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Abstract

Functional data analysis is a fast evolving branch of statistics, but estimation procedures for the popular functional
linear model either suffer from lack of robustness or are computationally burdensome. To address these shortcomings,
a flexible family of penalized lower-rank estimators based on a bounded loss function is proposed. The proposed
class of estimators is shown to be consistent and can attain high rates of convergence with respect to prediction error
under weak regularity conditions. These results can be generalized to higher dimensions under similar assumptions.
The finite-sample performance of the proposed family of estimators is investigated by a Monte-Carlo study which
shows that these estimators reach high efficiency while offering protection against outliers. The proposed estimators
compare favourably to existing robust as well as non-robust approaches. The good performance of our method is also
illustrated on a complex real dataset.
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1. Introduction

In recent years, technological innovations and improved storage capabilities have led practitioners to observe and
record increasingly complex high-dimensional data. Among others, data that are characterized by an underlying
functional structure have attracted considerable research interest, following works such as [32–34]. Particular interest
has been devoted to the functional linear model, relating a scalar response Y to a random function X, which is viewed
as an element of (Ω,A,P) with sample paths in L2(I), through the model

Y = α0 +

∫

I
X(t) f0(t)dt + σ0ϵ. (1)

Here, α0 ∈ R is the intercept, f0 is a square integrable coefficient (weight) function defined on a compact interval I
of a Euclidean space, σ0 is an unknown scale parameter and ϵ is a random error, that is assumed to be independent of
X. Typically, ϵ is also assumed to possess finite second moments, but this assumption is not needed for the theoretical
results in this paper.

The vast domain of applications of the model, ranging from meteorology [34] and chemometrics [11] to diffu-
sion tensor imaging tractography [14], has spurred the development of numerous novel estimation methods. Since
estimating the coefficient function β is an infinite dimensional problem, regularization through dimension reduction
or penalization is crucial for the success of these methods. Regressing on the scores of the leading functional princi-
pal components [3] is the oldest and perhaps to this day the most popular method of estimation. However, although
consistent [15], functional principal component regression may fail to yield smooth estimates of the coefficient func-
tion, even in moderately large samples. This fact has motivated proposals that explicitly impose smoothness of the
estimated coefficient function. Cardot et al. [4] proposed estimation through a penalized spline expansion while func-
tional extensions of smoothing splines have been proposed and studied by Crambes et al. [6] and Yuan and Cai [48].
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A hybrid approach between principal component and penalized spline regression has been developed by Reiss and
Ogden [36] and Goldsmith et al. [13], who combine these methods in order to attain greater flexibility. Variable selec-
tion ideas have also been adapted to the functional regression setting. James et al. [17] proposed imposing sparsity on
higher order derivatives of a high dimensional basis expansion of β in order to produce more interpretable estimates.
Expressing the coefficient function in the wavelet domain, Zhao et al. [52] proposed an ℓ1 regularization scheme in
order to select the most relevant resolutions and ensure stable and accurate estimates of a wide variety of coefficient
functions. For more details on existing estimation methods as well as informative comparisons, one may consult the
comprehensive review papers of Morris [28] and Reiss et al. [37].

Since all of the above methods rely on generalized least-squares type estimators, a drawback in their use is that
the presence of outliers can have a serious effect on the resulting estimates. To address this lack of robustness,
more robust estimation procedures have been introduced. Maronna and Yohai [26] proposed a robust version of the
smoothing spline estimator of Crambes et al. [6] but did not study theoretical properties of their method. Shin and Lee
[42] have extended the work of Yuan and Cai [48] by considering more outlier-resistant loss functions and showed
that under regularity conditions their M-type smoothing spline estimator attains the same rates of convergence as
its least-squares counterpart. Similarly, Qingguo [31] generalized the work of Hall and Horowitz [15] to functional
principal component regression with a general convex loss function. More recently, Boente et al. [2] proposed a family
of sieves estimators based on bounded loss functions and B-spline expansions and investigated rates of convergence
with respect to the prediction error.

In general, sieves estimators based on either functional principal components or B-splines and smoothing spline
estimators can be considered to be situated on the two ends of a spectrum. Unpenalized sieves estimators are easy to
implement, yet frequently result in either undersmoothed or oversmoothed estimates of the regression function. This
undesirable feature results from the discrete nature of their smoothing parameter, which in this case is the dimension
of the basis. On the other hand, smoothing spline estimators, while capable of yielding estimates with the right
amount of smoothness, can be unwieldy due to their high dimension. In particular, the requirement to have as many
basis functions as the sample size leads to computationally challenging estimators that are prone to instabilities due
to the often complex nature of functional data. In the nonparametric regression framework, the case for lower-rank
representations on the grounds of simplicity has already been made by Wahba [46]. For functional regression, an even
stronger case can be made due to the lack of banded matrices that enable fast computational algorithms for smoothing
splines in this setting.

As a compromise between these two types of estimators, this paper introduces and studies a family of lower-rank
penalized estimators based on the principle of MM-estimation, as described by Yohai [50]. The proposed class of es-
timators exhibit a high degree of robustness against both vertical outliers and leverage points, while also maintaining
high efficiency under Gaussian errors. In our opinion, this class of estimators fills an important void in the literature
by providing a family of flexible and resistant estimators that is also computationally feasible. Our framework does
not only include the popular B-spline basis combined with a quadratic roughness penalty, but also many other basis
systems combined with a wealth of possible penalties. Examples include the Fourier basis with the harmonic accel-
eration penalty introduced by Ramsay and Silverman [34] and the wavelet basis with bounded variation or Besov
penalties [44, Chapter 10]. It should be noted that the theory for functional linear regression developed herein cannot
be deduced from earlier results in the field of nonparametric regression with robust penalized spline estimators, such
as Kalogridis and Van Aelst [20, 21], due to the more complex nature of the functional linear regression model in (1),
which involves an infinite-dimensional predictor rather than a one-dimensional scalar.

The remainder of the paper is organized as follows. Section 2 introduces the proposed family of penalized es-
timators and discusses some popular choices of basis systems and penalties in more detail. In Section 3 we study
asymptotic properties of these estimators. We show that under mild regularity conditions the estimators achieve a
high rate of convergence with respect to the commonly considered prediction error. Our regularity conditions do not
require the existence of any moments of the error term, allowing in effect for very heavy-tailed error distributions.
Our analysis also uncovers a useful error decomposition pointing to the roles of the variance as well as the twin biases
stemming from modelling and regularization. Sections 4 and 5 illustrate the competitive finite-sample performance of
the proposed estimator in a Monte Carlo study and in real data. Section 6 contains a final discussion while all proofs
are collected in the appendix.
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2. Robust penalized estimators for functional linear regression

2.1. Penalized MM-estimators with general bases and penalties
Let us consider independent and identically distributed tuples (X1,Y1), . . . , (Xn,Yn) which satisfy model (1). For

simplicity we shall identify I with [0, 1], without loss of generality. A popular estimation approach for the functional
linear model [34, Chapter 15] expands the functional slope f0 in terms of a dense set of L2([0, 1]) functions { fi}i∈N,
then truncates this expansion and finally estimates the coefficients using a roughness penalty. Let ∥ · ∥ and ⟨·, ·⟩ denote
the usual L2([0, 1]) norm and inner product, respectively. Moreover, let ΘK denote the K-dimensional linear subspace
of L2([0, 1]) spanned by f1, . . . , fK , then this strategy amounts to solving

(α̂LS , f̂LS ) = argmin
α∈R, f∈ΘK


1
n

n∑

i=1

|Yi − α − ⟨Xi, f ⟩|2 + λ∥ f (q)∥2
 . (2)

Hence, the roughness penalty is placed on the integrated squared qth derivative of f and it is weighted by a penalty
parameter λ ≥ 0, which is usually chosen in a data-driven way. The penalty parameter places a premium on the
roughness of the estimated function as measured by its integrated squared qth derivative. Large values of λ force the
estimated coefficient function to behave essentially like a polynomial of degree at most q − 1 while small values of λ
produce more wiggly estimates. It is important to note that for such estimators regularization is accomplished by both
restricting the basis functions ( f ∈ ΘK) and penalizing roughness. This strategy leads to more complex estimators
than unpenalized sieve estimators but considerably less complex estimators than the smoothing spline estimators of
Crambes et al. [6], Yuan and Cai [48] and Shin and Lee [42].

It is well-known that the least-squares criterion employed in (2) yields estimators that are susceptible to outlying
observations. To protect against such anomalies we propose to replace the square loss function by a bounded loss
function ρ and estimate the unknown quantities according to

(α̂n, f̂n) = argmin
α∈R, f∈ΘK


1
n

n∑

i=1

ρ

(
Yi − a − ⟨Xi, f ⟩

σ̂n

)
+ λJ( f )

 , (3)

where σ̂n is a robust estimator of the scale of the error and J( f ) : ΘK → R+ is a general penalty functional on
ΘK , usually a seminorm. For λ = 0 the penalty term vanishes and we obtain an unpenalized sieve estimator, such as
the B-spline estimator proposed by Boente et al. [2]. On the other hand, for λ → ∞ the penalty will dominate the
objective function and forces the estimator to lie in the null-space of J(·). The present set-up is very general and
allows for a wide variety of approximating subspaces and penalties. To illustrate this flexibility, we now discuss three
important examples of basis systems and penalties that are permitted within our framework.

