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ABSTRACT
This work introduces a surface-to-surface contact description in the context of beam-to-beam
contact. The introduced contact description is formulated in the frame work of the absolute
nodal coordinate formulation. Leveraging the solid element-like features of the absolute nodal
coordinate beam formulation and utilizing an interpolation scheme to parameterize the cross-
section geometry, the computationally expensive discretization in beam’s thickness directions
can be avoided. The developed formulation is general to account for internal and external con-
tact scenarios. Numerical examples illustrate the robustness and applicability of the introduced
formulation in contact problems comprising beams with arbitrary cross-sectional geometry
and material nonlinearities. The numerical results indicate the effectiveness of the proposed
contact solution to problems entailing various contact configurations, such as the presence of
coupled large deformation modes within contact, contact between beams with sharp-edges,
and a scenario where an arbitrary curve-to-curve contact takes place across beams’ surfaces.
Accuracy of the contact integrals and the stability of the proposed formulation are also exam-
ined, respectively using the contact path and inf-sup tests.

1. Introduction
Numerous places where a highly flexible, beam-like structure plays a crucial role can be found in mechanical1

and bio-mechanical applications. Belts, ropes and cables are examples of the mechanical applications while slender2

soft tissues are one example of bio-mechanical applications. In many cases, the high-tensile or twisted cables3

in working cranes, fibrous tissues and filaments in biological systems interact with each other. The applications4

mentioned earlier, are characterized by mechanical contact interactions where the geometrically complex contact5

configurations usually exist between beam-like structures.6

Compared with the intensive work that has been performed on solid-based contact formulations [1, 2, 3, 4,7

5] as for the distributed contact force evolution in a simulation, the research contributions to the beam-to-beam8

surface contact formulation regarding the distribution of contact force in beam-to-beam contact have marginally9

been developed.10

In the beam-to-beam contact, depending on the contact configurations and the underlying beam finite element11

formulation used, an adequate contact solution procedure should be considered particularly in the definition of the12

contact normal vector. To alleviate the shortage of contact points contribution (i.e., non-smoothness through the13

contact points) in the definition of normal and tangent contact vectors, a Hermitian interpolation for two adjacent14

beams was introduced in [6]. This smoothing procedure improves the stability of the formulation and the contact15

stress distribution over a contact region when (frictional) sliding takes place [7]. Durville introduced an intermedi-16

ate geometry where a proximity zone can be defined to detect the contact point candidates in application of fibrous17
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material in [8]. Thereafter, Durville et al. [9] captured the initial configuration and the possible interpenetration18

between the bundles of initially contacting interlock fibrous materials. With reference to the distribution of con-19

tact force, Meier et al. [10] developed a variant of line-to-line contact formulation with a particular emphasis on20

integration interval segmentation in the vicinity of strong discontinuity at the end-points of the contacting beams.21

The limitations of the line-to-line formulation [10] were discussed in [11] and a new formulation was proposed to22

integrate the advantages of both the point-to-point and line-to-line formulations by introducing a transition proce-23

dure between the mentioned formulations. Nevertheless, in Meier et al.’s contributions, the so-called all-angle beam24

contact model [11] was implemented with a rod-like variant of the Kirchhoff beam theory [12] which ignores cross-25

section deformation. With the formulations above, the master-and-slave definition needs to be accounted for in the26

definition of the contact normal vector. One of the drawbacks of such a distinction between the master and slave27

contact entities is that when using a single-pass algorithm, only the slave nodes / points are checked for interpene-28

tration but not the master points. This can lead to an unchecked interpenetration of the master points. In addition,29

the weak form of contact energy is biasedly integrated over the slave surface [13]. Although some algorithms make30

use of a double-pass to preclude this, the double-pass based algorithms are prone to be computationally prohibitive,31

i.e., locking due to over-constraint at contact points. This was illustrated in [14] in the case of solid elements. This32

flaw was treated by unbiasedly integrating the weak form of contact energy in [13]. Therein, interchanging of the33

master-slave roles does not influence the results. Recently, Gay Neto [15, 16] proposed a master-to-master approach34

in which no distinction is made in a pair of contacting entities (surface / line /point) to be master or slave. Instead,35

both entities in a contact pair are assumed to be master.36

One of the well-established and pioneer beam-to-beam contact formulations was proposed in [17], which is also37

known as the seminal master-to-master contact description and laid the foundation for further contributions to this38

context [18, 19, 15, 20].39

The continuously defined contact force over a contact interface becomes crucial when beams with deformable40

cross-sections come into contact. Regardless of the initial contact type, i.e., point-to-point, line-to-line or surface-41

to-surface, the contact region may evolve from a point to a line or from a line to a surface contact. In the context42

of beam-to-beam contact, a class of the master surface to master surface formulation was introduced by Gay Neto43

et al. [18] that allows for the interpolation of the surface of contacting beam elements using a set of convective44

coordinates composed of the beam element’s degrees-of-freedom. The formulation is based on the seminal master-45

to-master point-wise contact interaction introduced in [17] that laid the foundation for further contributions to this46

context [21, 19, 15, 20]. The solutions to the local contact problems in these master-master approaches were prone to47

divergence [20, 16]. To remedy this, recently in [16], an optimization procedure based on the Hessian of the closest48

projected point problems was replaced with Newton’s iterative scheme to achieve a converged solution. In all these49

works, the contact action-reaction is assumed to be an approximation of the actual distributed force on material50

points within the contacting surfaces. Alternatively, it would be preferable to apply the actual distributed action-51

reaction through the nodal degrees-of-freedom over the contacting beams’ surface. This is useful when cross-section52

deformable beams with non-typical cross-sectional shapes come into contact (i.e., large contact region in the initial53

configuration), and when contacting beams are parallel or wrapping around each other. The latter situation was54

recently handled in [22] by integrating the weak form of contact energy along the slave beam centre line curve (but55

not surface) in the case of beams with elliptical, shear deformable (but rigid) cross-section. Distribution of contact56

action-reaction force is also crucial when a contact region within beams with deformable cross-sections becomes57

larger during simulation or evolves from a line to a surface. For example, due to highly deformable cross-sections58

in contact between beams with higher-order interpolations in their basis polynomials, the contact action has to be59

distributed over a pair of contacting surfaces via the beam element degrees-of-freedom within the simulation. It60

is also possible that a surface-to-surface interaction degenerates into a surface to line (e.g., surface to sharp edges)61

or into surface to point. These scenarios were discussed in [15], where the local contact problem in the point-wise62

surface-to-surface description is degenerated into a surface- to-line or surface-to-point to circumvent singularity63
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problems.64

Many of the finite element methods have been formulated using a one-dimensional beam theory, the so-called65

Simo-Reissner beam [23]. This theory, is the basis of many beam formulations in the framework of the fully nonlin-66

ear geometrically exact beams (GEB) with shear-deformable cross-section [24, 25, 26], and with shear-free cross-67

section [12, 27, 28]. Another fully geometrically nonlinear beam formulation is described in the framework of the68

absolute nodal coordinate formulation (ANCF) [29, 30] which assumes that the beam’s cross-section is deformable.69

In the ANCF, the kinematics of flexible spatial bodies, such as beams or shells, can be described using polynomial70

based spatial element shape functions and the vector of nodal coordinates of an element. Absolute positions and71

components of the deformation gradient that are derived either with respect to the bi-normalized or physical coor-72

dinates, are used as nodal degrees-of-freedom in an ANCF element [29]. Description of an ANCF element’s strain73

energy in the spatial elasticity is a crucial distinction between ANCF and the GEB formulation, which relies on the74

one-dimensional elastic line theory. Thereby, the incorporation of the nonlinear material models into the ANCF75

becomes more feasible [31, 32]. Whether the strain energy of an ANCF element is derived in terms of the compo-76

nents of the generalized spatial strains [33], or with respect to the components of the deformation gradient [34, 35],77

the ANCF exhibits the features that are typically recognized in the solid element types. Most recently, a continuous78

beam-type model is developed in [36] with the inclusion of the solid-like features of material nonlinearity and also79

the geometry nonlinearity in the study of the flexibility of arching masonry walls subjected to out-of-plane loads.80

Within the finite element analysis with ANCF elements, there have been a few attempts made to go beyond the stan-81

dard cross-sections, such as rectangular and circular forms. Nonetheless, they intend to capture only a local deviation82

from common cases [37, 38] and therefore, they are not suitable for addressing a sophisticated cross-sectional areas.83

Recently in [39], a computational model based on the ANCF was introduced to describe the pre-twisted Achilles84

sub-tendons as beam-like structures with arbitrary cross-sectional shapes using nearly incompressible material mod-85

els to approximate the pre-twisted sub-tendons under tensile loads. The usability and limitations of some higher-86

and lower-order ANCF beams under torsional and bi-moment loads has lately been studied in [40].87

The approach used in Gay Neto et al.’s works [18, 20, 16, 41] to interpolate the contacting surfaces, can concep-88

tually be compared with the spatial shape function to interpolate the lower- or higher-order elements in the case of89

ANCF beams or plates [42, 43, 44]. For instance, Yu et al. used the spatial shape function interpolation to describe90

a point-to-point contact between a general rigid surface and a beam’s surface in the two-dimensional implemen-91

tation of an ANCF beam [45]. Recently, in [46] the efficiency of a higher-order ANCF element in terms of the92

numerical integration on the contact interface was shown with the line-to-line formulation. Taking advantage of the93

ANCF’s spatial shape functions, narrow-phase, local contact detection scheme was implemented to identify the con-94

tact points/segments following a global contact search using an oriented bounding box algorithm [47]. An analogy95

for the treatment of the local contact detection between rob fibres using Lagrangian shape functions to interpolate a96

contact surface can be found in [48]. The same approach of the local contact search is adopted and extended for the97

three-dimensional arbitrary shape cross-section in this study.98

The primary difference between the line-to-line and surface-to-surface beam contact descriptions is that the99

former in not applicable to the general description of contact boundaries on the beam’s surfaces. The surface-to-100

surface contact formulation tackles the line-to-line formulation limitations and can help properly impose the contact101

constraint in general beam contact problems such as the twisting of beams with complicated, highly deformable102

cross-sections, where the initial contact line (or small region) would evolve to a surface in the deformed configu-103

ration. The developed surface-to-surface formulation introduced in this work achieves a converged solution with a104

reasonable number of discretization, which will be discussed in detail in Section 5. On account of this, an approach is105

used to approximate an arbitrary-shape cross-section using a numerical integration scheme based on Green’s integral106

formula. This approach is used in this paper as a prerequisite for adapting the employed ANCF beam formulation,107

to include the contact scenarios in beams with anisotropic, non-typical cross-section shapes undergoing the coupled108

deformation modes. The proposed cross-section interpolation scheme using the arbitrary splines is utilized in this109
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work to perform the following tasks:110

