranes. An illustration of a toy problem instance and its solution is
given in Figure 3, which will be discussed in more detail in Subsection 5.1.

5.1. Mathematical model

To formalize the quay crane scheduling problem with non-crossing constraints, we use the mathematical model
proposed by Santini et al. [10]. In this model, the problem variables are the number of bays n in the set B, the number
of quay cranes m in the set K and the processing times of the bays pb (∀b∈ B). The value M denotes a sufficiently large
constant. The decision variables are the binary variables xbk, the binary variables ybb′ , the real variables cb and the real
variable c. The meaning of these decision variables is as follows: xbk indicates whether bay b will be processed by
quay crane k, ybb′ indicates whether the processing on bay b finishes before the processing on bay b′ starts, cb denotes

13

the completion time of bay b and c indicates the makespan. The model is given by:

minimize c (4a)

subject to c≥ cb, ∀b ∈ B, (4b)

c≥ ∑
b∈B

xbk pb, ∀k ∈ K, (4c)

cb ≥ pb, ∀b ∈ B, (4d)

∑
k∈K

xbk = 1, ∀b ∈ B, (4e)

cb ≤ cb′ − pb′ +M(1− ybb′),∀b,b′ ∈ B,b 6= b′, (4f)

∑
k∈K

kxbk− ∑
k∈K

kxb′k +1≤M(ybb′ + yb′b), ∀b,b′ ∈ B,b < b′, (4g)

∑
k∈K

kxb′k− ∑
k∈K

kxbk ≤ b′−b+M(ybb′ + yb′b),∀b,b′ ∈ B,b < b′, (4h)

xbk = 0, ∀b ∈ B,k ∈ K,k > b, (4i)

xbk = 0, ∀b ∈ B,k ∈ K,n−b < m− k, (4j)

xbk ∈ {0,1}, ∀b ∈ B,k ∈ K, (4k)

ybb′ ∈ {0,1}, ∀b,b′ ∈ B,b 6= b′, (4l)

cb ∈ R, ∀b ∈ B, (4m)

c ∈ R (4n)

The meaning of these constraints is as follows. Constraints (4b) express that the makespan is at least as large as the
completion time of all bays while constraints (4c) express that the makespan is also at least as large as the sum of the
processing times of all bays that are processed by the same quay crane. Constraints (4d) express that the completion
time of a bay is at least as large as its processing time. The fact that every bay is processed by exactly one quay crane
is enforced by constraints (4e). Constraints (4f) define the decision variables ybb′ : they are equal to 0 if the processing
on bay b finishes later than the processing on bay b′ starts. Next, constraints (4g) ensure both that a quay crane can
only process one bay at a given time and that two quay cranes that are processing a different bay at the same time
have not crossed each other. Constraints (4h)-(4j) all ensure that quay cranes have enough space at all times. More
specifically, constraints (4h) enforce that two quay cranes that are working at the same time leave enough space (at
least one bay) for all quay cranes that are in between them, while constraints (4i) and (4j) enforce that quay cranes will
not be pushed off the left and right side of the ship, respectively. Finally, constraints (4k)-(4n) indicate the domain of
the decision variables.

5.2. Relaxation

The model above contains decision variables whose domain is not finite (cb and c) and hence it cannot be directly
used for the algorithm proposed in this article. However, the approach that we will take to solve this problem is to
instead generate solutions for a relaxation of this problem (using a model whose decision variables are all discrete) and
choose the best found solution for this relaxation that is also feasible for the original problem. The relaxation that we
will consider, is the relaxation studied by Lim et al. [53]. This relaxation is obtained by taking the original model and
removing the constraints that indicate that the quay cranes must leave enough space for other quay cranes (constraints
(4h)-(4j)). The decision variables of this relaxation are the same as the decision variables of the original problem, so
doing this does not immediately help. However, Lim et al. have also shown that this relaxation is equivalent with
another model in which all decision variables are discrete. For this equivalent model, the only decision variables are

14

the n decision variables σb (∀b ∈ B), which indicate which quay crane will process bay b. Hence, the domain of σb is
K = {0,1, ...,m−1}. They have shown that if we know the values of these decision variables (i.e. if we know which
quay cranes will process which bays), we can determine the schedule with minimal makespan by letting all quay
cranes process their assigned bays from left to right, where each quay crane moves to its next assigned bay as soon
as its path to the next assigned bay is free (no other quay crane is blocking its path). This schedule (and the resulting
objective function value) can be calculated as follows: let earliestTime[k][b] denote the earliest time that quay crane
k can move past bay b. Now all earliestTime values can be computed with a time complexity of O(n ·m) by dynamic
programming by iteratively updating earliestTime for subsequent bays b (the outer loop of the algorithm) and quay
cranes k (the inner loop of the algorithm). The algorithm will first increase earliestTime[k][b] by the processing time
pb of bay b in case bay b is processed by quay crane k (i.e. σb = k) and later it might be increased further in case
earliestTime[k+ 1][b] > earliestTime[k][b], because every quay crane has to wait for the quay crane immediately to
its right to avoid that quay cranes cross each other. This is shown in the pseudocode of Algorithm 1:

Algorithm 1: Computes earliestTime

Function computeEarliestTime(m, n, σ , p)
Data:
m: the number of quay cranes
n: the number of bays
σ : an array representing the allocated quay crane for every bay
p: an array representing the processing time for every bay
Result:
The matrix earliestTime
/* Start of code */
earliestTime← emptyMatrix(m,n);
for b in {0,1, . . . ,n−1} :

for k in {m−1,m−2, . . . ,0} :
/* Initialization */
if b≥ 1 then

earliestTime[k][b]← earliestTime[k][b−1];
else

earliestTime[k][b]← 0;
/* Bay b is processed by quay crane k */
if σ [b] == k then

earliestTime[k][b]← earliestTime[k][b]+ p[b];
/* Quay crane k has to wait for quay crane k+1 */
if k+1 < m and earliestTime[k+1][b]> earliestTime[k][b] then

earliestTime[k][b]← earliestTime[k+1][b];

return earliestTime;

Because every quay crane waits for the quay crane immediately to its right, it holds that earliestTime[0][b] ≥
earliestTime[1][b] ≥ . . . ≥ earliestTime[m− 1][b] (∀b ∈ B). Hence, the makespan c is equal to the earliest time that
the first quay crane can move past the last bay (earliestTime[0][n−1]).

A toy problem instance and its optimal solution is given in Figure 3. In this problem instance, there are m = 2
quay cranes that have to process n = 4 bays with a processing time of 5, 9, 2 and 1 time units (from left to right). A
possible solution for this problem instance is for the first quay crane to process the first and the third bay and for the
second quay crane to process the second and the fourth bay. The earliestTime values are calculated according to the
pseudocode of Algorithm 1. For example, to calculate the earliestTime values in the second column, the algorithm
first sets earliestTime[1][1] to 0+ 9 = 9, because earliestTime[1][0] = 0, p[1] = 9 and σ1 = 1. The algorithm then
sets earliestTime[0][1] to 9, because max(earliestTime[0][0],earliestTime[1][1]) = 9. The corresponding schedule

15

that is associated with this solution is depicted on the Gantt chart, where a dotted line represents that a quay crane is
waiting and a full line represents that a quay crane is processing a bay. The makespan of this schedule is 11 (equal
to earliestTime[0][3] as desired), which is optimal. This solution is feasible for both the original problem (Subsection
5.1) and the relaxed version (Subsection 5.2).

Figure 3: A toy problem instance and an optimal solution with an objective function value of 11

5.3. Enhancements used in our algorithm

Finally, we will demonstrate for the relaxation above how we can enhance Monte Carlo tree search by reducing
the domain of the decision variables, pruning subtrees by calculating bounds and using a heuristic solution completion
policy.

5.3.1. Domain reduction
The generated solutions of the relaxation will be tested for feasibility for the original problem. Some of the con-

straints that were left out in the relaxation can however be directly satisfied by appropriately reducing the domains of
the decision variables. More specifically, constraints (4i) and (4j) are constraints that prohibit certain value assign-
ments to the decision variables and can easily be satisfied by eliminating those values from the domains of the decision
variables.

Another possibility for domain reduction makes use of Theorem 1, which was proven in [53]:

Theorem 1. Suppose that the values of the first b decision variables σ0,σ1, . . . ,σb−1 are known and the algo-
rithm currently has to choose the value for decision variable σb. If there exists a quay crane k ∈ K such that
earliestTime[k][b− 1] = earliestTime[k + 1][b− 1], then quay crane k + 1 can be removed from the domain of σb

without changing the optimum.

16

In order to reduce the domains by using this theorem, the earliestTime values should be known before a complete
solution is constructed, at the moment where the value for σb is chosen. This can be done by updating the earliestTime
values on the fly, by executing the inner loop of Algorithm 1, every time a value is assigned to a decision variable.

5.3.2. Pruning subtrees by calculating bounds
In the proposed algorithm, it is possible to prune subtrees by keeping track of the best solution found so far and

comparing the associated objective function value with a lower bound on the objective function. In case the best found
solution so far cannot be improved by further descending into the current subtree, it is pruned. Two lower bounds
were proposed by Lim et al. [53] for the relaxation that was discussed earlier. Suppose that the values of the first b
decision variables σ0,σ1, . . . ,σb−1 are known and the algorithm currently has to choose the value for decision variable
σb. Now, the first lower bound is given by:

earliestTime[m−1][b−1]+max(pb, pb+1, ..., pn−1) (5)

This bound can easily be proven by realising that every bay must be assigned to a quay crane and the fact that
earliestTime[0][b] ≥ earliestTime[1][b] ≥ . . . ≥ earliestTime[m− 1][b] ∀b ∈ B (see earlier). Hence, assigning the
remaining bay with the largest processing time to the earliest available quay crane is indeed a lower bound for the
objective function value.

The second lower bound that was proposed, is given by:

earliestTime[0][b−1]+max
(

0,
⌈

∑
n−1
i=b (pi)−∑

m−1
i=1 (earliestTime[0][b−1]−earliestTime[i][b−1])

min(m,n−b)

⌉)
(6)

The fraction in this lower bound represents the following: first the sum of the processing times of all remaining bays
is distributed over the quay cranes until the first quay crane does not have to wait anymore. After doing this, all the
quay cranes have the same earliestTime values, equal to earliestTime[0][b− 1]. Now there are at most (n− b) bays
left to process for m quay cranes and the total remaining processing time is evenly spread over min(m,n− b) quay
cranes. Finally this result can be rounded up, because all processing times are integers and hence the real optimum has
to be an integer as well. When spreading the processing times over the quay cranes, the constraint that every bay has
to be assigned to exactly one quay crane is ignored and hence the obtained value is indeed a lower bound for the real
optimal objective function value.

Both lower bounds can be calculated efficiently by doing an appropriate preprocessing step in O(n) time, once
before the start of the algorithm. The final lower bound that is used to compare against the current best solution
is the maximum of both lower bounds. To calculate the first lower bound (expression (5)), we have to be able to
calculate max(pb, pb+1, ..., pn−1) efficiently without having to iterate over all the values inside the maximum. This
can be achieved by calculating and storing the maximum of every suffix of p0, p1, . . . , pn−1 during a preprocessing
step. These values can then be retrieved in O(1) every time the lower bound is calculated. Similarly, to calculate
the second lower bound (expression (6)), we have to be able to calculate ∑

n−1
i=b pi and ∑

m−1
i=1 earliestTime[0][b− 1]−

earliestTime[i][b−1] efficiently. Here, ∑
n−1
i=b pi can be calculated for every suffix in the preprocessing step, completely

analogous to the approach that was used to calculate max(pb, pb+1, ..., pn−1). To calculate ∑
m−1
i=1 earliestTime[0][b−

1]− earliestTime[i][b− 1], however, the earliestTime values depend on the choices that were made in the search
space tree and hence cannot be calculated in the preprocessing step. Instead, a variable representing the value of this
expression is stored and this value is updated on the fly when the earliestTime values are changed.

5.3.3. Using a heuristic simulation policy
When the algorithm arrives in a node which it has never visited before, the values for the remaining decision

variables are chosen according to a heuristic. Suppose that the value of the first b decision variables σ0,σ1, . . . ,σb−1

are already known, then the algorithm will subsequently choose the values for σb,σb+1, . . . ,σn−1 as follows. The

17

algorithm consecutively tries to assign every value from the domain of σb to σb and updates the earliestTime values
and calculates the lower bound from the previous subsection. The final value that will be assigned to σb is the value
for which the calculated lower bound is as low as possible, which reflects the fact that we want the objective function
value of the solution that is obtained in the end to be as low as possible. After doing this, the first b+ 1 decision
variables are already instantiated and this process is repeated until all n decision variables are instantiated.

6. Case study B: 0-1 knapsack problem

In the second part of this case study, we focus on a classical problem: the 0-1 knapsack problem. In this problem,
we are given a knapsack with capacity c and n items. With every item, we associate a positive integer profit pi and a
positive integer weight wi. The goal of the problem is to select a set of items to include in the knapsack such that the
sum of the profits of these items is maximized and the sum of the weights of these items does not exceed the knapsack
capacity. Hence, this problem can be written concisely as the following maximization problem:

maximize
n

∑
i=1

pixi (7a)

subject to
n

∑
i=1

wixi ≤ c, (7b)

xi ∈ {0,1}, ∀i ∈ {1,2, . . . ,n} (7c)

Here, the problem variables are the capacity c, the number of items n, the profits of the items pi and the weights
of the items wi. The decision variables are the n binary variables xi. The meaning of these decision variables is as
follows: xi is equal to 1 if and only if the i-th item is included in the knapsack. We will further assume that xi ≤ c
(∀i ∈ {1,2, . . . ,n}) and ∑

n
i=1 wixi > c to avoid trivial solutions. Finally, we also assume that the items are ordered

according to the ratio between the profit and the weight such that:

pi

wi
≥ pi+1

wi+1
, ∀i ∈ {1,2, . . . ,n−1} (8)

This last assumption is introduced for convenience and will make the notation in the rest of the paper easier. In the
following paragraphs, we will discuss for the case of the 0-1 knapsack problem which particular choices we have made
for the enhancements that were proposed for the Monte Carlo tree search algorithm in the context of combinatorial
optimization.

