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Purpose: Tumor localization provides crucial information for radiotherapy dose differentiation treat-
ments, such as focal dose escalation and dose painting by numbers, which aim at achieving tumor
control with minimal side effects.
Multiparametric (mp-)MRI is increasingly used for tumor detection and localization in prostate

because of its ability to visualize tissue structure and to reveal tumor characteristics. However, it can
be challenging to distinguish cancer, particularly in the transition zone. In this study, we enhance the
performance of a mp-MRI-based tumor localization model by incorporating prior knowledge from
two sources: a population-based tumor probability atlas and patient-specific biopsy examination
results. This information typically would be considered by a physician when carrying out a manual
tumor delineation.
Materials and methods: Our study involves 40 patients from two centers: 23 patients from the
University Hospital Leuven (Leuven), Leuven, Belgium and 17 patients from the Netherlands Cancer
Institute (NKI), Amsterdam, the Netherlands. All patients received a mp-MRI exam consisting of a
T2-weighted, diffusion-weighted, and dynamic contrast-enhanced MRI before prostatectomy. Thirty-
one features were extracted for each voxel in the prostate. Among these, 29 were from the multipara-
metric-MRI, one was from the population-based tumor probability atlas and one from the biopsy
map. T2-weighted images of each patient were registered to whole-mount section pathology slices to
obtain the ground truth. The study was validated in two settings: single-center (training and test sets
were from the same cohort); and cross-center (training and test sets were from different cohorts). In
addition, automatic delineations created by our model were compared with manual tumor delin-
eations done by six different teams on a subset of Leuven cohort including 15 patients.
Results: In the single-center setting, mp-MRI-based features yielded area under the ROC curves
(AUC) of 0.690 on a pooled set of patients from both cohorts. Including prevalence into mp-MRI-
based features increased the AUC to 0.751 and including all features achieved the best performance
with AUC of 0.775. Using all features always showed better results when varying the size of the train-
ing set. In addition, its performance is comparable with the average performance of six teams delin-
eating the tumors manually. The error rate using all features was 0.22. The two prior knowledge
features ranked among the top four most important features out of the 31 features.
In the cross-center setting, combining all features also yielded the best performance in terms of the

mean AUC of 0.777 on the pooled set of patients from both cohorts. In addition, the difference in per-
formance between the single-center setting and cross-center setting was not significant.
Conclusions: The results showed significant improvements when including prior knowledge features
in addition to mp-MRI-based features in both single- and cross-center settings. © 2016 The Nether-
lands Cancer Institute-Antoni van Leeuwenhoek. Medical Physics published by Wiley periodicals,
Inc. on behalf of American Association of Physicists in Medicine. [https://doi.org/10.1002/mp.12086]
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1. INTRODUCTION

The current standard in radiotherapy of prostate cancer is to
treat the entire gland to a homogeneous dose. Recent
improvements in dose delivery techniques and imaging meth-
ods facilitate the exploration of focal dose differentiation,
such as focal dose escalation and dose painting by numbers.1

These treatment strategies aim at controlling the tumor with
minimal side effects by giving a high dose to the tumor area
and a lower dose to the rest of the gland. Accurate delineation
of prostate tumors is therefore crucial for these treatment
options.

Structural and functional MRI modalities, such as T2-
weighted (T2w-), diffusion-weighted imaging (DWI-), and
dynamic contrast-enhanced (DCE-) MRI are increasingly
used for tumor detection and localization.2 Accurate tumor
delineation is, however, still challenging as visually interpret-
ing these images is both labor-intensive and prone to interob-
server variability. In the study by Steenbergen et al.,3 six
teams consisting of a radiation oncologist and a radiologist
delineated tumors on mp-MRI of 20 prostate patients. The
kappa indices for the agreement between the delineations of
the teams were quite low: 0.61 � 0.19 (mean � standard
deviation). Several automatic tumor localization models have
therefore been proposed to make this interpretation easier and
more robust.4–6