Example 1 (B-splines with derivative or difference penalties). Fix an integer p ≥ 1, select 0 < t1 < . . . < tK < 1 and
define the spline subspace

ΘK+p =
{
f : f (x) =

K+p∑

j=1

f jB j,p(x)
}
,

where B j,p, j ∈ {1, . . . ,K + p}, are the B-splines of order p supported by t1 . . . , tK , with 2p arbitrary boundary knots.
For p = 1, ΘK+p consists of all step functions with jumps at the knots ti while for p ≥ 2, ΘK+p is a subspace
of Cp−2([0, 1]) with the property that each f ∈ ΘK+p is a polynomial of order p on each subinterval [ti, ti+1]. The
common choice J( f ) = ∥ f (q)∥2 for some integer q < p was introduced by O’Sullivan [30]. Another popular choice
is the P-spline penalty [10], given by J( f ) =

∑K+p
j=q+1 |∆q f j|2, where ∆q refers to the qth-order backward difference

operator. This difference penalty largely retains the mathematical properties of the derivative penalty, but results in
much simpler expressions. In the frequently used setting of equidistant knots, the derivative and difference penalties
on spline subspaces are scaled versions of one another, see, e.g., Proposition 1 of Kalogridis and Van Aelst [21].

Example 2 (Fourier expansion with derivative or harmonic acceleration penalties). Consider the trigonometric sieve
given by

ΘK =

{
f : f (x) = α0 +

K∑

j=1

{α j cos(2π jx) + β j sin(2π jx)}
}
.

3
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This sieve consists of infinitely differentiable functions with increasing frequency. Unlike the B-spline basis, the
Fourier basis is not local, but it is orthonormal and its derivatives are orthogonal, resulting in simple expressions.
For instance, taking J( f ) = ∥ f (q)∥2, as in Li and Hsing [23], leads to J( f ) = f⊤Df with f = (α,β) and D =
diag{(2π)2q, (2π)2q, (4π)2q, (4π)2q, . . . , (2πK)2q}. Another possibility is the harmonic acceleration penalty proposed in
Ramsay and Silverman [34, Chapter 15] which is given by J( f ) =

∫ 1
0

∣∣∣(4π2) f ′(x) + f (3)(x)
∣∣∣2 dx. Interestingly, this

penalty shrinks the solution towards a function of the form f (x) = α0 + α1 sin(2πx) + β1 cos(2πx).

Example 3 (Wavelets with total variation or ℓ1 penalties). Choose a scaling function ϕ and a mother wavelet ψ that
are orthonormal in L2([0, 1]). Now, for ( j, k) ∈ N ×N put ϕ j,k(x) = 2 j/2ϕ(2 jx − k) and ψ j,k(x) = 2 j/2ψ(2 jx − k). Fix
j0 ∈ N and set J = log2 K − 1 for K ∈ N. The wavelet subspace with primary decomposition level j0 is given by

ΘK =

{
f : f (x) =

2 j0−1∑

k=0

f ′j0,kϕ j0,k(x) +
J∑

j= j0

2 j−1∑

k=0

f j,kψ j,k(x)
}
.

This wavelet subspace involves 2J+1 = K coefficients. Possible penalties are the total variation penalty with q = 1,
i.e., J( f ) =

∫ 1
0 | f ′(x)|dx or the ℓ1 penalty on all the coefficients given by

J( f ) =
2 j0−1∑

k=0

| f ′j0,k | +
J∑

j= j0

2 j−1∑

k=0

| f j,k |,

as used by Zhao et al. [52] in the context of least-squares estimation.

A widely used family of bounded smooth ρ-functions that is useful for our purposes is the family of Tukey bisquare
loss functions, defined as

ρc(x) =


1 −

{
1 − (x/c)2

}3 |x| ≤ c
1 |x| > c,

,

where c > 0 is a tuning parameter that determines the trade-off between robustness and efficiency [27]. In the central
part, that is, for |x| ≤ c, ρ the loss function is strictly increasing and it smoothly transitions to a constant function as
|x| → c. Thus, the loss incurred by large residuals is constant leading to regression estimators that are impervious to
large outliers.

The scale estimate σ̂n is an important part of the estimator, as it essentially acts as an additional tuning parameter
for the loss function. A robust scale estimate may be obtained from an M-scale of the residuals of an S-estimator
[38]. In particular, for α ∈ R and f ∈ ΘK let σ̂n = σ̂n(r) be an M-scale estimate based on a vector of residuals
r(α, f ) = (r1(α, f ), . . . , rn(α, f )), with ri(a, f ) = Yi − α − ⟨Xi, f ⟩, i = 1 . . . , n. Then an S-estimator (α̂S , f̂ S ) is defined
as

(α̂S , f̂ S ) = argmin
α∈R, f∈ΘK

σ̂(r(α, f )). (4)

We set σ̂n equal to the S-scale estimate, which is given by the minimum of the objective function in (4), i.e., σ̂n =

σ̂(r(αS , f S )). Note that S-estimators are well-defined in our setting as K < n, i.e., there are fewer parameters than
observations. This will also be a requirement for our asymptotic results, see Section 3 below. Hence, computationally
efficient algorithms, such as the fast-S algorithm proposed by Salibian-Barrera and Yohai [40], can be applied to
obtain the solution of (4).

2.2. Computational aspects
The penalized MM-estimator in (3) depends on the choice of the approximating subspace, its dimension and the

penalty parameter. In this section, we outline a number of possible strategies for their selection, but first we briefly
discuss the computation of penalized MM-estimates. To this end, we need to differentiate between quadratic and
non-quadratic penalties. For quadratic penalties, that is, for penalties which can be written as J( f ) = f⊤Df for

4
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some positive semi-definite D, a fast computational procedure may be developed along the lines of the penalized
variant of iteratively reweighted least-squares given in Maronna [25]. To better guarantee that the algorithm returns
a global minimum, we recommend initiating the iterations from the robust unpenalized S-estimate given by (4). For
non-quadratic penalties, such as the ℓ1-penalty for instance, we recommend the use of the iterative LARS algorithm
proposed by Smucler and Yohai [43], again starting from the unpenalized S-estimate.

Let us now consider the choices that need to be made for the penalized MM-estimator. The dimension K of the
subspace seems to be the least critical for the success of the estimator. Indeed, extensive experience with lower-rank
penalized estimators [39, 47] has shown that the dimension does not make much difference for the resulting solution
as long as the approximating subspace is rich enough, but K is still smaller than the sample size n. In our experience, a
choice such as K = [min{40, n/4}], which ensures at least 4 observations per basis function and puts a cap at 40 basis
functions, is appropriate for many situations. The number of basis functions can be increased beyond 40 in highly
complex situations, but these tend to be rather rare in practice.

For the choice of the basis system some guidelines already exist in the literature. For instance, Ramsay and Silver-
man [34] recommend using the Fourier system for periodic data and the B-spline system otherwise. As we shall see in
Section 3, both systems require smoothness of the coefficient function f0, in order to attain high rates of convergence.
For cases in which the regression function is suspected to be less smooth, possibly with local characteristics, such as
spikes, one may opt for the wavelet system instead. However, in this case special attention must be devoted not only
to the tuning parameter λ, but also to the level of the decomposition j0. As this is a discrete parameter, however, the
additional computational burden is not excessive.

Let r− = (r−1, . . . , r−n)⊤ denote an approximation to the leave-one out residuals as given by Maronna [25], for
example. To determine the penalty parameter λ in a data-driven way, we propose to select the value of λ that minimizes
the robust cross-validation (RCV) criterion

RCV(λ) = τ(r−)2,

where τ denotes the robust and efficient τ-scale introduced by Yohai and Zamar [51] with constants equal to c1 = 3
and c2 = 5. This criterion has also been used by Maronna [25] and Maronna and Yohai [26] and may be viewed
as a robustification of the classical leave-one-out criterion [see, e.g., 46] in which all the τ scale is replaced by the
sum of squares of the r−i. For the simulation experiments and real-data examples in this paper we have adopted
a two-step approach to identify the minimizer of RCV(λ). First, we have determined the approximate location of
the minimizer by evaluating RCV(λ) on a grid and then employed a numerical optimizer based on golden section
search and parabolic interpolation [29] in the neighborhood of this approximate optimum. Such a hybrid approach is
often advisable due to the possible local minima and near-flat regions of the CV criterion. Implementations and il-
lustrative examples of the penalized MM-estimator may be found in https://github.com/ioanniskalogridis/

Robust-functional-linear-regression.

3. Asymptotic properties

3.1. Consistency
We now study asymptotic properties of the penalized MM-estimators defined in Section 2. For notational conve-

nience we assume that the variables are centred so that α0 = 0 and the object of interest is the coefficient function f0.
As is common for spline estimators in the functional linear model, see, e.g., Cardot et al. [4], Crambes et al. [6] and
Boente et al. [2], we focus on the distance criterion given by

π( f , g) = [E{|⟨X, f − g⟩|2}]1/2, ( f , g) ∈ L2([0, 1]) × L2([0, 1]),

which may be rewritten as π( f , g) = {⟨Γ( f − g), f − g⟩}1/2 with Γ denoting the self-adjoint Hilbert-Schmidt covariance
operator of X. This criterion is directly linked to the average squared prediction error that arises when using ⟨Xn+1, f̂n⟩
to predict ⟨Xn+1, f0⟩, where Xn+1 is a new random function possessing the same distribution as X.

For our theoretical development we require assumptions on the loss function, ρ, the error, ϵ, the functional pre-
dictor, X, and the coefficient function, f0. For each K-dimensional approximating subspace ΘK we define the element
closest to f0 as f̃K = argmin f∈ΘK

∥ f0 − f ∥. Since ΘK is closed and convex, the Hilbert projection theorem ensures that
f̃K is a well-defined and unique element of ΘK . Note that f̃K is an abstract quantity to which we have no access in
practice, but its existence and properties are essential for the results to follow. We require the following assumptions.

