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1. Introduction

Many natural and scientific phenomena exhibit intrinsic system dynamics that can
be captured in a standard eigenvalue problem (SEP). The eigenvalues and eigenvec-
tors that correspond to those phenomena describe the proper (the prefix eigen- is
adopted from the German word eigen, which means proper and was presumably first
coined by Hilbert [29]) evolution of the system dynamics along the eigenvector direc-
tions. For some phenomena, however, a single spectral parameter does not capture the
system dynamics entirely and multiple spectral parameters, or eigentuples of eigen-
values, come into the picture, for instance in partial differential equations. Histori-
cally, multiparameter spectral theory has its roots in the classical problem of solving
boundary-value problems for partial differential equations by the method of separa-
tion of variables [3,43,47]. For example, the vibration problem of an elliptic membrane
in two ellipsoidal coordinates, i.e., the two-dimensional Helmholtz equation, leads to
the study of a pair of ordinary differential equations, both of which share two spec-
tral parameters. This corresponds to a two-parameter eigenvalue problem [43,47]. The
presence of multiple spectral parameters (eigentuples instead of eigenvalues) links the
evolution of the different ordinary differential equations obtained from the separation
of variables in an elementary fashion. Recently, we have shown that the least-squares
identification of linear time-invariant systems is, in essence, also a (rectangular) multi-
parameter eigenvalue problem [20,21,50]. Despite their applicability and natural relation
to SEPs, multiparameter eigenvalue problems (MEPs) have not yet been widely diffused
among the general scientific community. The literature about solving one-parameter
eigenvalue problems, i.e., SEPs, GEPs (generalized eigenvalue problems), and PEPs
(polynomial eigenvalue problems), is vast and mature. PEPs are usually linearized
into larger GEPs [28,49] and the resulting matrix pencils are solved via one of the
many available, efficient SEP or GEP solvers. Techniques to solve MEPs, on the con-
trary, have been explored much less. We make a distinction between algorithms to solve
square MEPs and algorithms to solve rectangular MEPs, although both problems are
related.

Classical square MEPs, on the one hand, are typically solved via simultaneous trian-
gularization of the associated coupled GEPs [30,35,42,48]. This approach works for any
number of spectral parameters and retrieves all the solutions, but is limited by the size
of the coupled GEPs. Also iterative nonlinear optimization algorithms can be used to
retrieve one (or some) of the solutions, e.g., gradient descent techniques [8,9,12], minimal
residual quotient iterations [7], or Newton-based methods [10], but these optimization
approaches are heuristic (they depend on an initial guess) and result in numerical approx-



C. Vermeersch, B. De Moor / Linear Algebra and its Applications 654 (2022) 177-209 179

imations of the eigentuples and eigenvectors. In the last two decades, a renewed interest
in the topic has led to several efficient homotopy continuation algorithms [22,41,44]
and subspace approaches [30,31,33,34,45] to overcome scalability and convergence is-
sues. These algorithms can also solve polynomial square MEPs, either directly or after
a linearization step [32,44].

In our earlier work [20,21,50], on the other hand, we have introduced the block
Macaulay matrix, which allows us to solve rectangular MEPs via a multidimensional
realization problem in the null space of that matrix. We consider in this paper the com-
plementarity between the null space and column space of the block Macaulay matrix in
order to develop a new, complementarity algorithm that works on the data in the columns
directly. This observation stems from a similar complementarity in multivariate polyno-
mial system solving, in which the null space and column space of the traditional Macaulay
matrix both give rise to a root-finding algorithm [51]. We use well-established tools from
numerical linear algebra, such as the singular value decomposition or QR-decomposition,
to solve rectangular MEPs (which are essentially disguised systems of multivariate poly-
nomial equations with some variables that only appear “linearly”). In contrast to the
classical MEPs with square coefficient matrices, we consider in our research rectangular
MEPs, which arise, for example, in system identification problems [20,21,50] or mul-
tiparameter generalizations of the Heine-Stieltjes spectral problem [46]. We can even
transform quite a few classical square MEPs into equivalent rectangular MEPs (see Sec-
tion 2). In that sense, the two block Macaulay matrix algorithms of this paper also
supplement the set of existing algorithms to solve classical square problems.

Outline and main contributions The remainder of this paper proceeds as follows: Sec-
tion 2 defines the rectangular MEP and Section 3 introduces the block Macaulay matrix,
which is constructed from the coefficient matrices of a rectangular MEP. The (right) null
space of this block Macaulay matrix has a special (backward block multi-)shift-invariant
structure, which allows us to find the eigentuples and eigenvectors of the rectangular
MEP via a multidimensional realization problem in that null space. We revisit this ex-
isting null space based algorithm to solve rectangular MEPs in Section 4. Our main
contributions are (i) the observation that the complementarity between the null space
and column space of the block Macaulay matrix results in an equivalent multidimen-
sional realization problem in the column space and (ii) a second block Macaulay matrix
algorithm to solve polynomial rectangular MEPs, using only numerical linear algebra
“work horses” like the singular value decomposition and QR-decomposition. We develop
this column space based algorithm in Section 5. Several numerical examples illustrate
both algorithms in Section 6. Finally, we summarize this paper and point at ideas for
future research in Section 7. Appendix A covers the structure of backward scalar/block
single /multi-shift-invariant finite dimensional subspaces, like the affine part of the null
space of the block Macaulay matrix, in more depth.
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Notation We denote scalars by lowercase letters, e.g., a, and tuples/vectors by boldface
lowercase letters, e.g., a. Matrices are characterized by boldface uppercase letters, e.g., A.
When a matrix contains one or more parameters, for example, the combined coefficient
matrix of an MEP, we use a bold calligraphic font, e.g., A (a) with parameter a. We use
a subscript to indicate an element or submatrix of a tuple/vector or matrix, e.g., a; is
the first element of the vector a.

2. Multiparameter eigenvalue problems

Multiparameter eigenvalue problems (MEPs) naturally extend the typical structure
of standard eigenvalue problems and involve eigentuples A = (Aq,..., ;) of eigenvalues
instead of single eigenvalues \. Several manifestations of MEPs appear in the literature,
e.g., the classical square problems by Atkinson [1], Carmichael [13,14,15], Plestenjak
et al. [43], Volkmer [52] and the rectangular problems in this paper and by Shapiro and
Shapiro [46], De Moor [21], Vermeersch and De Moor [50]. Therefore, we start by defining
the (rectangular') MEP within our block Macaulay matrix framework.

For example, (Ao + A100A1 + Ag25A3)3) z = 0 contains n = 3 spectral parameters,
combined in eigentuples (A1, A2, A3) with corresponding eigenvectors z, and three coef-
ficient matrices A,,. The integer multi-index w = (w1,...,w,) € N™ labels the powers
of the eigenvalues in the monomial A* = [ AY" = A" -+ A% and indexes the asso-
ciated coefficient matrices A, = Ay, .. w,)- The total degree of a monomial is equal
to the sum of its powers, denoted by |w| = >, w;, and the highest total degree of
all the monomials determines the degree dg of the MEP. Hence, an integer multi-index
w = (0,2,5) labels the monomial A\3\3 (with total degree 7) and indexes the associated
coefficient matrix Ags5. To keep the notation unambiguous, we use the degree negative
lexicographic ordering to order different (multivariate) monomials [5,17]. However, the
remainder of this paper remains valid for any graded multivariate monomial ordering.

Definition 1 (Degree negative lexicographic ordering). If we consider two n-tuples a, 8 €
N” and |a| < |B| or |a| = |B] where in the element-wise difference 8 — a € Z™ the
left-most non-zero element of the tuple is negative, then two monomials are ordered
A® < AP by the degree negative lexicographic ordering.

Example 1. The degree negative lexicographic ordering orders the monomials in n = 3
variables as

T< A <A <A< A <M A <A <A <3< A< A <A <.,

1 In the remainder of this paper, we no longer mention the qualification rectangular explicitly. We always
consider rectangular problems, except when denoted otherwise (for example, during the comparison with
classical square problems).
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Table 1
Within our block Macaulay matrix framework, we observe
four different types of MEPs, organized according to the

structure of the monomials in the combined coefficient ma-
trix M(A1, ..., Apn).

