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Transition metals in brewing and their role in
wort and beer oxidative stability: a review

Tuur Mertens,* © Thomas Kunz and Brian R. Gibson

Beer inevitably changes over time: the colour will darken, haze may form, and stale flavours develop, while others fade. The chal-
lenge of maintaining the fresh flavour quality of beer (over a typical 9-12 month storage period) is generally the determining fac-
tor of a beer’s shelf-life for brewers, as opposed to colloidal or microbiological stability. Fortunately, as early as the brewhouse,
oxidative degradation can - to a certain extent - be controlled, enabling the shelf-life to be increased. This review considers the
general issues of oxidative stability, mechanisms of ageing, ways of quantifying staleness and staling potential, and current prac-
tical approaches to prevent oxidative beer ageing. Emphasis is placed on the catalytic role of iron, copper and manganese on ox-
idation during brewing and storage; and how the removal and/or inhibition of these prooxidative transition metal ions leads

to prolonged beer (flavour) stability.
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Introduction

Beer is the most widely consumed alcoholic drink and - together
with coffee and tea - one of the most popular beverages. The
beer market continues to expand (7), as does consumer knowl-
edge and demand for high(er) quality. Beer is expected to be
fresh and free of any contamination or inappropriate haze. Fortu-
nately, the latter are no longer serious problems for the brewer
to control, as microbial and colloidal stability are, respectively,
taken care of by removal of bacteria and wild yeast (e.g. by hy-
gienic working practices, pasteurisation, 0.45 um membrane fil-
tration) and application of stabilisation agents (e.g. PVPP, silica
gel, tannic acid, etc.) (2). Accordingly, flavour stability - the ability
of a product to retain freshness and resist physicochemical
changes - is the key factor in determining beer shelf-life.

Beer flavour stability has been the subject of more than 500
publications (SciFinder). This is because, for any business to attract
and keep customers, the production and delivery of a consistent
quality product is key. Creating a well known identity is vital to
maintain customer selection preference (3). Delaying in-pack fla-
vour changes as long as possible is of great commercial impor-
tance (4).

The issue of beer flavour (in)stability is more relevant than ever,
given the international market where packaged beer can be
shipped around the globe, often under harsh conditions (e.g. hot
containers, vibrating trucks) and for extended periods of time (5).
Even though it has been intensively studied since the 1960s, the
science behind beer staling is still not fully understood and contro-
versies remain.

The chemical non-equilibrium of beer, emanating from its intri-
cate matrix composition, gives rise to a complex set of ageing phe-
nomena; suggesting that fresh beer, as a natural product, will
never be a fully stable commodity (6). Nonetheless, considerable
improvements in beer flavour stability have been made over the
years and further advances can be expected, because of ongoing
research and the continuous improvement of technology.

Noticeable flavour changes may become apparent three
months from packaging (at room temperature) (7), but this is a

rough and general estimate. Actual dates will vary depending on
multiple factors, including beer style, storage conditions, total
package oxygen (TPO), packaging, and agitation (8). Oxidative pro-
cesses are widely recognised to be the main force behind product
degradation (9-72) and the resulting flavours are described as
‘oxidised; ‘aged’ or ‘stale’. These are umbrella terms for describing
a combination of oxidation notes found in beer, such as card-
board/papery, sherry/Madeira, honey, ribes/blackcurrant/catty,
leathery, etc.

With high oxygen ingress (e.g. during the brewing process, filtra-
tion (713), poor filling practices, or usage of PET bottles (74) or inad-
equate bottle caps (75)), these flavour transitions take place more
rapidly. Off-flavour formation occurs, but also degradation of ini-
tial, fresh flavours, such as hop aromas and pleasant bitterness.
The organoleptic outcome of the shifts will depend on the concen-
tration of the formed and degraded substances, and their respec-
tive flavour activities.

Besides flavour deterioration, aged beers typically appear darker
than their fresh counterparts, due to the oxidised polyphenols be-
ing colourants (76). These oxidised polyphenols can also cause col-
loidal and foam stability issues, due to the polymerisation of pro-
tein-polyphenol-metal complexes (forming haze), which
concurrently diminishes the foaming ability through precipitation
of foam positive polypeptides (17,18).
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Beer ageing mechanisms
Oxidative beer ageing

Oxygen exposure is detrimental to beer stability and causes accel-
erated aldehyde formation (79). Fresh beer typically only contains
low levels of aldehydes which are below the flavour threshold. In
the past, the aldehyde trans-2-nonenal was subject to a lot of at-
tention since increasing concentrations of this potent, volatile car-
bonyl were often seen in conjunction with beer
staling, contributing to the ‘aged beer’ flavour characterised by
stale, oxidised, and cardboard/papery notes. These days, an array
of marker aldehydes is typically used to determine flavour instabil-
ity (20,21): including Strecker degradation aldehydes (2- and 3-
methylbutanal, 2-methylpropanal, methional, benzaldehyde, and
phenylacetaldehyde), lipid oxidation aldehydes (hexanal and
trans-2-nonenal), and aldehydes formed during Maillard reactions
(furfural). With the exception of furfural, these aldehydes can be
formed through oxidative reactions (6).

Oxidative degradation is the main cause of rapid beer staling
(22) and, in most cases, the principal oxidising agent will be oxy-
gen. However, as is later discussed in ‘oxygen-free beer ageing;
other reagents can act as an oxidant, such as mineral ions (e.g.
Fe** or Cu**), oxidised organic compounds (e.g. melanoidins, phe-
nols), and halogens (e.g. from cleaners/sanitisers). Regardless, the
presence of oxygen will invariably promote oxidation.

Remarkably, molecular oxygen (20,) - partially dissolved in beer,
present in the headspace and diffusing through the crown cap
liner during storage - is relatively unreactive, as the reaction of ox-
ygen with organic compounds is hindered kinetically (23). How-
ever, ground state oxygen can be converted to highly reactive
forms, either by chemical reduction or collision with other organic
radicals, which can be formed during high energy stages, includ-
ing kilning of malt, wort boiling, beer pasteurisation, exposure to
light (24), and even milling (25). These highly reactive oxygen
forms are collectively termed ‘reactive oxygen species’ (ROS) and
are potent oxidisers. Each is more reactive than oxygen itself
and, in increasing order of reduction state and reactivity, involve
superoxide anion (03) < perhydroxyl radical (HO3) < hydrogen
peroxide (H,0,) < hydroxyl radical (OH®) (6).

Bamforth and Parsons (26) first noted the importance of ROS in
beer regarding flavour stability. At the time (1985), little was known
about the mechanisms at play; but, involvement of the Fenton and
Haber-Weiss mechanism was likely, as transition metal ions in beer
are known to catalyse these radical-creating reactions. In 1988,
Kaneda and colleagues (27) first monitored free radicals in beer
by electron spin resonance (ESR) spectroscopy. In further studies
(28-33), they uncovered the effects these radicals have on beer fla-
vour deterioration, and the pathways involved in their formation,
by trapping the short-lived radicals with spin-trapping reagents.
The technique to trap short-lived radicals, creating detectable
long-lived spin adducts is still used in beer ageing research today.

Supporting Bamforth'’s claim, Kaneda and colleagues suggested
the free radicals formed in beer, to be hydroxyl radicals which, as
the most reactive oxygen species, attack almost every substance
with poor selectivity. While this is indeed taking place, Andersen
and Skibsted (34) later showed the 1-hydroxyethyl radical to be
the most abundant radical in beer, due to hydroxyl radicals
reacting with ethanol a good radical scavenger and copious in
beer. The generated alkyl radicals subsequently form acetaldehyde
and hydroperoxyl radicals, after electron loss by metal ions or oxy-
gen (see Figure 1) (34,35). The dominant radical species in

alcohol-free beer is unknown, but presumably, would also be car-
bon centred, since, in the absence of ethanol, the nonselective hy-
droxyl and alkoxyl radicals will react in a non-specific manner with
any nearby carbohydrate, protein, polyphenol, or other organic
molecules present in the matrix (36).