1. the computation of an ANCF beam element internal forces using Gaussian integration scheme across the111

cross-section with an arbitrary shape112

2. the establishment of a contact surface candidate on contacting beams using the Gauss points that are already113

utilized to interpolate the arbitrary cross-section.114

The novelties in connection with the introduced surface-to-surface contact formulation are succinctly stated in115

the following order:116

• A surface-to-surface contact formulation by parameterization (segmentation) of the contacting surfaces, in-117

cluding cross-section boundaries (locally interpolated cross-sections using the selected splines) is proposed.118

• The kinematic constituents in the weak form of contact energy are simultaneously integrated across the slave119

and master beams along two distinct patches.120

• With the proposed surface-to-surface contact formulation, as well as the external beam-to-beam contact con-121

figuration, the internal surface contact, i.e. contact in interconnected beams, can be formulated.122

• The developed contact formulation is able to model the contact scenarios within which a point-wise or a123

line-to-line contact evolves to a surface-to-surface contact situation and vice versa. In this way, the transition124

schemes between the contact formulations such as those proposed in [11, 47] are deemed unnecessary.125

2. Continuum-based beam finite element126

2.1. Beam kinematics127

This study employs a spatial three-node beam element based the absolute nodal coordinate formulation (ANCF).128

In this element, the nodes are located at the ends and in the middle of the beam longitudinal axis [34]. The beam129

local coordinate system is denoted x = {x, y, z}, where x is along the beam’s axis in the longitudinal direction, and130

y and z denote the transverse directions. Each node has nine degrees-of-freedom: the three components of position131

vector r and the three components of the transverse position vector gradients r,y and r,z. Accordingly, the vector of132

the nodal coordinates can be written as:133

qI =
[

r(I)T r(I)
T

,y r(I)
T

,z

]T with I = 1, 2, 3, (1)134

where r,y is the position vector derivative )r
)y with respect to y and r,z is )r

)z in the z direction. The following shape
functions (see [34, 49] for details)

N1(�) =
1
2
(

�2 − �
)

, N2(�),=
1
4
ly�

(

�2 − �
)

, N3(�) =
1
4
lz�

(

�2 − �
)

, (2a)
N4(�) =

(

� − 1
)(

� + 1
)

, N5(�) = −
1
2
ly�

(

� − 1
)(

� + 1
)

, N6(�) = −
1
2
lz�

(

� − 1
)(

� + 1
)

, (2b)
N7(�) =

1
2
�
(

� + 1
)

, N8(�) =
1
4
ly��

(

� + 1
) andN9(�) =

1
4
lz��

(

� + 1
) (2c)

are defined for the beam element in the bi-normalised local coordinate � = {�, �, �} in which the non-dimensional135

quantities are defined as follows:136

� = x
lx
, � =

y
ly
, � = z

lz
, (3)137
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Figure 1: Schematic beam kinematics defined in the reference and deformed configura-
tions with the illustration of the transformation between the bi-normalized and the local
elemental coordinates [32].

where lx is the length, ly is the height and lz is the width of a beam element in the undeformed configuration. In138

the ANCF, the position vector of an arbitrary particle P , shown in Figure 1, within an element with respect to the139

global coordinates system denoted X = {X, Y ,Z} at time t is140

r(�, t) = N(�) q(t) = r̄(�, t0) + uℎ(�, t), (4)141

where142

uℎ(�, t) = N(�) u, (5)143

is the 3 × 1 displacement field carrying the particle P̄ from its initial position to the current position P and144

u = q − q0 is a vector of nodal displacements in terms of a beam element’s degrees-of-freedom in which q0 and q145

are the initial and current vector of nodal coordinates, r̄ is the initial position of an arbitrary point on a beam element146

at t0 = 0, and147

N(�) =
[

IN1 IN2 ⋅ ⋅ ⋅ IN9

]

(6)148

is the matrix of element shape functions with dimension of 27 × 3 and I is the 3 × 3 identity matrix.149
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2.2. Weak form of energy equilibrium150

In the absolute nodal coordinate formulation when assuming a quasi-static equilibrium, weak form can be ex-151

pressed as follows:152

�Π(r, �r) = −∫V
S∶ �EdV

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
�Πint

+∫V
bT �rdV + ∫)V

pTa �rd)V
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�Πext

+�Πcon = 0, (7)153

where S is the second Piola-Kirchhoff stress tensor, E is the Green-Lagrange strain tensor, "∶ " denotes the double154

dot product, b is the body force vector, which is b = �g, where g is the field of gravity, pa is the surface force vector,155

V denotes integration over an element’s volume and )V indicates a surface portion belonging to the volume V .156

In Eq. (7), �Πint is the variation in strain energy of the element, �Πext is the variation in work done by externally157

applied forces, and �Πcon relates to the variational work done to enforce contact constraint.158

The internal force f int can be derived from the variation of strain energy �Πint as follows:159

�Πint = ∫V
S ∶ )E

)u
dV �u = f int�u. (8)160

The weak form of strain energy stored in an ANCF element (8) can be written in terms of the split stress tensors S0
and Sv (S = S0 + Sv) in the following form

�Πint = ∫V

(

S0 ∶
)E
)u

+ Sv ∶
)E
)u

)

dV �u = f 0,int�u + f v,int�u, (9)

where Sv and S0 are the Piola-Kirchhoff stress tensor parts, respectively excluding and including the Poisson ratio161

to handle the Poisson (locking) phenomenon, and f 0,int and f v,int are the corresponding vector of internal forces162

components [34].163

The external force f ext can be obtained using the variation of energy �Πext as164

�Πext = ∫V
bT �r dV + ∫)V

pTa �rd)V = ∫V
bTN dV �u + ∫)V

pTaNd)V �u = f ext�u. (10)165

The variation of energy �Πcon is contributed by contact force and can be written as166

�Πcon = f con�u, (11)167

where f con represents the contact force, which will be explained in Section 4.168

Remark 1. The variation of strain energy (8) is integrated to derive the vector of element elastic forces according to169

the developed scheme to define a cross-section geometry, that will be introduced in Section 3. It is derived analogous170

to the approach for description of the internal forces presented in [34].171

This study employes twowidely used hyperelasticmaterial models, the Saint Venant-Kirchhoff and theNeo-Hookean172

material models. For more details about the Saint Venant-Kirchhoff employed in this paper one can refer to [50]173

and references therein. More information on the nearly incompressible material model employed here are available174

for example in [51, 52].175

2.2.1. Equations of equilibrium176

Substituting Eqs. (8) and (10) into Eq. (7), the weak form of the equations of equilibrium can be expressed as177

follows:178

f int�u − f ext�u + f con�u = 0. (12)179
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The spatially discretized version of the variational system of equations in Eq. (12) after assembling the elemental180

quantities is read in the following form:181

Re(U ) = −F ext(U ) + F int(U ) + F con(U ), (13)182

where Re(U ) is the vector of residual forces, U is the assembled global displacement vector, F ext, F int, and F con183

are the assembled vector of external, internal and contact forces, respectively. Solving Eq. (13) all over the place of184

application requires the Newton’s iteration scheme. One can derive the tangent stiffness matrix of system at the P tℎ185

iteration by taking Jacobian of the vector of residuals Re using the following finite difference procedure186

Kt(m)
p =

)Re
p

)U p
≈

n
∑

m=1

Re
p
(

U p + ℎÎ (m)
)

−Re
p
(

U p − ℎÎ (m)
)

2ℎ
, (14)187

where Î (m) is the identity vector corresponding to themtℎ degree-of-freedom of the total n degrees-of-freedom of the188

system, and ℎ is the reasonable infinitesimal step that is assumed to be ℎ = 2lx√�F , where machine epsilon �F =189

2.220446−16 in this work [53]. At the next iteration, the displacement vector U p+1 is given as190

U p+1 = U p − (Kt
p)
−1Re

p (15)191

provided that the convergence criterion192

‖

‖

‖

Re
p
‖

‖

‖

≤ 10−5 (16)193

holds, where ‖‖
‖

Re
p
‖

‖

‖

is the norm of the vector of residuals is checked at iteration p by Eq. (16). The stopping criterion194

value given by (16) was set for all the numerical examples by which converged solutions with a reasonable number195

of iterations and beam finite element discretizations can be attained [47].196

3. Cross-section approximation197

The detail approximation of a cross-section is an important task and has a significant influence on the stress198

distributions [54]. In this section, the approach introduced in [39] is presented for deriving Gaussian integration199

points based on the Green’s integral formula. The advantage of this method lies in its ability to integrate the whole200

area without splitting it into sub-domains.201

• Let us consider an arbitrary closed domain Ω with a piece-wise border line.202

• On the border of the domain )Ω there are some points Vi, i = 1, .., ', such as )Ω = [V1, V2]∪ [V2, V3]∪ ... ∪203

[V', V1].204

• Besides, the lines [Vi, Vi+1] have several additional points, such as Vi1 = Vi and205

Vi2, ... Vimi = Vi+1 [55].206

• It should be noted that all the points are already in the bi-normalised local coordinate system �.207

see Section 2.1.208

Now we pay attention to the itℎ line only, i.e., [Vi, Vi+1] or [Vi1, Vimi ], and parameterize it in the following way:209

[�ij , �ij] =

[

0,
mi−1
∑

j=1
Δtij

]

, ∣ Δtij ∣=∣ Vij+1 − Vij ∣, j = 1, ..., mi − 1. (17)210
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Figure 2: Arbitrary domain Ω in the bi-normalised local coordinate system

Then this i−th line is tracked by a spline curve Si(t) of the degree pi, where pi ≤ mi−1 and Si(t) =
(

Si1(t), Si2(t)
),

see Figure 2. Additionally, we need to define an arbitrary straight line Ξ:
Ω ⊆ ℝ2 = [a, b] × [c, d],Ξ(�) ∈ [a, b], � ∈ [c, d].

