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ABSTRACT
Background No validated system currently exists to realistically characterize the chronic pathology of kid-
ney transplants that represents the dynamic disease process and spectrum of disease severity. We sought
to develop and validate a tool to describe chronicity and severity of renal allograft disease and integrate it
with the evaluation of disease activity.

Methods The training cohort included 3549 kidney transplant biopsies from an observational cohort of
937 recipients. We reweighted the chronic histologic lesions according to their time-dependent associa-
tion with graft failure, and performed consensus k-means clustering analysis. Total chronicity was calcu-
lated as the sum of the weighted chronic lesion scores, scaled to the unit interval.

Results We identified four chronic clusters associated with graft outcome, based on the proportion of
ambiguous clustering. The two clusters with the worst survival outcome were determined by interstitial
fibrosis and tubular atrophy (IFTA) and by transplant glomerulopathy. The chronic clusters partially over-
lapped with the existing Banff IFTA classification (adjusted Rand index, 0.35) and were distributed inde-
pendently of the acute lesions. Total chronicity strongly associated with graft failure (hazard ratio [HR],
8.33; 95% confidence interval [CI], 5.94 to 10.88; P<0.001), independent of the total activity scores (HR,
5.01; 95% CI, 2.83 to 7.00; P<0.001). These results were validated on an external cohort of 4031 biopsies
from 2054 kidney transplant recipients.

Conclusions The evaluation of total chronicity provides information on kidney transplant pathology that
complements the estimation of disease activity from acute lesion scores. Use of the data-driven algorithm
used in this study, called RejectClass, may provide a holistic and quantitative assessment of kidney trans-
plant injury phenotypes and severity.

JASN 33: 2026–2039, 2022. doi: https://doi.org/10.1681/ASN.2022030290

Although kidney transplantation is considered the
first-choice therapy for kidney failure and provides
better outcomes than remaining on the wait list in
dialysis,1,2 graft failure remains a clinical problem.3

The etiology of kidney transplant failure is complex
and multifactorial.4 Although some (acute) inflam-
matory lesions are observed mainly early after tran-
splantation, others accumulate over time and reflect
chronic injury processes, sometimes already ongoing
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in the donor before transplantation.5,6 Late post-transplantation
biopsies are commonly affected by nonspecific progressive
fibrosis,7,8 whereas early biopsies mostly contain inflammatory
lesions related to allo-immune risk factors.9 It results that early
graft failures are dominated by T cell–mediated rejection
(TCMR) and antibody-mediated rejection (ABMR), recurrent
disease, and failure due to early perioperative problems,
whereas late graft failures are more multifactorial, not only
related to allo-immune processes, but also driven by nonspe-
cific chronic injury such as graft quality and calcineurin inhibi-
tor toxicity.4,10

The international Banff classification for kidney transplant
pathology stratifies kidney transplant biopsies according to
the combinations of two different sets of semiquantitative his-
tologic lesions, acute and chronic, which distinguish both the
rejection subtype (ABMR versus TCMR) and rejection stage
(acute/active versus chronic). ABMR and TCMR, and acute/
active and chronic lesions, can co-occur at the same time
(mixed rejection; chronic/active rejection).11 This compart-
mentalization of the histologic picture of kidney transplants
leads to a plenitude of diagnoses that are not mutually exclu-
sive, and that may hamper clinical decision making.

We recently demonstrated the potential of RejectClass, a
data-driven algorithm for phenotyping kidney transplant bio-
psies leveraging semisupervised clustering on the acute Banff
lesion scores.12 This mathematical approach resulted in biopsy
clusters that were both histologically sound (reflecting known
associations between lesion scores and donor-specific human
leukocyte antigen [HLA] antibodies) and clinically relevant. In
particular, the data-driven clusters demonstrated a better asso-
ciation with graft failure compared with the Banff categories
and eliminated the intermediate (borderline) and mixed phe-
notypes. Moreover, a mathematical estimation of inflamma-
tion severity was provided, again predicting the risk of graft
failure. Those findings were validated on an extensive external
cohort and made available for research use through an online
platform.13

Despite its promise for reclassification of acute rejection
and for assessing rejection severity, this RejectClass system
focused solely on the set of acute lesions and donor-specific
HLA antibodies.12 Therefore, this approach offered only a
partial view of the heterogeneous causes of graft failure. It
is now well established that chronic lesions constitute an
independent risk factor for late graft failure,14 and therefore
are included in multivariable models such as the iBox pre-
diction score. Moreover, it was previously suggested that
there is heterogeneity in the histologic presentation of
early15 and late16,17 indication biopsies, which could be su-
mmarized into clusters of chronic lesions with different
associations with outcome. Therefore, in the evaluation of
kidney transplant histology, chronic phenotypes should
also be assessed, in complement to the acute rejection su-
btypes. Despite the suggestion of relevance of previously
suggested clusters of chronic rejection,16,17 hierarchical clu-
stering cannot be applied on new biopsies, is typically

unstable, and yields a larger number of smaller clusters that
have less clinical relevance.

Given the potential clinical utility of the k-means
reclassification approach on the acute Banff lesions,12,18

together with the suggestion that also the chronic lesions
are highly relevant for assessment of disease severity and
prognosis, we derived and externally validated data-driven
chronic phenotypes of kidney transplant biopsies, leverag-
ing the chronic Banff lesion scores. We also demonstrated
the complementarity of assessing both the acute and the
chronic components to provide a holistic view on kidney
transplant histology. This system can be used as a supple-
ment to the Banff classification, and provides a more
global and also quantitative assessment of disease activity
and chronicity.