Spectral parameter(s)  Linear Polynomial

Type I Type II
{1, \} A
SEP/GEP PEP

Eigenvalues (n = 1)

Eigentuples (n > 1) Type II1 Type IV
(i=1,...,n) i P A

linear MEP  polynomial MEP

Definition 2 (Multiparameter eigenvalue problem). Given coefficient matrices A, €
RFX! (with k > [+mn — 1), the multiparameter eigenvalue problem M (\{,...,\,)z =0
consists in finding all n-tuples A = (Aq,...,\,) € C™ and corresponding vectors
z € CX1\ {0}, so that

M) z= D AN | z=0, (1)
{w}

where the summation runs over all the multi-indices w of the monomials A* = []""_; A}

and coeflicient matrices A, = A(w,, .. w,)- The n-tuples A = (A1,..., \,) and (non-zero)
vectors z are the eigentuples (with eigenvalues A1, ..., \,) and eigenvectors of the MEP,
respectively.

The size condition on the coefficient matrices is a necessary (but not a sufficient)
condition in order to have zero-dimensional solution set: there are k equations and 1
non-triviality constraint on z (e.g., ||z|l; = 1) in I + n unknowns (I elements in the
eigenvectors and n eigenvalues), thus & + 1 > [ + n. The matrix M (A1,...,\,) is
the combined coefficient matrix of the MEP and is a multivariate polynomial in the
eigenvalues A1,...,\, with matrix coefficients A,,. Table 1 summarizes the different
types of problems that we cover with Definition 2, organized according to the structure
of the monomials in M (\q, ..., \,), i.e., single eigenvalues versus eigentuples and linear
appearance versus polynomial appearance. Examples 2, 3, 4, and 5 (below) each illustrate
one of the four types of MEPs. The block Macaulay matrix algorithms in this paper
provide an elegant, unifying approach to solve all the problems in Table 1.

Example 2 (Type I — SEP/GEP). The standard eigenvalue problem (SEP) Agz = zA,
or (Ag — I)\)z = 0, and the generalized eigenvalue problem (GEP) Agz = A;z), or
(Ag — A1) z =0, are MEPs with n = 1.

Example 3 (Type II — PEP). Polynomial eigenvalue problems (PEPs) of degree dg also
fit perfectly in Definition 2, with n = 1, as
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d
ZAw)\‘“’ z = (ZS: A,L-)\i> z=0.
i=0

{w}

For example, a PEP of degree dg = 4 has five coefficient matrices A; € R**! (k > [) and
is given by

(A() + A1>\ + A2>\2 + A3/\3 + A4/\4) z=0.

Example 4 (Type III — linear MEP). Often, the eigenvalues appear “linearly” in the
monomials of the MEP, for example, a linear two-parameter eigenvalue problem (linear
2-EP)

(A()() + A10>\1 + A()l)\z) z = 0,
with three coefficient matrices A,, € R3*2,
2 6 1 0 4 2
AOO =14 5 71410 =10 1 y and A01 =10 8].
0 1 1 1 1 1

Example 5 (Type IV — polynomial MEP). As a final example, we consider a (multivari-
ate) polynomial MEP of degree dg = 2 with two parameters and four monomials,

(Aoo + A1oA1 + A1 A A + Ag2)3) 2 =0,

which has four coefficient matrices A,, € R3*2,

1 2 2 1 3 4 1 2
AOO =13 4 ;A10 =10 1 aAll =12 1 5 and A02 =14 2.
3 4 I 3 0 1 2 1

Link between the square and rectangular MEP 1In the literature, one often encounters
the classical square MEP, in which n matrix equations with square coefficient matrices
are combined into a multiparameter system [2,41,52]. A linear 2-EP in this classical form
is written as
{Wl ()\1,)\2)9’::(141 +B1)\1+C’1)\2)m=0 (2)
Wo ()\1,)\2)']/ = (AQ + By + CQ)\Q) y=20 '

where (A1, A2) are the eigentuples and the tensor products z = x ® y = vec (y:cT), with
|z||, = 1 and |ly||, = 1, are defined as the corresponding eigenvectors.” The coefficient

2 The vectorization vec () is a linear transformation that converts a matrix into a column vector, by
stacking the columns of the matrix on top of one another.
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matrices A1, As, By, By, C', and Cy are square matrices. Square linear 2-EPs that are
regular (i.e., Ag = B; ® Cy — C1 ® B; is a non-singular matrix) can be transformed
into an equivalent rectangular linear 2-EP via Kronecker products, as the next example
illustrates.

Example 6. On the first page of his book, Volkmer [52] used the following problem to
introduce several aspects of multiparameter spectral theory (a classical square linear
2-EP as in (2)):

4.0 0 1 00 01 0
A;=|0 0 0|,Bi=|0 6 0|,ci=1[1 0 1],
00 0 00 1 01 0

20 0 0 V3 70
AQZ[O 0],B2=[¢§ O],andCQZlO 1]

As shown by Atkinson [1], this regular linear square 2-EP is equivalent with the coupled
GEPs

Alz = on\lz (3)
AQZ = AO)\QZ ’

with ||Z||2 = 1, AO = B1 ®CQ - Cl ®B2, Al = A1 ®C2 — Cl ®A2, and A2 =
B, ®A;— A ® By (A; € R6%5). Via these equivalent coupled GEPs, we can transform
the linear square 2-EP into its equivalent rectangular form:

(&[T [d ) e = o

Note that this transformation leads to a linear rectangular MEP where the number of
rows k is strictly larger than the necessary [ +n — 1. The two block Macaulay matrix
algorithms that we present in this paper can also be used to solve this type of problems.
Since the Kronecker products typically result in large coefficient matrices, this approach
should only be applied to small problems. Furthermore, we need to be careful in the
case of singular problems (i.e., A is a singular matrix), where the equivalence between
the square problem and the coupled GEPs is not straightforward, as discussed by Kosir
and Plestenjak [36], Muhi¢ and Plestenjak [40]. We do not elaborate any further on this
connection.

3. Block Macaulay matrix

In earlier work [20,21,50], we have introduced the block Macaulay matrix in order
to solve MEPs that arrive in the context of system identification. It is a block matrix
extension of the traditional Macaulay matrix [37,38], a sparse and structured matrix
primarily used to solve systems of multivariate polynomial equations [4—6,23-25,51].
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The MEP M (A1,...,A,) z =0 in (1) constitutes the so-called seed equation and its
corresponding block Macaulay matrix is obtained via block forward multi-shift recursions
(block FmSRs): we generate “new” matrix equations {H?zl A } M, ... ) z=0
by multiplying the seed equation (i.e., the generating MEP) with different monomials
[T, A% of increasing total degree dg = S0 d;, and we organize the coefficient matrices
of these matrix equations as the block rows of the block Macaulay matrix.

Example 7. For example, if we start with a quadratic two-parameter eigenvalue problem
(Type 1V),

(Ago + A1oA1 + Aot s + AxpA] + A A ds + Age)3) 2 =0,

and multiply it by the two eigenvalues A\; and Ay, then we obtain two “new” matrix
equations:

A1 (Aoo + Ay + Agidg + AgoA] + At + A02/\%) z
A2 (Ago + A1oA1 + Ao da + AT + A Aids + Ap)3) 2

0
0.

We can continue this process with monomials of increasing total degree dg, i.e.,

A, Az, AT A Ao, A3 AT AT g, .
N—— \ -— 7\

J/

dr=1 dr=2 dr>3

and arrange the resulting coefficient matrices in a block Macaulay matrix (seed equation
in red):

z Az Az )\%z A A2z )\%z )\?{z
1 [Ap | Ao Ao | Azg A A | O |
M| 0 |Ap 0 |Ag Apr 0 | Ay

Ml o] o 0 |Aw O 0 | Ay

When we further enlarge the block Macaulay matrix via block FmSRs with monomials
of increasing total degree dr, we obtain a sparse and structured matrix, as visualized in
Fig. 1.

Definition 3 (Block Macaulay matrix). Given the MEP M (\q,...,\,) z = 0 of degree
ds, which serves as the seed equation, the block Macaulay matrix M (d) € RP(®)xa(d)
of degree d contains the coefficient matrices of the seed equation and the matrix

equations generated by the block FmSRs with monomials of increasing total degree
drp =1,...,(d—dg), i.e.,
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Fig. 1. An example of a block Macaulay matrix M € R5°*84 (degree d = 6) of a quadratic two-parameter
eigenvalue problem (A, € R**3 and dg = 2). The elements of the seed equation, i.e., the generating MEP,
are indicated in red, while the elements of the “new” matrix equations obtained by invoking block FmSRs
of total degree dr > 1 are indicated in blue (the elements not shown are zero). Vertical lines indicate the
different degree blocks, while horizontal dashed lines separate block FmSRs with monomials of different
total degree dr. (For the interpretation of the colors in this figure, we refer the reader to the web version
of this paper.)