Although the mechanisms in Figure 1 are well understood, and
their significance is not in question, it is still uncertain exactly how
big a part they play in the overall staling picture. Oxidation, for ex-
ample, also occurs enzymically in malting and mashing through
the action of lipoxygenase (LOX) (37). There are however some ca-
veats, as iron besides promoting free radical and ROS formation
through Fenton and Haber-Weiss reactions, also plays a role in
lipoxygenase-induced oxidation (3839). To further illustrate the
complexity, other enzymes such as catalase conversely protect
against oxidative damage (36,40).

In addition, staling compounds (such as aldehydes) that are
formed during malting and mashing, may bind to other com-
pounds, resulting in adduct formation (41,42). While the influence
of oxygen (and other parameters) on the formation of bound state
aldehydes has yet to be fully investigated (43), their gradual release
may be considered an indirect form of oxidative staling, as they
progressively become ‘unmasked’ during storage (44-47).
Protecting the malt and wort from oxidation could prove benefi-
cial to shelf-life, since it would limit the endogenous ‘ageing poten-
tial’ carried over to the fresh beer. However, it is still unknown to
which degree oxidised substances in the free or bound state are
formed during malting and brewing, or how much of the intrinsic
antioxidative power of malt and wort is lost during these stages,
and how substantial this is in the ageing of packaged beer. In sum-
mary, beer staling is an immensely complex interplay of reactions,
with its kinetics still mostly unclear (e.g. enzymatic versus non-en-
zymatic) (48).

As briefly mentioned, and displayed in Figure 1, transition
metals, such as ferrous (Fe?*) and cuprous (Cu*) ions, play a vital
role in ROS formation (49). The participation of manganese ions
(Mn?*) in generating radicals has been investigated but to a lesser
extent. Although, like iron and copper, manganese is a d-block el-
ement (found from the third group to the twelfth group of the
modern periodic table), making it a viable metal catalyst, as it
shares the tendency to exhibit two or more oxidation states. Since
the initial report by Zufall and Tyrell in 2008 (50), few recent studies
have confirmed the augmenting effects of manganese ions on
beer staling (51,52).

Fe?*, Cu* and Mn?* serve as electron donors to reduce oxygen
species and are oxidised to Fe**, Cu** and Mn®**. Oxygen (*0,) cap-
turing an electron forms superoxide (03), which can become pro-
tonated to generate the perhydroxyl ion (HO3), or is further re-
duced to peroxide (03) which is then protonated twice, forming
hydrogen peroxide (H,0,). Both perhydroxyl and hydrogen perox-
ide are reduced to hydroxyl (OH®) via the Fenton and Haber-Weiss
reactions. Because beer is relatively acidic (pH ~ 4.3), most of the
superoxide will be in the more reactive perhydroxyl radical form
(pKa 4.8).

Prooxidant molecules present in beer can reduce oxidised metal
ions back to their reduced state, so that they can contribute to the
activation of ground state oxygen (or a ROS) again. This is aggra-
vated by a process of ‘free radical atom abstraction; where the pro-
oxidant itself can turn radical, furthermore degrading or reacting
with other compounds, producing off-flavours. Examples of wort/
beer species, which have easily abstractable hydrogen and can be-
come secondary organo-radicals, are alcohols (primarily ethanol),
sugars (e.g. glucose), free-thiol group (e.g. cysteine) containing
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Fenton reaction:
M" + H,0,

— M™14OH®+0OH"

M™+H,0, —> M"+0," +2H"

Net:

Haber-Weiss reaction:

M
2H,0, — > OH®+O0OH +0," +2H*

M™1+0, — M"+0,
M"+H,0, ——> M™1+OH"+OH
- M
Net: O, +H,0, — > 0,+O0H"+OH
o R R ipossoly ee) 2H" +20,™ 0, +H,0,
pKa
16-18
Mn Mn+1 Mn 116 118 n n+1
SuperOX|de Hydroxyl
E i anion radical
0, s=—=———= 0, =—> o R H,0, M OH* + OH'
Hyd i
il o et percne Parion ©
2
4;;K29 H* — CH;CH,0H
S F‘°rtt|‘:: Ethanol
HO," = C,Hs05° C,H;0°
Perhydroxyl Acetaldehyde !/ 1-Hydroxyethyl

radical

Figure 1. Mechanism of reactive oxygen species formation in beer, adapted from (33,34)

proteins, organic acids (e.g. isohumulones), and phenolic sub-
stances (e.g. hydroquinone, catechols) (53-56).

Some prooxidants, such as cysteine or other sulfhydryl-group
containing proteins, can act as a direct source of H,0,, when
heated or illuminated (57). Examples of compounds that can act
as prooxidative electron donors are reductones (e.g. early and in-
termediate stage Maillard reaction products) (58), polyphenols,
sugars, iso-humulones, oxidised melanoidins, and alcohols (33).

Antioxidants, on the other hand, inhibit the effects of oxygen, by
either chelating metal ions and/or capturing ROS and other free
radicals (‘quenching’) (59). Some native beer and wort components
- when present in appropriate (typically high) amounts - already ex-
hibit these protective properties, including yeast produced sulphite
and certain malt and hop products (such as tocopherols, flavo-
noids, tannoids, phenolic acids, reduced/unoxidised melanoidins,
reductones, and specific amino acids and peptides (60)).

Sulphite tends to get the most attention, as it is arguably the
best naturally occurring antioxidant found in beer that can, in ad-
dition, mask aged flavours by forming flavour inactive adducts
with carbonyl staling compounds (67-63). Nevertheless, some au-
thors claim that there may be an upper limit regarding the ideal
SO, content in a beer (22,64). Yeast, for example, cannot readily re-
duce carbonyl-SO, adducts. Reduced formation of sulphite during
fermentation will equate to higher levels of free aldehydes, which
the yeast can then reduce to alcohols. This may mitigate the car-
bonyl ‘blooms’ often seen during (warm) beer storage (65). Addi-
tionally, when it comes to anti/prooxidants, concentration is deci-
sive. Even with sulphite, a recent study by Foster and Ranguelova
(66) found that when the total beer SO, is in excess of what is

CH5CHO

1-Hydroxyethyl

peroxyl radical radical

0,

needed for the quenching of free radicals, reduction of H,O, and
adduct formation, excessive HSO53 is converted to SO3” (a free rad-
ical detrimental to beer flavour stability).

The oxidative mechanisms in wort and beer are an intertwined
chain of electron transfer (oxidation-reduction/redox) reactions.
Each reaction has a reaction rate (the speed at which a chemical
reaction proceeds) and this rate is affected by the type of reaction,
the substrate concentration, and the temperature. Thus, that a re-
action is thermodynamically probable, does not guarantee that it
happens under storage conditions.

As noted - apart from obvious parameters (storage temperature
and in-pack oxygen) - transition metals play a key role in the loss of
beer freshness (22). They may even be responsible for the majority
of oxidative degradation reactions in foods, as oxidation in the ab-
sence of catalysts is often negligible (67). Transition metal ions in-
fluence a myriad of chemical reactions and aid in the creation of
free radicals. This causes oxidative degradation of various organic
molecules in wort and beer, including iso-humulones (68), unsatu-
rated fatty acids (69), amino acids (70), polyphenols (68), sugars
(71), alcohols (79), and melanoidins (72) - although melanoidins re-
quire high temperatures to oxidise (72).