5
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(A1) The loss function ρ satisfies ρ(0) = 0 and is even, non-decreasing on [0,∞), bounded and twice continuously
differentiable with bounded derivatives ψ and ψ′. Furthermore, supx∈R |xψ(x)| < ∞. Without loss of generality
we assume that ∥ρ∥∞ = 1.

(A2) The scale estimate σ̂n satisfies σ̂n
P−→ σ0, where σ0 is defined in (1).

(A3) The error ϵ is independent of X and possesses a Lebesgue-density g0(t) that is even, decreasing in |t| and strictly
decreasing in |t| in a neighbourhood of zero. Furthermore, E{ψ′(ϵ)} > 0.

(A4) There exists a C > 0 such that P(∥X∥ ≤ C) = 1 and for every f ∈ L2([0, 1]) and α ∈ R such that ( f , α) , (0, 0),
P(⟨X, f ⟩) = α) < 1.

(A5) The coefficient function f0 belongs to a Banach space of functions, B([0, 1]), that is embeddable in C([0, 1]).
Furthermore, the unit ball { f ∈ B([0, 1]) : ∥ f ∥B ≤ 1} is compact in the topology of the norm ∥ · ∥∞.

(A6) There exists a c ∈ (0, 1) such that P(⟨X, f ⟩ = 0) < c for any f ∈ B([0, 1]) such that f , 0.

(A7) ΘK ⊂ B([0, 1]) and the dimension K satisfies K ≍ nβ for some β ∈ (0, 1). Furthermore, ∥ f̃K− f0∥ → 0 as K → ∞
and λJ( f̃K)

P−→ 0, as n→ ∞.

Assumptions (A1)–(A3) are standard for MM-estimators, see Yohai [50]. In combination with (A6) they imply
that the estimators are Fisher-consistent so that at the population level we are indeed estimating the target function f0,
see Lemma 1 in the appendix. Assumption (A1) is satisfied, for example, by the Tukey bisquare loss. As shown by
Boente et al. [2], the S-scale estimator satisfies (A2) under mild conditions. The first part of (A4) imposes the almost
sure boundedness of the functional covariate when viewed as an element of L2([0, 1]). This assumption has been
used extensively in the asymptotics of the functional linear regression model, see for example Cardot et al. [4], Zhao
et al. [52] and Boente et al. [2]. The second part of (A4) ensures that X is not concentrated on any subspace of
L2([0, 1]), which is the case whenever X possesses a Karhunen-Loève decomposition consisting of infinitely many
non-zero terms [16, Chapter 7]. Equivalently, the null-space of its covariance operator Γ should only consist of the
zero element.

Assumptions (A5) and (A7) are mild smoothness conditions on the coefficient function. For B([0, 1]) to be em-
beddable in C([0, 1]) it suffices to have B([0, 1]) ⊂ C([0, 1]) and a constant c0 > 0 such that

∥ f ∥∞ ≤ c0∥ f ∥B, f ∈ B([0, 1]). (5)

Equivalently, the identity operator between these two spaces should be bounded. Furthermore, the unit ball inB([0, 1])
should be compact, when merged with C([0, 1]). Both parts of assumption (A5) are satisfied by many interesting
spaces of functions. Consider, for example, the Sobolev spaceW1,p([0, 1]) defined as

W1,p([0, 1]) =

 f : [0, 1]→ R :
{∫ 1

0
| f (x)|pdx

}1/p

+

{∫ 1

0
| f ′(x)|pdx

}1/p

< ∞
 ,

with p > 1. It can be shown that W1,p([0, 1]) is complete when endowed with the norm ∥ f ∥W1,p = ∥ f ∥p + ∥ f ′∥p.
The mean-value theorem and Hölder’s inequality may be employed to show that (5) holds, while the unit ball { f ∈
W1,p([0, 1]) : ∥ f ∥W1,p ≤ 1} is compact in the sup-norm by virtue of the Arzelà-Ascoli theorem, as this set of functions
is equicontinuous. These observations may be naturally extended to higher-order Sobolev spaces, see Adams and
Fournier [1].

Finally, assumption (A7) states that f0 may be arbitrarily well-approximated by an element ofΘK in theL2([0, 1])-
norm when K → ∞. This approximating sequence f̃K should have finite roughness, as measured by J(·), so that

λJ( f̃K)
P−→ 0 as n → ∞. In many cases we have J( f̃K) = O(1), hence if λ

P−→ 0 the assumption is satisfied. It is
important to note that in this work we treat λ as a random quantity and not merely as a deterministic sequence, as is
often the case in literature [4, 42, 48]. In our opinion, this constitutes an important generalization, as in most cases λ
is selected by a data-driven procedure and thus is random rather than fixed.

6
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Comparing the above assumptions with the assumptions required in the non-parametric setting, see e.g., Kalogridis
and Van Aelst [20, 21], reveals that in the more complex functional regression setting considered here our theoretical
development requires considerably more sophisticated assumptions on the predictor X and the coefficient function f0.
Our first result extends Theorem 3.1 of Boente et al. [2] for the unpenalized B-spline estimator to the more general
setting considered herein. It ensures that the penalized sieve estimators converge uniformly to the target coefficient
function f0. By (A4), uniform convergence also implies convergence with respect to prediction error.

Theorem 1. Suppose that assumptions (A1)–(A7) hold. Furthermore, let

M( f , σ) = E
{
ρ

(
Y − ⟨X, f ⟩

σ

)}
,

and assume that M( f0, σ0) = b < 1 and c < 1 − b in (A6). Then, ∥ f̂n − f0∥B = OP(1) and ∥ f̂n − f0∥∞ = oP(1), as
n→ ∞.

The condition M( f0, σ0) = b < 1 required by Theorem 1 serves to avoid boundary solutions, in which |ϵ/σ0| is so
large that ρ(ϵ/σ0) = 1 almost surely (recall that ρ is even and ∥ρ∥∞ = 1). The second condition c < 1 − b parallels
condition (A3) in Yohai [50] and may be viewed as a compatibility condition, see also Smucler and Yohai [43] for a
similar use.

3.2. Rates of convergence
The result of Theorem 1 covers estimators based on many different basis systems and penalties, which all converge

under suitable assumptions. To illustrate potential differences among estimators, we go one step further and investigate
their respective rates of convergence in Theorem 2 below, which is based on the following development. We begin by
defining the finite-sample version of M( f , σ), that is,

Mn( f , σ) =
1
n

n∑

i=1

ρ

(
Yi − ⟨Xi, f ⟩

σ

)
.

Our objective function is Mn( f , σ̂n) + λJ( f ) and the minimization is over all f ∈ ΘK . By the projection theorem,
f̃K ∈ ΘK and therefore

Mn( f̂n, σ̂n) + λJ( f̂n) ≤ Mn( f̃K , σ̂n) + λJ( f̃K). (6)

Adding M( f̂n, σ̂n)−M( f̃K , σ̂n) on both sides of (6), moving Mn( f̂n, σ̂n) to the right-hand side and noting that λJ( f̂n) ≥
0 yields

M( f̂n, σ̂n) − M( f̃K , σ̂n) ≤ Un( f̃K , f̂n, σ̂n) + λJ( f̃K), (7)

where Un( f , g, σ) : ΘK × ΘK ×R+ → R denotes the mean-centered process given by

Un( f , g, σ) = {Mn( f , σ) − M( f , σ)} + {Mn(g, σ) − M(g, σ)}.
Now, under our assumptions it can be shown that there exist strictly positive constants η and L such that

M( f̂n, σ̂n) − M( f̃K , σ̂n) ≥ η|π( f̂n, f̃K)|2 − L∥ f̃K − f0∥π( f̂n, f̃K), (8)

for all large n with high probability. The regularity of the process Un( f , g, σ) determines the asymptotic variance, cf.
Lemma 3.2 in van de Geer [45]. In particular, we show that

Un( f̃K , f̂n, σ̂n) = OP(1){γnπ( f̂n, f̃K) ∨ γ2
n}, (9)

where γn = K log n/n and a ∨ b = max(a, b). Rearranging, we obtain

η|π( f̂n, f̃K)|2 ≤ OP(1){γnπ( f̂n, f̃K) ∨ γ2
n} + OP(1)∥ f̃K − f0∥π( f̂n, f̃K) + λJ( f̃K). (10)

This inequality involving the square of π( f̂n, f̃K) in the left-hand side and π( f̂n, f̃K) in the right-hand side is key to
Theorem 2 below, see the appendix for a detailed derivation.
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Theorem 2. Suppose that assumptions (A1)–(A7) hold, M( f0, σ0) < b and c < 1 − b in (A6). Then,

|π( f̂n, f0)|2 = OP

(
K log n

n

)
+ OP(∥ f̃K − f0∥2) + OP(λJ( f̃K)), as n→ ∞.

Theorem 2 presents the prediction error as a decomposition into three terms, which represent the variance, the
modelling bias and the regularization bias respectively. The variance term depends only on the dimension of the
sieve and not on its type. This situation has a well-known parallel in non-parametric regression, [see, e.g., 9, Chapter
15]. The log n-term appearing in our decomposition is non-standard and results from slightly imprecise local entropy
calculations [cf. 44, Chapter 9]. An intuitive explanation is that it reflects the difficulty of inference whenever the
predictor variable is an infinite-dimensional object.