M(d) = [SJ]A MO, 2|
=1

where [-] denotes the arrangement of the shifted coefficient matrices A, of the matrix
equations (not the associated eigenvalues or eigenvectors). These shifted coefficient ma-
trices are indexed both in row (different block FmSRs) and column (different associated
monomials) direction by the different monomials in the eigenvalues of total degree at
most d. The number of rows p(d) and columns ¢(d) of M (d) are given by

n!d!

p(d)zk(d_ds+")_ (d—ds +n)! d+n> (d+n)!

n =k n!(d — dg)! and q(d) = l( n

The actual structure of the block Macaulay matrix depends on its multivariate monomial
ordering.

“new” matrix equations obtained

Consequently, we can rewrite the MEP and the
via block FmSRs as a matrix-vector product of the generated block Macaulay matrix

M (d) € RP(@*4(d) and a structured vector v(d) € CaD)*1:;

z

Z/\l

M(d) o

We increase the degree d of the block Macaulay matrix M (d) until it is large enough and
reaches the desired degree d > d*, a concept on which we elaborate in Section 4.2. The
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vector v(d) is a vector in the (right) null space of M(d) and has a block multivariate
Vandermonde structure, which is enforced by the consecutive block FmSRs that generate
the block rows of M (d). In the structure of both the null space (Section 4) and the column
space (Section 5) of M (d) lies the key to solving its generating MEP. To alleviate the
notational complexity in this paper, we no longer specify the degree d explicitly, but we
assume it to be large enough (i.e., d > d*).

Remark 1. Note that we make a distinction between block rows/columns and degree
blocks. A block row (column) gathers all the rows (columns) that correspond to one
monomial (e.g., all the rows that belong to A7), while a degree block contains all the
block rows/columns that correspond to monomials of the same total degree (e.g., all
the rows that belong to A?, A\; X2, and A\2). A degree block thus contains multiple block
rows/columns (except when the total degree is zero or the number of variables is equal
to one). We separate different degree blocks in matrices and vectors with horizontal and
vertical lines, as shown in Fig. 1.

4. Null space based approach

We now exploit the structure of the null space of the block Macaulay matrix in order
to find the solutions of its seed equation, i.e., the MEP that we want to solve. We show
that a multidimensional realization problem in the structured null space yields the affine
solutions of the MEP (Section 4.1). Afterwards, we explain the concept of a large enough
degree and show how to deal with the solutions at infinity (Section 4.2). Finally, we
summarize the different steps of the null space based algorithm (Section 4.3).

4.1. Multidimensional realization theory

We start our explanation with the block multivariate Vandermonde basis matrix (we
assume that we know all the solutions), but we generalize it afterwards to any (numerical)
basis matrix of the null space of the block Macaulay matrix.

4.1.1. Block multivariate Vandermonde basis matrix (theoretical multidimensional
realization problem)

We consider, for didactic purposes, an MEP M (Aq,...,\;) 2 = 0 that only has m,
simple (i.e., algebraic multiplicity is one), affine (i.e., non-infinite), and isolated solutions
(i.e., the solution set is zero-dimensional). If we build a block Macaulay matrix M of
large enough degree d > d* (see Section 4.2), then there exists a block multivariate
Vandermonde vector v|;) (j = 1,...,m4) in the null space of M for every solution
of the MEP and, together, these basis vectors span the entire null space of M. They
naturally form the block multivariate Vandermonde basis matrix V' € C9*™= of degree
d > d* (same degree as M):
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2y 0 2l
()\lz)|(1) (Alz)|(ma)

V = [U|(1) Tt 'Ul(ma)] - ()\nZ)|(1) e (Anz”(ma) . (5)
()\%Z) |(1) T ()\%Z) |(ma)

The structured V' does presume that the (affine) null space of the block Macaulay matrix
has a “special shift structure”. Mathematically, we can write this “special shift structure”
as (when we shift some (block) rows with the first eigenvalue A;)

SV D, = S\, V,

~——
before shift after shift

where the diagonal matrix Dy, € C™a«*™a contains the different solutions for the eigen-
value A\; and the row selection matrices S7 and S}, select the (block) rows before and
after the shift, respectively. We say that the rows in S,V are hit by the shift with A;.
This “special shift structure” does not restrict itself to the first eigenvalue, but applies
to all eigenvalues. It even holds for any shift polynomial g (A1, ..., \,) in the eigenvalues
of the MEP.? For example, when we shift the first three block rows of V' with 2A; + 3\3:

4
z|(1) . Z|(ma) (2)\]_ +3)\2)|(1) . e 0
M2)lgy - (M2, : 5 -
(>\2Z)|(1) (/\2z)|(ma) 0 (2>\1+3>\%)|(ma)
befor‘ershift
M2y A2, (N2z) |y - (22),)
2| Odally o (38| 43 | (w2, o Ol
(AMA2z)q) -+ (MA22)] () ()\gz)|(1) (/\gz”(ma)
after shift
Hence, we obtain the expression
(84V) = (51V) Dy, (6)

3 Shifting with a polynomial instead of a simple eigenvalue can be interesting in some practical situations:
consider the case where the solutions of the MEP characterize the stationary points of a polynomial objective
function in the eigenvalues, then the smallest evaluation of this polynomial objective function (i.e., the
smallest diagonal element of D) corresponds to the minimum of the underlying optimization problem.
Conversely, we want to limit the total degree of the shift polynomial from a computational point of view
(and use only linear shift polynomials), as a higher total degree of the shift polynomial requires a larger
degree of the block Macaulay matrix (see Section 4.2 to understand why the degree d has to be large
enough).
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where the diagonal matrix D, € C™«*™a contains the evaluations of the shift poly-
nomial g (A1,...,A,) in the different solutions of the MEP. In order for this expression
to cover all the affine solutions, the row selection matrix S; € R™e*? has to select
m, linearly independent rows from V' (then S;V is square and non-singular). Actually,
from algebraic geometry and from earlier work on the traditional Macaulay matrix, it
follows that these linearly independent rows correspond to the (affine) standard mono-
mials [4,17,23]. The row combination matriz’ S, € R™e*49 on the other hand, simply
selects the linear combinations of rows hit by the shift with g (A1,..., \,).

4.1.2. Numerical basis matriz (practical multidimensional realization problem)

In practice, we do not know the block multivariate Vandermonde basis matrix V'
in advance, since it is constructed from the unknown solutions of the MEP. We work
instead with a numerical basis matrix Z € C?*™« of the null space of the block Macaulay
matrix M, for example obtained via the singular value decomposition. Before translating
the theoretical multidimensional realization problem into a practical one, we make this
“special shift structure” more concrete.

Proposition 1 (Backward block multi-shift-invariance — Appendiz A). The (affine) null
space of the block Macaulay matriz is backward block multi-shift-invariant. This means
that if we select a block row of a basis matriz of the null space and multiply/shift this
block row with one of the eigenvalues, then we obtain another block row of that basis
matriz (when the degree is large enough).

Backward block multi-shift-invariance is a property of the null space as a vector space
and not of a specific basis matrix (see Appendix A), hence we can also use a numerical
basis matrix Z. There exists a linear transformation T' between both basis matrices,
namely V. = ZT, with T € C"™a*™a a non-singular transformation matrix, which
transforms (6) into a solvable GEP,

(842)T = (5:2)TD,, (7)

where T contains the eigenvectors and D, the eigenvalues of the matrix pencil
(S4Z,S81Z). Alternatively, we can also consider the SEP

(§:2)"'(8,2)T =TD,. (8)
We can then use the matrix of eigenvectors T' to obtain V (via V. = ZT'), and hence,

find the affine solutions of the MEP. The null space of the block Macaulay matrix can
be interpreted as the column space of a multidimensional observability matrix [25,50].

4 When the shift is merely a monomial of (some of the) eigenvalues, the row combination matrix Sy is a
row selection matrix because every shift only hits one row.



C. Vermeersch, B. De Moor / Linear Algebra and its Applications 654 (2022) 177-209 189

In that setting, it is possible to view this null space based solution approach as an exact
multidimensional realization problem in that null space (see Appendix A).

