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Abstract: A mixture cure model relies on a model for the cure probability and

a model for the survival function of the uncured subjects. For the latter, one often

uses a Cox proportional hazards model. We show the identifiability of this model

under weak assumptions. The model assumes that the cure threshold is the same

for all values of the covariates, which might be unrealistic in certain situations. An

alternative mixture cure model is the accelerated failure time (AFT) model. We also

show the identifiability of this model under minimal assumptions. The cure threshold

in this model depends on the covariates, which often leads to a better fit of the data.

This is especially true when the follow-up period is insufficient for certain values of
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the covariates. We study these two models via simulations both when the follow-up

is sufficient and when it is insufficient. Moreover, the two models are applied to data

coming from a breast cancer clinical trial. We show that the AFT and the Cox model

both fit the data well in the region of sufficient follow-up, but differ drastically outside

that region.

Key words: Accelerated failure time model; Cox proportional hazards model; Iden-

tifiability; Insufficient follow-up; Mixture cure models.

1 Introduction

When studying the time until a certain event of interest occurs, it often happens that

a certain proportion of the subjects under study never experience this event. This

happens e.g. when the event of interest is the recurrence of a disease, the start of a

new job after a period of unemployment, or the birth of a child. In that case, the

event of interest will not happen when a patient is cured of his/her disease, when

someone never finds a job, or when someone never gets a child, respectively. The

probability of such an event is called the cure proportion. Subjects who experience

the event of interest are called susceptible or uncured, the others are called cured.

Cure models are survival models that take this cure proportion into account, often

depending on a vector of covariates or prognostic factors. Book-length reviews of cure

models are Maller and Zhou (1996) and Peng and Yu (2021).

A popular cure model is the so-called mixture cure model, which relies on a model for

the cure probability and a model for the survival function of the uncured subjects,
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conditional on a set of covariates. For the cure probability (called the incidence) it is

common practice to use a logistic model, as this is easy to estimate and often provides

a good fit to the data. For the survival function of the uncured subjects (called the

latency), a variety of models can be used, ranging from fully parametric (see e.g.

Berkson and Gage, 1952; Farewell, 1982, 1986), to semiparametric (see Patilea and

Van Keilegom, 2020, among others) to completely nonparametric models (see Xu and

Peng, 2014; López-Cheda et al., 2017). An overview of possible cure models can be

found in Amico and Van Keilegom (2018). However, although a broad spectrum of

models for the latency is available, a popular choice for the latency is a semiparametric

Cox proportional hazards (Cox, 1972) model. See e.g. Kuk and Chen (1992), Peng

and Dear (2000), Sy and Taylor (2000), Lu and Ying (2004), Fang et al. (2005) and

Lu (2008), among others, for papers who studied the Cox mixture cure model. The

popularity of the model is thanks to its counterpart in the case without cure fraction.

Despite the many advantages of this model, like its easy interpretation and the avail-

ability of software, it is well known that the Cox model also suffers from some impor-

tant drawbacks, both in the case with and without cure fraction. The most important

one is the assumption of proportional hazards, which might be wrong in practice, lead-

ing then to serious bias and loss of power when estimating or making inference about

the effect of a given prognostic factor on mortality (see Abrahamowicz et al., 1996).

One needs to check the proportionality assumption when fitting a Cox model (see

Zhang, 2002). In Yu et al. (2004) parametric cure models and semi-parametric pro-

portional hazards (PH) cure models are applied to population-based grouped survival

data to investigate the sensitivity of the parameter estimates.

An alternative to using a Cox model for the susceptible subjects is to use a semi-



4 M. Parsa and I. Van Keilegom

parametric accelerated failure time (AFT) model (see e.g. Kalbfleisch and Prentice,

2011; Cox and Oakes, 1984). In the context with cure fraction, this model has not

been studied a lot in the literature so far. We refer to Li and Taylor (2002), Zhang

and Peng (2007), and Lu (2010). The latter paper proposed a kernel-based maximum

likelihood estimation method for the AFT mixture cure model. The AFT model spec-

ifies a direct relation between the logarithm of the survival time of the susceptible

subjects and the explanatory variables, like in any multiple linear regression model.

Also, the AFT model does not need the assumption of proportional hazards, and the

interpretation of the results is clearer and easier, since it models directly the effect of

explanatory variables on the survival. In addition, we can estimate quantities like the

mean, the mean residual lifetime and the median lifetime (or in general any quantile)

directly and straightforwardly. Orbe et al. (2002) proposed a method for a censored

linear regression model and compared its performance with the ones based on PH

and AFT parametric models. Also, we refer to Patel et al. (2006) for more discussion

on the comparison between the Cox and the AFT model in the absence of a cure

fraction.

