
1 
 

 

Horizon 2020 

 

 

PROTECT 

 

Quantitative Microbial Spoilage Risk 

Assessment: Sensitivity and Scenario 

analysis 

Deliverable number: D4.3 

 

 

Version 1.0 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

This project has received funding from the European Union’s Horizon 2020 

research and innovation programme under Marie Skłodowska-Curie grant 

agreement No. 813329. 

 



2 
 

Project Acronym: PROTECT 

Project Full Title: Predictive mOdelling Tools to evaluate the Effects of Climate change on food 
safeTy 

Call: H2020 MSCA ITN 2018 

Topic: MSCA-ITN-2018 

Type of Action: MSCA-ITN-ETN - European Training Network 

Grant Number: 813329 

Project URL: www.protect-itn.eu 

 
 

Editor: Jan Van Impe – KU Leuven 

Deliverable nature: Report (R) 

Dissemination level: Public (PU) 

Contractual Delivery Date: 30 September 2022 

Actual Delivery Date : 30 September 2022 

Number of pages: 55 

Keywords: Uncertainty, Sensitivity, Scenario, Variability 

Authors: Lydia Katsini, Satyajeet Bhonsale, Monika Polańska, Jan F.M. Van Impe, 
KU Leuven 
 
Styliani Roufou, Sholeem Griffin, Vasilis Valdramidis, University of 
Malta 
 
Ourania Misiou, Konstantinos Koutsoumanis, Aristotle University of 
Thessaloniki 

Peer review: University College Dublin Enda Cummins,  

 
 

  



3 
 

Contents 

Abstract ................................................................................................................................................... 4 

Introduction ............................................................................................................................................ 4 

Scenario and Sensitivity Analysis for QMSRA ......................................................................................... 5 

Case study A: Geobacillus stearothermophilus in canned milk .......................................................... 5 

Background ..................................................................................................................................... 5 

Materials and Methods .................................................................................................................. 8 

Results and Discussion ................................................................................................................. 10 

Conclusions .................................................................................................................................. 18 

Case study B: Geobacillus stearothermophilus in plant-based milk alternatives ............................. 19 

Background ................................................................................................................................... 19 

Materials and Methods ................................................................................................................ 20 

Results and Discussion ................................................................................................................. 28 

Conclusions .................................................................................................................................. 34 

Climate Change Scenarios ..................................................................................................................... 37 

Background ....................................................................................................................................... 37 

Material and Methods ...................................................................................................................... 39 

Obtaining Climate Projections ...................................................................................................... 40 

Partitioning Climate Projections Uncertainty ............................................................................... 41 

Results and Discussion ...................................................................................................................... 41 

Conclusions ....................................................................................................................................... 48 

Acknowledgements ............................................................................................................................... 49 

References ............................................................................................................................................. 49 

 

  



4 
 

Abstract 

Globally, studies of climate impacts, mitigation, and adaptation strategies are increasingly becoming 

major areas of scientific interest. Such studies are the foundation of evidence-based policy making. 

Scientific models serve as the bridge between science and policy. As all models are approximating 

reality, quantifying the uncertainties involved is a significant step that needs to be implemented if 

models are to benefit society. Scenario and sensitivity analysis are methodologies that tackle the issue 

of quantifying uncertainty. This document highlights the importance of sensitivity and scenario 

analysis as demonstrated in two applications. The first application demonstrates the necessity of 

performing scenario and sensitivity analysis by using a probabilistic approach to address uncertainty 

concerning the input parameters of a Quantitative Microbial Spoilage Risk Assessment (QMSRA) in two 

case studies. The second part deals with the climate change scenarios proposed by the 

Intergovernmental Panel on Climate Change (IPCC). More specifically it can be considered a tutorial on 

preparing suitable climate change scenarios to assess food safety locally. Furthermore, it underlines 

the importance of partitioning the uncertainty in its different sources. 

Introduction 

One of the most significant issues of the 21st century is to provide sufficient food for the growing 

population while sustaining the already stressed environment, which is endangered by climate change. 

Globally, studies of climate impacts, mitigation, and adaptation strategies are increasingly becoming 

major areas of scientific interest, e.g. impacts on food quality, animal health, production of crops such 

as corn and wheat, and water resources (Kang et al., 2009). Such studies are the foundation of 

evidence-based policy making. 

When the future is inherently uncertain, decision-makers can recognize change more quickly and 

effectively using scenario analysis instead of a detailed projection of the most likely future. In general, 

integrated models of complex socio-ecological systems are increasingly used to assess the future of 

food industries under key factors such as future climates, population dynamics, as well as demand and 

supply for food and energy (Gao et al., 2016). Most importantly, scientific models serve as the bridge 

between science and policy. As all models are approximating reality, quantifying the uncertainties 

involved is a significant step that needs to be implemented if models are to benefit society. 

Typically, uncertainty can be classified into two categories: aleatory or epistemic. Aleatory uncertainty 

or variability is uncertainty that exists because the system and/or the environment under study have 

inherent variations. When it comes to food microbiology, aleatory uncertainty is known as biological 

variability. If sufficient information is available, this kind of uncertainty can be quantified but never 

reduced. Then, the relevant variables are defined through probability distributions. As a result, 

probabilistic modelling approaches are frequently utilized to address aleatory uncertainty. This kind of 

uncertainty is also referred to as intrinsic, irreducible, and stochastic. On the other hand, epistemic 

uncertainty results from the lack of knowledge. This uncertainty does not always lead to errors. For 

example, a model may be accurate for some, less complex, systems, even though it does not describe 

all the dynamics of the system. By gaining more insight into the system dynamics, epistemic 
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uncertainty can be reduced. Thus, reducible, subjective, and cognitive uncertainty are terms used to 

describe epistemic uncertainty (Nimmegeers, 2018). 

Scenario and sensitivity analysis are methodologies that tackle the issue of quantifying uncertainty. In 

particular, scenario analysis aims to assess the uncertainty of model predictions originating from 

uncertainty in model inputs without attempting to characterize the different sources of uncertainty. In 

contrast, sensitivity analysis focuses on determining the relative contributions of multiple inputs 

and/or parameters to the uncertainty of the output (Saltelli et al., 2010). In this regard, sensitivity 

analysis should not be viewed as a substitute for scenario analysis but as an enhancement of it. 

This document highlights the importance of sensitivity and scenario analysis as demonstrated in two 

applications. The first application demonstrates the necessity of performing scenario and sensitivity 

analysis by using a probabilistic approach to address uncertainty concerning the input parameters of 

a Quantitative Microbial Spoilage Risk Assessment (QMSRA) in two case studies. The first case study 

uses a probabilistic model to perform scenario analysis in the context of climate change. The second 

case study utilized another QMSRA probabilistic model covering the food chain to conduct sensitivity 

analyses. The second part deals with the climate change scenarios proposed by the Intergovernmental 

Panel on Climate Change (IPCC). More specifically it can be considered a tutorial on preparing suitable 

climate change scenarios to assess food safety locally. Furthermore, it underlines the importance of 

partitioning the uncertainty in its different sources. 

Scenario and Sensitivity Analysis for QMSRA 

The sensitivity analysis in this document determines which input parameters affect the output of the 

QMSRA model the most. Based on the sensitivity analysis results, alternative scenarios can be 

implemented by modifying the most impactful parameters of the model, and mitigation strategies can 

be investigated to reduce the associated risk. Sensitivity and scenario analyses are employed in two 

case studies related to Geobacillus stearothermophilus growth in canned milk and plant-based milk 

alternatives, respectively. 

Case study A: Geobacillus stearothermophilus in canned milk 

Background 

Microbiologically stable or shelf-stable foods include products which will not spoil or cause disease 

when stored at ambient temperature or “on the shelf”. They represent a major group in the food 

market and include products of high consumption such as canned foods, products processed with Ultra 

High Temperatures (i.e. UHT milk), pasteurized acidic foods (fruit and vegetable juices), dried foods 

etc. Shelf-stable foods are not sterile, but the microorganisms present cannot grow in the food 

environment during distribution and storage to levels that can cause spoilage. For example, canned 

foods undergo a severe heat process, which is primarily designed to destroy spores of pathogenic 

Clostridium botulinum (Jay et al., 2008; Membré and van Zundijlen, 2011). Other spoilage spore-

forming bacteria, however, are more heat resistant and can survive the thermal process designed to 
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control this pathogen. Despite this microbial contamination, these foods are considered shelf-stable 

because the survivors of the heat process are thermophilic and require a certain storage time at high 

temperatures in order to grow to spoilage levels (André et al., 2013; Bevilacqua et al., 2009; Gocmen 

et al., 2005; Rigaux et al., 2014). Such time-high temperature conditions are currently very rare under 

normal distribution and storage conditions prevailing in regions with temperate climates (Kakagianni 

and Koutsoumanis, 2018; Misiou and Koutsoumanis, 2021). Considering the climate change and the 

expected increase of the planet’s temperature (IPPC, 2021; Morice et al., 2012; Räisänen et al., 2004; 

UNFCCC, 2014), however, the question arises is how marginal the latter limiting condition for spoilage 

is and whether global warming can threaten the microbiological stability of non-refrigerated foods. A 

positive answer to the latter question could lead to significant social-economic consequences, 

requiring a high level of preparedness by both the food industry and policymakers. 

The IPCC projections give likely ranges of global temperature increase in five scenarios for population, 

economic growth and carbon use (IPPC, 2021). Based on the latter report, the increase of global mean 

surface temperature by the end of the 21st century (2081 - 2100), relative to 1986-2005, was projected 

for five different Representative Concentration Pathways (RCP) considering the possible levels of 

greenhouse gas emissions (GHG). Under the scenario RCP1.9 and 2.6 (very low and low GHG), the 

global mean surface temperature increase is likely to be 1.0 to 1.8 °C and1.3 to 2.4 °C, respectively. 

The intermediate GHG scenario RCP4.5, projected a likely increase between 2.1 and 3.5 °C, while the 

RCP7.0 and RCP8.5, which represent high and very high GHG emissions, projected an increase of 2.8 

to 4.6 °C and 3.3 to 5.7 °C, respectively. Raftery and colleagues developed a statistically based 

probabilistic forecast of CO2 emissions and temperature change to 2100 and reported that the likely 

range of global temperature increase is 2.0 - 4.9 °C, with a median 3.2 °C and only 5% and 1% chances 

that it will be less than 2 °C and 1.5 °C, respectively (Raftery et al., 2017). Considering the regional 

heterogeneity of temperature increase and the seasonality of warming (Chakraborty et al., 2011; 

ECDC, 2012; Schmidhuber and Tubiello, 2007; Watkiss, 2013) in any of the above scenarios, the 

increase in global mean surface temperature is expected to have a significant impact on the 

temperature conditions in which the shelf-stable foods are exposed during distribution and storage 

with a potential effect in their microbiological stability.  
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Figure A1. Ambient temperature in Athens, Greece, during the period 2011-2020. Grey areas show the 

temperature region allowing the growth of the most important thermophilic spore-forming spoilage 

bacteria of non-refrigerated foods. 