METHODS

Data

Training Cohort
The training cohort consisted of all kidney transplantations
performed at the University Hospitals Leuven between
March 2004 and February 2013 (n51137). Data extraction
was done in March 2018, thus leading to a minimum of 5
years of post-transplant follow-up. Recipients of combined
transplants (n5113) and kidney transplantation after
another solid organ transplantation (n524) were excluded.
The transplants were performed with negative comple-
ment-dependent cytotoxicity crossmatches. The routine
clinical data were collected in electronic health records and
associated with a SAS database from which the research
data were extracted. The standard immunosuppressive mai-
ntenance protocol consisted of tacrolimus, mycophenolate,
and corticosteroids.19 The histologic data consisted of all
3622 kidney transplant biopsies performed at the Leuven
University Hospitals between April 2004 and February
2015 in 949 patients. Biopsies were performed upon
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Chronic lesions constitute an independent risk factor for late kid-
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driven system to realistically describe the chronic pathology of
kidney transplants. The authors describe the application of clus-
tering methods to characterize the chronicity and severity of
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medical indication (indication biopsies at time of graft dys-
function) or as part of an established follow-up protocols
(protocol biopsies).20 Biopsies with missing lesion scores
were excluded (n573). A total of 3549 biopsies from 937
recipients were available for analysis. Ethnicity was identi-
fied and classified by investigator observation. Ethnical
information was collected to enable discussions on the gen-
eralizability of the findings. This study was approved by the
Ethical Committee of the University Hospitals Leuven
(S64006).

Validation Cohort
The electronic databases of Lyon University Hospitals
(registration #AC-2016-2706) and the Necker Hospital in
Paris were screened with the same selection criteria as
detailed above. The independent validation set was com-
posed of 4031 complete biopsies from 2054 transplants, of
which 1399 biopsies (from 698 transplants) were perfor-
med between January 2007 and December 2015 in Lyon,
and 2632 biopsies (from 1356 transplants) were performed
between March 2009 and October 2019 in Paris. All biop-
sies were performed either for indication or as part of the
routine follow-up at 3 months and 12 months post-trans-
plantation. The clinical and histologic content of those
databases was anonymized and transmitted to Leuven as
external validation cohort.

Histologic Scoring
All post-transplant kidney allograft biopsies from the train-
ing cohort were reviewed by a single pathologist (E. Lerut).
The severity of the histologic lesions was assessed semiquan-
titatively according to the Banff guidelines.21 Next to the set
of acute Banff lesions, tubulitis (t), interstitial inflammation
(i), glomerulitis (g), intimal arteritis (v), C4d deposition in
peritubular capillaries (C4d), peritubular capillaritis (ptcitis),
and thrombotic microangiopathy,12 in this study, we focused
on the following set of histologic chronic lesions: glomerular
basement membrane double contours (cg, from 0 to 3), in-
terstitial fibrosis (ci, from 0 to 3), tubular atrophy (ct, from 0
to 3), vascular fibrous intimal thickening (cv, from 0 to 3),
mesangial matrix expansion (mm, from 0 to 3), and arterio-
lar hyalinosis (ah, from 0 to 3). The degree of interstitial
fibrosis and tubular atrophy (IFTA) was calculated from the
ci and ct scores: IFTA 3: ci53 and ct53; IFTA 2: ci$2 and
ct$2; IFTA 1: ci$1 and ct$1. The number of sclerosed glo-
meruli (glomerulosclerosis; gs score) was scored separately
(0 5 ,10%; 1 5 10%–25%; 2 5 25%–50%; 3 5 .50% glo-
merulosclerosis).22 The choice of completely disentangling
the sets of acute and chronic lesions was motivated by the
scientific evidence that chronicity constitutes an indepen-
dent risk factor in itself.14,23 The histologic scoring of the
validation datasets are provided for the Lyon24 and the
Paris14 datasets.

Data Analysis

Semisupervised Clustering with Time-Dependent Weighting
We used a similar semisupervised methodology as descr-
ibed recently.12 Individual lesion scores were first standard-
ized and reweighted based on their association with graft
failure. Then, a traditional unsupervised clustering algo-
rithm was applied on the reweighted data using a consen-
sus approach to derive stable clusters. However, because
chronic injury is a dynamic process, it was important to ac-
count for time dependency when deriving lesion weights,
instead of constant weights. We therefore developed a two-
step empirical approach to derive time-dependent weights
of the chronic lesions. First, local Cox models at time post-
transplant t were computed using all of the biopsies per-
formed during a time window of 120 days centered around
t. A minimal amount of 50 biopsies from unique patients
in the time window were needed to compute a local Cox
model, else no score was computed for this time t. By incl-
uding only one biopsy per patient, we avoided artificially
inflating the event rates with repeated measurements. In
the second stage, a continuous function was fit to appro-
ximate the longitudinal evolution of the univariate Cox mo-
del’s coefficient over time. Using continuous functions
avoids local fluctuation of the weights from unstable esti-
mates and allows weights to be derived even if no biopsies
were available at that time post-transplant. We applied win-
sorizing to limit the effect of outliers’ coefficients, defined
here as below the 2.5th or above the 97.5th percentiles, on
the function approximation. The time-dependent weights
were modeled with one of the following functions: linear,
quadratic, square root, or logarithmic. The choice of the
functional form was determined by the Bayesian informa-
tion criterion. With such dynamic weighting, chronic lesion
scores do not carry the same importance throughout time.
Therefore, although some biopsies can be considered simi-
lar in a time-independent approach, they can be treated dif-
ferently once adjusted for time dependency.

Consensus Clustering
Stable clustering was produced through consensus cluster-
ing with 400 partitions according to a similar methodology
as used in Vaulet et al.,12 with k-means as core clustering
algorithm. For each of the 400 partitions, a k-means algo-
rithm with a random initialization was trained on a subset
(80%) of the original data similar to Monti et al.25 For the
remaining 20% out-of-bag biopsies, a cluster label was
assigned based on the nearest cluster centroid. The final
clustering was obtained through majority voting consensus
over the 400 partitions. The optimal number of clusters
was chosen based on the proportion of ambiguous cluster-
ing (PAC). Each biopsy was weighted based on its total
chronicity score (i.e., the sum of all chronic lesions).
Thereby, less frequent biopsies with high chronicity scores
acquire more importance during the clustering process
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compared with the large set of biopsies with mild chronic-
ity scores. The final clusters were obtained with majority
voting over the whole set of clustering partitions.