A common approach to build tumor localization models is
to extract first the relevant features for each voxel from one or
a few modalities and then classify these voxels into normal
and tumor tissue using basic classifiers such as support vec-
tor machines or logistic regression. Viswanath et al.5 used
texture features such as Gabor wavelet and Haar wavelet
transformation extracted from T2w-MRI scans to represent
each voxel. Groenendaal et al.4 represented each voxel by
several local statistics, e.g. minimum, maximum, and median
of intensities obtained on apparent diffusion coefficient
(ADC) maps and volume transfer constant Ktrans maps, which
are derived from the DWI-MRI and DCE-MRI modalities
respectively. Another approach for tumor localization is to
detect regions of interest in prostate first using, for example,
ADC map-based blob detection6 or clustering,7 and then clas-
sifying the detected regions into normal and tumor regions.
Despite its success, mp-MRI-based tumor localization has
some limitations. It is hard to distinguish prostate cancer
from confounders such as benign prostatic hyperplasia
(BPH), postbiopsy hemorrhage, and atrophy.8,9

Tumors are not distributed equally within the prostate.10,11

Ou et al.10 constructed a tumor atlas, which is in fact a statis-
tical map of the spatial probability distribution of prostate
cancer based on 158 prostatectomy specimen. The value of
each voxel in the tumor probability atlas represents the num-
ber of specimen having tumor at that voxel. Figure 1 shows
an example of a slice of the tumor probability atlas. The
higher values on the left and right sides of the peripheral zone
indicated higher tumor probabilities. Rusu et al.11 extended
the work of Ou et al.10 further by constructing a population-
based atlas which integrated both histology and imaging

information. A sophisticated registration method between
T2w and the tumor atlas was proposed, which took into
account MRI intensity as well as anatomical information,
such as transition zone and peripheral zone area, in the regis-
tration process.

In this study, we propose a method to improve the perfor-
mance of a mp-MRI-based tumor localization for individual
patients by incorporating two sources of prior knowledge,
which are typically available to a physician delineating a
tumor manually. The first source is the tumor atlas con-
structed in10 and the second is a patient-specific map indicat-
ing tumor-positive regions based on the results of a TRUS-
based biopsy procedure.

2. MATERIALS AND METHODS

2.A. Patient characteristics

The study involves 23 patients from the University Hospi-
tal Leuven, Belgium (Leuven) and 17 patients from Nether-
lands Cancer Institute (NKI), Amsterdam, the Netherlands.
All patients received an MRI exam prior to prostatectomy.
Table I shows patient characteristics of the two cohorts.

For Leuven cohort, there are 25 and 7 tumors located in
the peripheral zone and transition zone, respectively. The
volumes in terms of mean and standard deviation were
2.91 � 2.52 cm3 for the peripheral zone and
4.29 � 2.92 cm3 for the transition zone. For NKI cohort,
there are 18 and 5 tumors located in the peripheral zone and
transition zone, respectively. The volumes in terms of mean
and standard deviation were 1.86 � 0.1 cm3 for the periph-
eral zone and 2.86 � 2.47 cm3 for transition zone. Tumors
with volume smaller than 0.5 cm3 were not counted. In gen-
eral, tumors in NKI cohort are smaller than those in Leuven
cohort. Tumors in the transition zone are bigger than those in
the peripheral zone.

Twenty patients from the Leuven cohort were previously
involved in another study done by Steenbergen et al.3 of
which the main focus was on interobserver variability of
prostate tumor delineation. In this study, six teams consisting

FIG. 1. A slice of the tumor prevalence map in the transversal view.
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of a radiation oncologist and a radiologist delineated tumors
on mp-MRI. From the 20 patients, biopsy reports were not
available for five of these. Thus, only 15 patients from the
Leuven cohort were included in our analysis described in
Section 4 to compare between manual and automatic tumor
delineations.

2.B. MRI Protocols

Patients received an mp-MRI exam consisting of a T2w,
DWI-MRI, and DCE-MRI scans. Although both protocols
were consistent with recently published guidelines,2 there
were significant differences in imaging protocol and acquisi-
tion between the two institutes: at Leuven,12 the exam was
performed on a 1.5T MRI (Siemens SONATAVision) scanner
with a combination of a six-channel phased array body coil
and a spine coil. At NKI, the exam was performed on a 3T
MRI (Philips Achieva) scanner with a six-channel phased
array coil in combination with an endorectal coil. Details of
the MRI protocols for the two centers are given in Table II.
Particularly for the DCE scans, the protocols at the two cen-
ters differ from each other in terms of interval time and scan
duration.

