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Medical Imaging Research Center, Medical Physics and Quality Assessment , Katholieke Universiteit 

Leuven, 3000 Leuven, Belgium 

Abstract
Virtual clinical trials (VCT) have been developed by a number of groups to study breast imaging applications, 

with the focus on digital breast tomosynthesis (DBT) imaging. In this review, the main components of these 

simulation platforms are compared, along with the validation steps, a number of practical applications and 

some of the limitations associated with this method. VCT platforms simulate, up to a certain level of detail, 

the main components of the imaging chain: the x-ray beam, system geometry including the antiscatter grid 

and the x-ray detector. In building VCT platforms, groups use a number of techniques, including x-ray 

spectrum modelling, Monte Carlo (MC) simulation for x-ray imaging and scatter estimation, ray tracing, 

breast phantom models and modelling of the detector. The incorporation of different anthropomorphic 

breast models is described, together with the lesions needed to simulate clinical studies and to study 

detection performance. A step by step comparison highlights the need for transparency when describing 

the simulation frameworks. Current simulation bottlenecks include resolution and memory constraints when 

generating high resolution breast phantoms, difficulties in accessing/applying relevant, vendor specific 

image processing and reconstruction methods, while the imaging tasks considered are generally detection 

tasks without search, evaluated by computational observers. A number of applications are described along 

with some future avenues for research.
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1. Introduction

1.1 Background
In recent years, there have been significant advances in computer simulation applied to the evaluation of 

medical imaging systems in general (Frangi, Tsaftaris and Prince, 2018; Abadi et al., 2020). The use of 

simulation to study medical imaging devices is a method that has become known as in silico imaging (Badano, 

2011, 2021) or as a virtual clinical trial (VCT) (Abadi et al., 2020; Barufaldi, Maidment, et al., 2021). The 

scope can vary dramatically but these methods can be thought of lying somewhere between stages 1 and 2 

on the scale expressing the efficacy of diagnostic imaging proposed by Fryback and Thornbury (Fryback 

and Thornbury, 1991; Barrett et al., 2015), depending on degree of realism achieved in the simulations. We 

review recent progress in these methods, in the context of digital breast tomosynthesis (DBT) system 

performance evaluation.

In the companion paper, methods to perform a reasonably detailed, explicit characterization of DBT 

systems and the sub-components were described. This was followed by a description of current 

developments in the field of physical test objects used to evaluate DBT system technical image quality. 

These methods are practical and are designed to fulfil quality control (QC) and performance testing 

requirements for a particular imaging system at a specific clinical site (van Engen et al., 2016). As we have 

seen, there are limitations to these methods, especially with regard to the task realism that can be achieved 

and the range of conditions that can be studied. The past two decades have seen rapid development in the 

ield of computational simulation of x-ray imaging systems. A range of applications have been developed, 

from use in supporting regulatory submissions, to focused technical studies (Hadjipanteli et al., 2017), to a 

comparison of imaging modalities (Badano et al., 2018; Barufaldi, Maidment, et al., 2021), or in the 

development of technology within industry (Marchessoux, Kimpe and Bert, 2008). While applications vary 

considerably, VCTs have a common structure in which a virtual patient population is imaged using a virtual 

imaging system and the resulting images are interpreted by a virtual reader (Abadi et al., 2020). The use of 

VCTs is a response to a number of difficulties associated with clinical trials including the complexity, 

expense, the length of time required to complete a trial and the lack of a ground truth (Frangi, Tsaftaris and 

Prince, 2018; Badano, 2021; Barufaldi, Maidment, et al., 2021; Kopans, 2021). Further impetus comes from 

the increasing difficulty in obtaining approval for studies, with ethical committees and General Data 

Protection Regulation (GDPR) in the European Union being very strict. These methods obviously rely on 

the realism that can be achieved in the simulation; the degree of realism required for a VCT to accurately 

predict system or component performance in a real patient population is something of an open question, 

but will likely depend on the clinical question being addressed. 

1.2 Selection of the VCT platforms for detailed study
The use of VCTs to evaluate x-ray breast imaging devices is an active field and a number of groups have 

made fundamental contributions to the conceptualization and application of VCTs in 2D digital 

mammography (DM) and DBT imaging. This review focuses on the various simulation platforms that have 
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been implemented, describes the physics models used for the x-ray components and the associated 

verification and validation steps, compares the breast and lesion models used and gives results from some 

of the studies that have been performed using these platforms. We have selected five simulation frameworks 

to examine in detail. These were chosen because detailed published documentation is available, a number 

of virtual studies have been performed and the platforms have been actively maintained and developed over 

a number of years. Data from the groups at the University of Pennsylvania (UPENN), the Federal Drug 

Administration (FDA), the OPTIMAM group at the University of Surrey/National Coordinating Centre 

for the Physics of Mammography (NCCPM),  the group at KU Leuven and at the team at General Electric 

Healthcare (GEHC) are discussed. Detailed information of these five simulation platforms is given in table 

1. 

It must be noted that this is not an exclusive list, and a number of other platforms have been described in 

the literature. Some examples of breast imaging simulation platforms or studies not examined in depth are 

now briefly discussed. Petersson et al  (Petersson et al., 2016) used PENELOPE/PenEasy Imaging (Sempau, 

Badal and Brualla, 2011) to generate DBT projection images for a Siemens Inspiration system; realistic 

sharpness in the reconstructed planes could be achieved however levels of noise and object contrast 

evaluated in the projection images were higher than in the real images. 

A group at Duke University used VCT methods to study the impact of breast structure on lesion detection 

in DBT (Kiarashi et al., 2016). Twenty breast phantoms taken from the extended cardiac-torso (XCAT) 

family were generated and mass lesions derived from DBT data were embedded at 200 positions in the 

central plane of each breast phantom. Imaging characteristics of a Siemens MAMMOMAT Inspiration DBT 

system were applied and the resulting images evaluated using a composite hypothesis signal detection 

paradigm. Increasing breast density reduced detection performance. Background tissue density and 

heterogeneity also affected the test statistic differently under lesion absent and lesion present conditions, 

suggesting that background tissue variability must be considered and will influence VCT outcomes. While 

the group at Duke have made fundamental contributions to the development of virtual imaging methods 

(Abadi et al., 2020), current work focuses on CT imaging (Abadi et al., 2019). 

An early simulation tool for radiographic imaging was described by Lazos et al (Lazos, Kolitsi and 

Pallikarakis, 2000; Lazos et al., 2003) and this was later validated via simulations of a physical CIRS 011A 

phantom using synchrotron imaging (Bliznakova et al., 2010). In later work, a software tool called 

BreastSimulator was developed (Bliznakova et al., 2012) and validated by Mettivier et al (Mettivier et al., 2017) 

for tomographic imaging, which led on to the Napoli-Varna-Davis project to perform virtual clinical trials 

in x-ray breast imaging (Mettivier et al., 2019). The same group has since published a proof of concept for a 

simulation platform using the Geant4 Monte Carlo (MC) toolkit (di Franco et al., 2020), referred to the 

Agata platform. This is still under development and has focused on breast dosimetry, while details such as 

x-ray photon interaction in the image receptor and lesion modelling are under development and not 

currently included in the simulation.
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2. Components of the virtual chain
This section steps through the components of the virtual imaging chain. For each component, there is first 

a detailed comparison of the methods implemented in the five selected platforms. In some sections, where 

relevant, this is followed by a broader discussion of the related literature. A diagram illustrating the total 

simulation VCT platform developed by the OPTIMAM project is illustrated in Figure 1 (Elangovan et al., 

2014). 

Figure 1. Overview of OPTIMAM platform used for total simulation of images. (From Elangovan et al 

(Elangovan et al., 2014))

2.1 X-ray source

2.1.1 Spectral model

Table 1 lists the methods and data sources for the different platforms considered. System simulation begins 

at the x-ray source with the modelling of the energy and spatial distribution of the x-rays. With the exception 

of CatSim (Carvalho, 2014; Sánchez de la Rosa, 2019), most platforms use a poly-energetic source, generally 

implementing the spectral model developed by Boone et al (Boone, Fewell and Jennings, 1997). The 

simulation platform developed at UPENN (OpenVCT) utilizes a poly-energetic x-ray beam, although the 

spectral model is not identified. 

The Boone model takes as input x-ray spectra measured at the Center for Devices and Radiological Health 

(CDRH) in the 1990s, to which interpolating cubic spline fits are applied. There have been a number of 

recent developments in spectral modelling, which may eventually lead to an update in the spectra used in 

simulation platforms. The maximum energy available in the data of Boone et al (Boone, Fewell and Jennings, 

1997) is 42 kV, which will be a limitation at some point in the future, given the higher energies used in DBT, 

dual energy subtraction mammography and breast computed tomography (BCT). This prompted work by 
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Hernandez et al (Hernandez et al., 2017) in which the same cubic spline method was applied to spectra 

generated using the MC code MCNP6 for Mo, Rh and W anodes up to 49 kV and for use in DM and DBT. 

Data are also presented for W anodes up to 70 kV for the modelling of BCT spectra. In addition to this 

work, updated physics models for electron penetration in the target were introduced by Poludniowski 

(Poludniowski, 2007), and implemented in SpekCalc (Poludniowski et al., 2009). These models have been 

further developed in a series of papers by physicists in the Medical Radiation Physics and Nuclear Medicine 

group at Karolinska University Hospital in Sweden (Bujila, Omar and Poludniowski, 2020; Omar, Andreo 

and Poludniowski, 2020b, 2020a; Poludniowski et al., 2021). The validation study of Omar et al (Omar, 

Andreo and Poludniowski, 2020b) found improved agreement with MC simulations, especially for low tube 

voltage x-ray beams and should improve simulation framework accuracy, if incorporated. Figure 2 shows 

the agreement found between the modelled x-ray fluence compared to measurements made using a CdTe 

spectrometer for W/Rh, Mo/Rh and Mo/Mo anode/filter (A/F) combinations.

Figure 2. X-ray fluence differential in photon energy, k, calculated analytically (red lines) and measured by 
Santos et al. as described in Sections 2.C.2 and 2.C.3 (black lines). The results correspond to different target–
filter combinations and tube potentials (for example, W/Rh 25 kV: tungsten/rhodium target–filter 
combination). The spectra are arbitrarily normalized to unity at their bremsstrahlung peaks. Also shown is 
the relative difference (%) in first and second aluminum half-value layer thickness (HVL). (adapted from 
Omar et al (Omar, Andreo and Poludniowski, 2020b))
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While including accurate poly-energetic source models will improve simulation realism, the use of a 

spectrum also increases computational complexity in the ray tracing part where an image is created for each 

energy bin. These mono-energetic images are then combined to give the total transmission probability for 

a given detector element for the spectrum considered. The approximation introduced by using a mono-

energetic simulation will depend on the polychromaticity of the spectra; this has not been examined 

extensively in the simulation literature. Polychromatic simulations will include the effects of beam hardening 

and will more accurately model the x-ray energy distribution in glandular tissue as a function of depth within 

the phantom when estimating the mean glandular dose (MGD). While the use of poly-chromatic sources to 

model scattered will further increase computational complexity and workload, this has been accomplished 

using the MC-GPU package in VICTRE (Badal et al., 2021) and in the work of Diaz et al (Diaz et al., 2019). 

When using a simulation framework to investigate optimal anode-filter and spectral filtration for the source 

then factors such as the heat load rating of the x-ray tube, the maximum permissible cathode current and 

the specific radiation output of the tube must of be included (Fahrig, Rowlands and Yaffe, 1996; Shrestha, 

Vedantham and Karellas, 2017). These parameters will influence the exposure time per projection and the 

total time required to acquire all the projections, which in turn influence the geometric blurring present in 

the system and the degree of patient motion that may be present. The source model used in VICTRE 

(Virtual Imaging Clinical Trial for Regulatory Evaluation) (Badal et al., 2021) includes the specific radiation 

output of the x–ray tube but all platforms do not explicitly model tube current or anode heat loads at the 

moment. 