To address our hypothesis, we compared annual ambient temperature profiles from 38 European cities 

for 10 recent consecutive years (2011 - 2020) with the minimum temperatures for growth of 

thermophilic bacteria commonly present in shelf-stable foods and showed that the current 

temperature conditions are approaching their growth range for the Southern European region. Figure 

A1 presents an example for Athens (Greece), where the temperature conditions during the last 10 

years is marginally lower compared to the minimum temperature for growth of the most important 

spoilers of non-refrigerated foods including Bacillus coagulans, Geobacillus stearothermophilus, 

Clostridium thermobutyricum, Anoxybacillus flavithermus and Moorella thermoacetica (André et al., 

2013; Byrer et al., 2000; De Clerck et al., 2004; Kakagianni et al., 2016; Wiegel et al., 1981). These 

results indicate that a further temperature increase, due to global warming, may allow bacterial 

growth at levels that can cause spoilage. Among the thermophilic spore-forming bacteria, G. 

stearothermophilus constitutes the most important quality problem for the food industry in relation 

to thermally processed shelf-stable heat processed food products (André et al., 2013; Carlier and 

Bedora-Faure, 2006; Carlier et al., 2006). The high prevalence and concentration of spores in the raw 

materials, the adhesive characteristics of spores that enhance their persistence in industrial 

environments and, most importantly, the extreme heat-resistance of its spores are among the major 

factors explaining the importance of this thermophilic endospore-former (André et al., 2013; Postollec 

et al., 2012; Yoo et al., 2006). Hence, in the present work, we evaluate the potential effect of climate 

change on the microbiological stability of canned milk as a shelf-stable food case study by using a 

quantitative risk assessment model. The model uses predictive microbiology tools to assess the effect 
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of 3 global warming projections (temperature increase of 1.5, 3.0 and 4.5 °C) on G. stearothermophilus 

growth and further translate it to the risk of canned milk spoilage. In addition, we evaluate the impact 

of insulated non-refrigerated distribution and storage as a strategy to mitigate the increased risk of 

spoilage due to climate change. 

Materials and Methods 

Temperature data 

Historical hourly temperature data covering 38 European cities for ten consecutive years over the 

period 2011-2020 was obtained from the Weather Underground database 

(http://www.wunderground.com/). Data were collected from airport weather stations of European 

capital cities. Slovenia, Spain, Cyprus and Israel have no stations in their capital city; therefore, 

temperature data was collected from the next highly populated city. The temperature data were 

recorded at 20 and 30 min intervals, depending on the station. In total, about 10 million temperature 

records corresponding to 380 annual temperature profiles were obtained and used in the study.  

Predicting Geobacillus stearothermophilus growth in canned milk under global warming 

scenarios 

The predictive model of Kakagianni and colleagues (Kakagianni et al., 2016) describing the effect of 

temperature on the growth of G. stearothermophilus was applied to assess the spoilage risk of canned 

milk during distribution and storage in the market of 38 European capitals. The growth prediction was 

based on the combination of the secondary Cardinal Model with Inflection (Rosso et al., 1993) with 

the differential equations of the Baranyi and Roberts primary model (Baranyi and Roberts, 1994). The 

effect of temperature on the maximum specific growth rate (𝜇𝑚𝑎𝑥) was predicted by the secondary 

model as follows: 

𝜇max(𝑇) =  2.068 ∙ 𝜌(𝛵)        (Eq. 1) 

𝜌(𝛵) = {

0 , 𝑇 ≤  33.76
(𝑇−68.14)(𝑇−33.76)2

(61.82−33.76)([(61.82−33.76)(𝑇−61.82)−(61.82−68.14)(61.82+33.76−2𝑇)]
, 33.76 ≤ 𝑇 ≤ 68.14

0 , 𝑇 ≥  68.14

 

(Eq. 2) 

The prediction of growth under dynamic storage temperature was based on the time-temperature 

profiles of the European cities, T(t), in conjunction with the secondary model (Eq. (1)) for the 

estimation of the “momentary” 𝜇𝑚𝑎𝑥 and the differential equations of Baranyi and Roberts model 

(Eqs. (3) and (4)), which were numerically integrated with respect to time: 

𝑑

𝑑𝑡
𝑥 = 𝜇max (𝑇)

𝑞

1+𝑞
(1 −

𝑥

𝑥𝑚𝑎𝑥
) 𝑥       (Eq. 3) 

𝑑

𝑑𝑡
𝑞 = 𝜇max (𝑇)𝑞                                           (Eq. 4) 

The parameter q denotes the concentration of a substance critical to the growth and is related to the 

physiological parameter a0, as follows: 

𝑎0 =
𝑞0

1+𝑞0
           (Eq. 5) 
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The model was based on the assumption that the growth rate is adopted instantaneously to the new 

temperature environment after a temperature shift. For the baseline scenario (BSc), hourly 

temperature data from 38 European cities over a period of ten years (2011-2020) were used as model 

input data to predict the total growth of G. stearothermophilus in canned milk distribution and storage 

for one year, which is the normal expiration date period of the product. The total growth of G. 

stearothermophilus in canned milk was also predicted for 3 global warming scenarios (GWS), including 

temperature increases of 1.5 (GWSc-1), 3.0 (GWSc-2) and 4.5 (GWSc-3) °C. The temperature increase 

in all scenarios was assumed to be homogeneously distributed in the hourly temperature profiles of 

the baseline scenario for each year. For the growth prediction, the initial and maximum population 

density was fixed to 10-2.4 (i.e. 1 cell in 250 mL) and 107.5 CFU/mL (Kakagianni et al., 2016). The a0 was 

set to 1, representing a scenario with the spoilage organism growing with no lag phase. 

Assessing the risk of canned milk spoilage 

A probabilistic model which takes into account the variability of the initial contamination level and the 

spoilage level was developed (Koutsoumanis et al., 2021). The model provides a quantitative estimate 

of the probability that for a certain product, G. stearothermophilus concentration exceeds the spoilage 

level and causes spoilage at the end of the shelf life. The initial contamination level of G. 

stearothermophilus (N0) in canned milk was described using a Pert distribution Pert (Min, Mode, Max) 

with mode, minimum and maximum values of 1; 0.004 (1 cell in 250 mL); 1000 CFU/mL, respectively, 

based on historical data from Greek dairy industry. A Pert distribution was also used to describe the 

total growth (tG) of the spoiler with mode, minimum and maximum values estimated for each city and 

global warming scenario from the growth model for the ten tested years. In the latter case, the mode 

was estimated as follows (Vose, 2000): 

𝑚𝑜𝑑𝑒 =
6∗𝑀𝑒𝑎𝑛−𝑀𝑖𝑛−𝑀𝑎𝑥

4
          (Eq. 6) 

The spoilage level (Ns) was described by a Normal distribution with a mean value of 107.4 CFU/mL and 

a standard deviation of 100.15 CFU/mL (Kakagianni et al., 2016). The risk of spoilage was calculated as 

the probability that the concentration of the spoiler at the end of one-year shelf life Nend (Nend=N0*tG) 

exceeds the spoilage level Ns. 

𝑅𝑖𝑠𝑘 𝑜𝑓 𝑆𝑝𝑜𝑖𝑙𝑎𝑔𝑒 = 𝑃(𝑁0 ∗ 𝑡𝐺 > 𝑁s)       (Eq. 7) 

The risk of spoilage was assessed using Monte Carlo simulation with 50.000 iterations with @Risk 

software (@Risk, Palisade, USA).  

Evaluating the impact of insulated distribution and storage on the risk of canned milk 

spoilage 

In order to compare and evaluate the impact of insulated distribution and storage on the risk of canned 

milk spoilage, outdoor and indoor temperature data were collected for non-insulated and insulated 

storage rooms and truck containers. Outdoor and indoor temperature was monitored simultaneously 

for a period of 15 days during the summer period in Greece using electronic data loggers (Cox Tracer, 

Cox Technologies, Belmont, NC, USA). For storage, a Greek dairy industry recorded the temperature in 

open shed storage areas (non-insulated) and concrete storage rooms (insulated). For distribution, the 

temperature was recorded in non-insulated and insulated trucks (with overall heat transfer coefficient 
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U= 0.4 W/m2 K) used for food transportation. 

The collected outdoor and indoor temperature data were fitted to the following exponential 

smoothing model in order to estimate the smoothing factor parameter using Excel solver: 

𝑇indt
= (1 − 𝑎) ∗ 𝑇outt

+ 𝑎 ∗ 𝑇indt−1
         (Eq. 8) 

Where 𝑇indt
 is the indoor temperature at time t, 𝑇outt

 is the outdoor temperature at time t, 𝑇indt−1
 is 

the indoor temperature at time t-1, and 𝑎 is the smoothing factor. The smoothing factor parameter for 

the tested insulated storage rooms and transportation trucks was estimated using Excel solver and 

ranged from 0.941 to 0.952. The lowest value of the estimated smoothing factor parameters for the 

storage rooms and trucks, representing the lower level of insulation was further used to transform the 

historical hourly ambient temperature data covering 38 European cities for ten consecutive years over 

the period 2011-2020 to insulated storage and distribution temperature using (Eq. (8)). The risk 

assessment model was rerun based on the transformed temperatures to simulate the impact of 

insulated distribution and storage on the risk of canned milk spoilage. 

Results and Discussion 

We assessed the effect of different global warming scenarios to the microbiological stability of shelf-

stable foods through a case study of canned milk spoilage by G. stearothermophilus in the European 

region. The spores of the later spoiler can survive the canning process and when are exposed to 

favourable temperatures (> Tmin ≈ 33 °C) during distribution and storage they transit from an inactive 

form to active cells after an irreversible cascade of steps (Kakagianni et al., 2016). The growth of 

metabolic active cells to critical levels (> 107 CFU/mL) results in acidification and further coagulation 

of canned milk leading to significant economic losses for the dairy industry (Burgess et al., 2010; 

Kakagianni et al., 2016; Rigaux et al., 2014). The growth of G. stearothermophilus in canned milk during 

distribution and storage in 38 European cities was assessed for a period of one year, which is the 

normal expiration date period of the product. For the baseline scenario (BSc), growth assessment was 

based on the combination of a dynamic growth model developed by Kakagianni and colleagues 

(Kakagianni et al., 2016) with hourly ambient temperature profiles of each city for the last 10 

consecutive years (2011-2020). The model was further rerun for 3 global warming scenarios (GWS) 

including increases in the mean surface temperature of 1.5 (GWSc-1), 3.0 (GWSc-2) and 4.5 (GWSc-

3) °C and the results were compared with the baseline scenario (Figure A2). 