Influence of affine solutions with a multiplicity larger than one When all solutions are
simple, we find one column in the block multivariate Vandermonde basis matrix V of the
null space for every solution of the MEP and every solution/column contributes to the
nullity of the block Macaulay matrix. However, if multiple (affine and isolated) solutions
prevail, the null space of the block Macaulay matrix no longer contains only the block
multivariate Vandermonde solution vectors, but also linear combinations of the partial
derivatives of these solution vectors, i.e., we have a confluent block multivariate Van-
dermonde basis matrix (Dayton et al. [18] and Moller and Stetter [39] give an elaborate
exposition in the case of systems of multivariate polynomial equations). The SEP in (8)
is defective and a proper analysis requires the Jordan normal form and the confluent
block multivariate Vandermonde matrix [6]. In practice, since we work with floating-
point algorithms to compute the SEP in (8), we still find numerical approximations of
the multiple eigentuples and eigenvectors, but we experience a loss of numerical accu-
racy in computing them [27]. Alternatively, we can consider n different shift polynomials
9gi (A1y..., ), e.g., shifting with every eigenvalue \;, and use n Schur decompositions
to accurately obtain the different components of the eigentuples [6,16].

4.2. Concept of a large enough degree

One central question remains unanswered in the above-described approach: “When
is the degree d large enough?” When we increase the degree d by invoking more block
FmSRs, we notice that the nullity of the block Macaulay matrix M (i.e., the dimension
of its null space) stabilizes at the total number of solutions my in the case of a zero-
dimensional solution set. It is possible to monitor this behavior by checking the nullity
of M for increasing d. When the degree d = d*, any basis matrix of the null space has
my linearly independent columns and, when checking the rank of this basis matrix from
top to bottom, at least one linearly independent row per degree block. The structure of
a basis matrix for d > d* depends on whether the MEP has only affine solutions or affine
solutions and solutions at infinity (see Fig. 2).

Only affine solutions When the MEP only has affine solutions (m, = m,), these linearly
independent rows correspond to the affine standard monomials. For larger degrees d >
d*, they remain stable at their respective positions and new degree blocks contain no
additional linearly independent rows (see Fig. 2a). We identify two zones in the basis
matrix: a regular zone that contains the linearly independent rows related to the affine
standard monomials and a gap zone without additional linearly independent rows.

Affine solutions and solutions at infinity An MEP can also have solutions at infinity,
due to the singularity of some higher degree coefficient matrices. The nullity of the block
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(b) Affine solutions and solutions at infinity

Fig. 2. A basis matrix of the null space of a block Macaulay matrix M, which grows by invoking more block
FmSRs (increasing d). At a certain degree d* (in this example d* = 4), the nullity stabilizes at the total
number of solutions mp. In the situation with only affine solutions (Fig. 2a), the linearly independent rows
of the basis matrix, checked from top to bottom, correspond to the affine standard monomials and stabilize
at their respective positions (indicated by dashed lines). New degree blocks contain no additional linearly
independent rows when d > d*. When the MEP has solutions at infinity (Fig. 2b), the linearly independent
rows of the basis matrix that correspond to the standard monomials related to the solutions at infinity
(also indicated by dashed lines) move to higher degree blocks when d > d*. A gap in the rows emerges that
separates these two types of linearly independent rows, and the influence of the solutions at infinity can be
deflated via a column compression.

Macaulay matrix after stabilization corresponds to the total number of solutions my
of the MEP, which is now the sum of the affine solutions and the solutions at infinity
(mp = Mg + Mo ). Every solution spans one basis vector in this null space, hence all the
columns of the numerical basis matrix are linear combinations of affine solutions and
solutions at infinity. Next to the affine standard monomials, also linearly independent
rows related to the standard monomials that correspond to solutions at infinity appear
in the basis matrix. When we increase the degree (d > d*), the linearly independent rows
that correspond to the affine standard monomials remain again stable at their respective
positions, but the standard monomials that correspond to the solutions at infinity move
to higher degree blocks when the block FmSRs proceed (see Fig. 2b). Eventually, a gap
in the rows emerges that separates both types of linearly independent rows. This gap
grows when we keep increasing the degree d > d*. Now, we observe three zones in the
basis matrix: a regular zone, a gap zone, and a singular zone that contains the linearly
independent rows related to the standard monomials that correspond to the solutions at
infinity. Via a column compression [23], we can deflate the solutions at infinity and use
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the affine null space based approach as if no solutions at infinity are present (we simply
replace Z in (7) by Wy).

Definition 4 (Column compression). A numerical basis matrix Z = [ZrlF Z;F]T of the
null space of the block Macaulay matrix M is a ¢ x m; matrix, which can be partitioned
into a s X my matrix Z; (that contains the regular zone and gap zone) and a (¢ —s) x my
matrix Z, (that contains the singular zone), with rank (Z1) = m, < my. Furthermore,
let the singular value decomposition of Z; = UEXQ™'. Then, W = ZQ is called the
column compression of Z and can be partitioned as

vl )

Wio Wa
where W1 is the s X m, compressed numerical basis matrix of the null space.

When we want to shift the linearly independent rows that correspond to the affine
standard monomials in (6) with a shift polynomial g (A1,...,\,) of degree d,, the gap
zone needs to be able to accommodate this shift, which means that the rows that corre-
spond to the monomials with the highest total degree hit by the shift must be present
in the gap zone. Hence, the degree d of the block Macaulay matrix is large enough when
d>d* +d,.

4.3. Null space based algorithm

Algorithm 1 Null space based approach.

1: Recursively enlarge the block Macaulay matrix M until its nullity has stabilized and the gap can
accommodate the (user-defined) shift polynomial, i.e., the degree d is large enough (Section 4.2).

2: Compute a numerical basis matrix Z of the null space of M.

3: Determine the gap and the number of affine solutions m, via row-wise rank checks from top to bottom
in Z (Section 4.2).

4: Use Definition 4 to obtain the compressed numerical basis matrix W1, of the null space.

5: For a (user-defined) shift polynomial g (X1,...,A,) and W, that can accommodate the shift (i.e.,
d > d" +dg), solve the GEP

(SgW 1) T = (S1W11)TDy,

where the matrices S1, Sy, T, and D, are defined as in (7).
6: Retrieve the solutions from the (affine) block multivariate Vandermonde basis matrix V.= W, T.

Remark 2. Since we only select linearly independent rows and not block rows from the nu-
merical basis matrix Z, we do not fully exploit the backward block multi-shift-invariance
of the null space. Furthermore, row-wise rank checks from top to bottom to identify the
linearly independent rows are numerically not very robust. However, instead of selecting
mg linearly independent rows of Z, the row selection matrix S; € R™*? can also se-
lect entire block rows of Z (but needs to contain at least m, linearly independent rows
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to cover all the affine solutions). Because of the block multi-shift-invariance, the row
combination matrix §, € R™*? also selects entire block rows of Z. Mathematically, we
consider a rectangular matrix pencil (S,Z,S1Z) or use the pseudo-inverse (.7) to obtain
a solvable SEP

($:2)"(S,2)T =TD,.

Shifting entire block rows (or degree blocks) replaces the row-wise rank checks by more
efficient (degree) block row-wise rank checks.

5. Column space based approach

In this section, we consider the column space of the block Macaulay matrix instead
of its null space. The intrinsic complementarity between both fundamental subspaces
(Section 5.1) enables a new, complementary algorithm to solve MEPs, which works
directly on the sparse and structured data (Section 5.2). We summarize the different
steps of the column space based algorithm, but we do not elaborate in detail on exploiting
the sparsity and structure (Section 5.3).

5.1. Complementarity between the null space and the column space of a matrix

The null space and column space of an arbitrary matrix share an intrinsic comple-
mentarity. We give the following lemma without proof [23, p. 41]:

Lemma 1 (Complementarity of linearly independent rows and columns). Consider a
matriz M € RP*9, with rank (M) = r < min (p,q). Let Z € C9*(4=") be a full column
rank matrix, the columns of which generate a basis matrix of the null space of M : M Z =
0. Using a row permutation matriz P, reorder the rows of Z into PZ = [Z£ Zg}T,
where the submatriz Z o contains exactly q — r linearly independent rows, and partition
the columns of the matriz M accordingly with P~ so that MP™! = [Msy Mg|:

MZ=MP 'PZ=MsZs+MgZg=0. Then
rank (M p) =r < rank(Z4) =q—r.