For the validation phase, the chronic lesion score from
new biopsies were standardized and weighted using the
parameters derived on the training cohort. The biopsies
were then classified to the nearest cluster centroid of the
training data. The degree of similarity between two data
partitions was assessed with the adjusted Rand index (ARI),
which accounts for potential overlapping partitions due to
chance. A score of 1 indicates a perfect overlap of the two
partitions, whereas a score of 0 indicates a random parti-
tioning. ARI can take values from 21 to 1. A decision tree
was trained on the cluster-labeled data to get insight into
the clustering process. The tree was generated using the
Gini impurity criterion with a minimum of ten biopsies per
leaf and a maximum depth of 6.

Survival Analysis
Graft survival times are reported as post-biopsy times in
days until graft failure. Patients were censored at the last
follow-up date or at time of death. Survival curves are plot-
ted with Kaplan–Meier estimators along with the 95% con-
fidence interval (CI). In case several biopsies from a given
patient were classified to the same cluster, their survival
times were averaged to avoid overinflating the transplant
failure events rate with repeated biopsies. Hazard ratios
(HRs) with 95% CI from Cox models were calculated for
pairwise comparison of survival curves. In addition, restr-
icted mean survival times (RMSTs)26 with a 95% CI at 5
and 10 years were evaluated to assess the mean survival
time without event within a predefined time range. Unlike
HR, RMST is not affected by proportional hazard assump-
tion violations and provides an intelligible measure of
mean survival time. Finally, we reported the differences in
RMSTs from the baseline cluster, which estimates the dif-
ference in average event-free survival, in years, between a
given cluster and the baseline category. Joint modeling was
used to assess the effect of continuous variables on graft
survival, while accounting for repeated biopsies. The joint
model consisted of a combination of a mixed model with
random slope for the longitudinal response jointly trained
with a survival model.27

Visualization
We followed a similar approach as described in Vaulet et al.12

to visualize the biopsies on a two-dimensional polar plot.
The radius was calculated as the sum of the weighted
chronic lesion scores, scaled to the unit interval. It represents
the total chronicity score of the biopsy. The theta axis was
derived from a linear discriminant analysis (LDA). We
trained an LDA on standardized unweighted chronic lesion
scores using the biopsies from the two clusters with the
worst survival outcome. We then derived the unidimensional
score for the whole dataset. Because LDA aims to find the

best separation between two classes, it produces a better sep-
aration of the chronic phenotypes than unsupervised appro-
aches such as principal component analysis. A marginal
model on the basis of generalized estimating equations
(with an autoregressive correlation structure) was used to
estimate overall association measures in presence of repeated
measurements.

All analyses were performed with Python 3.6.6, except
the joint modeling which used the JMbayes2 R package.28

A web application, where other teams can upload their
own data and derive the chronic and acute clusters from
the individual Banff lesion scores is available at https://
rejectionclass.eu.pythonanywhere.com.

RESULTS

Training Cohort Characteristics
Descriptive statistics of the training cohort at the patient
(n5937) and biopsy (n53549) levels are reported in
Table 1. On average, 3.79 biopsies (range: 1–11, 74
patients [7.8%] had only one biopsy) were performed per
patient; there were 786 indication biopsies (22.1%) and
2763 protocol biopsies (77.9%). Overall, biopsies were
performed at a median post-transplant time of 365 days
(interquartile range [IQR]: 91–742). The biopsies were
categorized according IFTA grade in the following pro-
portions: IFTA 0 (n51907, 53.7%), IFTA 1 (n51170,
33.0%), IFTA 2 (n5328, 9.2%) and IFTA 3 (n5144,
4.1%).

Semisupervised Clustering of Chronic
Injury Phenotypes
Based on the PAC metric, the optimal number (k) of cl-
usters was 4, although k53 had very close performance
(Supplemental Table 1). Compared with a fully unsuper-
vised approach, which favored three clusters, the clusters
from the semisupervised approach were more stable and
better differentiated graft outcome (Supplemental Table 1).
The four clusters obtained with the semisupervised cluster-
ing were labeled from 1 to 4 based on their association
with graft failure (Figure 1). Most of the biopsies (n52876,
81.0%) were assigned to cluster 1. With a median of 349
days post-transplant (IQR: 89–729 days) (Supplemental
Figure 1), cluster 1 was dominated by early biopsies with
zero or mild lesion scores (Supplemental Table 2). Biopsies
in cluster 2 (n5420, 11.8%) had higher grades of ci and ct
compared with cluster 1. The median time post-transplant
was 718 days (IQR: 367–787), reflecting later biopsies. Clus-
ter 3 contained biopsies (n5195, 5.5%) from a later stage
of chronicity with a median time post-transplant of 1097
days (IQR: 742–1826 days). Those biopsies were dominated
by severe ci and ct lesion scores, and to a lesser extent,
mild to severe cv, ah, and glomerulosclerosis lesions,

www.jasn.org BASIC RESEARCH

JASN 33: 2026–2039, 2022 Chronic Kidney Transplant Phenotypes 2029

https://rejectionclass.eu.pythonanywhere.com
https://rejectionclass.eu.pythonanywhere.com
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2022030290/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2022030290/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2022030290/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2022030290/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2022030290/-/DCSupplemental
https://www.jasn.org


altogether with a large majority of cg0 scores. Finally, biop-
sies in cluster 4 (n558, 1.6%) were dominated by mild to
severe cg lesion scores. Compared with cluster 3, severe ci
and ct scores were less present in cluster 4. The median
time post-transplant was 765 days (IQR: 703–1136 days).
Biopsies in clusters 1, 2, and 3 had a large majority of cg0
lesions (.97% for all three clusters) whereas cluster 4 gath-
ered all of the remaining cg1, cg2, and cg3 but none of cg0.
From a marginal model analysis, the year post-transplant
was associated with the total chronicity in kidney trans-
plant biopsies (coefficient, 0.030; 95% CI, 0.028 to 0.032;

P,0.001). Although there was an association with time, the
clustering of the biopsies solely based on the time post-
transplant variable produced clusters without discrimina-
tion in graft survival (Supplemental Figure 2 for various
values of k). This indicates that the pattern of the chronic
lesions is more important than the timing of the biopsy in
predicting graft survival.