The cumulative probability of G. stearothermophilus growth in canned milk during one year of storage 

in all tested European cities and years for the baseline and the 3 global warming scenarios is presented 

in Figure A3. For BSc, growth is limited with a mean value of 0.2 Log CFU/mL and a 95th percentile of 

0.8 Log CFU/mL, confirming that current temperature conditions during distribution and storage in 

Europe do not allow extensive growth of thermophilic bacteria to levels that can cause spoilage of 

shelf-stable foods. For the global warming scenarios, the average microbial growth increases to 0.5, 

1.2 and 2.3 Log CFU/mL and the 95th percentile to 2.2, 6.0 and 9.8 Log CFU/mL for GWSc-1, GWSc-2 

and GWSc-3, respectively. 
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Figure A2. Model development for prediction of Geobacillus stearothermophilus growth. A: Effect of 

temperature on the growth rate of G. stearothermophilus (Kakagianni and Koutsoumanis, 2018). Points 

represents observed values and line represents model’s prediction. Dotted line indicates the minimum 

temperature allowing growth of the spoiler. B: Ambient temperature recorded in Athens for the year 

2015 used for the baseline scenario (blue line). Temperature for global warming scenario 2 (red line) 

C: Predicted growth of G. stearothermophilus in canned milk for the baseline (blue line) and the global 

warming scenario 2 (red line). Dotted line indicates the level of G. stearothermophilus where spoilage 

is observed. 
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Microbial growth varies significantly among the tested European cities depending on their 

temperature conditions (Figure A4). For the southern European region, a small temperature increase 

results to extensive microbial growth to levels that can cause spoilage. The above results confirm the 

marginal ability of the current temperature conditions in controlling the growth of thermophilic 

spoilage bacteria in shelf-stable foods while demonstrating that the reported vulnerability of Southern 

Europe to future climatic changes in relation to food safety and security (ECDC, 2012; Giorgi and 

Lionello, 2008; Watkiss et al., 2013) is also valid for food spoilage. 

 

Figure A3. Probability of Geobacillus stearothermophilus growth in canned milk during one year of 

storage in 38 European cities. A: Cumulative probability of G. stearothermophilus growth for the 

baseline scenario (BSc) and the 3 global warming scenarios (GWS) including increases in the mean 

surface temperature of 1.5 (GWSc-1), 3.0 (GWSc-2) and 4.5 (GWSc-3) °C. B: Probability of 

G. stearothermophilus growth exceeding the spoilage level (7 Log CFU/mL) with 1 and 2 Log CFU/mL 

intervals. 

The data on microbial growth were further translated to risk of spoilage using a probabilistic model, 

which takes into account the variability on the initial contamination level and the spoilage level 

(Koutsoumanis et al., 2021). This approach can provide a quantitative estimate of the probability that 
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for a certain canned milk unit G. stearothermophilus concentration exceeds the spoilage level at the 

end of the shelf-life leading to sensory rejection of the product. Figure A5 shows the simulation results 

on the concentration of the spoiler at the end of shelf life for the 38 European cities for the BSc and 

the 3 GWSc. For the BSc the average value of the median and 95th percentiles for all tested cities are 

0.2 and 2.1 Log CFU/mL reflecting mainly the variability in the initial contamination level since as 

shown before (Figure A3) the growth for this scenario is very limited. For Northern European cities, 

global warming projections do not have a significant impact on microbial growth. This can be 

attributed to the fact that temperature in this region is low and even with an increase of 4.5 °C (GWSc-

3) it will not exceed the minimum temperature of growth of G. stearothermophilus (Tmin ≈33.0 °C). In 

contrast, for the Southern region, global warming may lead to extensive microbial growth. In the case 

of Rome for example, with a temperature increase by only 1.5 °C (GWSc-1), G. stearothermophilus 

concentration at end of the shelf life may reach 6.9 Log CFU/mL (99th percentile), approaching the 

spoilage level of canned milk. For the higher temperature increase projections tested, namely 3 (GWSc-

2) and 4.5 °C (GWSc-3), the 99th percentile of G. stearothermophilus concentration at the end of the 

shelf life exceeds the spoilage level in 6and 13 Southern European cities, respectively.  
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Figure A4. Cumulative probability of Geobacillus stearothermophilus growth in canned milk during one 

year of storage in European cities. Cumulative probability of G. stearothermophilus growth for the 

baseline scenario (BSc) and the 3 global warming scenarios (GWS) including increases in the mean 

surface temperature of 1.5 (GWSc-1), 3.0 (GWSc-2) and 4.5 (GWSc-3) °C. 
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Figure A5. Simulation results on the concentration of Geobacillus stearothermophilus and on the spoilage risk assessment. Predicted concentration of 

G. stearothermophilus at the end of canned milk shelf life in 38 European cities for the baseline scenario (BSc) and the 3 global warming scenarios (GWS) 

including increases in the mean surface temperature of 1.5 (GWSc-1), 3.0 (GWSc-2) and 4.5 (GWSc-3) °C. Maps translate the concentration of 

G. stearothermophilus at end of the shelf life to risk of spoilage as a probability of exceeding the spoilage level. 

 



   

 

   

 

The risk maps presented in Figure A5 translate the concentration of G. stearothermophilus at the end of the 

shelf-life to risk of spoilage as a probability of exceeding the spoilage level. For BSc, the risk of spoilage is 

negligible for all 38 European cities indicating that the temperature conditions recorded during the period 

2011-2020 control the growth of the spoiler. For GWSc-1, non-zero risk cities include only Rome and Athens 

with probability of spoilage 5.3 x 10-3 and 1.6 x 10-5, respectively. The simulation results show that for a 

temperature increase of 3.0 °C (GWSc-2), the temperature conditions in Rome, Tirana and Larnaca will lead 

to a very high risk (> 0.1) with spoilage probabilities of 0.17, 0.12 and 0.20, respectively. For the latter scenario 

a high risk (10-3 - 10-1) is predicted for Belgrade (3.8 x 10-2), Bucharest (1.4 x 10-2) and Athens (5.7 x 10-2), 

while for Chisinau and Valetta the predicted risk is 1.3 x 10-4 and 2.1 x 10-4, respectively. For the extreme 

scenario of 4.5 °C temperature increase (GWSc-3), a very high risk is predicted for 7 cities (Belgrade, 

Bucharest, Rome, Tirana, Athens, Valetta and Larnaca), a high risk for 7 cities (Bratislava, Chisinau, Budapest, 

Zagreb, Sarajevo, Sofia and Lisbon) and a medium risk (10-6 - 10-3) in 3 cities (Maribor, Paris and Vienna). 

The above simulation results for canned milk risk of spoilage demonstrate that a temperature increase above 

2 °C due to climate change, (GWSc-2 and GWSc-3) will lead to an increased number of spoilage events during 

delivering shelf-stable foods at the sales points of the Southern European region. Considering that the 

contamination of shelf-stable foods with thermophilic spores cannot be eliminated, the latter is expected to 

force the food business operators to major adjustments of their logistics. Shelf-stable foods are currently 

distributed and stored at ambient conditions using non-insulated trucks, shipping containers and storage 

rooms. The most effective strategy for the food industry to mitigate the increased risk of spoilage due to 

climate change would be to distribute and store shelf-stable foods under refrigeration, following the same 

logistic routes of perishable foods. The later however, would have a huge impact on the energy cost related 

to food transportation and storage. Indeed, refrigeration of foods is one of the most energy-intensive 

technologies used in the food supply chain, accounting for about 35% of the total energy consumption in the 

food industry worldwide (Evans et al., 2014; Tassou et al., 2009). In addition, food refrigeration has a high 

contribution to greenhouse gas emissions, accounting for approximately 1% of global CO2 emission (James 

and James, 2010). Moreover, most refrigerants also split and release ozone destructive chlorine atoms, 

leading to increased harmful ultraviolet radiation reaching the ground (Tassou et al., 2009; Wu et al., 2013). 

Consequently, the option of delivering shelf-stable food under refrigeration poses a number of significant 

environmental and sustainability related risks. 

The risk assessment model shows that the high risk of spoilage is mainly related to the extensive microbial 

growth that occurs during the hottest hours of the summer days when foods are exposed for several hours 

to high temperatures above the minimum temperature for growth. 
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Figure A6. Representative fitting of insulated transportation and storage. A: Insulated truck B: Insulated 

storage room inner temperature using an exponential smoothing model (Eq. (5.8)). Blue points: recorded 

external temperature, orange points: recorded inner temperature, red line: fitted inner temperature. 

Based on the above observation, an alternative to refrigeration mitigation strategy could be the non-

refrigerated but insulated transportation and storage of shelf-stable foods, which can significantly decrease 

the maximum temperatures that the products are exposed. Figure A7 shows a comparison of representative 

ambient external air temperature profiles with inner air temperature of non-insulated and insulated truck 

container and storage room of shelf stable foods. As shown in the latter figure, temperature evolution during 

non-insulated storage is very close to the ambient temperature, while insulated storage results in a significant 

decrease of the maximum temperature. To assess the impact of insulated transportation and storage on the 

risk of spoilage, we rerun the risk assessment model for canned milk with adjusting the annual collected 

temperature profiles for the 38 European cities to insulated transportation and storage using an exponential 

smoothing model (Figure A6). The simulation results show that insulation eliminates the risk of spoilage in all 

tested cities for the scenarios of 1.5 °C (GWSc-1) and 3 °C (GWSc-2) increase. For the extreme scenario of 

4.5 °C temperature increase (GWSc-3), the risk was eliminated for all cities except from Rome and Larnaca. 

However, the probability of spoilage is 75 and 18 times lower, respectively, compared to non-insulated 

storage. 



   

 

18 

 

Figure A7. Insulated transportation and storage as a risk mitigation strategy. A: Representative profiles for 

ambient (outdoor) and indoor temperature of non-insulated and insulated food transportation truck. B: 

Representative profiles for ambient (outdoor) and indoor temperature of non-insulated and insulated storage 

room. C: Predicted risk of spoilage for GWSc-3 assuming non-insulated storage. D: Predicted risk of spoilage 

for GWSc-3 assuming insulated storage. 

