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Product feature maps

1

A fundamental idea in machine learning is nonlinearly mapping low-dimensional inputs in
Rm to a high-dimensional feature vector space RN and computing a feature vector in
Rf by taking inner products with f vectors from RN .

1Figure 3 from Cheng, Feng, Niu, Liao, Water 7(8):4477–4495, 2015.



Mapping a low-dimensional vector x ∈ Rm nonlinearly to RN with Φ can be accomplished
I Globally: One nonlinear map Φ : Rm → RN .

For example, a fully connected layer in a neural network.
I Locally: Several (nonlinear) maps φi : Rmi → Rni combined into a global map Φ.

For example, a convolutional layer in a convolutional neural network.

The usual way to combine local features is by concatenation, as in convolutional neural
networks. That is, the full feature map is

Φ(x) =


φ′1(x)
φ′2(x)

...
φ′k(x)

 ,

where φ′i is φi applied to the correct elements of the input x .
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Mathematically, concatenation of the features is the Cartesian product of the local
feature maps:

Φ = φ′1 × φ′2 × · · · × φ′k : Rm → RN ,

where N =
∑k

i=1 ni .

This interpretation suggests an interesting alternative way to combine the features. We
can take the tensor product of the local feature maps:

Φ = φ′1 ⊗ φ′2 ⊗ · · · ⊗ φ′k : Rm → RN ,

where now N =
∏k

i=1 ni .
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The tensor product

The tensor product2 of vectors f1 ∈ Rn1 , f2 ∈ Rn2 , . . . , fk ∈ Rnk is

f1 ⊗ f2 ⊗ · · · ⊗ fk = ,

where the result is a n1 × n2 × · · · × nk k-array (or tensor).

2Also referred to as the Kronecker product and outer product, depending on the codomain of ⊗.



Note that it takes multiple low-dimensional vectors into an exponentially large space.
For example,

⊗ : Rn × · · · × Rn︸ ︷︷ ︸
k factors

−→ Rn×n×···×n

That is, the tensor product itself is a very special feature map!



It seems this tensor product is much less useful than the Cartesian product. After all, the
former suffers immensely from the curse of dimensionality. Indeed, we want to compute

L ◦ Φ = L ◦ (φ′1 ⊗ φ′2 ⊗ · · · ⊗ φ′k),

where
I Φ : Rm → RN is a tensor product feature map, and
I L : RN → Rf is a linear map.

In the naive way, applying L ◦ Φ requires at least fn1n2 · · · nk ≥ f 2k operations.

To lower the cost, one trick is to impose further constraints on the linear map L such
that L ◦ Φ can be evaluated efficiently without computing φ′1 ⊗ φ′2 ⊗ · · · ⊗ φ′k explicitly.



Tensor network decompositions

In the physics literature,3 a graphical language was developed to represent various
tensor decompositions.

A general third-order tensor A: Matrices that have a factorization AB:

Rm

Rn

RpA Rm RnRr
A B

3See Orús, Ann. Phys. 349:117–158, 2014 for a good introduction.



A tensor network is a graph of tensors. A tensor at a node lives in the tensor product of
the vector spaces on its edges. The whole network represents a tensor, by contracting
over internal edges, that lives in the tensor product of the dangling edges.

Rn1

Rn2

Rn3

Rn4

Rr
A B

In the above example,

A ∈ Rn1×n2×r and B ∈ Rn3×n4×r .



Example I: Tensor product of vectors (disconnected nodes)

f1 f2 · · · fk

Rn1 Rn2 · · · Rnk

R R R

A = f1 ⊗ f2 ⊗ · · · ⊗ fk

This is equivalent to

f1 f2 · · · fk

Rn1 Rn2 · · · Rnk



Example II: Tensor train decomposition (chain network)

A1 A2 · · · Ak

Rn1 Rn2 · · · Rnk

Rr1 Rr2 Rrk−1

4

4Oseledets, SIAM J. Sci. Comput. 33(5):2295-2317, 2011.



Supervised learning with tensor trains decompositions

It is known5 that L ◦ (φ′1 ⊗ φ′2 ⊗ · · · ⊗ φ′k) applied to x is represented by the network

Rf · · ·

φ′1(x)

φ′k (x)

Rnk

Rn1

L

Herein, L ∈ Rf×n1×n2×···×nk and the result of the computation is a vector in Rf .

5This is the universal property of the tensor product in reverse; See Greub, Springer, 1978.



The trick is now to impose a suitable tensor network structure on L. For example,
with a tensor trains decomposition, we get:

Rf

...

...

R
n k

2

Rn1

Rnk

φ′1(x)

φ′k
2

(x)

φ′k (x)

L k
2

L1

Lk

The tensors Li ∈ Rri−1×ri×ni are all small-scale if the ri are small. This mitigates the curse
of dimensionality!



This tensor (trains) technology can be plugged into existing machine learning pipelines:
I Standalone6

I Neural networks7

I Support vector machines8,9

6Stoudenmire, Schwab, Supervised learning with tensor networks, NeurIPS, 2016.
7Novikov, Podoprikhin, Osokin, Vetrov, Tensorizing Neural Networks, NeurIPS, 2015.
8Chen, Batselier, Suykens, Wong, IEEE Trans. Neural Netw. Learn. Sys. 29(10):4621–4632, 2018.
9Chen, Batselier, Yu, Wong, Pattern Recognition 122(108337), 2022.



We extended the standalone setup with an efficient scheme to build tensor networks that
are equivariant under the action of a representation of a finite group:10

As the translation equivariance of convolutional neural networks, this can be viewed as
an inductive bias for tensor train networks.

It turns out11 the global equivariance of the represented tensor is guaranteed by local
equivariance of the tensors at the nodes of a (loop-free) tensor network.

10Sprangers, Vannieuwenhoven, in preparation, 2022.
11Singh, Pfeifer, Vidal, Phys. Rev. A 82(050301), 2010.



We applied this equivariant tensor trains network to the supervised binary classification
problem from 12:

12Benchmark problems from Mallet, Vert, Reverse-Complement Equivariant Networks for DNA
Sequences, In: Adv. Neural Inf. Process. Sys. 34 (NeurIPS 2021)



Thanks for your attention!


