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Abstract
Objectives To develop a visual ensemble selection of deep convolutional neural networks (CNN) for 3D segmentation of breast
tumors using T1-weighted dynamic contrast-enhanced (T1-DCE) MRI.
Methods Multi-center 3D T1-DCE MRI (n = 141) were acquired for a cohort of patients diagnosed with locally advanced or
aggressive breast cancer. Tumor lesions of 111 scans were equally divided between two radiologists and segmented for training.
The additional 30 scans were segmented independently by both radiologists for testing. Three 3D U-Net models were trained
using either post-contrast images or a combination of post-contrast and subtraction images fused at either the image or the feature
level. Segmentation accuracy was evaluated quantitatively using the Dice similarity coefficient (DSC) and the Hausdorff distance
(HD95) and scored qualitatively by a radiologist as excellent, useful, helpful, or unacceptable. Based on this score, a visual
ensemble approach selecting the best segmentation among these three models was proposed.
Results The mean and standard deviation of DSC and HD95 between the two radiologists were equal to 77.8 ± 10.0% and 5.2 ±
5.9 mm. Using the visual ensemble selection, a DSC and HD95 equal to 78.1 ± 16.2% and 14.1 ± 40.8 mm was reached. The
qualitative assessment was excellent (resp. excellent or useful) in 50% (resp. 77%).
Conclusion Using subtraction images in addition to post-contrast images provided complementary information for 3D segmen-
tation of breast lesions by CNN. A visual ensemble selection allowing the radiologist to select the most optimal segmentation
obtained by the three 3D U-Net models achieved comparable results to inter-radiologist agreement, yielding 77% segmented
volumes considered excellent or useful.
Key Points
• Deep convolutional neural networks were developed using T1-weighted post-contrast and subtraction MRI to perform auto-
mated 3D segmentation of breast tumors.

• A visual ensemble selection allowing the radiologist to choose the best segmentation among the three 3D U-Net models
outperformed each of the three models.

• The visual ensemble selection provided clinically useful segmentations in 77% of cases, potentially allowing for a valuable
reduction of the manual 3D segmentation workload for the radiologist and greatly facilitating quantitative studies on non-
invasive biomarker in breast MRI.
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Abbreviations
CNN Convolutional neural network
DCE Dynamic contrast enhanced
DSC Dice similarity coefficient
HD95 95th percentile of Hausdorff distance
ReLU Rectified linear unit
SubT1 Subtraction image (first post-contrast DCE-MRI mi-

nus pre-contrast DCE-MRI)
T1c First post-contrast DCE-MRI

Introduction

MR imaging, alongside mammography, is one of the standard
imaging modalities for the detection, diagnosis, and treatment
follow-up of breast cancer [1]. Dynamic contrast-enhanced
MRI (DCE-MRI) is commonly used in quantitative analysis
such as radiomic studies [2] to assess the malignancy of breast
lesions or tumor extensions, or predict their response to neo-
adjuvant therapy [3]. The analysis requires a precise segmen-
tation of the breast tumor, but a manual delineation of the
lesion is time-consuming, often tedious, and prone to inter-
and intra-radiologist variability [4]. It frequently constitutes a
bottleneck for the quantitative analysis of larger imaging stud-
ies using breast MRI. By providing an easy access to robust
3D quantitative features extracted from tumoral lesions, an
automated 3D tumor segmentation would considerably im-
prove the identification of non-invasive biomarkers in breast
MR imaging.

The recent rise of deep learning methods has brought a
renewed interest to tackle organ and lesion segmentation [4].
Deep convolutional neural networks (CNNs) have established
themselves as state-of-the-art methods to segment medical
images in 2D [5, 6] and in 3D [7, 8]. Many public databases
and segmentation challenges are available online to train and
test CNN models. Although the Medical Segmentation
Decathlon [9] intends to build models that could segment
multiple organs using different imaging modalities, most chal-
lenges focus on specific lesions such as brain tumors with the
Brain Tumor Segmentation (BraTS) Challenge [10] or liver
with the Liver Tumor Segmentation (LiTS) Challenge [11]
benchmarks. To the best of our knowledge, no challenge for
breast tumor segmentation using DCE-MRI has been
reported.