Conclusions 

Our findings evidence that the current temperature conditions during distribution and storage are marginal 

in controlling the growth of thermophilic spoilage bacteria in shelf-stable foods. Through a risk assessment 

model, we demonstrated that a temperature increase above 2 °C, will lead to an increased number of spoilage 

events during distribution of shelf-stable foods in the Southern European region. The effect of insulated 

transportation and storage as a mitigation strategy to reduce the high risk of spoilage expected from global 

warming was also investigated and led to the elimination of the spoilage risk for the temperature increase 

scenarios of 1.5 °C (GWSc-1) and 3 °C (GWSc-2) while significantly reducing the risk of spoilage for the extreme 



   

 

19 

scenario of 4.5 °C temperature increase (GWSc-3). The results of the present study can be considered as an 

alert for the expected impact of climate change on the microbiological stability of shelf-stable foods and stress 

the need for a high level of preparedness by both the food industry and policy makers. 

Case study B: Geobacillus stearothermophilus in plant-based milk 

alternatives 

Background 

Over recent years, consumers’ demand for plant-based alternatives has increased worldwide due to 

behavioural changes and special dietary needs, such as lactose intolerance. This shift in the consumer 

preferences in Europe has already been captured, since plant-based consumption has increased by 49% in 

past two years and reached total sales values of €3.6 billion in 2020 (Nielsen, 2021). Following this 

tremendous need, the dairy industry has focused on developing many innovative plant-based milk 

alternatives (PBMA) originated from nuts, cereals and legumes, such as oat, soy and pea. While soil 

constitutes the environmental niche of spore-forming bacteria (Carlin, 2011), plant-based proteins used as 

raw material might be contaminated with various thermophilic bacilli. Plant-based milk alternatives are heat 

process products that usually undergo a commercial sterilization by ultra-high temperature (UHT) (Sethi et 

al., 2016), which is primarily designed to eliminate spores of Clostridium botulinum (Jay et al., 2008; Membré 

and van Zuijlen, 2011). Even though this thermal process is quite severe, it has been proven insufficient in 

eliminating spores of thermophilic spore-forming bacteria that include extremely heat resistant endospores. 

Hence, Geobacillus stearothermophilus constitutes a microorganism of concern for these specific products, 

due to its extreme heat resistance. 

Despite the microbial contamination with G. stearothermophilus spores, heat processed plant-based milk 

alternatives are considered shelf-stable and therefore distributed and stored at ambient temperature. This is 

due to the fact that the surviving spores should be exposed to temperature higher than their minimum growth 

temperature for a certain time to germinate and grow to spoilage levels (André et al., 2013; Bevilacqua et al., 

2009; Rigaux et al., 2014). Given that minimum temperature for growth of G. stearothermophilus is relatively 

high (Tmin >33 °C) (Kakagianni et al., 2016), current temperature conditions prevent the extensive growth of 

thermophilic bacilli, including G. stearothermophilus, and therefore ensure their microbiological stability 

(Misiou et al., 2021). Given the projection provided by the Intergovernmental Panel on Climate Change (IPCC), 

temperature is expected to be increased by 1.0-5.7 °C by the end of the 21st century (IPPC, 2021). Thus, the 

expected increase in global mean surface temperature may increase the risk of spoilage, especially in hot 

climate regions and temperate climates (Kakagianni and Koutsoumanis, 2018; Misiou et al., 2021; Misiou and 

Koutsoumanis, 2021). 

In order to tackle the potentially increased events of non-sterility and support food risk management 

decisions, a QMRSA can be employed (Pujol et al., 2013; Membré and Boué, 2018; Koutsoumanis et al., 2021). 

To the best of our knowledge, this is the first attempt to quantify the risk of spoilage of plant-based milk 

alternatives by Geobacillus stearothermophilus. Hence, the aim of this study is to build a probabilistic model 

to quantify the risk of spoilage of PBMA within Europe. In the context of QMRSA, the risk of spoilage is defined 

as the probability of rejecting a food product at the time of consumption due to spoilage (Koutsoumanis et 

al., 2021).  

In the present model, the risk of spoilage was defined as the probability of G. stearothermophilus to exceed 
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its maximum concentration (Nmax) at the time of consumption. The maximum concentration of 

G. stearothermophilus in PBMA was set to 107.5 CFU/mL (Misiou et al., 2021). Spoilage risks were estimated 

for the current climatic conditions and a climate change scenario during winter or summer seasons. The 

assessment was performed for two countries, namely Poland and Greece as a representative of the North 

and South region, respectively. In addition, the heat inactivation intensity and the transportation with 

insulated trucks were investigated as mitigation strategies to reduce the risk of spoilage. 

Materials and Methods 

Model description 

The model describes the spoilage risk of plant-based milk alternatives from raw materials up to the time of 

consumption. The model includes four main steps: 1. Initial contamination of raw materials 2. Heat 

inactivation of spores during UHT treatment 3. Partitioning 4. Germination and outgrowth of spores during 

distribution and storage. 

The four steps were associated with four modules, presented in detail below, along with the input variables 

and the distributions used to build the risk model (Table 1). The probabilistic model inputs were built with 

uncertainty and variability to consider as much as possible lack of knowledge and true heterogeneity, 

respectively. 

 

Figure B1. Decision tree of the Quantitative Microbial Spoilage Risk Assessment (QMRSA) of plant-based milk 

alternatives by Geobacillus stearothermophilus in Europe. In the baseline scenario the production in Poland 

and Greece is split into two periods, namely winter and summer season. During winter season, no growth 

(NG) of G. stearothermophilus is observed since the probability of temperature during transportation and 

storage at retail and consumer stage exceeding the minimum temperature of growth equals to zero in both 

countries. During the summer season in Poland, a potential growth of G. stearothermophilus is assumed since 

temperature during transportation and storage at consumer stage may exceed the minimum temperature of 
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growth (G-BP1). The latter is also valid for Greece (G-BGr2) except for the consumer stage for which it was 

assumed that half of the households have an air conditioning (A/C) system in place (G-BGr1). 

Module 1: Raw materials 

The initial contamination level in the raw materials were obtained from the literature (NIZO, IAFP, 2022). A 

total thermophilic bacteria load up to 10,000 CFU/g for the different tested plant proteins, including oat, 

almond, pea and fava proteins was reported. However, from 39 tested samples (n), only 6 samples exceeded 

(s) the detection limit (NIZO, 2022). 

Considering the low frequency and the high level of contamination, the prevalence in raw materials was 

described through a Bernoulli distribution with a Beta distribution capturing the uncertainty.  

Bernoulli (1, prevalence)                                 (Eq.9) 

prevalence ~Beta (s+1, n-s+1)                                  (Eq.10) 

The microbial concentration in the raw materials (𝑁0𝑟𝑚
) was described through a Pert distribution for the 

variability dimension and a Uniform distribution to capture the uncertainty in minimum, most likely and max-

imum parameters as follows:  

𝑁0𝑟𝑚
~Pert (Min; Most likely; Max)           (Eq. 11) 

With: 

Min ~Uniform (0;1)           (Eq.12) 

Most likely ~Uniform (1;3)          (Eq.13) 

Max ~Uniform (3;5)           (Eq.14) 

Considering a tank (𝑉𝑡) of 1000 L, the initial number of spores in the tank (𝑁0𝑡
) was estimated as follows: 

𝑁0𝑡
= 𝑁0𝑟𝑚

× 𝑉𝑡           (Eq. 15) 

Module 2: Heat treatment 

The heat inactivation parameters (D-values) of G. stearothermophilus were obtained from the literature. 

More specifically, 566 D-values for several strains and matrixes were obtained from 37 studies. The obtained 

D-values were transformed using a log10 transformation and plotted against temperature (Figure B2).  

A linear secondary model, was fitted into the log10D values to estimate the effect of heat temperature on the 

kinetic parameter D, as following: 

                                              𝑙𝑜𝑔10𝐷 = 𝑙𝑜𝑔10𝐷𝑟𝑒𝑓 +
(𝑇𝑟𝑒𝑓−𝑇)

𝑧
+ 𝜀1                   (Eq. 16) 

𝜀1~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑠𝑑1)                             (Eq. 17) 

Where: 

Tref is the reference temperature equals to 121 °C, T is the applied temperature during thermal treatment, Dref 

(min) is the decimal reduction time at the reference temperature Tref and z (°C) is the temperature increase 

required to reduce D-value by 90%. The error (ε1) incorporated in the model was considered as representative 

of variability due to the different strains included in the D-values dataset. Uncertainty was not taking into 
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consideration due to the significant amount of data. 

 

Figure B2. Effect of temperature on the decimal reduction time (D) of Geobacillus stearothermophilus. Points 

represent the logarithm of the 566 obtained D-values (log10D), and the red solid line indicates the fitting of 

the secondary model to the data. 

Since UHT treatment is usually applied in different time-temperature combinations, a scenario at 

temperature 140 °C for 3 sec was generated for the heat treatment module. The number of spores surviving 

the UHT treatment (𝑁𝐻𝑇) was estimated using a Poisson distribution, as suggested by Nauta et al., 2001 and 

recently used by Santos et al., 2020: 

𝑁𝐻𝑇 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑁0𝑡
× 𝑃𝑟𝑠𝑢𝑟)          (Eq. 18) 

𝑃𝑟𝑠𝑢𝑟 = 10
(

−𝑡𝐻𝑇
𝐷

)
           (Eq. 19) 

Where: 

𝑁0𝑡
 is the number of spores present in the raw material per tank, as defined in previously and 𝑃𝑟𝑠𝑢𝑟 is the 

probability for one spore to survive the heat treatment (Nauta et al., 2001) deduced from Eq. 16. 

Module 3: Partitioning 

The filling of the packs (in 250 ml) which is performed as the last stage of the UHT treatment, is a partitioning 

process following a Poisson distribution as suggested by (Nauta, 2005). The UHT-treated plant-based milk 

alternatives are aseptically packed into sterile containers and therefore no additional contamination was 

considered at this stage. The number of spores per pack (𝑁𝑝) was estimated as follows: 

𝑁𝑝 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (
𝑁𝐻𝑇

𝑉𝑡
∗ 𝑉𝑝)          (Eq. 20) 

Module 4: Growth during distribution and storage 

In order to assess the risk of spoilage of plant-based milk alternatives distributed and stored within Europe, 

two representative countries were selected; namely Poland and Greece. The two selected countries were 
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chosen to allow for a comparison between North and South Europe. 