6.1. Enhancements used in our algorithm

6.1.1. Domain reduction
Suppose that the first k < n decision variables x1,x2, . . . ,xk have already been instantiated. If wk+1 +∑

k
i=1 wixi > c,

we can eliminate the value 1 from the domain of xk+1. This is the case, because if we assign 1 to xk+1, the knapsack
capacity is exceeded and the sum of the weights cannot decrease by adding zero or more items in the knapsack (recall
that the weights are positive integers).

6.1.2. Pruning subtrees by calculating bounds
The 0-1 knapsack problem is a maximization problem. Hence, the bound that will be calculated for every node v

of the search space tree is an upper bound for the best objective function value amongst all leaf nodes in the subtree
rooted at v. In case the current best objective function value is greater than or equal to this upper bound, the subtree
rooted at v can be pruned, because no solution in this subtree can be better than the current best solution.

18

It is clear that if the first k < n decision variables x1,x2, . . . ,xk have already been instantiated, the algorithm should
try to assign values to the remaining (n− k) decision variables such that the sum of their profits is maximized and
the sum of their weights does not exceed c−∑

k
i=1 wixi. Hence, assigning a value to the next decision variable xk+1

gives rise to a new, slightly different knapsack problem instance in which one less item than before is available and
the knapsack capacity is changed to c−∑

k+1
i=1 wixi. Because of this reason, the upper bound in every node of the search

space tree is an upper bound for a slightly different problem instance. The upper bound that the algorithm uses is
due to Dantzig [59] and is obtained from solving the linear programming relaxation of the 0-1 knapsack problem.
If constraint (7c) is replaced by 0 ≤ xi ≤ 1,∀i ∈ {1,2, . . . ,n} (with xi ∈ R), the resulting optimization problem can
be solved exactly in a greedy manner by consecutively adding the largest possible fraction of the next item to the
knapsack. More specifically, let b be an index of an item such that ∑

b−1
i=1 wi ≤ c and ∑

b
i=1 wi > c. Item b is called the

break item (or sometimes also split item), because it is the first item that does not fit entirely in the knapsack. The
optimal solution to the linear programming relaxation of the 0-1 knapsack problem is obtained by setting:

xi = 1, ∀i ∈ {1,2, . . . ,b−1}

xb =
c−∑

b−1
i=1 wi

wb

xi = 0, ∀i ∈ {b+1,b+2, . . . ,n}

(9)

The corresponding objective function value is given by:

pb ·
c−∑

b−1
i=1 wi

wb
+

b−1

∑
i=1

pi (10)

As indicated earlier, this upper bound has to be calculated in all consecutive nodes of the search space tree that
are on the path of a single iteration of the Monte Carlo tree search algorithm. Since the index of the break item b can
only increase as more decision variables are instantiated, the algorithm can avoid doing redundant computations by
remembering the index of the break item for the previous node of a path and increasing this index for the current node
if this is necessary. Since the index of the break item b can only move at most n times to the right and there are at
most n nodes on a path that is generated by the Monte Carlo tree search algorithm, all upper bounds for the path can
be calculated efficiently with a total amortized time complexity of O(n).

6.1.3. Using a heuristic simulation policy
When the algorithm arrives in a node that it has never visited before, the values for the remaining decision variables

are chosen according to a heuristic. This heuristic considers the remaining items one by one and greedily adds an
item to the knapsack if the item still fits in the knapsack. This heuristic is quite similar to the algorithm for the
linear relaxation of the 0-1 knapsack problem which was discussed in the previous paragraph. However, the heuristic
simulation policy will not add a fraction of the break item to the knapsack, but will instead leave the break item out of
the knapsack and continue to add the remaining items one by one as long as there is still enough space. Because of
the close resemblance between these two algorithms, the gap between the upper bound from the previous paragraph
and the lower bound obtained by the heuristic simulation policy is usually very small. Later in Subsection 7.2, it will
become clear that this heuristic works remarkably well for many problem instances.

7. Computational results

The proposed Monte Carlo tree search algorithm was extensively tested on two different case studies, requiring
approximately 1,050 CPU-hours to run all the tests. In this section, we will consider five research questions: (1)
What is the impact of varying the algorithm’s parameters? (2) How does the performance of the algorithm compare

19

with state-of-the-art algorithms? (3) Is the proposed algorithm able to improve the heuristic simulation policy? (4)
What is the impact of the different components of the algorithm? (5) How do different selection policies affect the
performance of the algorithm? We will answer all five questions for the first case study, but for the second case study
we limit ourselves to the first four questions to limit the length of the paper. The results for the two case studies will
be discussed in two different subsections.

To keep the computational burden manageable, the experiments were conducted on the ThinKing cluster of the
Flemish Supercomputer Center (VSC), using powerful CPUs with a clock rate of 2.5 GHz and 10 GB RAM memory.
The C++ code for our algorithms and the datasets that we generated are available online at
https://github.com/JorikJooken/MCTSQuayCraneSchedulingNonCrossingConstraints and
https://github.com/JorikJooken/MCTS01Knapsack. In the tables of this section, the numbers between brackets indi-
cate the deviations from the best known dual bound (i.e. the dual bound refers to a lower bound for the quay crane
scheduling problem with non-crossing constraints and an upper bound for the 0-1 knapsack problem) and the best
found primal bounds (objective function values) for every experiment will be marked in bold. In the main section of
this paper, we provide summaries of the experiments, whereas the tables in the appendix (Tables A11-B24) contain
the detailed results. For every table in the appendix, we also perform Wilcoxon signed-rank tests (non-parametric
statistical hypothesis tests) in which we compare paired samples formed by the objective function value of the algo-
rithm that we propose in the current paper (i.e. the reference algorithm, abbreviated as REF. ALG.) and the objective
function value of another algorithm, which is different for every experiment. The null hypothesis of these tests states
that the median of X −Y is greater (less) than or equal to 0 for the first case study (second case study), where X and
Y are random variables that represent the objective function value of the reference algorithm and the other algorithm,
respectively. In other words, for each case study small p-values in the tables indicate that the reference algorithm tends
to produce a better objective function value more often than the other algorithm.

7.1. Computational results: quay crane scheduling problem with non-crossing constraints

7.1.1. Data generation
The set of problem instances that we will use to answer these questions consists of two separate datasets (A and

B). Dataset A was proposed by Lee and Chen [9] and later also used by Santini et al. [10]. Most of these problem
instances represent a realistic situation with respect to the number of quay cranes and bays. To give the reader an idea
of realistic numbers, we refer to Santini et al. [10] who report that there were 23 bays in one of the largest container
vessels in 2,014 and Ng et al. [78] who report that two to seven quay cranes are deployed for a ship in a typical
terminal. Apart from these realistic instances, this set also consists of a few problem instances for which the number
of quay cranes and bays is unrealistically large. The number of bays in problem instances from dataset A is between
16 and 100, while the number of quay cranes is between 4 and 10. The processing times of the bays are uniformly
distributed between 30 and 100, leading to sums of processing times between 2,893 and 16,519.

Dataset B was generated by us in the same way as described in the previous paragraph, but consists of much bigger
problem instances that represent unrealistic situations. The purpose of these unrealistically large problem instances
is to demonstrate that heuristic algorithms are still able to produce good results in a reasonable time. The number of
bays in these instances is between 200 and 3,000, the number of quay cranes is between 4 and 10 and the sums of the
processing times are between 33,532 and 495,726.

7.1.2. Experiments
In the first experiment, we have investigated the impact of varying the parameters of the Monte Carlo tree search

algorithm (question (1)). This algorithm, which we will denote by MCT S t w, has two parameters that have to be
chosen: the execution time t (in seconds) and the beam width w. All combinations of parameters were tested, where
t ∈ {10;100} and w ∈ {1;10;100}, yielding 6 different possibilities. The possible values for the execution time t were
chosen in such a way that they are comparable with the times that were reported in state-of-the-art algorithms (see the
second experiment), while the values for the beam width w were chosen to be reasonably small integers. Because of

20

the stochasticity of the algorithm, every problem instance was solved 25 times for every parameter setting, each time
using a different seed for the random number generator (a Mersenne Twister with a state size of 19,937 bits). The
average objective function values over these 25 runs were recorded for every problem instance and these values were
again averaged over the whole dataset. These values are summarized in Table 2 for both datasets. Since the quay crane
scheduling problem with non-crossing constraints is a minimization problem, lower values are better.

Table 2: Average objective function values for varying parameters

Dataset average MCT S 10 1 MCT S 10 10 MCT S 10 100 MCT S 100 1 MCT S 100 10 MCT S 100 100

Avg. A 847.9 847.4 846.9 845.7 845.5 845.3

Avg. B 38,195.2 38,192.8 38,193.0 38,180.0 38,180.5 38,178.5

As can be seen from this table, the different parameter settings obtain very comparable results. The biggest relative
differences between the different parameter settings are 0.31% and 0.04% for dataset A and B, respectively, where
MCT S 10 1 had the worst performance and MCT S 100 100 had the best performance. For a fixed execution time t,
the effect of varying the beam width w is in general quite small and there is no single choice of beam width w that
is always at least as good as another choice for every single problem instance. For a fixed beam width w, the effect
of changing the execution time t is a little larger, although still quite small. On average, the relative improvement
that could be gained by changing the execution time t from 10 seconds to 100 seconds was 0.26%, 0.22% and 0.19%
(dataset A) and 0.04%, 0.03% and 0.04% (dataset B) for a beam width of 1, 10 and 100, respectively. As we will see
later in the paper (in Table 3), the solutions produced by these six different algorithms are all nearly optimal (even
using the worst parameter settings) and this explains why the observed differences are relatively small.

To answer the second question we have compared the performance of our algorithm (using the best obtained
result from the previous experiment, where ties are broken in favour of less time in case of equal results) with the
performance of the algorithms described by Lee and Chen [9], Santini et al. [10] and Zhang et al. [57]. Lee and Chen
proposed a deterministic, heuristic algorithm, named enhanced best partition (EBP), that consists of two phases. In the
first phase, a more constrained version of the problem is solved in polynomial time by dynamic programming. In the
second phase, this solution is iteratively improved by reassigning quay cranes to different bays. Santini et al. proposed
the mathematical model that was introduced earlier in Subsection 5.1 and used the mixed integer programming solver
CPLEX to solve it. Zhang et al. proposed another deterministic, heuristic algorithm, named selected partition-based
algorithm (SPA), in which the bays are first partitioned and next consecutive areas of bays are merged according to
several rules. The resulting algorithm achieves an approximation ratio of 2− 2

m+1 , where m denotes the number of
quay cranes. This is the best approximation ratio that is known in literature.

We have contacted the corresponding authors of these three papers to inquire about the availability of the source
code of their algorithms and the problem instances that were used. We have received the source code of Santini et
al. [10] and the problem instances of Lee and Chen [9] and Santini et al. [10] (dataset A), but we were unable to
obtain the source code of Lee and Chen [9] and Zhang et al. [57]. Fortunately, these two missing algorithms were
described in great detail without any unclear aspects in both papers and we have taken the effort to reimplement these
algorithms. For the algorithm by Lee and Chen, we were able to verify that our reimplementation obtained exactly the
same objective function values on the problem instances from dataset A as in the original paper [9]. The execution
times are faster in our reimplementation, but this is very likely to be due to more modern hardware and a potentially
faster programming language (MATLAB in the original paper versus C++ in our reimplementation). For the algorithm
by Zhang et al. [57], there were unfortunately no common problem instances available for which we could test the
correctness of our reimplementation. However, the optimality gaps that we obtained on our problem instances are
comparable to the optimality gaps that were reported in [57], which gives us confidence that there were no significant
errors in our reimplementation of this algorithm.

The detailed results of these algorithms can be found in appendix A (Table A11 for dataset A and Table A12

21

for dataset B) and are summarized in Table 3. In these tables, the first column contains the name of the problem
instance (or the dataset in case of Table 3). In the remainder of this article, we will denote the problem instances by
n−m− s, where n represents the number of bays, m represents the number of quay cranes and s represents the sum
of the processing times of all bays. These numbers are indicative of the size of the problem instance according to the
mathematical model from Subsection 5.1 (the higher these numbers, the larger the size). The second and the third
column contain the lower bounds on the objective function values that were computed using expressions (5)+(6) and
CPLEX, respectively. Hence, the solutions that were computed using the different algorithms cannot have an objective
function value that is below these lower bounds and equality would imply that the solution is optimal. Finally, the eight
remaining columns contain the objective function value of the best found solution (with relative deviations from the
best known lower bound indicated between brackets) and the execution time (with a maximum allotted time of 3,600
seconds) for all four algorithms. Table 3 contains the averages over the two datasets. In case not all algorithms were
able to compute a feasible solution for every problem instance, we have made a distinction between the average over
all problem instances (Avg.) and the average over all problem instances for which all algorithms produced a feasible
solution (Avg. feasible). For dataset A, all algorithms were able to produce a feasible solution for every problem
instance, but this was not the case for dataset B where CPLEX was not always able to find a feasible solution within
3,600 seconds.

Table 3: Summary of the comparison between the performances of different algorithms for the quay crane
scheduling problem with non-crossing constraints

CPLEX
(Santini et al. [10])

MCTS
(this paper)

EBP
(Lee and Chen [9])

SPA
(Zhang et al. [57])

Data
set

av
era

ge

Low
er

bo
un

d (5)
+(6)

Low
er

bo
un

d

Valu
e

Tim
e

Valu
e

Tim
e

Valu
e

Tim
e

Valu
e

Tim
e

Avg. A 840.4 842.9 846.1 (0.4%) 1,937.7 s 843.9 (0.1%) 32.5 s 883.1 (4.8%) <0.1 s 1,327.6 (57.5%) <0.1 s

Avg. B 38,166.7 - - - 38,169.9 (0.0 %) 51.3 s 38,220.3 (0.1 %) 2.1 s 64,239.2 (68.3 %) <0.1 s

Avg. B
feasible 7,137.0 7,137.0 33,487.8 (369.2 %) 3,600.0 s 7,138.7 (0.0 %) 47.5 s 7,191.3 (0.8 %) <0.1 s 11,941.3 (67.3 %) <0.1 s

By inspecting Table 3 and Table A11, it becomes clear that for dataset A both EBP and SPA produce their answer
very fast, while both MCTS and CPLEX take a longer time to do so, but also obtain results with a higher quality.
The results of SPA are quite different from the other three algorithms. The relative deviations from the lower bound
range between 22.5% and 79.9% for SPA, while they are always below 15% for the other algorithms. This shows
that although SPA obtains the best known approximation ratio (2− 2

m+1), its practical performance is not so good.
For EBP the relative deviations range from 1.2% to 13.5%, while for both MCTS and CPLEX they are always below
1.5%. Recall that both SPA and EBP are deterministic, heuristic algorithms such that executing them multiple times or
increasing their computational budget will not affect the results that they produce. Hence, the best results for dataset A
are produced by CPLEX (average relative deviation of 0.4%) and MCTS (average relative deviation of 0.1%). There
were 9 problem instances for which the result that was produced by MCTS was strictly better than the result of CPLEX
and 1 problem instance for which CPLEX was better than MCTS. For 8 out of these 9 cases, MCTS improved the
previously best known solution in literature (for problem instance 23−4−3,544, MCTS matches the previously best
known solution that was also obtained in [10]).