The choice of Ξ does not have any influence on the results, however, it is necessary for further calculations, because211

the nodes and weights will be obtained relative to this line [55]. Then, the cubature formula over the domainΩ with212

the polynomial exactness degree 2n − 1 takes the following form:213

I2n−1(f ) =
∑

�∈Λ2n−1

w�f (��, ��), (18)214

where � is 4-index and is given as follows:215

Λ2n−1 = {� = (i, j, k, ℎ) ∶ 1 ⩽ i ⩽ ', 1 ⩽ j ⩽ mi − 11 ⩽ k ⩽ ni, 1 ⩽ ℎ ⩽ n} (19)216

and �� and �� w�, are respectively given as follows:217

�� =
Si1(qijk) − Ξ

2
�nℎ +

Si1(qijk) + Ξ
2

, (20a)218

219

�� = Si2(qijk) (20b)220

and221

w� =
Δtij
4
!nik !

n
ℎ(Si1(qijk) − Ξ)

dSi2(t)
dt ∣t=qijk , (20c)222

in which223

qijk =
Δtij
2
�nik +

tij+1 + tij
2

, Δtij = tij+1 − tij , with ni =
{

npi + pi∕2, pi is even,
npi + (pi + 1)∕2, pi is odd.

(21)224

Only �nik and!nik need to be defined. They are, respectively, the nodes and weights of the Gauss–Legendre quadrature225

formula of the exactness degree 2ni − 1 on [−1, 1].226
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As it was anticipated with Remark 1 in Section 2.2, the variation of strain energy (8) is to be integrated within
the parametrized domain explained in this section and represented by (18). So in the bi-normalised frame �, the
vector of element elastic forces is obtained by adding the following corresponding Gauss integrals to split the strain
energy parts containing S0 and Sv:

∫V
f int(�, �, � ) d�d� d� = det

(

)r̄
)�

) nG
∑

j=1

∑

�∈Λ
w�wjf 0,int(�j , �� ��) + det

(

)r̄(1)
)�

) nG
∑

j=1
wjf v,int(�j), (22)

where nG and wj are the number and weight of Gauss points in the longitudinal direction, respectively.227

4. Beam-to-beam contact formulations228

In this section, a new beam-to-beam contact formulation is introduced. The developed formulation has been in-229

spired by the line-to-line contact procedure in [10] and subsequently, the line-to-line formulation recently developed230

in the frame work of two-dimensional and three-dimensional ANCF, respectively in [47] and [46]. The line-to-line231

formulation is first reviewed in Section 4.1 and then a beam surface-to-surface contact formulation is introduced in232

Section 4.2. The surface-to-surface contact formulation is particularly designed to describe contact in beams with233

arbitrary non-typical cross-section and in the case of internal contact.234

4.1. Line-to-line contact formulation235

The unilateral minimum problem for two contacting beams is expressed in terms of closest distance field between236

the two contacting beams. The closest vector field on beam B (master) rB(�Bc ) corresponding to the position field237

that belongs to beam A (slave) rA(�A) is obtained by solving the following minimal distance problem238

d
(

�A, �Bc (�
A)
)

∶= min
�B

d(�A, �B) = ‖

‖

‖

rB(�Bc ) − r
A(�A)‖‖

‖

, (23)239

where subscript c denotes the closest projected point on the master element for a given slave point, and hereafter it240

denotes projection of contact entity evaluated at the unilateral closest points. In the line-to-line contact, the unique241

solution to minimum distance problem (23) leads to one orthogonality condition in which the task is seeking for242

unknown �Bc (�A), which is the master closest point corresponding to the slave point in terms of the slave coordinate243

field parameter �A. Assuming contact takes place along a patch between the upper beam (master) at �Bc = −1, and244

the lower beam (slave) at �Ac = 1 in the current configuration [56], the closest projection problem245

ℎ1(�A, �B) =
(

rA(�A) − rB(�B)
)T rB,�(�

B) with ℎ1(�A, �Bc ) = 0 (24)246

has to be solved; where rB,�(�B) is the derivation of the position vector beam B with respect to local coordinate �.247

The gap function field g(�A, �B(�A)) is defined to express the non-penetration condition248

g
(

�A, �B(�A)
)

= d
(

�A, �Bc (�
A)
)

= ‖

‖

‖

rA�,�=0 − r
B
�,�=0

‖

‖

‖

−
(

‖

‖

‖

rA − rAc,�,�=0
‖

‖

‖

+ ‖

‖

‖

rBc − r
B
c,�,�=0

‖

‖

‖

) with g
(

�A, �B(�A)
)

≥ 0,
(25a)249

where position field rA�,�=0 results from the closest projection of master beam end-point rB on the slave beam centre250

line, and rB�,�=0 is the vector field resulting from projecting back the slave point abscissa on the closest master element251

according to Eq. (24). This latter projection task is carried out after the segmentation that will be illustrated in detail252

in Section 4.1.2.253

4.1.1. Enforcement of contact constraint254

The gap function field g(�A, �B(�A)) in terms of the slave beam local parameter �A is defined to express the255

non-penetration condition256

g
(

�A, �B(�A)
)

= d(�A, �Bc ) with g
(

�A, �B(�A)
)

≥ 0. (26)257
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Accordingly, the variation of contact energy contribution to the equation of equilibrium (7) can be expressed as258

follows:259

�Πcon = pn ∫Ωc
g
(

�A, �B(�A)
)

�g
(

�A, �B(�A)
) dΩc , (27)260

where:261

�g(�A, �B(�A)
)

=
(

�rA(�A) − �rB(�B)
)T �rB,�(�

B), (28)262

and Ωc indicates the integration domain, i.e., the contact patch to be constrained on the contacting surface of the263

slave (A) and master (B) beams, and pn is the penalty parameter. The vector of the distributed contact forces can be264

identified in Eq. (27) in the form of265

f con = pn g
(

�A, �B(�A)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
fcon

n
(

�A, �B(�A)
)

, (29)266

where fcon is the average magnitude of action-reaction contact pressure on the entire surface of the contact region267

and268

n
(

�A, �Bc (�
A)
)

=
rB
(

�Bc (�
A)
)

− rA(�A)
‖

‖

‖

rB
(

�Bc (�A)
)

− rA(�A)‖‖
‖

(30)269

is the contact normal vector.270

4.1.2. Contact patch segmentation271

Slave beam

Master beam

Element node

Projected master end-point on slave beam
Gauss point on slave beam

End-point of contact patch on master beam

Projected Gauss point on master beam
Integration interval boundary
Element boundary

Figure 3: Illustration of integration segmentation along the contact patch in the contacting
master and slave beams.

The weak form of contact energy (27) can be expressed in discretized form by substituting the position vector r272
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from Eq. (4) into Eq. (27) as follows:273

�Πcon = −�uA,T pn
nG
∑

j=1
g
(

�Aj , �
B
c (�

A
j )
)

NT (�Aj )n
(

�Aj , �
B
c (�

A
j )
)

wjJ (�Aj )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
fA

con(�Aj )

+ �uB,T ⋅ pn
nG
∑

j=1
g
(

�Aj , �
B
c (�

A
j )
)

NT
(

�Bc (�
A
j )
)

n
(

�Aj , �
B
c (�

A
j )
)

wjJ
(

�Bc (�
A
j )
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
fB

con
(

�Bc (�
A
j )
)

.

(31)274

In Eq. (31), njG is the number of the Gauss points along a slave element’s centre line,wj is the weight of the jtℎ Gauss275

point, �j is the jtℎ Gauss points coordinate in terms of the slave beam parameter �A, �B(�Aj ) are the closest projected276

master point assigned to the slave Gauss point parameter �Aj and J (�Aj ) and J
(

�Bc (�
A
j )
) are the scaling factor between277

the increment of the Gauss point coordinates in the bi-normalized and the physical coordinate systems in the slave278

and master beam. Terms specified by fAcon(�Aj ) and fBcon
(

�Bc (�
A
j )
) represent the vector of distributed contact reaction279

forces corresponding to the slave and master elements, respectively. The integration interval used in Eq. (31) can be280

further parameterized by assigning nS segments to each beam slave element. Therefore, for nS number of segments281

within a slave element, the new coordinate parameter in a slave beam element can be expressed with respect to the282

interpolation283

�Asj = �
A
s (�

A
j ) =

�As,2e − �
A
s,1e

2
�Aj +

�As,2e + �
A
s,1e

2
, for j = 1, ..., nG, for s = 1, ..., nS , (32)284

where �As,1e and �As,2e are the integration boundaries at each integration segment. The further parameter �As is285

equidistantly spaced within the intervals [−1, 1] unless there exists a valid projection for a master beam endpoint286

rB
(

�Bs,1e∕s,2e(�
A)
) on a slave element according to Eq. (24), that is to be iteratively solved via the following closest287

projected point problem288

ℎ1(�A1e, �
B
1c) = 0 and ℎ1(�A2e, �

B
2c) = 0, (33)289

where �B1c and �B2c are the abscissa coordinate of the master beam end-points. Figure 3 illustrates the projection290

of the Gauss points on the corresponding closest master element for nS = 3. Now the discretized contact energy291

variation (31) can be expressed with a further parameterization consisting of the beam discretization (4), and the292

contact segmentation (32) written in the form of two sums over the number of Gauss points and over the integral293

segments as follows:294

�Πcon = −�uA,T pn
nG
∑

j=1

nS
∑

s=1
g
(

�Asj , �
B
c (�

A
sj)

)

NT (�Asj)n
(

�Asj , �
B
c (�

A
sj)

)

⋅wjJ (�Asj)

+ �uB,T pn
nG
∑

j=1

nS
∑

s=1
g
(

�Asj , �
B
c (�

A
sj)

)

NT
(

�Bc (�
A
sj)

)

n
(

�Asj , �
B
c (�

A
sj)

)

⋅wjJ
(

�Bc (�
A
sj)

)

,

(34)295

where296

J (�Asj) =
)r(1)A

)�A
)�A

)�As
= HAW ALA

2

�As,2e − �
A
s,1e

2
, (35)297

in which LA andW A are the slave beam length and width.298
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Remark 2. Perhaps the presented line-to-line formulation is analogous to themodified virtual slave node-to-segment299

formulation introduced in [57] that the original virtual slave node-to-segment formulation had been presented300

in [58]. In the modified formulation [57], the Gauss points distribution on a slave beam was replaced with the301

virtual points or nodes that are placed in the centroid of each contacting element’s segment for a planar linear solid302

element. Comparing to the so-called algorithm " a modified node-to-segment algorithm passing contact patch test303

(VTS-PPT), the introduced line-to-line and surface-to-surface formulations show an analogy up to a certain level.304