Iron, copper and manganese are directly or indirectly involved in
the formation of aldehydes (stale flavours) and (di)ketones (27,70).
These contribute to a rapid alteration of the original/intended fla-
vour profile of a beer. Due to their abundance in beer, the degra-
dation of hop bittering acids (mainly iso-a) is especially noticeable;
making the continuous loss in bitterness over time a defining pa-
rameter of beer ageing, which can be used as a quantitative mea-
sure for staling (trans/cis-ratio) (73). To produce beers that are

J. Inst. Brew.

© 2022 The Authors. Journal of the Institute of Brewing published by John Wiley  wileyonlinelibrary.com/journal/jib

& Sons Ltd on behalf of The Institute of Brewing & Distilling.



T. Mertens et al.

consistently bitter, even after prolonged storage, brewers may use
tetrahydro-iso-a-acids, which are resistant to oxidative deteriora-
tion, more bitter and enhance foam stability (77).

The concentration of metals is important. Even more significant,
however, is the chemical state (speciation) in which these metallic
ions are present (74,75), which depends heavily on the physico-
chemical conditions of the system: pH, composition, temperature,
and oxidation-reduction potential. These same variables also influ-
ence precipitation, dissolution, redox and complexation reactions.
The ligand speciation can also drastically affect the nature and
characteristics of the formed metallic complexes (76). The chelator
size and the strength of the complex, for example, determine
whether the electron is transferred by an inner- or outer-sphere
mechanism, which influences the reactivity of the complexed
metal (77). An inner-sphere mechanism involves electron transfer
through a bridging ligand, with bonds being broken and new ones
formed. An outer-sphere mechanism involves electron transfer be-
tween complexes that do not undergo substitution, with no bonds
broken or formed.

While determining the speciation of metals in beer is important,
only limited experimental research has been reported with the pi-
oneering work of Svendsen and Lund (78), and subsequent studies
of Pohl and colleagues (79-82) on metal species in beer. Both iron
and copper seem to be mostly complexed (78,80,83). The state of
the bound iron is reported to be negatively charged (although
later findings also imply positive and neutral species), while copper
was found as neutrally, negatively (~ 70%) and positively (< 30%)
charged species (78,80,84). Manganese (which has a much weaker
ability to form complexes with beer components), remains mostly
unbound (> 90% at pH 4.0), as simple Mn?* cations (78,80). The
small bound fraction presumably exists as polyphenolic
complexes.

Even from the limited data available, it is obvious that a wide
range of ligands are at play. More research into the different forms
of Cu, Fe and Mn in beer is needed to learn more about which re-
actions drive flavour instability.

Oxygen-free beer ageing. Although oxygen is the main staling
agent, it would be incorrect to regard (O,-driven) oxidation as the
sole force behind beer ageing. Glycoside and ester hydrolysis, ester
and etherification and Maillard reactions are all flavour deteriorat-
ing reactions that can operate non-oxidatively (6). Even trans-2-
nonenal which is a major indicator of beer staling and an impor-
tant oxidative off-flavour is released during beer storage, indepen-
dently of oxygen content (46).

Reactive oxygen species are not the only (re)active molecules in
beer. Melanoidins, for example, can oxidise higher alcohols to alde-
hydes in the absence of oxygen although O, does accelerate the
reaction (19) and metals can catalyse some (e.g. fatty acid) radical
formation independent of oxygen (85). f-Damascenone - an
aroma compound that behaves similarly to trans-2-nonenal during
extended storage of beer - has been reported to develop indepen-
dently of the total oxygen and SO, content in bottled beer (86,87).
It has also been reported that, in the presence of suitable electron
acceptors, flavour active beer constituents (e.g. five-membered-
ring hop  derivatives, including  trans-isohumulones,
dihydroisohumulones, tetrahydroisohumulones, and
humulinones) can be oxidatively degraded, even without the in-
volvement of any oxygen containing entities (88).

Aldol condensation such as the formation of trans-2-nonenal, by
condensation of acetaldehyde and heptanal (89) is another oxygen
independent process linked to staling. It is unclear, however,

whether this non-oxidative reaction causes off-flavours in a signif-
icant way (90). Similarly, Strecker degradation of amino acids in
beer can happen in the absence of oxygen, but is of questionable
relevance at low total package oxygen (TPO) (70,97).

A further example of oxygen free off-flavour formation is beer
becoming ‘sun-struck; ‘light-struck’ or ‘skunked’. This involves the
occurrence of a sulphury, skunky note when beer is exposed to vis-
ible and ultra-violet (UV) light. Light-struck flavour is strongly asso-
ciated with isohumulones, which decompose - under the influence
of light and the photosensitiser riboflavin - to 3-methyl-2-butene-
1-thiol (MBT), the main chemical related to the odour and flavour
of light struck beer (92). Interestingly, Lusk et al (93) found that
MBT can also form in beer in the absence of light, through thermal
ageing, although slowly.

Measuring beer staling and stability

Over the years, multiple techniques have been developed to mon-
itor beer staling. Sensory analysis is a well-established approach
(94), but suffers from poor reproducibility and requires a lot of re-
sources (time, people). Chemical analyses are usually more sensi-
tive but unfortunately, there is no absolute test or
all-encompassing assay for quantifying beer staling or flavour sta-
bility, as flavour changes are not due to one single reaction (95).
The most used methods are listed in Table 1.

Of these methods, two address the direct and indirect detection
of free radicals and ROS in real-time. Electron spin resonance spec-
troscopy (ESR) measures electrical signals whilst chemilumines-
cence uses photochemical detection. In both methods, samples
are forcibly oxidised (typically by applying heat) and the resulting
free radicals measured. The time before detection and formation
rate of the radicals offers information about the oxidative stability
and staling potential. Both methods, however, require expensive
equipment with high operating costs and the need for skilled
operators.

The ESR assay is a widely used holistic and established tech-
nique for predicting beer flavour stability and the technology is in-
creasingly available commercially. The main advantage of ESRis its
capability to unambiguously detect unpaired electrons in complex
biological samples (quantification), and its capacity to shed light
on the molecular structure of the free radicals (identification), while
requiring only small amounts of sample (96-98).

Uchida and Ono (99,100) first applied ESR to predict beer flavour
stability in 1996. They observed, when force ageing beer, that long
lived spin adducts were not detected immediately after the start of
heating but were produced after a period of incubation. This
inhibited oxidation phase (‘lag time’) is the result of naturally pres-
ent antioxidants in the beer quenching the generated radicals or
ROS. Once the antioxidants are sufficiently depleted, the radical
products react covalently with the spin-trapping agent to form
(more) stable adducts, which can then be determined. Figure 2 dis-
plays two typical ESR spectra of wort and beer, with successive
measurements taken during forced ageing.

The endogenous antioxidant activity of beer - its natural ability
to quench radicals - can be estimated through its lag time deter-
mined (using N-tert-butyl-a-phenylnitron/PBN as spin-trap) (27)
or the endogenous antioxidant potential (EAP) value (using a(4-
pyridyl-1-oxide)-N-tert-butylnitrone/POBN as spin-trap) (707). Both
metrics correlate strongly with the sulphite content of the beer
and give an indication of its inherent antioxidant capacity and po-
tential flavour stability. Only the EAP value shows a linear correla-
tion with the SO, content, while the lag time portrays an

wileyonlinelibrary.com/journal/jib  © 2022 The Authors. Journal of the Institute of Brewing published by John Wiley

J. Inst. Brew.

& Sons Ltd on behalf of The Institute of Brewing & Distilling.