The problem instances of dataset B (Table 3 and Table A12) are much bigger in comparison with dataset A and in
this case the results of CPLEX are no longer satisfactory, with relative deviations ranging between 145.6% and 807.7%.

22

For the 12 biggest problem instances, CPLEX was no longer able to even produce any solution or lower bound at all.
For these bigger instances, the results obtained by MCTS were always strictly better than the results obtained by the
other three algorithms. It should also be noted that the lower bounds that are used by MCTS (expressions (5)+(6))
seem to be tighter for dataset B than for dataset A. For dataset A, MCTS produced a solution with an objective function
value equal to the lower bound (i.e. an optimal solution) in 5 cases, while there were 13 such cases for dataset B. When
there are more bays it is easier to find a partition of the bays into contiguous areas such that the bay areas all roughly
have the same processing time. Such a partition into contiguous areas gives rise to a feasible solution and since there
are more partitions in case the number of bays rises, the quality of the best solution with this property also increases.
This is illustrated by the fact that the results of EBP, which are based on finding the best partition into contiguous
areas, also get better (average relative deviation of 4.8 % for dataset A versus average relative deviation of 0.1 % for
dataset B). Because the lower bounds used by MCTS become tighter, its results also get slightly better in comparison
with dataset A (average relative deviation of 0.1 % for dataset A versus average relative deviation of 0.0 % for dataset
B). The results of SPA, however, get slightly worse (average relative deviation of 57.5 % for dataset A versus average
relative deviation of 68.3 % for dataset B). Hence, it can be concluded that in general the best results are obtained
by MCTS and it surpasses the state-of-the-art results for this case study. The statistical tests that we performed also
support this. At a significance level of α = 5%, we reject the null hypothesis of the Wilcoxon signed-rank test in
favour of the alternative hypothesis (the p-values can be found in Tables A11 and A12). Note that all p-values are very
small.

We answer the third question by providing evidence for the claim that MCTS is able to improve the heuristic that
is used as its solution completion policy. Using the heuristic solution completion policy of MCTS as a standalone
heuristic corresponds to stopping MCTS after its first iteration. This is the case because in the first iteration of the
algorithm, the root node has never been visited before and hence the algorithm switches from using its selection
policy to using its simulation policy. For this reason, the performance of MCTS is always at least as good as the
performance of the heuristic solution completion policy. The averaged performance of the heuristic simulation policy
for both datasets can be found in Table 4. We have also again added the best known lower bound and the results
of MCT S 100 100 from the first experiment (because this parameter setting yielded the best average performance)
to this table to make it easier for the reader to follow the comparison. The relative deviations from the lower bound
are indicated between brackets. The problem instances for which the heuristic solution completion policy found an
infeasible solution have been left out for computing the averages. The best found value for every row is marked in
bold.

Table 4: Comparison between MCTS and its heuristic solution completion policy used as a
standalone heuristic

Dataset average Lower bound MCT S 100 100 Time Heuristic solution completion policy Time

Avg. A feasible 828.7 830.8 (0.3 %) 100.0 s 922.9 (11.4 %) <0.1 s

Avg. B feasible 42,805.3 42,811.8 (0.0 %) 100.0 s 42,898.4 (0.2 %) <0.1 s

From this table, one can observe that the heuristic simulation policy can be executed very fast and the quality of
the produced solution is moderate to good. In some cases, the solution produced by the heuristic simulation policy
is infeasible (there were 4 out of 24 infeasible solutions for dataset A and 7 out of 24 for dataset B). Recall that the
followed strategy of MCTS is to attempt to solve the original problem by solving a relaxation and discarding infeasible
solutions. MCTS is able to learn to correct all of these solutions and is able to improve the heuristic on average by
10.0% for dataset A and by 0.2% for dataset B. Note that for dataset B, this improvement is quite small, because the
performance of the heuristic solution completion policy is already quite good and there is less room for improvement.
MCTS did not produce any infeasible solutions for both datasets. Hence, one can indeed conclude that MCTS can
also be seen as a powerful method to improve the performance of a constructive heuristic algorithm.

23

To answer the fourth question we implemented 16 different versions of MCTS, where every subset of the modifi-
cations that we proposed in Section 4 is omitted once (see Table 5). The first version contains all of the modifications,
whereas for the other versions at least one modification is omitted (so the first version corresponds to the version that
was discussed in the previous paragraphs). The used parameters for every version are the same (t = 100 and w = 100
as in the previous experiment). The versions where a certain modification is not present work as follows. If a version
does not follow the heuristic simulation policy, the simulation policy assigns domain values uniformly at random to
the decision variables in the simulation phase of the algorithm. Not using the idea of directing the search by using a
beam width corresponds to using an infinitely large beam width. Finally, not using dominance rules or pruning rules
will result in no domain values or subtrees being pruned from the search space. The detailed results of this experiment
can be found in appendix A (Tables A13-A15 for dataset A and Tables A16-A18 for dataset B) and are summarized
in Table 5. We can see that version 16 (where none of the modifications that we propose are present) performs con-
sistently worse than the other versions. For dataset B, there were even 8 problem instances for which version 16 was
not able to find any feasible solutions. We can also see that usually the versions which contain more modifications
perform better, but this is not always the case. For example, for problem instance 16− 5− 2,893 from dataset A we
can see that version 10 has a worse objective function value than version 12. The versions which include the heuristic
simulation policy also perform much better than the versions that exclude it. Finally, also note that the first version,
which contains all of the modifications that we propose, always performs at least as well as the other versions for both
datasets for every problem instance, except for two problem instances (21− 5− 3,033 and 25− 5− 4,334). Hence,
the first version is clearly the best version for this case study. This is also supported by the statistical tests that we
performed. For dataset A and B, there are respectively 13 and 15 (out of 15) MCTS variants for which we reject the
null hypothesis of the Wilcoxon signed-rank test in favour of the alternative hypothesis (the p-values can be found in
Tables A13-A18; they are often even below 0.01). The null hypothesis cannot be rejected at a significance level of
5% for version 5 (p-value of 0.063) and version 7 (p-value of 0.063) based on dataset A, although version 1 performs
better on average and produces a provably optimal solution for all but two problem instances.

Table 5: Average objective function values for different versions of MCTS

MCTS
Version

Heuristic
simulation policy Beam Domain reduction

Pruning subtrees
by calculating bounds Avg. A Avg. B

Avg. B
feasible

1 3 3 3 3 843.9 38,169.9 13,385.5
2 3 3 3 7 849.5 38,176.7 13,386.4
3 3 3 7 3 847.0 38,185.3 13,386.0
4 3 3 7 7 852.5 38,189.3 13,387.3
5 3 7 3 3 844.8 38,174.3 13,385.7
6 3 7 3 7 849.6 38,176.2 13,386.3
7 3 7 7 3 845.5 38,185.5 13,386.2
8 3 7 7 7 851.5 38,196.5 13,390.0
9 7 3 3 3 874.2 - 13,669.3

10 7 3 3 7 902.4 - 13,669.5
11 7 3 7 3 927.7 - 14,097.5
12 7 3 7 7 949.5 - 13,990.1
13 7 7 3 3 865.8 - 13,696.0
14 7 7 3 7 902.2 - 13,698.0
15 7 7 7 3 912.9 - 13,954.8
16 7 7 7 7 937.0 - 14,105.3

Finally to answer the fifth research question, we compared the selection policy that we propose in the current paper
with two alternative ones. For the first alternative, we replaced expression (3) used to select a child in the selection
phase with the following expression (which is more close to expression (1) from Monte Carlo tree search in the context

24

of game playing):

averageOb jectiveFunctionValue(parent,child)+

√
2 · ln(numberVisits(parent))

numberVisits(child)
(11)

For the second alternative, we implemented2 the OCBA-MCTS selection policy proposed by Li et al. [27]. This
is based on the Optimal Computing Budget Allocation (OCBA) framework [79] and has nice theoretical properties.
More specifically, Li et al. [27] prove that the algorithm optimally allocates a limited computing budget such that a
lower bound on the probability of correctly selecting the best action at each node is maximized. Note that this goal is
different from the MCTS variant used in the current paper (which attempts to maximize the cumulative rewards).

The results of the three algorithms considered in this experiment are summarized in Table 6 (see Tables A19
and A20 for the detailed results). For each algorithm, we again use the best found parameter setting from the first
experiment (w = 100 and t = 100). As we can see, the three algorithms have a relatively comparable performance in
the sense that all algorithms tend to produce nearly optimal solutions (the average deviation from the lower bound is at
most 0.3% for all algorithms). The best average objective function values for both data sets are given by the algorithm
which uses expression (3) from the current paper, the algorithm which uses expression (11) and OCBA-MCTS (in
that order). The algorithm from the current paper produces a solution that is always at least as good as the other two
algorithms on all problem instances, except for problem instance 25−5−4,334. The Wilcoxon signed-rank test also
confirms for both datasets that at a significance level of α = 5% the null hypothesis should be rejected in favour of the
alternative hypothesis (the p-values can be found in Tables A19 and A20).

Table 6: Comparsion between different selection policies of MCTS.

Dataset average Lower bound
MCTS

(selection policy uses (3))
MCTS

(selection policy uses (11))
OCBA-MCTS
(Li et al. [27])

Avg. A 842.9 843.9 (0.1%) 844.7 (0.2%) 845.1 (0.3%)
Avg. B 38,166.7 38,169.9 (0.0%) 38,178.3 (0.0%) 38,178.5 (0.0%)

7.2. Computational results: 0-1 knapsack problem

7.2.1. Data generation
For the 0-1 knapsack problem, we have also generated two datasets of problem instances (dataset A and dataset

B). It is well known that the 0-1 knapsack problem can be exactly solved with a worst-case time complexity of O(n ·c)
(see e.g. [66]), where n denotes the number of items in the knapsack and c denotes the knapsack capacity. Therefore,
most of the problem instances were generated such that n · c is large.

The problem instances from dataset A are strongly correlated spanner instances, which were introduced by Pisinger
in [72]. This article has introduced several classes of problem instances that were empirically shown to be hard to solve.
Amongst all these classes, the strongly correlated spanner instances were the hardest class of problem instances. The
weights and the profits of the n items in a strongly correlated spanner instance are all multiples of the weights and
profits of a small set of items (the spanner set). Pisinger has described in [72] that the problem instances become harder
for smaller spanner sets, leading us to use 2 items for the spanner set. The weights wi of the items in the spanner set
are generated independently from each other, uniformly at random between 1 and 108. The corresponding profits pi

of the items in the spanner set are strongly correlated with the weights and are generated by setting pi = wi + 107.
The remaining (n− 2) items are generated by selecting a random item j from the spanner set and generating an
integer multiplier k uniformly at random between 1 and 10 for every item. The profit and weight of the i-th item

2We used the same parameters as those used for the inventory control problem in [27], namely n0 = 2, σ2
0 = 100 and αN(x) = 1− 1

5N(x) .

25

are then obtained by setting pi = k · p j and wi = k ·w j, respectively. Finally, the knapsack capacity is chosen to
be a certain fraction f of the sum of the weights of all the items. In the instances from dataset A, we have chosen
f ∈ {0.25;0.50;0.75} and n ∈ {50;200;500;2,000;5,000;20,000;50,000}.

The state-of-the-art Combo algorithm for the 0-1 knapsack problem [67] is still able to exactly solve the largest
problem instances from dataset A in a reasonable time, despite the fact that these instances are the hardest problem
instances described in [72]. For dataset B on the contrary, we have been able to create problem instances which
consist of relatively few items in comparison with dataset A, but the time needed by the Combo algorithm to solve
these problem instances is considerably higher. These problem instances are so-called noisy multi-group exponential
problem instances and these instances have been shown to be difficult to solve for exact algorithms in [73]. In the
current paper we show that our heuristic algorithm is able to quickly produce nearly optimal solutions. An instance
is generated as follows: the knapsack capacity c is equal to 1010. There are n items, which can be divided into 10
different groups. The first 9 groups (groups 1,2, . . . ,9) consist of items with exponentially decreasing weights and
profits. These 9 groups consist of around 2

3 ·n items, where every group is equally large. All items in a certain group i
(i = 1, . . . ,9) are generated independently from each other, by setting the profit p j of item j as p j = (1

2i +10−4) ·c+ r1

and setting the weight as w j = (1
2i + 10−4) · c+ r2 (note that p j and w j are integers because of the choice of c).

Here, r1 and r2 are small integers which are chosen uniformly at random between 1 and 300 for each item. Note
that by defining the items precisely like this, the profit-weight ratios of the items in the first 9 groups are all very
close to each other. Another consequence of the definition is that the optimal solution usually has to combine items
from several different groups, because including 2i items from group i would slightly exceed the knapsack capacity,
whereas including 2i−1 items from group i would leave a large part of the knapsack unfilled. Finally the tenth group
consists of the remaining 1

3 · n items and these items have very small weights and profits with a very diverse range
of profit-weight ratios. These items are generated independently from each other by setting the profit p j of item j
as p j = r1 and setting the weight as w j = r2, where r1 and r2 are again small integers which are chosen uniformly
at random between 1 and 300 for each item. Hence, the items in the tenth group introduce more variability in the
profit-weight ratios and they are useful to fill a small part of the knapsack. The problem instances from dataset B were
generated by choosing n ∈ {100;125;150; . . . ;700}.

7.2.2. Experiments
To answer the first research question from Section 7, we investigated to which extent the results are affected by

different parameter settings of the Monte Carlo tree search algorithm. As in the previous case study, we tested 6
different parameter settings that were obtained by choosing the beam width w ∈ {1;10;100} and the execution time
t ∈ {10;100}. For every parameter setting, we solved every instance 25 times independently from each other, using a
different random seed in every run. For both datasets, we computed the average objective function values over these
25 runs for every problem instance, and next these values were averaged over the whole dataset. The results of this
experiment can be found in Table 7. Recall that the 0-1 knapsack problem is a maximization problem, such that higher
objective function values are better. The best found average for every dataset is marked in bold.