There are fewer studies using deep learning methods to
segment breast tumors using DCE-MRI than using mammo-
grams, partly due to the availability of very large mammogra-
phy datasets [12]. Studies based on DCE-MRI used well-
established CNN segmentation models [13–16] based on U-
Net [5], DeepMedic [17], or SegNet [18] architectures or less

commonmodels [19, 20]. Several studies [14, 16, 19, 21] took
advantage of all the information given by the DCE-MRI by
using the different post-contrast or subtraction (post-contrast
minus the pre-contrast acquisition) images. For instance,
Piantadosi et al [21] used images from three different time
points (pre-contrast, first and last post-contrast images). In
the same way, Hirsch et al [16] built several models taking
different post-contrast images as input while Zhang et al [19]
fed both post-contrast and subtraction images as input to a
hierarchical CNN.

Though all these studies aimed to integrate segmentation
results into a clinical workflow, the practical evaluationwas only
based on quantitative criteria. However, a visual assessment is
still necessary to detect outliers, and should be integrated in the
evaluation process. The key objective of this studywas therefore
to define a clinically useful tool to assist radiologists in breast
lesion segmentation on DCE-MRI. Three different 3D U-Nets
models were considered using either the first post-contrast T1
DCE-MRI (denoted T1c) or a fusion of T1c and subtraction
images (denoted SubT1), with SubT1 images defined as the
difference between the first post-contrast image and the pre-
contrast image. Fusion of T1c and SubT1 images was imple-
mented at both the image and features level, resulting in three
3D U-Net models. These models were trained and the visual
ensemble selection was considered where the most optimal seg-
mentation was selected visually by a radiologist to take advan-
tage of the complementarity of the different U-Net models and
to select the best segmentation for each patient.

Material and methods

Image database and ground truth definition

Breast MR images (n = 141) were collected from a cohort of
women diagnosed with locally advanced or aggressive breast
cancer (see Table 1 for clinical characteristics) and undergoing
neoadjuvant chemotherapy in Institut Curie between 2016 and
2020. This retrospective study was approved by our institu-
tional review board (IRB number OBS180204), and written
informed consent was waived for it. The 3D T1 fat-suppressed
DCE-MRI were acquired in a multi-center setting, with the
majority of scans (77%) coming from Institut Curie with three
acquisition devices (see Table 2). A dedicated breast coil was
used in all cases. For DCE-MRI, gadolinium-based contrast
material was injected using a power injector, followed by a
saline solution flush. Representative acquisition parameters
for T1 fat-suppressed DCE sequences are given in
Supplemental Table S1. On the whole database, in-plane vox-
el size varied between 0.62 × 0.62 and 1.0 × 1.0 mm, while
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voxel thickness ranged from 0.7 to 2.2 mm. The MRI per-
formed outside Institut Curie were reviewed to control the
quality of the images and the compliance with the recommen-
dations of the American College of Radiology for the perfor-
mance of contrast-enhanced MRI of the breast [22].

A set of 111 tumoral lesions was evenly segmented in 3D by
two radiologists (see Supplemental Figure S1). Radiologist R1
had 15 years of experience in breast imaging while radiologist
R2 had 2 years of experience. Tumorsweremanually segmented
using the LIFEx software (v6.0, www.lifexsoft.org) [23] and
were used as ground-truth labels for training and validating the
CNNmodels. The remaining 30 lesions were segmented by both
radiologists and defined as the test dataset.

Image preprocessing

All MR images were corrected for bias field gain using the N4
algorithm as described in [24], resampled to get isotropic 1 × 1

× 1 mm voxels across the whole database then cropped in a
fixed size bounding box (300 × 160 × 200 mm) ensuring that
the whole breast area and armpit were included in the images.
Next, images were resampled to the voxel size of 2 mm to
reduce memory requirements for the segmentation model. In
addition, images were normalized by dividing the intensity
values of each image volume by the 95th percentile of its
intensity values to avoid a normalization based on intensity
outliers.

Segmentation models

The basic architecture of the models was a 3D U-Net similar
to the implementation in No New-Net [7]. The U-Net
contained 4 pathways, each consisting of 2 convolutional
layers with kernel size of [3] and [1, 3] (see Supplemental
Figure S2 and Table S2). All convolutional layers were
followed by an instance normalization and a leaky rectified
linear unit (Leaky ReLU) activation function. Two fully con-
nected layers followed by a softmax layer were added as final
layers to classify the image voxels into healthy or tumoral
tissue.