Because the PAC was similar between k53 and k54, we
also evaluated the composition of k53 clusters (Supple-
mental Figure 3). Compared with an approach with three
clusters, having four clusters facilitated the discrimination

Table 1. Demographic, clinical, and histologic characteristics of the patients and biopsies included in the training cohort

Characteristics Results

Cohort characteristics Total (n5937)
Donor demographics
Donor type

Donation after brain death, n (%) 727 (77.6)
Donation after cardiac death, n (%) 153 (16.3)
Living donation, n (%) 57 (6.1)

Age (yr), mean6SD 47.7614.7
Male, n (%) 498 (53.1)
Diabetes, n (%) 24 (2.6)

Recipient demographics
Age (yr), mean6SD 53.5613.3
Male, n (%) 573 (61.2)
Ethnicity

Asian, n (%) 3 (0.3)
Black, n (%) 12 (1.3)
Hispanic, n (%) 1 (0.1)
White, n (%) 921 (98.3)

Body mass index (kg/m2), mean6SD 25.464.5
Pretransplant donor-specific HLA antibodies, n (%) 107 (11.4)

Repeat transplantation, n (%) 141 (15)
Cold ischemia time (h), mean6SD 14.265.7
Total number of HLA A/B/DR mismatches, mean6SD 2.761.3

Biopsy characteristics Total (n53549)
Banff 2019 diagnosis
No rejection, n (%) 2690 (75.8)
Borderline changes, n (%) 331 (9.3)
TCMR, n (%) 287 (8.1)
ABMR, n (%) 124 (3.5)
Mixed rejection (ABMR 1 TCMR), n (%) 90 (2.5)
Mixed borderline rejection (ABMR 1 borderline changes), n (%) 27 (0.8)

Interstitial fibrosis and tubular atrophy (IFTA) grade
IFTA 0, n (%) 1907 (53.7)
IFTA 1, n (%) 1170 (33.0)
IFTA 2, n (%) 328 (9.2)
IFTA 3, n (%) 144 (4.1)

Indication biopsies, n (%) 786 (22.1)
Days since transplantation, median (interquartile range) 22 (8–105)
eGFR at day of biopsy (ml/min per 1.73 m2), median (interquartile range) 19.4 (10.8–28.8)

Protocol biopsies, n (%) 2763 (77.9)
3 months, n (%) 827 (29.9)
12 months, n (%) 767 (27.8)
24 months, n (%) 644 (23.3)
36 months, n (%) 210 (7.6)
48 months, n (%) 23 (0.8)
60 months, n (%) 292 (10.6)
Days since transplantation, median (interquartile range) 377 (101–752)
eGFR at day of biopsy (ml/min per 1.73 m2), median (interquartile range) 46.3 (36.5–57.8)
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between a cluster driven by ci and ct (cluster 3) and a clus-
ter dominated by cg (cluster 4), while adding an intermedi-
ate phenotype (cluster 2). Supplemental Figure 4 displays
the distribution of acute lesions among the k54 clusters.
Chronic clusters 1, 2, and 3 demonstrated similar acute
lesion profiles, whereas cluster 4 exhibited a higher rate of
i, t, g, C4d, ptcitis, and donor-specific HLA antibodies