Table 7: Objective function values for varying parameters

Dataset average MCT S 10 1 MCT S 10 10 MCT S 10 100 MCT S 100 1 MCT S 100 10 MCT S 100 100

Avg. A 334,940,368,920.9 334,940,368,920.9 334,940,368,920.9 334,940,368,920.9 334,940,368,920.9 334,940,368,920.9

Avg. B 9,999,791,698.2 9,999,846,037.4 9,999,721,277.9 9,999,875,981.1 9,999,892,314.5 9,999,829,188.7

Interestingly, we see that changing the parameter settings has no effect at all for dataset A. The obtained objective
function values are all exactly the same for the 6 different parameter settings and the 25 different runs, given a fixed
problem instance of dataset A. For dataset B, different parameter settings yield different results, but only very slightly.
For a fixed execution time t, the results are ordered in increasing order of quality by choosing the beam width w as

26

100, 1 and 10 (in this order). Changing the execution time t from 10 seconds to 100 seconds for a fixed beam width w
improves the results, albeit only slightly (the biggest relative difference with respect to the objective function value is
equal to 1.1×10−3 %). These results reveal that the best parameter settings for both datasets are obtained by choosing
t = 100 and w = 10, although the differences are very small.

We answer the second question by comparing the performance of our algorithm (using the best obtained result from
the previous experiment, where ties are broken in favour of less time in case of equal results) with the performance of
the famous Combo algorithm [67] (source code3 available online at: http://hjemmesider.diku.dk/~pisinger/codes.html).
Although this algorithm was invented more than twenty years ago, it still represents the current state-of-the-art (see
e.g. [68], [69], [70] and [71] for relatively recent articles that support this claim). This is not surprising, given that the
authors of Combo have been conducting research about the 0-1 knapsack problem for at least two decades prior to the
publication of the article in which Combo was described [67]. The stellar performance of this algorithm is reconfirmed
in our experiments. From these experiments, it becomes clear that many very large knapsack problem instances can
be solved in only a few seconds, despite Combo being an exact algorithm. Because of the very limited room for
improvement, there do not exist heuristic algorithms which are able to outperform Combo in this case. However, as
will be indicated later, even the simple heuristic solution completion policy that we used in our algorithm produces
objective function values that are extremely close to the optimal values. With this knowledge, the second research
question is less interesting for the 0-1 knapsack problem (Combo has been the undisputed best algorithm for more
than two decades), but we want to answer it anyways because we also addressed this question for the first case study.
Nevertheless, we are also able to show that certain problem instances with specific characteristics exist (dataset B) for
which the large execution times might make it impractical to use Combo.

The detailed results of Combo and MCTS can be found in appendix B (Table B21 for dataset A and Table B22
for dataset B) and are summarized in Table 8. The first column contains the name of the problem instance (or name
of the dataset in case of Table 8). The instances will be denoted as strCorrSpan-n-c and exp-n-c for dataset A and
B, respectively, where n denotes the number of items in the knapsack and c denotes the knapsack capacity. The four
other columns contain the found objective function value and the time needed to obtain this result by both algorithms.
Table 8 contains the averages over both datasets. The Combo algorithm computes the exact optimum while MCTS is
a heuristic, and thus the obtained result by MCTS is a lower bound for this optimum. The relative deviation from the
optimum is indicated between brackets.

Table 8: Summary of the comparison between the performances of Combo
and MCTS for the 0-1 knapsack problem

Combo MCTS

Dataset Value Time Value Time

Avg. A 334,942,167,924.2 2.8 s 334,940,368,920.9 (5.3×10−4 %) 10.0 s

Avg. B 9,999,968,161.2 866.9 s 9,999,920,718.0 (4.7×10−4 %) 67.6 s

If we take a closer look at Table B21, we see that Combo is able to compute the optimal answer in less than 10
seconds for almost all problem instances of dataset A, except for the three largest problem instances where there are
50,000 items in the knapsack. For two of these three instances, it obtains a better objective function value than MCTS
and requires more or less the same time to do so. However, it should also be noted that the objective function value
produced by MCTS is always very close to the optimal answer: amongst all problem instances of dataset A the largest
relative deviation from the optimum is equal to 0.029 % and the average relative deviation is equal to 5.3× 10−4

3We changed the value of the variable MAXSTATES from 1.5×106 to 4.5×108 to avoid the program crashing when the number of states in the
dynamic programming algorithm exceeds this variable.

27

%. For 14 problem instances, MCTS was able to produce an objective function value that was equal to the optimal
one. Thus we can conclude that for dataset A both algorithms produce very similar solutions, but Combo has a slight
advantage.

However, the conclusion for dataset B is somewhat different. These results can be found in Table B22. Despite
the fact that there are only several hundreds of items, the execution time needed by Combo to produce the optimal
answer increases rapidly. For example, it took Combo more than 2,500 seconds to solve exp-700-10,000,000,000 from
dataset B, while it took less than 0.1 second to solve strCorrSpan-2,000-17,052,969,836 from dataset A (note that the
number of items n and the knapsack capacity c of both problem instances have a comparable order of magnitude). For
the problem instances of dataset B, MCTS is still able to produce objective function values that are very close to the
optimal ones, while only using at most 100 seconds to do so. Hence, for these instances it might be advisable to use a
heuristic like MCTS that sacrifices the optimality guarantee for a decrease in execution time. On average, MCTS used
67.6 seconds of execution time, while Combo used 866.9 seconds on average. The cost of this decrease in execution
time is not so big: the average optimality gap attained by MCTS is equal to 4.7×10−4 %.

Table 9: Comparison between MCTS and its heuristic solution completion policy used as a standalone heuristic

Dataset average Optimum MCT S 100 10 Time Heuristic solution completion policy Time

Avg. A 334,942,167,924.2 334,940,368,920.9 (5.3×10−4 %) 100.0 s 334,940,285,925.1 (5.6×10−4 %) <0.1 s

Avg. B 9,999,968,161.2 9,999,920,718.0 (4.7×10−4 %) 100.0 s 9,992,194,843.4 (7.7×10−2 %) <0.1 s

To answer the third question, we compare MCT S 100 10 (the best parameter setting in the first experiment) with
the heuristic that is used as its solution completion policy. Recall that the result of MCTS will always be at least as
good as the result of its solution completion policy. The average performance of both algorithms can be found in Table
9. We also repeated the average optimal objective function values and the relative deviations between brackets for the
reader’s convenience. The heuristic solution completion policy can be executed very fast (in less than 0.1 second),
because it corresponds to the first iteration of MCTS. From this table we can also see that the objective function values
obtained by the heuristic solution completion policy are very close to the optimal ones. For both datasets, MCTS is able
to improve these values. For dataset A, this improvement is not so big (from 5.6×10−4 % to 5.3×10−4 %), because
the initial optimality gap is already very small. For dataset B, the relative improvement is bigger. The optimality gap
is reduced from 7.7×10−2 % to 4.7×10−4 %, which corresponds to a decrease with a factor of approximately 163.8.
We conclude that MCTS is indeed able to learn to correct the solutions produced by its heuristic simulation policy,
despite the fact that this policy already achieves small optimality gaps.

Finally, to answer the fourth question we implemented five different versions of MCTS. The modifications that
we proposed in Section 4 are introduced one by one in these five versions. The used parameters for every version are
the same (t = 100 and w = 10 as in the previous experiment). The detailed results of this experiment can be found
in appendix B (Table B23 for dataset A and Table B24 for dataset B) and are summarized in Table 10. From these
tables, it becomes clear that the fifth version of MCTS (where none of the modifications that we propose are present)
is not suitable at all for this problem and it performs much worse than the four other versions. It can often not improve
the initial solution in which none of the items are selected. This was the case for 7 problem instances of dataset A
and all problem instances of dataset B. The four other versions were always able to produce nearly optimal solutions.
For dataset A, there was only one problem instance (strCorrSpan−2,000−28,036,577,373) for which the solution
produced by the four other versions was different. Hence, for dataset A these four other versions were equally good
(apart from this one problem instance where version 1 and version 4 produced an equally good solution that was
better than version 2 and version 3). For dataset B, however, the solutions produced by the four other versions were
often slightly different. For this dataset, version 1 produced the best solutions on average and there were 14 problem
instances for which it was strictly better than all other versions. However, this dataset also shows that version 1 was

28

not always at least as good as the other versions (as was previously the case). The first version tends to produce a
better solution most of the time. This was also confirmed by the Wilcoxon signed-rank test: at a significance level of
α = 5%, the null hypothesis should be rejected in favour of the alternative hypothesis (the p-values can be found in
Table B24).

Table 10: Average objective function values for different versions of MCTS

Dataset average MCTS Version 1 MCTS Version 2 MCTS Version 3 MCTS Version 4 MCTS Version 5

Heuristic simulation policy 3 3 3 3 7
Beam 3 3 3 7 7

Domain reduction 3 3 7 7 7
Pruning subtrees by calculating bounds 3 7 7 7 7

Avg. A 334,940,368,920.9 334,940,326,098.6 334,940,326,098.6 334,940,368,920.9 187,232,935,624.5

Avg. B 9,999,920,718.1 9,999,914,190.1 9,999,914,267.6 9,999,697,742.2 0.0

8. Conclusions and further work

In this article, we have proposed a heuristic algorithm to explore search space trees that is based on Monte Carlo
tree search. By leveraging the combinatorial structure of the problem, the algorithm was enhanced in several ways.
These enhancements were demonstrated on two case studies: the quay crane scheduling problem with non-crossing
constraints and the 0-1 knapsack problem. The computational results for these problems have shown that the proposed
algorithm is able to compete with state-of-the-art algorithms for both problems and eight new best solutions were
found for the set of problem instances proposed by Lee and Chen [9]. The computational results also provided further
insight into the sensitivity of the algorithm’s parameters, the ability to learn to correct the choices made by the heuristic
simulation policy and the added value of the proposed modifications to Monte Carlo tree search.

An interesting avenue for further work is to research the possibility of learning across different problem instances.
In the proposed algorithm, the selection policy is learned in an online fashion, making it unable to benefit from
information that was learned from previous problem instances. However, by using information that was learned
offline (e.g. features that capture all relevant information of a node in the search space tree), the time necessary to
learn a well-performing selection policy for a given problem instance could potentially be significantly reduced. It is
very likely that integrating such information into the proposed algorithm would require significant changes and this
problem deserves further attention.

Another interesting idea that was not further explored in this article is the ability to integrate exact solvers into
the algorithm and, related to this, compare it with other search paradigms (e.g. heuristic tree search algorithms or
matheuristics). In the deeper levels of the search space tree, the number of decision variables whose values are not
yet known is low, making exact approaches feasible. However, the time for a single iteration of the algorithm could
potentially be significantly increased by using exact solvers. In this case, a good balance between the accuracy and
time increase must be found. The question of how to do this in an optimal way is a challenging one and requires further
attention. It is likely that this will also depend on the problem that one is solving and another interesting opportunity
for further work is to implement the proposed algorithm for different problems than the ones presented in the current
article.

Finally, another topic that was not further explored in this article is the suitability of the proposed algorithm to be
parallelized. There are several possibilities to do this. The most simple option is to let the algorithm have multiple
independent runs in parallel. Another option would be to run multiple simulations in parallel in the simulation phase
of the algorithm. The most sophisticated option would be to combine the learned selection policies of multiple runs
into a single selection policy. It is not immediately clear how to combine these policies in an optimal way and this
question requires further research.

29

Acknowledgments

The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer
Center), funded by the Research Foundation - Flanders (FWO) and the Flemish Government - department EWI. We
gratefully acknowledge the support provided by the ORDinL project (FWO-SBO S007318N, Data Driven Logistics,
1/1/2018 - 31/12/2021). This research received funding from the Flemish Government under the “Onderzoekspro-
gramma Artificiële Intelligentie (AI) Vlaanderen” programme. Pieter Leyman is a Postdoctoral Fellow of the Research
Foundation - Flanders (FWO) with contract number 12P9419N. We are also grateful to Stefan Røpke (Technical Uni-
versity of Denmark) for providing dataset A for the quay crane scheduling problem with non-crossing constraints.
Editorial consultation has been provided by Luke Connolly (KU Leuven).

References

[1] O. Vinyals, M. Fortunato, N. Jaitly, Pointer networks, in: Advances in Neural Information Processing Systems, Vol. 28, 2015,
pp. 2692–2700.
URL https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf

[2] I. Bello, H. Pham, Q. V. Le, M. Norouzi, S. Bengio, Neural combinatorial optimization with reinforcement learning, in:
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track
Proceedings, 2017.
URL https://openreview.net/forum?id=Bk9mxlSFx

[3] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, L. Song, Learning combinatorial optimization algorithms over graphs, in: Advances
in Neural Information Processing Systems, Vol. 30, 2017.
URL https://proceedings.neurips.cc/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf

[4] A. Hottung, K. Tierney, A biased random-key genetic algorithm for the container pre-marshalling problem, Computers &
Operations Research 75 (2016) 83–102.

[5] D. Karapetyan, A. P. Punnen, A. J. Parkes, Markov chain methods for the bipartite boolean quadratic programming problem,
European Journal of Operational Research 260 (2) (2017) 494–506.

[6] R. Coulom, Efficient selectivity and backup operators in Monte-Carlo tree search, in: H. J. van den Herik, P. Ciancarini, H. H.
L. M. Donkers (Eds.), Computers and Games, 5th International Conference, CG 2006, Turin, Italy, May 29-31, 2006. Revised
Papers, Vol. 4630 of Lecture Notes in Computer Science, Springer, 2006, pp. 72–83. doi:10.1007/978-3-540-75538-8\
_7.

[7] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction, MIT press, 2018.

[8] H. Baier, M. H. Winands, Beam Monte-Carlo tree search, in: 2012 IEEE Conference on Computational Intelligence and
Games (CIG), IEEE, 2012, pp. 227–233.

[9] D.-H. Lee, J. H. Chen, An improved approach for quay crane scheduling with non-crossing constraints, Engineering Opti-
mization 42 (1) (2010) 1–15. doi:10.1080/03052150902943020.