Three different configurations of the U-Net model were
elaborated. The first model (referred to as “U-Net (T1c)”)
was trained by the T1c image while the other two models
were trained by a combination of the first post-contrast and
the first subtraction images using an image- or feature-level
fusion strategy to combine images. For the image-level fusion
approach (denoted “U-Net ILF (T1c + SubT1)”), both MR
images defined a dual-channel, used as input for the CNN
model. For the feature-level fusion approach (abbreviated
“U-Net FLF (T1c + SubT1)”), a U-Net architecture was used
in which the encoder part consisted of two independent chan-
nels fed by the post-contrast and subtraction images, respec-
tively. In the bottleneck of the U-Net, feature maps were
concatenated and provided as the input to the decoder part,
as illustrated in Fig. 1.

Table 1 Clinical information related to the 141 breast scans involved in
the study. Quantitative features are given by mean values ± standard
deviation; qualitative features are given by the number of cases
(percentage)

Age of patients 48 ± 11 (years)

Largest diameter of tumor 29 ± 13 (mm)

Primary tumor: T stage

I/II/III/IV 34 (24%)/83 (59%)/19 (13%)/5 (4%)

Regional lymph node: N stage

0/I/II 77 (55%)/62 (44%)/2 (1%)

Distant metastasis: M stage

0/I 139 (99%)/2 (1%)

Tumor type

Ductal NOS/Others 137 (97%)/4 (3%)

Breast cancer subtype

Luminal/HER2+/TN 41 (29%)/37 (26%)/63 (45%)

NOS not otherwise specified, HER2+ human epidermal growth factor
receptor 2 positive, TN triple negative

Table 2 MRI scanners and breast
coils used for the training and test
databases

MRI settings Database Cases

Institut Curie - GE Healthcare - 8 channel breast coil Training 13

Institut Curie - Siemens Healthineers - Sentinelle breast coil Training 50

Institut Curie - Siemens Healthineers - 18 channel breast coil Training 16

External centers (n = 10) - GE Healthcare - breast coil Training 21

External centers (n = 6) - Siemens Healthineers - breast coil Training 11

Total Training 111

Institut Curie - GE Healthcare - 8 channel breast coil Test 13

Institut Curie - Siemens Healthineers - Sentinelle breast coil Test 13

Institut Curie - Siemens Healthineers - 18 channel breast coil Test 4

Total Test 30
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The models were implemented using DeepVoxNet [25], a
high-level framework based on Tensorflow/Keras but specif-
ically designed and optimized for 3D medical image data. All
models were trained using a combined loss function L
(defined by Eq. 1) defined as a weighted combination of
cross-entropy (LCE) and soft Dice (LSD) losses [26]:

L ¼ α:LCE þ 1−αð Þ:LSD; ð1Þ

α was the weighting factor of the two loss terms. For train-
ing and validation, the Adam optimizer with default Keras
settings (v 2.2.4 with Tensorflow backend) was used with
the initial learning rate set at 10−3. When the validation Dice
similarity coefficient (DSC) reached a plateau, the learning
rate was reduced by a factor of 5, and training was stopped
when the DSC on the validation dataset did not improve dur-
ing the last 500 epochs. For this implementation, a single
epoch consisted of feeding 12 entire image volumes to the
model with a batch size of 2. All computations were perform-
ed on the Flemish supercomputer (CentOS Linux 7) using 2
NVIDIA P100 GPUs (CUDA v11.0, GPU driver v450.57)
and 1 Intel Skylake CPU (18 cores).

During training, a fivefold cross-validation was performed
to determine the optimal number of epochs and a grid search
was performed within a range of [0.1, 0.9] and a step size of
0.1 to find the optimal value for the hyperparameter α. The
highest DSC was achieved when α was set to 0.5 to appropri-
ately weight soft Dice and cross-entropy loss functions. At the
end of the training/validation, five models were saved and

then used to generate the predictions on the test dataset. For
final performance comparisons, the segmentation masks were
averaged over the five models of the fivefold cross-validation,
and then were up-sampled to a 1 mm voxel size for compar-
ison with the ground truth labels.

Visual ensemble selection

Radiologist R1 visually assessed the quality of the automated
segmentations obtained by the three models: U-Net (T1c), U-
Net ILF (T1c + SubT1), and U-Net-FLF (T1c + SubT1) and
scored the segmentation quality as “excellent,” “useful,”
“helpful,” or “unacceptable.” Score 4 was given to excellent
segmentations that could be used clinically without further
modification. Score 3 was given to useful segmentations for
which modifications (less than 25% of the total number of
slices) could be achieved in a reasonable time (less than
50% of the time required for segmentation from scratch).
Score 2 was given to helpful results that require substantial
modifications on a larger number of slices (between 25 and
66% of the total number of slices). Score 1 was given to
unacceptable results, corresponding to very large errors in
the tumor delineation or cases for which tumor was not
detected.