Review of metals and oxidative stability in brewing

Type

Table 1. Methods for determining staleness, staling potential and flavour stability

Method

I  Measuring fluctuations in marker compounds
Increase of staling components, such as

- 5-Hydroxymethyl furfural (5-HMF) (256)
» Acetaldehyde (257)
« Ethylene (258)

methyl-propanal, etc.) (20)
« B-Damascenone (86)

Il Antioxidant capacity assays
(TEAC) (262)

«+  Cupric reducing antioxidant capacity (CUPRAC) (265)
« Ferric reducing antioxidant power (FRAP) (266)

« Hydrogen peroxide scavenging (267)

«+ Linoleic acid (LA) assay (268)

»  Oxygen radical absorbance capacity (ORAC) (271)

+ Superoxide and hydroxyl radical scavenging (273)
« Thiobarbituric acid (TBA) index (274,275)
- Total reactive antioxidant potential (TRAP) (276)
Il Others
»  Chemiluminescence (CL) (277-279)
« Electron spin resonance (ESR) spectroscopy (99,100)
« Nonenal potential concept (69)
« Peroxide challenge test (PCT) (96)

«  Furfural (259) and other marker aldehydes (2- and 3-methylbutanal, hexanal, 2- -

«  2,2"-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging or Trolox-equivalent antioxidant capacity

« 2,2-Diphenyl-1-picrylhydrazyl (DPPH) reducing activity (263,264)

«  Metal-chelating activity (of Fe** with ferrozine) (269,270)

+ Peroxyl radical scavenging (B-carotene bleaching) (272)

Decrease of ‘fresh’ components, such as

- Iso-a-acids (bitterness); trans/cis-ratio (73)
+ Pro-anthocyanidins (20)

+  Sulphur dioxide (SO,) (260)

Total flavanoids (267)

T,5,value

~/O
POBN spin adducts ?ﬁ
}/“ =

| ESR signal
.04 Wort

b - o1 Beer

e ; EAP-value
o

T T T T T T T
0 50 100 150 200 250 300 350 400 450

Oxidative forcing test at 60 °C (min)

Signal intensity (counts per sec)
POBN spin adducts concentration / radical generation
Q
a]

Figure 2. ESR analysis of wort and beer during an oxidative forcing test at 60°C. An
increase in free radical formation is observed in beer after the lag phase. Wort typically
does not have a lag phase. Note: while the lag time and EAP-value might seem inter-
changeable, consider that lag time is determined by using PBN as a spin-trap reagent,
while EAP-value (and T-value) is determined by using POBN.

exponential relationship (702). Because of the linearity between
sulphite and EAP value, the time to consume one mg of SO, per
litre of beer can be determined. Expressed in min*L/mg, this ratio
is termed the Beverage Antioxidant IndeX or BAX value and pro-
vides information about the interplay of anti- and prooxidative
beer components independent of the sulphite content and the
rate of consumption of the existing antioxidative potential during
storage (102).

Beers with high endogenous antioxidant activity show retarded
formation of stale flavours (103). A supplementary ESR metric is the
T-value: an indicator for the quantitative radical generation after a
certain time, typically around minute 450 (although T;5¢ and Teno
are also used). It is mainly influenced by pH and substances that
suppress or promote radical formation, such as complexing
agents, transition metals, and intermediates of the Maillard reac-
tion (99,7102,104). A high T-value has been shown to correlate with
the rapid development of Strecker aldehydes (65). Thus, an ESR
graph provides information about the anti/prooxidative balance
in a wort or beer, where a longer lag phase = higher EAP value =
greater antioxidant potential = higher flavour stability; and a
steeper slope = higher radical generation = higher T-value =
greater prooxidant potential = faster staling.

However, the ESR technique is not free from criticism. Studies
(77,105-107) have demonstrated certain chelators to form strong
oxidative metal complexes, capable of oxidising biomolecules, that
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are not ESR-detectable (by being spin-trap inaccessible). Accord-
ingly, ESR does not detect every oxidative species; contrary to
chemiluminescence, which does not rely on spin-trapping.

It is important that a spin-trap reagent does not affect the pH, as
a small change in acidity will dramatically affect the autoxidation
rate of a metal (77). However, several studies make use of PBN as
the ESR spin-trap, which can increase the sample pH. This causes
lag time measurements to be significantly distorted (up to 500%
in high EAP beers) through accelerated radical generation (702).
For this reason, using a spin-trap agent without any effect on pH
(such as POBN) is recommended (707,702,108).

A further concern involves the typical ESR measurement being
conducted in vials that are open to the atmosphere, leading
to oxygen ingress and volatilisation of ethanol. However, a recent
development rectifies this by encapsulating the beer sample in a
sealed capillary tube (66). This substantially reduces sample oxida-
tion during analysis and better represents packaged beer in trade.

Lastly, the calculated lag time is not always an ideal metric in
predicting sensory flavour stability, as it can be imprecise and inac-
curate due to high variability of the fitted sigmoidal curve (22). This
is especially the case with beer styles that have low or no lag time
(stale lagers, red beers, dark beers) (22). The ESR area under the
curve has been suggested as a better metric, since it correlates
more strongly with sensory data and consumer acceptance (22).
Others, because of the complexity of beer ageing, propose an even
broader approach to measuring flavour stability (709), such as the
‘stability index’ (SI) method, which combines the results of four dif-
ferent antiradical analyses (110,711).

Preventing beer ageing

Keep it dark, cool, and still. A principle for slowing down any
chemical reaction, including those involved in beer staling, is to
keep the system energy low. For beer, this typically involves no
lightirradiation (keep dark) and low temperatures (keep cold). Less
significant, but not inconsequential, is to limit vibrational energy
(keep still), particularly during transport (772). Agitation enhances
the diffusion of any headspace oxygen into the beer, such that ox-
ygen involved reactions proceed at a faster rate.

In terms of minimising the penetration of light, cans and kegs in-
evitably outperform glass bottles. With glass, brown/amber bottles
are best at protecting the product against the damaging effects of
ultraviolet light, with green bottles being a poor second, followed
by blue/cobalt and uncoloured/flint glass (773). Besides preventing
beer from being light-struck, it is important to shield beer from ir-
radiation to prevent it undergoing other photo-oxidative reactions.
Examples include the photochemical oxidation of unsaturated
fatty acids through the formation of singlet oxygen via
photosensitisers (e.g. riboflavin) (45), and the photo-oxidation of
sulphur containing amino acids/polypeptides/proteins by triplet-
excited riboflavin (and other flavins), delivering S-centred radicals
(114).

Formation of 3-methyl-2-butene-1-thiol (MBT) can also be
avoided by using modified/advanced hop products, such as rho,
tetra and hexa hop extracts (containing rho-, tetra-, and
hexahydro-iso-a-acids). Because these hop products do not
photodecompose into MBT, there is the misconception that these
compounds are light stable. However, they do break down, but
into light-struck flavours with higher aroma thresholds (774).

It is a general rule of thumb for most food systems that a 10°C
decrease in temperature roughly halves the rate of all chemically
based deterioration reactions (i.e. a Qo temperature coefficient

of ~2; Figure 3) (115,116). Accordingly, a beer held at 0-4°C will
keep four times longer than one held at room temperature
(Figure 3) (95). Refrigerated transport and storage is used by some
brewing companies but is a logistically complex and expensive af-
fair. So, despite being one of the most powerful tools to prevent
staling, it is not always an economically feasible option (717).

It is not only during storage that (high) temperatures drive stal-
ing. Throughout the brewing process, and especially during the
high heat stages, a variety of staling relevant compounds are
formed. These include the Maillard reaction products (reductones
and melanoidins), formed via the reaction of reducing sugars with
proteins or amino acids (present in malt, wort, and beer). They add
colour and flavour to malt and beer and are responsible for a myr-
iad of (pro- and anti) oxidative effects throughout the production
chain and in the final product (702,718).

The TBA method (Table 1) is used to gauge heat load in the
brewhouse. Thiobarbituric acid forms complexes with many
Maillard intermediates but is particularly sensitive towards furfu-
rals. One complex (5-hydroxymethylfurfural-TBA) acts as a yellow
indicator, with a maximum absorption at 448 nm that can be used
as a quantitative measure for thermal load (779). A downside of the
TBA method is its limited specificity, since thiobarbituric acid can
also react with other substances, including proteins and sugars,
to form coloured species that can interfere with the assay.