Since Geobacillus stearothermophilus is a thermophilic bacterium with a minimum temperature of growth 

around 33 °C, the following baseline scenario was designed to take into consideration the worst-case scenario 

based on the seasonality (see Figure B1). In the baseline scenario, which corresponds to the current climatic 

conditions, the production in Poland and Greece was split into two periods, namely winter and summer 

season. During winter season, no growth (NG) of G. stearothermophilus was assumed, since temperature 

during transportation and storage at consumer stage remains below the minimum temperature of growth 

(33 °C) in both countries. Regarding summer production in Poland, a potential growth of G. 

stearothermophilus was assumed since temperature during transportation and storage at consumer stage 

may exceed the minimum temperature of growth (G-BP1). In the same vein, a potential growth was assumed 

for Greece during storage at consumer stage for the half of the households (G-BGr2). For the rest of the 

households, it was assumed that there is an air conditioning (A/C) system in place and therefore growth may 

only occur during transportation (G-BGr1). In all cases it was assumed that products were stored at retail 

stage below 25 °C and therefore no additional growth of G. stearothermophilus was occurred at this stage. 

For the assessment of growth, the following assumptions were made. For the transportation time, it was 

assumed that based on the size of the tested countries, products were distributed from the factory to retailers 

for a period up to 12 h, the transportation time was thus described by a uniform distribution as follows: 

𝑡𝑡𝑟 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (2; 12)          (Eq. 21) 

Given that UHT products considered as shelf-stable, they can be transferred either by insulated or non-

insulated trucks. Temperature in insulated trucks was assumed to remain below 25 °C and did not allow 

growth. The percentage of insulated truck was described through a Bernoulli distribution with Uniform 

distribution capturing the uncertainty as follows: 

Bernoulli (1, Ptruck)            (Eq. 22) 

𝑃𝑡𝑟𝑢𝑐𝑘 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.1; 0.5)          (Eq. 23) 

Temperature inside non-insulated trucks was monitored through data loggers for a period of one month 

(August) during transportation in Greece, an empirical distribution was built using the recorded data. Due to 

lack of temperature data inside trucks in Poland, historical hourly outdoor temperature data for the same 

period were retrieved from an online database (www.wunderground.com) and used to build an empirical 

distribution. 

The duration of the domestic storage was set to 120 days to take into account the worst-case scenario during 

summer period, while the temperature of domestic storage for both seasons was described by two 

probabilistic distributions build as follows. Historical hourly temperature data for Poland (Warsaw) and 

Greece (Athens) between June and September and November to February 2021 were retrieved from an 

online database (www.wunderground.com). To assess the variability, hourly temperature data for each 

country were divided into two parts, representing temperature fluctuation during day and night. More 

specifically, data retrieved from 9 am to 9 pm were included in the temperature distribution of day, while data 

obtained from 9 pm to 9 am were included in the temperature distribution of night. Both day and night 

temperature data were used to build empirical distributions.  

The maximum specific growth rate (𝜇𝑚𝑎𝑥) was estimated individually for transportation, day and night 

storage as a function of temperature and pH, and a gamma model was applied as follows: 

http://www.wunderground.com/
http://www.wunderground.com/
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𝜇𝑚𝑎𝑥 = 𝜇𝑜𝑝𝑡 ∗ 𝛾(𝛵) ∗ 𝛾(𝑝𝐻)          (Eq. 24) 

The term γ(Τ) represents the Cardinal model with Inflection proposed by Rosso et al. (1993) for temperature 

and it written according to the following equation: 

                    𝛾(𝑇) =
(𝑇−𝑇𝑚𝑖𝑛)2(𝑇−𝑇𝑚𝑎𝑥)

(𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛)[(𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛)(𝑇−𝑇𝑜𝑝𝑡)−(𝑇𝑜𝑝𝑡−𝑇𝑚𝑎𝑥)(𝑇𝑜𝑝𝑡+𝑇𝑚𝑖𝑛−2𝑇)]
+ 𝜀2      (Eq. 25) 

𝜀2~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑠𝑑2)                             (Eq. 26) 

Where: 

Tmin, Topt and Tmax are the theoretical minimum, optimum and maximum values of temperature enabling 

growth (°C). The cardinal temperature values were retrieved from the study of Kakagianni et al., 2016. The 

error (ε2) incorporated in the model was considered as uncertainty due to the limited amount of data.  

The γ(T) factor was calculated for transportation, day storage and night storage with T equals to 𝑇𝑡𝑟, 𝑇𝑑 and 

𝑇𝑛, respectively.  

The term γ(pH) represents the Cardinal pH model proposed by Rosso et al., 1995 and it was written as follows: 

                           𝛾(𝑝𝐻) =
(𝑝𝐻−𝑝𝐻𝑚𝑖𝑛)(𝑝𝐻−𝑝𝐻𝑚𝑎𝑥)

(𝑝𝐻𝑜𝑝𝑡−𝑝𝐻𝑚𝑖𝑛)(𝑝𝐻−𝑝𝐻𝑜𝑝𝑡)−(𝑝𝐻𝑜𝑝𝑡−𝑝𝐻𝑚𝑎𝑥)(𝑝𝐻𝑚𝑖𝑛−𝑝𝐻)
+ 𝜀3   (Eq. 27) 

𝜀3~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑠𝑑3)                             (Eq. 28) 

Where: 

pHmin, pHopt and pHmax are the theoretical minimum, optimum and maximum values of pH enabling growth. 

The cardinal pH values were previously reported (Misiou et al., 2021). The error (ε3) incorporated in the model 

was considered as uncertainty due to the limited amount of data. 

The optimum specific growth rate (𝜇𝑜𝑝𝑡) of several plant-based milk alternatives obtained on the strain 

ATCC7953 was reported by Misiou et al., 2021. The variability of the products was described through an 

empirical distribution, a non-parametric bootstrap procedure was carried out to capture the uncertainty. 

In order to estimate the quantity of bacteria per pack surviving the UHT treatment and able to grow during 

distribution and storage (𝑁𝑓) the total growth was estimated as the sum of growth during transportation and 

storage at consumer stage (Eq. 29-31).  

                                                      𝑁𝑡𝑟𝑎𝑛𝑠 = 𝑁𝑝 ∗ exp (𝜇𝑚𝑎𝑥 ∗ 𝑡𝑡𝑟𝑎𝑛𝑠)    (Eq. 29) 

Where: 

μmax is derived from Eq. 16 with T=Ttr 

The growth during storage at consumer stage was estimated as an equivalent of 60 days and 

60 nights as follows:    

𝑁𝑛𝑖𝑔ℎ𝑡 = 𝑁𝑡𝑟𝑎𝑛𝑠 ∗ exp (𝜇𝑚𝑎𝑥 ∗ 𝑡𝑛𝑖𝑔ℎ𝑡)         (Eq. 30) 

Where: 

μmax is derived from Eq. 16 with T=Tn 

𝑁𝑓 = 𝑁𝑛𝑖𝑔ℎ𝑡 ∗ exp (𝜇𝑚𝑎𝑥 ∗ 𝑡𝑑𝑎𝑦)             (Eq. 31) 
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Where: 

μmax is derived from Eq. 24 with T=Td 

The final microbial concentration (𝐶𝑓𝑖𝑛𝑎𝑙) in each pack (250ml) was estimated as follows:  

𝐶𝑓𝑖𝑛𝑎𝑙 =
𝑁𝑓

250
           (Eq. 32) 

Model implementation  

The spoilage risk assessment model was implemented in R software (R Core Team, 2019). Fitting of 

distributions was performed by using the fitdistrplus package (Delignette-Muller & Dutang, 2015). The second 

order Monte Carlo simulation, that was used to propagate uncertainty and variability separately, was carried 

out using the mc2d package (Pouillot & Delignette-Muller, 2010). The number of iterations performed for 

uncertainty was 1,000 and for variability 10,000. 

Sensitivity analysis 

A sensitivity analysis was performed in order to assess the impact of probabilistic inputs on the model 

outcome and the associated risk of spoilage. The sensitivity analysis was performed separately for Greece 

and Poland. The tornado function of the mc2d package was carried out with the Spearman rank correlation 

method; the impact of uncertainty was assessed through the confidence interval around the correlation 

coefficient values. 

Climate change scenario 

A climate change scenario (CCs) was designed, based on the projections provided by the IPCC (IPCC, 2021). 

More specifically, the climate change scenario includes an increase of temperature of 2 °C, which was 

assumed to be homogeneously distributed in the hourly temperature profiles of the baseline scenario for 

both countries. The results were expressed as relative risk compared to the baseline scenario (current climatic 

conditions) in the two countries, respectively. 

Mitigation strategies 

Two alternative strategies were designed to mitigate the risk of spoilage of plant-based milk alternatives due 

to climate change. These strategies evaluated the risk of spoilage considering the impact of the process 

conditions and the distribution and storage conditions by modifying the inputs of Table 1. A brief description 

of the mitigation strategies is provided below. 

UHT treatment intensity 

The effect of UHT treatment duration (3 and 7 sec) and temperature (140 and 145 °C) on the risk of spoilage 

of a plant-based milk alternative that distributed with Ptruck equals to 50% and stored in Poland and Greece 

under the climate change scenario during summertime were evaluated. 

Use of insulated trucks for distribution 

The effect of the use of insulated trucks (25 °C) for distribution on the risk of spoilage of a plant-based milk 

alternative was evaluated by considering Ptruck 50 and 100%. The product was UHT-treated at 140 °C for 3 sec 

prior distribution in Greece and Poland during summertime under the projected climatic conditions. 
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Table 1. Inputs implemented in the risk model. Values and probabilistic distributions used to build the 

quantitative spoilage risk assessment (QMRSA) of plant-based milk alternatives by Geobacillus 

stearothermophilus. The values included in this table corresponded to the current climatic conditions 

(baseline scenario). 