A novel patient-centric approach denoted visual ensemble
selection was thus defined where, for each patient, the best
segmentation was selected by Radiologist R1, when the visual
scores were identical.

3D segmentation mask

Conv3D: Conv 3×3×3+Instance Normalization+LeakyReLu

3D Max pooling
Trilinear upsampling
Crop & Copy
Conv 1×1×1

Feature-level Concatenation

Image-level Concatenation

Fig. 1 Schematic description of U-Net architecture used for image-level
fusion (ILF) and feature-level fusion (FLF). The colored part represents
the ILF where the T1c and SubT1 images are concatenated before being
used as input for the CNN model. The dotted part is added to implement

the FLF where T1c and SubT1 images are used as the input to two
separate encoding parts and the extracted features from each level are
concatenated
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Quantitative analysis

To compare segmentations, the volumes of the lesions,
DSC measuring the percentage of overlap ranging from
0% (no overlap) to 100% (perfect overlap), and the 95th
percentile of the symmetric Hausdorff distance (denoted
HD95) measuring how far the two segmentations are dis-
tant from each other were calculated for each case of the
test database. Inter-radiologist agreement was estimated by
comparing the segmentations from R1 and R2. The 3D
segmentations produced by the three U-Net models and
the visual ensemble selection were compared to the ground
truth labels defined by R1 and R2.

Statistical analysis

Statistical analysis was performed using R software (ver-
sion 4.1), with a significance level equal to 0.05. The
distribution of DSC and HD95 values of segmentations
obtained by the visual ensemble selection versus R1 and
R2 were compared to the inter-radiologist DSC and HD95
using a Friedman test. The distribution of DSC and HD95
issued from the three 3D U-Net models were globally
compared using the Kruskal-Wallis test according to the
four qualitative scores and then compared using Dunn’s
test and Bonferroni correction.

Results

Quantitative analysis

Table 3 shows the volumes of the lesions as assessed by the
two radiologists, the three 3D U-Net models, and the visual
ensemble selection on the test database. Table 4 provides the
mean and standard deviation of DSC and HD95 for the com-
parison of R1 and R2 segmentations (inter-radiologist criteria)
and the comparison of the three 3D U-Net models and the
visual ensemble selection with the segmentations provided

by either R1 or R2. Figure 2 illustrates these results, providing
box plots for each configuration.

Qualitative analysis

Figures 3 and S3 show the box plots obtained for DSC and
HD95 according to the four quality scores of visual assess-
ment. The three 3D U-Net models achieved comparable re-
sults with 27% to 33% of cases scored as excellent, 20% to
30% as useful, 20% to 27% as helpful, and 17% to 27% as
unacceptable. When using the visual ensemble selection, 50%
of cases were scored as excellent, 27% as useful, while only
23% of cases were scored as helpful or unacceptable. The
global performance of the three 3D U-Net models was re-
duced by some outliers, while the visual ensemble selection
reduced the number of outliers, which highlights the comple-
mentary role of the three 3D U-Net models.

Statistical analysis

For the segmentations obtained by three 3D U-Net models,
the mean values of quantitative criteria (DSC and HD95)
on the test database were significantly different (p <
0.0001) for the unacceptable score (excellent, useful, help-
ful versus unacceptable) from the visual assessment provid-
ed by R1 (Supplemental Figure S3). Using R1 as the
ground truth and based on paired rank analysis (Friedman
tests), the DSC values between the segmentations provided
by the visual ensemble selection and R1 were slightly bet-
ter (p value < 0.03) than the DSC values computed from
the segmentations provided by R1 and R2. There was no
statistically significant difference for the HD95 results.
Using R2 as the ground truth, the DSC values between
the segmentation provided by the visual ensemble selection
and by R2 were not significantly different from the DSC
values computed using the segmentations provided by R1
and R2 (p value = 0.27).

Quantitative analysis according to visual assessment

Table 5 displays the mean and standard deviation of DSC
and HD95 of the visual ensemble selection compared to
the segmentations provided by either R1 or R2, according
to the visual assessment. For the test cases scored as
excellent, the mean DSC was higher than 81%, and with
the standard deviation less than 6%, showing better re-
sults compared to the inter-radiologist DSC for the whole
test database. Additionally, for these cases, the mean
HD95 was less than 4 mm with the standard deviation
less than 2 mm.