[10] A. Santini, S. Røpke, H. Friberg, A note on a model for quay crane scheduling with non-crossing constraints, Engineering
Optimization 47. doi:10.1080/0305215X.2014.958731.

[11] N. Boysen, D. Briskorn, F. Meisel, A generalized classification scheme for crane scheduling with interference, European
Journal of Operational Research 258 (1) (2017) 343–357. doi:10.1016/j.ejor.2016.08.041.

[12] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack problems, Berlin, DE: Springer 57.

[13] J. Duguépéroux, A. Mazyad, F. Teytaud, J. Dehos, Pruning playouts in Monte-Carlo tree search for the game of Havannah,
in: International Conference on Computers and Games, Springer, 2016, pp. 47–57.

30

https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://openreview.net/forum?id=Bk9mxlSFx
https://openreview.net/forum?id=Bk9mxlSFx
https://proceedings.neurips.cc/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
http://dx.doi.org/10.1007/978-3-540-75538-8_7
http://dx.doi.org/10.1007/978-3-540-75538-8_7
http://dx.doi.org/10.1080/03052150902943020
http://dx.doi.org/10.1080/0305215X.2014.958731
http://dx.doi.org/10.1016/j.ejor.2016.08.041

[14] R. J. Lorentz, Amazons discover Monte-Carlo, in: Proceedings of the 6th International Conference on Computers and Games,
CG 08, Springer-Verlag, Berlin, Heidelberg, 2008, p. 1324. doi:10.1007/978-3-540-87608-3_2.

[15] M. H. Winands, Y. Björnsson, J.-T. Saito, Monte Carlo tree search in lines of action, IEEE Transactions on Computational
Intelligence and AI in Games 2 (4) (2010) 239–250.

[16] B. Arneson, R. B. Hayward, P. Henderson, Monte Carlo tree search in Hex, IEEE Transactions on Computational Intelligence
and AI in Games 2 (4) (2010) 251–258.

[17] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneer-
shelvam, M. Lanctot, et al., Mastering the game of Go with deep neural networks and tree search, Nature 529 (7587) (2016)
484.

[18] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al.,
Mastering chess and shogi by self-play with a general reinforcement learning algorithm, arXiv preprint arXiv:1712.01815.

[19] T. L. Lai, H. Robbins, Asymptotically efficient adaptive allocation rules, Advances in Applied Mathematics 6 (1) (1985) 4–22.

[20] L. Kocsis, C. Szepesvári, Bandit based Monte-Carlo planning, in: European conference on machine learning, Springer, 2006,
pp. 282–293.

[21] P. Auer, N. Cesa-Bianchi, P. Fischer, Finite-time analysis of the multiarmed bandit problem, Machine Learning 47 (2-3)
(2002) 235–256.

[22] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis,
S. Colton, A survey of Monte Carlo tree search methods, IEEE Transactions on Computational Intelligence and AI in games
4 (1) (2012) 1–43.

[23] C. Bierwirth, F. Meisel, A follow-up survey of berth allocation and quay crane scheduling problems in container terminals,
European Journal of Operational Research 244 (3) (2015) 675–689.

[24] G. M. J. Chaslot, M. H. Winands, H. J. v. d. Herik, J. W. Uiterwijk, B. Bouzy, Progressive strategies for Monte-Carlo tree
search, New Mathematics and Natural Computation 4 (03) (2008) 343–357.

[25] M. H. Winands, Y. Björnsson, Evaluation function based Monte-Carlo LOA, in: Advances in Computer Games, Springer,
2009, pp. 33–44.

[26] S. Gelly, D. Silver, Combining online and offline knowledge in UCT, in: Proceedings of the 24th international conference on
Machine learning, 2007, pp. 273–280.

[27] Y. Li, M. C. Fu, J. Xu, An optimal computing budget allocation tree policy for Monte Carlo tree search, IEEE Transactions
on Automatic Control 67 (6) (2021) 2685–2699.

[28] G. Zhang, Y. Peng, Y. Xu, An efficient dynamic sampling policy for monte carlo tree search, arXiv preprint arXiv:2204.12043.

[29] M. H. Winands, Y. Björnsson, J.-T. Saito, Monte-Carlo tree search solver, in: International Conference on Computers and
Games, Springer, 2008, pp. 25–36.

[30] P. Drake, S. Uurtamo, Move ordering vs heavy playouts: Where should heuristics be applied in Monte Carlo Go, in: Proceed-
ings of the 3rd North American Game-On Conference, Citeseer, 2007, pp. 171–175.

[31] S. Gelly, D. Silver, Monte-Carlo tree search and rapid action value estimation in computer Go, Artificial Intelligence 175 (11)
(2011) 1856–1875.

[32] F. Xie, Z. Liu, Backpropagation modification in Monte-Carlo game tree search, in: 2009 Third International Symposium on
Intelligent Information Technology Application, Vol. 2, IEEE, 2009, pp. 125–128.

31

http://dx.doi.org/10.1007/978-3-540-87608-3_2

[33] A. Previti, R. Ramanujan, M. Schaerf, B. Selman, Monte-Carlo style uct search for boolean satisfiability, in: Congress of the
Italian Association for Artificial Intelligence, Springer, 2011, pp. 177–188.

[34] B. Satomi, Y. Joe, A. Iwasaki, M. Yokoo, Real-time solving of quantified CSPs based on Monte-Carlo game tree search, in:
Twenty-Second International Joint Conference on Artificial Intelligence, 2011.

[35] D. Perez, E. J. Powley, D. Whitehouse, P. Rohlfshagen, S. Samothrakis, P. I. Cowling, S. M. Lucas, Solving the physical
traveling salesman problem: Tree search and macro actions, IEEE Transactions on Computational Intelligence and AI in
Games 6 (1) (2013) 31–45.

[36] Y. Tanabe, K. Yoshizoe, H. Imai, A study on security evaluation methodology for image-based biometrics authentication
systems, in: 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, IEEE, 2009, pp.
1–6.

[37] T. M. Dieb, S. Ju, K. Yoshizoe, Z. Hou, J. Shiomi, K. Tsuda, MDTS: automatic complex materials design using Monte Carlo
tree search, Science and Technology of Advanced Materials 18 (1) (2017) 498–503.

[38] N. R. Sabar, G. Kendall, Population based Monte Carlo tree search hyper-heuristic for combinatorial optimization problems,
Information Sciences 314 (2015) 225–239.

[39] P. Ross, Hyper-heuristics, search methodologies: Introductory tutorials in optimization and decision support techniques (E.
K. Burke and G. Kendall, eds.) (2005).

[40] A. Sabharwal, H. Samulowitz, C. Reddy, Guiding combinatorial optimization with UCT, in: International Conference on
Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming, Springer,
2012, pp. 356–361.

[41] G. Chaslot, S. De Jong, J.-T. Saito, J. Uiterwijk, Monte-carlo tree search in production management problems, in: Proceedings
of the 18th BeNeLux Conference on Artificial Intelligence, Vol. 9198, 2006.

[42] K. Liu, Z. Wu, Q. Wu, Y. Cheng, Smart DAG task scheduling with efficient pruning-based MCTS method, in: 2019 IEEE
Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing &
Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), IEEE, 2019, pp. 348–355.

[43] C. D. Rosin, Nested rollout policy adaptation for monte carlo tree search, in: Twenty-Second International Joint Conference
on Artificial Intelligence, 2011.

[44] C. Grelier, O. Goudet, J.-K. Hao, On monte carlo tree search for weighted vertex coloring, in: European Conference on
Evolutionary Computation in Combinatorial Optimization (Part of EvoStar), Springer, 2022, pp. 1–16.

[45] T. Cazenave, B. Negrevergne, F. Sikora, Monte carlo graph coloring, in: Monte Carlo Search International Workshop,
Springer, 2020, pp. 100–115.

[46] T. Cazenave, Nested monte-carlo search., in: IJCAI International Joint Conference on Artificial Intelligence, 2009, pp. 456–
461.

[47] T. P. Runarsson, M. Schoenauer, M. Sebag, Pilot, rollout and Monte Carlo tree search methods for job shop scheduling, in:
International Conference on Learning and Intelligent Optimization, Springer, 2012, pp. 160–174.

[48] P. J. Van Laarhoven, E. H. Aarts, J. K. Lenstra, Job shop scheduling by simulated annealing, Operations Research 40 (1)
(1992) 113–125.

[49] S. Edelkamp, M. Gath, C. Greulich, M. Humann, O. Herzog, M. Lawo, Monte-carlo tree search for logistics, in: Commercial
Transport, Springer, 2016, pp. 427–440.

[50] C. F. Daganzo, The crane scheduling problem, Transportation Research Part B: Methodological 23 (3) (1989) 159–175.

32

[51] R. I. Peterkofsky, C. F. Daganzo, A branch and bound solution method for the crane scheduling problem, Transportation
Research Part B: Methodological 24 (3) (1990) 159–172.

[52] Y. Zhu, A. Lim, Crane scheduling with non-crossing constraint, Journal of the Operational Research Society 57 (12) (2006)
1464–1471.

[53] A. Lim, B. Rodrigues, Z. Xu, A m-parallel crane scheduling problem with a non-crossing constraint, Naval Research Logistics
54 (2) (2007) 115–127.

[54] D.-H. Lee, H. Q. Wang, L. Miao, Quay crane scheduling with non-interference constraints in port container terminals, Trans-
portation Research Part E: Logistics and Transportation Review 44 (1) (2008) 124–135.

[55] D.-H. Lee, H. Q. Wang, Integrated discrete berth allocation and quay crane scheduling in port container terminals, Engineering
Optimization 42 (8) (2010) 747–761.

[56] L. Tang, J. Zhao, J. Liu, Modeling and solution of the joint quay crane and truck scheduling problem, European Journal of
Operational Research 236 (3) (2014) 978–990.

[57] A. Zhang, W. Zhang, Y. Chen, G. Chen, X. Chen, Approximate the scheduling of quay cranes with non-crossing constraints,
European Journal of Operational Research 258 (3) (2017) 820–828.

[58] M. R. Garey, D. S. Johnson, Computers and intractability, Vol. 174, freeman San Francisco, 1979.

[59] G. B. Dantzig, Discrete-variable extremum problems, Operations Research 5 (2) (1957) 266–288.

[60] E. L. Lawler, Fast approximation algorithms for knapsack problems, Mathematics of Operations Research 4 (4) (1979) 339–
356.

[61] M. J. Magazine, O. Oguz, A fully polynomial approximation algorithm for the 0–1 knapsack problem, European Journal of
Operational Research 8 (3) (1981) 270–273.

[62] H. Kellerer, U. Pferschy, A new fully polynomial time approximation scheme for the knapsack problem, Journal of Combina-
torial Optimization 3 (1) (1999) 59–71.

[63] H. Kellerer, U. Pferschy, Improved dynamic programming in connection with an fptas for the knapsack problem, Journal of
Combinatorial Optimization 8 (1) (2004) 5–11.

[64] S. Martello, P. Toth, A new algorithm for the 0-1 knapsack problem, Management Science 34 (5) (1988) 633–644.

[65] D. Pisinger, An expanding-core algorithm for the exact 0–1 knapsack problem, European Journal of Operational Research
87 (1) (1995) 175–187.

[66] D. Pisinger, A minimal algorithm for the 0-1 knapsack problem, Operations Research 45 (5) (1997) 758–767.

[67] S. Martello, D. Pisinger, P. Toth, Dynamic programming and strong bounds for the 0-1 knapsack problem, Management
Science 45 (3) (1999) 414–424.

[68] M. Büther, D. Briskorn, Reducing the 0-1 knapsack problem with a single continuous variable to the standard 0-1 knapsack
problem, International Journal of Operations Research and Information Systems (IJORIS) 3 (1) (2012) 1–12.

[69] M. Monaci, U. Pferschy, P. Serafini, Exact solution of the robust knapsack problem, Computers & Operations Research 40 (11)
(2013) 2625–2631.

[70] D. Pisinger, A. Saidi, Tolerance analysis for 0–1 knapsack problems, European Journal of Operational Research 258 (3)
(2017) 866–876.

[71] I. I. Huerta, D. A. Neira, D. A. Ortega, V. Varas, J. Godoy, R. Ası́n-Achá, Anytime automatic algorithm selection for knapsack,
Expert Systems with Applications (2020) 113613.

33

[72] D. Pisinger, Where are the hard knapsack problems?, Computers & Operations Research 32 (9) (2005) 2271–2284.

[73] J. Jooken, P. Leyman, P. De Causmaecker, A new class of hard problem instances for the 0–1 knapsack problem, European
Journal of Operational Research 301 (3) (2022) 841–854.

[74] C. H. Papadimitriou, K. Steiglitz, Combinatorial optimization: algorithms and complexity, Courier Corporation, 1998.

[75] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, E. C. Sewell, Branch-and-bound algorithms: A survey of recent advances in
searching, branching, and pruning, Discrete Optimization 19 (2016) 79–102.

[76] J. Tromp, The number of legal Go positions, in: International Conference on Computers and Games, Springer, 2016, pp.
183–190.

[77] S. Chinchalkar, An upper bound for the number of reachable positions, ICGA Journal 19 (3) (1996) 181–183.

[78] W. Ng, K. Mak, Quay crane scheduling in container terminals, Engineering Optimization 38 (6) (2006) 723–737.

[79] C.-H. Chen, J. Lin, E. Yücesan, S. E. Chick, Simulation budget allocation for further enhancing the efficiency of ordinal
optimization, Discrete Event Dynamic Systems 10 (3) (2000) 251–270.

34

Appendix A: Detailed results for the quay crane scheduling problem with non-crossing constraints

Table A11: Comparison between performance of the different algorithms for dataset A. Smaller objective function values
are better.