The contributions of this paper are as follows. We will start by developing sufficient

conditions under which the Cox and AFT mixture cure models are identifiable. These

identifiability assumptions show that under the Cox model all conditional survival

functions of the susceptible subjects have the same (finite) support, regardless of the

values of the prognostic factors. This is a strong model assumption, since in many

practical situations covariates do not only contain important information about the

cure proportion but also about the event time of subjects under study, meaning that

covariates corresponding to good prognosis tend to correspond to survival functions

with longer support than those corresponding to bad prognosis. The Cox mixture
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cure model, unfortunately, does not allow for this differentiation. On the other hand,

we will show that the AFT mixture cure model is identified if the error distribution in

the model has finite support. This will entail that the support of conditional survival

functions under the AFT model depends on the values of the covariates, which is

more realistic in many real-life situations.

A further consequence of these identifiability results is concerned with the case where

the follow-up is insufficient for some regions of the covariate space. This means that

not all susceptible subjects have experienced their event by the time the study ends.

In that case, the Cox model will lead to biased estimators of the cure proportion in

these regions (the cure proportions will be estimated too large), whereas under the

AFT model we will show that provided there is a region of the covariate space where

the follow-up is sufficient, tail information coming from the regions with sufficient

follow-up can be transferred to regions with insufficient follow-up, leading henceforth

to unbiased estimators of the cure proportions. This is an important property of the

AFT model since the estimation of the cure proportions is often of major importance

in practice.

The paper is organized as follows. In Section 2 the mixture cure model is formally

introduced and some notations and definitions are given. Section 3 provides the

definitions of the Cox and AFT mixture cure models and the identifiability conditions

of these models are studied. Section 4 focuses on the consequences of applying these

models and on the misleading results that can be caused by using a Cox mixture cure

model. Section 5 presents the results of a simulation study in which the cure fraction

is estimated via a Cox and an AFT model, both when the follow-up is sufficient

and when it is insufficient. In Section 6 both models are employed to estimate the
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survival curve for a breast cancer data set coming from the SEER database containing

information about the stage of the cancer. Finally, Section 7 summarizes the results

obtained in this paper and discusses some ideas for future research. The Appendix

contains the proofs of the identifiability results.

2 The mixture cure model

In the mixture cure model the survival function S(t|x, z) = P (T > t | X = x, Z = z)

of the survival time T given a set of real-valued covariates (X,Z) = (x, z) is given by

S(t|x, z) = 1− p(z) + p(z)Su(t|x), t ≥ 0, (2.1)

where p(z) = P (B = 1 | Z = z) is the conditional probability of being uncured,

B = I(T <∞) denotes the uncure status, and Su(t|x) = P (T > t | B = 1, X = x) is

the conditional survival function for the uncured subjects. Here, the vectors x and z

can contain (totally or partially) the same covariates, but they can also be completely

different.

We suppose throughout this paper that the uncure probability p(z) is given by

p(z) =
exp(γtz)

1 + exp(γtz)
, (2.2)

where the vector γ contains an intercept, so the first element of the vector z is 1.

Note that other parametric models for p are also possible, as long as the parameters

in the model are uniquely identified.

The survival time T is subject to random right censoring, i.e. instead of observing T

we observe the couple (Y,∆), where Y = min(T,C) is the observed survival time, ∆ =
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I(T ≤ C) is the censoring indicator, and C is the censoring time. As often, we assume

that T and C are independent given the covariates (X t, Zt)t. Let (Yi,∆i, Xi, Zi),

i = 1, . . . , n, be i.i.d. realizations of (Y,∆, X, Z). Under this data generating process,

the likelihood of an observation (y, δ, x, z) is given by

L(y, δ, x, z) = {p(z)fu(y|x)}δ{1− p(z) + p(z)Su(y|x)}1−δ, (2.3)

where fu(t|x) = −(d/dt)Su(t|x), since an uncensored observation (δ = 1) is always

uncured, whereas for a censored observation (δ = 0) we do not know the cure status.

Identifiability is an important aspect of any statistical model, and especially for a

mixture cure model, since, as we will see below, additional conditions are necessary

to make our model identifiable. A model is identifiable if different values of the

parameters generate different probability distributions of the observable variables, so

of Y,∆, X, and Z in our case. This probability distribution is given by L(y, δ, x, z).

Hanin and Huang (2014) studied the identifiability of mixture cure models, but they

did not use the above commonly used definition of identifiability. Instead, they say

that a mixture cure model is identifiable if different values of the parameters generate

different distributions of T for given X and Z over the observation period. Moreover,

they are interested in the identifiability of the function Su(·|x, z) and not in the

identifiability of the components of this function. Therefore, in the next section,

we will consider the identifiability of the Cox proportional hazards and the AFT

(accelerated failure time) mixture cure models in full detail.
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3 Cox and AFT mixture cure models

The identifiability results will be valid under the following basic assumptions:

(A) (i) For all z, 0 < p(z) < 1.

(ii) The matrices Var(X) and Var(Z) are positive definite.

Additional assumptions will be required, which we specify separately for the Cox and

the AFT mixture cure model.