The heat/thermal load received by wort, beer, and malt, gives an
indication of the expected flavour stability of beer. A high (er) heat
load equates to high (er) rates of unwanted staling reactions (free
radical generation, autoxidation of unsaturated fatty acids, Maillard
reactions, Strecker degradation), which equates to high (er) levels
of aldehydes, ageing precursors and prooxidative compounds.

Reduction of heat load typically involves reducing the time and/
or temperature of the high heat process steps (kilning, mashing,
wort boiling, pasteurisation). Mashing-in above 63°C can, for in-
stance, limit unnecessary thermal stress. Additionally, it will inhibit
enzymatic (lipid) oxidation of unsaturated fatty acids to trans-2-
nonenal by deactivating the lipoxygenase (LOX) enzyme (720).

800 1
600 —
500 —
400 —
300 +

200 -

Estimated time before staling (days)

100

Beer storage temperature (°C)

Figure 3. Calculated time before noticeable beer staling in relation to storage tem-
perature, based on a 90 day shelf-life assumption at room temperature (20°C), with
the following Q values: 1.5 (¥ -line), 2 (bars) and 3 (A -line). Note: The Q;, describes
the ratio by which reaction rates change when the temperature is increased by 10°C
and is used to predict the expected shelf-life of a food product. Typically, a Q;, value
of 2 is used as an initial shelf-life estimate, but it can range anywhere from 1.1-3 for
beer (depending on the temperature and the system/product).
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Another possibility to lower heat stress is to brew with raw
(unmalted, unkilned) barley (727) or with green (germinated,
unkilned) malt (122,123); to cool the wort before the whirlpool rest
with the added benefit of limiting SMM (DMS precursor) cleavage
(124), or to centrifuge the wort instead of using a whirlpool. With
boiling, many alternative systems that reduce heat load and save
energy are available, including internal boiling/heating system
(9), thin-film evaporation (725,126), dynamic low-pressure boiling
(127), vacuum boiling (7128) and innovative wort production (with
mashing-off at 95°C) (129).

Avoid oxygen. To battle oxidative ageing, exposure to oxygen
must be avoided as best as possible. This means oxygen ingress
throughout the brewing process is as low as is reasonably achiev-
able, and headspace oxygen in packaging is as low as is practically
attainable, with avoidance of any oxygen ingress during storage.
Bamforth (64) estimated that 0.1 pg/L of oxygen would incite oxi-
dative mechanisms to a damaging degree. With modern filling
machines achieving in-pack dissolved oxygen levels of 20-50 pg/
L in beer (130,131), it is debatable whether we should continue
to strive for even lower oxygen concentrations.

Good manufacturing practices will improve the shelf-life of beer
by minimising the formation of ROS. Kuchel et al (132) suggest that
lowering the in-pack oxygen of beer to 1 pug/L should, at a mini-
mum, extend its shelf-life beyond the typical 120 days. It can also
be reasonably assumed that ‘downstream’ oxygen ingress is a big-
ger concern than ‘upstream’ oxidation (95); notwithstanding that
both should be prevented. Upstream entails the materials needed
for production and any part of the production involving the extrac-
tion (making of wort); downstream includes processing after fer-
mentation, the finished product (packaged beer), distribution
and retail.

For this reason, any unnecessary transfer of beer should be
prevented, whether in the brewery or in retail. When required, it
should be done gently, to avoid splashing and turbulence, which
leads to aeration (733). Where possible, wort and beer should be
‘pushed’ with CO, or another inert gas. It is best to purge any con-
tainer (bottles, kegs, cans, carboys, tanks) with CO, or N, before fill-
ing and to fill from the bottom up. Hoses and pumps can also be
purged, or better still, prefilled with deaerated water to expel any
air. When bottling or canning, always ‘cap on foam'’ by agitating/
fobbing the beer slightly so that headspace oxygen is minimised
(134).

The caps on glass bottles are another unavoidable contributor
to flavour instability, as air can permeate into the headspace. There
are, however, differences among cap/crown types when it comes
to oxygen ingress (135). Pry-off bottle caps are better at keeping
oxygen out than twist-offs (74,136,137). The crown liner material
is also instrumental, as polymers vary in the extent of oxygen per-
meation (735,138,139). To minimise the problem, innovative oxy-
gen-scavenging caps can be used. The scavengers within the
liner react with gaseous oxygen, reducing the overall oxygen con-
tent in the bottle (140-142).

With keg beer, gases can permeate through some grades of dis-
pense tubing with CO, leaving and air entering the system (743).
This is of greater concern with keg beers that are ‘slow moving'.
The use of CO, as top pressure gas for beer dispense may contrib-
ute oxygen, as commercially available food-grade CO, contains
trace amounts of O, (737). Conversely, canned beer has zero oxy-
gen ingress after sealing, but bears the risk of having a higher
TPO than bottled beer (Table 2), as cans cannot be vacuum evacu-
ated without collapsing and have wide mouths (which impedes

Table 2. Industry standard oxygen levels across the brewery
(131)

Stage Oxygen content (ug/L)
Aerated/oxygenated wort 8000 - 17000+
Fermentation <10-30
Filtration 5-50

Bright beer after filtration 10 - 50

Beer at the filler 10 -30
Package dissolved O, (bottle) 20 - 50
Package dissolved O, (can) 30 - 60

Total package O, (dissolved + 40 - 150
headspace)

the pre-seal fobbing of beer). Regardless of the container type,
beer should be stored upright and vibration/transportation
minimised. This way, the beer has less surface area to interact with
trace amounts of oxygen in the headspace, slowing down
oxidation.

A practical but niche option to lower in-pack oxygen is to add
yeast to beer in bottle or can, which scavenges some of the re-
maining free amino acids and removes oxygen (144,145). In addi-
tion, the yeast also removes aged flavour notes (such as aldehydes)
from the beer, prolonging its overall freshness (146,147). However,
refermentation or secondary conditioning is a complex biochemi-
cal process that involves more than oxygen removal. Suspended
yeast can cause haze and the additional carbon dioxide may lead
to excess carbonation and gushing. Furthermore, there is the risk
of yeast autolysis and the release of intracellular enzymes, lipids,
amino acids, and metal ions, which can increase beer pH and cause
off-flavours (7148-151).

Add antioxidants. Antioxidants are substances that prevent,
delay or remove oxidative damage, either by eliminating superox-
ide, hydroxyl radicals or other reactive species (like peroxides,
which sulphite will quench), or by inactivating trace amounts of
Fe, Cu and Mn (through complexation/chelation) (67). They are al-
ready present in beer and play a vital role as endogenous staling
inhibitors, even at low concentrations. However, there are ways
to naturally enrich the antioxidant content, such as ageing the
beer in wooden barrels (152), by using ingredients or brewing pro-
cesses that favour a high polyphenol content in wort and/or beer
or, as noted above, the use of re-fermentation, which will produce
in-pack SO, (146-148). Other options to enhance the sulphite con-
tent are to use a high-sulphite producing yeast strain (153,154),
zinc addition (755), reduced fermentation temperature (755,156),
lower dissolved oxygen in pitching wort (7154,157), clear/bright
wort (154,158,159), and a higher wort pH (760).

Depending on the regional legislation, antioxidants may be
added to the brewing process or the final product to potentially
prolong shelf-life. However, better packaging technologies with
lower oxygen pick-up have made the practice of adding exoge-
nous antioxidants less common (767). Additionally, regulations
have become stricter in recent years and consumers increasingly
prefer ‘clean label’ products with no artificial ingredients or syn-
thetic chemicals. In Europe and the United States, beers with
sulphite contents > 10 mg/L must be labelled as such, as high
sulphite residues can trigger allergenic effects in susceptible
individuals (63).
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Common antioxidants used in brewing are ascorbic acid (vita-
min C; E300) and sulphur dioxide (90). The latter can be adminis-
tered by dissolving (potassium or sodium) metabisulphite at vari-
ous stages in the brewing process. Apart from the quenching of
ROS (67), sulphites will form adducts with unwanted aldehydes
(acetaldehyde and other carbonyl compounds (762,163)), making
them less flavour active, although this masking effect may only
be temporary (43,65). Ascorbic acid, like most antioxidants, also
has prooxidative capabilities (7164,165). This is due to ascorbate, be-
ing a typical reductone, having a strong affinity to reduce oxidised
metal ions back to their catalytic state (e.g. Fe** to Fe?*) so that they
are again available to activate oxygen by electron transfer (58).