The choice of the row permutation matrix P is not unique, there exist many pos-
sibilities to identify ¢ — r linearly independent rows in Z. This lemma expresses a
complementarity for maximal sets of linearly independent rows in Z with respect to maxi-
mal sets of linearly independent columns in M. Obviously, we have M sZ 4 = —MpZp,
such that M4 = Mp (ZpZ') expresses the linearly dependent columns of M as a

linear combination of the linearly independent ones and Zp = — (M EM A) Z 4 ex-
presses the linearly dependent rows of Z as a linear combination of the selected linearly
independent ones. This lemma leads to an important observation: when we index the
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linearly independent rows of Z (row-wise from top to bottom), it turns out that the
“corresponding” columns of M are linearly dependent columns on the other columns of
M (column-wise from right to left), as the next example illustrates.

Example 8. We consider a matrix M € R**7 and a basis matrix of its null space Z €
C7X3:

F 00 17
20 0 1 0 3 37| o
4 6 0 2 0 0 0
MZ=1_4 90 2 0 - o of| oy 5 77°
2 0 0 0 2 ¢ 6| Y o 72
-1 0 o]

The linearly independent rows of Z, checked from top to bottom, are indexed as {1,2,6}.
On the other hand, the linearly dependent columns of M, checked from right to left, are
also indexed as {1,2,6}, in accordance to Lemma 1.

We can now apply Lemma 1 to the block Macaulay matrix and any basis matrix of its
null space. Observe that we can replace Z by a linear transformation ZT', so Lemma 1
is independent of the choice of basis matrix of the null space. The solutions of the MEP
give rise to standard monomials, which are visible in both the null space and the column
space of the block Macaulay matrix. When we check the rank of the basis matrix row-
wise from top to bottom, every linearly independent row corresponds to exactly one
standard monomial. Similarly, every linearly dependent column of the block Macaulay
matrix, checked from right to left, also corresponds to exactly one standard monomial.
Fig. 3 visualizes the complementarity between both fundamental subspaces. Note that
the gap in the basis matrix of the null space is a gap of linearly dependent rows, while
the gap in the block Macaulay matrix is a gap of linearly independent columns.

5.2. Equivalent column space realization theory

We consider again a block Macaulay matrix M € RP*? with large enough degree
d > d* + dg, and a numerical basis matrix W € C9™ of its null space after a col-
umn compression (see Definition 4). When we shift the linearly independent rows of the
compressed basis matrix Wy, with a shift polynomial g (A1,...,\,), we obtain again

(SgW11)T = (S1W11)TDy, (9)

where the matrices Sy, Sy, T, and D, are defined as in (7). Next, we define two new
matrices B and C'. The matrix B € C"«*™a contains all the linearly independent rows
of the matrix W, which corresponds to the selection S1W1, and is partitioned so
that each of its top mp = mg — m, rows (denoted by Bj) only hits rows inside B after



194 C. Vermeersch, B. De Moor / Linear Algebra and its Applications 654 (2022) 177-209
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Fig. 3. If we check the rank of a basis matrix Z of the null space of the block Macaulay matrix M row-
wise from top to bottom, every linearly independent row corresponds to one standard monomial (indicated
by dashed lines). Because of the complementarity between the null space and column space, the linearly
dependent columns of M (also indicated by dashed lines), checked column-wise from right to left, correspond
to the same standard monomials.

shifting with g (A1, ..., A,) and each of its bottom m,. rows (denoted by B3) hits at least
one row not in B. We gather the m. linear combinations of rows hit by shifting the rows
of By in the matrix C € C™<*™a and rewrite (9) as a matrix pencil (A, B),

S' B B,
97| T = TD
e | (e

A B

where shifting the rows in B leads to linear combinations of rows only in B (B1 — S} B)
and shifting the rows in By leads to linear combinations of rows in B and/or not in B
(By — C), with S; the my, X m, row combination matrix that selects the m;, = mg, —m.
linear combinations of rows in B hit by shifting the rows of B;. For example, if we shift
the 7th row of By and ¢ (A1,...,Ay) hits the pth row of B (b,) and the vth row of W
(w, — not in B), then the 7th row of C is equal to ¢,b, + c,w, (the coefficients ¢,
and ¢, come from the shift polynomial). The matrix D, is again a diagonal matrix that
contains the evaluations of the shift polynomial g (A1, ..., \,) in the different eigenvalue
solutions. We can extract the matrix B from the column matrix in the left-hand side,
after which an SEP appears (with BT as its matrix of eigenvectors):

S/
[C’Bg_1] BT = BTD,. (10)
The matrix B is invertible because it contains m, linearly independent rows by con-
struction (the rows that correspond to the affine standard monomials). In the remainder
of this section, we translate (10) to the column space via Lemma 1, avoiding the com-
putation of a numerical basis matrix of the null space.

The matrices B and C contain rows (or linear combinations of rows) of the matrix
W ;. We define the matrix D € C™r*"e (with m, = s — m, — m.) as the matrix that
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contains the remaining rows of W, such that every row of W, is represented once in
B, C, or D. For example, if a row in C' contains a linear combination of multiple rows
of W, then that row of C represents only one of those rows in the linear combination.
The other rows of the linear combination need to be represented by other rows of C, or
they are included in B or D. Consequently, we can rearrange the basis matrix W as

B 0
C 0
PW=1p o |
Wiar Wao

where the matrix P is a ¢ X ¢ row combination matrix that is invertible (because it is
square and of full column rank by construction) and does not alter the rank structure
of W' (because it takes linear combinations of rows that already depend linearly on the
rows in B). Using Lemma 1, we can rearrange the columns of the block Macaulay matrix
in accordance to the rearranged basis matrix of the null space and obtain

B 0
C 0

Ny No Ny NiJ| 5 0 | =0 (11)
N Wior Wao

where every matrix IN; € RP*% corresponds to a subset of the columns (or linear
combinations of columns) of M. We call N = MP~! € RP*9 the rearranged block
Macaulay matrix. Now, we apply a backward QR-decomposition® on N, which yields

Ry, Rz R Ry B 0
Q Ry, Ro3 Roo 0 C 0 —0
R, Rss 0 0 D 0 -

or, if we pre-multiply both sides by Q' = Q7 (the labels denote the number of
rows/columns of the different blocks®),

5 Essentially, the backward QR-decomposition triangularizes the rearranged matrix IN as the traditional
forward QR-decomposition, but starts with the last column of N and iteratively works towards the first
column of N. Its result is similar to the result of the traditional forward QR-decomposition of the matrix
with all its columns flipped.

6 A closer analysis of the upper triangular matrix R reveals two special cases. Firstly, Wy; and Ws
are absent from W when there are no solutions at infinity. As a consequence, (11) no longer contains N4
and ¢ — s = 0, which means that we can ignore the first block row and last block column of R (see the
numerical example in Section 6.1). Secondly, the size of the block Macaulay matrix M determines the size
of Ry4: when p > g the matrix Ry44 is tall, when p < g the matrix Ry4 is wide, and when p = ¢ — m,
the matrix R44 is absent (see the numerical example in Section 6.2). Note that it can even happen that
p=qg—mp < q— mg when the MEP has solutions at infinity: then we need to use a larger degree d or
remove the linearly dependent columns in IN4, which correspond to the standard monomials related to the
solutions at infinity, to ensure that p > ¢ — m, and to obtain the structure of R as presented in (12) (see
the numerical example in Section 6.4).
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Mg Me My ¢— 8
¢g—s | Ria Riz Ri2 Rn B 0
m, | Roa Roz Rz 0 g 0 1 _po (12)
me R34 R33 0 0 0

p—q-+m, | Ra 0 0 0

We notice that R33C = —R34 B, which means that
CB ' = —R;)' Ry,

because Rg33 is always of full rank (since the rows of C depend linearly on the rows of
B and the complementarity of Lemma 1). Note that R4y is always a zero matrix for the
same reasons (since the rows of B are linearly independent and the complementarity of
Lemma 1). This relation helps to remove the dependency on the null space in (10) and
yields a solvable SEP in the column space (with H = BT),

S/
l 7 ] H=HD,,

or a GEP (to avoid the computation of the inverse of Rg33),

S’ I 0
g9 |H=|""" HD 1
{—R:’A] { 0 R33] 7 (13)

with I,,, € N™»>*"h the identity matrix. The matrix of eigenvector H = BT corre-
sponds to the partitioned linearly independent rows of the (affine) Vandermonde basis
matrix V', because the non-singular transformation matrix 7" relates the rows of the
numerical basis matrix Wy; (or B) to the rows of V. Consequently, the eigenvalues in
D, and eigenvectors in H yield the solutions of the MEP. Note that this complemen-
tary column space based approach does not require a column compression to deflate the
solutions at infinity, because the backward (Q-less) QR-decomposition already separates
them implicitly.