ADC maps were derived from DWI scans using a mono-
exponential model.13 Similarly, Ktrans maps were derived
from DCE scans following the generalized kinetic model.14

For Leuven, a constant precontrast T1 value of 1434 ms was
used15 as T1 mapping was not included in the MRI exams.

2.B.1. Image normalization

As there were significant differences in imaging protocol
and acquisition between the two centers, image normalization
is used to reduce these differences. In this study, we normal-
ized the T2w and Ktrans maps to the median value in the
peripheral zone following.4 A T2w image is known to pro-
vide no quantitative measure. Ktrans is in theory quantitative

but the values tend to vary among patients and institutes. For
ADC maps, normalization was not necessary.

2.C. Feature representation

To combine information from different parametric maps,
the T2w, ADC, and Ktrans images from both centers were
resampled to the grid with voxel size 0.49 9 3.3 9

0.49 mm3, corresponding to the T2w images from Leuven.
The first and third dimensions of the grid correspond to the
transverse plane and the second dimension corresponds to
the slice direction of the scan.

Each voxel was represented by features derived from the
mp-MR scan (29 features) and prior knowledge data (two fea-
tures). Table III summarizes all extracted features.

2.C.1. MRI-based features

Intensity (f1..f3): Tumors typically appear dark on T2w
and ADC and bright on Ktrans.2 For each voxel, intensity val-
ues of the normalized T2w, ADC, and normalized Ktrans

maps were included.

Textural features (f4..f29): Tumors may exhibit different
textural characteristics than normal tissues. For example, on
T2w images tumors often exhibit a so-called “erased charcoal
sign”, a smudge-like dark texture, and appear to have a blob
shape on ADC and Ktrans images.6,8 In this study, we adopted
the textural features (f4..f27) proposed by Litjes et al.8 and
Vos et al.6 We extracted from the T2w image the Gaussian
derivatives up to second order at four exponentially increas-
ing scales (r = 1.5; 2.4; 3.8, and 6.0 mm). Normalized mul-
tiscale blobness features16 over the same four scales, f28 and
f29, were calculated on the ADC and Ktrans images, respec-
tively.

2.C.2. Prior knowledge-based feature
representation

Prevalence map (f30): We used the tumor atlas introduced
by Ou et al.10 The value of each voxel in this tumor atlas cor-
responds to the number of specimen having tumor at that
voxel.

To transfer this population-based tumor probability
atlas to each specific patient, we registered it to the
patient’s T2w image using an implementation of the b-
spline deformation algorithm described previously.17 First,
the volumes of the tumor probability atlas and the pros-
tate were manually delineated and converted into binary
masks. These masks were then registered using the nor-
malized cross-correlation (NCC) similarity measure with a
regularization term, which minimizes the bending energy
in the deformation, to minimize unrealistic deformations
inside the binary masks. The registration used a gradient

TABLE I. Characteristics of patients from Leuven and NKI cohorts. Higher
Gleason score and pathology stage shows higher tumor aggressiveness.

Patient characteristics Leuven NKI

No. of patients 23 17

Gleason score

3 + 3 0 2

3 + 4 2 11

4 + 3 11 3

4 + 4 7 1

4 + 5 1 0

5 + 4 2 0

T-stage

T1 0 0

T2b 0 1

T2c 9 10

T3a 8 4

T3b 6 2

Medical Physics, 44 (3), March 2017

951 Dinh et al.: MRI and prior knowledge for tumor localization 951



descent-based multiresolution approach with a final con-
trol point field space, i.e., the space between control
points in the deformable registration, of 5 mm. Finally,
the resulting transformation was applied to the tumor
probability atlas. The transformed atlas, hereafter referred
to as prevalence map, was used as an additional feature
for voxel representation.