Whether a chemical entity behaves as an anti- or prooxidant de-
pends greatly on the type and the concentration of the com-
pound, oxidation state, pH, the type and concentration of transi-
tion metals present and the matrix. It can be difficult to make
clear cut predictions, as what works in one medium might not
work in another. This may explain why, for some substances, con-
flicting results have been reported in the literature. Indeed, in this
review, melanoidins have had both pro- and antioxidative effects
attributed to them (catalysing oxidation of higher alcohols into
their equivalent aldehydes, but also chelating transition metals)
(58,166-169). The same is true of certain phenolic compounds
(chelating transition metals, but also reducing them back to their
prooxidative form) (170-172).

A novel antioxidative compound that can be employed during
brewing is punicalagin (773) a water-soluble ellagitannin, found
in pomegranates, which can be hydrolysed to smaller phenolic
compounds (such as ellagic acid). Both punicalagin and ellagic acid
are capable of forming chelates with iron and copper ions at beer
and wort pH (774,175), inhibiting the production of reactive oxy-
gen species and scavenging them (776).

Remove transition metals. Metals in beer are mainly derived
from the raw materials (malt, hops, water, yeast), but also from
the brewing equipment and additives (filter media (702), pipes,
tanks, vessels, packaging (177,178), adjuncts, stabilisers,
pesticides (779)). Table 3 summarises the range of
concentrations reported for iron, copper and manganese from
different raw materials and stages of the brewing process.
Whether good or bad, their presence plays a substantial and
overlooked part in the palatability, conservation and overall
stability of beer. Positive effects include supporting yeast and
fermentation and contributing to the nutritional value. Negative
effects involve spoilage - due to haze formation, oxidative
processes, gushing - and other sensory defects (37,780).

The metal content of a beer varies depending on the quality of
the materials and processing aids used, though it is unavoidable
that a portion of the metal ions are present in the final beer. A
study by Wietstock et al demonstrated transfer rates, from raw ma-
terials to the finished beer, of 0.1% Fe, 0.4% Zn, 3.1% Cu, 6.3% Ca
and 15.1% Mg (181), with the biggest metal source being (pale
lager) malt (ca. 96%). With darker malt types, such as crystal or
roasted malts, different transfer ratios would be anticipated;
namely, higher for Fe and Mn and lower for Cu, due to changes
in the binding capacity of malt solids (166,773,182).

Beer has a much lower transition metal content than wort (783),
which make the ransfer rates appear low. The explanation for this
is that a large fraction of the metals in wort are bound to nitroge-
nous and polyphenolic compounds and are removed with the hot
break and trub during mashing, wort boiling, and in the whirlpool
(181,184-186). The spent grains, left after lautering or mash filtra-
tion, are also a great sink for metals, particularly transition metal
ions (187,188). Moreover, yeast in addition to removing oxygen
(145,189), scavenges metals during fermentation (especially Cu,
Fe and Zn), lowering the final metal content in beer (790-193). In
contrast, manganese is not significantly lost during the brewing
process, making it a potent beer prooxidant (50,52).

However, it is important to note that the metal concentration in
finished beer does not need to be high to cause noticeable de-
fects. The damaging properties of copper occur at < 50 pg/L (50)
and a transition metal addition of 10 pg/L results in a measurable
decrease in oxidative stability (52,102,194). Some metal ions may
be introduced after the brewhouse and fermentation stages,
bypassing the protective effects of spent grains, hot/cold break/
trub formation, and yeast. The increasingly popular practice of
dry hopping is one such example. Considering that hops are rich
in metal ions (781), dry-hopping is presumably detrimental to beer
flavour stability, although this has yet to be adequately investi-
gated (51,179,195,196). Furthermore, such additions to finished
beer, can inadvertently result in oxygen pick up.

It is likely that a high amount of transition metals, present during
brewing, will negatively impact the final quality and stability of the
finished beer; even though a beer made from an iron-rich wort
might finish with a similar iron content as a beer from an iron-poor
wort. This notion is often overlooked, despite the known capacity
of (metal ion) oxidation catalysts to facilitate oxidative degradation
of wort (and its antioxidative compounds) especially during high
heat stages and regardless of the catalysts being in a bound state
or not.

To reduce any negative flavour effects, the content of transition
metals (Fe, Cuand Mn) needs to be lowered in some way, ideally as
early as possible. One approach is by complexing metals during

Table 3. Transition metals throughout the brewing process

? Range according to Zufall and Tyrell (50).
P Range according to Lie et al. (280).

Fe Cu Mn
Malt (mg/kg dm) 25-32° 2-3° 8-12%
Hops (mg/kg dm) 300-800° 5-10P 40-60°
Filtered wort (ug/L) 200-500° 50-100° 70-150°
Pitching wort (ug/L) > 200° >70° >70°
Beer (ng/L) 20-80° 20-60° 70-130°
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the brewing process so that they are no longer chemically in-
volved in activating oxygen (Reaction 1). Certain chelators can do
this by one or more of the following: interruption of the metal re-
dox cycle; occupation of all coordination sites; formation of insolu-
ble metal complexes; steric hindrance between metals and oxida-
tion intermediates (e.g. peroxides) (797). However, perfect ‘catch-
all' chelators may not exist (49).

(Fe, Cu, Mn) + chelator——> (Fe, Cu, Mn)-chelate

(Reaction 1)
Some native wort/beer components seem to portray such char-
acteristics naturally, through donor N-, O- and S-atoms, and in-
clude polyphenols (798,799), amino acids (792), phytic acid
(200,201), melanoidins (202-204), and hop acids (205,206). These
mostly derive from malt, but also from hops. So, even without
the addition of complexing agents, a natural and complex equilib-
rium already exists between free and bound metal ions in wort and
beer with an inclination to the bound, organometallic state (78).
The benefit of scavenging metal ions is clear, but the reality
proves challenging. To prevent Fenton chemistry, a chelator must
stabilise the metal ion in a state inert to either oxidation by H,O, or
reduction by reducing agents (207). But the bound-state metal
ions can even - depending on the concentration and type of che-
lator - end up promoting oxygen radical formation (Reaction 2 and
3, forming a cycle), instead of quenching it (90,99,133).

(Fe, Cu, Mn)"-chelate + 0, ——» 0,°* + (Fe, Cu, Mn)"*'-chelate

(Reaction 2)

(Fe, Cu, Mn)"*1-chelate + RH — R*® + H* + (Fe, Cu, Mn)"-chelate

(Reaction 3)

The degradation of ascorbic acid serves as an illustration of this.
The oxidation of ascorbate is catalysed by both copper and iron,
with free Cu*? being roughly 80 times more potent than unbound
Fe". The presence of EDTA diminishes the ability of copper to ca-
talyse ascorbate oxidation. However, this is not the case for Fe**, as
EDTA bound iron is four times more potent in degrading ascorbate
than its free form (208).

The extent of metal ion binding does not necessarily correlate
with the extent of protection against oxidation from that metal.
This may also explain why there are still disagreements on whether
some compounds are anti- or prooxidative (e.g. melanoidins and
polyphenols), especially in complex systems such as wort and
beer. Model studies with lipid peroxidation show that when the ra-
tio of chelator (EDTA or DTPA) to transition metal (Fe) is high (> 1),
oxidation is inhibited. When the ratio is low (< 1), oxidation is stim-
ulated (209,210). This suggests that chelator/metal-ratio also plays
an important role and that chelators must be present at sufficiently
high concentrations.