5.3. Column space based algorithm

Remark 3. Note that, when the shift polynomial g (A\1,...,\,) is merely a monomial of
(some of the) eigenvalues, the row combination matrix P is a row permutation matrix
(every hit consists of only one row), and its inverse P! is equal to its transpose PT.
Applying P* to the block Macaulay matrix M corresponds to reordering the columns
of M in accordance to PW, which is quite easy to implement.

Remark 4. Contrary to the null space based approach where we retrieve the different
components of the solutions from the (affine) block multivariate Vandermonde basis
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Algorithm 2 Column space based approach.

1: Recursively enlarge the block Macaulay matrix M until its nullity has stabilized and the gap can
accommodate the (user-defined) shift polynomial, i.e., the degree d is large enough (Section 4.2).
2: Determine the linearly dependent columns via rank checks from right to left and rearrange M as in (11).

3: Compute the (Q-less) backward QR-decomposition of the rearranged block Macaulay matrix N.
4: For a (user-defined) shift polynomial g (A1, ..., A\pn), solve the GEP
s’ I,, 0
9 |H = " HD,,
[—R34] { 0 RSB] !

where the matrices S'g, I,,,, R33, R34, and D, are defined as in (13).
5: Retrieve the solutions from the eigenvalues in D, and the eigenvectors in H (see Remark 4).

matrix V', the matrix H in the column space based approach does not necessarily contain
all the components of the solutions. Therefore, we need to choose one or multiple shift
polynomials g; (A1,...,A,) so that the matrices Dy, yield the remaining components
(see the numerical example in Section 6.2). One strategy is to always shift with the n
different eigenvalues, which results in n GEPs that yield the n different components of
the (affine) solutions. Note that, in order to obtain accurate solutions in the presence of
multiplicities, we can also apply this strategy in the null space based approach [16,6].

6. Numerical examples

In this section, we present several numerical examples to illustrate the column space
based algorithm and to compare it with its null space based counterpart.

6.1. Linear two-parameter eigenvalue problem with affine solutions only

In our first numerical example, we consider the linear 2-EP from Example 4 and
use a shift polynomial g (A1, A2) = 4A3 for didactic purposes. In both algorithms, we

recursively build a block Macaulay matrix M for increasing degree d = 1,...,4:
d size nullity standard monomials
d* — 1 3 X6 3 21,22|)\121

2 9x12 3 21,29 | A121
3 18 x 20 3 VARR ) | )\121
3

d*+dy — 4 30 x 30 21,22 | A\121

For this easy example, we notice via rank checks that the nullity of M has already
stabilized for degree d = 1. Because we want to shift with a shift polynomial of degree
dg = 3, the degree d of M is large enough to accommodate the shift when d > d*+d, = 4.
Via a singular value decomposition, we compute a numerical basis matrix Z € C39%3 of
its null space. The first three rows of Z, which correspond to the variables z{, 25, and
A121, are linearly independent (we obtain this information via row-wise rank checks of
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Z from top to bottom) and correspond to the standard monomials. As the nullity is 3,

there are no solutions at infinity. The row selection matrix S; € R3*30 selects these three

R3%30 gelects the

linearly independent rows of Z, and the row combination matrix S, €
rows that correspond to the monomials hit by shifting these standard monomials with

g (A1, \2) = 4)3, namely the 19th (\321), 20th (A322), and 27th (A A3z1) row:

1 2 3 4 30
(1 0 0 0 --- 0

Si= [0 1 0 0 --- 0| and
0010 - 0
1 18 19 20 21 26 27 28 29 30
K O 4 0 0 - 0 0 0 0 0

S,= |0 O 0 4 0 - 0 0 0 0 0
0 O 0 0 0 --- 0 4 0 0 0

After constructing S; and S, we set up the GEP in (7), and we compute the diagonal
matrix D, that contains the evaluation of the shift polynomial g (A1, A2) = 4)3 in the
different solutions and the non-singular transformation matrix 7" that leads to the block
Vandermonde basis matrix V' = ZT', from which we can retrieve the m; = m, = 3 affine

solutions:
z|(1) z|(2) z|(3)_
4N3], 0 0 M2l Mzl (M2)l,
D, = 0 4 )3 ) 0 and V = ()\2Z)|(1) (/\gz)|(2) ()\22)|(3)
0 0 43| ) (M32)] 0y (N2)] ) (M2)] 4

When we repeat this numerical example via the column space based approach, we start
by identifying the linearly dependent columns (from right to left) of M. We find that the
first three columns are linearly dependent on the other columns (from right to left) and
correspond to the standard monomials. We build the inverted row combination matrix
P! € R30%30 g5 in Section 5.2 (I, € N¥%% is the identity matrix):

and P~ =

coococol
B
ScooNoOO
coococo
cocoococo~
NN
coo~NOO
[\v)
=
o~NoOo 0O
oooog'o
cofNocoo
cocoococo

OD;DOD

~
w
~

w

where the first three rows of P select the linearly independent rows of B, the next three
rows of P create the linear combinations of rows of C, and the remaining rows of P
result in D. We do not multiply Z by P, but we use P! to rearrange the columns
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Table 2

The numerical solutions (and residual errors) of Exam-
ple 4 obtained via the column space based algorithm.
The residual error is determined by substituting the nu-
merical solution in the linear 2-EP and calculating the
norm of the residual vector ||e|l2 = || M(A], A3)z"]|2.

A1 A2 zZ1 zZ2 ”6“2
0.9338 —1.3750  0.7848 0.6197 2.8 x 104

1.3683 0.0552 0.8623 —0.5065 6.0 x 10~ 1°
3.6026 —0.4183 0.7958 —0.6056 2.6 x 10”4

of M into the matrices N1, Ng, and N3 (since there are no solutions at infinity, we
do not have a matrix N4). The backward (Q-less) QR-decomposition of N = MP~*
results in the matrices R33 and R34 of (13) (see Footnote 6 for the structure of R when
the matrix IV, is absent). The GEP yields the matrices D, and H, from which we can
again retrieve the three affine solutions of the linear 2-EP:

4/\§|(1) 0 0 Z1|(1) Zl|(2) Zl|(3)
3
Dg = 0 4)\2‘(2) g and H = Z2|(1) 22|(2) 22|(3)

The residual error’ of all solutions obtained via the column space based approach is
smaller than 2.8 x 10~'4 and the maximum absolute difference with the null space based
approach is equal to 2.2 x 10713, Table 2 contains the numerical solutions (and residual
errors) obtained via the column space based algorithm.

6.2. Linear three-parameter eigenvalue problem with shift issues

In the previous example, any shift polynomial with a power of Ay yields a perfectly

reconstructable solution. But as mentioned in Remark 4, the situation is sometimes more
difficult.

Example 9. Let us consider the following linear three-parameter eigenvalue problem (lin-
ear 3-EP)

(Aooo + A100A1 + Aorode + Ago1As) z =0,

with four coefficient matrices A, € R**?,

2 3 1 0 4 2 1 2

2 5 0 1 2 3 1 4

Agoo = 0 1 , A100 = 1 1 s Ao1o = 3 11> and Ago1 = 2 1

1 1 2 1 3 1 4 2
7 We calculate the residual error by substituting the computed eigentuples (\},...,\*) and eigenvec-
tors z* in the MEP and determining the norm of the residual vector |le||, = [|[M (A],..., ) z"||,. The

maximum absolute difference corresponds to the maximum difference between all the corresponding affine
*

. . .
eigenvalues ‘Amlull = A column|s fOr 1 =1,...,mg.
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Table 3

The numerical solutions (and residual errors) of Example 9 obtained
via the column space based algorithm. The residual error is determined
by substituting the numerical solution in the linear 3-EP and calcu-
lating the norm of the residual vector | e|l2 = [[M(A], A5, A5)z"||2.

A1 Ao A3 21 Z2 llell,

—0.8534 1.1686 —1.5469 —0.4647 0.8854 1.2 x 107
2.8123 —0.6635 —1.2924 0.7251 0.6886 2.3 x 1074
—1.3941 0.3207 0.2656 —0.8886 0.4588 9.4 x 10714
0.1653 —2.0595 0.1933 —0.1236 —0.9923 1.5 x 107!