Description Abbreviation Unit Inputs value 
Implementation 

in the model 
Source 

Module 1 : Raw materials 

Number of samples, 

Positive samples 
n, s - 

n =39 

s=6 

Eq. 10 with 

V & U separated 

NIZO, 2022 

Microbial concentration 

in raw materials 𝑁0𝑟𝑚  
Log 

CFU/mL 

Pert (Min; Most 

likely; Max) 

Eq. 11 with 

V & U separated 

NIZO, 2022 

Volume of the tank 
𝑉𝑡 L 1000 

Eq. 15 

fixed 

This study 

Module 2 : Heat-treatment 

Reference temperature 
𝑇𝑟𝑒𝑓 °C 121 

Eq. 16 

fixed 

This study 

Decimal reduction time 

reference 
𝐷𝑟𝑒𝑓 min 2.34 

Eq. 16 

fixed 

Deduce from 

fitting D-val-

ues (Sup. 

data) 

Temperature resistance 

z °C 10.70 

Eq. 16 

fixed 

Fitting D-val-

ues (Sup. 

data) 

Heat inactivation second-

ary model error (Eq.9) 𝑠𝑑1 Log min 0.35 

Eq. 17 

V 

Fitting D-val-

ues (Sup. 

data) 

Time of the treatment 
𝑡𝐻𝑇 sec Uniform (3;9) 

Eq. 16 

V 

This study 

Temperature of the 

treatment 𝑇𝐻𝑇 °C 
Uniform 

(130;150) 

Eq. 16 

V 

This study 

Module 3 : Partitioning 

Volume of product unit, a 

pack 𝑉𝑝 ml 250 
Eq. 20 

fixed 

This study 

Module 4 : Growth during distribution and storage 
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Minimum temperature 

of growth 
 

𝑇𝑚𝑖𝑛 °C 33.76 
Eq. 25 

fixed 

Kakagianni et 

al., 2016 

Optimum temperature of 

growth 

 

𝑇𝑜𝑝𝑡 °C 61.82 

Eq. 25 

fixed 

Kakagianni et 

al., 2016 

Maximum temperature 

of growth 

 

𝑇𝑚𝑎𝑥 °C 68.14 

Eq. 25 

fixed 

Kakagianni et 

al., 2016 

Secondary cardinal tem-

perature model error 𝑠𝑑2 - 0.003 
Eq. 26 

U 

Kakagianni et 

al., 2016 

Optimum growth rate 

 𝜇𝑜𝑝𝑡 h-1 

Empirical distri-

bution based on 

μopt data & boot-

strap 

Eq. 24 with 

V & U 

mixed 

Misiou et al., 

2021 

Minimum pH of growth 
𝑝𝐻𝑚𝑖𝑛 - 5.65 

Eq. 27 

fixed 
 

Misiou et al., 

2021 

Optimum pH of growth 
𝑝𝐻𝑜𝑝𝑡 - 6.74 

Eq. 27 

fixed 
 

Misiou et al., 

2021 

Maximum pH of growth 
𝑝𝐻𝑚𝑎𝑥 - 8.71 

Eq. 27 

fixed 
 

Misiou et al., 

2021 

pH of the product 
pH - 7.00 

Eq. 27 

fixed 

This study 

Secondary cardinal pH 

model error 𝑠𝑑3 - 0.056 
Eq. 27 

U 

Misiou et al., 

2021 

Temperature during dis-

tribution Ttr ° C 

Empirical distri-

bution based on 

T dataset 

Eq. 25 

V 

Data loggers 

Sup. data 

Time during distribution 

ttr h Uniform (2;12) 

Eq. 21 

V 

Eq. 29 

This study 

Percentage of insulated 

trucks 
Ptruck - Uniform (0.1;0.5) 

Eq. 22 with 

V & U 

separated 

This study 
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Temperature of the prod-

uct storage-retail Tr °C Below 25 
Eq. 25 

fixed 

This study 

Temperature of the prod-

uct storage during the 

day at consumer place 

 

Td °C 

Empirical distri-

bution based on 

T dataset 

Eq. 25 

V 

www.wun-

der-

ground.com 

Temperature of the prod-

uct storage during the 

night at consumer place 

 

Tn °C 

Empirical distri-

bution based on 

T dataset 

Eq. 25 

V 

www.wun-

der-

ground.com 

Time of the product 

night-consumer tn days 60 
Eq. 30 

fixed 

This study 

Time of the product stor-

age day-consumer td days 60 
Eq. 31 

fixed 

This study 

Results and Discussion 

Level of Geobacillus stearothermophilus in plant-based in Europe and associated risk of spoilage 
under the current climatic conditions 

The results of the 2nd order Monte Carlo simulation estimating the final concentration (log CFU/mL) of G. 

stearothermophilus in the plant-based milk alternatives distributed and stored in South and North Europe 

during summertime under the current climatic conditions are illustrated in Figure B3a and B3b. The predicted 

final concentration (log CFU/mL) of G. stearothermophilus in a plant-based milk alternative distributed and 

stored in Poland had a mean value of 0.8 with a 95th confidence interval of (0.1;1.5). In Greece, the mean 

value of the final concentration of the microorganism was 0.9 (0.3; 1.6) (Figure B3a1) and 2.5 (1.9; 3.3) (Figure 

B3a2), when an A/C system was assumed to be in place.  

http://www.wunderground.com/
http://www.wunderground.com/
http://www.wunderground.com/
http://www.wunderground.com/
http://www.wunderground.com/
http://www.wunderground.com/
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(a1)

(a2)
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(b) 

Figure B3. Cumulative probability distribution of Geobacillus stearothermophilus in plant-based milk under 

the current climatic situation during summertime in a. Greece (with (a1) and without A/C (a2) at consumer 

stage) b. Poland after 4 months storage at consumer stage. The light grey corresponds to the lower and upper 

limits of the 95% uncertainty interval, the dark grey corresponds to the 25th and 75th percentiles of the 

uncertainty. 

The estimated risk of spoilage due to the growth of G. stearothermophilus in plant-based milk alternatives 

transported and stored in North (Poland) and South Europe (Greece) under the current climatic conditions is 

presented in Table 2. As expected, there is no risk of spoilage during the wintertime for both countries since 

the recorded historical temperature for 2022 did not exceed the minimum growth temperature of G. 

stearothermophilus. On the contrary, based on the recorded temperature data growth was observed in both 

countries during summertime. Interestingly, the final concentration of G. stearothermophilus found in a plant-

milk alternative distributed and stored in Poland did not exceed the Nmax, and therefore no risk of spoilage 

was estimated. In Greece, in contrast, growth was predicted to exceed the Nmax regardless of the A/C system 

at the consumer stage. However, the risk of spoilage was lower when the A/C system was assumed to be in 

place (1.0×10-4 95% CI (0; 4.0×10-3)), compare to the risk of spoilage when no A/C was assumed at the 

consumer stage (6.2×10-3 95% CI (2.3×10-3;1.1×10-2)). 

  



   

 

31 

Table 2. Risk of spoilage due to growth of Geobacillus stearothermophilus in plant-based milk alternatives 

distributed and stored in North and South Europe under the current climatic conditions. 

Period Country Estimate values 2.5 % Confidence 

Intervals 

97.5 % Confidence 

Intervals 

Winter 

Poland - - - 

Greece - - - 

Summer 

Poland - - - 

Greece (without A/C at 

consumer stage) 

6.2×10-3 2.3×10-3 1.1×10-2 

Greece (with A/C at con-

sumer stage) 

1.0×10-4 0 4.0×10-3 

Influence of model inputs on the estimation of the current risk 

First of all, the impact of probabilistic inputs on risk of spoilage was assessed through a sensitivity analysis. 

The analysis was performed separately for Greece and Poland, although only result for Greece is reported in 

Figure B4a as there was no risk of spoilage in Poland under current climatic conditions. The prevalence (0.14 

95% CI (0.12; 0.16)) and concentration in raw material contamination (0.11 95% CI (0.07; 0.15)) along with 

the temperature of storage (0.16 95% CI (0.09; 0.22)) play a role on the risk of spoilage due to 

G. stearothermophilus in the plant-based milk alternatives in summertime (Figure B4a). However, these three 

variables cannot be considered as mitigation strategies options since their control is not straightforward. 

Therefore, to identify and evaluate potential mitigation strategy options, a second sensitivity analysis was 

performed. 

The impact of probabilistic inputs on the final concentration of G. stearothermophilus in plant-based milk 

alternatives, in case of contamination (prevalence artificially set to 100%) is presented in Figure B4b. The 

variability related to the heat treatment has the highest impact (0.87 95% CI (0.97; 1.00)) on the final 

concentration of G. stearothermophilus in the plant-based milk alternatives. As illustrated in the tornado plot, 

the uncertainty dimension is relatively narrow (0.97; 1.00). This small impact of the uncertainty included in 

the heat treatment can be explained by the large D-value dataset used for the fitting. The storage temperature 

during day at consumer stage (0.07 95% CI (0.06; 0.08)) and the temperature during transportation (0.15 95% 

CI (0.14; 0.16)) also played a role. In fact, this latter input revealed an impact of the percentage of insulated 

trucks, which may be assessed as mitigation strategy option. In contrast, the optimum specific growth rate of 

the microorganism and the storage temperature during the night had limited impact on the estimated 

concentration.  
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(a) 

(b) 

Figure B4. Tornado plot illustrating the sensitivity analysis of all the variable inputs on the risk of spoilage (a) 

and on the final concentration (LogN) (b) of Geobacillus stearothermophilus in plant-based milk alternatives 

in Greece during summertime. Spearman coefficient estimates with 95% uncertainty interval in bracket. 

Prediction of spoilage risk under a climate change scenario  

A climate change scenario (CCs), which includes an increase in temperature of 2 °C, was designed to predict 

the risk of spoilage under climate change conditions. The predictions were made separately for the two 

countries, and the results are presented in Table 3. Based on the estimations presented in Table 3, 1 out of 

10,000 product units distributed and stored in Poland during summertime may exceed the spoilage level 

under climate change conditions (zero under current climatic conditions). Concerning the risk of spoilage in 

Greece, the probability of exceeding the Nmax is almost twice bigger for the consumers who have an A/C 

system in place and three times bigger for those who do not possess an A/C system. 
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Table 3. Risk of spoilage due to growth of Geobacillus stearothermophilus in plant-based milk alternatives 

under climate change scenario during summertime in Greece and Poland. Estimated values and 95% 

confidence interval. 

Country Risk of spoilage under climate change scenario 

Polanda 1.0×10-4 (0; 5.0×10-4) 

Greece (without A/C at consumer stage)b 3.0 (-;2.75) 

Greece (with A/C at consumer stage)b 1.98 (2.0; 2.35) 

a. For Poland, the risk is expressed in absolute value as the risk of spoilage was estimated to zero under 

current climatic conditions 

b. For Greece, the risk is expressed as a relative increase in comparison with the current climatic con-

ditions. For instance, 2 means a risk multiplied by 2 in comparison with current climatic conditions. 

Mitigation strategies  

In order to reduce the estimated risk of spoilage of plant-based milk alternatives under climate change 

conditions, two mitigation strategies were investigated. These strategies evaluated the risk of spoilage 

considering the most impactful inputs of the risk assessment model based on the sensitivity analysis results. 

Hence, the impact of the process as well as the percentage of insulated trucks was studied. 

The effect of UHT treatment temperature (140 and 145 °C) and duration (3 and 7 sec) on the risk of spoilage 

of a plant-based milk alternative that distributed and stored in Poland and Greece with 50 % insulated trucks 

were evaluated. According to Table 4, the application of a UHT treatment at 140 °C either for 3 or 7 sec failed 

to significantly reduce the risk of spoilage. In the same vein, an increase on the temperature intensity (145 °C) 

for the same duration as the reference conditions (3 sec) could not significantly decrease the risk of spoilage. 