3.1 Cox mixture cure model

Consider the logistic mixture cure model (2.1)-(2.2). For the latency, a Cox model is

considered with survival function

Su(t|x) = S0(t)
exp(βtx), (3.1)

where S0(t) = P (T > t | B = 1, X = 0) is the baseline conditional survival function,

which is completely unspecified, and β is a vector of parameters associated with X

that does not include an intercept.

We will denote the likelihood given in (2.3) by LCox(γ, β, S0 | y, δ, x, z) to make clear

which parameters we are considering. The identifiability result is derived under the

following additional set of assumptions:

(B) (i) The function S0 has support [0, τ ] for some τ <∞.

(ii) P (C > τ | X,Z) > 0 for almost all X and Z.
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Note that condition (B)(ii) implies that τ (called the cure threshold) has to be finite,

and that (B)(i) shows that T > τ if and only if T =∞, and that

Supp(T | X,Z, T <∞) = [0, τ ]

(where Supp(·) denotes the support of a variable). Hence, the support of the finite

values of T for given X and Z does not depend on X and Z, and in particular, there

is no differentiation in the support according to values of X and Z that correspond

to good or bad prognosis. This might be unrealistic in certain medical applications

for instance, where patients with a good prognosis but who die eventually, tend to

live longer than patients who have a bad prognosis. Examples of such situations can

be found for instance in cancer studies, where aggressive tumors lead to faster death

than slowly growing tumor, or where different stages of the cancer influence not only

the survival chances but also the time until patients die.

Note that assumption (B)(ii) is equivalent to imposing that τC|X,Z > τ for almost all

X and Z, where τC|X,Z is the right endpoint of the support of C for given X and Z.

We do not exclude that it is possible to refine the proof of Proposition 1 below in such

a way that (B)(ii) can be weakened to τC|X,Z ≥ τ (although, if this would be possible,

it would definitely not be an easy refinement). This would then allow for the case

where τC|X,Z = τ =∞, and hence the Cox model would have infinite support in that

case. Note however that in practice τC|X,Z is always finite, as studies can only take

place for a finite length of time. Hence, in practice, τ would still need to be finite in

that case.

We are now ready to state the identifiability result for the Cox mixture cure model.

Proposition 1 Under (A) and (B), the model given by (2.1), (2.2) and (3.1) is
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identified, in the sense that if there exist parameters γ̃, β̃, S̃0 such that

LCox(γ, β, S0 | y, δ, x, z) = LCox(γ̃, β̃, S̃0 | y, δ, x, z)

for all realizations (y, δ, x, z) of (Y,∆, X, Z), then (γ, β, S0) = (γ̃, β̃, S̃0), where (γ, β, S0)

are the true parameters of the model.

The estimation of the Cox mixture cure model has been studied in many papers,

which we mentioned already in the introduction. Here, we do not wish to go deeper

into the inferential properties of the Cox model, since our focus is on the identifiability,

the behavior under insufficient follow-up and the comparison with the AFT model.

3.2 AFT mixture cure model

Consider the logistic mixture cure model given by (2.1)-(2.2), and write T = T ∗B +

∞(1−B), so T ∗ is the survival time of the susceptible subjects. Instead of assuming

a Cox model for the latency, we will now consider a semiparametric AFT model of

the form

log T ∗ = β0 + βtX + ε, (3.2)

where the error ε is independent of X and Z and its distribution is unspecified, and

β is a vector of parameters associated with X. Equivalently, we can define the AFT

model by specifying the survival function

Su(t|x) = S0(t exp(−βtx)), (3.3)

where S0(t) = P (exp(β0 + ε) > t) is the error survival function, which corresponds to

the conditional survival function for X = 0.
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As before, we will denote the likelihood given in (2.3) by LAFT (γ, β, S0 | y, δ, x, z)

to indicate which parameters we are considering. Our identifiability result is derived

under the following additional set of assumptions:

(C) (i) The variable exp(ε) has support [0, τ0] for some τ0 <∞.

(ii) P (C > τ0 exp(βtX) | X,Z) > 0 for all (X,Z) ∈ S = SX × SZ ,

where SX and SZ are such that P (X ∈ SX , Z ∈ SZ) > 0,

Var(X|X ∈ SX) > 0 and Var(Z|Z ∈ SZ) > 0.

Note that assumption (B)(ii) is a requirement on almost all (X,Z), whereas assump-

tion (C)(ii) only needs to hold true on a set of positive probability, which can be a

serious relaxation in practice. Also note that assumption (C)(i) shows that

Supp(T | X,Z, T <∞) = [0, τ0 exp(βtX)],

and hence, contrary to the Cox mixture cure model, the support does depend on the

covariate vector X. Large values of the acceleration factor exp(βtX) slow down the

process, leading hence to longer support. As explained in the previous subsection, in

real-life situations the support of the finite lifetime T ∗ often depends on the values of

the covariates or prognostic factors.