We start with a block Macaulay matrix M € R'6%20 of degree d = 2 > d* (see
Footnote 6 for the structure of R when M is not tall). When we check the columns
of M from right to left, we observe that the first four columns (which correspond to
the variables z1, z2, A\121, and \;22) are linearly dependent on the other columns. Thus,
the matrix H contains references to the variables z1, zo, A\1z1, and A\;zo evaluated in
each of the affine solutions, but no references to Ay or A3. Hence, not one, but two shift
polynomials (with references to Ay and A3) are required to find all the components of the
solutions via the eigenvalues of two different GEPs. We shift in this numerical example
with g1 (A1, A2, A\3) = A2 and go (A1, A2, A3) = A3 to obtain also the two remaining eigen-
values in D, and Dg,. As mentioned in Remark 3, a shift with a monomial results in a
row permutation matrix P, which we can implement via column selections: for the shift
g1 (A1, A2, A3) = Ao, the inverse row selection matrix P! gathers the first four columns
in N7 (which are the columns that correspond to the affine standard monomials), the
5th (A221), 6th (A222), 11th (A A221), and 12th (A1 A221) column in Ny (which are the
columns hit by the shift), and the remaining columns in N3 (a similar column selection
exists for the shift g (A1, A2, A3) = A3). In order to match the different eigenvalues Ay
and A3, we can use the matrix of eigenvectors H in both GEPs or work with the Schur
decomposition [6,16]. Table 3 contains the solutions obtained via the column space based
approach. The maximum residual error and maximum absolute difference with the null
space based approach (both calculated as in the first numerical example”) are equal to
9.4 x 107 and 1.0 x 10713, respectively.

6.3. Volkmer’s square two-parameter eigenvalue problem

In Example 6, we show how to transform the regular linear square 2-EP into a linear
rectangular 2-EP. To demonstrate that our algorithms can also solve this transformed
problem with overdetermined coefficient matrices (i.e., k = 2l > I+n—1), we solve (4) via
the null space and column space based approach. A block Macaulay matrix M € R36*36
of degree d = 2 > d* suffices to compute the same eigenvalues as in [52]. Table 4 contains
the results of the column space based algorithm (maximum residual error” is 2.7 x 10713),
which are identical to the results of the null space based algorithm (maximum absolute

difference” is 1.4 x 107'%). Note that our results agree with the results obtained by the
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Table 4

The numerical solutions (and residual errors) of Example 6 obtained via the column space based
algorithm. The residual error is determined by substituting the numerical solution in the linear 2-EP
and calculating the norm of the residual vector |le]|2 = [|[M(A], A3)z"||2.

A1 A2 21 z2 z3 Z4 z5 Z6 llell2

—5.0000 —5.0000 —0.4811 0.8333 0.0962 —0.1667 —0.0962 0.1667 2.7 x 10713
—1.0000 —3.0000 0.2611 —0.1508 0.2611 —0.1508 —0.7833 0.4523 1.4 x 10713
—4.1089 1.6171 0.2210 0.9726  0.0149 0.0655 0.0059  0.0258 1.2 x 107
1.4422 —3.1410 0.1832 0.1457  0.3175 0.2525 0.6915 0.5499 1.1 x 10713
0.0000 0.0000 0.0000 0.0000  0.0000 1.0000 0.0000  0.0000 1.0 x 1071
0.0000 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 1.0000 1.0 x 10~1¢

MultiParEig toolbox [42], which solves (3) via the QZ-algorithm and results in a maximum
residual error of 6.3 x 10714,

6.4. Polynomial two-parameter eigenvalue problem with solutions at infinity
Next, we revisit the polynomial MEP with two parameters from Example 5 and use

a shift polynomial g (A1, A2) = A1. We recursively build the block Macaulay matrix M
for increasing degree d = 2,...,5:

d size nullity standard monomials

2 3 x12 9 21,22 | )\121, )\122, )\221, )\222 | )\%21, )\%22, )\1)\221
3 9%x20 11 21, 22| Aiz1, Adrze, Aazi, Aaza | ATz1, A2 22, At ezt | ASz1, A3z
d* =418 x30 12 21,22 A121, \122, Aaz1, Aeza | ATz1, Az, M dazr | NS 21 | A 21, Az
d*+dy — 530x42 12 21, 22| Mz1, Mz2, A2z, Aaza | ATz, Af 22, A1 d2z1 |gap| Aiz1 | Az, NSz

A degree d = 5 block Macaulay matrix M suffices to solve this MEP via both the null
space and column space based approach. In the null space based algorithm, we need to

compute a numerical basis matrix Z € C42*12

of the null space (since we have my = 12
solutions) and determine the gap via row-wise rank checks from top to bottom. The
gap indicates that this problem has m, = 9 affine solutions and m., = 3 solutions
at infinity. At this degree, the linearly independent rows related to the affine standard
monomials have stabilized. We notice an analogue behavior in the column space of M.
However, because of the backward (Q-less) QR~decomposition, we do not need to deflate
the solutions at infinity via a column compression. Note that for degree d = 5 the block
Macaulay matrix is not yet tall, i.e., p < q (see Footnote 6 for the structure of R when
p=q—mp < q—mg). We can alleviate this problem by using a larger degree d or by
removing the linearly dependent columns in IN4. We choose in this numerical example
the latter option and remove the 21st (A\fz1), 31st (AJ21), and 32nd (AJ22) column from
M when splitting into N1, No, N3, and N4. Algorithm 2 obtains the affine solution of
Table 5. The maximum residual error of the column space based algorithm is 4.8 x 10713,
while the maximum absolute difference with the null space based results is equal to
1.7 x 10712 (both calculated as in the first numerical example’).
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Table 5

The affine numerical solutions (and residual errors) of Example 5 obtained via the column space
based algorithm. The residual error is determined by substituting the numerical solution in the
polynomial 2-EP and calculating the norm of the residual vector |le]l2 = ||[M(A], A3)z"]|2.

A1 A2 Z1 Z2 ”6”2

1.4027 £ 0.3941¢ —1.3835 F 0.8431: 0.4676 F 0.5024i —0.6678 4 0.2881; 5.1 x 10~ 14
—0.9699 £ 0.71687 —0.1113 £ 0.57414¢ 0.4140 F 0.5713 0.2080 + 0.6775i 1.1 x 107
0.8543 + 0.00007 —0.9341 + 0.00007 —0.7644 + 0.0000% 0.6448 + 0.00005 2.8 x 107 *°
0.2737 4 0.0751: —0.1917 F 0.2408: 0.8272 4+ 0.0000i —0.5617 F 0.0171¢ 1.0 x 10~
—0.4497 £ 0.06621¢ 0.6094 F 1.05341 0.1726 F 0.52414 0.4176 4+ 0.7219; 7.6 x 10~ **

6.5. System identification problem

Finally, we consider the identification of the globally optimal parameters of an ARMA
model via the MEP methodology described by Vermeersch and De Moor [50]. We consider
a first-order ARMA(1,1) model, which combines a regression of the observed output
variable yr € R on its own lagged value y;_; with a linear combination of unobserved,
latent inputs I and 1 € R [11]:

Y + oayr—1 =l + ylp—1, (14)

where the weighting factors a and + are the model parameters of this ARMA model.
For a given series of N output samples y € RV*1, we search the model parameters that
minimize the sum of squares of the latent inputs o2 = ||l||g, subject to the ARMA(1,1)
model structure of (14), which corresponds to

. 2
min [|Z[f;

) &y

subject to yx + ayr—1 = lx + Ylg—1,

for all data points yr (K = 2,...,N) in the given series of output samples y.
Vermeersch and De Moor [50] have shown that the globally optimal solution to
this identification problem is given by a quadratic two-parameter eigenvalue problem
(Aoo + Ajpa+ Agr1y + Aogfyz) z = 0. The exact construction of the (3N — 1) x (3N — 2)
coefficient matrices A, can be found in [50]. We apply this approach on a sequence of
N = 7 output samples (without any a priori assumptions)

- 1.50007]
—0.3591
0.1129

y=| 05449] . (15)

—0.0790
0.1143
0.1368_

We now use both block Macaulay matrix algorithms to solve the quadratic two-
parameter eigenvalue problem (with 20 x 19 coefficient matrices A,,) that yields the
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Table 6

The identified real parameters o and ~ of the
ARMA(1, 1) model given by the data in (15), com-
puted via the column space based algorithm. The
value of the objective function o2 in the identified
minimum is smaller than in the saddle points.