2.1.2 Spatial distribution of the x-ray source

A second important aspect of source modelling is to include the influence of the spatial distribution of the 

focus during x-ray emission. Regarding the physical size and shape of the focus, there are some variations, 

as both Gaussian (Badal et al., 2021) and square/rectangular (Shaheen et al., 2010; Elangovan et al., 2014) 

approximations are used. The shape or size is not specified in the OpenVCT platform (Barufaldi, Bakic and 

Maidment, 2019) while the study into microcalcification detection using CatSim (Li et al., 2018) used a point 

source, although an extended source can be used (Carvalho, 2014). Focus size simulated ranges from a point 

source, through 0.30 mm (Badal et al., 2021) up to maximum of 0.33  0.54 mm² (Elangovan et al., 2014). 

Focal spot data measured by Marshall and Bosmans (Marshall and Bosmans, 2012) found approximately 

square foci of size 0.430.53 mm² and 0.400.43 mm², for the Hologic Dimensions and Siemens Inspiration 

DBT systems, measured in DM mode.  

For continuous motion DBT systems, the extended source due to motion during exposure may have to be 

modelled, and there are two approaches to this. First, during ray tracing, multiple rays can be cast from 

within the extended source region, whose size is calculated from the tube angular velocity and exposure 

time for a projection image (Michielsen et al., 2013). Both the VICTRE and OPTIMAM platforms use this 

method (Elangovan et al., 2014; Badal et al., 2021), sampling randomly from within the source area. The 

magnitude of blurring experienced by structures in the breast model varies as a function of height above the 
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table and this method applies the correct blurring during the ray tracing stage. An alternative method can 

be used in partial simulation frameworks, where a small template containing the lesion is adapted to the 

sharpness and contrast properties of the imaging system. Here, a modulation transfer function (MTF) that 

characterizes the system blurring is estimated for height above the table at which the lesion is to be inserted 

into the voxel model or real breast image (Carton et al., 2003; Shaheen et al., 2011). This is the presampling 

system MTF that contains geometric blurring due to source size and motion, detector converter and pixel 

aperture. The corrected template is then multiplied into the image, typically followed by the reconstruction 

step and the application of clinical image processing. Use of a Fourier method assumes stationarity within 

the imaged volume; this is a reasonable approximation in the x-y direction (although will be limited due to 

oblique x-ray entry) but does not hold in the vertical (z) direction for systems with large sources of geometric 

blurring (Zheng, Fessler and Chan, 2019). The extended focus size in the scan direction used in the 

OPTIMAM simulation was 1.4 mm for the Hologic-like system (angular range 7.5°) and 2.2 mm for the 

wider angle Siemens-like system (angular range 25°). For comparison, values of 0.80 mm and ~2.2 mm 

for the focus motion size were found for the Hologic and Siemens systems.

2.1.3 Angular range 

Regarding the angular range and number of projections of the systems simulated using these platforms, 

OpenVCT and OPTIMAM have implemented both typical narrow angle systems i.e. Hologic-like (7.5°) 

and wide angle i.e. Siemens-like (25°) (Elangovan et al., 2014; Barufaldi, Bakic and Maidment, 2019; 

Hadjipanteli et al., 2019). Note that the OpenVCT platform used just 15 projections to cover the 25° range 

(3.3° per projection), while the Siemens Revelation uses 25 projections (2° per projection). This reduced 

angular sampling has the potential to introduce artefacts. The current VICTRE and Leuven platforms only 

simulate the Siemens device (Shaheen, Marshall and Bosmans, 2011; Vancoillie et al., 2020; Badal et al., 2021).
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Table 1 Five platforms used for DM and DBT image simulation and VCTs (see main text for definition of acronyms). NS = not specified

Group University of Pennsylvania FDA OPTIMAM KU Leuven GEHC
Platform Name OpenVCT VICTRE OPTIMAM Leuven Platform CatSim
Simulation type Total Total Total and partial Partial Total
Development language GPU/XML/SQL/Java C, NVIDIA/CUDA, python NS MATLAB MATLAB, C++
DM/DBT systems simulated Selenia-like, Inspiration-like Inspiration-like Hologic-like; Siemens-like Siemens 

Inspiration/Revelation
GEHC Pristina

X-ray source
- Model/spectra used NS (Boone, Fewell and Jennings, 

1997)
(Boone, Fewell and Jennings, 

1997)
(Boone, Fewell and Jennings, 

1997)
GE SpeXim (Birch and 

Marshall, 1979; Cranley et al., 
1997) and (Boone, Fewell and 

Jennings, 1997)
- Mono/poly-chromatic? Poly-energetic Poly-energetic Poly-energetic Poly-energetic Mono-energetic
- Anode material W W W W Mo, Rh, and W
- Filter materials/thickness 0.05 mm Rh (DM); 0.7 mm 

Al (DBT)
1.0 mm Be window, 0.05 mm 

Rh (DM and DBT)
0.05 mm Rh (DM); 0.70 mm 

Al (DBT)
0.05 mm Rh (DM and DBT) Mo, Rh, Be, Cu, Sn;

 0.03 mm Rh and 0.03 mm 
Ag (DM and DBT)

- Focus size NS 0.30 mm 0.33×0.54 mm² (DM), 
0.46×0.37 mm² (DBT) 
(Elangovan et al., 2014)

0.4×0.4 mm² (DM); 
0.4×1.4 mm² (±7.5° DBT); 
0.4×2.2 mm² (±25° DBT)
(Hadjipanteli et al., 2019)

0.45×0.45 mm² (DM)
0.4×2.05 mm² (DBT), 

corresponding to 90 ms 
exposure time

Point source

- Focus shape NS Gaussian Square or rectangular Square (sinc fn in Fourier 
plane)

N/A

- Focus motion/sampling Continuous; step and shoot; 
details not given

Continuous; 0.18° arc, 
corresponding to 90 ms 

exposure time

Continuous; random 
sampling within the focal 

spot region

Continuous; Fourier based, 
applied via MTF to object 

(not background)

Step and shoot 

- Angular range/number of 
projections

±7.5°, ±15°, ±25°/
15 projections

±25°/ 25 projections ±7.5°/15 or  ±25°/25 
projections

±25°/25 projections ±12.5°/9 projections

- Source-to-image-distance 700 mm and 652 mm 652 mm NS NS 660 mm
AEC  
AEC function/factors Measured AEC performance 

(Feng and Sechopoulos, 
2012)

28 kV, 30 kV
85.1 mAs for 5.5-cm 
scattered glandularity

breast model, 3.4×1011 
histories simulated;

31 kV W/Rh (0.55 mm HVL) 
for DM

33 kV W/Al (0.59 mm HVL) 
for DBT (Hadjipanteli et al., 

2019)

AEC factors taken from 
image DICOM header

Taken from AOP AEC data
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50% more x-rays used for 
DBT acquisition (1.5 mGy) 

vs DM (1.0 mGy)
Exposure time NS 90 ms NS 90 ms or as specified in 

DICOM header
NS

Ray tracing
Algorithm (Siddon, 1985; De Greef et al., 

2009)
MC-GPU / Penelope (Siddon, 1985) (Siddon, 1985) GE tracing algorithm

Attenuation coefficient database ICRU Report 44 (ICRU, 
1989)

Rayleigh (Cullen, Hubbell and 
Kissel, 1997)

Total cross section (Berger et 
al., 2005)

(Berger et al., 1998) (Berger et al., 2005) NS

Breast Phantom
- Model UPENN Bakic 2002 plus 

later modifications
 (Bakic et al., 2002; Pokrajac, 
Maidment and Bakic, 2012)

(Graff, 2016) OPTIMAM
 (Elangovan et al., 2017)

None implemented;
Partial simulation into real 

patient images 

Stochastic Solid Breast 
Texture (SSBT) model (Li et 
al., 2016) using BCT dataset 
at UC Davis (Lindfors et al., 
2008); a voxelized structure

- Voxel size 100 µm³ ; 200 µm³ 50 µm³ 100 µm³ analytical, can generate voxel 
models at e.g. 100 µm³

- Modelled size Full breast, 6.33 cm 
compressed thickness

Full breast; 
3.5, 4.5, 5.5, and 6 cm 
compressed thickness

Full breast cropped into 
30×30×30 mm³ VOIs; 6 cm 

compressed thickness

Thickness determined by 
patient selection

e.g. 50×50×50 mm³ VOIs 
extracted. 5 cm compressed 

breast thickness
- View CC; MLO CC; MLO N/A N/A
- Breast types Adjustable volumetric 

density, 10% and 30% studied
Variable density: 

dense (0.548 glandular 
fraction), heterogeneously 

dense (0.339), scattered 
(0.143), and fatty (0.071)

Volumetric glandular density 
17% to 19%

Real breast, determined by 
patient selection

Variable density e.g. average 
glandular density of 27%, (BI-
RADS 2), average glandular 
density of 55% (BI-RADS 3) 

(Li et al., 2018)
Scattered radiation
- Included?/method No/- Full scatter distribution /

MC-GPU + Penelope
Yes / scatter kernels to 

generate look up tables (Diaz 
et al., 2014). Geant4 

MC(Agostinelli et al., 2003) to 
generate the scatter kernels

Yes / Contrast of lesion 
template is adjusted by scatter 

fraction (SF). SF data from 
(Boone et al., 2000; Salvagnini 

et al., 2012)

Hybrid analytic - MC method 
with MC engine developed by 

GEHC. Scatter kernels 
calculated from ESF 

measurements (Sánchez de la 
Rosa, 2019)

- Grid for DM?/method No/- Yes / analytic (Day and 
Dance, 1983)

31 lp/cm ratio 5:1; 65 µm Pb 
strips with  polystyrene 

interspace

NS/NS Yes / SF data measured for 
Hologic and Siemens grids 

(Salvagnini et al., 2012) 

Yes / Scatter kernel estimated 
for grid acquisitions  (Sánchez 

de la Rosa, 2019)

X-ray detector
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- Material a-Se a-Se a-Se s-Se CsI
- Thickness - 200 µm NS NS NS
- Pixel matrix 2048×1664  and 3584×2816 3000×1500 NS 2816×3584 1000×1000
- Detector element spacing 0.140 mm; 0.085 mm 0.085 mm 0.070 mm DM; 0.140 mm for 

both ±7.5° and ±25° DBT
0.085 mm 0.100 mm

- Oblique entry 
modelled?/method

No/- Yes No Yes (only for template) (Que 
and Rowlands, 1995)

No

- Detector physics Perfect absorber MC-GPU / Penelope. 
Absorbed  energy converted 
to charge. Effective gain of 

50 keV/ehp,   given by 
Swank factor 0.99, Poisson 
additive electronic noise of 
mean 5200 e- added to each 

pixel

Detector response fn, MTF 
and NPS characterized for 
the imaging system. NPS of 

electronic, quantum and  
structure noise sources 
included. Applied to the 

projection images after ray 
tracing in the Fourier domain.

Lesion signal is energy 
absorbed in detector material; 

MTF applied to template 
includes focus size, focus 

motion blurring and detector 
presampling MTF

Energy integrating detector; 
ray tracing to generate noise-

free, blur-free images. 
Detector converter and 

photodiode (pixel) blurring 
applied in Fourier domain. 

Gaussian additive noise 
added to simulate electronic 

noise 
- Temporal effects included? 
(e.g. lag, ghosting)

No No No No No (yes for contrast 
enhanced digital 

mammography CEDM))
Breast Lesions

- Calcification model Voxel polycubes; 
calcification clusters

Shape not defined One calcification extracted 
from database of (Shaheen et 
al., 2011) replicated/rotated 5 

times to make clusters

Real calcification clusters 
imaged using micro-CT 

(Shaheen et al., 2011)

Ellipsoids (max deviation of 
5% of calc diameter allowed 
for each axis), Perlin noise 

used to create 20 µm 
irregularities on calcification 

surface (Li et al., 2018)
- Calcification composition 
/attenuation

Calcium hydroxyapatite  
Ca₅(PO₄)₃,  weighting factor 
applied to control contrast

Calcium oxalate (CaC2O4) 
with mass density scaled by 

0.84 (1.78 g/cm²)

Calcium oxalate (CaC2O4) 
with mass density scaled by 

0.84 (1.78 g/cm²)

Calcium oxalate (CaC2O4) Al; µAl at 22 keV scaled by 
20%, 40% and 60%, 2.73 

kg/m³ mass density 
- Calcification size 100 µm³ polycubes, in groups 

of 1 to 4; 
Individual calcifications are 
~spherical with diameter 

between 300 µm and 600 µm

171, 179 and 195 µm, 
grouped as 5 calcifications in 

5 mm² volume

Cluster with 5 calcifications in 
2.5 mm³, microcalcification 
diameters in total range 110 

µm to 275 µm, ~50 µm range 
in diameter within group eg 

110 - 155 µm

Not defined Average diameters 100µm, 
200µm, 400µm and 600µm

- Supersampling for calcification 
insertion ?