compared with the other clusters. A decision tree trained to
predict the cluster labels was not able to entirely reproduce
the whole clustering process (balanced accuracy of 0.875).
Although prototypical cases (e.g., nonrejection cases) were
easily classified, more intricate cases could not always be
correctly classified, which limits the tree’s clinical
usefulness.
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Figure 1. Distribution of the individual chronic lesion scores in the different chronic clusters, and post-biopsy Kaplan–Meier
graft survival curves relative to cluster 1 of the training cohort (n53549 biopsies), along with exemplary biopsies. (A) Cluster 1
was dominated by biopsies (n52876, 81.0%) with zero or mild lesion scores and had the best graft survival. Biopsies in cluster 2
(n5420, 11.8%) had higher grades of ci and ct compared with cluster 1. Cluster 3 contained biopsies (n5195, 5.5%) dominated by
severe ci and ct lesion score, and to a lesser extent, mild to severe cv, ah and glomerulosclerosis (gs score) lesions, altogether with a
large majority of cg0 scores. The biopsies in cluster 4 (n558, 1.6%) were dominated by mild to severe cg lesion scores. Unlike cluster
3, severe ci and ct scores were less present in cluster 4. Biopsies in clusters 1, 2, and 3 had a large majority of cg0 lesions (.97% for
all three clusters) whereas cluster 4 gathered all the remaining cg1, cg2, and cg3 but none of cg0. The biopsies in clusters 3 and 4
demonstrated worse graft survival (P,0.001) than biopsies in cluster 1. (B) Exemplary biopsies for each cluster. The biopsy labeled
as cluster 1 did not demonstrate any chronic Banff lesions except ah1. The biopsy labeled as cluster 2 was scored with the following
lesions: ci2, cv1, ct1, and ah1. The biopsy labeled as cluster 3 was scored with the following lesions: ci3, ct3, cv1, ah1, and gs1. The
biopsy labeled as cluster 4 was scored with the following lesions: cg2 (arrows), ci3, ct2, and ah2. cg, glomerular basement membrane
double contours; ci, interstitial fibrosis; ct, tubular atrophy; cv, vascular fibrous intimal thickening; mm, mesangial matrix expansion;
ah, arteriolar hyalinosis; gs, glomerulosclerosis; HR, hazard ratio.
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Figure 2. Visualization of the chronic clusters on the polar plot and association with graft survival (n53549 biopsies of the
training cohort). (A) Polar plot of the 3549 biopsies of the training cohort overlaid by the four chronic clusters. The radius represents
the total chronicity computed as the sum of reweighted chronic lesion scores, scaled to the unit interval (from 0 to 1). The theta
angle is directly related to the chronic rejection phenotypes and differentiates between cluster 4 and cluster 3 based on linear dis-
criminant analysis. Biopsies from cluster 1 occupy a central location with limited total chronicity, and biopsies from cluster 2 have an
intermediate position between cluster 1 and cluster 3. Biopsies from clusters 3 and 4 share similar range of chronicity scores. How-
ever, the patterns of lesions composing the clusters are drastically different, projecting the biopsies in opposite direction on the
theta angle of the polar plot. The corresponding Kaplan–Meier curves are displayed on the right. (B) Association of the polar plot
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Visualization of the Clusters
A two-dimensional polar plot visualization of the biopsies ba-
sed on the chronic cluster attribution is displayed in Figure 2.
Most of the biopsies from cluster 4, driven by cg lesion scores,
are located on the left half of the plot (positive theta angle),
whereas biopsies from other clusters mostly have a negative
theta angle. The total chronicity score, represented by the
radius, provides a good discrimination in graft survival associa-
tion as demonstrated by the survival curves from different
radius strata (Figure 2B). As expected, biopsies from cluster 1
occupy a central location with a smaller total chronicity, and
biopsies from cluster 2 have an intermediate position between
cluster 1 and cluster 3. Biopsies from clusters 3 and 4 have a
similar range of chronicity scores (i.e., similar radius distr-
ibution) (Supplemental Figure 5). However, the patterns of
lesions composing the clusters are drastically different, pro-
jecting the biopsies in opposite direction on the theta angle of
the polar plot. This difference of patterns is also evident in
Supplemental Figure 6 which displays various combinations of
lesion scores and the time post-transplant on the same polar
plots.

Association between Chronic Clusters and
Graft Failure
Overall, 125 grafts failed during follow-up. From clusters 1–4,
respectively 9.9%, 12.8%, 17.5%, and 44.0% of the grafts failed
within 5 years post-biopsy respectively. Clusters 3 and 4 were
associated with an increased risk of graft failure in compari-
son with cluster 1 (Figure 1 and Table 2). HRs of clusters 2,
3, and 4 compared with cluster 1 were 1.33 (95% CI, 0.95 to
1.87), 2.07 (95% CI, 1.41 to 3.04), and 6.57 (95% CI, 4.11 to
10.49), respectively. When we predicted graft failure for each
biopsy separately, by using local Kaplan–Meier estimates
based on the 40 nearest neighbors, solely based on the chro-
nic lesion scores, the areas under the receiver operating char-
acteristic curve (AUCs) of the probability for graft failure at 2
and 5 years post-biopsy were 0.70 (95% CI, 0.67 to 0.73) and
0.65 (95% CI, 0.63 to 0.68), respectively (Figure 2C).

Comparison between Chronic Clusters and Acute
Rejection Phenotypes
Unsupervised dimensionality reduction with principal com-
ponent analysis on the whole set of lesions separated the
acute and the chronic lesions in two almost orthogonal
directions (Supplemental Figure 7), suggesting a high deg-
ree of independence. The ARI between the acute Banff

categories and the chronic clusters was 20.0025, which
reflects an almost random partition of the Banff categories
among the chronic clusters. Similarly, the ARI between the
acute rejection clusters (obtained from the work of Vaulet
et al.12) and the chronic clusters was 0.0133, again reflecting
low agreement. Supplemental Figure 8 (top) displays the acute
rejection clusters on the chronic polar plot and did not reveal
obvious patterns. Additionally, there was no correlation
between the radius based on acute lesions and the radius based
on chronic lesions (Spearman correlation, 0.0016; P50.923).
From this, it can be concluded that acute and chronic radiuses
represent independent information.

Association between (Acute and Chronic) Radius and
Graft Failure
From the survival part of the multivariable joint model, the
HR for graft failure of the acute radius (calculated according
to Vaulet et al.12) and the chronic radius were 5.01 (95% CI,
2.83 to 7.00; P,0.001) and 8.33 (95% CI, 5.94 to 10.88;
P,0.001) respectively, indicating that both radiuses remained
strongly associated with graft failure, even when combined in
a single model. Compared with univariate models (i.e., the
models using either the acute or the chronic radius alone)
the combined model demonstrated better discriminative per-
formance over a larger range of time post-transplantation
(Table 3) whereas a model solely trained on the acute radius
discriminated mostly early biopsies and a model trained on
chronic radius best predicted outcome of late biopsies.

Comparison between Chronic Clusters and
IFTA Grade
The chronic clusters demonstrate a partial overlap with the
existent IFTA categories, with an ARI of 0.35. However, the
IFTA categories are less discriminatory with regard to the risk
of graft failure than the chronic clusters, as demonstrated by
the larger differences in RMST and larger HR of the chronic
clusters when compared with the baseline category (i.e., clus-
ter 1 and IFTA 0) (Figure 1, Supplemental Figures 9 and 10,
Table 2). The major difference with IFTA is the creation of a
cluster driven by cg lesions, which demonstrated the highest
risk of graft failure. Supplemental Figure 8 (bottom) displays
the IFTA categories on the chronic polar plot.