Table 3 Volumes of lesions (mean values ± standard deviation) as
estimated by the two radiologists (R1 and R2), the three CNN models,
and the visual ensemble selection on the test database

Readers or models Volumes (cm3)

Radiologist R1 12.9 ± 14.9

Radiologist R2 14.8 ± 17.2

U-Net (T1c) 9.8 ± 6.3

U-Net ILF (T1c + SubT1) 14.4 ± 16.0

U-Net FLF (T1c + SubT1) 11.5 ± 9.8

Visual ensemble 12.6 ± 13.5

European Radiology



Illustrative cases

Representative segmentation results of the test dataset are il-
lustrated in Fig. 4. These exemplified cases demonstrate the
interest of the visual ensemble selection while highlighting the
complementary role of the three 3D U-Net models. For in-
stance, U-Net trained with T1c images could provide excellent
results (case #1) and largely underestimated volumes (cases
#2 and 3). For cases #2 and #3, the 3D U-Net using image-
level fusion of T1c and SubT1 images as input, provided the
best segmentation, scored as helpful (13 slices out of 30 need

some correction) for case #2 and as useful (7 slices out of 37
need some correction) for case #3.

Discussion

We proposed a new CNN-based approach for breast tumor
segmentation in a clinical setting. In our implementation, three
3D U-Net models were trained using different strategies:
using only the post-contrast image or a combination of post-
contrast and subtraction images using fusion at either the

Table 4 Mean values ± standard
deviation of quantitative criteria
(DSC and HD95) to assess the
segmentation provided by three
CNN models and the visual
ensemble selection, using either
R1 or R2 as the ground truth on
the test database

DSC (%) HD95 (mm)

Radiologist or model Radiologist R1 Radiologist R2 Radiologist R1 Radiologist R2

Radiologist R2 77.8 ± 10.0 5.2 ± 5.9

U-Net (T1c) 72.7 ± 22.8 70.6 ± 20.8 15.6 ± 40.3 15.9 ± 40.6

U-Net ILF (T1c + SubT1) 74.9 ± 20.3 71.9 ± 19.7 22.9 ± 53.2 23.6 ± 53.6

U-Net FLF (T1c + SubT1) 70.2 ± 26.1 67.3 ± 25.0 19.3 ± 45.1 19.8 ± 45.4

Visual ensemble selection 78.1 ± 16.2 76.5 ± 14.5 14.1 ± 40.8 14.1 ± 41.2

Fig. 2 Boxplot presenting the
DSC (%) (a) and HD95 (mm) (b)
obtained by the different seg-
mentation models on the test da-
tabase: a U-Net using only T1c
images, a U-Net trained by a
combination using an image-level
fusion of T1c and SubT1 images,
a U-Net trained by a combination
using a feature-level fusion of T1c
and SubT1 images, and the visual
ensemble selection. DSC and
HD95 were determined using the
manual delineation of the two in-
dependent radiologists (R1 and
R2) as the ground truth labels.
Inter-radiologist DSC and HD95
were added for comparison
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image or feature level. These three models were tested on 30
independent cases, and none of them outperformed the other
two. Following a subsidiarity principle, the best segmentation
among the three was ultimately selected for each patient by the
radiologist, defining a visual ensemble selection. Using appro-
priate display tools available in LIFEx [23], the additional

workload required for the visual selection is low, compared
to the time that is required to check one single segmentation
carefully. Furthermore, the visual ensemble selection proves
to provide acceptable segmentation results in 77% of the test
cases and results are globally within inter-radiologist
reproducibility.