No NS Yes No Yes

- Masses shape / size  Oblate spheroids; / 7 mm 
diameter and 0.5 – 2 mm 
thick or 9 mm diameter 

sphere. Concentric rings used 

Spiculated mass (de Sisternes 
et al., 2015) /

5 mm diameter

Mass with irregular border
 (A Rashidnasab et al., 2013) / 
diameter 4.7 mm to 10.3 mm 

at 30 mm above the table
(Hadjipanteli et al., 2019)

Irregular (non-spiculated) 
mass lesions segmented from 
Magnetic Resonance Imaging 

(MRI); spiculated mass 
lesions following method of 

Irregular and spiculated mass 
lesions (Carvalho, 2014), 

generated as analytic structure 
/ 
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to control blending with 
background

(Shaheen et al., 2014; de 
Sisternes et al., 2015) /

6.2 mm to 8.3 mm diameter
- Mass composition/attenuation µmass = 1.04 × µgland mass density 2% higher than 

normal glandular tissue 
µmass = 1.02 × µgland

µmass = µgland µmass = µgland NS

Reconstruction
- Algorithm FBP (Briona (commercially 

available))
FBP

 (Fessler, 2018; Sengupta et 
al., 2018)

FBP (Briona (commercially 
available))

Vendor supplied (currently 
Siemens EMPIRE)

GEHC

- In-plane pixel spacing 0.100 mm and 0.085 mm 0.085 mm NS 0.085 mm 0.100 mm
- Plane spacing 1 mm 1 mm NS 1 mm 0.5 mm, 1 mm and 10 mm

Display
- Included?/method Yes/MeVIC (Marchessoux, 

Kimpe and Bert, 2008)
No No No No

Image interpretation
- Study type MRMC ROC MRMC ROC 4-AFC ROC, FROC ROC
- Output metric AUC, d’ AUC Percentage correct (PC); 

threshold diameter (mm);
detectability index d'

AUC AUC

- Human/computer? Computer Computer Human Computer and Human Computer and Human
- Computer algorithm CHO with 15 LG channels, 

Gaussian spread=15, 20, 22, 
25, 26, 31; 150 x 150 pixel 

region of interest (ROIs); 252 
to 500 training set image pairs

CHO with 5 Convolutional LG 
channels; Masses: width 30 pixels 

for DM, 25 for DBT; 
Calcs: Gaussian spread = 1.5 

pixels; 
3D CHO for DBT; ROIs varied 
in size from 65 x 65 to 109 x 109 

pixels; 100 training set image 
pairs

CHO, single slice applied to 
in-focus DBT plane, multi-
slice CHO also applied to 5 

DBT planes; Gaussian spread 
ranged from 100µm to 

800µm, 1 to 29 channels 
considered. 200 image pairs 
used for training. (Li et al., 

2018)
Validation

- Reference NS (Badal et al., 2021) (Elangovan et al., 2014) (Vancoillie et al., 2020) (Carvalho, 2014)
Miscellaneous

- Time to generate DM + DBT 121.5 s for 200 µm³ phantom; 
520.4 s for 100 µm³ phantom

~55 min to 450 min, 
depending on breast size and 

complexity

~15 min for a breast 
phantom which then 
generates many VOIs

90s for DM  without image 
processing

220 s for DBT without 
reconstruction

NS

- Website for platform https://sourceforge.net/projects
/openvct/

https://github.com/DIDSR/VI
CTRE

Not publically available Not publically available Not publically available
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2.2 Ray-tracing / x-ray transport
The next aspect considered is transport of x-rays from the source through the breast model and here there 

is a clear difference between the VICTRE platform (Badal et al., 2021) and the other platforms. VICTRE 

uses MC-GPU MC simulation code to transport x-ray photons through a voxelized model, where each x-

ray photon is tracked until either absorbed in the x-ray detector or it leaves the MC world volume. Each 

photon can either be scattered or undergo no scattering and be directly absorbed in the x-ray detector (i.e. 

primary), while in the other platforms the primary and scattering steps are treated in two separate stages 

(see Figure 1 for the OPTIMAM example). After adjusting for intrinsic x-ray source efficiency, the VICTRE 

approach transports a similar number of x-ray histories as used in a real system and therefore directly 

generates accurate quantum image noise (assuming accurate detector modelling), scattered x-ray spatial 

distribution, blurring from the extended focus, oblique entry in the x-ray detector and the relevant glandular 

tissue dose. This is achieved using the PENELOPE MC transport code (Salvat, Fernandez-Varea and 

Sempau, 2006). 

The OpenVCT, OPTIMAM and Leuven platforms use the Siddon ray tracing algorithm (Siddon, 1985) or 

a related method (De Greef et al., 2009), while the ray tracing algorithm is not specified for CatSim. The 

attenuation path length through the breast model is calculated in this step and combined with exponential 

attenuation to give the probability of x-ray transmission for a given pixel. This attenuation map must then 

be combined with the x-ray scatter signal to give the total signal at each detector pixel, although this step is 

not always clearly elaborated in the platforms. Attenuation data generally come from the NIST XCOM 

Photon Cross Section Database (Berger et al., 1998, 2005) for the total cross-section, while the Rayleigh 

cross sections used in PENELOPE come from Cullen et al (Cullen, Hubbell and Kissel, 1997). Attenuation 

coefficients in OpenVCT are taken from ICRU Report 44 (ICRU, 1989; Barufaldi et al., 2022), while the 

data source is not specified in CatSim. 

2.3 Scattered radiation
There are even larger differences between the platforms in the methods used to include scattered radiation 

within the simulations. Accurate modelling of the spatial distribution and magnitude of scattered photons 

is important, especially if studies are performed comparing DBT against DM imaging performance, as the 

antiscatter grid influences the contrast of structures within the breast and the level of quantum noise (Chen 

et al., 2015). At one extreme, the full MC-GPU simulation in VICTRE generates a scattered radiation 

distribution specific to a given breast model, while the OpenVCT platform does not simulate scattered 

radiation. For DM acquisitions in VICTRE, the exact grid composition was unknown and therefore a 1D 

focused grid was assumed with 65 µm Pb lamellae, 31 lines/cm, with a polystyrene interspace material and 

an aspect ratio of 5:1 (Badal et al., 2021). Transport of x-ray photons within the grid is handled with an 

analytic model (Day and Dance, 1983). The OPTIMAM simulation uses a scatter kernel method that can 

estimate scatter radiation to within 10% across most of the breast area within ~1.5 h of computation per 

condition (Diaz et al., 2014). Note that this is still a significant computational burden if trying to produce a 

large number of patient images for a VCT, leading to a time of ~37.5 h to generate scatter kernels for a 
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Siemens system with 25 projections. Scatter kernels for DBT (generally a grid out geometry) are described 

by Diaz et al (Diaz et al., 2014) but details on scatter simulations for DM with grid-in are not given. Diaz et 

al (Diaz et al., 2019) describe a fast method to estimate scatter distributions for DBT geometries for use in 

VCTs using normalized scatter maps generated from pre-calculated MC simulations of low resolution 

homogenous phantoms.

A scatter kernel method is also implemented in the CatSim platform for mammography imaging (Sánchez 

de la Rosa, 2019). Instead of using MC simulations to produce the scatter kernels, Sánchez de la Rosa 

(Sánchez de la Rosa, 2019) used an analytical model of the scatter point spread function (PSF) (Ducote and 

Molloi, 2010; Leon, Brateman and Wagner, 2014). Parameter values in the scatter PSF specific to the 

imaging system and object thickness were determined using an edge spread function (ESF) acquired with a 

radio-opaque edge positioned on top of poly(methyl)methacrylate (PMMA) plates (Chan and Doi, 1983; 

Cooper et al., 2000). The scatter-to-primary ratio (SPR) and MTF derived from the ESF were used to 

generate a thickness dependent scatter kernel. The method was applied to grid-in and grid–out acquisition 

geometries. Application of the kernel to a DM image of 10001000 took approximately 3.4 minutes. The 

Leuven platform is somewhat different as only a small template containing the lesion (microcalcification 

cluster or mass) is multiplied into the projection image of a real breast, where scattered radiation is already 

present. The template contrast has to be modified using a scatter fraction (SF) relevant to the breast 

thickness, composition and energy; SF data measured for PMMA blocks using the beam stop and MTF-

based methods (Salvagnini et al., 2012) for grid in and grid-out geometries are used for this. Some limitations 

hold in that lesions are simulated towards the central region of the breast, where the SF values are assumed 

to be approximately constant (Sechopoulos et al., 2007) and breast thickness is converted to PMMA 

thickness for the SF calculation using the relation given by Dance et al (D R Dance, Skinner, et al., 2000). 

2.4 Breast phantoms
In general, the group developing the framework has also implemented a breast phantom model for use in 

the framework (see Table 1). More detail on these models can be found in reviews by Bliznakova 

(Bliznakova, 2020) and by Glick and Ikejimba (Glick and Ikejimba, 2018). Here, we will briefly look at some 

of the practical points regarding implementation within a VCT framework. 

2.4.1 Bakic phantom

OpenVCT uses the UPENN phantom developed from the Bakic phantom (Bakic et al., 2002), which is 

voxelized at 100 µm³ or 200 µm³ and renders cranio-caudal (CC) or medio-lateral oblique (MLO) views of 

the full breast. In studies, the group has simulated breasts of volume 700 ml and compressed thickness 6.33 

cm, with dense compartments constituting 10% and 30% of the breast volume (Bakic, Barufaldi, 

Higginbotham, et al., 2018). In recent work, multiscale Perlin noise has been included in the phantom as a 

means of improving the anatomical realism of this phantom (Barufaldi, Abbey, et al., 2021). This type of 

noise was developed by Perlin (Perlin, 1985) as a means of generating textures to increase realism in 

computer graphic scenes. To generate the noise, a grid is defined at some spacing and populated with 
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random, unit length vectors. The random vector set and the spacing defines the basic pattern and scale of 

the noise. Although the grid can be n-dimensional, 2D or 3D grids have been used for phantom applications 

(Dustler et al., 2015; Barufaldi, Abbey, et al., 2021). An interpolating function is applied at random points 

over the grid to produce smoothly varying structures with values in the range -1 to 1. The textures produced 

have a characteristic size, which can be tuned to the requirements of the scene or object by changing the 

values of the coefficients (Barufaldi, Abbey, et al., 2021). 

2.4.2 Graff phantom

VICTRE implements the open source phantom developed by Graff (Graff, 2016), which also produces full 

CC and MLO views of variable volumetric density, with a 50 µm³ voxel size. For the in-silico trial reported 

by Badano et al (Badano et al., 2018), four density categories were studied, defined by the glandular volume 

fractions (GVF): extremely dense (0.548 GVF), heterogeneously dense (0.339 GVF), scattered (0.143 

GVF), and fatty (0.071 GVF). These correspond to compressed thicknesses of 3.5, 4.5, 5.5, and 6 cm. 