CPLEX
(Santini et al. [10])

MCTS
(this paper)

EBP
(Lee and Chen [9])

SPA
(Zhang et al. [57])

Prob
lem

ins
tan

ce

Low
er

bo
un

d (5)
+(6)

Low
er

bo
un

d

Valu
e

Tim
e

Valu
e

Tim
e

Valu
e

Tim
e

Valu
e

Tim
e

16-4-2,893 724 726 726 (0.0%) 2.1 s 726 (0.0%) 10.0 s 781 (7.6%) <0.1 s 1,073 (47.8%) <0.1 s
16-5-2,893 579 586 586 (0.0%) 0.7 s 586 (0.0%) 10.0 s 665 (13.5%) <0.1 s 928 (58.4%) <0.1 s
17-4-2,941 736 741 741 (0.0%) 19.0 s 741 (0.0%) 10.0 s 761 (2.7%) <0.1 s 1,135 (53.2%) <0.1 s
17-5-2,941 589 600 600 (0.0%) 1.8 s 600 (0.0%) 10.0 s 636 (6.0%) <0.1 s 902 (50.3%) <0.1 s
18-4-2,856 714 720 720 (0.0%) 17.9 s 720 (0.0%) 10.0 s 745 (3.5%) <0.1 s 882 (22.5%) <0.1 s
18-5-2,856 572 579 579 (0.0%) 6.4 s 579 (0.0%) 10.0 s 619 (6.9%) <0.1 s 882 (52.3%) <0.1 s
19-4-2,804 701 702 702 (0.0%) 177.3 s 702 (0.0%) 10.0 s 711 (1.3%) <0.1 s 1,069 (52.3%) <0.1 s
19-5-2,804 561 567 567 (0.0%) 65.3 s 567 (0.0%) 10.0 s 584 (3.0%) <0.1 s 878 (54.9%) <0.1 s
20-4-3,688 922 925 925 (0.0%) 846.8 s 925 (0.0%) 10.0 s 979 (5.8%) <0.1 s 1,337 (44.5%) <0.1 s
20-5-3,688 738 739 739 (0.0%) 754.1 s 739 (0.0%) 10.0 s 781 (5.7%) <0.1 s 1,136 (53.7%) <0.1 s
21-4-3,033 759 759 759 (0.0%) 1,408.4 s 759 (0.0%) 100.0 s 801 (5.5%) <0.1 s 1,173 (54.5%) <0.1 s
21-5-3,033 607 612 612 (0.0%) 3,376.3 s 614 (0.3%) 100.0 s 622 (1.6%) <0.1 s 906 (48.0%) <0.1 s
22-4-3,027 757 757 757 (0.0%) 3,343.5 s 757 (0.0%) 10.0 s 766 (1.2%) <0.1 s 1,015 (34.1%) <0.1 s
22-5-3,027 606 611 611 (0.0%) 485.8 s 611 (0.0%) 10.0 s 643 (5.2%) <0.1 s 931 (52.4%) <0.1 s
23-4-3,544 886 886 887 (0.1%) 3,600.0 s 886 (0.0%) 10.0 s 910 (2.7%) <0.1 s 1,297 (46.4%) <0.1 s
23-5-3,544 709 709 713 (0.6%) 3,600.0 s 712 (0.4%) 10.0 s 740 (4.4%) <0.1 s 1,159 (63.5%) <0.1 s
24-4-3,430 858 858 858 (0.0%) 3,600.0 s 858 (0.0%) 10.0 s 874 (1.9%) <0.1 s 1,337 (55.8%) <0.1 s
24-5-3,430 686 686 693 (1.0%) 3,600.0 s 691 (0.7%) 10.0 s 712 (3.8%) <0.1 s 1,135 (65.5%) <0.1 s
25-4-4,334 1,084 1,084 1,087 (0.3%) 3,600.0 s 1,084 (0.0%) 10.0 s 1,129 (4.2%) <0.1 s 1,623 (49.7%) <0.1 s
25-5-4,334 867 867 872 (0.6%) 3,600.0 s 870 (0.3%) 100.0 s 921 (6.2%) <0.1 s 1,392 (60.6%) <0.1 s
50-8-7,986 999 999 1,006 (0.7%) 3,600.0 s 1,001 (0.2%) 100.0 s 1,046 (4.7%) <0.1 s 1,700 (70.2%) <0.1 s
50-10-7,986 799 799 804 (0.6%) 3,600.0 s 803 (0.5%) 100.0 s 897 (12.3%) <0.1 s 1,365 (70.8%) <0.1 s
100-8-16,519 2,065 2,065 2,087 (1.1%) 3,600.0 s 2,067 (0.1%) 100.0 s 2,124 (2.9%) <0.1 s 3,635 (76.0%) <0.1 s

100-10-16,519 1,652 1,652 1,675 (1.4%) 3,600.0 s 1,656 (0.2%) 10.0 s 1,747 (5.8%) <0.1 s 2,972 (79.9%) <0.1 s

Avg. 840.4 842.9 846.1 (0.4%) 1,937.7 s 843.9 (0.1%) 32.5 s 883.1 (4.8%) <0.1 s 1,327.6 (57.5%) <0.1 s
p-value - - 0.010 - REF. ALG. - 5.960×10−8 - 5.960×10−8 -

35

Table A12: Comparison between performance of the different algorithms for dataset B. Smaller objective function values
are better.

CPLEX
(Santini et al. [10])

MCTS
(this paper)

EBP
(Lee and Chen [9])

SPA
(Zhang et al. [57])

Prob
lem

ins
tan

ce

Low
er

bo
un

d (5)
+(6)

Low
er

bo
un

d

Valu
e

Tim
e

Valu
e

Tim
e

Valu
e

Tim
e

Valu
e

Tim
e

200-4-33,532 8,383 8,383 23,852 (184.5%) 3,600.0 s 8,383 (0.0%) 10.0 s 8,471 (1.0%) <0.1 s 13,270 (58.3%) <0.1 s
200-5-33,532 6,707 6,707 21,433 (219.6%) 3,600.0 s 6,707 (0.0%) 10.0 s 6,744 (0.6%) <0.1 s 11,107 (65.6%) <0.1 s
200-8-33,532 4,192 4,192 10,294 (145.6%) 3,600.0 s 4,193 (0.0%) 100.0 s 4,237 (1.1%) <0.1 s 7,259 (73.2%) <0.1 s
200-10-33,532 3,354 3,354 9,884 (194.7%) 3,600.0 s 3,356 (0.1%) 100.0 s 3,440 (2.6%) <0.1 s 6,019 (79.5%) <0.1 s
250-4-42,573 10,644 10,644 35,550 (234.0%) 3,600.0 s 10,644 (0.0%) 10.0 s 10,655 (0.1%) 0.1 s 16,925 (59.0%) <0.1 s
250-5-42,573 8,515 8,515 40,087 (370.8%) 3,600.0 s 8,515 (0.0%) 10.0 s 8,588 (0.9%) <0.1 s 14,184 (66.6%) <0.1 s
250-8-42,573 5,322 5,322 37,483 (604.3%) 3,600.0 s 5,323 (0.0%) 100.0 s 5,384 (1.2%) <0.1 s 9,377 (76.2%) <0.1 s
250-10-42,573 4,258 4,258 38,097 (794.7%) 3,600.0 s 4,267 (0.2%) 10.0 s 4,319 (1.4%) <0.1 s 7,697 (80.8%) <0.1 s
300-4-50,767 12,692 12,692 44,909 (253.8%) 3,600.0 s 12,692 (0.0%) 10.0 s 12,724 (0.3%) 0.1 s 20,168 (58.9%) <0.1 s
300-5-50,767 10,154 10,154 46,183 (354.8%) 3,600.0 s 10,154 (0.0%) 10.0 s 10,192 (0.4%) 0.1 s 16,869 (66.1%) <0.1 s
300-8-50,767 6,346 6,346 47,995 (656.3%) 3,600.0 s 6,349 (0.0%) 100.0 s 6,393 (0.7%) 0.1 s 11,218 (76.8%) <0.1 s
300-10-50,767 5,077 5,077 46,086 (807.7%) 3,600.0 s 5,081 (0.1%) 100.0 s 5,148 (1.4%) <0.1 s 9,202 (81.2%) <0.1 s

2,000-4-323,427 80,857 - - - 80,857 (0.0%) 10.0 s 80,910 (0.1%) 2.0 s 129,256 (59.9%) <0.1 s
2,000-5-323,427 64,686 - - - 64,686 (0.0%) 10.0 s 64,729 (0.1%) 2.5 s 107,801 (66.7%) <0.1 s
2,000-8-323,427 40,429 - - - 40,429 (0.0%) 100.0 s 40,483 (0.1%) 1.4 s 71,825 (77.7%) <0.1 s

2,000-10-323,427 32,343 - - - 32,360 (0.1%) 100.0 s 32,401 (0.2%) 0.9 s 58,730 (81.6%) <0.1 s
2,500-4-410,999 102,750 - - - 102,750 (0.0%) 10.0 s 102,829 (0.1%) 3.3 s 164,365 (60.0%) <0.1 s
2,500-5-410,999 82,200 - - - 82,200 (0.0%) 10.0 s 82,241 (0.0%) 4.4 s 136,956 (66.6%) <0.1 s
2,500-8-410,999 51,375 - - - 51,376 (0.0%) 100.0 s 51,427 (0.1%) 3.1 s 91,208 (77.5%) <0.1 s

2,500-10-410,999 41,100 - - - 41,115 (0.0%) 100.0 s 41,137 (0.1%) 1.5 s 74,668 (81.7%) <0.1 s
3,000-4-495,726 123,932 - - - 123,932 (0.0%) 10.0 s 123,967 (0.0%) 12.5 s 198,256 (60.0%) <0.1 s
3,000-5-495,726 99,146 - - - 99,146 (0.0%) 10.0 s 99,184 (0.0%) 9.0 s 165,225 (66.6%) <0.1 s
3,000-8-495,726 61,966 - - - 61,978 (0.0%) 100.0 s 62,051 (0.1%) 4.6 s 110,155 (77.8%) <0.1 s

3,000-10-495,726 49,573 - - - 49,585 (0.0%) 100.0 s 49,632 (0.1%) 4.2 s 90,000 (81.6%) <0.1 s

Avg. 38,166.7 - - - 38,169.9 (0.0 %) 51.3 s 38,220.3 (0.1 %) 2.1 s 64,239.2 (68.3 %) <0.1 s
Avg. feasible 7,137.0 7,137.0 33,487.8 (369.2 %) 3,600.0 s 7,138.7 (0.0 %) 47.5 s 7,191.3 (0.8 %) <0.1 s 11,941.3 (67.3 %) <0.1 s

p-value - - - - REF. ALG. - 5.96×10−8 - 5.96×10−8 -

36

Table A13: Dataset A: comparison between different versions of MCTS where a subset of enhancements are omitted
(versions 1-6). Smaller objective function values are better.

Problem instance MCTS Version 1 MCTS Version 2 MCTS Version 3 MCTS Version 4 MCTS Version 5 MCTS Version 6

Heuristic simulation policy 3 3 3 3 3 3
Beam 3 3 3 3 7 7

Domain reduction 3 3 7 7 3 3
Pruning subtrees by calculating bounds 3 7 3 7 3 7

16-4-2,893 726 739 726 739 726 739
16-5-2,893 586 611 586 611 586 611
17-4-2,941 741 744 741 741 741 744
17-5-2,941 600 608 600 608 600 608
18-4-2,856 720 722 720 722 720 722
18-5-2,856 579 579 579 579 579 579
19-4-2,804 702 703 702 703 702 703
19-5-2,804 567 567 567 567 567 567
20-4-3,688 925 926 925 925 925 926
20-5-3,688 739 755 739 755 739 755
21-4-3,033 759 759 759 762 759 760
21-5-3,033 614 616 618 619 614 619
22-4-3,027 757 758 757 758 757 758
22-5-3,027 611 619 611 611 611 621
23-4-3,544 886 888 886 888 886 888
23-5-3,544 712 713 712 713 712 712
24-4-3,430 858 859 858 858 858 858
24-5-3,430 691 693 691 693 691 693
25-4-4,334 1,084 1,085 1,085 1,084 1,084 1,084
25-5-4,334 870 874 872 874 869 874
50-8-7,986 1,001 1,007 1,004 1,019 1,004 1,010
50-10-7,986 803 825 824 830 813 823

100-8-16,519 2,067 2,071 2,079 2,091 2,071 2,071
100-10-16,519 1,656 1,666 1,687 1,710 1,660 1,666

Avg. 843.9 849.5 847.0 852.5 844.8 849.6
p-value REF. ALG. 4.768×10−7 0.008 7.629×10−6 0.063 1.907×10−6

37

Table A14: Dataset A: comparison between different versions of MCTS where a subset of enhancements are omitted
(versions 7-12). Smaller objective function values are better.

Problem instance MCTS Version 7 MCTS Version 8 MCTS Version 9 MCTS Version 10 MCTS Version 11 MCTS Version 12

Heuristic simulation policy 3 3 7 7 7 7
Beam 7 7 3 3 3 3

Domain reduction 7 7 3 3 7 7
Pruning subtrees by calculating bounds 3 7 3 7 3 7

16-4-2,893 726 739 726 739 726 742
16-5-2,893 586 611 586 628 586 625
17-4-2,941 741 743 741 752 741 748
17-5-2,941 600 608 600 615 600 608
18-4-2,856 720 722 720 750 720 731
18-5-2,856 579 579 579 586 579 608
19-4-2,804 702 703 702 728 702 722
19-5-2,804 567 567 567 591 567 588
20-4-3,688 925 926 925 952 925 944
20-5-3,688 739 755 739 785 739 769
21-4-3,033 759 759 759 769 760 771
21-5-3,033 612 619 612 630 612 622
22-4-3,027 757 758 759 771 758 780
22-5-3,027 611 618 611 654 611 646
23-4-3,544 886 889 887 903 889 898
23-5-3,544 712 713 712 749 716 727
24-4-3,430 858 859 858 894 858 878
24-5-3,430 691 693 691 730 691 717
25-4-4,334 1,084 1,085 1,085 1,130 1,084 1,099
25-5-4,334 871 874 868 916 869 895
50-8-7,986 1,003 1,021 1,071 1,081 1,087 1,224
50-10-7,986 823 830 889 974 1,129 1,291

100-8-16,519 2,071 2,091 2,322 2,272 2,408 2,445
100-10-16,519 1,669 1,675 1,972 2,058 2,908 2,711

Avg. 845.5 851.5 874.2 902.4 927.7 949.5
p-value 0.063 4.768×10−7 0.047 5.960×10−8 0.014 5.960×10−8

38

Table A15: Dataset A: comparison between different versions of MCTS where a subset of
enhancements are omitted (versions 13-16). Smaller objective function values are
better.