External Validation
Based on the features’ weights and the cluster centroids
derived from the consensus clustering process on the training

Figure 2. (Continued ) radius with graft survival in the training cohort. The biopsies were stratified along the radius axis in four
strata. The corresponding Kaplan–Meier survival curves are plotted on the right. This demonstrates that the total chronicity (as the
sum of the reweighted chronic lesion scores, scaled to the unit interval from 0 to 1), represented by the radius of the polar plot, is
positively associated with the risk of graft failure. The total chronicity score was discretized into four different levels of chronicity, cor-
responding to the following radiuses: “Minimal”: radius #0.3; “Moderate”: radius 0.31–0.5; “Severe”: radius 0.51–0.60; and “Very
severe”: radius .0.6. (C) Estimated graft survival probability at 5 years post-biopsy, computed from the 40 nearest biopsies with the
corresponding calibration curve displayed on the right panel.
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data, new biopsies can be classified in one of the four clusters
derived on the training data from Leuven. We applied the
trained algorithm to an external set of 4031 biopsies (Supple-
mental Table 3). A comparison of the cluster proportion
between the training and the validation sets is reported in
Supplemental Figure 11. Although the cluster ranking in terms
of numbers of biopsies was the same between both cohorts,
with a dominant cluster 1, proportionally, the other clusters
were more prevalent in the validation set. Like the training
data, the biopsies of the external cohort that classified as cluster
1 were dominated by low lesion scores, although cv and ah
lesions had higher scores compared with the training data. As
observed on the training cohort, the biopsies from cluster 3
were also driven by ci and ct with very few cg, whereas the
biopsies in cluster 4 all presented mild to severe cg lesion scores

(Figure 3A). Biopsies in cluster 2 demonstrated higher lesion
scores compared with the same cluster from the training data.
All clusters from the validation set were significantly associated
with an increased risk of graft failure compared with cluster 1
(Figure 3A) and the two-dimensional polar plot demonstrated
similar distribution of the biopsies compared with the training
cohort (Figure 3B). Using local Kaplan–Meier estimates based
on the 40 nearest neighbors, solely based on the chronic lesion
scores, the AUC of the probability for graft failure at 2- and
5-years post-biopsy were 0.72 (95% CI, 0.69 to 0.75) and 0.68
(95% CI, 0.65 to 0.70) respectively (Figure 3, C and D). The
total chronicity score also provided a good discrimination in
graft survival association on the validation cohort, as demon-
strated by the survival curves from different radius strata
(Supplemental Figure 12).

Table 2. Graft survival, restricted mean survival time (RMST), and difference in RMST (DMRST) at 5- and 10-years post-
biopsy, according to each IFTA category and each cluster in the training cohort (n53549 biopsies)

IFTA
Category
and
Cluster
Number

% Graft
Survival at
5 Years

Post-Biopsy

% Graft
Survival at
10 Years

Post-Biopsy

RMST at
5 Years

Post-Biopsy
(95% CI)

RMST at
10 Years

Post-Biopsy
(95% CI)

HR versus
Cluster 1
(95% CI)

HR P value
versus

IFTA 0 or
Cluster 1

DRMST at
5 Years versus

IFTA 0 or
Cluster 1
(95% CI)

DRMST at
10 Years

versus IFTA 0
or Cluster 1
(95% CI)

IFTA 0 90.7 80.3 4.72
(4.65 to 4.79)

9.02
(8.84 to 9.2)

— — — —

IFTA 1 89.4 79.9 4.70
(4.62 to 4.78)

8.92
(8.71 to 9.14)

1.09
(0.82 to 1.45)

0.547a 20.02
(20.12 to 0.09)a

20.09
(20.37 to 0.19)a

IFTA 2 83.5 70.8 4.50
(4.34 to 4.66)

8.29
(7.86 to 8.72)

1.82
(1.30 to 2.56)

,0.001a 0.22
(0.05 to 0.4)a

0.73
(0.26 to 1.19)a

IFTA 3 79.6 58.2 4.39
(4.14 to 4.65)

7.76
(7.07 to 8.44)

2.50
(1.66 to 3.79)

,0.001a 0.33
(0.07 to 0.59)a

1.26
(0.55 to 1.97)a

Cluster 1 90.1 78.8 4.71
(4.61 to 4.81)

8.97
(8.56 to 9.38)

— — — —

Cluster 2 87.2 73.8 4.65
(4.45 to 4.86)

8.69
(7.86 to 9.52)

1.33
(0.95 to 1.87)

0.094b 0.05
(20.08 to 0.19)b

0.28
(20.11 to 0.66)b

Cluster 3 82.5 62.6 4.43
(4.13 to 4.73)

8.02
(6.67 to 9.36)

2.07
(1.41 to 3.04)

,0.001b 0.28
(0.06 to 0.5)b

0.95
(0.34 to 1.56)b

Cluster 4 56.0 24.9 3.42
(2.66 to 4.18)

5.27
(3.52 to 7.02)c

6.57
(4.11 to 10.49)

,0.001b 1.29
(0.66 to 1.91)b

3.37
(2.17 to 4.57)b,c

IFTA, interstitial fibrosis and tubular atrophy.
aVersus IFTA 0.
bVersus cluster 1.
cRMST and DRMST computed for 9.4 years (no data available after this period).