Ultrasound biopsy map (f31): Ultrasound-guided biop-
sies are used by urologists to confirm prostate cancer and to
derive an estimate of the tumor location for staging purpose.
There is substantial variation in the way biopsy results are
reported. In some institutes, the location of each biopsy is
reported systematically. However, for most institutes only the
numbers of positive biopsies and the total number of biopsies
at each side (left/right) of the prostate are reported. This is

the case for the patients from NKI. At Leuven, on each side,
three biopsies were taken from the peripheral zone (toward
the apex, middle, and base areas) and two biopsies from the
transition zone (toward the base and apex) and the tumor state
in each core was recorded [Fig. 2(a)].18 Figure 2(b) shows an
example of biopsy sections indicated by different grayscale
levels in three directions (left: axial view, top right: coronal
view, and bottom right: sagittal view). For this patient, the
tumor area indicated by the white contour appeared on the
left, middle peripheral zone section according to the biopsy
scheme.

We reconstructed a biopsy map on the T2w image by
assigning voxel values at each side of the prostate as the ratio
of the number of positive biopsies to the total number of taken
biopsies on that side. The reconstructed biopsy map was
smoothed by convolving it with a Gaussian kernel (r = 4.5)
to consider the fact that the biopsy status was less certain for
voxels close to the midline of the prostate. The smoothed
biopsy map was used as a feature for voxel representation.

2.D. Registration between H&E-stained slice and
T2w image

Hematoxylin and eosin (H&E)-stained slices of the prosta-
tectomy specimen were used as ground truth. Therefore, they
were registered to the T2w images. This was done via slice
matching and point matching steps by three independent
observers, who then combined their results to achieve con-
sensus.

2.D.1. Slice matching

A T2w slice was manually assigned to each delineated
H&E slice taking into account: (a) the relative order of the
slices, (b) the location of apex and base of the prostate, and
(c) the relative size and shape of the subsequent H&E and
T2w slices.

TABLE III. Feature representation based on mp-MRI and prior knowledge.

Feature ID Feature name Description

f1 Normalized T2w Median normalization is used

f2 ADC intensity No normalization is used

f3 Normalized Ktrans Median normalization is used

f4–f27 T2w texture
features

Gaussian derivatives of T2w up to 2nd
order with four scales r = 1.5, 2.4, 3.8,
6.0 mm. Number of features per scale
is six

f28 ADC blobness Multiscale blobness of ADC map
calculated over the same above four
scales

f29 Ktrans blobness Multiscale blobness of Ktrans map
calculated over the same above four
scales

f30 Prevalence map Obtained by registering the
population-based tumor probability
atlas to T2w image

f31 Biopsy map Obtained from the biopsy report

TABLE II. Scan protocols from Leuven and NKI.

Center Sequence TR/TE [ms] No of slices Voxel dimension [mm3] Remark

Leuven T2w 7120–13550/124–136 21–56 0.49 9 3.3 9 0.49
or

0.58 9 3.0 9 0.58

DWI-MRI 4000–9900/67–83 24–42 2.97 9 5.0 9 2.97
or

2.73 9 4.0 9 2.73

b-values: 0, 50, 100, 500, 750, 1000 (s/mm2).
A B0 map, which allows correcting for geometrical
distortions, is not available.

DCE-MRI 4.65–7.36/1.56–3.6 14 1.37 9 4.0 9 1.37 Interval time: 9 s
Scan duration: 144 s (16 frames in total).
No T1 mapping was available

NKI T2w 3140–3626/120 25 0.27 9 3.0 9 0.27

DWI-MRI 3453–3492/67.8–69 20 1.03 9 2.7 9 1.03 b-values: 0, 188, 375, 563, 750 (s/mm2)
A B0 map is available.

DCE-MRI 4/1.9 20 1.02 9 3.0 9 1.02 Interval time: 2.5 s
Scan duration: 300 s (120 frames in total)
T1 mapping using the variable flip angle method;15

Flip angles were corrected for B1 inhomogeneities.
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2.D.2. Point matching

Each H&E slice was then registered to its matched T2w
slice using a deformable method based on landmark points
(Coherent Point Drift).19 We selected landmark points that
were visible on both images from the prostate boundary and
features such as the transitions between prostate and seminal
vesicles. After registration, the tumor delineations on the
H&E slice were transferred to the MRI scan. We estimated
the registration error by selecting one landmark, which was
mostly the urethra, per pathology slide and measuring the dis-
tance between this point in the T2w MRI and registered
pathology slide. Sample images of selected landmarks are
shown in Fig. 3.