Stationary point « ¥ o2
Saddle point —0.1172 —0.7597  0.5750
Saddle point 0.1136 0.8416  0.4699
Minimum 0.2097 0.1611  0.3531
1 \
X
0.5 |-
- 0
—0.5 |4
X /
1 \
—1 0 0.5

Fig. 4. The contour plot of the objective function of the ARMA(1,1) model given by the data in (15) for
the model parameters o and ~ in the unit interval [—1,1]. The value of the objective function ¢? in the
minimum (%) identified via the column space based approach is smaller than in the saddle points (X).

optimal model parameters. The solution set of this problem is positive-dimensional at
infinity, which means that the nullity of the block Macaulay matrix does not stabilize
(there are an infinite number of solutions). Instead of checking the nullity of the block
Macaulay matrix for a growing degree d, we monitor the standard monomials and look
for the emergence of a gap zone, which we observe for a degree d = 37 block Macaulay
matrix with size 13320 x 14079. Afterwards, a column compression (null space based
approach) or a backward (Q-less) QR-decomposition (column space based approach)
deflates the positive-dimensional solution set at infinity and we find m, = 77 affine solu-
tions for the MEP. Only three solutions are real, and hence interesting in this practical
setting: we find one minimum and two saddle points (see Table ). When we compare
this identified minimum with a visualization (Fig. 4) of the objective function o2, we
observe that we indeed have a global minimum within the unit domain [—1,1] x [—1,1].
One immediately notices that the matrices involved in this identification problem quickly
grow much larger than in our previous numerical examples. Realistic problems fuel the
search for more efficient implementations that exploit the sparsity and structure of the
block Macaulay matrix.
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7. Conclusion and future work

In this paper, we exploited the complementarity between the null space and column
space of the block Macaulay matrix to propose a new algorithm that considers the
column space of the block Macaulay matrix. Contrary to the existing null space based
approach, this column space based algorithm does not require an explicit computation
of a numerical basis matrix of the null space, but considers the data in the columns
of the block Macaulay matrix directly and removes the influence of the solutions at
infinity implicitly via a backward (Q-less) QR-decomposition. We also provided several
numerical examples to illustrate both block Macaulay matrix algorithms and to test our
new column space based approach.

Our last numerical example, the globally optimal least-squares identification of an
ARMA model, has fueled several new research ideas. When the coefficient matrices grow,
the computational complexity of both the null space and column space based algorithm
increases rapidly. In particular the rank checks to determine the linearly independent
rows of the basis matrix or the linearly dependent columns of the block Macaulay ma-
trix are computationally expensive. The backward (Q-less) QR-decomposition, which
constitutes the core of the column space based approach, has created several algorith-
mic opportunities. We want to improve the column space based algorithm by exploiting
the sparsity and structure of the block Macaulay matrix, by considering block columns
instead of columns (i.e., by taking fully advantage of the backward block multi-shift-
invariance), by looking into rank-revealing QR-decompositions, and by developing recur-
sive techniques. Furthermore, the complementarity between both fundamental subspaces
may even yield more useful properties in the column space. Together with a better un-
derstanding of MEPs, these advances will give us the machinery to tackle much larger
problems in the future.
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Appendix A. Backward scalar/block single/multi-shift-invariant subspaces

The algorithms in this paper strongly rely on the concept of backward (block multi-)
shift-invariance. Shift-invariance of a subspace is usually defined for infinite matrices,
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i.e., operators [26]. De Cock and De Moor [19] have adapted in their paper the definition

of backward scalar /block single/multi-shift-invariance to finite dimensional subspaces.®

Definition 5 (Backward scalar single-shift-invariance). Let R (G) be the range of a matrix
G € C™*" with full column rank. R (G) is backward scalar single-shift-invariant if and
only if

R(G) CR(G),

where G and G (with full column rank) are the matrix G without its first and last row,
respectively.

The backward scalar single-shift-invariance of R (G) can also be expressed as
ar e ™" : GI = G,

where R (G) = R(Q) if T is non-singular (and otherwise R (G) C R(G)). We can
rewrite these row selections via row selection matrices S and S5, similar to the math-
ematical formulation in other parts of this paper. The property above can then be
expressed as

ar e C™": (S,G)T = (S-G), (A1)

where S and S5 select all the rows of the matrix G except the last one and the first one,
respectively. Note that shift-invariance is a property of the vector space, and not of the
specific basis matrix of this vector space. If we consider a second basis matrix H € C™*"™
then there exists a basis transformation via a non-singular matrix T' € C™*", such that
G = HT. Consequently, we can rewrite (A.1) as

(S1H)A = (S;H), with A=TTT '

Clearly, the matrices I' and A are similar, and hence have the same spectrum. This
property allows us to interpret the basis matrices of backward shift-invariant column
spaces as observability matrices of multidimensional systems. In that regard, we can
see the null space based solution approach, where we search for the spectrum of T' (or
A), as a multidimensional realization problem. Then, the full rank condition of G is
equivalent with the system being observable and the full rank condition of G is the
partial realization condition, required for a unique solution [19,25].

8 Note that sometimes ambiguity arises when considering the shift operator. In this paper, we adopt the

convention of Garcia et al. [26], and we define the backward shift operator as S {f(z)} = M

terms of Taylor coefficients {a;},~, of f(2), as S {(ao,a1,...)} = (a1,a2,...).

, or, in
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Example 10 (Backward scalar single-shift-invariance). When we consider a univariate

Vandermonde matrix Vi € C@+TD*" (with n distinct variables and a degree d), we

observe an example of this shift-invariance”:

1 1 0 o oy
o Qn o : :
. af_l ad—l
0 PP « n
ad—l ad—l n d d
1 n ~ ~~ - aq a,
N ~~ J/ I\ ~ )
S.Vy S2Vuy

Definition 5 covers backward scalar single-shift-invariance: scalar meaning that we
shift row-wise and single-shift meaning that only one shift is possible in the subspace.
We can extend this definition and consider backward block single-shift-invariant, backward
scalar multi-shift-invariant, and backward block multi-shift-invariant subspaces.

Example 11 (Backward block single-shift-invariance). While the column space of the
matrix Vi is backward scalar single-shift-invariant, some subspaces are backward block
single-shift-invariant, which means that we can shift entire block rows of the basis ma-
trix, e.g., R (S1G) C R (S2G), where the row selection matrices S; and S2 select the
entire matrix G without the first and last block row, respectively. A block univariate
Vandermonde matrix Vg € C+DsXn (with a vector z; € C**' i = 1,...,n) exhibits
this property:

Z1 Zn 121 OnZn
(0751 0
121 QnzZnp :
| a1 d—1
' : 0 -+ « Qp 21 o Qp T Zp

ol lzy oo adlz " d d

\ 1 1 n n /\ ~ 4 04121 . e anzn
5’1VB SZVB

Example 12 (Backward scalar multi-shift-invariance). In the previous examples, we only
consider shifts with one variable. Now, we look at subspaces with multiple shifts and
consider the backward scalar multi-shift-invariance of a subspace. An example is the
bivariate Vandermonde matrix V ; € C2d+hxn

1 ... 1T
Q]_ .. an
VM = a]_ « .. an 5
Bd d
LML n J
9 In this appendix, we abuse the notation for readability: o = a|(j), B; = ﬁ|(].), and z; = z|(j)

(GJ=1,...,n).
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which can be shifted by both variables @ and 3. As an example, we shift the first three
rows of Vj:

1 ... 17 -+ 0

a]_ .« e an
ap o Qg Lo L = a? . a2
Br -+ PBn 0 - ap, aifBr o apBy

S;‘;]\l h 1—‘\; d SQ“;M
1 ... 17[B -~ O By - B
a]. oo an S -.' S — a1/281 oo angn7
o slle Gl L o 2
S1V s h Y g S3Var

where the row selection matrices Ss and S5 select the rows of the bivariate Vandermonde
matrix after a shift of the first three rows (the matrix S7) by a (the matrix I'y,) and by
B (the matrix I'g), respectively.

Example 13 (Backward block multi-shift-invariance). Backward block multi-shift-
invariance is a natural extension of the previous types of shift-invariant subspaces. This
property appears multiple times in this paper, since the (affine) null space of the block
Macaulay matrix is backward block multi-shift-invariant. As an example, we shift the
first three block rows of the block multivariate Vandermonde matrix (compare to (5)
with A = (o, f)):

z1 Zn aq 0 o121 OnZ1
1zl o QpZp Do = afz - alzy
Przr -0 Bazal | 0 ... g afizr oo omfPnzn

Y ~ e g S,V
(0%

Z1 Zn 61 0 61'21 ann
Q1z1 o oapzZp | |0 . = aifizr o anfazp
Blzl ﬁnzn 0 e ﬁn /B%ZI B%zn

N ~ 7 -, N - 4
S, v g S5V
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