Figure 3. Anatomical components of virtual breast model (from Badano et al (Badano et al., 2018))

2.4.3 Alternative phantom methods

The OPTIMAM phantom (Elangovan et al., 2017) is a full breast generated at 100 µm³ resolution and then 

cropped into 303030 mm³ volumes of interest (VOI) for use in reader studies. Volumetric density is set 

to values between 17% and 19%. For the CatSim platform, Li et al (Li et al., 2016) described a solid 3D 

breast texture model, based on segmented UC Davis BCT datasets (Lindfors et al., 2008) in which a 

stochastic geometry was used to mathematically model small and medium scale fibro-glandular and adipose 

tissue shapes. This analytical breast model was voxelized at 100 µm³ resolution and imaged in a study using 

the CatSim framework (Li et al., 2018). Similar to the OPTIMAM studies, 505050 mm³ VOIs were 

extracted from the generated volumes for the reader study. The model has variable density; Li et al (Li et al., 

2018) used average glandular densities of 27% and 55% to simulate Breast Imaging Reporting and Data 

System (BI-RADS) categories 2 and 3, respectively.  
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The UC Davis BCT dataset (Lindfors et al., 2008) has been the starting point for a number of breast voxel 

models. Erickson et al (Erickson et al., 2016) produced 224 virtual phantoms from this dataset. Mean 

volumetric breast density was 25.3%  13.2% and mean breast volume was 716.3 ml  386.5 ml. These data 

were used as input for the development of physical phantoms (Rossman et al., 2019) and were used by 

(Kiarashi et al., 2016) in a VCT to study the influence of breast tissue density and heterogeneity on the 

detection of irregular masses in DBT. 

A further set of 150 3D breast phantoms have been derived from the UC Davis BCT data within the INFN 

AGATA project and are available in a public repository for research purposes (Sarno et al., 2021). In-plane 

pixel sizes in the original reconstructed coronal slices range between 0.1938 mm and 0.4274 mm, and 

between 0.1907 mm and 0.2375 mm in the axial direction. A subset of 60 phantoms were compressed to 

simulate DM and DBT geometry. The resulting average glandular fraction for this subset was 12.1% 

(minimum of 1.2%, maximum of 28.7%). Compressed breast thickness varied between 35 mm and 89 mm, 

with a mean value of 61 mm.

2.5 Breast lesions
One of the advantages of a VCT methodology is that lesion location is known exactly in the signal present 

images yielding a ground truth, which allows a paired comparison of modalities using identical targets 

(Abadi et al., 2020). Current VCTs focus on detection studies using microcalcifications and mass-lesions, 

yet there are considerable differences in the lesion models used across the frameworks. 

2.5.1 Microcalcifications

OpenVCT currently uses two methods for calcification cluster modelling. A geometric method, in which 

between one and four polycubes are used, each with a side of 100 µm (i.e. the resolution of the voxel 

phantom) (Bakic, Barufaldi, Pokrajac, Lago, et al., 2018). Alternatively in OpenVCT, clusters can be 

simulated as a collection of single microcalcifications with selected compositions, locations and sizes varying 

between 300 µm and 600 µm (Bakic, Barufaldi, Pokrajac, Weinstein, et al., 2018). These individual 

microcalcifications are approximately spherical in shape. The microcalcifications in the studies using the 

VICTRE pipeline were simulated as a cluster of 5 lesions of diameter 171, 179 or 195 µm randomly located 

within a 5 mm³ volume (Badano et al., 2018). The precise shape of an individual calcification is not specified. 

The Leuven platform utilizes the microcalcification clusters segmented from breast biopsies containing 

malignant and benign lesions, acquired on a micro-CT system (Shaheen et al., 2011). Figure 4 shows a 

photograph of the biopsy specimen after extraction from the patient, together with an example of a full 3D 

model of microcalcification cluster. A total of 23 clusters are available in the dataset, and while calcification 

diameter differs within a cluster, detailed information on individual lesion diameters is not given. The study 

into calcification detection using the OPTIMAM platform utilized a single calcification extracted from the 

database of Shaheen et al (Shaheen et al., 2011) that was replicated and rotated 5 times to generate a cluster. 

These clusters were situated in a 2.5 mm³ volume, and resampled to produce clusters with individual 

calcifications ranging in diameter from 110 µm to 275 µm (Hadjipanteli et al., 2017). The CatSim based 
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study of (Li et al., 2018) simulated calcifications as ellipsoids with a maximum deviation of 5% of lesion 

diameter for each axis; average diameters of the simulated lesions was 100µm, 200µm, 400µm and 600µm. 

Perlin noise was used to create 20 µm irregularities on the surface of the ellipsoid. Figure 5 shows examples 

of microcalcification lesions for the different platforms.

Figure 4. (a) A photograph of a biopsy specimen containing microcalcification clusters after extraction 
from a patient. (b) An example of a 3D model of microcalcification cluster from the database built during 
this study and considered as full cluster (voxel size was 0.02 mm). (c) An example of a 3D model of 
microcalcification cluster from the database and considered as subcluster (voxel size was 0.03 mm). (from 
Shaheen et al (Shaheen et al., 2011)).

The chemical composition assumed for the calcification plays an important role in determining contrast 

and ultimately the visibility of the calculation in the simulated images. Calcification composition varies 

across the platforms, often with a weighting factor to control the visibility. OpenVCT has used calcium 

hydroxyapatite with a weighting factor (0.2 to 1.0) to control the contrast (Bakic, Barufaldi, Higginbotham, 

et al., 2018). Current VICTRE simulations (Badano et al., 2018) have adopted the method used in the 

OPTIMAM platform (Warren et al., 2013; Hadjipanteli et al., 2017), using calcium oxalate with a mass 

density weighted by a factor 0.84 (i.e. 1.78 g/cm²). The Leuven group currently uses calcium oxalate 

(unweighted) while Li et al (Li et al., 2018) used Al to simulate calcification, with mass density scaled by 20%, 

40% and 60%. 

2.5.2 Mass lesions

Diverse methods have been used to simulate the mass lesions used in these platforms, as illustrated in 

Figure 6. Geometric shapes such as oblate spheroids with diameter 7 mm and thickness ranging from 0.5 

mm to 2 mm to change the contrast have been used in OpenVCT (Bakic, Barufaldi, Higginbotham, et al., 

2018). Concentric shells composed of different simulated materials are used to form the lesion, with 

different attenuation properties for each shell, enabling lesion blending with the local background (Bakic, 

Barufaldi, Pokrajac, Weinstein, et al., 2018). Non-spheroidal lesions can be formed from a union of four 

non- concentric ellipsoids (Bakic, Barufaldi, Pokrajac, Weinstein, et al., 2018). The large study performed 

using the VICTRE platform used a 5 mm spiculated mass lesion generated using the method of de Sisternes 

et al (de Sisternes et al., 2015) in which an iterative fractal branching algorithm is used to add spicule 

structures to a central lesion produced with a modified Gaussian random sphere model. Masses with ill-
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defined borders are currently used in the OPTIMAM platform, generated stochastically using a method 

known as diffusion limited aggregation (A Rashidnasab et al., 2013). The study into threshold diameter for 

masses varied mass diameter from 4.7 mm to 10.3 mm (Hadjipanteli et al., 2019). The irregular (non-

spiculated) masses used in the Leuven platform originate from segmentations of magnetic resonance 

imaging (MRI) masses; the method of de Sisternes et al (de Sisternes et al., 2015) is then applied to these 

irregular lesions to form spiculated masses (Shaheen et al., 2014). Although CatSim has not been explicitly 

used to simulate mass lesions in DBT, Sánchez de la Rosa (Sánchez de la Rosa, 2019) describes a method 

to generate 3D lesions for contrast enhanced digital mammography (CEDM), using the aggregation of 

several analytical surfaces, each associated with specific linear attenuation coefficient, with methods that 

allow control over the shape, margin and contrast uptake distribution. Attenuation coefficients for mass-

lesions are assumed to be identical to that of glandular tissue for the OPTIMAM and Leuven platforms, 

while factors of 1.04 and 1.02 are applied to glandular attenuation to simulate lesion attenuation for the 

OpenVCT and VICTRE platforms, respectively. 
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 Figure 5. Examples of microcalcifications used in the simulation platforms. 

a) Polycubes used to simulate microcalcifications in OpenVCT, also showing the insertion and reconstruction steps 
(Bakic, Barufaldi, Higginbotham, et al., 2018) b) 5 DBT planes showing a reconstructed microcalcification cluster in 
VICTRE platform (Badano et al., 2018)  c) 2D projection images of (2.5 × 2.5 × 2.5 mm3 cubic volume) of clusters 
in OPTIMAM platform two different microcalcification diameters before insertion: 125 µm and 250 µm. (Hadjipanteli 
et al., 2017) d) False positive cases (i.e. simulated microcalcification clusters thought to be real cases by at least three 
radiologists) in tomosynthesis study by the Leuven group with the in-focus plane presented (Shaheen et al., 2011) e) 
Examples of 2.5cm × 2.5cm regions of interest (ROIs) of simulated DBT central reconstructed slices from the 
uniform, BI-RADS 2 and BI-RADS 3 background test objects. A single microcalcification of diameter 400 μm and 
attenuation coefficient μAl60 simulated using the CatSim platform (Li et al., 2018).

a)

b)

c)

d)

e)
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a)

(i) (ii) (iii) (iv)

c)

d)

b)

b) (i) (ii)

(i) (ii) (iii) (iv)

Figure 6. Examples of mass lesions used in the simulation 
platforms. a) OpenVCT : (i), (ii) Models of spherical lesion 
(concentric shells). (iii) Example of lesion insertion in a 
VOI in the breast phantom (longitudinal section) and (iv) 
cropping of the ROI in the reconstructed image (central 
slice) (Bakic, Barufaldi, Pokrajac, Weinstein, et al., 2018).

b) VICTRE: Digital mammography (i) and selected DBT 
slice (ii) of a case corresponding to a breast with scattered 
areas of fibroglandular density containing a spiculated 
mass lesion (arrowheads). Lesions have been made more 
conspicuous for display purposes by artificially increasing 
their radiography attenuation during image acquisition 
(Badano et al., 2018).

c) OPTIMAM: Simulated mass: a) 3D rendering of mass; 
2D projection images of isolated masses of average 
diameters (a) 6.6 mm, (b) 8.4 mm and (c) 10.3 mm before 
insertion into the mathematical breast phantom. 
(Hadjipanteli et al., 2019)

d) Leuven: Example of well simulated nonspiculated and 
spiculated mass models in the tomosynthesis study. The 
nonspiculated had a mean realism score of 4.8 among all 
observers. (i) The 3D nonspiculated mass model. (ii) The 
template [central projection of (i) before insertion]. (iii) 
The mass in (ii) after insertion in magnification view. (iv) 
The nonspiculated mass in the in-focus plane in DBT with 
an arrow pointing to the location of insertion. (Shaheen et 
al., 2014) 

(ii)

(iii) (iv)

(i)

d)
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2.6 Lesion insertion
Lesion insertion relates to the selection of a location and the actual means of including the lesion in the 

phantom model or projection image. In detection studies, lesion location will clearly influence observer 

detection rates, depending on the magnitude of the local breast structures. The strategy adopted by 

Mackenzie  et al (Mackenzie, Thomson, et al., 2021) for a human reader VCT study was to use randomized 

insertion sites that covered the complete breast volume. Furthermore, the site had to be more than 5 mm 

from the skin line, constrained to a height within the central 60% of the compressed breast thickness. For 

the insertion calculation, average breast density at the insertion location was estimated using the Volpara 

software (Youk et al., 2016). 

Figure 7. Locations of inserted lesions in virtual breast phantoms. Shown are breast phantom sections 
through the nipple, with inserted microcalcifications (left; insertion locations magnified and indicated in red 
for visibility) and inserted masses (right). (from Bakic et al (Bakic, Barufaldi, Higginbotham, et al., 2018)).

In the VICTRE platform, locations are selected randomly from regions containing terminal duct lobular 

units, which is a common site for carcinogenesis. The location was constrained to be within phantom 

boundaries and could not overlap with air, muscle, nipple, and skin, and lesions already inserted (Badano et 

al., 2018). It should be noted that lesion characteristics were adjusted during a number of pre-pilot stages 

so DM performance reached values reported in the literature, however how this was done is not specified. 