The average errors we found were 2.1 mm for the Leuven
datasets and 2.6 mm for the NKI datasets. The largest error
in both databases was of 5 mm. The average error was
slightly larger for the NKI datasets, which may be attributed
to the use of an endorectal coil at NKI, which induces tissue
deformations in the MRI scan in the prostate area close to the
rectum.

To reduce the influence of registration errors, we ignored
voxels within � 1.25 mm margin (margin’s width: 2.5 mm)
of the pathological tumor contours when constructing the
model in both centers.

2.E. Model creation

After features were extracted for each voxel, a model
was first created by fitting a logistic regression model to
the data of a training cohort of patients in which each
voxel was assigned a normal/tumor tissue label obtained
from the delineations of a pathologist on the H&E-stained
slices of the prostatectomy specimen. The trained model
was then applied to the data of a validation cohort of
patients to estimate an individual tumor probability map
for each of the patients. The tumor probability map can be
converted into a tumor segmentation by applying a thresh-
old t, i.e., assigning voxels with tumor probability larger
than t to the tumor class.

2.F. Model general setting

2.F.1. Single-center and cross-center validation

The performance of the feature options was validated in
both single-center setting and cross-center setting. In the
single-center setting, a leave-one-dataset-out cross-valida-
tion was used to separate training and test sets. In the
cross-center setting, all patients from a center were used to
fit the model.

FIG. 2. (a) Biopsy locations of a ten-cores biopsy scheme in the coronal view from Leuven center. (b) Biopsy sections indicated by different grayscale levels in
three different directions (left: axial view, top right: coronal view, and bottom right: sagittal view). For this patient, tumor marked by a white contour appeared on
the left, middle peripheral zone section according to the biopsy scheme. [Colour figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 44 (3), March 2017

953 Dinh et al.: MRI and prior knowledge for tumor localization 953



2.F.2. Metrics for evaluation

We evaluated the performance of tumor localization mod-
els on the datasets from the two cohorts. The area under the
curve (AUC) was used to assess the model performance for
each patient. Average performance over the pooled set of
patients from both cohorts was reported. This is justified as
we are interested in the effect of adding information from
prevalence and biopsy and less interested in the difference
between institutes. The AUC was used as it is known to han-
dle unbalanced class situations well. This is the case in our

prostate tumor localization problem as the relative tumor area
is quite small in some patients.

The threshold to convert from the tumor probability map
to a tumor delineation map was chosen as the optimal point
on the ROC curve. The optimal point was defined as the clos-
est point to the top left corner of the ROC curve, based on the
training data. Performances of automatic and manual delin-
eations were measured in terms of error rate, which is defined
as the average classification error from both normal and
tumor tissue classes. AUC was not used for comparison
because it is not possible to calculate AUC for manual

FIG. 3. Examples of selected landmarks for measuring registration error. Landmarks based on T2w and pathology images are marked by crosses (in red and
green, respectively, in online version). Numbers indicates the distance between them. [Colour figure can be viewed at wileyonlinelibrary.com]
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delineations which only provide a binary decision (not proba-
bilistic decision) at a voxel level.

The Wilcoxon signed-rank test with a Bonferroni multiple
comparison correction was used to evaluate whether the dif-
ference in performance between two models at patient level
was statistically significant. There were nine tests in total in
our study. Thus, the new significant level (P-value) after Bon-
ferroni correction is 5.5 9 10�3. The tests used in our study
and their corresponding P-values are shown in Table V of the
Appendix S1.

2.F.3. Feature combination options

To study the effect of including prior knowledge features,
three feature combination options were compared: (a) the
MRI features only (MRI); (b) combining MRI features with
feature from the prevalence map (MRI_prevalence); and (c)
all features, i.e., combining MRI features with features from
the prevalence map and biopsy map (MRI_preva-
lence_biopsy). In addition, we applied a commonly used for-
ward feature selection method20 to reveal the features that
contribute the most to the model performance when all fea-
tures were included (MRI_prevalence_biopsy option). The
feature selection procedure starts from an empty set. It then
sequentially adds the feature that maximizes a predefined cri-
terion when combined with the feature set that has already
been selected. In this study, the Mahalanobis distance
between two classes (normal vs. tumor)21 was used as the cri-
terion to select features in the feature selection procedure.