Overall, chelation properties are influenced greatly by the pH of
the solution, which in turn will also influence the reactivity of the
metal species present (271). The complexity of metal and chela-
tion/coordination chemistry is immense. In addition to the factors
already noted, many others will affect the outcome, including che-
lator size, nature of the ligand (and whether it is capable of forming
a multiligand complex), buffer system, competing ions, and the
matrix (77,212).

‘Simple’ chelation might not suffice in protecting wort and beer
from oxidative damage. A chelator that forms an insoluble metal
complex has a better chance of diminishing oxidation, by decreas-
ing the mobility, and the reactivity of the metal. Ideally, a chelator
should also possess a high enough binding affinity for transition
metals, so that it can strip them away from other molecules,
protecting possibly flavour relevant molecules from site-specific
degradation by the metal-catalysed radicals (273). Good examples
of site-specific degradation reactions in beer are when
isohumulones or polyphenols are directly attacked by *OH radi-
cals, generated by iron ions that they captured, destroying them;
respectively resulting in cardboard off-flavour and haze formation
(317). In addition, chelators must be food safe and flavour neutral;
not remove metals required for brewing (yeast requires trace
amounts of Zn®*, Ca®* and Mg**) (84); they must perform well
at high temperature and low pH; destroy O3™ and H,O, without
reducing agents; and, preferably, be low in cost and practical
in use.

In 1999, Bamforth et al (733) called for a deeper exploration of
the aspects of chelation, but little has been subsequently been
published. A few studies have examined the metal ion scavenging
capabilities in beer of added, exogenous compounds. Effective
ones include diethylenetriaminepentaacetic acid (DTPA) (26), eth-
ylenediaminetetraacetic acid (EDTA) (31,99,165), egtazic acid
(EGTA) (214), bipyridine (99), phenanthroline (99), Divergan® HM
(102,215), gallotannins/tannic acid (Brewtan®) (13,216,217).

All these chemicals are foreign to beer, but a few chelation stud-
ies in brewing have shown promising results with native beer and
wort compounds. As noted, phytic acid is a strong antioxidant be-
cause of its metal scavenging ability (Cu and Fe, but also Zn and
Ca) (784,218,219). Proteins of all fractions especially bind Cu and
Fe ions, with their amino acids acting as ligands (274,220), which
explains why trub contains a high amount of metals. Despite this,
the nature and extent of the binding do not prevent copper from
participating in oxidative reactions (227). Hop a-acids
(isohumulones) and hop B-acids can firmly bind Fe ions by com-
plex formation (795,205,222). The organic compound citric acid
forms complexes with Fe and Cu (80,274). Melanoidins are known
to strongly capture Cu, Fe and Zn strongly. Beer flavonols (e.g. from
hops) can bind Cu at beer pH; myricetin and quercetin can chelate
Fe (183,223). Oxalic acid (oxalate) is reported to modulate the activ-
ity of iron (224).

It is important to note that most of these studies were con-
ducted by examining chelating agents in finished beer. However,
chelators are often unstable at low pH (271,225) and typically per-
form better in less acidic environments (35,67,212). Accordingly, it
might prove more effective to add chelators during mashing, as
wort has a higher pH. Additionally, the high level of amino acids
in wort may help complex formation (amino acid + organic acid
+ metal ion). Such mixed complexes are often stronger than those
composed solely of organic and amino acids (226).

A recent study explored the binding capacities of 19 chelators
added during mashing (773). The findings highlight the advanta-
geous effect of some chelating agents, of which the most effective
were green tea extract, tannic acid and pomegranate extract. The
latter two were especially successful in reducing the iron content
of wort after lautering. The addition of pomegranate extract (60
mg/L, 90% ellagic acid) resulted in an 80% decrease in radical gen-
eration. The study also showed that excessive release of iron and
manganese during mashing can be avoided by not acidifying
the mash, but instead mashing at a 'natural’ pH of 5.6. This is in
accordance with the findings of Narzif} et al (227), who observed
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anincrease of ageing related compounds with the reduction of the
mash pH (from 5.8 to 5.5 and 5.2). Not acidifying the mash might
also result in a less acidic beer, which according to Grigsby et al
and Kaneda et al (32,228), will lead to a more flavour stable beer
that tastes less oxidised when aged. At lower pH, more of the su-
peroxide radical will be in its protonated state (the more damaging
perhydroxyl radical).

The free radical and ROS scavenging properties that some che-
lators also possess should not be overlooked. Caffeic acid shows
low iron binding ability but has outstanding antioxidant proper-
ties, as it can scavenge several reactive species (DPPH, peroxyl
and hydroxyl radicals) (229,230). There is still much room for re-
search in the field of ‘chelation therapy’ with respect to improve-
ment of beer oxidative stability. It is well known that phenolic
acids, containing the catechol or galloyl moiety (an
ortho-dihydroxy functional group), are effective in chelating transi-
tion metals (237,232); and that beer contains a number of these
acids, including caffeic acid, chlorogenic acid, protocatechuic acid,
and gallic acid. Accordingly, enhancing these phenolic acids dur-
ing the brewing process could potentially improve the shelf-life
of beer (233). However, at certain concentrations - depending on
the polyphenol type and beer composition - they may lead to
the formation of protein-polyphenol hazes over time (234).

Control of flavour stability in practice

Table 4 provides a summary of the strategies to prevent beer
ageing.

Raw materials, equipment and additives. The excellence of
the raw materials (malt, water, hops, yeast), processing aids, and
equipment is paramount to ensure good beer quality. They will in-
fluence the overall metal load throughout the entire process.
Brewing water can be used ‘as is; if the local raw water quality is
adequate, but will commonly have to be deionised to remove min-
erals and unwanted metal ions. Water treatment, such as reverse
osmosis, may come with high costs and process complexity, as
salts must be added back to the brewing liquor (235,236). The
metal content of the other inputs is not always as transparent or
easy to control. The use of whole hops, rather than pellets or ex-
tracts, raises the antioxidative polyphenol content of the wort
but also tends to be higher in heavy metals (237). With malt, the
wort metal content can vary by variety, cultivation, and roast inten-
sity (182,185). Similar considerations also apply to spices, herbs,
and other additives (238). Brewing equipment should not leach
metal ions into the wort or beer and accordingly, passivated stain-
less steel ‘coppers’ should be used for wort boiling, rather than
copper. Similarly, membrane filtration of beer is recommended
rather than filtration through kieselguhr/diatomaceous earth,
which is rich in iron (276,239). The design of process equipment
(pumps, stirrers, pipes, vessels) should be to reduce high mechan-
ical stress and shear, to minimise oxygen pick-up, to impede B-glu-
can extraction during mashing, and to avoid disruption of any ag-
gregates, such as coagulated protein/polyphenols. The primary
purpose is to prevent reduced filterability by averting the forma-
tion of large hydrogel complexes and, thus, poorer flavour stability.

With dark, roasted malts, more metal ions are transferred to the
wort during mashing (773). This explains why dark beers, such as
stouts, typically have a higher Fe content (52,240). Roasted malts
also contribute higher levels of organic radicals, deterioration-rele-
vant carbonyl compounds (Strecker aldehydes), and reductone
compounds (Maillard reaction products), due to the elevated heat

stress that these malts undergo during kilning, resulting in de-
creased beer flavour stability (766,168,241).

Brewing with green malt or unmalted barley (or a combination
of both, making use of the high diastatic power of green malt to
compensate for the enzyme deficiency in raw barley) would re-
duce the staling potential considerably, since these starch sources
do not have the above defects - although they might contribute
other shortcomings. Green malt, for example, must be produced
and used on-site, as it is microbiologically unstable raw material
with a limited shelf-life (723). Contrary to expectation, the height-
ened LOX content of green malt does not result in beer with signif-
icant taints or obvious defects, even when using it at a 100% (722).