Breast phantom voxels at the lesion site are replaced with voxels labelled as glandular tissue (mass lesion) 

or weighted calcium oxalate (microcalcification). In OpenVCT, insertion is performed by a dedicated 

module that contains information on lesion type and dimensions, centre position, composition, and the 

boundaries. In the published work so far, voxel values at the insertion location have been replaced with 

values for the lesion material; in the study by Bakic et al (Bakic, Barufaldi, Higginbotham, et al., 2018) a total 

of 42 lesions were inserted into each phantom; each lesion was extracted using 150150 pixel regions of 
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interest (ROIs) for image interpretation (i.e. evaluation by model observer). This ensures that a range of 

local background breast structures are sampled in a given clinical study (Figure 7

The Leuven platform uses attenuation templates whose value ranges from 1.0 (background) to 0.0 (total 

attenuation within the lesion); these are multiplied with the primary component of the projection image, 

after accounting for the signal due to scatter (Section 2.3). The template represents the primary x-ray 

contrast and therefore must be applied to the primary signal content at the insertion site. Prior to insertion, 

the scatter fraction is estimated and subtracted from the pixel values, and the template is multiplied with 

the primary signal. The scatter signal is then added back to the primary signal with lesion. Insertion locations 

were manually chosen based on clinical knowledge of the distribution of breast carcinoma (Shaheen et al., 

2011). A similar insertion method is used for the templates used in the partial simulation method described 

for the OPTIMAM platform (Elangovan et al., 2014). A correction is also applied to the noise level using a 

noise model (Mackenzie et al., 2012), as the template changes signal level can affect the local noise level. 

Insertion in to voxel breast phantoms is done using voxel replacement. When inserting microcalcifications, 

super sampling was applied to a cubic region containing background tissue voxels at the insertion position 

to hold the microcalcification clusters. This was to account for the difference in voxel size of the phantom 

(0.1 mm) and the voxel size of the microcalcifications (13.8 µm – 34.4 µm). 

A number of insertion steps are applied in the CatSim framework in order to model the local replacement 

of the phantom background during microcalcification insertion (Li et al., 2018). First, given that the 

phantom is voxelized while the calcifications are held in mesh file format, the phantom and calcification 

are projected separately. To combine these images, the average attenuation coefficient of the background 

phantom voxels at the microcalcification position was subtracted from the microcalcification attenuation 

coefficient. The x-ray detector properties were then applied. 

2.7 X-ray detector/physics
The current implementation of OpenVCT assumes an ideal detector model (Barufaldi et al., 2018) and 

therefore the VCT generated images do not simulate the sharpness and noise levels that would be present 

in the projection images if a real x-ray detector were to be used. Work is ongoing to include realistic noise 

with the correct magnitude and texture for a given x-ray detector type (Borges et al., 2017, 2019). These 

methods consider signal-independent electronic noise and quantum noise that accounts for correlation 

within the noise arising from detector crosstalk. This is characterized using the power spectral density (PSD) 

or noise power spectrum (NPS) of uniformly exposed images in which quantum noise contains the highest 

fraction (Borges et al., 2017, 2019). 

The VICTRE platform uses MC-GPU to implement a very complete model of the a-Se-based x-ray 

detector; greater detail can be found in (Badal et al., 2021). X-rays are tracked until the first photoelectric 

interaction so that detector detection efficiency is modelled. The simulation also includes effects such as 

re-absorption of K x-rays and geometric distortion of the PSF due to oblique entry (see Figure 8). Electronic 

noise is included by adding a randomly sampled signal to each pixel from a Poisson distribution with a 
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mean value of 5200 electrons. A number of physical processes are not included (Badal et al., 2021), including 

Compton interactions inside the detector, signal spread due to charge sharing across pixels and temporal 

effects such as lag. A limitation of this method is that CsI scintillator-based detectors such as that used in 

the GEHC Pristina are not currently simulated, although MC methods have been used previously to model 

these detectors (Badano and Sempau, 2006).

Figure 8. Visualization (in logarithmic scale) of the simulated focal spot using an ideal pinhole camera and 
a 200-µm-thick Se detector with 1 µm pixels: (a) ideal point focal spot, showing the effect of fluorescence 
spread in the detector layer; (b) 300 µm Gaussian focal spot, normal incidence; (c) 300 µm Gaussian focal 
spot, 21 degree incidence (depth-of-interaction effects on the point spread function visible); (d) 300 µm 
Gaussian focal spot, 0.24° source motion in horizontal direction (taken from Badal et al (Badal et al., 2021))

An alternative method is used in the OPTIMAM platform, whereby the detector response function, MTF 

and NPS are used to quantify the sharpness and noise of a real imaging system and then applied to the 

simulated images. The output of the ray-tracing stage is a noise-free projection image containing only 

geometric blurring (no detector blurring). In the first step, this image is blurred with the detector 

presampling MTF of the target system. The total NPS is assumed to be separable and formed from three 

noise types (electronic, quantum and fixed pattern/structured NPS), each with different dose dependences 

and textures, in a model initially applied to diagnostic computed radiography (CR) detectors (Mackenzie 

and Honey, 2007).  NPS coefficients are used generate three real noise images corresponding to the three 

noise sources, using a method proposed for quantum noise by Bochud et al (Bochud et al., 1995) and Båth 

et al (Båth et al., 2005). Each noise image is scaled corresponding to the exposure in the simulated image, 

the three noise sources are summed and then added pixel-wise to the simulated DBT projection image 

(Mackenzie et al., 2012; Elangovan et al., 2014). Oblique entry blurring and temporal effects are not 

modelled.

In the Leuven partial simulation platform, only the inserted template must be adapted to the imaging 

system/detector properties. The signal due to the inserted lesion is quantified by calculating the energy 

absorbed in the detector material (currently a-Se), from which a lesion template is formed. This template is 

then Fourier transformed and multiplied by an MTF that includes the focus size and focus motion blurring 

relevant to the insertion height of the lesion and detector presampling MTF (Shaheen et al., 2011). 

Recent changes to the modelling of the CsI-based mammography x-ray detectors in CatSim are described 

in Sánchez de la Rosa (Sánchez de la Rosa, 2019). The sharp, noiseless primary image that is the output of 

the ray tracing step is blurred using an MTF that quantifies sharpness due to optical scattering processes in 

the scintillator, the square pixel aperture and the x-ray scatter field. Three stochastic processes are included 
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to model the detector: the effect of the quantization ramp, additive electronic noise and quantum noise, 

which is described as a parametrized Poisson process. Although the magnitude of the noise is correctly 

modelled as a function of signal intensity, the NPS of the simulated images differs from that of the real 

system. In contrast to the other platforms, Sánchez de la Rosa (Sánchez de la Rosa, 2019) incorporated 

temporal (memory) effects in the simulation of contrast enhanced DBT. An impulse response was used to 

represent the memory term for each subsequent projection, with parameters estimated empirically from 

measurements of the evolution of signal intensity during a DBT acquisition sequence.

2.8 Dosimetry
Breast doses reported for patients undergoing a clinical study are calculated using a breast model (Svahn et 

al., 2015), either that of Dance et al (D. R. Dance et al., 2000; Dance, 2011) or the American College of 

Radiology (ACR) method (Sechopoulos et al., 2014) which utilizes the model of Wu et al (Wu, Barnes and 

Tucker, 1991). Direct estimates of the dose to glandular tissue are available from the MC transport in the 

VICTRE study and could be calculated for the different breast types (extremely dense, heterogeneously 

dense, scattered fibroglandular densities and fatty) (Badano et al., 2018) – see Figure 9. The  average of the 

entire VICTRE population was then compared to the average glandular dose (AGD) for the comparative 

trial population, which was calculated using the method of Dance et al (D R Dance, Thilander, et al., 2000; 

Dance, 2011). The OPTIMAM group also use the Dance model in combination with the incident air kerma 

to estimate breast dose in the virtual studies performed with the platform (Hadjipanteli et al., 2017, 2019). 

Image generation in OpenVCT requires an “exposure” level to be set, along with the tube voltage and A/F 

setting, allowing the generation of low and high exposure images (Sahu et al., 2019) however an explicit 

mean glandular dose is not currently given, although this is clearly possible by assuming a dosimetry model. 

Dosimetry within CatSim is performed using the MC engine to calculate dose to fibroglandular tissues, 

from which normalized glandular dose coefficients (DgN) are calculated. A full description is available in 

Carvalho (Carvalho, 2014), including a validation against the DgN coefficients of Wu et al (Wu, Barnes and 

Tucker, 1991) and Boone (Boone, 2002). 
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 Figure 9. Radiation dose distributions in the VICTRE trial population. Glandular dose for all virtual 
patients was calculated and included in this histogram for digital mammography (DM) and digital breast 
tomosynthesis (DBT) and for each of the four breast sizes and radiographic densities considered. (taken 
from Badano et al (Badano et al., 2018))

2.9 Reconstruction and image processing
Once the projections have been generated and adapted to the imaging system, these images have to be 

reconstructed and this step in the VCT can present some difficulties. Vendors design reconstruction 

algorithms for the images produced by their DBT systems, i.e. with a characteristic angular range, 

dose/projection, x-ray source blurring, and with images reflecting the blurring and noise characteristics of 

the x-ray detector used. These algorithms require detailed knowledge of the imaging system, considerable 

time and resources to develop and are often proprietary. The VCT described by Badano et al (Badano et al., 

2018) simulated a Siemens Inspiration DBT device which uses a proprietary Siemens reconstruction. As an 

alternative, a filtered backprojection (FBP) algorithm was used, with a smoothing filter applied to give a 

reasonable balance between sharpness and noise in the final images (Fessler, 2018; Sengupta et al., 2018). 

Both the OpenVCT and OPTIMAM platforms use the commercially available Briona library (Briona 

Standard, Real Time Tomography, LLC, Villanova, PA, USA) (Kuo et al., 2011), which can be configured 

for different geometries and scan angles. These platforms have been used to study the impact of angular 

range on mass lesion and microcalcification detection, with images scored either using computational 

observers or human observers (Hadjipanteli et al., 2017, 2019; Barufaldi, Bakic and Maidment, 2019; 

Barufaldi et al., 2020). The Leuven platform currently simulates Siemens devices (Inspiration and 

Revelation), and reconstruction is performed offline using software provided by Siemens which implements 

the earlier FBP based reconstruction (Mertelmeier et al., 2006; Shaheen et al., 2014) and ‘EMPIRE’, the 

latest clinical algorithm. The study by Li et al (Li et al., 2018) using  CatSim, implemented the algorithm from 

the GEHC Pristina (“ASIRDBT”), which can generate planes at 0.5 mm and 1.0 mm spacing, and also 10 

mm slabs. 
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An important point to consider when comparing DBT against DM imaging is the availability of clinical 

image processing for DM images. The VICTRE platform produces ‘For Processing’ images (Badal et al., 

2021), which are then evaluated by a computer algorithm (Badano et al., 2018; Zeng et al., 2020). If the 

images are to be used in a human observer study, then ‘For Processing’ images would likely be sub-optimal 

(especially in terms of window settings) and some form of image processing should be applied to help the 

human reader extract the relevant features quickly. Image processing has been shown to influence human 

observer lesion detection performance in DM images (Zanca et al., 2009; Warren et al., 2014) and therefore 

must be considered when designing human reader studies with simulation frameworks. This is achieved 

using the “Adara” library (Real Time Tomography, LLC, Villanova, PA, USA) for the OPTIMAM studies 

and Siemens proprietary software e.g. Opview2 (Shaheen et al., 2014). Whether the lack of image processing 

applied to images used in computer readout stage of VCTs is influencing study performance has not been 

studied. Clearly, VCTs that compare, for example DBT+DM with DBT+SM require access to the 

manufacturer’s algorithm in order to generate relevant SM images (Mackenzie, Thomson, et al., 2021).

