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Reductive catalytic fractionation (RCF) of lignocellulose is an 

emerging biorefinery scheme that combines biomass 

fractionation with lignin depolymerisation. Central to this 

scheme is the integration of heterogeneous catalysis, which 

overcomes the tendency of lignin to repolymerise. Ultimately, 

this leads to a low-Mw lignin oil comprising a handful of lignin­

derived monophenolics in close-to-theoretical yield, as well as 

a carbohydrate pulp. Both product streams are considered to 

be valuable resources for the bio-based chemical industry. 

This Opinion article sheds light on recently achieved 

milestones and consequent research opportunities. More 

specifically, mechanistic studies have established a general 

understanding of the elementary RCF steps, which include (i) 

lignin extraction, (ii) solvolytic and catalytic depolymerisation 

and (iii) stabilisation. This insight forms the foundation for 

recently developed flow-through RCF. Compared to 

traditional batch, flow-through RCF has the advantage of (i) 

separating the solvolytic steps from the catalytic steps and (ii) 

being a semi-continuous process; both of which are beneficial 

for research purposes and for industrial operation. Although 

RCF has originally been developed for 'virgin' biomass, 

researchers have just begun to explore alternative feedstocks. 

Low-value biomass sources such as agricultural residues, 

waste wood and bark, are cheap and abundant but are also 

often more complex. On the other side of the feedstock 

spectrum are high-value bio-engineered crops, specifically 

tailored for biorefinery purposes. Advantageous for RCF are 

feedstocks designed to (i) increase the total monomer yield, (ii) 

extract lignin more easily, and/or (iii) yield unconventional, 

high-value products (e.g. alkylated catechols derived from C­

lignin). Taking a look at the bigger picture, this Opinion article 

highlights the multidisciplinary nature of RCF. Collaborative 

efforts involving chemists, reactor engineers, bioengineers 

and biologists working closer together are, therefore, strongly 

encouraged. 
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Context and history 
Instigated by environmental concerns and resource scar­
city, a shift towards a circular, bio-based economy is on the 
horizon [1-3]. This inevitable transition will hinge on the 
deployment of alternative technologies that are able to 
fulfil the needs of our society in a sustainable way. Within 
this context, lignocellulose biorefining might form a key 
technology, providing access to renewable chemicals, 
materials and energy. Over the past few decades, a vast 
amount of promising biorefinery methods have been dis­
closed [4-7]. One particular technology that has rapidly 
emerged in the past couple of years is Reductive Catalytic 
Fractionation of lignocellulose, abbreviated as RCF. Obvi­
ously, redox catalysis plays a central role, which is the 
distinguishing technical feature of the RCF biorefinery. 

The roots of RCF go back to studies on native lignin 
hydrogenolysis from the 1940s (Hibbert) and 1960s (Pep­
per), which were mainly performed for structural analysis 
of native lignin [8-11]. Roughly half a century later, 
research on RCF kick-started (again), but this time in 
the context of lignocellulose biorefining [12-17]. RCF is a 
biorefinery approach that integrates biomass fractionation 
(i.e. delignification) with lignin depolymerisation-stabi­
lisation, the latter being enabled by the redox-active 
catalyst. Unlike more traditional fractionation approaches 
(e.g. kraft pulping), RCF yields an uncondensed, low-M

w 

lignin oil, comprising phenolic monomers in close-to­
theoretical yields (Figure 1) [18•]. 

This Opinion article aims to provide a concise and intel­
ligible overview of the RCF research field, starting from 
the early proof-of-concept publications through to the 
most recent innovations such as flow-through operation 
and the synergy with feedstock engineering. Particular 
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Gel permeation chromatogram of a typical RCF lignin oil (eucalyptus), 

with signal assignment. Roughly 50 wt% of the lignin oil comprises 

phenolic monomers. The other fraction comprises dimers, trimers and 

small oligomers. GPC chromatogram was adapted from Ref. [33]. 

attention is paid to future research opportunities resulting 
from these recent advancements, as well as potential 
hurdles that might obstruct industrial implementation. 

