

Machine learning with tensor decompositions

Nick Vannieuwenhoven KU Leuven, Department of Computer Science, NUMA June 2, 2022

Product feature maps

A fundamental idea in machine learning is **nonlinearly mapping** low-dimensional inputs in \mathbb{R}^m to a **high-dimensional feature vector space** \mathbb{R}^N and computing a feature vector in \mathbb{R}^f by taking **inner products** with f vectors from \mathbb{R}^N .

¹Figure 3 from Cheng, Feng, Niu, Liao, Water 7(8):4477-4495, 2015.

Mapping a low-dimensional vector $x \in \mathbb{R}^m$ nonlinearly to \mathbb{R}^N with Φ can be accomplished

- Globally: One nonlinear map Φ : ℝ^m → ℝ^N.
 For example, a *fully connected layer* in a neural network.
- Locally: Several (nonlinear) maps $\phi_i : \mathbb{R}^{m_i} \to \mathbb{R}^{n_i}$ combined into a global map Φ . For example, a *convolutional layer* in a convolutional neural network.

Mapping a low-dimensional vector $x \in \mathbb{R}^m$ nonlinearly to \mathbb{R}^N with Φ can be accomplished

- Globally: One nonlinear map Φ : ℝ^m → ℝ^N.
 For example, a *fully connected layer* in a neural network.
- Locally: Several (nonlinear) maps $\phi_i : \mathbb{R}^{m_i} \to \mathbb{R}^{n_i}$ combined into a global map Φ . For example, a *convolutional layer* in a convolutional neural network.

The usual way to combine local features is by **concatenation**, as in convolutional neural networks. That is, the full feature map is

$$\Phi(x) = egin{bmatrix} \phi_1'(x) \ \phi_2'(x) \ dots \ \phi_k'(x) \end{bmatrix},$$

where ϕ'_i is ϕ_i applied to the correct elements of the input *x*.

Mathematically, concatenation of the features is the **Cartesian product** of the local feature maps:

$$\Phi = \phi'_1 \times \phi'_2 \times \cdots \times \phi'_k : \mathbb{R}^m \to \mathbb{R}^N,$$

where $N = \sum_{i=1}^{k} n_i$.

Mathematically, concatenation of the features is the **Cartesian product** of the local feature maps:

$$\Phi = \phi'_1 \times \phi'_2 \times \cdots \times \phi'_k : \mathbb{R}^m \to \mathbb{R}^N,$$

where $N = \sum_{i=1}^{k} n_i$.

This interpretation suggests an interesting alternative way to combine the features. We can take the **tensor product** of the local feature maps:

$$\Phi = \phi'_1 \otimes \phi'_2 \otimes \cdots \otimes \phi'_k : \mathbb{R}^m \to \mathbb{R}^N,$$

where now $N = \prod_{i=1}^{k} n_i$.

The tensor product

The tensor product² of vectors $\mathbf{f}_1 \in \mathbb{R}^{n_1}, \mathbf{f}_2 \in \mathbb{R}^{n_2}, \dots, \mathbf{f}_k \in \mathbb{R}^{n_k}$ is

where the result is a $n_1 \times n_2 \times \cdots \times n_k$ k-array (or **tensor**).

 $^{^2\}text{Also}$ referred to as the Kronecker product and outer product, depending on the codomain of $\otimes.$

Note that it takes multiple low-dimensional vectors into an **exponentially large space**. For example,

That is, the tensor product itself is a very special feature map!

It seems this tensor product is much less useful than the Cartesian product. After all, the former suffers immensely from the **curse of dimensionality**. Indeed, we want to compute

$$L \circ \Phi = L \circ (\phi'_1 \otimes \phi'_2 \otimes \cdots \otimes \phi'_k),$$

where

Φ: ℝ^m → ℝ^N is a tensor product feature map, and
 L: ℝ^N → ℝ^f is a linear map.

In the naive way, applying $L \circ \Phi$ requires at least $fn_1n_2 \cdots n_k \ge f2^k$ operations.

To lower the cost, one trick is to **impose further constraints on the linear map** L such that $L \circ \Phi$ can be evaluated efficiently without computing $\phi'_1 \otimes \phi'_2 \otimes \cdots \otimes \phi'_k$ explicitly.