We are now ready to state the identifiability result for the AFT mixture cure model.

Proposition 2 Under (A) and (C), the model given by (2.1), (2.2) and (3.3) is

identified, in the sense that if there exist parameters γ̃, β̃, S̃0 such that

LAFT (γ, β, S0 | y, δ, x, z) = LAFT (γ̃, β̃, S̃0 | y, δ, x, z)

for all realizations (y, δ, x, z) of (Y,∆, X, Z), then (γ, β, S0) = (γ̃, β̃, S̃0), where (γ, β, S0)

are the true parameters of the model.
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Although much less popular in practice than the Cox mixture cure model, the esti-

mation of the AFT mixture cure model has been studied in a few papers so far. We

refer to the introduction section for the references. In the next section, we discuss

what the identifiability results in Propositions 1 and 2 imply in practice.

4 Practical consequences

From the previous sections, we know that under the semiparametric AFT model the

upper bound of the support of T ∗ given X, denoted by τT ∗|X , equals τ0 exp(βtX), so

it depends on the value of X, whereas under the Cox model τT ∗|X equals τ , and hence

is constant. This has two major consequences.

First, in practice, it seems much more likely that the support does depend on the value

of the covariates. Some individuals tend to have faster deterioration of their illness

than others, depending on the characteristics (covariates) of the patients. Hence, in

many situations, a support that depends on the covariates seems more realistic than

a fixed support.

Second, suppose we are indeed in a situation where τT ∗|X depends on X, and consider

the case where the follow-up is insufficient for some (but not all) values of X, i.e.

the upper bound of the support of C, say τC , is smaller than τT ∗|X for some X (for

simplicity we suppose that the support of C does not depend on X, but this is by no

means essential). In this case, when fitting a Cox model all individuals larger than τC

will be considered as cured, which is wrong, since there are still uncured individuals

beyond the time τC .
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On the other hand, under the AFT model, one would first transform T to ε = log T −

βtX. Since ε is independent of X, the support of exp(ε) (which equals [0, τ0]) can be

correctly identified if there is a region of the covariate space with positive mass for

which τ0 exp(βtX) ≤ τC , i.e. for which τT ∗|X ≤ τC . Typically, this region contains

values of the covariates that correspond to bad prognosis. This identifiability of τ0

can then be used for all covariates, also for those for which τT ∗|X > τC , since ε has

the same distribution for all X.

So to summarize, under the Cox model, apart from the fact that in practice the

support of T ∗ often depends on X, there is an additional problem occurring in the

case of insufficient follow-up. If τC < τT ∗|X for some X, then some susceptible subjects

will be incorrectly classified as cured. Under the AFT model, this problem occurs

for none of the X values, as long as there is a subspace R of the support of X for

which P (X ∈ R) > 0 and τT ∗|X ≤ τC for all X ∈ R (i.e. as long as there are some

values of the covariates for which the follow-up is sufficient). Additionally, note that

the aforementioned consequences are derived according to the properties of the AFT

and the Cox model for the latency part in the mixture cure model and have nothing

to do with the incidence part of the model.

We illustrate the above situation with a simple example, that is visualized in Figure 1.

In this example, the support of the censoring time does not depend on the covariate,

which we take one-dimensional for simplicity. Moreover, we divide the range of the

covariate into two intervals, one corresponding to the values of the covariate for which

the follow-up is sufficient (region A in the figure) and the other one corresponding to

insufficient follow-up (region B). That the follow-up is sufficient in region A can be

seen from the fact that the support of log T ∗ given X, which is equal to (−∞, τlog T ∗|X ],
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Figure 1: Graphical representation of the problem of insufficient follow-up.

is included in the support (−∞, τlogC ] of logC. Since ε is living on (−∞, log τ0], the

distribution of ε can be identified thanks to interval A where the follow-up is sufficient.

This identification then implies the identification of the distribution of T ∗ given X

for all X, also those in interval B.

Hence, the AFT mixture cure model allows identifying the survival function further

in the right tail than the Cox model, leading to better chances to identify the cure

fraction. This is a very important feature in the context of cure models since cure

models should only be used if one can correctly identify the cure fraction.

On the other hand, it is clear that if in reality the support of T ∗ does not depend

on X, and if the follow-up is sufficient, a Cox model might give a better fit than an

AFT model. So, we do not want to advocate the use of AFT mixture cure models in

all circumstances. We only want to warn against blindly choosing a Cox model, not

only in the absence of a cure fraction but even more when a cure fraction is present,
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and the above discussion explains why it is advisable to be careful in practice.

Finally, note that the above comparison between Cox and AFT can be generalized

to other mixture cure models. The assumption of a constant cure threshold is also

made in other mixture cure models (see e.g. Taylor, 1995), whereas the special feature

of the AFT model also shows up in any other location-scale model for the uncured

individuals (of parametric, semiparametric or nonparametric nature), see e.g. Chown

et al. (2020), or in the accelerated hazards model (see e.g. Zhang et al., 2011), which

assumes that Su(t|x) = S0(t exp(−βtx))exp(β
tx).