Problem instance MCTS Version 13 MCTS Version 14 MCTS Version 15 MCTS Version 16

Heuristic simulation policy 7 7 7 7
Beam 7 7 7 7

Domain reduction 3 3 7 7
Pruning subtrees by calculating bounds 3 7 3 7

16-4-2,893 726 740 726 741
16-5-2,893 586 616 586 625
17-4-2,941 741 752 741 743
17-5-2,941 600 641 600 611
18-4-2,856 720 760 720 739
18-5-2,856 579 595 579 628
19-4-2,804 702 723 702 703
19-5-2,804 567 594 567 605
20-4-3,688 925 938 925 942
20-5-3,688 739 779 739 763
21-4-3,033 759 772 759 773
21-5-3,033 612 634 612 629
22-4-3,027 758 792 757 765
22-5-3,027 614 645 611 637
23-4-3,544 887 890 887 889
23-5-3,544 713 731 712 735
24-4-3,430 858 879 858 875
24-5-3,430 691 720 691 718
25-4-4,334 1,085 1,114 1,084 1,110
25-5-4,334 870 918 873 919
50-8-7,986 1,076 1,149 1,139 1,179
50-10-7,986 911 936 1,019 1,121

100-8-16,519 2,188 2,279 2,458 2,319
100-10-16,519 1,873 2,055 2,564 2,720

Avg. 865.8 902.2 912.9 937.0
p-value 0.012 5.960×10−8 0.023 5.960×10−8

39

Table A16: Dataset B: comparison between different versions of MCTS where a subset of enhancements are omitted
(versions 1-6). Smaller objective function values are better.

Problem instance MCTS Version 1 MCTS Version 2 MCTS Version 3 MCTS Version 4 MCTS Version 5 MCTS Version 6

Heuristic simulation policy 3 3 3 3 3 3
Beam 3 3 3 3 7 7

Domain reduction 3 3 7 7 3 3
Pruning subtrees by calculating bounds 3 7 3 7 3 7

200-4-33,532 8,383 8,383 8,383 8,383 8,383 8,383
200-5-33,532 6,707 6,707 6,707 6,707 6,707 6,707
200-8-33,532 4,193 4,199 4,197 4,216 4,194 4,196
200-10-33,532 3,356 3,364 3,382 3,390 3,360 3,361
250-4-42,573 10,644 10,644 10,644 10,644 10,644 10,644
250-5-42,573 8,515 8,515 8,515 8,515 8,515 8,515
250-8-42,573 5,323 5,333 5,326 5,334 5,323 5,333
250-10-42,573 4,267 4,277 4,283 4,289 4,270 4,277
300-4-50,767 12,692 12,692 12,692 12,692 12,692 12,692
300-5-50,767 10,154 10,154 10,154 10,154 10,154 10,154
300-8-50,767 6,349 6,353 6,352 6,358 6,351 6,354
300-10-50,767 5,081 5,089 5,097 5,112 5,089 5,087

2,000-4-323,427 80,857 80,857 80,857 80,857 80,857 80,857
2,000-5-323,427 64,686 64,686 64,686 64,686 64,686 64,686
2,000-8-323,427 40,429 40,442 40,446 40,453 40,438 40,440
2,000-10-323,427 32,360 32,388 32,400 32,400 32,386 32,367
2,500-4-410,999 102,750 102,750 102,750 102,750 102,750 102,750
2,500-5-410,999 82,200 82,200 82,200 82,201 82,200 82,200
2,500-8-410,999 51,376 51,385 51,421 51,430 51,391 51,384
2,500-10-410,999 41,115 41,130 41,181 41,181 41,122 41,130
3,000-4-495,726 123,932 123,932 123,932 123,932 123,932 123,932
3,000-5-495,726 99,146 99,146 99,146 99,146 99,146 99,146
3,000-8-495,726 61,978 61,982 62,017 62,017 61,982 62,005
3,000-10-495,726 49,585 49,632 49,678 49,697 49,611 49,629

Avg. 38,169.9 38,176.7 38,185.3 38,189.3 38,174,3 38,176.2
Avg. feasible 13,385.5 13,386.4 13,386.0 13,387.3 13,385.7 13,386.3

p-value REF. ALG. 2.441×10−4 2.441×10−4 1.221×10−4 4.883×10−4 2.441×10−4

40

Table A17: Dataset B: comparison between different versions of MCTS where a subset of enhancements are omitted
(versions 7-12). Smaller objective function values are better.

Problem instance MCTS Version 7 MCTS Version 8 MCTS Version 9 MCTS Version 10 MCTS Version 11 MCTS Version 12

Heuristic simulation policy 3 3 7 7 7 7
Beam 7 7 3 3 3 3

Domain reduction 7 7 3 3 7 7
Pruning subtrees by calculating bounds 3 7 3 7 3 7

200-4-33,532 8,383 8,383 8,435 8,452 8,459 8,398
200-5-33,532 6,707 6,707 6,771 6,826 6,779 6,797
200-8-33,532 4,200 4,223 4,558 4,665 4,873 5,602

200-10-33,532 3,382 3,393 4,010 3,938 4,218 -
250-4-42,573 10,644 10,644 10,667 10,694 10,741 10,682
250-5-42,573 8,515 8,515 8,613 8,655 8,661 8,644
250-8-42,573 5,328 5,361 5,589 5,660 5,807 5,927

250-10-42,573 4,304 4,367 4,753 6,428 - -
300-4-50,767 12,692 12,692 12,732 12,755 12,706 12,735
300-5-50,767 10,154 10,154 10,318 10,333 10,336 10,287
300-8-50,767 6,353 6,388 6,858 6,771 8,166 7,028

300-10-50,767 5,124 5,136 5,442 - 6,450 -
2,000-4-323,427 80,857 80,857 82,162 82,252 83,495 82,902
2,000-5-323,427 64,686 64,686 66,751 66,647 72,744 70,741
2,000-8-323,427 40,451 40,453 49,946 - - -
2,000-10-323,427 32,400 32,400 - - - -
2,500-4-410,999 102,750 102,750 104,610 104,359 105,573 106,020
2,500-5-410,999 82,200 82,200 85,388 85,337 - 86,603
2,500-8-410,999 51,388 51,430 - 63,915 - -
2,500-10-410,999 41,197 41,198 - - - -
3,000-4-495,726 123,932 123,932 126,264 125,980 - 128,654
3,000-5-495,726 99,146 99,153 105,683 103,811 - 105,960
3,000-8-495,726 61,982 62,017 - - - -
3,000-10-495,726 49,678 49,678 - - - -

Avg. 38,185.5 38,196.5 - - - -
Avg. feasible 13,386.2 13,390.0 13,669.3 13,669.5 14,097.5 13,990.1

p-value 2.441×10−4 1.221×10−4 - - - -

41

Table A18: Dataset B: comparison between different versions of MCTS where a subset of
enhancements are omitted (versions 13-16). Smaller objective function values are
better.

Problem instance MCTS Version 13 MCTS Version 14 MCTS Version 15 MCTS Version 16

Heuristic simulation policy 7 7 7 7
Beam 7 7 7 7

Domain reduction 3 3 7 7
Pruning subtrees by calculating bounds 3 7 3 7

200-4-33,532 8,478 8,477 8,447 8,476
200-5-33,532 6,843 6,826 6,744 6,845
200-8-33,532 4,565 4,523 4,902 4,796

200-10-33,532 3,933 3,858 - -
250-4-42,573 10,692 10,716 10,736 10,774
250-5-42,573 8,667 8,654 8,692 8,694
250-8-42,573 5,788 5,901 7,547 7,706

250-10-42,573 5,068 4,902 - -
300-4-50,767 12,747 12,789 12,794 12,790
300-5-50,767 10,249 10,305 10,394 10,269
300-8-50,767 6,858 6,874 7,111 7,358

300-10-50,767 5,789 5,652 - 8,775
2,000-4-323,427 82,261 81,961 84,351 84,693
2,000-5-323,427 66,982 67,373 67,703 68,871
2,000-8-323,427 50,409 46,155 - -
2,000-10-323,427 - - - -
2,500-4-410,999 104,575 104,354 105,493 107,255
2,500-5-410,999 85,271 85,206 - 89,061
2,500-8-410,999 - - - -
2,500-10-410,999 - - - -
3,000-4-495,726 126,368 127,351 128,852 128,819
3,000-5-495,726 114,056 101,415 107,256 106,724
3,000-8-495,726 - - - -
3,000-10-495,726 - - - -

Avg. feasible 13,696.0 13,698.0 13,954.8 14,105.3

42

Table A19: Dataset A: comparsion between different selection policies of MCTS.

Problem instance Lower bound
MCTS

(selection policy uses (3))
MCTS

(selection policy uses (11))
OCBA-MCTS
(Li et al. [27])

16-4-2,893 726 726 (0.0%) 726 (0.0%) 726 (0.0%)
16-5-2,893 586 586 (0.0%) 586 (0.0%) 586 (0.0%)
17-4-2,941 741 741 (0.0%) 741 (0.0%) 741 (0.0%)
17-5-2,941 600 600 (0.0%) 600 (0.0%) 600 (0.0%)
18-4-2,856 720 720 (0.0%) 720 (0.0%) 720 (0.0%)
18-5-2,856 579 579 (0.0%) 579 (0.0%) 579 (0.0%)
19-4-2,804 702 702 (0.0%) 702 (0.0%) 702 (0.0%)
19-5-2,804 567 567 (0.0%) 567 (0.0%) 567 (0.0%)
20-4-3,688 925 925 (0.0%) 925 (0.0%) 925 (0.0%)
20-5-3,688 739 739 (0.0%) 739 (0.0%) 739 (0.0%)
21-4-3,033 759 759 (0.0%) 759 (0.0%) 762 (0.4%)
21-5-3,033 612 614 (0.3%) 616 (0.7%) 614 (0.3%)
22-4-3,027 757 757 (0.0%) 757 (0.0%) 757 (0.0%)
22-5-3,027 611 611 (0.0%) 611 (0.0%) 611 (0.0%)
23-4-3,544 886 886 (0.0%) 886 (0.0%) 887 (0.1%)
23-5-3,544 709 712 (0.4%) 712 (0.4%) 712 (0.4%)
24-4-3,430 858 858 (0.0%) 858 (0.0%) 858 (0.0%)
24-5-3,430 686 691 (0.7%) 691 (0.7%) 691 (0.7%)
25-4-4,334 1,084 1,084 (0.0%) 1,084 (0.0%) 1,085 (0.1%)
25-5-4,334 867 870 (0.3%) 869 (0.2%) 868 (0.1%)
50-8-7,986 999 1,001 (0.2%) 1,004 (0.5%) 1,006 (0.7%)

50-10-7,986 799 803 (0.5%) 812 (1.6%) 813 (1.8%)
100-8-16,519 2,065 2,067 (0.1%) 2,068 (0.1%) 2,070 (0.2%)

100-10-16,519 1,652 1,656 (0.2%) 1,660 (0.5%) 1,663 (0.7%)

Avg. 842.9 843.9 (0.1%) 844.7 (0.2%) 845.1 (0.3%)
p-value - REF. ALG. 0.469 0.195

Table A20: Dataset B: comparsion between different selection policies of MCTS.

Problem instance Lower bound
MCTS

(selection policy uses (3))
MCTS

(selection policy uses (11))
OCBA-MCTS
(Li et al. [27])

200-4-33,532 8,383 8,383 (0.0%) 8,383 (0.0%) 8,383 (0.0%)
200-5-33,532 6,707 6,707 (0.0%) 6,707 (0.0%) 6,707 (0.0%)
200-8-33,532 4,192 4,193 (0.0%) 4,194 (0.0%) 4,193 (0.0%)

200-10-33,532 3,354 3,356 (0.1%) 3,361 (0.2%) 3,360 (0.2%)
250-4-42,573 10,644 10,644 (0.0%) 10,644 (0.0%) 10,644 (0.0%)
250-5-42,573 8,515 8,515 (0.0%) 8,515 (0.0%) 8,515 (0.0%)
250-8-42,573 5,322 5,323 (0.0%) 5,323 (0.0%) 5,336 (0.3%)

250-10-42,573 4,258 4,267 (0.2%) 4,269 (0.3%) 4,269 (0.3%)
300-4-50,767 12,692 12,692 (0.0%) 12,692 (0.0%) 12,692 (0.0%)
300-5-50,767 10,154 10,154 (0.0%) 10,154 (0.0%) 10,154 (0.0%)
300-8-50,767 6,346 6,349 (0.0%) 6,349 (0.0%) 6,349 (0.0%)

300-10-50,767 5,077 5,081 (0.1%) 5,081 (0.1%) 5,088 (0.2%)
2,000-4-323,427 80,857 80,857 (0.0%) 80,857 (0.0%) 80,857 (0.0%)
2,000-5-323,427 64,686 64,686 (0.0%) 64,686 (0.0%) 64,686 (0.0%)
2,000-8-323,427 40,429 40,429 (0.0%) 40,447 (0.0%) 40,446 (0.0%)
2,000-10-323,427 32,343 32,360 (0.1%) 32,400 (0.2%) 32,367 (0.1%)
2,500-4-410,999 102,750 102,750 (0.0%) 102,750 (0.0%) 102,750 (0.0%)
2,500-5-410,999 82,200 82,200 (0.0%) 82,200 (0.0%) 82,200 (0.0%)
2,500-8-410,999 51,375 51,376 (0.0%) 51,430 (0.1%) 51,398 (0.0%)
2,500-10-410,999 41,100 41,115 (0.0%) 41,130 (0.1%) 41,162 (0.2%)
3,000-4-495,726 123,932 123,932 (0.0%) 123,932 (0.0%) 123,932 (0.0%)
3,000-5-495,726 99,146 99,146 (0.0%) 99,146 (0.0%) 99,146 (0.0%)
3,000-8-495,726 61,966 61,978 (0.0%) 61,982 (0.0%) 62,017 (0.1%)
3,000-10-495,726 49,573 49,585 (0.0%) 49,647 (0.1%) 49,632 (0.1%)

Avg. 38,166.7 38,169.9 (0.0%) 38,178.3 (0.0%) 38,178.5 (0.0%)
p-value - REF. ALG. 0.002 9.776×10−4