The second term in the decomposition of Theorem 2 is the bias stemming from the approximation of a generic
L2([0, 1])-function with a ΘK-function. To ensure that this approximation error decreases fast as K = Kn → ∞, we
need to select a sieve that approximates well the class of functions to which f0 belongs. Lastly, the penalization bias
is reflected by the term λJ( f̃K). This term suggests that to obtain high rates of convergence other than an appropriate
basis system, one also needs an appropriate measure of roughness J(·) on ΘK . For example, given λ selecting the
wavelet subspace of Example 3 combined with J( f ) = ∥ f (q)∥2 would most likely lead to large values ofJ( f̃K) thereby
diminishing the asymptotic performance of the estimator. Let us now revisit the previous examples and see how the
prediction error behaves for some standard choices of J(·).
Example 1 (Cont.). Assume that f0 has uniformly bounded derivatives up to order r ≥ 1 with rth derivative satisfying
a Lipschitz condition of order v ∈ (0, 1). Note that this space of functions also satisfies (A5) under its usual norm.
Then, for p > r and equidistant interior knots we find ∥ f̃K − f0∥ = O(K−r−v)), [see 7, p.149]. At the same time,
∥ f̃ (q)∥2 = O(1) for all q < p [see, e.g., 20] leading to

|π( f̂n, f0)|2 = OP

(
K log n

n

)
+ OP

(
1

K2r+2v

)
+ OP(λ).

For K ≍ n1/{2(r+v)+1} and λ = OP(n−γ) with γ ≥ 2(r+v)/{2(r+v)+1}we obtain |π( f̂n, f0)|2 = OP(n−2(r+v)/{2(r+v)+1} log n).
This is a much higher rate of convergence than the n−2(r+v)/{4(r+v)+1}-rate obtained by Cardot et al. [4] for the penalized
least squares estimator, which is a consequence of our use of modern empirical process methodology to derive the
result. Note that the rate of convergence obtained here is very different from the rate of convergence obtained in
the context of robust nonparametric regression with penalized splines [see e.g., 21], due to the infinite-dimensional
predictor process in functional regression. In fact, in the functional setting we are only able to reproduce the ”small
number of knots” asymptotic scenario.

Example 2 (Cont.). Under similar assumptions on f0 as in the previous example we have ∥ f̃K − f0∥ = O(K−r−v)),
as seen from DeVore and Lorentz [8, Corollary 7.2.4]. At the same time [Theorem 7.2.7 of DeVore and Lorentz [8]
implies ∥ f̃ (q)∥2 = O(1) for q ≤ r, whence

|π( f̂n, f0)|2 = OP

(
K log n

n

)
+ OP

(
1

K2r+2v

)
+ OP(λ).

For similar choices of K and λ as in the spline setting, we are again led to |π( f̂n, f0)|2 = OP(n−2(r+v)/{2(r+v)+1} log n). The
same conclusion holds for the harmonic acceleration penalty, provided that r ≥ 3. The fact that many different sieves
yield exactly the same rate of convergence for smooth functions is well-known in classical nonparametric regression
[41].

Example 3 (Cont.). For a demonstration of a different flavour consider the Sobolev spaceWm,2([0, 1]), which satisfies
(A5) for any m ≥ 1. If f0 ∈ Wm,2([0, 1]), under the assumptions of Zhao et al. [52] we find ∥ f̃K − f0∥ = O(K−m) and
for the ℓ1-penalty on the wavelet coefficients we have λJ( f̃K) = λ1−r/2 for some r ∈ (0, 2) leading to

|π( f̂n, f0)|2 = OP

(
K log n

n

)
+ OP

(
1

K2m

)
+ OP

(
λ1−r/2

)
.

The regularization bias is now different from the two previous examples because of the thresholded wavelet coeffi-
cients, see Zhao et al. [52] for more details.
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3.3. Generalization to higher dimensions

For clarity, we focused on the case of I = [0, 1], i.e. a stochastic process X : [0, 1] × Ω → R. However, our
estimation method and theoretical development permit important extensions to random fields. In particular, let I now
denote a subset ofRd with d ≥ 1 and consider the multidimensional extension of (1) given by

Y = α0 +

∫

I
X(t) f0(t)dt + σ0ϵ,

for some f0 ∈ L2(I).
For I = [0, 1]d an approximating subspace may be easily constructed by taking tensor products of univariate

approximating subspaces, that is, we consider the subspace ΘK = ΘK1 ⊗ . . . ⊗ ΘKd . A multivariate penalized MM-
estimator may now be defined as follows

(α̂n, f̂n) = argmin
α∈R, f∈ΘK


1
n

n∑

i=1

ρ

(
Yi − a − ⟨Xi, f ⟩

σ̂n

)
+Jλ( f )

 , (11)

where for f , g ∈ L2(I), ⟨ f , g⟩ =
∫
I f (t)g(t)dt and Jλ : ΘK → R+ is an appropriate penalty functional that depends

on a vector of smoothing parameters λ = (λ1, . . . , λd).
Inspection of the proofs of Theorems 1 and 2 above reveals that the these theorems carry over to multivariate

MM-estimators without additional difficulty, under straightforward adaptations of assumptions (A4), (A5), (A6) and
(A7). A uniform law of large numbers as in Lemma 2 of the Appendix (with ΘK replacing ΘK) can then be derived,
provided that

∏d
j=1 K j = o(n). Combined with the adapted assumptions, this law allows to show that Theorem 1

remains valid in the multivariate setting, i.e., supx∈I | f̂n(x) − f0(x)| P−→ 0. Furthermore, the bracketing integral of the
class of functions of (X, y) ∈ L2(I) ×R given by

Gn,c,δ =

ρ
(

y − ⟨X, f ⟩
σ

)
− ρ


y − ⟨X, f̃K⟩

σ

 , f ∈ ΘK, ∥ f − f̃K∥ ≤ c, |σ − σ0| ≤ δ


from 0 to every small ϵ > 0 behaves like C0ϵ log1/2
(

1
ϵ

)∏d
j=1 K j for some constant C0. Therefore, the argument in the

proof of Theorem 2 yields

|π( f̂n, f0)|2 = OP


log n

∏d
j=1 K j

n

 + OP(∥ f̃K − f0∥2) + OP(Jλ( f̃K)).

The inflation of the variance term is a manifestation of the curse of dimensionality and translates into comparatively
lower rates of convergence for large d. Appropriate roughness penalties on ΘK are thin-plate and tensor product
penalties, see [47, Chapter 5] for more details.

4. A Monte-Carlo study

In our simulation scenarios we examine the effects of the shape of the true coefficient function and outlying
observations on four functional regression estimators. The first estimator we consider is the proposed penalized MM-
estimator, abbreviated with PMM, based on a spline subspace with penalty and settings described in Section 2. We
compare this estimator to the following estimators.

• The least-squares penalized spline variant of the proposed estimator abbreviated as PLS.

• The robustW2,2([0, 1])-estimator of Shin and Lee [42] abbreviated as RKHS.

• The robust unpenalized cubic B-spline estimator of Boente et al. [2] abbreviated as MM.

• The robust smoothing spline type estimator of Maronna and Yohai [26] abbreviated as MMSS.

9
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For all four robust estimators, PMM, RKHS, MM and MMSS, we used the Tukey-bisquare loss with tuning constant
equal to 4.685, corresponding to 95% efficiency in the location model under Gaussian errors. The unpenalized B-
spline estimator of Boente et al. [2] is based on equidistant knots whose number is selected through a robust BIC-type
criterion as proposed by Boente et al. [2]. The penalty parameter for RKHS is selected through a robust generalized
cross-validation criterion. To compute the MMSS estimator the optimization problem is first reduced to an MM ridge
regression as outlined in Maronna and Yohai [26], which is then solved by the pensem cv function of the R-package
pense [5]. The penalty parameter is selected through the robust cross-validation procedure using the default candidate
values of the R function.

In order to compare the five competing estimators we have generated curves according to the truncated Karhunen-
Loève decomposition given by

X(t) =
50∑

j=1

j−1Z j
√

2 cos(( j − 1)πt), (12)

where the Z j are random variables whose distribution is varied according to the scenarios outlined below. These curves
are combined with each of the following four coefficient functions:

1. f1(t) = sin(2πt)

2. f2(t) = t2ϕ(t, 0, 0.1)

3. f3(t) = 1/(1 + e−20(t−0.5))

4. f4(t) = −ϕ(t, 0.2, 0.03) + 3ϕ(t, 0.5, 0.03) + ϕ(t, 0.75, 0.04),

where ϕ(t, µ, σ) denotes the Gaussian density with mean µ and standard deviation σ. These regression functions
represent a variety of different characteristics: f1 is a sinusoid, f2 is almost a straight line with some curvature near
the boundaries, f3 is a sigmoid and f4 is bumpy. Due to its local characteristics, f4 is much more difficult to estimate
precisely than the other functions.

We set σ0 = 1 in (1) and consider the following scenarios for the scores Z j in (12) and errors ϵi in (1):

Scen. 1: The Z j and ϵi both follow standard Gaussian distributions.

Scen. 2: The Z j follow a standard Gaussian distribution and the ϵi follow a t3-distribution.

Scen. 3: The Z j follow standard Gaussian distributions and the ϵi follow a Gaussian mixture distribution with density
0.9ϕ(t, 0, 1) + 0.1ϕ(t, 14, 1).

Scen. 4: The Z j follow a t3-distribution and the ϵi follow the same Gaussian mixture distribution as in the previous
scenario.

These scenarios reflect increasingly severe contamination. The first scenario portrays the ideal situation of light-tailed
predictors and error, the second scenario introduces mild vertical outliers and the third scenario yields more severe
contamination. Lastly, by perturbing the distribution of the Z j, the fourth scenario combines vertical outliers and
leverage points. For a better appreciation of the effect of the distribution of the Z j on the shape of the curves, Fig. 1
plots two representative samples of curves with the Z j following Gaussian and t3 distributions.