How RCF works 

The most essential ingredients to operate an RCF biorefin­
ery are (i) lignocellulosic biomass, (ii) an alcohol (or cyclic 
ether) solvent, and (iii) a heterogeneous redox-active catalyst 
[12-17,18.l. Often water is used as a co-solvent [19]. These 
are typically added to a high-pressure batch reactor, which is 
heated to 180---250° C for 2-6 hours. Heating induces solvo­
lytic extraction of lignin from the biomass (i.e. delignifica­
tion), followed by partial fragmentation through ether bond 
cleavage (Figure 2). This initial solvolysis generates reactive, 
unsaturated fragments that are prone to undergo repolymer­
isation. The redox active catalyst (e.g. Pd/C) reductively 
stabilises these unstable species and additionally might 
effectuate depolymerisation (i.e. hydrogenolysis of residual 
ether bonds). Although catalytic depolymerisation and sta­
bilisation consume hydrogen, the actual presence of pres­
surised hydrogen is only optional, as the solvent or hemi­
cellulosic sugars can also be used as hydrogen donors [13- 
15,20]. Eventually, after filtration and solvent evaporation, 
RCF yields a stable lignin oil comprising phenolic mono­
mers, dimers and small oligomers (Figure 1). Typically 
obtained monophenolic products are 4-n-propylguaiacol/­
syringol [16, 17], 4-n-propanolguaiacol/-syringol [14,21 .. l 
and 4-n-propenylguaiacol/-syringol [151, the selectivity 
being dependent on catalyst and process conditions [4]. In 
addition, a carbohydrate pulp is obtained, which most often 
contains the spent catalyst powder. Because in this biore­
finery scheme lignin is taken care of before carbohydrate 
valorisation, the terms 'lignin-first biorefinery' or 'early-stage 
catalytic conversion of lignin (ECCL)' are often used to 

indicate the general plan of action [5,22•1. 

RCF thus comprises three elementary steps: lignin 
extraction (I), depolymerisation (2) and stabilisation 
(3) [23 .. ,24 .. l. Recent studies have established a basic
understanding of the relationship between these steps
and process parameters. Lignin extraction (1) is solely
dependent on the solvolytic conditions and does not
require a redox-active catalyst. Contrarily, reductive
stabilisation (3) of the unsaturated fragments is exclu­
sively governed by the redox-active catalyst. The situa­
tion is less straightforward for the depolymerisation step
(2), which comprises two different routes: solvolytic
depolymerisation (2a) and catalytic hydrogenolysis
(2b) [25•]. Literature indicates that the relative impor­
tance of each pathway depends on the 'solvolytic' severity
(i.e. a combination of temperature, pH, solvent polarity).
It has been shown that under relatively severe conditions
(e.g. methanol, 250°C), lignin depolymerisation occurs
primarily solvolytically, generating coniferyl and sinapyl
alcohol as reactive intermediates [23 .. ,25•1. These inter­
mediates have also been observed in model compound
solvolysis studies, which suggests that coniferyl and
sinapyl alcohol are formed via homolysis of 13-0-4 lin­
kages [26-281. Under relatively severe RCF conditions,
the role of the catalyst is limited to the stabilisation of
reactive species [23 .. l. In contrast, under less severe
conditions (e.g. methanol, 190°C), solvolytic bond scis­
sion occurs much more slowly, and the catalyst addition­
ally performs hydrogenolysis of inter-unit ether linkages
[29••1. Knowing whether ether bonds are primarily
cleaved solvolytically or catalytically is of utmost impor­
tance for process tailoring. For instance, targeted catalyst
design is only possible given a proper understanding of
its precise role, which is thus strongly intertwined with
the solvolytic severity.

Moving from batch to flow-through reactors 
The vast majority of RCF research has been performed 
using batch autoclaves, with all three elementary steps 
taking place in one pot. Because the redox-active catalyst 
is not involved in the lignin extraction (vide supra), oppor­
tunities arise to physically separate the solvolytic lignin 
exrraction-depolymerisation from the catalytic hydrogeno­
lysis-stabilisation step [15,16,23••1. Recently, two research 
teams independently performed RCF using a flow-through 
setup comprising an isolated biomass bed and catalyst bed 
[25.,29 .. l. The solvent is first sent through the biomass bed, 
thereby extracting and partly disassembling the lignin 
(Figure 3). ext, the liquor flows through the catalyst 
bed resulting in further depolymerisation and stabilisation 
of the solubilised lignin fragments [25.,29 .. ]. A back-pres­
sure regulator mounted at the outlet offers control over the 
total system pressure [25•,29••1. 