One could question whether the use of a generic reconstruction or a reconstruction that is not optimized 

for a given geometry will bias these types of study, for example comparing angular range. This topic has 

been studied in detail in two papers by Zeng et al (Zeng et al., 2015; Zeng, Badano and Myers, 2017). A 

simulation framework was used to project the Bakic phantom (Bakic, Zhang and Maidment, 2011) 

containing lesions simulated by 4 mm diameter spheres, positioned at a height of 31.5 mm above the 

detector. Projection data were generated for angular spans covering 10° to 70° with 5 or 9 projections and 

then the number of projections were varied from 3 to 15 for angular spans of 20° and 50°. The projections 

were then reconstructed using the analytical FBP method and three iterative methods: simultaneous 

algebraic reconstruction technique (SART), the maximum-likelihood method (ML) and the total-variation 

regularized least-square reconstruction method (TVLS) (Zeng et al., 2015). Lesion detectability was 

quantified using 2D and 3D channelized Hotelling observers (CHO) that implemented Laguerre-Gauss 

(LG) channels  (Zeng et al., 2015). The study found that the optimal ranges for angular span and number 

of views were the same for the reconstruction algorithms, suggesting that the choice of reconstruction 

algorithm may not be critical for optimizing the DBT acquisition parameters, at least for the 

DBT/lesion/phantom simulated studied. The work also emphasized that for a given geometry (angular 

range/number of projections), there were differences in performance between the different algorithms, and 

that algorithms implemented for a chosen geometry should be optimized. The later study by Zeng et al 

(Zeng, Badano and Myers, 2017) extended the work to include human readers, with CHOs designed to 

replicate human performance for the 4 mm spherical lesion detection task. Results from this study 

confirmed that optimization of system geometry can be considered to be independent of reconstruction 

algorithm used.   
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2.10 Image interpretation
Image interpretation in current platforms is performed either by computational model observer (MO) or 

human readers. Literature on MO methods is extensive – several reference works are available covering 

theory, application and use in VCTs (Van Metter, Beutel and Kundel, 2000; Barrett and Myers, 2003; He 

and Park, 2013; Samei and Krupinski, 2018; Abadi et al., 2020). The tasks currently simulated are of the type 

“signal known exactly/background known exactly”, where the readers are forced to make a binary decision 

(present/absent) or select from e.g. 4 alternative locations in an alternative forced choice (AFC) task. Spatial 

domain rather than Fourier domain MOs are used, as a large number of images can be simulated with and 

without the tasks to generate the decision variables. Furthermore, the use of statistical, spatial domain 

methods does not make strong assumptions about system linearity or the stationarity of the image statistics. 

Fourier-based MOs, on the other hand, use the NPS to characterize correlations in the anatomical noise 

for the detectability calculation, and the accuracy of this is limited (Barrett and Myers, 2003). 

Some aspects of CHO implementation in the platforms are now described, illustrated with examples taken 

from Zeng et al (Zeng et al., 2020), who developed the CHO currently used in the VICTRE platform. The 

main steps are:

 Selection of channel type – efficient or anthropomorphic
o Selection of channel functions
o Application of the channel functions to the image data (multi-slice (n2D) or 3D)
o Channel tuning

 Template generation / “training”
 Application of the template to an independent (fresh) set of images / “testing”

Selection of channel type and application to images

All CHOs require sets of signal present and signal absent images; these are generated by the simulation 

platform. The physical characteristics of the target influence channel selection. A number of different 

channel functions have been described in the literature, including Difference of Gaussians (DOGs) (Abbey 

and Barrett, 2001), Gabor functions (Eckstein et al., 2003) and Laguerre Gauss (LG) functions (Gallas and 

Barrett, 2003). Channels that extract as much information as possible about the object are known as 

‘efficient’ channels and CHOs using these channels tend to the performance of an optimal linear observer. 

Alternatively, ‘anthropomorphic’ channels can be selected that try to mimic human observer performance 

(Barrett and Myers, 2003).  Given the approximately round spiculated masses simulated in the VICTRE 

study (Badano et al., 2018), Zeng et al (Zeng et al., 2020) selected LG channels, which are circularly symmetric 

and therefore expected to be efficient for this task. The set of 5 calcification specks used to simulate 

microcalcification clusters were however spread within a 5 mm³ volume and the group itself had no circular 

symmetry and thus the LG channels were therefore not suitable. Instead, a convolutional LG method was 

applied, first described by Diaz et al (Diaz et al., 2015), whereby LG channel functions are convolved with 

the signal to produce a multi-focal set of channels that can be used to quantify performance (Zeng et al., 

2020). 
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For DBT volumes,  a choice has to be made between a 2D or 3D implementation of the CHO (Platisa et 

al., 2011). Zeng et al (Zeng et al., 2020) examined both approaches, forming the 3D CHO by concatenating 

the 2D-channels for each slice. Given the slow change in the cross-section of the mass in the z-direction, 

the same LG channel was used for each slice, while the 3D convolutional channel set varied according to 

the mean signal through the calcification cluster. Zeng et al (Zeng et al., 2020) also compared 3D and 2D 

versions of the CHO by converting the VOI to a 2D image using the central slice, the mean of the slab and 

the maximum intensity of the VOI. Overall, the 3D CHOs were found to give higher area under curve 

(AUC) values for DBT images and these are currently implemented in VICTRE. 

Tuning of channel parameters

The LG functions have a number of parameters which, for an efficient set of channels, are selected to 

maximize lesion detectability – this is the tuning step. To do this, the number and width of the Gaussian 

function in the channels is varied to maximise AUC; Zeng et al (Zeng et al., 2020) used 5LG channels and 

found a Gaussian width of 1.5 pixels for the calcifications and widths of 30 and 25 pixels for DM and DBT 

images, respectively. For an anthropomorphic set of channels, the channel parameters are tuned so that the 

CHO performance comes close to human reader performance for the tasks (Zeng, Badano and Myers, 

2017; Petrov et al., 2019). Note that the tuning and template generation steps (see below) are not separate; 

tuning requires a template with a covariance matrix.

Template generation / “training”

The covariance matrix needed for the CHO template has to be estimated and this is done in the training 

stage. The covariance matrix is calculated by applying the selected channel functions to a set of signal 

present and signal absent images and combined with the mean signal to form an estimate of the CHO 

template. Applying the template to an ROI extracted from the image being evaluated produces a scalar 

value called a decision variable. Applying the template to many signal present and signal absent ROIs 

produces two distributions of decision variables, from which an ROC with an associated AUC can be 

established (Barrett and Myers, 2003). The AUC is the metric used to quantify task performance; the aim 

of the training is estimate the number of images required for a stable AUC. To do this, the number of 

images in the training sample is increased and AUC calculated. The number of images required will depend 

on the number of channels (in turn, linked to the targets) and the complexity of the background. Zeng et al  

(Zeng et al., 2020) found that just ~100 image pairs (signal present/absent) were sufficient to give a stable 

AUC, a consequence of the small number of channels used. 

Application of the template / “testing”

Once the template has been built, the final stage is to apply the template to an independent (fresh) set of 

signal present and signal absent images, generate distributions of decision variables and again calculate the 

AUC. This is the “testing” stage, where the computational observer reads or interprets the VCT images. 

Figure 10 illustrates the application of the trained model observer template to the dataset containing the 
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images to be read. A dot product of the template with an image in the reading dataset produces a scalar 

value (the decision variable). This is done for the signal present and signal absent reading images, resulting 

in distributions of decision variables for signal present and signal absent. The AUC is then calculated from 

these distributions.

OpenVCT also implements a CHO as the virtual reader, but fewer published details are available. The CHO 

uses 15 LG channels, with spreads of 15, 20, 22, 25, 26, 31 pixels depending on the application (Bakic, 

Barufaldi, Higginbotham, et al., 2018; Barufaldi, Bakic and Maidment, 2019; Barufaldi et al., 2022). These 

spreads are used for both calcification and mass-lesion object. Between 252 and 500 image pairs were used 

for the training stage. The calcification detection study by Li et al (Li et al., 2018) used a CHO with LG 

function channels; between 1 and 29 channels were studied while Gaussian spread ranged from 100µm to 

800µm. For training, 200 pairs of images (signal present/absent) were used. The CHO was applied to the 

in-focus DBT slice.

 Figure 10. Flowchart of the image interpretation process by the computer readers in VICTRE. (from 
Badano et al (Badano et al., 2018).

Both the OPTIMAM and Leuven platforms currently use human readers for image interpretation. 

Methodologies used include ROC and free-response ROC (FROC) studies for DBT and DM imaging 

(Shaheen et al., 2014; Salvagnini et al., 2016) while an AFC method has been used to establish a minimum 

diameter for detection of microcalcifications and masses (Hadjipanteli et al., 2017, 2019). 

3. VCT platform validation
Verification and validation of VCTs is discussed in (Abadi et al., 2020). Two levels of validation can be 

considered when trying to establish the extent to which a platform is accurately modelling the performance 

of a real imaging system. The first level of validation assesses whether the important physical imaging 
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properties of the imaging system have been included in the platform and are accurately modelled. This can 

be done by acquiring images of well-defined test objects, which are also simulated by the platform. A range 

of parameters are then computed from these images and compared to establish accuracy of implementation. 

Detailed first level validation of the VICTRE platform is described in Badal et al (Badal et al., 2021), and 

covers the PENELOPE MC code, along with MTF, NPS and detective quantum efficiency (DQE) data 

which are compared to measurements, including the influence of focus size on MTF. Small, self-contained 

VCTs were performed examining how AUC changed as radiation dose, scattered radiation handling (grid 

in/out, grid properties) and focus size were varied. Elangovan et al (Elangovan et al., 2014) describe physical 

validation of the OPTIMAM where two main methods were used: PMMA blocks (10 mm to 70 mm 

thickness) containing a 0.2 mm thick Al square for signal difference to noise (SDNR) measurements and a 

phantom containing gold discs of diameter 0.13 mm to 0.8 mm from which the contrast degradation factor 

(CDF) was calculated. Acquisition factors for the simulation were taken from the real acquisitions set by 

the imaging system, such that tube voltage and mAs were varied. The accuracy of the Leuven partial 

simulation method was assessed in a study by Vancoillie et al (Vancoillie et al., 2020), also using PMMA 

blocks (20 mm to 70 mm) with objects to assess SDNR and contrast. In addition to varying PMMA 

thickness, tube voltage and tube current-time product (mAs) were also varied for 40 mm PMMA and both 

MTF and ASF were assessed. Differences between image parameters measured in simulated compared to 

real images were typically within 10% (Elangovan et al., 2014; Vancoillie et al., 2019). Explicit experimental 

validation for OpenVCT has not currently been published. While initial validation results for CatSim were 

for CT systems (De Man et al., 2007) detailed validation for mammography applications is presented by 

Carvalho (Carvalho, 2014), including accuracy of the source modelling, scatter, breast dose and x-ray 

detector (evaluated via MTF, NNPS).

While these validations confirm that the physical processes occurring in the imaging chain components are 

correctly modelled, a second, essential level of VCT validation requires accurate and relevant 

implementation of the patient phantom, clinical tasks and the image interpretation stages. This should result 

in similar AUC values as found in the real clinical task/patient sample being modelled (Barufaldi, Maidment, 

et al., 2021). However, if the case mix within the simulated patient group does not reflect that seen for the 

group of patients imaged on real imaging system, then the virtual population and the lesions can be changed 

so that the shape of the ROC curves more closely match (Barufaldi, Maidment, et al., 2021). This was also 

the case for the VICTRE study, where lesion characteristics were adjusted in order to better match lesion 

detection results from the patient study after running a virtual pilot study (Badano et al., 2018). The 

calibration of soft tissue lesions which produce imaging cases that match the case difficulty found in human 

reader studies is discussed in depth by Barufaldi et al (Barufaldi et al., 2022).
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4. VCT applications in breast imaging

4.1 Studies performed with OpenVCT
In the studies described by the UPENN group (Bakic, Barufaldi, Higginbotham, et al., 2018; Barufaldi, 

Maidment, et al., 2021), lesion detectability modelled using OpenVCT was compared to the clinical results 

of (Rafferty et al., 2013), a study that compared the use of DM only to DM combined with DBT. As part 

of the work, polycubes containing one to three voxels (0.1 mm³) of hydroxyapatite, with attenuation 

coefficient weighted by a factor of 0.8 were found to give a similar detection range as the real 

microcalcification data in (Rafferty et al., 2013). A VCT using an admixture of these polycubes resulted in a 

good agreement between the in-silico and real data in terms of AUC and ROC curve shape (Bakic, Barufaldi, 

Higginbotham, et al., 2018). A similar approach was applied to the modelled masses and found that 

thicknesses of 1.1 mm and 1.25 mm were in the detection range for the real data; the resulting VCT 

performed with these mass thicknesses closely matched the AUC of the clinical study. Projection and 

application of reconstruction/image processing of the mass lesions shown in Figure 7 results in the virtual 

DM and DBT images shown in Figure 11. Overall, when comparing the use of DM+DBT to just DM, 

Barufaldi et al (Barufaldi, Maidment, et al., 2021) found a change in AUC of -0.003 (+0.025 for the clinical 

data) for calcifications, and a change of +0.106 for non-calcification lesions (+0.096 for the clinical data).  