Table 3. Discriminative performance in AUC of joint models on the training cohort based on the acute and chronic radius
on the polar plot

Starting
Time (No. of
Patients
Still at Risk)

Models

Acute Radius Only Chronic Radius Only Acute 1 Chronic Radiuses

Delta51
Year

Delta52
Years

Delta55
Years

Delta51
Year

Delta52
Years

Delta55
Years

Delta51
Year

Delta52
Years

Delta55
Years

1 year (n5881) 0.799 0.777 0.714 0.492 0.598 0.616 0.756 0.759 0.668
2 years (n5856) 0.711 0.691 0.649 0.815 0.785 0.703 0.858 0.814 0.702
5 years (n5715) 0.636 0.707 0.589 0.747 0.736 0.752 0.766 0.752 0.741
The joint modeling approach combined a survival model with a longitudinal model which accounts for the repeated biopsies at the patient level. Using dynamic
predictions, it was possible to leverage information from prior biopsies up to a predefined starting time to estimate the survival outcome within a delta time
window at the patient level. The deltas correspond to the time window after the starting point in which a graft failure is predicted. For instance, with starting time
5 2 years and delta5 5 years, the AUC corresponds to the discriminative performance of the model using biopsy data from the first 2 years post-transplant to
predict graft failure between 2 and 7 years post-transplant.

BASIC RESEARCH www.jasn.org

2034 JASN JASN 33: 2026–2039, 2022

http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2022030290/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2022030290/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2022030290/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2022030290/-/DCSupplemental
https://www.jasn.org


DISCUSSION

In this study, we trained and validated a semisupervised
consensus clustering algorithm to cluster post-transplant
kidney biopsies based on their chronic Banff lesion scores.
Our data-driven algorithm, trained on 3549 biopsies, pro-
duced four clusters of different degrees of chronicity. The
two clusters with the worst survival outcome were mostly
driven by ci and ct (cluster 3) and cg (cluster 4). The clus-
ters obtained on the chronic lesions were distributed inde-
pendently of the acute lesions, highlighting the interest to
assess both the acute and chronic systems in parallel. The
total chronicity score and the polar plot approach provide a
more granular visualization through a continuous assessment

of the overall severity of the chronic injury. These results
were validated on an extensive cohort of 4031 external
biopsies.

Our finding that primarily ci and ct on the one hand
and cg on the other hand were most informative for the
clustering approach concurs with previous studies that
showed the independent association of these two chronic
lesions with graft failure, in multivariable models that
included also acute lesions and graft functional characteris-
tics.14,23 Notwithstanding the dominance of these lesions,
also other chronic lesions such as arteriolar hyalinosis, vas-
cular intimal thickening, and mesangial matrix expansion
correlate with them, but seem less relevant for predicting
outcome and driving the clustering.

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

1.0

A

B C D

0.0

0.2

0.4

0.6

P
ro

po
rt

io
n 

of
 le

si
on

 s
co

re
s

0.8

cg ci ct cv mm

Lesion
score

Cluster :
1
1

0

At risk
1 1699 1404 896

Time post-biopsy (years)

516 238 57

2 4 6 8 10ah

S
ur

vi
va

l p
ro

ba
bi

lit
y

1.0

0.0

0.2

0.4

0.6

0.8

Cluster :
1
2

0

At risk

1 1404 896

Time post-biopsy (years)

516 238

log-rank p<0.001
HR p<0.001

57
2

1699
682 564 401 233 117 27

2 4 6 8 10

S
ur

vi
va

l p
ro

ba
bi

lit
y

1.0

0.0

0.2

0.4

0.6

0.8

Cluster 1

1.0

0.0

0.2

0.4

0.6

P
ro

po
rt

io
n 

of
 le

si
on

 s
co

re
s

0.8

cg ci ct cv mm

Lesion
score

ah

Cluster 2

Lesion
score

Lesion
score

1.0

0.0

0.2

0.4

0.6

P
ro

po
rt

io
n 

of
 le

si
on

 s
co

re
s

0.8

cg ci ct cv mm

Cluster :
1
3

0

At risk

1

Time post-biopsy (years)

3
1699
224

80°

60°

40°

20°
0°

–20°

–40°

–60°

0.0

Cluster

0.2 0.4

Total chronicity

0.6 0.8 1.0

–80°

1404
159

896
96

516
47

238
11

57
0

2 4 6 8 10ah

S
ur

vi
va

l p
ro

ba
bi

lit
y

1.0

0.0

0.2

0.4

0.6

0.8

Cluster :
1
4

0

At risk

Non parametric
calibration curve
Ideal

5 years
graft survival
probability

Time post-biopsy (years)

log-rank p<0.001
HR p<0.001

log-rank p<0.001
HR p<0.001

1
4

1699
98

1404
56

896
28

516
15

238
2

57
0

2 4 6 8 10

S
ur

vi
va

l p
ro

ba
bi

lit
y

1.0

0.0

0.2

0.4

0.6

0.8

Cluster 3

1.0

0.0

0.2

0.4

0.6

P
ro

po
rt

io
n 

of
 le

si
on

 s
co

re
s

0.8

cg ci ct cv mm ah

Cluster 4

1 2 3 4

80°

60°

40°

20°
0°

1.0

1.0
140

120

100

80

60

40

20

0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4

Estimated probability
O

bs
er

ve
d 

pr
ob

ab
ili

ty

Fr
eq

ue
nc

y

0.6 0.8 1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

–20°

–40°

–60°

0.0 0.2 0.4

Total chronicity

0.6 0.8 1.0

–80°

Figure 3. Graft survival association and visualization of the chronic clusters from the external validation cohort (n54031 biop-
sies). (A) Distribution of the individual chronic lesion scores in the different clusters, and post-biopsy Kaplan–Meier graft survival
curves. cg, glomerular basement membrane double contours; ci, interstitial fibrosis; ct, tubular atrophy; cv, vascular fibrous intimal
thickening; mm, mesangial matrix expansion; ah, arteriolar hyalinosis; gs, glomerulosclerosis. P values refer to HR from the Cox mod-
els. (B) Polar plot of the validation cohort overlaid by the four chronic clusters. The radius represents the total chronicity computed
as the sum of reweighted chronic lesion scores, scaled to the unit interval (from 0 to 1). The theta angle is directly related to the
chronic rejection phenotypes and differentiates between cluster 4 and cluster 3 based on linear discriminant analysis. (C) Estimated
graft survival probability at 5 years post-biopsy, computed from the 40 nearest biopsies, and (D) the corresponding calibration
curve.
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The total chronicity in kidney transplant biopsies asso-
ciated with time post-transplant, as late biopsies tended
to have higher chronicity scores than early biopsies. Nat-
urally, this relation to time was also observed with the
four chronic clusters. Cluster 1 mostly consisted of early
biopsies, cluster 2 contained biopsies performed at inter-
mediate time post-transplant, and clusters 3 and 4 were
attributed later after transplantation. Nevertheless, we
demonstrated that the clustering of the biopsies did not
solely reflect time post-transplantation. Clustering based
on time after transplantation alone in and of itself did
not discriminate the risk for graft failure, whereas the
pattern of chronic lesions associated strongly with graft
outcome.