2.F.4. Learning curve

We investigated the robustness of the three feature combi-
nations with respect to various number of training data sizes
by generating a learning curve. This was done in the single-
center setting.

The database at each center was randomly split into sev-
eral partitions, each containing k datasets. At each round, one
partition was selected for training and the remaining parti-
tions were used for evaluation. The mean classification per-
formance in terms of AUC over all partitions was then
calculated. This process was repeated for n times. The mean
and standard deviation of the mean classification error for the
two centers are reported.

In this study, the numbers of included training sets k var-
ied between 3 and 23 for Leuven and between 3 and 17 for
NKI. The number of repetitions n was set to 100. For k equal
to 23 (Leuven) and 17 (NKI), this was identical to the leave-
one-dataset-out cross-validation situation. Thus, the standard
deviation of the mean classification error is equal to zero in
this case.

3. EXPERIMENTAL RESULTS

3.A. Single-center validation

3.A.1. Performance of the three feature options

Whole prostate tumor classification: Table IV shows the
average and standard deviation of AUC values for the three
feature options, over the pooled set of patients from both
cohorts, when performed on the whole prostate level. For
Leuven, the MRI_prevalence_biopsy yielded the highest
mean AUC of 0.775, which was 0.024 higher than the
MRI_prevalence and the difference was significant (P-value
is 2 9 10�5). The MRI_prevalence also performed signifi-
cantly (P-value is 4 9 10�3) better than the MRI feature
option with an AUC improvement of 0.061. Model perfor-
mances per cohort are shown in Table I of the Appendix S1.
In general, the results for the NKI cohort were worse than for
the Leuven cohort.

We also evaluated the performance of the three feature
options using other two classifiers: random forest and linear
support vector machine (SVM). For these classifiers, subsam-
pling the training data, i.e., only 1% of the data was used for
training, was performed as these classifiers are computational
expensive for large datasets. In our case, each prostate can
contain tens of thousands voxels. Results using three different
classifiers, i.e., logistic regression, random forest, and linear
SVM, on the same subsampled database are shown in
Tables III and IV of the Appendix S1. Performances of the
models using linear SVM and random forest were worse than
those using the logistic regression. However, we do see a con-
sistent pattern in the performance using different feature
options, i.e., MRI_prevalence_biopsy always performs the
best among the three feature options.

Comparison between automatic and manual
delineations: Table V shows the average error rates
obtained by automatic delineations (three feature options)
and manual delineations (six teams) on 15 patients from
the Leuven cohort. Automatic delineations were done by
binarizing the corresponding tumor probability maps using
the threshold determined from ROC analysis. MRI_preva-
lence_biopsy feature option again worked the best among
the three feature option with the lowest error rate of 0.22.
Mean error rate varied among six teams in the range
between 0.19 and 0.27. On average over six teams, the
error rate returned by a manual delineation was 0.224,

TABLE IV. Classification performances in terms of AUC of three feature
combination options on the whole prostate in the single-center setting.
Patients were pooled from both cohorts. The differences in performances
between MRI_prevalence_biopsy and MRI_prevalence and between
MRI_prevalence and MRI were significant. Higher AUC shows better perfor-
mance.

Feature combination options AUC

MRI 0.690 � 0.15

MRI_prevalence 0.751 � 0.11

MRI_prevalence_biopsy 0.775 � 0.13
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which was similar to that returned by MRI_preva-
lence_biopsy feature option.

Peripheral zone and transition zone tumor classification:
Table VI shows the performance of the three feature options
in the peripheral zone and transition zone of the prostate.
Here also the MRI_prevalence_biopsy performed better than
MRI_prevalence; MRI_prevalence performed better than
MRI feature option for both PZ and TZ. The true positive
rates of the MRI, MRI_prevalence, and MRI_preva-
lence_biopsy within the transition zone are 0.60, 0.574, and
0.632, respectively. Inclusion of the prevalence map signifi-
cantly reduced the false-positive rates in the transition zone.
The false-positive rates of the MRI, MRI_prevalence, and
MRI_prevalence_biopsy within the transition zone are 0.378,
0.288, and 0.295, respectively. As a result, the overall perfor-
mances in terms of AUC of the MRI_prevalence and the
MRI_prevalence_biopsy feature options were better than the
MRI feature option in the transition zone.