While there are some differences in the shape of the ROC curves for the VCT and real study, AUC values 

for microcalcifications and masses were within 4%, a result that took just 4 days of GPU computation time 

to realize. 

Figure 11. Examples of synthetic breast images with simulated masses, generated using OpenVCT 

software. (From (Barufaldi, Maidment, et al., 2021))

OpenVCT has been used to study factors affecting calcification detection in DBT using the polycube 

lesions in a number of preliminary studies (Barufaldi, Bakic and Maidment, 2019). System parameters for 
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the Hologic Selenia Dimensions (15° angular range) were assumed and the VCT compared 70 µm and 140 

µm detector element size, x-y voxel size of the reconstructed planes (70 µm vs 100 µm) and step and shoot 

versus continuous motion. The factor that most impacted calcification detection was voxel size, followed 

by source motion and then detector element size. A reduction in AUC of ~6% was seen for the smallest 

polycube. The better performance of smaller reconstructed voxels is consistent with the earlier work 

describing super-resolution for reconstructed DBT planes (Acciavatti and Maidment, 2012). The influence 

of angular range on calcification detection was also examined by (Barufaldi et al., 2020) for continuous tube 

motion and step and shoot regimes. For all the angular ranges considered (15°, 30° and 50°), switching 

from step and shoot to continuous tube motion led to the largest reduction in AUC, at ~10% for the 

smallest polycube. For a step and shoot method, angular range did not have a significant influence on AUC, 

while for continuous tube motion, there was a reduction in AUC of  ~3% for the 50° angular range 

compared to 15°. No information is given on the exposure time per projection used or how this was 

implemented in the ray tracing 

4.2 Studies performed with the VICTRE platform
The VICTRE platform was used to evaluate the potential for DBT to replace DM imaging by re-running 

an in-silico version (Badano et al., 2018) of the clinical study reported by (Georgian-Smith et al., 2019) using 

the Siemens Inspiration DBT system. A total of 2986 patients were simulated of which 1944 contained 

lesions. The distribution of densities across the patients was 9.6% extremely dense, 40.2% for both the 

heterogeneously and scattered fibroglandular dense classes and 10% fatty breasts. Approximately 30,000 

DM and 30,000 DBT cases were extracted from the simulated patient images and evaluated in the 

computational reader detection study. The change in AUC was +0.0587 (0.0062 standard error (SE)) in 

favour of DBT compared to DM, averaged for calcifications and masses, which was consistent with the 

change of +0.043 (0.017 SE) for the real study for masses and calcifications combined (Georgian-Smith et 

al., 2019). The real study found a +0.065 (0.017 SE) change in AUC for DBT for masses, which was echoed 

in the in-silico trial (+0.0903 (0.008 SE)). Surprisingly, VICTRE found superior detection for 

microcalcifications for DBT versus DM (+0.0268 (0.004 SE)), where there was a small but non-significant 

reduction in AUC for microcalcifications in the real study (Georgian-Smith et al., 2019) (-0.047 (0.032 SE)). 

Figure 12 shows the results of the VICTRE VCT, illustrating the change in AUC compared to the study of 

(Georgian-Smith et al., 2019).
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Figure 12. Trial primary and secondary outcomes. (AUC indicates area under the receiver operating 
characteristic curve; DBT, digital breast tomosynthesis; DM, digital mammography; VICTRE, Virtual 
Imaging Clinical Trial for Regulatory Evaluation; and error bars, standard errors. (taken from Badano et al 
(Badano et al., 2018))

4.3 Studies performed with the OPTIMAM platform
The OPTIMAM group has performed a number of studies using the framework outlined in Table 1. In 

contrast to OpenVCT and VICTRE, these studies do not re-run specific clinical studies but instead try to 

establish the threshold diameter for detection of a given lesion type (Hadjipanteli et al., 2017, 2019). A 

further difference is the use of human readers, generally physicists, in a 4-AFC reader study, rather than a 

computational reader, and then generates an AUC. Hadjipanteli et al (Hadjipanteli et al., 2017) examined 

threshold diameter for microcalcification detection in simulated DM and narrow angle (15°/15 projections) 

and wide angle (50°/25 projections) DBT systems. Microcalcification clusters containing 5 specks of the 

same size (but rotated) were scaled to give clusters ranging between 110 µm to 275 µm. For a 6 cm thick 

breast, at a fixed breast dose of 2.5 mGy, the threshold calcification diameters were 165 ± 9 µm for DM, 

211 ± 11 µm for narrow angle DBT  and 257 ± 14 µm for wide angle DBT. In addition, the height of the 

calcification cluster above the table did not influence threshold diameter. The effect of dose was studied 

for the DM and narrow angle DBT systems and found to have an influence, however the effect was smaller 

than the influence of geometry/modality. This work was repeated for masses, again for a 6 cm breast, at 

2.5 mGy. Threshold diameter for masses was 10.2 ± 1.4 mm for DM, which was significantly larger than 

the results for the narrow and wide angle DBT systems. No significant difference in threshold diameter 
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was seen between the narrow angle (6.0 ± 1.1 mm) and wide angle (5.6 ± 1.2 mm) DBT systems. Using a 

similar lesion set and methodology to Hadjipanteli et al (Hadjipanteli et al., 2017, 2019), Mackenzie et al  

(Mackenzie, Kaur, et al., 2021) studied the influence of breast glandularity on lesion detection for DM, DBT 

and synthetic mammography (SM) images. Breast voxel phantoms of thickness 5.3 cm were simulated with 

volumetric glandularities of 9%, 18% and 30%. Simulated images were generated for the Siemens 

Inspiration DBT system, using a prototype reconstruction algorithm to generate the DBT and SM images. 

For all three modalities, glandularity had only a small effect on calcification detection while threshold 

diameter for messes was significantly larger for the higher glandularity images for all three image types. 

Using a different method, (Mackenzie, Thomson, et al., 2021) compared lesion detection in DM, DBT and 

SM images. In the study, calcification clusters acquired at Leuven (Shaheen et al., 2011) and masses with 

round, ill-defined borders (A Rashidnasab et al., 2013) were generated and simulated into a dataset of 300 

real breast images of all BI-RADS classes, acquired on a Siemens Inspiration DBT system. A partial 

simulation framework (Elangovan et al., 2014) was used to generate signal present images containing subtle 

calcification clusters and masses for use in a reader study with three arms: DM alone, DBT+DM and 

DBT+SM, read by five experienced radiologists. Lesion detection using DBT was significantly better than 

in DM alone, while detection of subtle calcification clusters was slightly reduced but not significantly 

different between the DM and DBT+SM. Figure 13 illustrates these results via the lesion detection fraction. 

These results support the conclusions of a number of studies in which SM combined with DBT does not 

significantly change recall rates and cancer detection rates in comparison to DBT+DM (Houssami, 2017; 

Zuckerman et al., 2020; Abdullah et al., 2021).

Figure 13. Lesion detection fraction (LDF) for lesion localisation marks for (a) calcification clusters and 
(b) masses. Error bars indicate 95% confidence interval. (taken from Mackenzie et al (Mackenzie, Thomson, 
et al., 2021))

4.4 Studies performed with the CatSim and Leuven platforms
After the initial development and validation of the Leuven platform by Shaheen et al (Shaheen et al., 2011, 

2014) studies focused on DM applications. The study by Salvagnini et al (Salvagnini et al., 2016) used the 

platform to examine a regime for a DM device in which automatic exposure control (AEC) programming 
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was changed. The dose to the detector was varied in response to increasing breast thickness in order to 

maintain a technical measure of lesion detectability constant. Both microcalcification and mass lesions were 

simulated in sets of breast images acquired before and after the dose augmentation. The work found that 

an increase in dose for breast thicknesses 50 mm brought lesion detectability to a constant level. An early 

DBT study by Shaheen et al (Shaheen, Marshall and Bosmans, 2011) found an increase in peak contrast for 

simulated microcalcifications for step and shoot motion compared to continuous motion the x-ray focus 

for DBT imaging, however this was a technical study using simple spherical objects to simulate 

calcifications. As part of a PhD thesis on methods to evaluate SM images, Vancoillie (Vancoillie, 2022) has 

performed a VCT in which microcalcifications (Shaheen et al., 2011) were simulated in DBT and SM images 

and different dose acquisition strategies were examined (this work currently under submission). The study 

found reduced detectability, in terms of human reader AUC, for SM compared to DBT images, but a 

relative increase in the dose to the central projections increased AUC for the SM images. 

Li et al (Li et al., 2018) used CatSim to compare detectability in DBT and DM images of single 

microcalcifications simulated in a 5 cm SSBT (Li et al., 2016) background using a simulation of the GEHC 

Pristina system. Calcification diameters ranged between 100 µm and 600 µm, simulated with an Al 

attenuation coefficient weighted by 20%, 40% and 60%. Evaluated using a CHO computational reader to 

generate an AUC value, DBT gave higher AUC values for the 200 µm diameter calcifications than DM. For 

the 100 µm calcifications, there was no difference in AUC performance between DM and DBT. 

5. Discussion
This section discusses a number of aspects relating to the limitations the platforms and looks at some 

potential future directions for VCTs in breast imaging.

5.1 Detector modelling
While the structure of each platform is similar, dictated to a large extent by current DBT system architecture, 

there are notable differences in the depth or degree to which physics processes are modelled and methods 

used. This is in part also due to the differences between the different DBT systems, as evidenced by the 

range of results seen in the technical evaluation data in the companion paper and also in detailed 

characterization studies such as those described by Mackenzie et al (Mackenzie et al., 2017). The method 

and extent to which these are incorporated in the simulations varies, an example being the x-ray detector 

modelling where OpenVCT uses an ideal detector model while VICTRE implements a detailed MC model. 

The level of physical realism required is not yet known and will to some extent depend on which factors in 

the imaging chain are limiting reader performance or potentially biasing the results of VCTs. Badano 

(Badano, 2021) refers to this as “overmodelling” in which complex system properties are incorporated at 

the ground level, rather than being added in a later step (for example a filtering stage) that requires additional 

validation. Where two imaging modalities such as DM and DBT are compared on the same device with the 

same x-ray detector then an ideal detector model will suffice, provided differences in pixel spacing between 

imaging modes are modelled  (Bakic, Barufaldi, Higginbotham, et al., 2018). When the influence of detector 
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characteristics on system performance is the object of the study, then detailed modelling of the different 

detectors will be needed. The OPTIMAM group have shown that x-ray detector technology influences both 

human reader calcification detection and technical image quality for DM imaging (Mackenzie et al., 2012; 

Warren et al., 2012), using the CDMAM contrast-detail test object (Karssemeijer and Thiijssen, 1996) to 

quantify technical image quality. The use of technical tests may be one method of detecting any 

shortcomings in the system modelling. Insufficient accuracy in modelling factors that affect the level of 

quantum noise and system sharpness are likely to bias microcalcification results, while errors in modelling 

breast structure and anatomical noise may affect the simulation of mass detection. 

5.2 Dosimetry
A recent paper by Mettivier et al (Mettivier et al., 2022) has examined the potential for speed up in breast 

dosimetry when switching to GPU-based simulation. Three VCT platforms were compared: Agata from 

the University & INFN Napoli, which is a central processing unit (CPU) implementation of Geant4, XRMC 

MC code developed by the University of Cagliari (U Cagliari), which also runs on CPU hardware but uses 

variance reduction techniques and finally the gCTD MC code from the University of Texas Southwestern 

(Jia et al., 2012),  which is written in CUDA and runs on a GPU. Computation time was reduced by a factor 

of up to 104, which may ultimately enable real-time patient dosimetry for volumetric breast datasets 

(Mettivier et al., 2022). Future large scale VCTs may benefit from such methods.