To handle the curves practically we have discretized them in 100 equidistant points t1, . . . , t100, within the [0, 1]-
interval and computed all related inner products using Riemann approximations. To evaluate the performance of the
estimators we calculate their mean-square error (MSE) given by

MSE = 100−1
100∑

j=1

| f̂ (t j) − f0(t j)|2.

This statistic is an approximation to the squared L2([0, 1])-distance ∥ f̂ − f0∥2. Table 1 below presents average and
median MSEs for all of our settings for n = 150 and 1000 replications (500 for MMSS).

10



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Fig. 1: Two representative samples of simulated curves with Z j ∼ N(0, 1) (Scen. 3) and Z j ∼ t3 (Scen. 4) on the left and right respectively.

There are several interesting conclusions that emerge from this study. First, the performance of the least-squares
estimator PLS heavily depends on the distribution of the scores and errors. The estimator performs best under light-
tailed distributions, but quickly loses ground when faced with slightly heavier tails, e.g., with a t3-distribution in the
errors. This performance is in line with expectations regarding least-squares estimators which are known to be very
sensitive to even a small number of mildly outlying observations. In contrast, the robust estimators MM and PMM
maintain a much steadier performance. Comparing the performance of the robust estimators in more detail reveals
that MM and PMM outperform RKHS and MMSS in all settings except with respect to f2, where MMSS performs up
to twice as well as MM and PMM. However, in the other settings MMSS and RKHS are outperformed by MM and
PMM, often by a large margin.

The estimators MM and PMM perform comparably with respect to f1, f2 and f3, but MM performs poorly with
respect to f4. The reason that MM performs well for the first three coefficient functions but not for f4 is that f1, f2
and f3 are simple enough to allow for effective approximation with a spline basis defined on a handful of equidistant
interior knots, whereas f4 possesses local characteristics that make such an approximation difficult. To illustrate
the key differences between MM and PMM with respect to f4, Fig. 2 presents the 1000 estimates for f4 obtained
under Scenario 1 along with the true coefficient function in solid black. From Fig. 2 it may be seen that PMM
correctly identifies the bumps of f4 whereas MM produces more variable estimates that often lack the correct amount
of smoothness. The performance of MM could be improved by a more careful selection of the location of the knots,
but this would inevitably lead to a much increased computational burden. Overall, these simulation results indicate
that PMM is a viable alternative to PLS in clean data and remains reliable in a wider range of contaminated data
settings than its unpenalized alternative MM.

5. Real data example: archaeological glass vessels

In this section we apply the proposed penalized estimator to the popular glass dataset. This dataset contains
measurements for 180 archaeological glass vessels (15th to 17th century) that were excavated from the old city of
Antwerp, which prior to the tumultuous 17th century was one of the largest ports in Europe with extensive ties to
commercial centres all over the continent, see [18] for more background. The dataset is freely available in R-packages
chemometrics [12] and cellWise [35].

For each of the vessels we are in possession of near-infrared spectra with 750 wavelengths, along with the values
of 13 chemical compounds which are crucial for the determination of the type of glass as well as its origin. A reduced
form of this dataset with only the non-null spectra was analyzed by Maronna and Yohai [26]. However, here we avoid
any preprocessing of the data. A plot of the spectra and the histogram of one of the chemical compounds are given in

11



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Table 1: Mean and median of the MSE (×1000) for the competing estimators over 1000 datasets of size n = 150. Best median performances are in
bold. PMM is the penalized MM-estimator proposed in Section 2. The other estimators are outlined at the beginning of Section 4.

PLS RKHS MM MMSS PMM

Mean Median Mean Median Mean Median Mean Median Mean Median

f1

Scen. 1 0.152 0.125 0.537 0.502 0.183 0.159 1.886 0.723 0.164 0.131
Scen. 2 0.399 0.301 0.947 0.690 0.235 0.201 1.878 1.133 0.254 0.210
Scen. 3 2.282 1.598 1.353 1.211 0.191 0.165 16.72 0.935 0.252 0.184
Scen. 4 1.624 1.103 1.348 1.135 0.151 0.128 14.94 0.445 0.178 0.121

f2

Scen. 1 0.103 0.073 0.082 0.075 0.143 0.098 0.078 0.042 0.109 0.075
Scen. 2 0.205 0.118 0.107 0.079 0.166 0.119 0.079 0.045 0.138 0.090
Scen. 3 1.093 0.528 0.126 0.084 0.119 0.085 0.104 0.042 0.134 0.074
Scen. 4 0.454 0.224 0.118 0.057 0.058 0.051 0.041 0.025 0.063 0.048

f3

Scen. 1 0.195 0.167 0.378 0.356 0.260 0.241 27.52 27.37 0.217 0.178
Scen. 2 0.478 0.359 0.973 0.538 0.368 0.318 28.90 28.60 0.320 0.267
Scen. 3 2.386 1.833 17.69 25.39 0.281 0.252 37.70 36.35 0.295 0.231
Scen. 4 0.996 0.762 26.08 25.76 0.105 0.087 36.34 35.17 0.123 0.094

f4

Scen. 1 10.78 10.69 89753 89322 9023 8976 25037 25088 11.02 10.90
Scen. 2 13.29 12.78 90015 88921 9033 8986 24834 24892 12.42 12.32
Scen. 3 32.26 31.25 89934 88875 9025 8981 24587 24627 11.76 11.45
Scen. 4 18.31 17.88 88326 84843 9054 8995 28750 28541 12.45 11.48

Fig. 2: The unpenalized MM-estimates f̂MM proposed by Boente et al. [2] (left) and the penalized MM-estimates f̂PMM proposed in Section 2
(right) for f4 under Scenario 1. The solid black line in each plot corresponds to the true coefficient function.

Fig. 3. By examining the heights of the peaks in the spectra it may be conjectured that there are three types of glass in
the sample, which is indeed the key finding of Janssens et al. [18]. The histogram of the chemical compounds further
indicates that the distributions of these responses are right-skewed with several potential outliers.

As the overall best performing estimators in clean and contaminated data respectively, we compare the predictive
performance of PLS and PMM for each of the 13 responses in this dataset. To measure the prediction performance
of the methods, we apply 5-fold cross-validation. For each chemical compound we then compute the 10% trimmed

12
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Fig. 3: Visualization of the glass dataset [18] containing measurements for 180 archaeological glass vessels and 13 associated chemical compounds.
The left plot contains the near-infrared spectra with 750 wavelengths while the right plot shows a histogram of the chemical compound Al2O3.

Table 2: Prediction performance of penalized functional regression least squares estimates (PLS) and MM-estimates (PMM) proposed in Section 2
for each of the 13 chemical compounds in the glass dataset. Performance is measured by the 10% trimmed root mean squared error of the predictions
obtained by 5-fold cross-validation, denoted by RMSPE(0.9). Best performances are in bold.

Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl K2O CaO MnO Fe2O3 BaO PbO

PLS 0.587 0.142 0.069 0.480 0.042 0.039 0.014 0.147 0.186 0.019 0.013 0.018 0.089

PMM 0.513 0.138 0.064 0.458 0.043 0.040 0.013 0.129 0.176 0.018 0.014 0.017 0.093

root mean squared error of the predictions, denoted by RMSPE(0.9). This trimming is essential to measure prediction
performance of the regular data because some of the left-out observations can be outliers [19]. To reduce variability
we repeat the procedure 30 times and report the average RMSPE(0.9) for each compound.

Fig. 4: Penalized functional regression least squares estimates (PLS) and MM-estimates (PMM) proposed in Section 2 for the chemical compounds
SiO2 and BaO in the glass dataset. The lines ( , ) correspond to PMM and PLS estimates, respectively.

The results are summarized in Table 2. It can be seen that PMM outperforms PLS in 9 out of the 13 components.
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In practice, this means that in these cases PMM provides better fits for the majority of the observations, thereby
leading to better predictions of the observations following the model. The estimates of the coefficient functions for
SiO2 and BaO are shown in Fig. 4. It is interesting to observe that for these two components PLS produces more
wiggly estimates than PMM, but these more complex estimates do not translate into better predictive performance.
This suggests that the smoothness of PLS is influenced by outlying observations leading to worse predictive ability.

6. Concluding remarks

We have shown that lower-rank penalized estimators based on bounded loss functions possess good theoretical
properties, are computationally efficient and are capable of handling a diversity of complex problems, such as esti-
mation of coefficient functions with local characteristics based on data with atypical observations. Moreover, these
important properties almost seamlessly extend to the case of scalar-on-function regression with random functions de-
fined on multidimensional sets, such as images. To select the penalty parameter we proposed to minimize a robust
cross-validation criterion. Alternatively, a slightly larger λ may be selected, e.g., by using the one standard error rule
as in Maronna and Yohai [26] thereby increasing the smoothness of the fit.

In future work we aim to further relax the assumptions underpinning the present theoretical development to take
into account the often discrete sampling of functional data. This often neglected aspect of functional data has important
practical and theoretical consequences, particularly when the discretization grid is small, see, e.g., Kalogridis and Van
Aelst [22] for the case of location estimation. A robust lower rank penalized regression estimator in this setting would
constitute an effective and computationally efficient alternative to the smoothing spline estimators of Crambes et al.
[6] and Maronna and Yohai [26].
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8. Appendix: Proofs of the theorems

Lemma 1 (Fisher consistency). Assume that assumptions (A1), (A3) and (A6) hold. Then, for any σ > 0 and
f ∈ B([0, 1]), M( f0, σ) < M( f , σ), where

M( f , σ) = E
{
ρ

(
Y − ⟨X, f ⟩

σ

)}
.