The next section provides a simulation study to analyze the effect of choosing the

AFT or Cox model for the latency part of the mixture cure model when there is

sufficient or insufficient follow-up for some values of the covariates.

5 Simulation studies

The main objective of this section is to investigate the behavior of the Cox and AFT

mixture cure model in situations where the follow-up period is either sufficient or

insufficient. We will do this by calculating the bias of the cure fraction estimated

by means of the Cox or the AFT model, when the data are generated from either

model. Here, we follow the estimation method implemented in the R-package ‘smcure’

introduced by Cai et al. (2012), in which the EM algorithm is used to estimate the

parameters of interest in the Cox and AFT mixture cure model.

We generate 500 data sets of size n = 300. We assume to have one covariate in the

latency and incidence part which is the same in both parts, and is generated from a
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uniform distribution on [0, 1]. The incidence part follows a logistic model given by

(2.2), with γ0 = 1 and γ1 = −0.5, producing an average cure fraction of 32 percent.

In the latency part we consider β0 = 0 and β1 = 2. The other simulation settings are

as follows.

Setting (I): Cox model

We suppose that in the uncured sub-population the survival time T satisfies a Cox

model with cumulative baseline hazard given by

H0(t) = − log
(e−λt − e−λτ

1− e−λτ
)

(5.1)

for 0 ≤ t ≤ τ , which is the cumulative hazard of an exponential distribution that is

truncated at τ . This choice is motivated by the fact that if τ tends to infinity, the

model becomes an AFT model, since (5.1) approaches the cumulative hazard λt of an

exponential variable with parameter λ in that case. We take λ = 2. To generate data

from this Cox mixture model, we first generate X = Z ∼ Un[0, 1]. Next, we generate

a uniform variable U on [0, 1]. If U > p(Z) then define T = ∞. If U ≤ p(Z) then

U/p(Z) ∼ Un[0, 1]. Following Bender et al. (2005) we can now generate the survival

time T by

T = H−10 [− log(U/p(Z)) exp(β1X)],

where H−10 (s) = −λ−1 log[e−s(1−e−λτ )+e−λτ ] for 0 ≤ s <∞. We consider τ = 1, 2, 4,

which corresponds to the situation where we truncate 14%, 2% and less than 0.01%

of the data from the exponential distribution. The censoring time C is generated

from a uniform distribution on [0, c] for c = 0.75τ, τ and 1.25τ . Hence, the follow-up

is sufficient if c ≥ τ and insufficient otherwise.

Setting (II): AFT model
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We now suppose that the uncured individuals follow an AFT model and that the

survival function S0 of exp(ε) is given by a truncated exponential distribution, given

by

S0(t) =
e−λt − e−λτ0

1− e−λτ0
(5.2)

for 0 ≤ t ≤ τ0. In this way we make sure that the support of exp(ε) is [0, τ0], and at

the same time we know that when τ0 approaches infinity, the AFT model is also a

Cox model, since we approach an (untruncated) exponential distribution in that case

(and since for any Weibull distribution we have at the same time a Cox and an AFT

model). We work with λ = 2 and τ0 = 1, 2, 4, which corresponds, as under Setting

(I), to the situation where we truncate 14%, 2% and less than 0.01% of the data from

the exponential distribution. If there would be no truncation at all (i.e. if τ0 = ∞),

then the model is equal to the model under Setting (I) with τ = ∞. To generate

data from this AFT mixture model, we first generate X = Z ∼ Un[0, 1]. Next, we

generate a uniform variable U on [0, 1]. If U > p(Z) then define T =∞. If U ≤ p(Z)

then U/p(Z) ∼ Un[0, 1] and we can generate T by inverting the formula in (5.2):

T = − exp(β1X)λ−1 log
[
1− U

p(Z)
(1− e−λτ0)

]
.

The censoring time C is generated from a uniform distribution on [0, d]. Hence, the

follow-up is sufficient for a given value of X if d > τ0 exp(β1X), i.e. if X < log d−log τ0

since β1 = 1. We work with log d−log τ0 = 0, 0.5 and 1, corresponding to the situation

where the follow-up is insufficient for all the data, for half of the data (namely those

for which X ∈ [0.5, 1]), and for no data at all, since X follows a uniform distribution

on [0, 1].