43

Appendix B: Detailed results for the 0-1 knapsack problem

Table B21: Comparison between Combo and MCTS for dataset A

Combo MCTS

Problem instance Value Time Value Time

strCorrSpan-50-371,096,080 743,839,440 <0.1 s 743,839,440 (0.0 %) 10.0 s
strCorrSpan-50-646,374,982 953,046,980 <0.1 s 953,046,980 (0.0 %) 10.0 s

strCorrSpan-50-2,134,353,461 2,527,368,539 <0.1 s 2,527,368,539 (0.0 %) 10.0 s
strCorrSpan-200-1,707,778,944 3,246,231,168 <0.1 s 3,246,231,168 (0.0 %) 10.0 s
strCorrSpan-200-2,817,370,945 4,061,278,176 <0.1 s 4,061,278,176 (0.0 %) 10.0 s
strCorrSpan-200-9,187,378,001 10,985,275,013 <0.1 s 10,985,275,013 (0.0 %) 10.0 s
strCorrSpan-500-4,265,423,637 8,261,226,266 <0.1 s 8,261,226,266 (0.0 %) 10.0 s
strCorrSpan-500-7,384,719,424 10,421,994,304 <0.1 s 10,421,994,304 (0.0 %) 10.0 s
strCorrSpan-500-22,936,987,823 27,556,403,070 <0.1 s 27,556,403,070 (0.0 %) 10.0 s

strCorrSpan-2,000-17,052,969,836 32,783,499,328 <0.1 s 32,783,499,328 (0.0 %) 10.0 s
strCorrSpan-2,000-28,036,577,373 40,157,803,058 <0.1 s 40,146,187,862 (2.9×10−2 %) 10.0 s
strCorrSpan-2,000-92,148,671,511 110,409,143,147 <0.1 s 110,409,094,321 (4.4×10−5 %) 10.0 s
strCorrSpan-5,000-41,267,918,845 81,368,124,258 0.1 s 81,368,124,258 (0.0 %) 10.0 s
strCorrSpan-5,000-71,023,181,263 100,217,939,868 0.1 s 100,217,640,112 (3.0×10−4 %) 10.0 s

strCorrSpan-5,000-226,199,500,674 271,790,411,102 0.2 s 271,781,871,491 (3.1×10−3 %) 10.0 s
strCorrSpan-20,000-166,246,484,639 324,652,926,326 3.5 s 324,652,926,326 (0.0 %) 10.0 s
strCorrSpan-20,000-284,753,555,248 401,750,506,702 0.5 s 401,750,506,702 (0.0 %) 10.0 s
strCorrSpan-20,000-902,111,715,974 1,083,393,835,104 3.9 s 1,083,393,761,865 (7.0×10−6 %) 10.0 s
strCorrSpan-50,000-412,563,911,323 809,153,725,808 26.7 s 809,149,037,830 (5.8×10−4 %) 10.0 s
strCorrSpan-50,000-713,142,682,378 1,005,107,183,744 11.8 s 1,005,094,669,280 (1.2×10−3 %) 10.0 s

strCorrSpan-50,000-2,251,823,185,869 2,704,243,765,007 12.2 s 2,704,243,765,007 (0.0 %) 10.0 s

Avg. 334,942,167,924.2 2.8 s 334,940,368,920.9 (5.3×10−4 %) 10.0 s
p-value 0.992 - REF. ALG. -

Table B22: Comparison between Combo and MCTS for dataset B

Combo MCTS

Problem instance Value Time Value Time

exp-100-10,000,000,000 9,999,949,957 2.7 s 9,999,478,296 (4.7×10−3 %) 10.0 s
exp-125-10,000,000,000 9,999,952,568 5.8 s 9,999,479,807 (4.7×10−3 %) 10.0 s
exp-150-10,000,000,000 9,999,954,224 10.5 s 9,999,951,727 (2.5×10−5 %) 100.0 s
exp-175-10,000,000,000 9,999,955,429 12.1 s 9,999,953,940 (1.5×10−5 %) 10.0 s
exp-200-10,000,000,000 9,999,958,144 18.4 s 9,999,956,638 (1.5×10−5 %) 10.0 s
exp-225-10,000,000,000 9,999,959,636 25.7 s 9,999,958,340 (1.3×10−5 %) 10.0 s
exp-250-10,000,000,000 9,999,960,633 47.8 s 9,999,959,300 (1.3×10−5 %) 10.0 s
exp-275-10,000,000,000 9,999,962,074 72.3 s 9,999,960,122 (2.0×10−5 %) 10.0 s
exp-300-10,000,000,000 9,999,964,031 135.3 s 9,999,962,434 (1.6×10−5 %) 10.0 s
exp-325-10,000,000,000 9,999,965,949 150.9 s 9,999,963,242 (2.7×10−5 %) 10.0 s
exp-350-10,000,000,000 9,999,967,542 194.7 s 9,999,957,621 (9.9×10−5 %) 100.0 s
exp-375-10,000,000,000 9,999,969,532 233.2 s 9,999,960,927 (8.6×10−5 %) 100.0 s
exp-400-10,000,000,000 9,999,969,939 347.6 s 9,999,967,171 (2.8×10−5 %) 100.0 s
exp-425-10,000,000,000 9,999,969,103 445.0 s 9,999,961,354 (7.7×10−5 %) 100.0 s
exp-450-10,000,000,000 9,999,969,729 696.0 s 9,999,960,321 (9.4×10−5 %) 100.0 s
exp-475-10,000,000,000 9,999,971,162 759.4 s 9,999,957,931 (1.3×10−4 %) 100.0 s
exp-500-10,000,000,000 9,999,972,478 891.5 s 9,999,959,782 (1.3×10−4 %) 100.0 s
exp-525-10,000,000,000 9,999,974,083 1,429.6 s 9,999,958,458 (1.6×10−4 %) 100.0 s
exp-550-10,000,000,000 9,999,975,475 1,928.9 s 9,999,958,398 (1.7×10−4 %) 100.0 s
exp-575-10,000,000,000 9,999,976,688 2,031.7 s 9,999,958,138 (1.9×10−4 %) 100.0 s
exp-600-10,000,000,000 9,999,978,232 2,185.7 s 9,999,957,600 (2.1×10−4 %) 100.0 s
exp-625-10,000,000,000 9,999,978,747 2,284.9 s 9,999,958,763 (2.0×10−4 %) 100.0 s
exp-650-10,000,000,000 9,999,980,785 2,354.7 s 9,999,958,972 (2.2×10−4 %) 100.0 s
exp-675-10,000,000,000 9,999,982,708 2,533.2 s 9,999,959,169 (2.3×10−4 %) 100.0 s
exp-700-10,000,000,000 9,999,985,183 2,874.6 s 9,999,959,501 (2.6×10−4 %) 100.0 s

Avg. 9,999,968,161.2 866.9 s 9,999,920,718.0 (4.7×10−4 %) 67.6 s
p-value 1.000 - REF. ALG. -

44

Table B23: Dataset A: comparison between different versions of MCTS where the modifications that we propose are intro-
duced one by one

Problem instance MCTS Version 1 MCTS Version 2 MCTS Version 3 MCTS Version 4 MCTS Version 5

Heuristic simulation policy 3 3 3 3 7
Beam 3 3 3 7 7

Domain reduction 3 3 7 7 7
Pruning subtrees by calculating bounds 3 7 7 7 7

strCorrSpan-50-371,096,080 743,839,440 743,839,440 743,839,440 743,839,440 729,907,992
strCorrSpan-50-646,374,982 953,046,980 953,046,980 953,046,980 953,046,980 0

strCorrSpan-50-2,134,353,461 2,527,368,539 2,527,368,539 2,527,368,539 2,527,368,539 2,518,853,341
strCorrSpan-200-1,707,778,944 3,246,231,168 3,246,231,168 3,246,231,168 3,246,231,168 3,014,716,388
strCorrSpan-200-2,817,370,945 4,061,278,176 4,061,278,176 4,061,278,176 4,061,278,176 0
strCorrSpan-200-9,187,378,001 10,985,275,013 10,985,275,013 10,985,275,013 10,985,275,013 10,874,504,200
strCorrSpan-500-4,265,423,637 8,261,226,266 8,261,226,266 8,261,226,266 8,261,226,266 7,390,128,594
strCorrSpan-500-7,384,719,424 10,421,994,304 10,421,994,304 10,421,994,304 10,421,994,304 0

strCorrSpan-500-22,936,987,823 27,556,403,070 27,556,403,070 27,556,403,070 27,556,403,070 27,130,936,126
strCorrSpan-2,000-17,052,969,836 32,783,499,328 32,783,499,328 32,783,499,328 32,783,499,328 28,535,538,918
strCorrSpan-2,000-28,036,577,373 40,146,187,862 40,145,288,594 40,145,288,594 40,146,187,862 0
strCorrSpan-2,000-92,148,671,511 110,409,094,321 110,409,094,321 110,409,094,321 110,409,094,321 82,427,400,137
strCorrSpan-5,000-41,267,918,845 81,368,124,258 81,368,124,258 81,368,124,258 81,368,124,258 69,624,382,394
strCorrSpan-5,000-71,023,181,263 100,217,640,112 100,217,640,112 100,217,640,112 100,217,640,112 0
strCorrSpan-5,000-226,199,500,674 271,781,871,491 271,781,871,491 271,781,871,491 271,781,871,491 188,661,664,560

strCorrSpan-20,000-166,246,484,639 324,652,926,326 324,652,926,326 324,652,926,326 324,652,926,326 278,047,453,072
strCorrSpan-20,000-284,753,555,248 401,750,506,702 401,750,506,702 401,750,506,702 401,750,506,702 0
strCorrSpan-20,000-902,111,715,974 1,083,393,761,865 1,083,393,761,865 1,083,393,761,865 1,083,393,761,865 735,514,657,412
strCorrSpan-50,000-412,563,911,323 809,149,037,830 809,149,037,830 809,149,037,830 809,149,037,830 689,606,401,084
strCorrSpan-50,000-713,142,682,378 1,005,094,669,280 1,005,094,669,280 1,005,094,669,280 1,005,094,669,280 0
strCorrSpan-50,000-713,142,682,378 2,704,243,765,007 2,704,243,765,007 2,704,243,765,007 2,704,243,765,007 1,807,815,103,896

Avg. 334,940,368,920.9 334,940,326,098.6 334,940,326,098.6 334,940,368,920.9 187,232,935,624.5
p-value REF. ALG. 0.5 0.5 - 4.768×10−7

45

Table B24: Dataset B: comparison between different versions of MCTS where the modifications that we propose are
introduced one by one

Problem instance MCTS Version 1 MCTS Version 2 MCTS Version 3 MCTS Version 4 MCTS Version 5

Heuristic simulation policy 3 3 3 3 7
Beam 3 3 3 7 7

Domain reduction 3 3 7 7 7
Pruning subtrees by calculating bounds 3 7 7 7 7

exp-100-10,000,000,000 9,999,478,296 9,999,477,943 9,999,477,490 9,995,948,086 0
exp-125-10,000,000,000 9,999,479,807 9,999,478,408 9,999,478,953 9,999,950,674 0
exp-150-10,000,000,000 9,999,951,727 9,999,950,977 9,999,952,052 9,999,952,695 0
exp-175-10,000,000,000 9,999,953,940 9,999,952,702 9,999,952,805 9,999,954,418 0
exp-200-10,000,000,000 9,999,956,638 9,999,954,791 9,999,955,730 9,999,956,362 0
exp-225-10,000,000,000 9,999,958,340 9,999,955,338 9,999,956,529 9,999,958,206 0
exp-250-10,000,000,000 9,999,959,300 9,999,958,217 9,999,957,838 9,999,959,339 0
exp-275-10,000,000,000 9,999,960,122 9,999,954,732 9,999,955,590 9,999,960,630 0
exp-300-10,000,000,000 9,999,962,434 9,999,955,238 9,999,955,033 9,999,962,552 0
exp-325-10,000,000,000 9,999,963,242 9,999,956,790 9,999,956,260 9,999,964,220 0
exp-350-10,000,000,000 9,999,957,621 9,999,957,165 9,999,957,848 9,999,438,255 0
exp-375-10,000,000,000 9,999,960,927 9,999,956,985 9,999,958,320 9,999,439,701 0
exp-400-10,000,000,000 9,999,967,171 9,999,958,236 9,999,958,238 9,999,439,923 0
exp-425-10,000,000,000 9,999,961,354 9,999,956,638 9,999,956,386 9,999,438,907 0
exp-450-10,000,000,000 9,999,960,321 9,999,957,733 9,999,956,951 9,999,913,087 0
exp-475-10,000,000,000 9,999,957,931 9,999,959,269 9,999,956,930 9,999,913,823 0
exp-500-10,000,000,000 9,999,959,782 9,999,956,796 9,999,955,712 9,999,915,599 0
exp-525-10,000,000,000 9,999,958,458 9,999,957,062 9,999,957,229 9,999,917,757 0
exp-550-10,000,000,000 9,999,958,398 9,999,958,350 9,999,957,141 9,999,918,271 0
exp-575-10,000,000,000 9,999,958,138 9,999,957,132 9,999,957,725 9,999,919,510 0
exp-600-10,000,000,000 9,999,957,600 9,999,903,674 9,999,903,976 9,999,920,919 0
exp-625-10,000,000,000 9,999,958,763 9,999,904,395 9,999,959,011 9,999,922,069 0
exp-650-10,000,000,000 9,999,958,972 9,999,957,427 9,999,957,462 9,999,923,888 0
exp-675-10,000,000,000 9,999,959,169 9,999,960,158 9,999,959,740 9,999,926,379 0
exp-700-10,000,000,000 9,999,959,501 9,999,958,597 9,999,905,742 9,999,928,286 0

Avg. 9,999,920,718.1 9,999,914,190.1 9,999,914,267.6 9,999,697,742.2 0.0
p-value REF. ALG. 5.037×10−6 1.639×10−6 7.264×10−4 2.980×10−8

46

	Introduction
	Monte Carlo tree search for game playing
	Literature overview
	Monte Carlo tree search
	The quay crane scheduling problem with non-crossing constraints
	The 0-1 knapsack problem

	Monte Carlo tree search for combinatorial optimization
	Domain reduction
	Pruning subtrees by calculating bounds
	Using a heuristic simulation policy
	Selection Policy
	Directing the search by using a beam width
	Generalizability

	Case study A: quay crane scheduling problem with non-crossing constraints
	Mathematical model
	Relaxation
	Enhancements used in our algorithm
	Domain reduction
	Pruning subtrees by calculating bounds
	Using a heuristic simulation policy

	Case study B: 0-1 knapsack problem
	Enhancements used in our algorithm
	Domain reduction
	Pruning subtrees by calculating bounds
	Using a heuristic simulation policy

	Computational results
	Computational results: quay crane scheduling problem with non-crossing constraints
	Data generation
	Experiments

	Computational results: 0-1 knapsack problem
	Data generation
	Experiments

	Conclusions and further work