Fig. 3 Distribution of automated
segmentations according to the
visual score 4 (excellent), 3
(useful), 2 (helpful), and 1
(unacceptable) (a) together with
the boxplots presenting the DSC
(%) (b) and HD95 (mm) (c).
Results are shown for the differ-
ent segmentation models: a U-Net
using only T1c images, a U-Net
using an image-level fusion of
T1c and SubT1 images, a U-Net
using a feature-level fusion of T1c
and SubT1 images, and the visual
ensemble selection
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Our approach provides a 3D segmentation of breast
lesions, while some of the most recent studies still seg-
ment in 2D [13, 16, 21], despite tumor volume measured
by MR imaging being a strong predictor of patient sur-
vival [27]. For advanced radiomic studies or follow-up
studies, 3D segmentation is also an important task to
achieve [3]. The CNN models were trained using multi-
centric MRI, a prerequisite for a higher generalization of
these models, and they were also evaluated using a
multi-scanner test dataset. Compared to many studies,
for which DSC was the only evaluation criterion [15,
16], HD95 was added as a criterion for the maximal
distance between two segmentations. Contrary to DSC,
this criterion was not included in the loss function for the
training of the models and was therefore more indepen-
dent. The models designed in this study were based on
the state-of-the-art U-Net architecture similar to the mod-
el proposed in [20] but without residual blocks. While
Khaled et al [20] generated a breast ROI mask during the
pre-processing step and used it as the input to the seg-
mentation model along with the 3D DCE-MRI, we did
not provide the U-Net models with this prior informa-
tion. The prior knowledge on the breast ROI mask was
also used in [16] to train the CNN segmentation models
with the U-Net architecture. We only used the T1c or/
and SubT1 as the input to train the U-Net models, and
not a full series of DCE-MRI for training as in [20], nor
T1- and T2-weighed MRI sequences as in [16]. The
Deepmedic architecture with a patch-based training
method was evaluated in [16] demonstrating lower per-
formance compared to the U-Net model. This evaluation
confirms our choice to use the U-Net architecture.
Furthermore, performance of our U-Net models was in
the same DSC range (65–80%) as reported in literature
[13–16, 20, 21], though it is difficult to compare
methods evaluated on different datasets with DSC com-
puted in 2D or in 3D. The mean 3D DSC between R1
and R2 was similar to the mean 3D DSC (78–83%) for
different observer combinations studied in [28]. Our da-
tabase included locally advanced tumors or aggressive
tumors, for which the irregular shape is difficult to
segment.

The principle of an ensemble approach that combines the
output of independently trained CNN models was also pro-
posed in [20]. The authors compared a strategy of majority
voting and union operation to integrate the results of several
CNN models trained with different post-contrast and subtrac-
tion images. We tested the automated ensemble approaches,
but they did not improve the final results (see Supplemental
Table S3).

Despite the improved segmentation performance, our
study had some limitations. The database used for train-
ing and testing was limited in terms of datasets, but
adding progressively new cases could gradually improve
the performance of the different CNN models, even if the
ideal number of cases is unknown. Further use of other
post-contrast images needs to be investigated as well as
the potential value of adding other modalities such as
diffusion-weighted images and apparent diffusion coeffi-
cient maps. Finally, the strategy we proposed is not fully
automated and requires an additional visual assessment,
but to the best of our knowledge, no current automated
segmentation method included a self-assessment, even if
a recent study [15] proposes solutions to address this
issue.

This study proposes a visual ensemble selection as a new
pragmatic segmentation methodwhere the radiologist is asked
to select the best segmentation among the results obtained by
three different 3D U-Net models. This visual ensemble selec-
tion provided results comparable to inter-radiologist agree-
ment with excellent or useful segmentations in 77% of the
cases versus 60% of the cases for the 3D U-net model using
image-level fusion of post-contrast and subtraction images,
while it required little additional workload when compared
to the visual evaluation of one single segmentation.

Table 5 Mean values ± standard
deviation of quantitative criteria
(DSC and HD95) to compare the
segmentation provided by the
visual ensemble selection, using
either R1 or R2 as the ground
truth, according to the four scores
of qualitative assessment on the
test database

DSC (%) HD95 (mm)

Visual ensemble selection R1 R2 R1 R2

Score 4—excellent (n = 15) 86.3 ± 3.3 81.2 ± 6.4 2.4 ± 0.4 3.9 ± 1.5

Score 3—useful (n = 8) 76.9 ± 8.7 76.7 ± 8.1 13.1 ± 18.9 11.4 ± 19.7

Score 2—helpful (n = 5) 69.3 ± 18.1 77.4 ± 5.8 10.6 ± 6.1 8.1 ± 3.1

Score 1—unacceptable (n = 2) 43.9 ± 43.0 39.3 ± 42.9 116 ± 151 117 ± 154

�Fig. 4 Illustration of representative segmentation results (axial and
coronal views) on three cases of the test database. From left to right:
T1c volume, SubT1 volume, segmentation provided by U-Net (T1c),
U-Net ILF (T1c + SubT1), U-Net FLF (T1c + SubT1), ground truth
(GT) provided by R1 and R2. DSC (%) and visual scoring (VS) given
by R1 are included below each case. The visual ensemble selection cor-
responds to segmentation provided by U-Net (T1c) for case 1, and U-Net
ILF (T1c + SubT1) for cases 2 and 3
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