In Table 1 we report the bias of the average cure fraction 1−E(p(Z)) estimated using

both the Cox model and the AFT model when the data are generated under Settings
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Setting (I) Setting (II)

τ c % RC Bias AFT Bias PH d % RC Bias AFT Bias PH

0.75 79 0.0492 0.2753 1 75 0.0945 0.2500

1 1 72 -0.1259 0.0869 1.65 65 0.0093 0.1352

1.25 64 -0.1905 -0.0014 2.72 56 -0.0095 0.0544

1.5 71 0.0088 0.1908 2 66 0.0141 0.1490

2 2 65 -0.0928 0.0584 3.30 57 -0.0157 0.0727

2.25 58 -0.1557 -0.0021 5.44 49 -0.0054 0.0253

3 59 -0.0177 0.0900 4 55 -0.0171 0.0552

4 4 55 -0.0266 0.0370 6.59 47 -0.0071 0.0193

5 50 -0.0655 -0.0012 10.87 42 -0.0020 0.0042

Table 1: Bias of the estimated cure fraction under the AFT and Cox (PH) mixture

cure model for different values of τ and percentages of right censoring (% RC). The

survival times in the uncured sub-population are generated from a Cox proportional

hazards model under Setting (I) (left), and from an AFT model under Setting (II)

(right).

(I) and (II). The value of τ allows seeing the effect of misspecification of the model,

since for τ = 1 the misspecification is rather serious, whereas for τ = 4 the models

under Settings (I) and (II) are very close to an AFT and a Cox model with exponential

error or baseline. On the other hand, the value of c and d allows evaluating the effect

of insufficient follow-up on the estimation of the cure rate. The larger the value of

these parameters, the more the follow-up is sufficient. The results show that under

Setting (I) the bias of the estimated cure fraction from a Cox model is not always
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close to zero, especially when the follow-up is insufficient (i.e. when c = 0.75τ). On

the other hand, under Setting (II) the bias obtained from an AFT model is always

close to zero, also when the follow-up is (partially) insufficient. This is in line with

the principle of transfer of tail information explained in Section 4. We also observe

that under a misspecified model there is always some bias present. The latter bias

is however smaller when an AFT model is used to estimate the cure fraction coming

from a Cox mixture model, than when a Cox model is used to estimate the cure

fraction coming from an AFT mixture model. In some cases the AFT model even

leads to a smaller bias for the estimated cure fraction than when using the correct

Cox model. This is especially the case when c = 0.75τ in the Cox model, i.e. when

the follow-up is insufficient.

An application of the Cox and AFT mixture cure model on a cancer data set is

presented in the next section. We will use this data set to further demonstrate the

aforementioned identifiability issues in the case of insufficient follow-up.

6 Application to cancer data

In this section, we study the survival times of breast cancer patients with tumor

Grade II from the 1988-2016 SEER database. The complete data set contains 178,505

patients, but we take a random sample of size n = 30, 000 to reduce computational

complexity. The data set contains information on cancer staging ranging from I to IV.

The Kaplan and Meier (1958) curves for the four stages, shown in Figure 2, suggest

that the follow-up period is sufficient for stage IV, but not for the three other stages,

since for stage IV the Kaplan-Meier plot contains a long plateau without any events.
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This is confirmed by a test developed by Maller and Zhou (1996) and carried out in

Escobar-Bach et al. (2021). Hence, it will be interesting to compare the fits of the

Cox and the AFT mixture cure models for these data. Some descriptive statistics for

the data set are given in Table 2.

Cancer stage Sample size % RC

Stage I 15,624 95.44

Stage II 10,185 89.15

Stage III 3,248 73.09

Stage IV 943 43.37

All 30,000 89.25

Table 2: The sample size and the percentage of right censoring (% RC) for the sample

out of the SEER breast cancer data set, and for each cancer stage separately.

As was discussed in the previous section, we expect that under the AFT model the

estimated survival function for stages I to III will have a longer tail than under the

Cox model. We will fit the models by creating three dummy variables for the four

stages, and by utilizing the R package smcure introduced in Cai et al. (2012), which

includes both the estimation of the AFT and the Cox mixture cure model.

Figure 2 shows the estimated survival functions for the four stages based on the AFT

model, the Cox model and the Kaplan-Meier estimator. Obviously, the curves that

decay the fastest (slowest) correspond to stage IV (stage I). The end of the study

period, which is 347 months, is also indicated. The figure shows that before the end

of the study period the three estimators are very similar, suggesting that both a Cox

and an AFT model can be used for fitting the survival curves. However, there are
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major differences between AFT on one hand and Cox and Kaplan-Meier on the other

hand when looking at the behavior after the end of the study period. By construction,

the estimators using Cox modeling and Kaplan-Meier remain constant, whereas the

estimators obtained from the AFT model continue to go down for the stages where

the follow-up is insufficient.

Of course, we can never be sure whether the AFT model is correctly extrapolating

the survival curves beyond the end of the study, as we do not know the true curves.

Therefore, we add a fourth estimator to our analysis, which is the estimator proposed

by Escobar-Bach et al. (2021). The latter estimator is based on a correction of the

Kaplan-Meier estimator using extrapolation techniques from extreme value theory.

Hence, this estimator is constructed in a very different way than under the AFT

model.