The spoilage risk was estimated to be only significantly reduced when the UHT treatment is performed at 

145 °C for 7 sec. 

The effect of insulated trucks transporting of plant-based milk alternative from the factory to the retailers on 

the risk of spoilage was evaluated by considering a percentage of insulated trucks equals to 50 and 100%. 

Products were UHT treated at 140 °C for 3 sec prior to distribution in Greece and Poland during summertime 

under the designed climate change scenario. As presented in Table 4, an increase in the number of insulated 

trucks reduce the risk of spoilage in both studied countries. 
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Table 4. Impact of mitigation strategies on the relative risk of spoilage due to growth of Geobacillus 

stearothermophilus in plant-based milk alternatives under climate change scenario. Estimated values and 95% 

confidence interval 

Mitigation strategy Input values Poland Greece (without 

A/C at consumer 

stage) 

Greece (with A/C at 

consumer stage 

UHT treatment inten-

sity 

3 sec at 140 °Ca 1.0 (-;0.6) 1.02.0.99; 1.03) 

 

0 (-;2.18) 

 

3 sec at 145 °Ca 0.5 (-;0.66) 0.58 (0.54; 0.63) 

 

0 (-;1.0) 

 

7 sec at 140 °Ca 0 (-; 0.60) 0.78 (0.76; 0.78) 

 

0.33 (-;1.0) 

 

7 sec at 145 °Ca 0 (-; 0.20) 0.18 (0.15; 0.20) 

 

0 (-;0.18) 

Insulated transporta-

tion (Ptruck) 

50 %b 1.0 (-;0.80) 0.95 (0.90; 0.96) 0. (-;1.18) 

 

100 %b 0 (-;1.0) 0.95 (0.89; 0.92) 

 

- 

a Ptruck=50% b UHT (3 sec at 140 °C) 

Conclusions 

To the best of our knowledge, this is the first attempt to employ a QMSRA in plant-based milk alternatives 

(PBMA). Hence, the results of the present study are only comparable to the QMSRA performed to evaluate 

the risk of spoilage due to the growth of Geobacillus stearothermophilus in milk, milk powders and other 

relevant food products ie. canned beans. The estimated risk of spoilage due to the growth of G. 

stearothermophilus in PBMA is significantly higher compared to the risk of spoilage of UHT-type products 

reported by Pujot and colleagues (Pujot et al., 2015). The observed difference is mainly attributed to the fact 

that a significantly lower initial contamination level and a more severe heat treatment was assumed in the 

latter study. In the same vein, the risk of spoilage estimated for the PBMA is notably higher compared to the 

risk of canned milk reported by (Koutsouamanis et al., 2022). However, the risk of spoilage of PBMA is 

relatively lower compared to the non-sterility incidences in canned green beans which was reported to reach 

0.5 % (Rigaux et al., 2014).  
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The risk of spoilage due to the growth of G. stearothermophilus in PBMA transported and stored in North 

(Poland) and South Europe (Greece) under the current climatic conditions was estimated as the baseline 

scenario in this study. As expected, there is no risk of spoilage during wintertime for both countries since the 

recorded historical temperature data for 2022 did not exceed the minimum temperature of growth of G. 

stearothermophilus. On the contrary, current temperature conditions during summertime allowed growth in 

both countries. Yet, the total growth of the spoiler in a PBMA distributed in Polish market did not exceed the 

spoilage level (107.5 CFU/mL) and therefore the risk of spoilage is considered negligible. Our results are in line 

with the results of Kakagianni and Koutsoumanis in which the marginal ability of the current temperature 

conditions in controlling spoilage of evaporated milk due to the growth of G. stearothermophilus in 

Mediterranean was highlighted (Kakagianni & Koutsoumanis, 2018).  

The upcoming increase in global mean surface temperature due to climate change is expected to increase the 

risk of spoilage of products that are distributed and stored at ambient temperature conditions. Based on the 

evidence provided in the present study, a temperature increase by 2 °C will almost double the risk of spoilage 

of plant-based milk alternatives distributed and stored in South Europe, especially when there is no A/C 

system in place at consumer level. The results presented in the study confirm the potential increase of 

spoilage incidence due to climate change in hot climate regions and temperate climates (Kakagianni and 

Koutsoumanis, 2018; Misiou et al., 2021; Misiou and Koutsoumanis, 2021; Koutsoumanis et al., 2022).  

Against this background, controlling the risk of spoilage of PBMA deem to be crucial and therefore, several 

mitigation strategies should be investigated. In the present study, two mitigation strategies were investigated 

under climate change conditions, namely the increase of the heat treatment intensity and the use of insulated 

trucks for the distribution of the products. Based on the results, both the increase of the heat treatment 

intensity and the use of insulated trucks can lead to a significant reduction of the risk. Taking all the above 

into consideration, the food business operators might be forced either to modify their production lines or to 

ensure the prevention of growth during distribution though a major change in their logistics, especially when 

they aim to place their products in the southern European market during summertime. 

This study should be seen in light of its limitations, since the uncertainty associated with the assumptions 

made along with the data used in this model could affect the estimation of the risk. The latter is of a great 

importance especially when the goal of the QMRA is to estimate the absolute risk (EFSA, 2014). A source of 

non-quantitative uncertainty is the meta-regression analysis performed to model heat inactivation. More 

specifically, the 566 D-values extracted from the literature underwent a log10-transformation prior plotting 

against temperature. A linear regression model was fitted into the log10-transformed D-values by assuming 

a log linear pattern. The uncertainty included in the risk model only considered the fitting error while the 

error due to inactivation curve was neglected (error in data generation and/or error in primary model fitting) 

(Haas et al., 2014). 

The present study was further limited by the fact that the probability of outgrowth was not considered. More 

specifically, it was assumed that all surviving spores were able to germinate and outgrowth after the heat 

treatment. This assumption was made due to the lack of data on the probability of outgrowth of G. 

stearothermophilus in the plant-based milk alternatives. The risk of spoilage reported here may be then over-

estimated, reason why it is more relevant to interpret the result in relative term than in absolute values. 

Nevertheless, the extension of the model through the incorporation of additional parameters related to 

outgrowth may increase the uncertainty. Hence, the estimated risk of spoilage presented in this study might 

be re-assessed in the presence of the above-mentioned data.  
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In conclusion, the QMRSA of plant-based milk alternatives by G. stearothermophilus developed in this study 

can form the basis for a risk management of these products by quantifying the potential risk under current 

climatic conditions and climate change scenarios while at the same time providing promising mitigation 

strategies for the food business operators. 
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Climate Change Scenarios 

Background 

The IPCC is the United Nations body that serves as the link between the scientific community and the policy 

makers regarding climate change. The IPCC releases regular scientific assessment reports about state-of-the-

art knowledge. The second and third chapters of the Third Assessment Report (TAR) of the IPPC, which was 

published in 2001, introduced the methodology followed to conduct impact assessments and develop climate 

change scenarios, respectively. Since then, the common practice to assess the impact of climate change on 

the food sector is to conduct a climate change impact assessment. This methodology utilizes climate models 

along with impact models (Katsini et al., 2021) and has already been employed in multiple cases related to 

food security that are summarized in the chapter titled food security of the “Climate Change and Land” report 

published by the IPCC in 2019 (IPCC, 2019). Such studies deal mainly with crops such as cereals (Guan et al., 

2017), maize (Warnatzsch et al., 2020; Zizinga et al., 2022; Bocchiola et al., 2013; Chung et al., 2014), wheat 

(Wang et al., 2018), as well as rice (Wang et al., 2014; 2017; Zheng et al., 2020; Poulton et al., 2016; Islam et 

al., 2020; Wu et al., 2021), fisheries (Dey et al., 2016; Yakubu et al., 2022), beans (Antolin et al., 2021) and 

soybean (da Silva et al., 2021). Compared to food security, very limited research can be found in the context 

of food safety. Battilani and colleagues (2016) deal with mycotoxins in maize in Europe, and Van der Fels-Klerx 

and colleagues (2013) focus on mycotoxins in cereal grains in the Netherlands. Galvao et al. (2021) focus on 

mercury from fish in Brazil, and Pedersen et al. (2014) on parasites from snails in Zimbabwe. Ndraha et al. 

(2019) implement the impact modelling framework for Vibrio parahaemolyticus in raw oysters in Taiwan, 

while Liu et al. (2015) present a toy example for Lactobacillus plantarum in Belgium. A crucial step when 

conducting such an analysis is preparing suitable climate change projections along with a rigorous uncertainty 

analysis (IPCC, 2001), which is the focus here. 

In general, climate modelling has two goals: understanding the climate system and yielding climate 

projections for the future, which is the aim here. These are produced by taking into account a variety of 

prospective future climate change mitigation scenarios. Every assessment report builds up on the previously 

used scenarios and presents a new set. For example, the fifth assessment report (IPCC, 2013) used the 

representative concentration pathways, while the sixth (IPCC, 2021) the Shared Socioeconomic Pathways 

(SSPs). SSPs are a set of different feasible trajectories of societal development that are based on hypotheses 

regarding the societal components that are the major factors affecting the challenges in mitigating and 

adapting to climate change (O’Neill et al., 2014). Such factors are population growth, economic growth, 

education, urbanization, and the rate of technological development. The scenarios are (Figure C1): SSP1: 

Sustainability (Taking the Green Road), SSP2: Middle of the Road, SSP3: Regional Rivalry (A Rocky Road), SSP4: 

Inequality (A Road divided), and SSP5: Fossil-fueled Development (Taking the Highway). 
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Figure C1. Overview of the SSPs (O’Neill et al., 2014). 

Similar to the climate change mitigation scenarios, the climate models have progressed since their initial 

development. Climate models are mathematical models that simulate the Earth’s atmosphere along with the 

rest of the climate compartments which are the hydrosphere, the cryosphere, the biosphere, and the 

lithosphere, and their interactions The Earth is divided into boxes, or grids, in the three spatial dimensions. 

These grids are all regarded as homogenous. The grid size of the climate model decreases as resolution 

increases (Figure C2). Climate scientists from around the world are working together as part of the Coupled 

Model Intercomparison Project (CMIP) of the World Climate Research Programme to share, evaluate, and 

compare developed climate models produced by various modelling organizations globally. When it comes to 

climate modelling, CMIP is thought to be state-of-the-art, and it is presently in its sixth phase (CMIP6) (Eyring 

et al., 2016). 