As a result of the physically separated beds, two of the 
most important advantages of flow-through RCF are that 
it yields a catalyst-free pulp and allows easy catalyst 
recuperation, thereby facilitating pulp valorisation as well 
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Schematic representation of RCF in batch mode displaying the three elementary steps: lignin extraction, depolymerisation and stabilisation. 

Depolymerisation can either occur solvolytically or catalytically (hydrogenolysis). The result is a low-Mw lignin oil, comprising monomers, dimers 

and oligomers, in addition to a carbohydrate pulp. Green hexagons represent native lignin monomer units, orange hexagons correspond to 

reactive units, and blue hexagons represent stabilised units. 

as catalyse reuse [2s•,2 9 ••i. Samec et al. demonstrated chat 
the catalyst-free pulp can be enzymatically hydrolysed co 
glucose (95% yield based on pulp), without the need for 
any prior purification [25•]. In a study by Beckham and 
Roma'n-Leshkov, catalyst reuse in up co four consecutive 
runs was demonstrated and further investigated [29••i. 
Moreover, the two confined reaction zones enable a more 
independent and versatile optimisation of process condi­
tions. The temperature can for instance be set differently 
for both beds [2 5•]. oc only chis increased flexibility is 
interesting for process optimisation, but it also allows a 
better investigation of particular aspects of the RCF 
process. More specifically, studies inspecting the actual 
lignin extraction should be performed in a solvolysis­
limited regime, as explained by Beckham and Roma'n­
Leshkov [30•]. The same applies co studies directed 
cowards catalytic activity and stability, which should occur 
in a reduction-limited regime [30]. Yee another benefit of 
the separated beds is the fact chat biomass processing can 
proceed in the absence of pressurised hydrogen, because 
hydrogen is only useful in the second stage of RCF. 
Hydrogen can be added co the second, possibly smaller, 
reactor where the actual hydrogenation cakes place, 
favouring the overall safety and reactor requirements 
(Figure 3) [29••]. 

Flow-through RCF is a semi-continuous process; it, 
therefore, offers better time-resolved data compared co 
the time-averaged data from batch RCF. By sampling 
every 10-15 min, it is easier to monitor for instance 

structural differences between the lignin released in 
the beginning and at the end of the process, as well as 
catalyse deactivation [25.,29 .. ,30•]. Another advantage of 
the semi-continuous nature is chat it allows the possibility 
of changing the process conditions, such as the solvent 
composition [19] or the concentration of additives [31,32], 
over the course of the reaction. This could facilitate 
deeper delignificacion and/or hemicellulose extraction 
at the final stages of the process, but remains uncharted 
terrain thus far. evertheless, it should be noted chat 
flow-through RCF is still a batch-wise operation from the 
perspective of the solid biomass, which has to be (un) 
loaded between runs. From an industrial point of view, a 
fully continuous process would be more desirable, but is 
extremely challenging at first glance. 

An inherent drawback of flow-through compared to 
batch-wise processes is the higher solvent consumption. 
According to literature, flow-through RCF consumes 
90mL gbiomass-l [29 .. ], being much higher than typical 
batch processes (4-20 mL gbiornass-l) [17,33,34]. Lower­
ing the volumetric flow rate constitutes the most straight­
forward answer co decreasing solvent use. One should be 
aware, though, chat solvolycic depolymerisacion generates 
unstable fragments, and lowering the flow race (i) retards 
these species from reaching the catalyst bed and being 
stabilised, as well as (ii) increases the average lignin 
concentration and thus also the concentration of reactive 
species. Again, the solvolycic severity determines co what 
extent solvolycic depolymerisacion generates reactive 
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Schematic representation of RCF in flow-through mode. Solvolytic lignin extraction-depolymerisation is physically separated from catalytic 

depolymerisation-stabilisation, which offers greater flexibility. In addition, flow-through RCF is a semi-continuous process, generating better time­

resolved data compared to batch processes. 

fragments that can subsequently repolymerise (vide 

supra). For example, when increasing the temperature 

of the biomass processing stage from 200 to 220° C, Samec 
et al. observed a small yield penalty (11 % relative), which 
was ascribed to increased repolymerisation [2s•1. Rela­
tively mild conditions are thus more desirable to lower the 
extent of repolymerisation. However, mild conditions 
also impose longer reaction times to satisfactorily 
delignify the biomass, which in tum has negative con­
sequences for total solvent consumption. A balance 
should thus be found. 