Table 3 provides the estimators of the cure fractions for the four stages of cancer

according to the AFT model, the Cox model, the Kaplan-Meier estimator, and the

estimator proposed by Escobar-Bach et al. (2021). We see that for stage IV there is

little difference between the four estimators, which is to be expected since the follow-

up is sufficient in that case. On the other hand, for the three other stages, the AFT

model and the estimator of Escobar-Bach et al. (2021) provide very similar results,

whereas there is a substantial difference between these two estimators on one hand,

and those obtained under the Cox and Kaplan-Meier model on the other hand. This

can be explained by the fact that the former two estimators extrapolate information

to the tails. Under the AFT model, this extrapolation is done by transferring tail

information from the region of sufficient follow-up (stage IV) to the regions of insuffi-

cient follow-up (stages I-III), while for the estimator of Escobar-Bach et al. (2021) the
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Figure 2: Estimated survival functions for the four stages of the breast cancer data

using the AFT model ( ) and the Kaplan-Meier estimator ( ) (top); and using

the Cox model ( ) and the Kaplan-Meier estimator ( ) (bottom). The vertical

dotted line corresponds to the end of the study (347 months).

extrapolation takes place using nonparametric extreme value theory. On the other

hand, the estimator based on the Cox mixture cure model and the Kaplan-Meier
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estimator stay constant after the last observation, and therefore they overestimate

the cure fraction as the follow-up is likely to be insufficient. The closeness between

the estimators under the AFT model and those using the procedure in Escobar-Bach

et al. (2021) suggests that the AFT model might be a good fit to the data.

Cancer stage AFT Cox KM EB

Stage I 0.766 0.844 0.856 0.778

Stage II 0.587 0.711 0.705 0.579

Stage III 0.370 0.474 0.462 0.382

Stage IV 0.167 0.145 0.126 0.122

Table 3: The estimation of the cure fraction at each cancer stage using the AFT model,

the Cox model, the Kaplan-Meier (KM) estimator, and the estimator of Escobar-Bach

et al. (2021) (EB).

7 Summary

In this paper, we studied the AFT and Cox mixture cure models. We developed

conditions under which these models are identifiable, and we discussed the advantages

and drawbacks of these models in practice. An important advantage of the AFT

model is that it allows us to extrapolate the survival curves beyond the end of the

study period. This is important in situations where the follow-up is insufficient, as it

often leads to more realistic estimators of the cure proportions. Another important

advantage is the fact that under the AFT model, the support of the conditional

survival function depends on the value of the covariates, whereas for the Cox model
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it is independent of the covariates. The latter situation is found not to be very realistic

in many applications.

A possible project for future research would be the development of extensions of the

AFT mixture cure model that enjoy the same important advantage of the transfer of

tail information as the AFT model. These extensions can go in different directions,

but a crucial property of any extension is that the error term in the model is inde-

pendent of the covariates. Otherwise, the extrapolation beyond the end of the study

period cannot take place. A possible promising extension is the following model

Λ(T ∗) = m(X) + σ(X)ε,

where ε and X are independent, the distribution of ε is unknown, Λ is a transformation

of the response (can be parametric or nonparametric), and m and σ are appropri-

ate regression and scale functions, which can again range from fully parametric to

completely nonparametric. A variety of estimation procedures can be developed for

this model. Note that the AFT model is a special case, by letting Λ(·) = log(·),

m(X) = βtX and σ(X) ≡ 1.

A further promising road of research consists of developing goodness-of-fit tests for

the Cox and AFT mixture cure models, to ease the choice between these two models

in practice. We plan to study this in another paper. To the best of our knowledge,

such a test has not been developed so far. A possible test could exist in extending the

test developed by Geerdens et al. (2020). In the latter paper, the authors develop a

test for the parametric form of the survival function of the susceptible subjects in the

absence of covariates. An extension of this test to semiparametric survival functions

that depend on covariates (e.g. under a Cox or an AFT model) would be a very useful

research direction.
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Appendix: Proofs of main results

In this Appendix, we provide the proofs of Propositions 1 and 2.

Proof of Proposition 1. We need to show that if

{
p(z)fu(y|x)

}δ {
1− p(z) + p(z)Su(y|x)

}1−δ
(7.1)

=
{
p̃(z)f̃u(y|x)

}δ {
1− p̃(z) + p̃(z)S̃u(y|x)

}1−δ

for all realizations (y, δ, x, z) of (Y,∆, X, Z), then γ = γ̃, β = β̃ and S0 ≡ S̃0. Here,

p(z) = exp(γtz)/[1+exp(γtz)], p̃(z) = exp(γ̃tz)/[1+exp(γ̃tz)], Su(y|x) = S0(y)exp(β
tx),

S̃u(y|x) = S̃0(y)exp(β̃
tx), and fu(y|x) and f̃u(y|x) are the corresponding probability

density functions.