Previous work by Matas et al. also evaluated the applica-
tion of clustering techniques to the Banff histologic
lesions.17 In the Deterioration of Kidney Allograft Function
(DeKAF) study consisting of 265 post-transplant biopsies,
the authors used unsupervised hierarchical clustering on a
joint set of acute and chronic lesions. The clustering was
only performed on indication biopsies without adjusting
for the time post-transplant and resulted in 13 clusters of
which six main clusters contained more than 13 biopsies.
The resulting clusters, as derived from both acute and
chronic lesions, described different entities with various
degrees of fibrosis, inflammation, and/or chronicity. The
long-term follow-up of the study16 confirmed that the graft
failure rate was significantly different per main cluster, as
observed in the preliminary results published in 2010.17

The nature of the algorithm chosen by Matas et al. and
their choice to include a mixture of acute and chronic
lesions prevented us from performing meaningful compari-
sons with this study.

In our approach, we completely disentangled the sets of
acute and chronic lesions, following the scientific evidence
that chronicity constitutes an independent risk factor in
itself.14,23 Additionally, unsupervised dimensionality reduc-
tion separated the acute and the chronic lesions in two
almost orthogonal directions in the principal component
analysis; ARIs between acute and chronic clusters were low;
and correlations between acute and chronic radius scores
were absent. All this suggests a high degree of indepen-
dence of the acute from the chronic lesions (when assessed
on the same biopsy). These findings highlight the interest
to assess both the acute and chronic systems in parallel. It
also illustrates that the acute lesions in a biopsy cannot be
used to infer exclusive causal relations to the chronic
lesions observed in the same biopsies. The latter are poten-
tially related to earlier injury processes unrelated to the
active inflammation sometimes observed simultaneously.
This can only be assessed by considering the histologic
evolution over time, in repeated biopsies, which requires
more advanced and complex time-dependent models.29

Our chronic reclassification can be seen as a supplement
to the existing Banff phenotypes. By disentangling the

chronicity component from the acute phenotypes, our
approach can potentially simplify the current conundrum
of having multiple versions of each Banff phenotype (acute
versus chronic versus chronic active).

By demonstrating the discriminative power of the chro-
nic lesions on graft failure, independently of inflammation,
this study confirms the clinical interest of exploiting a more
extensive assessment of the chronicity of kidney transplant
biopsies, which remains underappreciated in the current
Banff classification. With a multivariate joint modeling ap-
proach, we demonstrated that a continuous assessment of
both inflammation and chronicity severities contributed
complementarily to predict graft outcome. Therefore, we
suggest that both the acute and the chronic components of
a biopsy should be assessed in parallel and presented jointly
to clinicians. Finally, additional clinical interests lie in the
potential discriminative power of chronic profiles for thera-
peutic interventions, as a high degree of chronicity might
illustrate lesser treatment response in contrast to acute
inflammation without chronicity, which could be more
amenable to interventions. The demonstration of such clin-
ical utility requires additional validation studies. By provid-
ing a freely accessible web application, we encourage other
research groups to evaluate the generalizability of our
results on different patient populations.

Because the clustering algorithm was trained on the Banff
lesion scores, the results directly depend on the quality of
the histologic scoring, which is subject to inter- and intra-
observer variability. Despite this essential drawback of hu-
man interpretation of lesion scores, the algorithm does not
appear to have suffered from this, as similar results were
obtained on an external cohort, assessed by different pathol-
ogists. The human dependence of the histologic scoring
warrants the analysis of alternative and automated data
extraction approaches such as molecular expression or com-
puterized imaging data. Although these were not available in
the training dataset, recently proposed lesion scores such as
ti30 could further improve our reclassification framework in
producing more granular phenotypes. Although the chronic
clusters bear some predictive value, the present reclassifica-
tion framework, by focusing solely on a subset of histologic
lesion scores, is not intended for prognostication. For accu-
rate prognostication, additional variables beyond histology
should be taken into account in multivariable models such
as iBox.14,31

Like all statistical and machine learning methods, the
current findings do not guarantee the causality, and
therefore pathophysiologic mechanisms cannot be deducted
from any clusters. Finally, although the choice of the core
algorithm was motivated by several obvious advantages
such as easy classification of new data points, more elabo-
rate clustering approaches could further improve the fie-
ld. Especially, precise modeling of the clustering time
dependency with time-dependent model-based clustering
could be valuable and warrants additional studies.
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In conclusion, based on semisupervised clustering, we
identified and validated four clusters of chronic kidney
transplant injury. We demonstrated the complementarity of
assessing total chronicity on top of the estimation of disease
activity from acute lesion scores. This approach delivers a
holistic and quantitative assessment of kidney transplant
injury phenotypes and severity, as supplement to the cur-
rent Banff classification. Separating the degree (often nonspe-
cific) of chronicity from rejection activity can significantly
reduce the complexity of the description of kidney transplant
histology. Further validation of the system (e.g., via the web
application) is necessary to gain more widespread adoption by
the transplant community, on the way to the eventual integra-
tion of these algorithms into accessible clinical decision sup-
port systems.
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