In particular, the abscissa displacements of the equally-spaced slave segments and their containing Gauss points305

are associated to a beam element’s (end / middle) node via a linear interpolation given by Eq. (32). On the other306

hand, the formulation in this work differs from the NTS-PPT with respect to the following points. In the introduced307

line-to-line and surface-to-surface formulations, the resultant of contact pressure acting from each of slave seg-308

ments denoted fN in Eq. (29), is distributed over a projected area on the master surface (i.e., element) as shown by309

Figure 3, which ultimately, is transferred into a master node’s degrees-of-freedom. Conversely, with the NTS-PPT310

algorithm, the resultant of the contact pressure acting from a slave segment will finally be transferred to the master311

end nodes in the master surface involving the projected area as equivalent concentrated nodal forces in the normal312

direction.313

4.2. Surface-to-surface contact formulation314

�B

rB,�

rB,�(�
B(�Aj ), �

B(�Aj , �
A
k ))

rB,� (�
B(�Aj ))

Projected end-point of master beam on slave element
Element node
Gauss point on master element
Projected Gauss point on slave element

Segment boundary
Contact boundary on slave element
Beam centerline

�B

�B

Master surface
Slave surface

rB,�

n(�Aj , �
B
c (�

A
j ), �

B
c (�

A
j , �

A
k ))

Slave beam A

Master beam B

rA,�(�
A, �A)rA,� (�

A
j )

�A

Figure 4: Kinematic parameters of a beam surface-to-surface contact problem

In this section, the described line-to-line formulation in Section 4.1 is extended into a beam surface-to-surface315

contact formulation. The introduced formulation is developed to be applied in both external and internal beam con-316

tact configurations. The internal contact description of the formulation is particularly developed to take advantage317

of the solid-like features of the continuum based ANCF beam that is integrated with the introduced cross-section318

approximation scheme in Section 3.319
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4.2.1. External contact description320

The unilateral minimum problem defined by Eq. (23) is now adapted to measure the minimum distance field321

between the closest vector field322

rBc
(

�Bc (�
A), �Bc

(

�B(�A), �A
)

)

≡ rBc
(

�Bc , �
B
c
(

�Bc )
)

, (36a)323

defining the portion of contact surface of on beam B (master), and the position vector field324

rA
(

�A, �A(�A)
)

≡ rA(�A, �A) (36b)325

that belongs to beam A (slave) surface. Hereafter, according to the equivalence expressions (36), the notations326

for coordinate parameters �Bc and �Bc will be simplified. As implicitly pointed out with the expressions (36), the327

transverse coordinate �A is the solutions to the following closest projection point problems328

p1
(

�A(�A)
)

=
(

rA
(

�A, �A(�A, �A)
)

− rAf (�
A, �A)

)T
rA,�
(

�A, �A(�A, �A)
)

= 0, (37)329

where330

rAf (�
A, �A, �A) = N(�A, �A, �A)qA (38)331

is the position vector field of the Gauss points defining the cross-section of a slave beam element.332

Remark 3. The normal projection (37) is performed to assure that the vector field rA
(

�A, �A(�A, �A) represents333

the contact points candidate in terms of the deformation-dependent coordinate parameter �A(�A).334

The minimum distance problem between the vector fields (36) is in the form of335

d
(

�A, �Bc (�
B
c , �

A)
)

∶= min
�B(�A,�A)

d(�A, �B) = ‖

‖

‖

rA(�A, �A) − rBc (�
B
c , �

B
c )
‖

‖

‖

, (39)336

in which again, assuming contact takes place across a surface with �Bc = −1 and �Ac = 1 in the current configuration,337

the further orthogonality condition in addition to Eq. (24) in the case of the line-to-line contact model, is in the338

following structure339

p2(�A, �B) =
(

rB
(

�B(�A), �B(�A, �A)
)

− rAf (�
A, �A, �A)

)T
rB,�

(

�B(�A), �B(�A, �A)
)

with p2
(

�A, �Bc
(

�Bc (�
A), �A

)

)

= 0,
(40)340

where rB,� (�B , �B) is the derivation of the position vector beam B with respect to local coordinate parameter �A. The341

gap function field g(�A, �B(�A), �A, �B(�A, �A)) is defined to express the non-penetration condition342

g(�A, �B , �A, �B) = d
(

�A(�A, �A), �B(�Bc , �
B
c )
)

= ‖

‖

‖

rA(�A)�,�=0 − rB(�Bc )�,�=0
‖

‖

‖

−
(

‖

‖

‖

rA(�A, �A) − rA(�A)�,�=0
‖

‖

‖

+ ‖

‖

‖

rBc
(

�Bc , �
B
c
(

�Bc )
)

− rB(�Bc )�,�=0
‖

‖

‖

) with g(�A, �B , �A, �B) ≥ 0.
(41a)343

Similar to the line-to-line formulation in Section 4.1, the variation of contact energy due to the surface-to-surface344

contact then reads as follows:345

�Πcon = pn ∫Ωc
g(�A, �B , �A, �B)�g(�A, �B , �A, �B) dΩc , (42)346
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where Ωc denotes the integration over the projected area on the both slave and master beams external surface.347

According to the kinematics demonstrated in Figure 4, the contact normal vector is defined as the cross product of348

the tangent vectors349

�(�B) = )rB

)�B
(43)350

and351

�B(�B , �B) = )rB

)�B
(44)352

with respect to the beam local coordinate �B and �B , respectively. The contact normal vector from the master353

element surface to the slave element surface is then354

n(�B , �B) =
�B(�B , �B) × �(�B)
‖

‖

�B(�B , �B) × �(�B)‖
‖

. (45)355

It is known that similar to the definition of the contact normal vector in Section 4, the normal vector in the surface-356

to-surface contact description is perpendicular to the master beam centre line, and is not necessarily perpendicular357

to the slave element. The contact normal vector defined by Eq. (45) can alternatively be calculated similar to that of358

the line-to-line formulation given by Eq. (30). Hereon, the contact vector is in the form of359

n
(

�A, �Bc (�
A), �Bc

(

�Bc (�
A), �A

)

)

=
rB(�Bc , �

B
c ) − r

A(�A, �A)
‖

‖

rB(�Bc , �Bc ) − rA(�A, �A)‖‖
. (46)360

Remark 4. The contact normal vector given by Eq. (46) is analogous to that in the case of the line-to-line formula-361

tion that appeared in Section 4.1 (see Eq. (30)). The above-mentioned contact normal is preferred over (45) which362

is defined similarly to that in [59] in the implementation of the introduced formulation in this work.363

4.2.2. External contact surface segmentation364

The discretized form of contact energy (31) can be parameterized in the transverse directions � or � that herein365

the � direction is abstained without loss of generality and consistency. It is assumed that contact between the beams366

takes place in between the upper surface of beam A (slave), and the lower surface of beam B (master), see Figure 4.367

Analogous to Section 4.1.2, the variation of contact energy is of the following form:368

�Πcon = −�uA,T pn
njG
∑

j=1

nkG
∑

k=1
g
(

(�Bc (�
A
j ), �

B
c (�

A
j , �

A
k )
)

NT (�Aj , �
A
k )n

(

�Aj , �
B
c (�

A
j ), �

B
c (�

A
j , �

A
k )
)

wjwkJ (�Aj , �
A
k )

+ �uB,T pn

njG
∑

j=1

nkG
∑

k=1
g
(

(�Bc (�
A
j ), �

B
c (�

A
j , �

A
k )
)

NT
(

(�Bc (�
A
j ), �

B
c (�

A
j , �

A
k )
)

n
(

�Aj , �
B
c (�

A
j ), �

B
c (�

A
j , �

A
k )
)

⋅wjwkJ
(

�Bc (�
A
j ), �

B
c (�

A
j , �

A
k )
)

.

(47)369

In Eq. (47), nkG is the number of Gauss points in a slave element, along the cross-section border in � direction,wk are370

the corresponding Gauss points weight, �k are the Gauss points coordinate in terms of the slave beam parameters �A371

and �A, �Bc (�Aj , �Ak ) is the closest projected master point assigned to the Gauss slave point parameters �Aj and �Ak , and372

J (�Aj , �
A
k ) and J

(

�Bc (�
A
j ), �

B
c (�

A
j , �

A
k )
) are the scaling factor between the increment of the Gauss point coordinates373

in the bi-normalized and the physical coordinate systems in the slave and master beam, respectively. For nS number374

of segments within a slave element, the variation of discretized contact energy can be expressed with an additional375
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integration along the transverse direction � , using the coordinate parameter �k as follows:376

�Πcon = − �uA,T pn
nkG
∑

k=1

njG
∑

j=1

nS
∑

s=1
g
(

(�Bc (�
A
sj), �

B
c (�

A
sj , �

A
k )
)

NT (�Asj , �
A
k )n

(

�Asj , �
B
c (�

A
sj), �

B
c (�

A
sj , �

A
k )
)

wjwkJ (�Asj , �
A
k )

+ �uB,T pn

nkG
∑

k=1

njG
∑

j=1

nS
∑

s=1
g
(

(�Bc (�
A
sj), �

B
c (�

A
sj , �

A
k )
)

NT
(

(�Bc (�
A
sj), �

B
c (�

A
sj , �

A
k )
)

n
(

�Asj , �
B
c (�

A
sj), �

B
c (�

A
sj , �

A
k )
)

⋅wjwkJ
(

�Bc (�
A
sj), �

B
c (�

A
sj , �

A
k )
)

.
(48)377

where378

J (�Asj , �
A
k ) =

)rA(1)
)�A

)�A

)�As

)rA(3)
)�A

= HALA

2

�As,2e − �
A
s,1e

2
W A

2
. (49)379

380

Remark 5. In the implementation of the parameterized contact contribution (48), two loops are sufficient enough381

to go through the integration patches. One loop imposes the contact constraint on each of �Asj and �
B
c (�

A
sj) simulta-382

neously in a collocation manner, and the second one imposes the corresponding contact constraint for nkG number383

of Gauss points corresponding to each �Asj and �
B
c (�

A
sj), see Algorithm 1.384

4.2.3. Internal contact description385

Description of the surface-to-surface contact presented in Section 4.2.1 is slightly adapted for the configurations386

in which the internal contact exists. An essential difference between the external and internal contact descriptions387

in this work is that in the case of the internal contact, at least one of the contact pairs (a master or a slave beam),388

comes into contact with its inner surface where none of the transverse coordinate parameters � or � are located on389

the external surface of the contacting beam, i.e. �, � ≠ {−1, 1}. This means that in addition to the position vector390

fields (36), the following position vector fields are expressed in terms of coordinates �A and �B such that391

rBc
(

�Bc (�
A), �Bc

(

�B(�A), �A
)