First, consider y > τ and δ = 0. Note that

P (Y > τ,∆ = 0 | X,Z) = P (C > τ,C ≤ T | X,Z)

= P (C > τ, T =∞ | X,Z)

= P (C > τ | X,Z) (1− p(Z)) > 0,

thanks to (A)(i), (B)(i) and (B)(ii). Hence, (y > τ, δ = 0, x, z) is a possible realization

of (Y,∆, X, Z). Equation (7.1) reduces in this case to 1− p(z) = 1− p̃(z). It follows

that γ ≡ γ̃, since Var(Z) is positive definite by assumption (A)(ii).
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Next, consider any 0 < y ≤ τ . Then,

P (Y ≤ y,∆ = 1 | X,Z) = P (T ≤ y, T ≤ C | X,Z)

=

∫ y

0

P (C > t | X,Z) dP (T ≤ t | X,Z). (7.2)

Hence, the corresponding sub-density equals p(Z)P (C > y | X,Z)fu(y|X). Since the

support of fu(·|X) is [0, τ ] and since p(Z)P (C > τ | X,Z) > 0 thanks to assumptions

(A)(i), (B)(i) and (B)(ii), it follows that the support of Y when ∆ = 1 and given X

and Z is also [0, τ ]. For any 0 < y ≤ τ and δ = 1, the likelihood contribution in (7.1)

is such that p(Z)fu(y|X) = p̃(Z)f̃u(y|X). Since p ≡ p̃ > 0, it follows that fu(y|X) =

f̃u(y|X). Since this is true for all 0 < y ≤ τ , it follows that Su(y|X) = S̃u(y|X).

Hence,

S0(y)exp(β
tX) = S̃0(y)exp(β̃

tX).

Taking a logarithmic transformation at both sides we get

exp(βtX) logS0(y) = exp(β̃tX) log S̃0(y),

or equivalently, (β − β̃)tX = log
[

log S̃0(y)/ logS0(y)
]

for all 0 < y ≤ τ . It follows

that

(β − β̃)tVar(X)(β − β̃) = 0.

Since Var(X) is positive definite by assumption (A)(ii), this is only possible if β = β̃,

which implies that S0 ≡ S̃0. �

Proof of Proposition 2. We need to show that if

{
p(z)fu(y|x)

}δ {
1− p(z) + p(z)Su(y|x)

}1−δ
(7.3)

=
{
p̃(z)f̃u(y|x)

}δ {
1− p̃(z) + p̃(z)S̃u(y|x)

}1−δ
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for all realizations (y, δ, x, z) of (Y,∆, X, Z), then γ = γ̃, β = β̃ and S0 ≡ S̃0.

Here, p(z) = exp(γtz)/[1 + exp(γtz)], p̃(z) = exp(γ̃tz)/[1 + exp(γ̃tz)], Su(y|x) =

S0(y exp(−βtx)), S̃u(y|x) = S̃0(y exp(−β̃tx)), and fu(y|x) and f̃u(y|x) are the corre-

sponding probability density functions.

First, consider any 0 < y ≤ τ0 exp(βtx) with (x, z) ∈ S. Then, we know from (7.2)

that the conditional sub-density of the uncensored Y -values equals p(z)P (C > y |X =

x, Z = z)fu(y|x) = p(z)P (C > y | X = x, Z = z)f0(y exp(−βtx)) exp(−βtx). Since

the support of f0(·) is [0, τ0] and since p(z)P (C > τ0 exp(βtx) | X = x, Z = z) > 0

thanks to assumptions (A)(i), (C)(i) and (C)(ii), it follows that the support of Y

when ∆ = 1, X = x and Z = z is [0, τ0 exp(βtx)]. Hence, βtx = β̃tx, which is only

possible if β = β̃ since Var(X|X ∈ SX) > 0.

Next, consider y > τ0 exp(βtx) and δ = 0 with (x, z) ∈ S. Note that

P (Y > τ0 exp(βtx),∆ = 0 | X = x, Z = z)

= P (C > τ0 exp(βtx), C ≤ T | X = x, Z = z)

= P (C > τ0 exp(βtx), T =∞ | X = x, Z = z)

= P (C > τ0 exp(βtx) | X = x, Z = z) (1− p(z)) > 0,

thanks to (A)(i), (C)(i) and (C)(ii). Hence, (y > τ0 exp(βtx), δ = 0, x, z) is a possible

realization of (Y,∆, X, Z). Equation (7.3) reduces in this case to 1− p(z) = 1− p̃(z).

It follows that γ = γ̃ since Var(Z|Z ∈ SZ) > 0.

Finally, for any 0 < y ≤ τ0 exp(βtx) and δ = 1, the likelihood contribution in (7.3) is

such that p(z)fu(y|x) = p̃(z)f̃u(y|x). Since p(z) = p̃(z) > 0, it follows that fu(y|x) =

f̃u(y|x). Since this is true for all 0 < y ≤ τ0 exp(βtx), it follows that Su(y|x) = S̃u(y|x)

for all 0 < y ≤ τ0 exp(βtx), and hence S0 ≡ S̃0. �
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