Figure 4 shows an example of the classification results. In
this example, the tumor is located on the left side of the
peripheral and transition zone of the prostate. This is consis-
tent with the information provided by the biopsy map
[Fig 2(e)]. Figures 3(f)-3(h) demonstrate the tumor probabil-
ity maps established using the MRI, MRI_prevalence, and
MRI_prevalence_biopsy features, respectively. Red contours
indicate the estimated tumor areas. Using only MRI features
resulted in a false-positive area on the right side of the patient
prostate. Incorporating prior knowledge with low prevalence

map values in the transition zone and with positive biopsies
only on the left side of the prostate markedly reduced tumor
probability of voxels on the right side and thus, did not pro-
duce the false-positive area [Fig. 4(h)].

Standard biopsy scheme versus detailed biopsy scheme:
For the patients from the Leuven cohort, we used the addi-
tional information in the biopsy reports to construct detailed
biopsy maps in which each voxel is assigned a binary value
corresponding to the status of the biopsy in that region. The
same smoothing algorithm used in the standard biopsy
scheme was applied. The AUC of the MRI_preva-
lence_biopsy in the single-center validation (Table IV) when
standard biopsy map was replaced by the detailed biopsy
map improved from 0.811 to 0.825. The difference was how-
ever not significant (P-value = 0.059). Comparison between
the biopsy report and the pathological image of Leuven
patients showed that there were three cases in which the
biopsy report did not match with the information from the
pathology image. For example, a tumor on the right side of
the patient on the pathology slice was indicated in the left
side in the biopsy report. Excluding these three patients, the
mean AUC increased from 0.821 to 0.866 with the detailed
biopsy map. This increase is significant with P-
value = 0.001.

3.A.2. Learning curves of the three feature
combination options

Figures 5 and 6 show the learning curves for Leuven and
NKI data using three feature combination options. The fig-
ures show clear distinctions in performance among the three
options for all different numbers of patients in the training
set. In addition, higher performance was obtained when more
data were included for training each model. The largest
improvement in model performance was observed by increas-
ing small training set sizes, in the range from three to ten.

3.A.3. Feature ranking

Figures 7(a)–8(a) show the Mahalanobis distances calcu-
lated during the forward feature selection method with differ-
ent number of features on the Leuven and NKI cohorts,
respectively. The Mahalanobis distance curves on both Leu-
ven and NKI data showed that the first eight features con-
tributed the most to the separation between the normal and
tumor classes. Figures 7(b)–8(b) listed the 10th highest
ranked features on Leuven and NKI centers, respectively. The
lists show that biopsy and prevalence features rank among the
top four features in both cohorts.

3.B. Cross-center validation

Table VII showed the mean and standard deviation of
AUC values of the three feature options in the cross-center
validation. Similar to the single-center setting, the

TABLE VI. Classification performances in terms of AUC of three feature
combination options on the pooled set of patients from both cohorts in the
peripheral zone and transition zone.

Feature combination options Peripheral zone Transition zone

MRI 0.70 � 0.16 0.658 � 0.19

MRI_prevalence 0.745 � 0.13 0.715 � 0.16

MRI_prevalence_biopsy 0.777 � 0.17 0.736 � 0.17

TABLE V. Comparison in terms of error rate between automatic delineations
(three feature combination options) and manual delineations (six teams).

Delineation options Average error rate

MRI 0.29 � 0.15

MRI_prevalence 0.26 � 0.11

MRI_prevalence_biopsy 0.22 � 0.13

Team 1 0.24 � 0.10

Team 2 0.27 � 0.11

Team 3 0.24 � 0.13

Team 4 0.19 � 0.13

Team 5 0.21 � 0.10

Team 6 0.20 � 0.14

Average over six teams 0.224 � 0.03
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MRI_prevalence_biopsy yielded the best. However, its per-
formance was only moderately different from the MRI_preva-
lence feature option (AUC improvement of 0.015, P-
value = 12 9 10�3). The MRI_prevalence performed signifi-
cantly better than MRI feature option with an AUC improve-
ment of 0.067 (P-value = 2 9 10�4). Model performances
per cohort in the cross-center setting are shown in Table II of
the Appendix S1. In all cases, the difference between single-
center setting (Table IV) and cross-center setting (Table VI)

using the same feature option, e.g., MRI, was not significant
(P-value > 0.05).