, �Bc
(

�B(�A)
)

, �A
)

≡ rBc
(

�Bc , �
B
c (�

B
c ), �

B
c (�

B
c )
) (50a)392

and393

rA
(

�A, �A(�A), �A(�A)
)

≡ rA(�A, �A, �A) (50b)394

defining the portion of contact surface on beam B (master), and the position vector field belongs to beam A (slave)395

surface in an internal contact scenario. The notations for coordinate parameters �Bc and �A will also be simplified396

in the rest of the paper. Similar to the external contact description, the following additional closest projection point397

problems have to be solved for the transverse coordinates �A and �B . The transverse coordinate parameters on the398

slave beam is given by solving the following projection point problem399

p3
(

�A(�A)
)

=
(

rA
(

�A, �A(�A, �A) − rAf (�
A, �A, �A)

)T rA,�
(

�A, �A(�A, �A) = 0, (51)400

Again, the following minimum distance problem between the vector fields (50)401

d(�A, �Bc ) ∶= min
�A,�B

d(�A, �B) = ‖

‖

‖

rA(�A, �A, �A) − rBc (�
B
c , �

B
c , �

B
c )
‖

‖

‖

(52)402

requires the solving of an additional closest projection problem for the unknown �Bc which is not constant anymore403

in the case of an internal contact. So404

p4(�A, �B) =
(

rB
(

�B(�A), �B(�A, �A) − rAf (�
A, �A, �A)

)T rB,�
(

�B(�A), �B(�A, �A)
) with p4

(

�A, �Bc
(

�Bc (�
A), �A

)

)

= 0
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(53)405

is to be solved along with Eq. (40). The gap function g in terms of the slave and master beam local parameters is406

defined to express the non-penetration condition407

g(�A, �B , �A, �B , �A, �B) = d
(

(�A, �A, �A), (�Bc , �
B
c , �

B
c )
)

= g0 −
‖

‖

‖

rBc
(

�Bc , �
B
c (�

B
c ), �

B
c (�

B
c )
)

− rA(�A, �A, �A)‖‖
‖

with g(�A, �B , �A, �B , �A, �B) ≥ 0,
(54a)408

where g0 is an initial gap in a beam-inside-beam configuration. The normal vector in the internal contact is prescribed409

similar to (46) and is expressed in terms of Eqs. (50) as follows:410

n
(

�A, �Bc , �
B
c
(

�Bc ), �
B
c
(

�Bc )
)

=

rBc
(

�Bc , �
B
c (�

B
c ), �

B
c (�

B
c )
)

− rA(�A, �A, �A)
‖

‖

‖

rBc
(

�Bc , �Bc (�Bc ), �Bc (�Bc )
)

− rA(�A, �A, �A)‖‖
‖

.
(55)411

4.2.4. Internal contact surface segmentation412

�Asj

�B(�Asj)

rA(�Asj , �
A
k , �

A
k )

rB
(

�B(�Asj), �
B
k (�

A, �Ak ), �
B
k (�

A, �Ak )
)

Gauss point in an active contact surface of slave beam
Position of Gauss point in an active contact corresponding to the slave abcissa parameter

Off-contact Gauss point
Projected Gauss point onto the master surface

Slave abscissa parameter on master beam
Slave abscissa parameter

n

Figure 5: Illustration of the definition of the parameterized contacting surfaces in an
internal contact description. The procedure of treatment of the Gauss points candidates
on an active slave beam’s internal surface and their projection on the master beam’s
external surface is shown.

The discretized form of contact energy (31) can be parameterized in the transverse directions � or � that herein413

the � direction is also accounted for in the parametrization. An internal contact within the beams takes place such414
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that the internal surface of the upper beam B (master) comes into contact with the external surface of the lower415

beam beam A (slave), see Figure 5. The variation of contact energy is expressed as416

�Πcon = −�uA,T pn
njG
∑

j=1

nkG
∑

k=1
g
(

(�B(�Aj ), �
B(�Aj , �

A
k ), �

B(�Aj , �
A
k )
)

NT (�Aj , �
A
k , �

A
k )

⋅ n
(

�A, �Bc , �
B
c
(

�Bc ), �
B
c
(

�Bc )
)

wjwkJ (�Aj , �
A
k , �

A
k )

+ �uB,T pn

njG
∑

j=1

nkG
∑

k=1
g
(

(�B(�Aj ), �
B(�Aj , �

A
k ), �

B(�Aj , �
A
k )
)

NT
(

(�B(�Aj ), �
B(�Aj , �

A
k ), �

B(�Aj , �
A
k )
)

⋅ n
(

�A, �Bc , �
B
c
(

�Bc ), �
B
c
(

�Bc )
)

wjwkJ (�Bj , �
B
k , �

B
k ).

(56)417

In Eq. (56), nkG is again the number of Gauss points in a slave element in the directions along the internal surface418

of the cross-section in terms of the transverse coordinates � and � , �k is the Gauss point coordinate in terms of419

the slave beam parameters �A, �B(�Aj , �Aj ) is the closest projected master point assigned to the Gauss slave point420

parameters �Aj and �Bk , J (�Aj , �Ak , �Ak ) and J (�Bj , �Bk , �Bk ) are the scaling factor between the bi-normalized and the421

physical coordinate systems in terms of the Gauss point coordinates in the slave and master beams, respectively.422

Again, the integration interval used in Eq. (56) can be further parameterized by assigning nS segments for each423

beam slave element. Therein, for nS number of segments within a slave element, the variation of discretized contact424

energy can be expressed with an additional integration patch along the transverse direction, i.e., along the splines425

defining the cross-section portion that is in contact. The parameterized contact energy contribution to Eq. (12) reads426

according to the following structure:427

�Πcon = − �uA,T
nkG
∑

k=1

njG
∑

j=1

nS
∑

s=1
g
(
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B
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A
sj , �
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k )
)
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A)
)
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B(�Asj , �
A
k ), �
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A
k )
)
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(
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A)
)
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∑
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k ), �

B
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A
sj , �
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)

NT
(
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A
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A
k ), �

B
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A
sj , �

A
k )
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⋅ n
(
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B(�Asj), �

B(�Asj , �
A
k ), �

B(�Asj , �
A
k )
)

wjwkJ
(
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k (�

A), �Ak (�
A)
)

,

(57)428

where429

J
(

�Asj , �
A
k (�

A), �Ak (�
A)
)

=
)rA(1)
)�A

)�A

)�As

)rA(2)
)�A

)rA(3)
)�A

= LA

2
�A2e − �

A
1e

2
HAW A

2
. (58)430

4.3. Arbitrary curve-to-curve contact in the surface-to-surface contact description431

In this section, the contact between beams with elliptical cross-sections was described as an arbitrary curve-432

to-curve contact across the surface of the contacting beams when warping around each other. The contact points’433

candidates were identified on the contacting beam’s surfaces using a local contact search algorithm at each beams’434

sections characterized by an abscissa and the two ordinate parameters (�sj ,�k,�k) as illustrated in Fig 6. It follows435

the Euclid’s distance check436

dmin = min
(

‖

‖

‖

(rA(�Asj , �
A
k , �

A
k ) − r

(

�B(�Asj), �
B
l , �

B
l
)

‖

‖

‖

)

, j = 1, 2, ..., njG, s = 1, 2, ..., nS k = 1, 2, ..., nkG, l = 1, 2, ..., n
l
G

(59)437

over the entirety of the contacting beams. When the closest points from two contacting curves’ sections are iden-438

tified by Eq. (59) (see Figure 6), a Newton’s iterative scheme seeks for an ordinate parameter solution for a closest439
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Slave beam

Contact point candiate on the slave surface
Contact point candiate on the master surface
Gauss point abscissa on slave beam’s centreline
Projected Gauss point abscissa on master beam’s centreline

Slave beam
Master beam

Master beam

Master beam

Slave beam

Off-contact Guass points

Figure 6: Illustration of the parameterized contact patch in a surface-to-surface contact
description. The procedure of defining the contact point candidates on the active contact
surface is shown for beams experience contact when wrapping around each other.

projection of the identified points belonging to the slave surface, onto the master surface. This task is accomplished440

by substituting the position vector441

rAmin = r
A(�Amin, �

A
min, �

A
min), (60)442

corresponding to contact point candidate on the slave surface, into Eqs. (40) and (53). Subsequently, the contact443

energy variation can be computed using the following line integral over the specified contact curves on each of the444

slave and master elements:445

�Πcon = �uA,T pn
nG
∑

j=1

nS
∑

s=1
g
(

�B(�Asj), �
B
c , �

B
c
)

NT (�Asj , �
A
c , �

A
c )n

(

�B(�Asj), �
B
c , �

B
c
)

wjJ (�Asj)

− �uB,T pn
nG
∑

j=1

nS
∑

s=1
g
(

�B(�Asj), �
B
c , �

B
c
)

NT
(

�B(�Asj), �
B
c , �

B
c
)

n
(

�B(�Asj), �
B
c , �

B
c
)

wjJ
(

�B(�Asj)
)

,

(61)446

where �Ac and �Bc are respectively, the solutions of Eq. (51) and Eq. (53) when assigning position vector (60) to the447

slave and master elements, and similarly, �Ac and �Bc are the solutions after assigning vector (60) to Eqs. (37) and448

(40).449

Remark 6. The integrand in (61) is a parameterization of the contact energy over the helix like patch illustrated in450

Figure 6 within which the ordinate parameters �c and �c are deformation dependent on both the master and slave451

beams. This emanates from the fact that those ordinate parameters are solutions of Eqs. (51) and (53), locally solved452

using Newton’s scheme.453

5. Numerical examples454

In this section, the robustness, accuracy and performance of the beam surface-to-surface contact formulation455

presented in Section 4.2 are to be investigated by a number of contact problems. For all examples, the nonlinear456
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Newton’s solver is used in order to solve Eq. (13) arising from the variational form of equations of equilibrium (12).457