Despite its promising features, the scale at which flow­
through RCF has been demonstrated remains limited to 1 g 
biomass, based on open literature [29 .. ]. For comparison, 
batch RCF has been demonstrated several times at a 2-5 L 
scale, with up to 300 g of biomass being processed in a single 
run [33-35]. Further research is required to evaluate the 
applicability of flow-through RCF at larger scale. Again, a 
potential bottleneck could be the time needed for the 
reactive intermediates to reach the catalyst bed, which 
can pose constraints on the size and dimensions of the 
biomass bed. Other considerations for reactor design 
include the non-uniformity of biomass particles and the 
possible occurrence of channelling, causing ineffective 
delignification. Moreover, extracting lignin (and optionally 
hemicellulose) has been reported to alter the morphological 
characteristics of the biomass particles [19], which might in 
turn cause physical changes of the biomass bed over time 
and consequent deviations from ideal plug flow. 

Feedstock scope: opportunities and 
limitations 
'Virgin' biomass 

The product outcome of RCF is highly dependent on the 
nature of the lignocellulosic substrate (Figure 4). Most of 

the reported studies use a single, virgin lignocellulosic 
feedstock. Typically, these substrates are divided into 
hardwoods, softwoods and herbaceous crops. The lignin 
content, structure and extractability greatly differ 
between these classes. Lignin content is generally highest 
for softwoods (21-29 wt%), followed by hardwoods (18-

25 wt%) and herbaceous crops (15-24 wt%). Also the 
relative distribution of precursor monolignols (i.e. lignin 
building blocks: jJ-coumaryl alcohol, coniferyl alcohol and 
sinapyl alcohol) varies widely between these classes. 
Softwood lignin is composed almost exclusively of G 
units, whereas hardwood lignin contains both S and G 
units. Herbaceous crops contain H, G and S units, 
although the amount of 'true' H units is relatively low 
[36]. Besides the three traditional monolignols, numerous 
other phenolic compounds are naturally incorporated in 
the lignin structure [36]. Well-known examples are tricin 
[37-39], and jJ-coumarate/p-hydroxybenzoate conjugates 
[36]. The RCF biorefinery might benefit from exploiting 
this natural wealth of potentially valuable lignin building 
blocks, though current RCF research is mainly focused on 
the fate of the canonical monolignols. 

The lignin structure (viz inter-unit bonds) depends on the 
relative distribution of H, G and S units (respectively 0, 1 and 
2 methoxy groups ortho to the phenolic-OH). S units lack a 
free ortho-position and thus cannot form 5-5 and �-5 inter­
unit bonds upon radical coupling during lignification. There­
fore, lignin rich in S units (hardwoods) contains less stable C­
C bonds than lignin rich in G units (softwoods). Because C-C 
bonds cannot be broken during typical RCF processing, the 
theoretical maximum lignin monomer yield is roughly pro­
portional to the square of the relative content of cleavable 
inter-unit ether bonds [SJ. In practice, various hardwoods (e. 
g. birch [17], beech [40], poplar [41], oak [33], eucalyptus
[19]), softwoods (e.g. pine [15], spruce [34]) and herbaceous
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Overview of feedstock opportunities for RCF biorefineries. RCF has primarily been investigated for 'virgin' biomass. However, potential synergies 
arise when bioengineered crops are considered, specifically designed for deconstruction. Waste and residual streams in contrast have the 
advantage of being cheap, but require a robust catalytic system that can deal with some challenging inherent characteristics. 