Proof. The proof is an adaptation of the corresponding proofs in Yohai [50] and Boente et al. [2]. First, Lemma 3.1
of Yohai [49] in combination with (A3) shows that the function g(α) = E{ρ(ϵσ0/σ − α)} has a unique minimum at
zero, viz, for any α , 0

E
{
ρ
(
ϵ
σ0

σ
− α

)}
> E

{
ρ
(
ϵ
σ0

σ

)}
. (13)

Fix f ∈ B([0, 1]), setA0 = {X : Φ(X) = ⟨X, f − f0⟩ = 0} and α(X) = Φ(X)/σ. Then, using the independence of ϵ and
X, it is not difficult to show that

M( f , σ) = E
{
ρ
(
ϵ
σ0

σ

)}
P(A0) + E

{
E

{
ρ
(
ϵ
σ0

σ
− α(X)

)
|X

}
IAc

0
(X)

}
,

where IB(·) denotes the indicator function for a set B. Similarly, by the independence of ϵ and X and (13), for any
X < A0,

E
{
ρ
(
ϵ
σ0

σ
− α(X)

)
|X = X0

}
= E

{
ρ
(
ϵ
σ0

σ
− α(X0)

)}
> E

{
ρ
(
ϵ
σ0

σ

)}
.

14



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Hence, since, by (A6), P(A0) > 0, we find

M( f , σ) > E
{
ρ
(
ϵ
σ0

σ

)}
P(A0) + E

{
E

{
ρ
(
ϵ
σ0

σ

)}
IAc

0
(X)

}
= E

{
ρ
(
ϵ
σ0

σ

)}
P(A0) + E

{
ρ
(
ϵ
σ0

σ

)}
P(Ac

0) = M( f0, σ),

where the strict inequality follows from the fact thatA0 has strictly positive probability.

Lemma 2. Let ρ satisfy (A1) and K satisfy (A7). Then the following uniform law holds

sup
σ>0, f∈ΘK

|Mn( f , σ) − M( f , σ)| a.s.−−→ 0, as n→ ∞.

Proof. The proof may be deduced from the proof of Lemma A.1.2 in Boente et al. [2], we omit the details.

Lemma 3. Suppose that assumptions (A1), (A2), (A4) and (A7) hold. Then, M( f̂n, σ0)
P−→ M( f0, σ0), as n→ ∞.

Proof. By Lemma 1, f0 is the unique minimizer of M( f , σ0) over all f ∈ B([0, 1]) and, by (A7), f̂n ∈ B([0, 1]).
Therefore,

0 ≤ M( f̂n, σ0) − M( f0, σ0) = I + II + III, (14)

with
I = M( f̂n, σ0) − Mn( f̂n, σ0), II = Mn( f̂n, σ0) − Mn( f̂n, σ̂n), III = Mn( f̂n, σ̂n) − M( f0, σ0).

Since f̂n ∈ ΘK by definition of the estimator, Lemma 2 yields

|I| ≤ sup
σ>0, f∈ΘK

|M( f , σ) − Mn( f , σ)| a.s.−−→ 0. (15)

Moreover, a first order Taylor expansion immediately yields

|II| ≤ sup
x∈R
|xψ(x)| |σ̂n − σ0|

ξ̂n

, (16)

where ξ̂n is an intermediate value in the linear segment joining σ̂n and σ0. By (A2), ξ̂n > 0 for all large n with high

probability and |σn − σ0| P−→ 0 as n→ ∞ leading to |II| P−→ 0.
To complete the proof we now treat III. Note that f̂n minimizes Mn( f , σ̂n) + λJ( f ) over all f ∈ ΘK and, by

construction, f̃K ∈ ΘK . Therefore, by (A7)

Mn( f̂n, σ̂n) ≤ Mn( f̂n, σ̂n) + λJ( f̂n) ≤ Mn( f̃K , σ̂n) + λJ( f̃K) = Mn( f̃K , σ̂n) + oP(1).

Hence,

III ≤ Mn( f̃K , σ̂n) − M( f0, σ0) + oP(1) = {Mn( f̃K , σ̂n) − Mn( f0, σ0)} + {Mn( f0, σ0) − M( f0, σ0)} + oP(1).

By the law of large numbers, Mn( f0, σ0)
P−→ M( f0, σ0). At the same time, by assumption (A4) and the Schwarz

inequality,

|Mn( f̃K , σ̂n) − Mn( f0, σ0)| ≤ |Mn( f̃K , σ̂n) − Mn( f̃K , σ0)| + |Mn( f̃K , σ0) − Mn( f0, σ0)|

≤ sup
x∈R
|xψ(x)| |σ̂n − σ0|

ξ̂n

+
C∥ψ∥∞
σ0

∥ f̃K − f0∥,

with probability one, where ξ̂n is an intermediate point. By assumptions (A2) and (A7) both terms tend to zero in
probability, hence III ≤ oP(1) which in combination with (15) and (16) completes the proof.
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Proof of Theorem 1. The first part of the Theorem follows from a simple adaptation of Lemma A.1.4 in Boente et al.
[2], because by assumption (A5), { f ∈ B([0, 1]) : ∥ f ∥B ≤ 1} is compact in the ∥ · ∥∞-topology.

The first result of the theorem implies that for every ϵ > 0 there exists a L = Lϵ such that P(∥ f̂n − f0∥B > L) < ϵ for
all large n. Thus, it suffices to restrict attention to the set {∥ f̂n − f0∥B ≤ L}. To prove uniform convergence it suffices
to show that

inf
f∈B([0,1]):∥ f− f0∥B≤L,∥ f− f0∥∞≥ϵ

M( f , σ0) > M( f0, σ0). (17)

This is sufficient, because by Lemma 3, M( f̂n, σ0)
P−→ M( f0, σ0). Hence, (17) would imply that with high probability

∥ f̂n − f0∥∞ < ϵ for all large n. To establish (17), let { fk}k denote a minimizing sequence, i.e., a sequence satisfying
∥ fk − f0∥B ≤ L, ∥ fk − f0∥∞ ≥ ϵ and

lim
k→∞

M( fk, σ0) = inf
f∈B([0,1]):∥ f− f0∥B≤L,∥ f− f0∥∞≥ϵ

M( f , σ0).

Such a sequence exists, because ρ is nonnegative and therefore the infimum is bounded from below by 0. By compact-
ness in assumption (A5), there exists a subsequence fk j − f0 which converges uniformly to a function f ⋆ ∈ C([0, 1]).
By continuity of the norm, this implies that lim j→∞ ∥ fk j − f0∥∞ = ∥ f ⋆∥∞ and since ∥ fk − f0∥∞ ≥ ϵ for all k ∈ N, we
must also have ∥ f ⋆∥∞ ≥ ϵ. By the bounded convergence theorem it now follows that

inf
f∈B([0,1]):∥ f− f0∥B≤L,∥ f− f0∥∞≥ϵ

M( f , σ0) = lim
j→∞

M( fk j , σ0) = M( f0 + f ⋆, σ0).

Moreover, since, by (5),

∥ f0 + f ⋆ − f0∥B = ∥ f ⋆∥B ≥ c−1
0 ∥ f ⋆∥∞ ≥ c−1

0 ϵ > 0,

where c0 is the embedding constant, Lemma 1 yields M( f0 + f ⋆, σ0) > M( f0, σ0) which completes the proof.

We now introduce some useful notation. Let G denote a class of real-valued functions onL2([0, 1])×R. For g ∈ G
we define

∥g∥∞ = sup
x∈L2([0,1]),y∈R

|g(x, y)|.

The covering number in this uniform metric,N∞(ϵ,G), is defined as the smallest value of N ∈ N such that there exists
a sequence {g j}Nj=1 with the property that

sup
g∈G

min
j=1,...,N

∥g − g j∥∞ ≤ ϵ.

The corresponding entropy,H∞(ϵ,G), is the logarithm of the covering number, i.e.,H∞(ϵ,G) = logN∞(ϵ,G).
For a probability measure P we also define the bracketing number in theL2(P)-metric,NB(ϵ,G,P), as the smallest

value of N ∈ N for which there exist N pairs of functions {[gL
j , g

U
j ]} such that ∥gU

j − gL
j ∥L2(P) ≤ ϵ for all j = 1, . . . ,N,

and such that for each g ∈ G, there is a j = j(g) ∈ {1, . . . ,N} such that

gL
j (x, y) ≤ g(x, y) ≤ gU

j (x, y).

The corresponding bracketing entropy,HB(ϵ,G,P), is defined as the logarithm of the bracketing number, i.e.,HB(ϵ,G,P) =
logNB(ϵ,G,P).

Lemma 4 (Bracketing entropy). Suppose that (A1) and (A4) hold. For (x, y) ∈ L2([0, 1]) × R define

g f ,σ(x, y) = ρ
(

y − ⟨x, f ⟩
σ

)
− ρ


y − ⟨x, f̃K⟩

σ



16
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and the class of functions

Gn,c,δ =
{
g f ,σ(x, y), f ∈ ΘK , ∥ f − f̃K∥ ≤ c, |σ − σ0| ≤ δ

}
.

Let P denote the probability measured induced by (X, y). Then, there exists a constant A > 0 depending only on c and
δ such that

HB
(
ϵ,Gn,c,δ,P

) ≤ 3K log
(
1 +

A
ϵ

)
.