A standard finite difference procedure is employed to evaluate the global tangent stiffness matrix (14) with the458

convergence criterion (16) during the numerical simulations. The total number of Gauss points per integration459

interval over each contact surface segment, is given by adding the Gauss points according to a Gauss rule with460

respect to the order of the contact energy function and those Gauss points across the portion of a cross-section in461

contact as follows:462

nG =
r + 1
2

⏟⏟⏟
njG

+nkG (62a)463

with the total number of nGT = nS ⋅ n
j
G + n

k
G Gauss points per slave beam element, where r is the order of the464

integrating polynomial.465

5.1. Contact patch test466

The first example studies the performance and stability of the surface-to-surface contact formulation using a
variant of the well-known patch test introduced in [60]. Figure 7 shows the configuration of the test with the modified
boundary conditions for the upper beam A. The modification has to be made to apply a simply-supported boundary
conditions in order to avoid the ill tangent stiffness matrix (i.e. low value of the condition number) in the static
analysis performed. The material and geometrical parameters are collected in Table 1. The beams are made of a
nearly-incompressible material model with respect to the Neo-Hookean model [51]. As discussed in [7], a contact
algorithm can pass the patch test if the contact pressure magnitude within the numerical integration of the contact
energy potential (42), (i.e., it can be identified analogously to (29)) can be equal to a constant normal traction
fcon exerting on the contacting surfaces that must remain constant throughout the contact patch. Figure 9 plots
the evolution of the contact pressure acting on both the contacting surfaces of beams in terms of length of the
contact patch. In the figure, each data point represents the magnitude of the contact pressure associated with each
integration segment. It is evidenced by the figure that with increasing the number of (total) segments within the
contact region, the contact pressure is getting converged towards an almost constant value (48 segments). It should
be recalled that the fluctuations in the contact pressure in the left side of the contact patch can be ascribed to the
pin-type constraint used in the left end of the upper beam (A). This hinders the axial displacement in left-end of
the beam and induces an excessive normal pressure. The technique used with the VTS-PPT in [57] to transform the
uniform contact pressure acting over the projected master surface into equivalent concentrated nodal forces brings
about the equivalence of the momentum over each master segment/element, which in turn leads to passing the patch
test. However, re-producing the three-dimensional variant of this technique here can lead to the abdicating of the
master nodal degrees-of-freedom associating with the cross-section deformation. Moreover, there is no proof that
the VTS-PPT algorithm could satisfy the inf–sup condition which have already satisfied that proves the stability of
the introduced formulation in this study. The stability, on the other hand, is studied using the inf-sup test [61, 7]. To
this end, the following inf-sup condition

∫Ωc png(�
A, �B , �A, �B)dΩc
ℎspn‖u‖

= �ℎs > 0 (63)

should be satisfied according to [7], where ℎs is the integral segment size and �ℎs is the inf-sup value. Fig. 8 shows467

the logarithmic values of the inf-sup with increasing of integration segments on the contact patch. After a slight468

increase of �ℎs for nS = 3, it is almost bounded overhead with a small rise for nS = 6. Therefore, the inf-sup test is469

passed [61].470
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pa

B

A

uBxBeam

Beam

(a) Patch test problem with boundary conditions and loading. uBx
is the axial displacement.

(b) Re-modelling of the Patch test using two geometrically differ-
ent beams based on the ANCF. The beams are discretized using
16 elements made of the Neo-Hookean material.

Figure 7: Patch test illustration
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Figure 8: Inf-sup values for the contact patch test for increasing number of integration segments. The results are based
on the discretization of 16 ANCF elements.
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Figure 9: Contact pressure fields within contact patch in the patch test for increasing number of integration segments.
The results are based on the discretization of eight ANCF elements when Neo-Hookean material is employed.
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Table 1
Parameters of contact patch test

Parameters Value

Young’s modulus E [Pa] 2.07 ⋅ 109

Poisson ratio � 0.3
Penalty parameter pn 106

External surface force pa [
N
m2

] pn
LA [m] 2.5
LB [m] 1

HA = W A [m] 0.2
HB = W B [m] 0.1
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-0.3

-0.2

-0.1

0

0.1

0.2

H

W

Figure 10: C-shape cross-section geometry after mapping the Gauss points coordinate from bi-normalised local coordi-
nate to the physical local coordinate.

5.2. Bending problem - external contact471

In this example, the performance and accuracy of the presented beam contact formulation is examined by con-472

sidering a double cantilever beam problem. The example is inspired by the classical benchmark problem originally473

discussed in [59]. Due to the complicated non-symmetric beams cross-section in this example, the ambient pressure474

applied in the original problem in [59] is omitted. This is because of the fact that the imposition of the ambient475

pressure or more specifically, the bidirectional oppositely applied pressure on top of the upper beam and bottom of476

the lower beam on such a configuration would induce torsional moments that are the results of the non-symmetric477

beams cross-section. The lateral nodal degrees-of-freedom in the ANCF beam and similarly, the lateral surfaces478

in the 20-node solid element type in ABAQUS are constrained to avoid an instability problem. The material pa-479

rameters used in the simulation are E = 2.07 ⋅ 1011 Pa and � = 0.3. The cross-section geometry with C-shape is480

shown in Figure 10 and the beams length are LA = LB = 2m as shown in Table 2. The original material properties481

and geometrical parameters are changed to comply with the chosen cross-section shape, and with the ANCF beam482

internal force definition which was derived with respect to Eq. (18). The initial configuration of the structure is483

illustrated in Figure 11a. The structure underwent a large deformation at the end of the simulation at the maximum484

loading of fy = −109 ⋅H3, as shown in Figure 11b. In order to investigate the segmentation effect on the contacting485
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Table 2
External bending simulation parameters

Parameters Value

Young’s modulus E [Pa] 2.07 ⋅ 1011

Poisson ratio � 0.3
External nodal force fy [N] −109 ⋅H3

L = LA = LB [m] 2

beams, a convergence analysis was done with an increasing number of segments on the contacting beam interface.486

f  y

(a) Initial configuration (b) Deformed configuration
Figure 11: Bending of two beams with C-shape using discretization of eight beam elements

The rate of convergence of the norm of the contact reaction force applied from the slave beam (lower beam)487

in terms of the increasing number of total Gauss points on the entire slave beam’s contacting surface is illustrated488

in Figure 12. The discretization used on the beam is eight ANCF beam elements and the total number of Gauss489

points nGT increases according to Eq. (62) for ascending number of integration segments nS ∈ {4, 6, 8, 10, 14}.490

The reference value is the norm of contact force when nS = 14. It can be interpreted from Figure 12 that with491

increasing number of Gauss points, the relative error in the case of the slave beam’s contribution to norm of vector492

of contact force is almost quadratically decreased and is minimized when nS = 10. The converged solution for the493

norm of vector of contact force is associated with an acceptable small value for a relative error that was achieved494

with a low number of beam discretization. Moreover, as will be observed in Section 5.5, the relative error can also495

be mitigated by the increasing of number of beam discretization.496

Figure 13 compares the convergence rate of solution for the end point’s vertical displacement. Therein, the rela-497

tive errors are expressed versus increasing number of the beam discretization nl ∈ {3, 4, 8, 16, 24, 32} to investigate498

the used beam element type performance. The relative errors for each beam discretization is computed with respect499

to the highest discretization (32 beam elements). It is evidenced by the figure that after some fluctuations at nl = 3500

and nl = 4 where no converged solution is delivered, the solution converges almost quadratically at nl = 8 at a501

sharp pace and afterward, the convergence rate follows a smoother trend. The diverged solutions at nl = 3 and502

nl = 4 can be explained by the fact that for low number of discretization, there is a positive gap distance between503

the candidate contacting elements in the region near to the beam clamped end under bending. This simply gives an504

inaccurate value for the vertical displacement, although the contact constraint are properly enforced where the con-505

tacting elements lie on each others. Nonetheless, the diverged solution at a very low beam discretization is expected506

from the ANCF beam’s shape function interpolation under cross-sectional load cases, see [62] for a more specific507
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Figure 12: Rate of convergence of the double cantilever beam solution for the norm of the vector of contact (reaction)
force ‖

‖

‖

F A
con
‖

‖

‖

exerted from the slave beam with increasing number of Gauss points on entire of the slave beam. The
dashed black and red lines indicate the second and first orders of convergence rate.
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Figure 13: Rate of the convergence of the double cantilever beam’s solution for end tip vertical displacement of the
upper beam with increasing number of beam discretizations. The red and black dashed lines represent the first and
second orders of the solution convergence rate.

discussion. For further investigation, the simulation was replicated in commercial finite element code ANSYS us-508

ing a three-node beam element BEAM189. The contact elements options were set to replicate the used contact509

constraint enforcement in the proposed formulation. Therein, the contact model was chosen for parallel beam with510

distributed force, and the penalty method was chosen to enforce the contact constraint. Figure 14 shows the the511

lower beams centre line displacement based on the proposed contact formulation and the ANSYS solutions for the512

maximum loading. The results are based on eight ANCF elements with eight integration segments per element and513

80 BEAM189 elements when nonlinear large static solver is selected. Although, the comparison between displace-514

ment of the two centre lines for the line-to-line and surface-to-surface formulations indicates a close agreement with515

BEAM189, they are not in strong agreement when compared with SOLID C3D8.516

It can be explained that although the lateral degrees-of-freedom in all the four cases are constrained, it affects517

the solid element significantly more, this is because the Poisson effect is restricted in the lateral direction and does518

not induce more elongation and vertical displacement. This effect is less prominent in beam elements.519
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Figure 14: Comparison between the solutions for the slave beam centre line position using the proposed contact
formulation, ANSYS and ABAQUS. A certain discretization of 16 of ANCF beams, 80 number of ANSYS BEAM189,
and mesh size of LA∕64 ABAQUS SOLID C3D8 are used.

5.3. Bending problem - internal contact520

(a) Initial configuration (b) Deformed configuration
Figure 15: Interconnected beams using discretization of four beam elements

This example examines the introduced surface-to-surface contact formulation when the internal contact descrip-521

tion is considered. Two interconnected beams with the C-shape cross-sections, undergo a large global deformation522

due to an applied nodal force at the outer beam’s end-point. The geometrical and material parameters used in this523

example are identical to those in 5.2 except for HA = HB∕2 and W A = W B∕2. An external nodal force of524

fy = −3.5 ⋅ 108(HB)3 N is applied at the outer beam’s end. Figures 15a and 15b respectively show the intercon-525

nected beam structure at the beginning and the end of simulation. As is evident from Figure 15b, as well as the526

global bending deformation, a lateral warping occurred due to the torsional moment induced by the unsymmetrical527

distribution of the applied force over the cross-section plane. As a consequence of such loading induction, the inner528

beam rotated in the direction opposite to the outer C-shape cylinder within the contact. Figure 16 plots the trajectory529

of the middle contact line of the structure based on the solutions obtained by the proposed formulation in Section 4530

and the quadratic solid element type in ABAQUS. The figure indicates an acceptable agreement between the two531

solutions for this complex contact scenario. The extrema values for the end-point of the outer beam are collected532

in Table 3. The table shows that the lateral deformation in the z direction, mainly emanating from the induced lateral533

warping and bending, was captured by the developed surface-to-surface contact formulation with the ANCF beam534
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Figure 16: Comparison between the solutions for the outer beam centre line position field using the proposed contact
formulation and ABAQUS. Discretizations of eight ANCF beams, and mesh size of 0.025 with SOLID C3D20 are used.