Milling. Aggressive milling of malt results in excessive fracture
of the husks and embryo, which increases wort polyphenol levels,
but also leads to increased LOX, lipase, and lipid release, leading to
elevated nonenal potential (60,242). Finely milled grist (from ham-
mer milling) would, typically be utilised by modern mash filters,
which provide reduced filtration time, less heat load, lower oxygen
pick-up, and shorter mashing times (due to the larger surface-to-
volume ratio of the fine grist, leading to higher enzyme and extract
yields).

Alternatively, or in addition, the malt acrospire can be kept in-
tact by employing steep conditioned or wet milling. Wet milling
systems can use deaerated water to minimise oxidation during
milling and mashing. To achieve this with steep conditioned mill-
ing, the milling and mashing chambers should be flooded with ni-
trogen or carbon dioxide.

Mashing, wort separation, boiling, and clarification. Al-
though chelating agents, such as tannic acid and ellagic acid, can
be used successfully across the brewing process, addition during
the mashing stage is recommended. Firstly, the early elimination
of transition metals will more promptly negate their catalytic ef-
fects on oxidation. Secondly, wort has a higher, more suitable pH
for chelation, compared to beer (206,212). Hop acids also possess
chelating capacity, of which the non-isomerised a-acids have the
highest binding efficiency (206). Application of optimised hopping
regimes, where hops are added incrementally - rather than a single
dosage at the beginning of wort boiling - can achieve lower levels
of iron and copper in the pitching wort (795).

At mashing-in temperatures of > 63°C, LOX is inactivated and
fewer staling components are retained in the beer (241,243). A fur-
ther advantage of mashing-in above the gelatinisation tempera-
ture of barley malt starch is shortened vessel occupation time,
which in turn limits the total heat damage (244). Wort kettles are
usually fitted with vents that aid the removal of unwanted volatiles
(such as staling aldehydes and DMS), and condensate traps that
prevent their re-entrance (729). The addition of oxygen to warm
wort (upstream oxidation or ‘hot side aeration’) should be avoided
as oxidation of wort compounds (proteins, fatty acids, melanoidins,
polyphenols) will happen rapidly at high temperatures (72). Wort
should be aerated/oxygenated on the cold side of the heat ex-
changer. The hot wort should be treated gently, by filling the mash
tun and kettle from the bottom up and avoiding turbulence during
transfers. Where possible, mashing and sparging should use
deaerated liquor. Better still perform mashing, wort filtration, and
boiling anaerobically (under an inert atmosphere). Another ‘inno-
vative’ concept to reduce hot side aeration, heat load, and energy
costs is to brew without wort boiling, which can either be done
through the use of near-boiling temperatures and stripping (729)
or by omitting wort boiling entirely. Traditional no-boil beers (or
raw ales) have been brewed for centuries including Finnish sahti,
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Danish gammeltal, Norwegian kornel, and German Berliner Weisse
(245).

There has been much debate about the impact of trub rich
(cloudy or turbid) worts on beer quality and flavour stability, with
most research focusing on the potential negative effects of the
higher lipid content (246,247). However, little consideration is
given to trub being high in iron and copper (787,248). In terms of
transition metal content, trub removal for a bright/clear wort is
recommended.

Fermentation and conditioning. Healthy yeast and vigorous
fermentation are important for flavour stability (95,249). Yeast re-
duces aldehydes to their corresponding alcohols and produces
low levels of sulphur dioxide. The use of yeast of high viability
and good physiological state enhances flavour stability and the or-
ganoleptic properties of the final beer (250). Appropriate levels of
zinc (and magnesium) are required in the pitching wort to facilitate
yeast performance (251,252).

Anaerobic, repitched yeast requires trace amounts of dissolved
oxygen (5-20 mg/L) in the wort to synthesise sterols and unsatu-
rated fatty acids, which are needed for membrane formation and
cell multiplication. Accordingly, pitching wort is aerated or oxygen-
ated, post heat exchanger, on route to the fermenter. Although a
necessary process, the addition of oxygen to wort is counter intu-
itive in managing flavour stability. To limit the oxidative damage,
oxygen is added on the cold side and yeast is pitched without
delay.

Alternatives to wort aeration have been explored, including the
direct addition of oxygen to yeast slurries. In one study (253),
pitching yeast was exposed to olive oil prior to fermentation, so
as to supply unsaturated fatty acids (such as oleic acid). This ap-
proach does not satisfy the nutritional need for sterols (anabolic
or exogenous) but was said to produce beers that were less
oxidised.

Downstream processing and packaging. In-pack oxygen as
low as is reasonably achievable is critical for the prolonged shelf-
life of beer. Due to improved beer processing and packaging tech-
niques, the TPO can be as low as 40-150 pg/L. But even at these
levels, oxidative staling of beer is still taking place. While it is true
that the oxygen initially present is already enough for oxidation
to occur (as it will be recycled through the Fenton and
Haber-Weiss reaction), a large factor is ‘new’ oxygen finding its
way into the beer package by penetration through the closure
and/or packaging material. As such, a continuous dynamic situa-
tion exists, where in-pack oxygen lost through reaction with beer
constituents, can be supplemented by atmospheric oxygen. This
is why aged bottled beer can still have dissolved oxygen levels of
30 pg/L (254), rather than near-zero as with aged canned beer
(255). In the absence of oxygen scavenging caps, ingress rates of
1-5 ng/L O, per day can be anticipated (737,135).

Distribution and storage. Storage temperature may be the sin-
gle most important quality factor in beer stability. However, there
is generally limited control over the distribution and retail condi-
tions, such as temperature, light, motion, time in warehouses, dis-
tribution, wholesalers, and retailers. Ideally, the distribution and re-
tail chain are temperature controlled, with short transport and
storage duration, rapid turnover, and stock rotation. Further, ther-
mal insulation and vibration damping can be employed. Con-
sumers should also be encouraged to store beer refrigerated.
Best practice should be applied to stock rotation with FIFO (first
in, first out), where older stock is preferentially sold. Where

economically viable, brewers and retailers can agree on positive
release systems, where the beers released for consumption are
(still) true to their brand specification. Additionally, brand owners
can enforce ‘pull dates’ - deadlines where unsold beer should
return to the brewery, usually ranging from 60 to 180 days.

Concluding remarks

Fresh beer is not in chemical equilibrium and flavour shifts inevita-
bly occur over time. This inherent flavour instability of beer re-
mains a major challenge facing brewers. Each of the reactions in-
volved is subject to numerous determinants, including
temperature, oxygen, time, transition metal content and specia-
tion, pH, and beer composition. The multitude of variables make
beer ageing an immensely complex chemical process that is not
fully understood. Although multiple methods for measuring beer
staling and stability are available, none are absolute. ESR spectros-
copy has been among the most adopted analytical techniques in
recent years and gives valuable information about the endoge-
nous antioxidant potential and the interplay between the pro-
and antioxidants in wort or beer.

Although oxygen and oxidation are not the sole reasons for stal-
ing, they play a central role in beer ageing, together with transition
metals. Iron, copper and manganese are major drivers of oxidation,
as they catalyse the production of reactive oxygen species. As
brewing and packaging technology may be approaching the prac-
tical limit for in-pack oxygen, it is wise to explore other pathways in
restricting oxidation, such as the depletion and inhibition of transi-
tion metal catalysts. Their chemical or physical removal from the
brewing process is desirable and can be achieved by chelation,
an uncharted area in brewing science. Because of the complexity,
contradictory results are found in the literature about the anti- or
prooxidative effects of chelating compounds, such as polyphenols,
melanoidins, and ascorbic acid. Nevertheless, chelation and flavour
stability warrant further investigation.
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