Since no single model has been proven to be the most effective at modelling the climate system, an ensemble 

of models should be taken into account to conduct climate change impact assessments. The climate 

projections obtained from the climate models simulations include future trajectories of maximum, minimum, 

and average temperature, as well as other climate variables, such as precipitation and wind speed. 
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Figure C2. Illustration of the European topography at: (a) resolution of 87.5 × 87.5 km; (b) same as (a) but for 

a resolution of 30.0 × 30.0 km. (IPCC, 2013). 

Across all the published IPCC reports the uncertainty analysis comprises an important aspect. The main 

sources of uncertainty in climate projections are (1) scenario uncertainty, which, in this case, is related to the 

variability among the SSPs, (2) model uncertainty, which originates from the climate models and is linked to 

parametric and other structural uncertainties, and (3) internal variability, referring to the natural climate 

variability (IPCC, 2021). 

Material and Methods 

In this tutorial, the aim is to prepare suitable climate change projections for a climate change impact 

assessment concerning the microbial food safety of raw milk produced in farms located in the Maltese islands. 

This imposes a set of constraints for the climate projections: they should have a daily temporal resolution, 

and the Maltese islands need to be covered by at least two grid boxes of the climate models that these 

projections come from. We use the most up-to-date tools available, thus, we consider only CMIP6 models 

and SSPs. The workflow can be broken down into two parts: one for obtaining the proper climate projections 

that fulfill the requirements of our case study, and one for partitioning the different sources of uncertainty in 

our regional CMIP6 climate projections. The methodology for the second part is analyzed at the end of this 

sub-section. 
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Obtaining Climate Projections 

The CMIP6 climate projections are accessed through the climate data store of the Copernicus Climate Chane 

Service (C3S), operated by the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of 

the European Union (C3S, 2022). The available SSPs that meet the requirements are SSP1, SSP2, SSP3, and 

SSP5. The available climate variables with a daily frequency corresponding to the CMIP6 climate models are: 

• Near-Surface air temperature [K]: Temperature of air at 2m above the surface of land, sea or inland 

waters. 2m temperature is calculated by interpolating between the lowest model level and the Earth's 

surface, taking account of the atmospheric conditions. 

• Daily maximum near-surface air temperature [K]: Daily maximum temperature of air at 2m above the 

surface of land, sea or inland waters. 

• Daily minimum near-surface air temperature [K]: Daily minimum temperature of air at 2m above the 

surface of land, sea or inland waters. 

• Near-surface specific humidity [-]: Amount of moisture in the air near the surface divided by amount 

of air plus moisture at that location. 

• Near-surface wind speed [m/s]: Magnitude of the two-dimensional horizontal air velocity near the 

surface. 

• Precipitation [kg/m2s]: The sum of liquid and frozen water, comprising rain and snow, that falls to the 

Earth's surface. It is the sum of large-scale precipitation and convective precipitation. This parameter does 

not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of 

the Earth. This variable represents amount of water per unit area and time. 

The climate models that pass the screening for the temporal requirements are listed below. The country in 

brackets is the country on which the modelling group which developed the model is based. 

• ACCESS-CM2 (Australia) 

• ACCESS-ESM1-5 (Australia) 

• AWI-CM-1-1-MR (Germany) 

• AWI-ESM-1-1-LR (Germany) 

• BCC-CSM2-MR (China) 

• BCC-ESM1 (China) 

• CAMS-CSM1-0 (China) 

• CanESM5 (Canada) 

• CESM2 (USA) 

• CESM2-FV2 (USA) 

• CESM2-WACCM (USA) 

• CESM2-WACCM-FV2 (USA) 

• CMCC-CM2-HR4 (Italy) 

• CMCC-CM2-SR5 (Italy) 

• CMCC-ESM2 (Italy) 

• CNRM-CM6-1 (France) 

• CNRM-CM6-1-HR (France) 

• CNRM-ESM2-1 (France) 

• FGOALS-g3 (China) 

• GFDL-ESM4 (USA) 

• GISS-E2-1-G (USA) 

• HadGEM3-GC31-LL (UK) 

• HadGEM3-GC31-MM (UK) 

• IITM-ESM (India) 

• INM-CM4-8 (Russia) 

• INM-CM5-0 (Russia) 

• IPSL-CM5A2-INCA (France) 

• IPSL-CM6A-LR (France) 

• KACE-1-0-G (South Korea) 

• KIOST-ESM (South Korea) 

• MIROC6 (Japan) 

• MIROC-ES2L (Japan) 

• MPI-ESM-1-2-HAM (Switzerland) 

• MPI-ESM1-2-HR (Germany) 

• MPI-ESM1-2-LR (Germany) 

• MRI-ESM2-0 (Japan) 
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• EC-Earth3 (Europe) 

• EC-Earth3-AerChem (Europe) 

• EC-Earth3-CC (Europe) 

• EC-Earth3-Veg (Europe) 

• EC-Earth3-Veg-LR (Europe) 

• FGOALS-f3-L (China) 

• NESM3 (China) 

• NorCPM1 (Norway) 

• NorESM2-LM (Norway) 

• NorESM2-MM (Norway) 

• SAM0-UNICON (South Korea) 

The next step involves the spatial screening of these models so that the Maltese islands are covered by at 

least two grids. The resulting models are the ones comprising the multi-model ensemble, based on which the 

climate projections are estimated, and the uncertainty analysis is performed. 

Partitioning Climate Projections Uncertainty 

The methodology followed was introduced by Hawkins and Sutton (2009) and was revisited by Lehner and 

colleagues (2020). The total uncertainty (T) is the sum of the model uncertainty (M), the internal variability 

(I), and the scenario uncertainty (S). This assumes that the different sources are additive, which is not true as 

they are not orthogonal. The fractional uncertainty from a given source is then defined as M/T, I/T, and S/T. 

The first step is to estimate the forced response as a 4th-order polynomial for each model and each SSP. Model 

uncertainty (M) is then computed as the SSP mean of the variance of the polynomial fits for each SSP. For the 

calculation of the internal variability (I), the climate projections are first smoothed using the running mean of 

one year. Afterward, the internal variability (I) for each model is defined as the variance over time of the 

residuals of the polynomial fits. Averaging across all models for each SSP, and then across all SSPs results in 

the multi-model mean internal variability (I), which is time-invariant. Finally, the scenario uncertainty (S) is 

defined as the variance across the multi-model means of the polynomial fits for the different SSPs. 

Results and Discussion 

To evaluate the climate models’ grid positioning concerning the location of the Maltese islands, the 

temperature heat maps of all the climate models for a random date were constructed (Figures C3, C4, and 

C5). A heat map is a map that is colored based on the temperature values of the region under study. The 

climate models that pass the screening and will be part of the multi-model ensemble are listed below: 

• BCC-CSM2-MR (China)   2 GRIDS 

• CESM2 (USA)    2 GRIDS 

• CESM2-WACCM (USA)   2 GRIDS 

• CMCC-CM2-SR5 (Italy)   2 GRIDS 

• CNRM-CM6-1-HR (France)  3 GRIDS 

• GFDL-ESM4 (USA)   2 GRIDS 

• INM-CM4-8 (Russia)   2 GRIDS 

• IPSL-CM5A2-INCA (France)  2 GRIDS 

• KIOST-ESM (South Korea)  2 GRIDS 

• MRI-ESM2-0 (Japan)   2 GRIDS 

• NorESM2-MM (Norway)  2 GRIDS 

The 11 climate models yield the multi-model ensemble suitable for the Maltese islands on a daily temporal 

frequency that provides adequate climate change projections (Figure C6). 
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Figure C3. Heatmaps of climate models that use one grid to cover Malta 
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Figure C4. Heatmaps of climate models that use two grids to cover Malta. Even though model CMCC-ESM2 

uses 2 grids, the coverage of the second one is too small to be considered two, thus it is considered to be 

misclassified. 
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Figure C5. Heatmaps of climate models that use three grids to cover Malta. As we can see on the heatmaps 

above, all the models apart from model CNRM-CM6-1-HR, have in practice a ‘two grid coverage’ of the 

Maltese islands. CNRM-CM6-1-HR has a three-grid coverage.  
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure C6. Daily average temperature climate change projections for 2100 considering SSP1 (a), SSP2 (b), SSP3 

(c), and SSP5 (d). The uncertainty bounds shown are computed as the 90 percentile of the climate models’ 

simulations. 
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The resulting polynomials used to compute the fractions of the different sources of uncertainty are presented 

in Figure C6. Results show that the projections corresponding to SSP3 and SSP5 in terms of multi-model mean 

are very close and start to divert after the year 2060. Furthermore, the spread of the models for SSP1 is 

considerably bigger compared to the spread of the models for the rest SSPs. 

Figure C6. The polynomial fit for each CMIP6 model and the multi-model mean for each SSP. 

The different sources of uncertainty are illustrated in two ways: in terms of the multi-model multi-scenario 

temporal projection (Figure C7) and in terms of fractional contribution of the individual sources to the total 

uncertainty (Figure C8). 

Figure C7. Illustration of the sources of uncertainty in the multi-model multi-scenario mean projection. 
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Figure C8. Illustration of the fractional contribution of the individual sources to total uncertainty with respect 

to projection horizon. 

The results indicate that the model uncertainty is the biggest contributor. This means, that there is a potential 

to decrease the uncertainty in climate change scenarios by improving the climate models simulations for such 

fine scales. Moreover, as the prediction horizon increases, the total uncertainty increases. This can be 

explained by the fact that the influence of greenhouse gas emissions on the change of the climate is a 

phenomenon with delay, meaning that based on what is already emitted by this point, short-term climate 

change is predetermined. Furthermore, as the prediction horizon increases, the model uncertainty decreases 

and the scenario uncertainty increases. This can be attributed to the fact that the different SSPs are designed 

to lead to different possible futures, thus, should lead to a big range of future projections. 

Conclusions 

Climate change is one of the major drivers of change for food safety (FAO, 2022). Climate change’s impact is 

more than increasing temperature, it includes altered weather patterns, and increased frequency and 

intensity of extreme weather events, such as heatwaves and droughts, ocean acidification, etc. (Tirado et al., 

2010). The adequate methodology to quantitatively assess future food safety risks due to climate change is 

the impact modelling framework (IPCC, 2001) that enables the incorporation of these. In this section, we 

provide a tutorial by describing step-by-step the process of obtaining climate change projections. These are 

essential to conduct an impact assessment. Furthermore, the importance of attributing the uncertainty in the 

individual sources is underlined as it aids in planning for further research. This leads to a better understanding 

of the system, more accurate models, and thus, better interpretable results to facilitate evidence-based 

policymaking. 
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