Table 3
Displacement of the end-point of the outer beam based on the ANCF solution according to
the surface-to-surface contact formulation and that obtained using ABAQUS solid C3D20

Solution [element size] Disp. in x [m] Disp. in y [m] Disp. in z [m]

ANCF [L/4] −0.07473 −0.46637 −0.13273
ABAQUS [0.025AcL*] −0.06770 −0.45438 −0.13754

*Ac = �
(

(W
A

2
)2 − (W

B

2
)2
)

∕2

and is in excellent agreement with the solid element in ABAQUS. The vertical and axial displacements given by535

the introduced approach are also in acceptable agreement with the ABAQUS solution. Such a small difference in536

vertical displacement solutions between the ANCF and ABAQUS solid element is predictable for the ANCF beam537

element with linear interpolation in the cross-sectional directions, see [43, 62] for detailed discussions. Fig 17

0 20 40 60 80 100 120 140 160 180
10

-4

10
-3

10
-2

Figure 17: Rate of mitigation of interpenetration as a function of the Gauss points used when beam discretization of
four elements is applied in the case of the internally contacting beams undergoing bending. Red and black dashed lines
respectively represent the first and second order of convergence rates.

538

shows that the relative error of interpenetration starts to diminish at a second-order pace and by the further increas-539
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ing of the Gauss points across the contacting surfaces, it continues at a first-order rate. The relative error approaches540

to its minimum value in the quadratic order from the second data point where nGT > 120. Figure 18 provides a
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ANCF

 ABAQUS

Figure 18: Number of iterations required to achieve a converged solution according to the stopping criterion (16) using
our in-house code at each load step in comparison with the number of iterations required in ABAQUS to solve the
internal contact problem of beams under bending.

541

comparison between the required number of Newton’s iterations to achieve a converged solution for the global sys-542

tem of equations using the proposed contact formulation (according to criterion (16)) and ABAQUS. Overall, the543

solution given by the proposed formulation obtained with a less computational effort in terms of required number544

iterations.545

5.4. Axial internal contact problem546

This example illustrates the internal contact between the interconnected beams (g0 = 0) with the cross-section547

properties which are identical to those in the previous subsection. The internal contact pressure between the inner548

and outer beams is to be applied by imposing the unixial force fy = −109 ⋅H3 on the inner beam’s free end. The549

geometrical parameters of this example are identical to those in 5.3, E = 2.07 ⋅ 109 and � = 0.3.550

(a) Initial configuration (b) Deformed configuration
Figure 19: IntInterconnected beams under an unixial load applied on the inner beam. The result is based on eight ANCF beam
discretization.

Figures 19a and 19b visualizes the solution of the interconnected C-shape cylinders at the beginning and end of551

simulation, respectively.552

Figure 20 shows the rate of convergence in terms of the interpenetration between the interconnected beams. It553

indicates that by increasing the number of Gauss points (ascending number of integration segments), the gap distance554

converged well to a small value. To investigate the accuracy of the converged solutions for the axial displacement555

of the inner beam and the radial displacement of the outer beam, a comparison against the corresponding solutions556
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Table 4
Comparison of the axial and radial displacements of the inner and outer beams, respectively
obtained by the proposed contact formulation against ABAQUS

Solution [element size] Inner beam axial disp. [m] Outer beam radial disp. [m] Interpenetration [m]

ANCF [L/8] −0.07744 0.002746 −1.48937 × 10−5

ABAQUS [0.025AcL*] −0.07689 0.002425 −3.18285 × 10−4

*Ac = �
(

(W
A

2
)2 − (W

B

2
)2
)

∕2

given by commercial finite element codeABAQUSwasmade. The displacement results are collected in Table 4. The557

results are based on the eight discretizations used with the ANCF and themesh size of 0.025mwith the solid 20-node558

element using ABAQUS. The results given by the internal surface-to-surface formulation with the ANCF beam are559

in acceptable agreement with those acquired by ABAQUS. The gap distance value in the case of the ANCF element560

solution is significantly smaller than that given by the solid element in ABAQUS. It is also in compliance with561

Figure 20 which shows that the interpenetration decreases with increase of the number of integration points across562

the contacting surfaces. Whereas in the case of the lowest number of Gauss points, the gap distance is close to the563

value reported from ABAQUS. It indicates that the surface segmentation considerably reduces the interpenetration,564

and consequently, provides a converged solution using a reasonable number of beam discretizations.565
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Figure 20: Interpenetration as a function of the Gauss points used when beam discretizations of four and eight elements
are used for the axial internal contact problem.

5.5. Twisting beams contact problem566

This sub-section considers the pure twisting of two parallel beams. Three cross-sectional shapes are considered567

in this section. First, two contacting beams of rectangular cross-section shape undergo a torsional moment. Sec-568

ond, the beams with an elliptical cross-section are investigated and third, beams with honeycomb cross-section are569

examined.570

5.5.1. Rectangular cross-section571

In the case of beams with rectangular cross-section, a maximum nodal torque ofmx is applied at both beam ends,572

see Table 5. The two beams are clamped on one end. In this example, both the Saint Venant-Kirchhoff and Neo-573

Hookean material models are used. Figure 21 shows the initial and deformed configurations of the structure with574

increasing value of torsional moment mx, expressed in terms of the angle of twist � ∈ [0.5�, 0.625�, 0.7�, 0.75�]575

rad. It can be realised from the figure that at � = 0.7� there is sharp edge-to-sharp edge contact including the576
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Table 5
Parameters of twisting beams problem with a rectangular cross-section

Parameters Value∗

Young’s modulus E [Pa] 2.07 ⋅ 1011

Poisson ratio � 0.3
Shear modulus � [Pa] � = E∕

(

2(1 + �)
)

Maximum applied torque mx [N.m] 0.75��Jt∕L
L = LA = LB [m] 4
HA = HB [m] 0.2
W A = W B [m] 0.4

∗ Jt = �WH3 where � = 0.229

(a) � = 0� rad

(b) � = 0.625� rad

(c) � = 0.7� rad (d) � = 0.75� rad
Figure 21: Deformed configurations of the twisted structure with a rectangular cross-
section with increasing values of angle of twist �. The results are based on the discretization
of eight ANCF elements. The grey grids denote the imported solid-based mesh of a unit
volume of an undeformed structure to be spatially visualised in the post-processing using
Paraview.

beam’s cross-section corners. So, this sharp edge contact can be interpreted as a specific state of the surface-to-577

surface contact. Figure 22 compares rate of convergence of the interpenetration mitigation in terms of the number578

of Gauss points used in the computation of variation of the strain energy for both the material models employed. One579

can notice a converged value for the interpretations within a certain number of Gauss points with both the materials580

used. The Saint Venant-Kirchhoff material converged to a smaller value for the gap distance (gN = −3.2011 ⋅ 10−4)581

compared to that of the Neo-Hookean material (gN = −1.2306 ⋅ 10−3).582

Figure 23 plots the relative error of the norm of contact forces (reaction force) exerted from the entire slave583
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Figure 22: Interpenetration as a function of the Gauss points used when beam discretization of four ANCF beams is
used with the Saint Venant-Kirchhoff and Neo-Hookean material models. The beams’ cross-section is of rectangular
shape.

beam A in the case of the Saint Venant-Kirchhoff and Neo-Hookean materials in terms of the ascending number of584

degrees-of-freedom. One can realize from the figure, that both material models exhibit a converged solution for the585

induced contact reaction force, while the values resulted from the material models employed disagree. This indicate586

the different values of norms for the contact force vectors obtainedwith both thematerial models employed. This was587

expected when recalling Figure 22 that indicates the larger values of interpenetration with the Neo-Hookean solution588

compared with the interpenetration values reported by the Saint Venant-Kirchhoff material model. This discrepancy589

is relevant to the smaller value of the penalty parameter having to be used with the Neo-Hookean material model590

(pn = 107) than that which was selected with the Saint Venant-Kirchhoff material model (pn = 108).
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Figure 23: Relative error of norm of the vector of contact forces ‖

‖

‖

F A
con
‖

‖

‖

exerted from the entire slave beam with
increasing number of beam discretizations when the Saint Venant-Kirchhoff and Neo-Hookean material models are
used. A rectangular cross-section is used in the structure. The dashed red lines denote the first order of convergence
rate.

591

5.5.2. Elliptical cross-section592

In this example, the previous twisting beam contact problem is considered with an elliptical cross-section. Again,593

the structure is clamped at one of its ends. All of the simulation parameters except for the cross-sectional parameters,594
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are identical to those in Table 5. The cross-sectional properties areHA = HB m andW A = W B m. The maximum595

applied torque is mx = ��Jt∕L N.m where Jt = �W 3H3

W 2 +H2
.596

(a) mx = 0 N.m

ANCF elements’ border lines

(b) ANCF elements’ border is designated by small oblique lines.

(c) mx =
0.05��Jt

L
N.m (d) Clipped slave beam shown in (c)

(e) mx =
0.0625��Jt

L
N.m (f) Clipped slave beam shown in (e)

Figure 24: Deformed configurations of the twisted structure with an elliptical cross-section
with increasing values of angle of twist �. The results are based on the discretization of
four ANCF elements.