crops (e.g. miscanthus [42]) have been tested in RCF. Lignin 
monomer yields are generally highest for hardwoods (high S 
content), followed by herbaceous crops and softwoods (high 
G content) [4]. Stating that hardwoods are, therefore, inher­
ently better for RCF is an overly simplified and short-sighted 
conclusion. Besides the aspect of total monomer yield, the 
fact that softwood lignin is exclusively composed of G units 
narrows the RCF product distribution, facilitating down­
stream purification. In addition, a low monomer yield is often 
accompanied by a high yield of oligomers. The chemical 
structure of these oligomers is quite unique, given their 
relatively low M

w 
(e.g. compared to organosolv lignin [17]) 

and high content of hydroxyl groups [43]. The RCF oligomer 
fraction, though, seems to be undervalued, as the major body 
of literature focusses on monomers. Fortunately, there is 
inspiring research that exemplifies the valorisation 
potential 

 

of these oligomers, for instance for poly-urethane foams [44] 
and epoxy resins [45]. 

Regardless of the general differences among hardwoods, 
softwoods and grasses, it should also be noted that there is 
an immense natural variation among individual plants, 
depending on age, climate, location, endured (a)biotic 

stress and so on. Even between plant parts (e.g. heartwood, 
sapwood, twigs, bark, tension/compression/opposite wood) 
structural variation exists [46-50]. Systematic studies 

investigating the impact of this natural variation on RCF 
could offer valuable insight, but are currently lacking. 

Waste and residues 

In addition to virgin biomass, lignocellulosic waste 
streams constitute an interesting resource as they are 
cheap and often abundantly available. A first category 



comprises residues from agriculture, many of which can 
be classified as herbaceous crops. Examples that have 
been investigated in RCF processes include mainly resi­
dues from grasses: corn stover [51,521, corn stalks [53,541, 
corn cobs [55], wheat chaff [56] and rice husks [57]. Often, 
these agricultural residues are characterised by a high ash 
content [58]. Ramifications of inorganics, which might 
accumulate over time, on RCF catalysis remain largely 
underinvestigated. In addition, some of these agricultural 
resources are only seasonally available. The impact of 
storage on feedstock performance is highly relevant 
within this context. Another class of cheap and abundant 
biomass is waste wood, originating from packaging, fur­
niture waste, construction wood, saw milling (lumber) 
operations and so on. In contrast to agricultural residues, 
waste wood can potentially be much more inhomoge­
neous and variable over time (e.g. furniture waste). The 
presence of associated metals, paint, glue or other impreg­
nating components, makes this feedstock highly chal­
lenging for RCF. As no dedicated RCF studies have been 
disclosed to our knowledge, the industrial feasibility is 
di fficu It to assess at this stage. Yet another class of residual 
biomass is bark [59,60,61 •], which is a major waste stream 
from wood processing industries (paper, timber). Bark is a 
chemically complex material containing components that 
are not even present in wood, such as suberin. Suberin is a 
biopolymer composed of two cross-linked domains, an 
aromatic lignin-like domain and an aliphatic domain [59], 
the latter being a polyester of (bifunctional) fatty acids, 
glycerol and hydroxycinnamates (mainly ferulic acid) 
[62]. When subjecting bark to RCF, as recently disclosed, 
the suberin (and lignin) is deconstructed yielding phe­
nolics, glycerol and long-chain (C 16-C26) aliphatics 
[59,60,61 •]. The latter fraction comprises fatty acids/ 
esters, di-acids/di-esters, alcohols and w-OH acids/esters, 
which might be interesting for further upgrading towards 
fuel applications [61 •]. It should be stressed, though, that 
bark is much more complex than virgin wood. It has a 
higher ash and extractives content (e.g. waxes, fatty acids, 
tannins). The combined effect of these components on 
the catalytic system (i.e. activity, selectivity, stability) 
remains to be elucidated. Additionally, bark lignin is 
known to contain more G units than the parent wood 
lignin, which affects the product distribution and yield 
(vide supra) [47,50,63]. 

In general, processing low-value waste streams requires a 
robust catalytic system that is capable of dealing with the 
inherent presence of contaminants. Research considering 
this (catalytic) robustness is strongly encouraged. Alter­
natively, prior feedstock washing or cleaning might be 
considered, though this will (at least partly) compensate 
the low feedstock cost. 