Tensor network decompositions

In the physics literature,³ a **graphical language** was developed to represent various **tensor decompositions**.

³See Orús, Ann. Phys. 349:117–158, 2014 for a good introduction.

A **tensor network** is a graph of tensors. A tensor at a node lives in the tensor product of the vector spaces on its edges. The whole network represents a tensor, by **contracting over internal edges**, that lives in the tensor product of the **dangling edges**.

In the above example,

$$\mathcal{A} \in \mathbb{R}^{n_1 imes n_2 imes r}$$
 and $\mathcal{B} \in \mathbb{R}^{n_3 imes n_4 imes r}$

Example I: Tensor product of vectors (disconnected nodes)

 $\mathcal{A} = \mathbf{f}_1 \otimes \mathbf{f}_2 \otimes \cdots \otimes \mathbf{f}_k$

This is equivalent to

Example II: Tensor train decomposition (chain network)

⁴Oseledets, SIAM J. Sci. Comput. 33(5):2295-2317, 2011.

Supervised learning with tensor trains decompositions

It is known⁵ that $L \circ (\phi'_1 \otimes \phi'_2 \otimes \cdots \otimes \phi'_k)$ applied to x is represented by the network

Herein, $L \in \mathbb{R}^{f \times n_1 \times n_2 \times \cdots \times n_k}$ and the result of the computation is a vector in \mathbb{R}^f .

⁵This is the universal property of the tensor product in reverse; See Greub, Springer, 1978.

The trick is now to **impose a suitable tensor network structure** on *L*. For example, with a tensor trains decomposition, we get:

The tensors $\mathcal{L}_i \in \mathbb{R}^{r_{i-1} \times r_i \times n_i}$ are all small-scale if the r_i are small. This mitigates the curse of dimensionality!

This tensor (trains) technology can be plugged into existing machine learning pipelines:

- Standalone⁶
- Neural networks⁷
- Support vector machines⁸,⁹

⁶Stoudenmire, Schwab, Supervised learning with tensor networks, NeurIPS, 2016.
⁷Novikov, Podoprikhin, Osokin, Vetrov, Tensorizing Neural Networks, NeurIPS, 2015.
⁸Chen, Batselier, Suykens, Wong, IEEE Trans. Neural Netw. Learn. Sys. 29(10):4621–4632, 2018.
⁹Chen, Batselier, Yu, Wong, Pattern Recognition 122(108337), 2022.

We extended the standalone setup with an efficient scheme to build tensor networks that are **equivariant** under the action of a representation of a **finite group**:¹⁰

As the **translation equivariance** of convolutional neural networks, this can be viewed as an **inductive bias** for tensor train networks.

It turns out¹¹ the global equivariance of the represented tensor is guaranteed by local equivariance of the tensors at the nodes of a (loop-free) tensor network.

¹⁰Sprangers, Vannieuwenhoven, in preparation, 2022.

¹¹Singh, Pfeifer, Vidal, Phys. Rev. A 82(050301), 2010.

We applied this equivariant tensor trains network to the supervised binary classification problem from 12 :

5' TTA AGG AAC CCA CAT TCC TTG GGT 3'

Figure: Reverse compliment symmetry in DNA

- $\blacktriangleright \mathsf{A} \leftrightarrow \mathsf{T}, \mathsf{G} \leftrightarrow \mathsf{C} : \mathbb{Z}_2$
- Global mirror symmetry
- ▶ e.g.: GCTCA \Leftrightarrow TGAGC ▶ R

Problem:

 Predict binding of transcription factor to DNA sequence.

Setup:

- Kronecker product one-hot encoding
- SGD with Nesterov and momentum
- Regularization

Table: Test set results RC-equivariant networks and best benchmark results from [4].

Tasks	Model	AUROC
CTCF	Ours	94.10%
	Benchmark	$\mathbf{98.84\%}$
SPI1	Ours	96.53%
	Bechmark	99.26 %
MAX	Ours	97.06 %
	Benchmark	92.80%

¹²Benchmark problems from Mallet, Vert, Reverse-Complement Equivariant Networks for DNA Sequences, In: Adv. Neural Inf. Process. Sys. 34 (NeurIPS 2021)

Thanks for your attention!