Figure 24 illustrates the initial and deformed configurations of the structure with increasing values of torsional597

moment mx specified at the selected load steps in the figure. As evidenced by the figure, the structure’s free end598

almost underwent a torsion angle of 180◦. The cross-section deformation can be recognized from Figures 24e599

and 24f where the line-to-line contact evolved to the surface-to-surface. Figure 25 compares the interpenetration600

evolution with ascending number of Gauss points used in the computation of the variation of the strain energy for601

both the material models employed. The interpenetration corresponding to the Saint Venant-Kirchhoff material602

model converged to a value of (gN = −6.6876 ⋅ 10−5) with a relatively lesser number of Gauss points used to603

parametrize the contact patch, compared to that of the Neo-Hookean material (gN = −2.1339 ⋅ 10−4).604

Figure 26 displays the relative error of the norm of contact forces, exerted from the entire slave beam A for605

both the Saint Venant-Kirchhoff and Neo-Hookean material models in terms of the ascending number of degrees-606
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Figure 25: Interpenetration as a function of the Gauss points used when beam discretization of four ANCF beams is

used with the Saint Venant-Kirchhoff and Neo-Hookean material models. The torsion of mx =
0.025��Jt

L
N.m with a

single load step is applied.
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Figure 26: Relative error of norm of the vector of contact forces exerted from the entire slave beam with increasing
number of beam discretizations when the Saint Venant-Kirchhoff and Neo-Hookean material models are used.

of-freedom. Solutions for both the material models exhibit an acceptable convergence rate for the induced contact607

reaction force with a reasonable beam discretization (moderately course mesh). Moreover, it is interpreted from the608

figure that, the values of the norm of contact forces in the case of both material models agree well. It was expected609

as a result of using a certain value of pn = �Jt for the penalty parameter in both material models. While different610

descriptions for the strain energy functions were used for the Neo-Hookean material model with the deformation611

gradient-based internal energy potential, and the Saint Venant-Kirchhoffmodel with the strain-based internal energy612

function, they achieved the converged solutions with an acceptable agreement. Figure 27 shows the contact action-613

reaction in terms of the norm of contact forces imposed from the slave and master beams. The torsional load was614

prescribed with respect to an exponentially increasing function615

mix =
(
0.0625��Jt

L
)

(1 − e
− 10inls ) with i = 1, ..., nls, (64)616

where nls is the maximum number of load increments. The almost balanced norm of vector of contact forces617

associated with the slave and master beams illustrated in Figure 27, concretely implies that the weak form of contact618
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energy potentials were unbiasedly integrated over both the master’s and slave’s surfaces. This can be compared619

with the unbiased treatment of weak form of the contact potential over the two contacting surfaces in virtue of620

introducing the two-half-pass algorithm in [22]. The figure shows that the contact force magnitudes were evaluated621

almost smoothly by increasing the torsional load applied. Figure 28 compares the required number of iteration622

attempts to achieve a converged solution at each load increment in the case of both material models. According to623

the figure, when using the Neo-Hookean material, the least number of iterations were needed. In can be explained624

by recalling that the prescribed torsion is a function of twist angle, see Eq. (64), and the stress-strain relation in the625

case of Neo-Hookean material model can be approximated with respect to an exponential function.

1 2 3 4 5 6 7 8

10
7

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
10

7

Slave beam Saint Venant-Kirchhoff

Master beam Saint Venant-Kirchhoff

Slave beam Neo-Hookean

Master beam Neo-Hookean

Figure 27: Evolution of norm of the vectors of contact forces exerted from the master and slave beams denoted ‖

‖

‖

F B
con
‖

‖

‖

and ‖‖
‖

F A
con
‖

‖

‖

, respectively evaluated at each load step using the Saint Venant-Kirchhoff and Neo-Hookean material models.
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Figure 28: Number of iterations required to achieve a converged solution according to the stopping criterion (16) when
solving the global system of equations at each load step for the twisting beams with the elliptical cross-section.

626

5.5.3. Honeycomb cross-section627

The final example focuses on the usability of the proposed contact formulation in the case of a highly sophis-628

ticated cross-section. The honeycomb shape beam consists of a central elliptical core surrounding by six elliptical629

petals which are mutually connected to the central ellipse. Two geometrically identical beams with the length of630

L = 5 m, the lateral dimensions of W = 0.6 m and H = 0.539595 m are wrapping around each others as shown631
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in Figure 29. The polar moment of inertia for the honeycomb cross-section is given as Jt = 0.39575 m4. The632

material properties of the beams are identical to the previous example in Section 5.5.2. The maximum torsional633

load of mx =
0.020��Jt

L
N.m and an axial tensile load of fx = 3.75mx N are gradually applied according to a634

quadratic function within 40 load steps on the structure’s free end. The deformed shape of the structure at the end of635

the loading is shown in Figure 30a. Figure 30b illustrates the contacting beams cross-section when the structure is636

clipped at x ≈ 3
4
L. Figure 31 compares the norm of the vectors of contact force exerting from the master and slave637

beams when both the beams are discretized using four elements and one segment is used to discretize the contacting638

surfaces. The norm of actions-reaction forces are almost identical within the most of the load steps, that indicates639

the unbiasedly integration of the contact energy on both the contacting surfaces.

Figure 29: Initial configuration of two structures with honeycomb cross-section
640

(a) mx =
0.017��Jt

L
N.m, fx = 3.75mx N

(b) Clipped structure shown in (a)

Figure 30: Deformed configuration of the twisted structure with a honeycomb-shape cross-
section at the end of simulation based on the discretization of four ANCF elements.

In the case of contact between beams with different orientations, the only further task is the identifying of the641

region of contact in terms of the elements and segments involved. This task can properly be carried out by identifying642

the close-by elements using, for example, the broad phase search for contacting elements such as what has been used643

in [47].644

6. Conclusions645

A novel approach for the description of contact in the case of slender continua with arbitrary cross-sectional646

geometry was introduced within this paper. The introduced approach was formulated in the framework of the abso-647

lute nodal coordinate formulation. The numerical results indicate that the proposed approach is sufficiently robust,648
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Figure 31: Evolution of the norm of the vectors of contact forces exerted from the master and slave beams denoted
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, respectively evaluated at each load step. The solution is based on the Neo-Hookean material model
and using four beam elements.

accurate, and applicable in the problems in which the beam-like structures with non-trivial cross-section shape649

come into contact such as soft, slender biological tissues. The contact path test delivered the acceptable results that650

showed the performance of the proposed surface-surface integration scheme. The inf-sup condition was satisfied651

that indicates the stability of the formulation. Moreover, owing to the fully interpolated beam’s surface with the652

proposed contact formulation, an arbitrary curve-to-curve contact, e.g. contact between spiral patches in beams653

with non-conformal cross sections that wrap around each other can be described. With the twisting beam problems,654

the unbiased treatment of the arbitrary contact patch was observed. Utilizing the Gauss points in the interpolated655

beam’s cross-section in the material description, averts a step of computational effort for a further parameterization656

of the contacting surface in terms of the spatial points in the transverse directions. The introduced contact descrip-657

tion can be utilized with beams with non-typical cross-sections where a contact region is relatively large enough658

to be regarded as surface-to-surface contact or on the contrary, is sufficiently small enough to be considered as the659

point-based or the line-based contact, e.g., contact involving sharp edges. In our forthcoming contribution, the pre-660

sented contact description will be adopted to solve contact problems between several pre-twisted biological tissues661

with geometrically inhomogeneous cross-sections.662
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A. Appendix667

Algorithm 1 Surface-to-surface integration schemes for the external and internal contact descriptions
1: loop over the slave beam to check distance between the both master end-points and the slave elements (search for the closest

slave element ID to the master end-points)
2: for i = 1 ∶ nA do
3: end for ⊳ closest slave element number (ID) to master 1st and 2nd master end-points were identified.
4: The recorded vector of nodal coordinates corresponds to the closest slave element are retrieved on which the master end-

points are projected using Eq.(33). ⊳ The left boundary of the first slave integration segment �As,1e is identified ⊳ The right
boundary of the last slave integration segment �As,2e is identified

5: for i = n(1e) ∶ n(2e) do ⊳ Loop over the slave contacting elements
6: for j = 1 ∶ njG do ⊳ Loop over the slave Gauss points
7: for k = 1 ∶ nS do ⊳ Loop over the slave segments
8: Equidistantly slave element segmentation if no projection for the master end-point exists
9: Calculation of the Gauss points and their weights on the slave beam ⊳ The vector of the abscissa coordinate

parameter �Asj) on entire contacting elements on slave beam after segmentation is recovered
10: end for
11: end for
12: end for⊳ The Gauss points on the slave beam are to be projected back to the master beam through the following procedure
13: for i = 1 ∶ nB do ⊳ Loop over the master beam to assign the slave Gauss point to the closest master beam
14: for i = n(1e) ∶ n(2e) do ⊳ Loop over the slave contacting elements
15: for k = 1 ∶ nGT do ⊳ Loop over the total Gauss points along the slave beam centre line
16: Position vector field of Gauss points on the slave surface is recorded
17: end for
18: end for
19: end for
20: for k = 1 ∶ nGT do ⊳ Loop over the total Gauss points along the slave beam centre line
21: for i = 1 ∶ nB do
22: Find the closest master element to each Gauss point on the slave beam
23: end for
24: end for
25: An element ID, where the Gauss points belong to, is recorded for the all Gauss points on the slave beam
26: for k = 1 ∶ nGT do
27: Get the Gauss coordinate parameter �B(�Asj) on the master beam after projecting them
28: end for ⊳ The full set of the Gauss coordinate parameters on the master beam are saved into a vector
29: An element ID, where the projected Gauss points belong to, is recorded for the all Gauss points on the Slave beam ⊳ The

following procedure establishes surface segmentation in the case of an external or an internal contact
30: if There is an external contact then
31: Recovering the Gauss points on the external cross-section portion of the master beam where an active contact exists
32: The Gauss points values in � and � direction and their weights are recovered in to three separate vectors
33: end if
34: if There is an internal contact then
35: Recovering the Gauss points on the internal cross-section portion of the slave beam (in the case of hollow-type cross-

sections) where an active contact exists
36: The Gauss points values in � and � direction and their weights are recovered in to three separate vectors
37: end if
38: for k = 1 ∶ nkG do ⊳ Loop over the Gauss points on the beam cross-section portion where an active contact exists
39: for k = 1 ∶ nGT do ⊳ Loop over the total Gauss points along the slave beam centre line
40: Position vector field of Gauss points on an active contact surface of the on the master beam cross-section is recorded

Solving the orthogonality problems for �B and �B to project the Gauss points on the master beam contact surface Solving
the orthogonality problems for �A and �A to project the Gauss points on the slave beam contact surface

41: Calculate the contact force contributions appeared in Eqs. (48) and (57) for the external and internal contact descrip-
tions, respectively

42: end for
43: end for
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