Engineered crops 

On the other end of the feedstock spectrum are geneti­
cally engineered crops, having a lignin structure 

specifically designed for biorefinery purposes. There 
are multiple ways in which the lignin biosynthesis can 
be tailored via genetic engineering, as recently reviewed 
[64 .. ] (see also other papers in this special issue). Lignin 
can be designed to effectuate a lower polymerisation 
degree, less cross-linking with structural carbohydrates, 
increased hydrophilicity and the incorporation of labile 
linkages or novel lignin building blocks [36,64 .. ]. 
Designer lignins relevant co RCF are those that either 
(i) increase lignin monomer yields, (ii) facilitate deligni­
fication and/or (iii) provide novel, value-added monomers
(Figure 4).

In order to increase the monomer yield obtained upon 
RCF, lignins should contain a lower fraction of unclea­
vable carbon-carbon bonds. This can be achieved by 
increasing the S/G ratio (vide supra). More specifically, 
overexpression of F5H in hybrid poplar resulted in a 
lignin structure containing nearly 98% S units [65]. Using 
such a modified substrate with an S-rich lignin clearly 
offers higher monomer yields upon RCF (up to 77 wt%) 
[17,66]. The second class of modifications are those that 
facilitate delignification. This can be accomplished by 
incorporating labile bonds in the lignin structure. In turn, 
this might allow lignin extraction and fragmentation 
under milder conditions, thereby better preserving the 
carbohydrate fraction and preventing repolymerisation 
reactions of reactive species (vide sujJra). A well-known 
example is the so-called zip-lignin, in which monolignol 
ferulate conjugates are used such that labile ester bonds 
are incorporated into the lignin backbone [67,68]. Other 
examples are (i) CAD-deficient plants containing 
hydroxycinnamaldehyde-derived lignins [69, 70], (ii) 
CCR-deficient plants containing ferulic acid [71,72], 
and (iii) plants modified to contain the Ca-dehydrogenase 
(LigD) enzyme, and therefore have labile a-keto-l3-ether 
structures in their lignin [73]. The latter approach dis­
plays stark resemblance to recent oxidative strategies 
involving oxidation of the benzylic alcohol to weaken 
the 13-0-4 ether bond [74]. To date, these altered sub­
strates have not thus far been investigated in RCF bior­
efineries. Finally, the third major strategy is to introduce 
novel components into the lignin structure that provide 
added value upon RCF. An intriguing example is lignin 
built from caffeyl alcohol, or so-called C-lignin [75.,76]. 
During radical polymerisation, an intramolecular rearo­
matisation results exclusively in the formation of a ben­
zodioxane inter-unit bond (Figure 4). Consequently, the 
formation of carbon-carbon bonds is prevented, resulting 
in linear, ether-rich strains [75•], similar to high S lignin 
(videsupra). C-lignin naturally occurs in vanilla seed coats, 
which is not a relevant feedstock, but has recently been 
used as a substrate in RCF to deliver a proof-of­
concept. This resulted in the formation of catechylpropane 
or catechylpropanol instead of the traditional guaiacols 
[77 .. ,78]. The incorporation of C-lignin in bio-energy 
crops via genetic engineering though, remains to be 



disclosed in open literature [n••i. Alterations in the 
lignin structure can sometimes negatively affect the 
plant's health. Dwarfism, a decreased plant stiffness or 
a delayed growth are common side effects [79]. Yet the 
extraordinary plasticity of lignin biosynthesis [64 .. ,80,81] 
has thus far resulted in a rich portfolio of interesting 
opportunities. 

Conclusion 
Reductive catalytic fractionation (RCF) evolved from a 
lignin characterisation tool towards a promising lignocel­
lulose biorefinery scheme that effectively deals with the 
reactive nature of lignin. Central to the RCF biorefinery is 
a heterogeneous catalyst, which enables the disassembly 
of lignin during its extraction from the biomass. Signifi­
cant progress has recently been made in (i) understanding 
the elementary steps, (ii) stepping away from all-in-one 
batch autoclaves, and (iii) considering both low-value 
waste streams as well as engineered plants as potential 
feedstocks. Crucial to the further development of RCF 
are joint research efforts to seize upon multidisciplinary 
opportunities and to tackle some important challenges 
that lie ahead. 
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