Proof. Let us begin by observing that, by Lemma 2.1 of van de Geer [44], we have

HB(ϵ,Gn,c,δ,P) ≤ H∞(ϵ/2,Gn,c,δ),

so that it suffices to bound the covering number of Gn,c,δ in the uniform metric. Applying the triangle inequality twice
now yields

|g f1,σ1 (x, y) − g f2,σ2 (x, y)| ≤ |g f1,σ1 (x, y) − g f1,σ2 (x, y)| + |g f1,σ2 (x, y) − g f2,σ2 (x, y)|
≤ 2
σ0 − δ sup

x∈R
|xψ(x)||σ1 − σ2| + C

σ0 − δ ∥ f1 − f̃K∥ + C
σ0 − δ∥ f2 − f̃K∥,

where we have used (A4). This implies that modulo some constants the covering number in the uniform metric may
be bounded by the covering number of a Euclidean ball with radius δ and the square of the covering number of a set
of functions in L2([0, 1]) with radius c, viz,

N∞(ϵ,Gn,c,δ) ≤ N(c1ϵ,Vσ0 ) × N2(c2ϵ, { f ∈ ΘK : ∥ f − f̃K∥ ≤ c}),
for Vσ0 = [σ0 − δ, σ0 + δ], c1 = (σ0 − δ)/(8 supx |xψ(x)|) and c2 = (σ0 − δ)/(4C). By Lemma 2.5 and Corollary 2.6 of
van de Geer [44] respectively, these covering numbers may be bounded by

N∞ (
ϵ,Gn,c,δ

) ≤
(

2σ0

c1ϵ
+ 1

)
×

(
4c
c2ϵ
+ 1

)2K

≤
(

A′

ϵ
+ 1

)2K+1

,

for A′ = max{2σ0/c1, 4c/c2}. Now take logarithms, put A = 2A′ and use that K ≥ 1.

Proof of Theorem 2. To establish Theorem 2 we fill in the details of the development in Section 3.2. In particular,
we first establish (8), then we prove (9) and finally we deduce Theorem 2 from (10).

First, note that by Theorem 1, ∥ f̂n − f0∥∞ P−→ 0 and by assumption (A2), σ̂n
P−→ σ0. Therefore, we may restrict

attention to the set

Fn = {∥ f̂n − f0∥∞ < δ ∧ |σ̂n − σ0| < δ} (18)

for some small δ > 0 to be chosen later.
To prove (8), it suffices to show that, for all f ∈ ΘK and σ > 0 satisfying ∥ f − f0∥∞ < δ and |σ − σ0| < δ

respectively, we have

M( f , σ) − M( f̃K , σ) ≥ η|π( f , f̃K)|2 − L∥ f̃K − f0∥π( f , f̃K), (19)

for some η > 0 and L > 0 with high probability. To see that this is sufficient, let us assume without loss of generality
that η|π( f̂n, f̃K)|2−L∥ f̃K − f0∥π( f̂n, f̃K) > 0 for all large n (if that were not true for some n, then η|π( f̂n, f̃K)| ≤ L∥ f̃K − f0∥
and there is nothing to prove). Then,

M( f̂n, σ̂n) − M( f̃K , σ̂n) =
M( f̂n, σ̂n) − M( f̃K , σ̂n)

η|π( f̂n, f̃K)|2 − L∥ f̃K − f0∥π( f̂n, f̃K)
{η|π( f̂n, f̃K)|2 − L∥ f̃K − f0∥π( f̂n, f̃K)}

≥ inf
∥ f− f0∥∞<δ,|σ−σ0 |<δ

η|π( f , f̃K )|2−L∥ f̃K− f0∥π( f , f̃K )>0


M( f , σ) − M( f̃K , σ)

η|π( f , f̃K)|2 − L∥ f̃K − f0∥π( f , f̃K)

 {η|π( f̂n, f̃K)|2 − L∥ f̃K − f0∥π( f̂n, f̃K)}

≥ η|π( f̂n, f̃K)|2 − L∥ f̃K − f0∥π( f̂n, f̃K),

17
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since the infimum is ≥ 1 according to (19).
We thus have to prove inequality (19) to establish (8). First, write Y − ⟨X, f ⟩ = σ0ϵ + R + ⟨X, f̃K − f ⟩, where

R = ⟨X, f0 − f̃K⟩. A first order Taylor expansion with Lagrange remainder yields

M( f , σ) − M( f̃K , σ) = E
ψ

(
σ0ϵ + R

σ

) ⟨X, f̃K − f ⟩
σ

 +
1
2
E

ψ
′
(
σ0ϵ + R + ξ

σ

) ∣∣∣∣∣∣
⟨X, f̃K − f ⟩

σ

∣∣∣∣∣∣

2 , (20)

for some random variable ξ satisfying |ξ| ≤ |⟨X, f̃K − f ⟩|. Applying the mean-value theorem on the first term of the rhs
of (20) we also find that there exists a random variable χ such that |χ| ≤ |R| and

E
ψ

(
σ0ϵ + R

σ

) ⟨X, f̃K − f ⟩
σ

 = E
ψ

(
σ0ϵ

σ

) ⟨X, f̃K − f ⟩
σ

 + E
Rψ′

(
σ0ϵ + χ

σ

) ⟨X, f̃K − f ⟩
σ



= E
Rψ′

(
σ0ϵ + χ

σ

) ⟨X, f̃K − f ⟩
σ

 . (21)

To see why the first term vanishes, note that E{ψ(σ0ϵ/σ)} = 0 for any σ > 0 because Lemma 1 shows that f0
minimizes M( f , σ). For the remaining term in (21), by noting again that σ > σ0 − δ we obtain

∣∣∣∣∣∣∣
E

Rψ′
(
σ0ϵ + χ

σ

) ⟨X, f̃K − f ⟩
σ



∣∣∣∣∣∣∣
≤ (σ0 − δ)−1∥ψ′∥∞E{|⟨X, f̃K − f0⟩⟨X, f̃K − f ⟩|}

≤ C(σ0 − δ)−1∥ψ′∥∞∥ f̃K − f0∥
[
E{|⟨X, f − f̃K⟩|2}

]1/2
= Lδ∥ f̃K − f0∥π( f , f̃K),

for Lδ = C(σ0 − δ)−1∥ψ′∥∞. This is exactly the second term in the right hand side of (8).
The last part of the proof establishes a strictly positive lower bound on the second term of (20) involving |π( f , f̃K)|2.

Note that for all f ∈ ΘK satisfying ∥ f − f0∥∞ < δ we have

∥ f̃K − f ∥∞ ≤ ∥ f̃K − f0∥∞ + ∥ f − f0∥∞ < 2δ,

for all large n, by virtue of (A7). Since X is bounded by (A4), for all large n, |ξ| ≤ 2Cδ. Assumption (A7) in
combination with (A4) also implies |R| ≤ Cδ for every δ, for sufficiently large n. By (A1) ψ′ is continuous and
bounded, and by (A4), E{ψ′(ϵ)} > 0. Hence, m(t, σ) := E{ψ((σ0ϵ + t)/σ} is continuous at (0, σ0) and m(0, σ0) =
E{ψ′(ϵ)} > 0. This observation now leads to

inf
|b|<3Cδ,|σ−σ0 |<δ

E
{
ψ′

(
σ0ϵ + b
σ

)}
≥ E{ψ′(ϵ)}

2
> 0,

for all sufficiently small δ > 0. Setting η = (σ0 + δ)−2E{ψ′(ϵ)}/4, we finally have

1
2
E

ψ
′
(
σ0ϵ + R + ξ

σ

) ∣∣∣∣∣∣
⟨X, f̃K − f ⟩

σ

∣∣∣∣∣∣

2 ≥ ηE{|⟨X, f − f̃K⟩|2} = η|π( f , f̃K)|2,

for all large n, completing the first part of the proof.
The second step in our proof is the establishment of (9). Recall that by assumption (A2) and Theorem 1, we may

restrict attention to the set Fn in (18). As previously remarked, in this set we also have ∥ f̂n − f̃K∥∞ ≤ 2δ for all large
n. It then also follows that ∥ f̂n − f̃K∥ ≤ 2δ because the uniform norm dominates the L2([0, 1])-norm. Thus, in the
notation of Section 3,

∣∣∣∣∣∣∣
Un( f̂n, f̃K , σ̂n)

γnπ( f̂n, f̃K) ∨ γ2
n

∣∣∣∣∣∣∣
≤ sup

f∈ΘK :∥ f− f̃K∥≤2δ
|σ−σ0 |≤δ

∣∣∣∣∣∣∣
Un( f , f̃K , σ)

γnπ( f , f̃K) ∨ γ2
n

∣∣∣∣∣∣∣
, (22)

18
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for all large n. To prove (9) it suffices to show that the random variable in the rhs of (22) is bounded in probability.
For convenience, let ΦK,δ = { f ∈ ΘK : ∥ f − f̃K∥ ≤ 2δ} and Vσ0,δ = [σ0 − δ, σ0 + δ], then we equivalently need to show
that

lim
T→∞

lim sup
n→∞

P
(

sup
f∈ΦK,δ,σ∈Vσ0 ,δ

π( f , f̃K )≤γn

∣∣∣∣Un( f , f̃K , σ)
∣∣∣∣ ≥ Tγ2

n

)
= 0, (23)

as well as

lim
T→∞

lim sup
n→∞

P
(

sup
f∈ΦK,δ,σ∈Vσ0 ,δ

π( f , f̃K )>γn

∣∣∣∣∣∣
Un( f , f̃K , σ)

π( f , f̃K)

∣∣∣∣∣∣ ≥ Tγn

)
= 0. (24)

First, observe that for all ϵ > 0 sufficiently small, say ϵ ≤ ϵ0, there exists a constant B > 0 such that
∫ ϵ

0
log1/2

(
1 +

1
u

)
du ≤ Bϵ log1/2

(
1
ϵ

)
. (25)

This inequality will be useful in the derivation of both (23) and (24). To show (23), we aim to apply Theorem 5.11
of van de Geer [44] on this mean-centered process. Let us rewrite Un( f , f̃K , σ) in terms of the empirical process
Un( f , f̃K , σ) = n−1/2vn(g f ,σ), where, as in Lemma 4,

g f ,σ(X, y) = ρ
(

y − ⟨X, f ⟩
σ

)
− ρ


y − ⟨X, f̃K⟩

σ

 ,

and vn(g f ,σ) =
∫

g f ,σd(Pn − P), with Pn the empirical measure. By assumption (A1),

sup
f∈ΦK,δ,σ∈Vσ0 ,δ

π( f , f̃K )≤γn

|g f ,σ| ≤ 2, {g f ,σ, f ∈ ΦK,δ, σ ∈ Vσ0,δ, π( f , f̃K) ≤ γn} ⊂ Gn,2δ,δ.