The breast dosimetry model is currently being revised by a joint European Federation of Organisations for 

Medical Physics (EFOMP) and American Association of Physicists in Medicine (AAPM) Task Group 

(“Development of a new universal breast dosimetry method (TG282)”). The new model, which covers 

DM, DBT, contrast enhanced mammography and BCT modalities, reflects improved knowledge of the 

spatial position of the glandular parenchyma within the breast (Fedon et al., 2021). In developing the model, 

a total of 88 BCT datasets were acquired at a site in the Netherlands. A mechanical compression algorithm 

was applied and distributions of fibroglandular density measured in the axial, coronal and sagittal directions 

of the compressed breasts (Fedon et al., 2021). The fibroglandular tissue was found to be concentrated in 

the anterior and caudal areas, distributed symmetrically in the medio-lateral direction for CC views. For 

MLO views, this distribution was shifted by ~10% towards the lateral direction. The shape of the 

distributions was approximately independent of breast size, thickness and overall glandular fraction (Fedon 

et al., 2021). A new set of breast heterogeneous digital breast phantoms incorporating using these results 

have been developed for breast dosimetry in DM and DBT (Caballo et al., 2022). This information could 

be used to increase the realism of the physical distribution of fibroglandular tissue in the breast models 

currently used in these platforms (Bakic et al., 2002; Pokrajac, Maidment and Bakic, 2012; Graff, 2016; Li et 

al., 2016; Elangovan et al., 2017), and hence the accuracy of the dosimetry in VCTs. 

5.3 Breast phantoms and realism
Anthropomorphic breast phantoms act as realistic substitutes for breasts in these studies, yet the question 

remains, what degree of realism is required. One means of quantifying realism is to compare parameters 
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thought to be indicative of realism calculated for a patient image dataset and for the virtual images. 

Parameters used include the power spectrum (Burgess, Jacobson and Judy, 2001; Cockmartin, Bosmans 

and Marshall, 2013; Elangovan et al., 2017) and Laplacian fractional entropy (Abbey et al., 2014; Barufaldi, 

Abbey, et al., 2021). For example, Badano et al (Badano et al., 2018) calculated power spectra for VICTRE 

images of the Graff phantom from which the term () was determined by fitting the power law equation 

over the low spatial frequency range (i.e. ~0.1 to 0.7 mm-1):

(1)𝑃𝑆(𝑓) =  
Κ
𝑓𝛽

The term  is used to characterize the ‘texture’ of  image structures, while  is used as measure of magnitude 

of the image power (Burgess, Jacobson and Judy, 2001). Results were compared to the  values calculated 

for DM and DBT patient datasets by Cockmartin et al (Cockmartin, Bosmans and Marshall, 2013) and close 

agreement was generally found. 

Another option involves the use of human observers to evaluate image or lesion realism by showing 

simulated and real cases and asking radiologists to rate realism on a scale. Receiver Operating Characteristic 

(ROC) analysis is applied to establish whether reader response for the real and simulated datasets is 

significantly different (Shaheen et al., 2011; Elangovan et al., 2017). This type of experiment can be referred 

to as a “fool the radiologist” study (Badano, 2017).  An alternative is to assess realism in terms of the 

purpose for which the image has been generated rather than simply whether the image simply looks realistic, 

even to an expert observer (Badano, 2017). Badano suggests that “functional realism” is required  

(Ferwerda, 2003; Badano, 2017), where an image is defined as realistic if it provides the same visual 

information as the original scene. For x-ray imaging, we could interpret this as follows: a simulated image 

is considered realistic if an observer has the same task performance using these images as when using real 

breast images i.e. is receiving and interpreting the same visual information. Following this, it is likely to be 

easier to generate realistic images for simple tasks (e.g. detection task) compared to higher order tasks 

(estimation, characterization). It is a working hypothesis that the phantoms above generate sufficiently 

realistic structure such that detection performance data measured in the study for DM and DBT modalities 

predict system performance within a (limited) class of real patients. 

5.4 Lesion modelling
All platforms show significantly improved mass lesion detection for DBT versus DM, and most find similar 

or slightly inferior microcalcification detection performance for DBT imaging. The exception to this are 

the OPTIMAM results for threshold diameter of microcalcifications which are significantly worse for DBT 

compared to DM.  While it is clear from clinical studies that the addition of DBT to DM results in improved 

detection of masses and distortions (Ciatto et al., 2013; Skaane et al., 2019), calcification detection results 

are more mixed. A number of clinical studies describe the potential underestimation of  calcification clusters 

(Spangler et al., 2011; Tagliafico et al., 2014; Gilbert et al., 2015), although generally not significant.
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Regarding simulation of lesions, some studies have selected calcification clusters such that the clusters cover 

only a small diameter range, yielding subtle clusters that can be used to find the absolute diameter for 

threshold detection (Hadjipanteli et al., 2017; Mackenzie, Kaur, et al., 2021). This is similar to the use of five 

calcification specks of a certain diameter to form clusters in a phantom (Cockmartin et al., 2017; Ikejimba 

et al., 2021). While useful for establishing absolute performance differences between modalities, clinical 

calcification clusters are generally composed of a range of sizes, with some finer and some coarser (brighter) 

by which the cluster will often be detected. One of the challenges for VCTs investigating screening 

performance lies in accurately simulating the range of calcification clusters actually found in the screening 

population. This involves knowledge of the extent and shape of the overall cluster and of the size 

distribution and morphology of the calcifications within the cluster (Demetri-Lewis, Slanetz and Eisenberg, 

2012; Horvat et al., 2019); image databases with associated clinical data prove to be a valuable resource in 

this respect (Halling-Brown et al., 2020). Improved lesion insertion methods will also help. A problem 

associated voxel replacement is the potential for negative contrast lesions when inserted on certain 

backgrounds leading to an unrealistic appearance. To overcome this, Barufaldi et al (Barufaldi et al., 2022) 

describe the use of partial volumes to blend phantom and lesion materials via a weighted addition of mass 

attenuation coefficients. Accurate lesion modelling and insertion should largely obviate the need for pre-

pilot studies in which lesion characteristics are adjusted or the use of microcalcification weighting to match 

the detection performance for the benchmark modality. Similar observations will apply to mass-lesions. 

This knowledge can also help to improve the relevance of physical test objects used for QC performance 

testing, provided tissue substitutes that accurately mimic these lesions can be found.

An aspect that can increase the realism of VCTs investigating breast screening is the incorporation of 

tumour growth models, potentially with the aim of evaluating screening programme efficiency and the 

ability of a modality to detect interval cancers. While this is a very broad field (Edelman, Eddy and Price, 

2010; Jeanquartier et al., 2016), specific applications relevant to VCTs have begun (Sengupta, Sharma and 

Badano, 2021; Tomic et al., 2021). In the model developed by Sengupta et al (Sengupta, Sharma and Badano, 

2021), pressure fields determined from adjacent anatomical structures govern tumour growth by allowing 

the lesion to develop in a given directions. Changing pressure maps generated anisotropic lesions that were 

seen in clinical cases. The aim of the study by Tomic et al (Tomic et al., 2021) was to develop a set of growing 

tumours to evaluate multiple screening rounds with growing tumours. A fit to the probability distribution 

for tumour volume doubling times (TVDT) was applied to clinical data and used to generate growing 

tumours in 30 virtual breasts. Two successive screening rounds for each virtual breast were simulated. 

Measured TVDT from simulated mammograms was not significantly different from the real clinical TVDT. 

The platforms discussed here currently utilise simplified geometric or procedural methods (A Rashidnasab 

et al., 2013; de Sisternes et al., 2015; Bakic, Barufaldi, Higginbotham, et al., 2018) or lesions segmented from 

datasets acquired on a high resolution modality, for example micro-CT (Shaheen et al., 2011). Future 

methods are likely to involve the use of artificial intelligence (AI) as a means of generating and inserting 
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realistic breast lesions. Ayalfi et al (Alyafi, Diaz and Marti, 2020) used a Deep Convolutional Generative 

Adversarial Network (DCGAN) to generate mass lesions using training data taken from the OPTIMAM 

database (Halling-Brown et al., 2020). The paper by Shen et al (Shen et al., 2021) also used DCGANs to 

generate mass lesions, trained with data from the Digital Database for Screening Mammography (DDSM) 

(Heath et al., 2001), with the aim of producing lesions that include information of the shape, margin and 

(local) context. While the focus of this work is currently to provide data to augment training data and 

improve computer aided detection (CAD) algorithms, these methods have potential application in VCT 

lesion generation.

5.5 Image interpretation
Both OpenVCT and VICTRE use multiple insertion of lesions in a single breast to improve simulation 

efficiency when generating signal present images. This results in lesions evenly distributed across the breast 

which are then extracted in ROIs for a signal known exactly task. Increasing realism in the task modelling 

may involve simulating lesions at locations where certain lesion types are more likely to be found. An 

extension to VCTs may include the use of MOs that include search (Lau, Das and Gifford, 2013; Gifford, 

Liang and Das, 2016; Lago, Abbey and Eckstein, 2021b, 2021a). This may be necessary as Lago et al (Lago, 

Abbey and Eckstein, 2021a) have shown that human observer performance in a 3D location known exactly 

detection task does not always reflect performance in more clinically realistic tasks that involve 3D search 

tasks. The search task also induces some inefficiency that is not evaluated in a location known exactly 

method;  failure to include these sources may not lead to an accurate evaluation of 3D imaging performance 

(Lago, Abbey and Eckstein, 2021a). Whether this outweighs the advantage of performing a 

search/detection task in 3D (DBT), with reduced levels of anatomical noise, compared to 2D (DM) has 

not been studied.

A further question related to the use of both human observers and channelized MOs for the image 

interpretation stage, relates to MO generalizability. If, for example, a manufacturer generates an image 

dataset using the VICTRE platform for a VCT to support the introduction of a new reconstruction (B) in 

place of some current reconstruction algorithm (A), can an efficient MO tuned to maximise AUC for 

reconstruction A be applied to dataset B without re-tuning, or should the AUC be maximized for each 

reconstruction. If this has to be supported by human reader results then much of the benefit in terms of 

the resources saved is lost. An anthropomorphic MO could be developed but tuning separately to human 

reader data acquired for both reconstructions is necessary in this case.

5.6 Validation datasets
One means of encouraging cross-platform validation or comparison could be the publication of test 

datasets, akin to the datasets published MC simulations (Sechopoulos et al., 2015). In order to facilitate 

validation of the correct physical modelling of important aspects of the VCT chain, measured projection 

image data of well-defined, relevant test objects acquired with specific x-ray spectra could be listed along 

the technical data for the imaging system and x-ray detector required to perform a simulation. This might 
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include the MTF, NPS, focus size and shape, antiscatter grid parameters, angular velocity of the x-ray source 

etc. These would be input to the simulation platform and the results compared against the measured data, 

thus allowing various groups to compare simulation platforms and methods. Extending this to a validation 

of the full VCT chain would be more involved, requiring sets of lesions, for example voxel templates of 

microcalcifications or mass lesions, a breast model and a reconstruction algorithm. Comparison or 

validation could be made in terms of AUC derived for a standard MO.

6. Conclusion
As can be seen from the studies performed so far, VCTs can greatly help in bridging the gap between 

technical measurements and the results of clinical studies. In-silico trials have the potential to replace 

expensive and time consuming physical trials that recruit human subjects, and their use as part of regulatory 

evaluations is almost certain to increase (Badano, 2021). An advantage of these methods is that studies can 

be performed for theoretical devices or used to explore system configurations at a design stage (Sánchez de 

la Rosa, 2019). While improved modelling and computational power will lead to increased realism, VCTs 

have already produced useful results, despite limitations on the modelling of anatomy, task and imaging 

chain. Rigorous validation and transparent description of the frameworks should ensure progress in this 

area, something that could be helped with the availability of projection image datasets of test objects along 

with measured system data. As has already been done for the VICTRE and OpenVCT platforms, 

dissemination of platforms via internet hosting services should improve collaboration and also help in 

standardization. Physical characterization and test object methods will remain indispensable for technical 

assessment and QC of DBT and DM systems in the field. The rapid development of virtual methods applied 

to x-ray breast imaging and DBT in particular suggests that medical physicists, researchers and 

manufacturers will increasingly rely on simulation and virtual methods for system design and performance 

evaluation. 
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