Thus, by Lemma 5.10 of van de Geer [44], the generalized entropy with bracketing in the Bernstein normHB,8(ϵ,Gn,2δ,δ,P)
may be bounded by the bracketing entropy, i.e.,

HB,8
(
ϵ,Gn,2δ,δ,P

) ≤ HB

(
ϵ/
√

2,Gn,2δ,δ,P
)
≤ 3K log

1 +
√

2A
ϵ

 , (26)

where the last inequality follows from Lemma 4. Furthermore, by (A1) we have

|g f ,σ(X, y)| ≤ σ−1∥ψ∥∞|⟨X, f̃K − f ⟩|.

Consequently, by definition of π( f , g),

sup
f∈ΦK,δ,σ∈Vσ0 ,δ

π( f , f̃K )≤γn

E{|g f ,σ(X, y)|2} ≤ ∥ψ∥2∞
(σ0 − δ)2 γ

2
n

It follows by Lemma 5.8 of van de Geer [44] that we may take R = c′γn with c′ = ∥ψ∥∞/(σ0 − δ) in Theorem 5.11
of van de Geer [44]. We proceed to check the conditions of the theorem. By (A7) we have that γn → 0 as n → ∞.
Hence, by a change of variables and (26), we find

∫ R

0
H1/2

B,8 (u,Gn,2δ,δ,P)du ≤ C0K1/2γn log1/2 n,

19
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for some C0 > 0. By taking T = C0 and C1 = 8C0/c2
0 in the theorem, it may be seen that conditions (5.31)–(5.34) in

van de Geer [44] are satisfied for α = Tn1/2γ2
n and sufficiently large C0. Thus, applying Theorem 5.11 of van de Geer

[44], there exists a universal constant C > 0 such that

P
(

sup
f∈ΦK ,σ∈Vσ
π( f , f̃K )≤γn

∣∣∣∣Un( f , f̃K , σ)
∣∣∣∣ ≥ Tγ2

n

)
= P

(
sup

f∈ΦK ,σ∈Vσ
π( f , f̃K )≤γn

∣∣∣vn(g f ,s)
∣∣∣ ≥ Tn1/2γ2

n

)
≤ C exp

[
− T 2K log n

C2(C1 + 1)

]
.

Since K → ∞ as n→ ∞, the exponential tends to zero as n→ ∞ and, since this holds for all T sufficiently large, (23)
now follows.

To show (24) we modify the peeling argument given in Lemma 5.13 of [44]. First, note that, by (A4), π( f , f̃K) ≤
C∥ f − f̃K∥ and ∥ f − f̃K∥ ≤ 2δ for all f ∈ ΦK,δ. By choosing δ ≤ ϵ0/(2Cc′), with ϵ0 determined in (25) and c′ =
∥ψ∥∞/(σ0 − δ), we may assume without loss of generality that π( f , f̃K) ≤ ϵ0/c′ for all f ∈ ΦK,δ. Thus, to prove (24), it
suffices to prove

lim
T→∞

lim sup
n→∞

P
(

sup
f∈ΦK,δ,σ∈Vσ0

γn<π( f , f̃K )≤ϵ0/c′

∣∣∣∣∣∣
Un( f , f̃K , σ)

π( f , f̃K)

∣∣∣∣∣∣ ≥ Tγn

)
= 0. (27)

Now, let S = min{s > 1 : 2−sϵ0/c′ < γn}. Since, by assumption (A7), K ≍ nβ for β ∈ (0, 1) we clearly have
S ≤ [c log2 n + 1] for some c > 0. Using Boole’s inequality we obtain

P
(

sup
f∈ΦK,δ,σ∈Vσ0 ,δ

γn<π( f , f̃K )≤ϵ0/c′

∣∣∣∣∣∣
Un( f , f̃K , σ)

π( f , f̃K)

∣∣∣∣∣∣ ≥ Tγn

)
≤

S∑

s=1

P
(

sup
f∈ΦK,δ,σ∈Vσ0 ,δ

2−sϵ0/c′<π( f , f̃K )≤2−s+1ϵ0/c′

∣∣∣∣∣∣
Un( f , f̃K , σ)

π( f , f̃K)

∣∣∣∣∣∣ ≥ Tγn

)

≤
S∑

s=1

P
(

sup
f∈ΦK,δ,σ∈Vσ0 ,δ

π( f , f̃K )≤2−s+1ϵ0/c′

∣∣∣∣Un( f , f̃K , σ)
∣∣∣∣ ≥ T2−s ϵ0

c′
γn

)
.

We bound each one of these summands through individual application of Theorem 5.11 of van de Geer [44] (see also
the proof of (23)). Rewriting in terms of the empirical process we have

P
(

sup
f∈ΦK,δ,σ∈Vσ0 ,δ

π( f , f̃K )≤2−s+1ϵ0/c′

∣∣∣∣Un( f , f̃K , σ)
∣∣∣∣ ≥ T2−s ϵ0

c′
γn

)
= P

(
sup

f∈ΦK,δ,σ∈Vσ0 ,δ

π( f , f̃K )≤2−s+1ϵ0/c′

|vn(g f ,σ)| ≥ T2−s ϵ0

c′
n1/2γn

)

Clearly, 2−s+1c′ϵ0/c′ ≤ ϵ0 for all 1 ≤ s ≤ S . Hence, for all sufficiently large C0 the bracketing integral for each one of
these classes may be bounded by

∫ 2−s+1ϵ0

0
H1/2

B,8 (u,Gn,2δ,δ,P)du ≤ C0K1/22−s+1ϵ0 log n,

for all large n, by the construction of S , i.e., 2S ≤ 2cn for large n. The conditions of Theorem 5.11 in van de Geer
[44] are satisfied for sufficiently large C0, C1 = 8C0c′ and T = C0 since by definition of S , we have γn ≤ 2−s+1ϵ0/c′

for all 1 ≤ s ≤ S . Thus, this theorem yields

P
(

sup
f∈ΦK,δ,σ∈Vσ0 ,δ

π( f , f̃K )≤2−s+1ϵ0/c′

∣∣∣∣Un( f , f̃K , σ)
∣∣∣∣ ≥ T2−s ϵ0

c′
γn

)
≤ C exp

[
− T 2K log n

4C2(C1 + 1)|c′|2
]
,

for the same universal constant C > 0. None of these terms depend on s, hence after summing over s ∈ {1, . . . , S } and
recalling that S ≤ [c log2 n + 1] we obtain

P
(

sup
f∈ΦK,δ,σ∈Vσ0 ,δ

γn<π( f , f̃K )≤ϵ0/c′

∣∣∣∣∣∣
Un( f , f̃K , σ)

π( f , f̃K)

∣∣∣∣∣∣ ≥ Tγn

)
≤ C′[c log2 n + 1] exp

[
− T 2K log n

4C2(C1 + 1)|c′|2
]
,
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for some C′ > 0 and all large n. We have thus established (24) and part (ii) now follows.
To complete the proof we now deduce Theorem 2 from (10). First, note that by (A4) we have

|π( f̂n, f0)|2 ≤ 2|π( f̂n, f̃K)|2 + 2|π( f̃K), f0)|2 ≤ 2|π( f̂n, f̃K)|2 + 2C2∥ f̃K − f0∥2. (28)

Hence, we need to study |π( f̂n, f̃K)|2. We only have to handle the case γnπ( f̂n, f̃K) > γ2
n, or, equivalently π( f̂n, f̃K) > γn,

since for γnπ( f̂n, f̃K) ≤ γ2
n, the theorem clearly holds. From parts (i) and (ii) we have

η|π( f̂n, f̃K)|2 ≤ Un( f̃K , f̂n, σ̂n) + L∥ f̃K − f0∥π( f̂n, f̃K) + λJ( f̃K) = OP(1)γnπ( f̂n, f̃K) + L∥ f̃K − f0∥π( f̂n, f̃K) + λJ( f̃K).

Equivalently, since η > 0,

|π( f̂n, f̃K)|2 ≤ OP(1)γnπ( f̂n, f̃K) + OP(1)∥ f̃K − f0∥π( f̂n, f̃K) + λJ( f̃K)/η.

Now, this is an inequality of the form x2
0 ≤ bx0+c with x0 = π( f̂n, f̃K) ≥ 0, b = OP(1)(∥ f̃K− f0∥+γn) and c = λJ( f̃K)/η.

This means that x0 must be less than or equal to the positive root of x2 − bx − c = 0, that is,

0 ≤ x0 ≤ b +
√

b2 + 4c
2

≤ b +
√

c,

and after substituting the expressions of x0, b and c, we obtain

π( f̂n, f̃K) ≤ OP(1)(∥ f̃K − f0∥ + γn) + OP

(√
λJ( f̃K))

)
.

Squaring and using the inequality (x + y)2 ≤ 2x2 + 2y2 twice yields

|π( f̂n, f̃K)|2 ≤ OP(1)γ2
n + OP(1)∥ f̃K − f0∥2 + OP(1)λJ( f̃K).

The result of the theorem now follows easily from (28) which completes the proof.

9. Supplementary material

The accompanying supplementary material contains additional simulation results.
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