4. DISCUSSIONS

The experimental results showed that the prevalence fea-
ture enhanced the performance of the mp-MRI-based model
substantially both for the entire prostate and for the peripheral
and transition zones separately. This can be explained by the

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 4. Example of transverse input images and classification results. (a)–(e) show the input images T2w, ADC, Ktrans, prevalence, and the smoothed clinical
biopsy maps. Contours on these images indicate the delineated prostate and tumor areas based on the H&E-stained slices. (f)–(h) display the tumor probability
maps and the estimated tumor regions established using MRI, MRI_prevalence, and MRI_prevalence_biopsy features, respectively. The tumor is on the left side
of the patient. [Colour figure can be viewed at wileyonlinelibrary.com]

FIG. 5. Learning curve of the three feature combination options for Leuven data center.
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FIG. 6. Learning curve of the three feature combination options for NKI data center.
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FIG. 7. Feature ranking at Leuven. (a) Mahalanobis distances calculated during the forward feature selection method; (b) List of 10 highest ranking features. For
T2w texture features, order indicates the order used in calculating the Gaussian derivatives.
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observation that MRI may introduce false positives due to
benign confounders especially in the transition zone. Popula-
tion statistics indicates that tumors occur in the transition
zone with low probability (around 25%)5 and hence, the cor-
responding prevalence values are small. In our experiments,
this indeed reduced the false-positive rate in the entire pros-
tate. While this might decrease the true-positive rate in the

transition zone, it still markedly improved the true-positive
rate in the entire prostate.

In contrast to the prevalence map, the biopsy map pro-
vides patient-specific, albeit rudimentary information about
tumor locations. The fact that biopsy and prevalence maps
make different types of mistakes from MRI can be appreci-
ated from Figs. 1 and 2(b). In the example in Fig. 2(b), the
biopsy scheme indicated tumor presence on the left, middle
peripheral zone section of the biopsy scheme. As a result,
all voxels in that section have the same likelihood to be
tumor. A delineation based only on the clinical biopsy
therefore would involve the entire section and would make
a wrong prediction for all healthy voxels in that section
(voxels outside the white contour). The prevalence feature
provides symmetric tumor probability values between the
left and right side of the prostate (Fig. 1). Thus, a model
using only the prevalence map cannot be used to delineate
the actual tumor for a specific patient. In the case of the
example in Fig. 2(b), the prevalence map would be reason-
able on the left, but wrong on the right peripheral zone.
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FIG. 8. Feature ranking at NKI. (a) Mahalanobis distances calculated during the forward feature selection method; (b) List of 10 highest ranking features.

TABLE VII. Classification performances in terms of AUC of three feature
combination options on the whole prostate in the cross-center setting, i.e.,
model is trained in one cohort and then evaluated in the other cohort. Patients
were pooled from both cohorts. The difference in performances between
MRI_prevalence and MRI was significant. However, there was only a moder-
ate difference between MRI_prevalence_biopsy and MRI_prevalence. Higher
AUC shows better performance.

Feature combination options AUC

MRI 0.695 � 0.16

MRI_prevalence 0.762 � 0.10

MRI_prevalence_biopsy 0.777 � 0.12
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The MRI-based model provides information on the outline
of the tumor, but is more prone to making wrong predic-
tions particularly in areas such as the transition zone, due
to benign confounders. As the prior knowledge features
make different mistakes than the MRI features alone,
including them substantially improved the performance of a
mp-MRI-based tumor localization model.

Although a biopsy report is always available for prostate
cancer patients before treatment, e.g., with radiotherapy, this
information has not been used for computer-aided tumor
localization before. This is because the report is mainly used
for diagnostic purposes, i.e., to know whether a patient has
prostate cancer and not particularly for precise tumor local-
ization. We are the first to combine information from the
biopsy report with imaging data, our results showing that the
inclusion of the biopsy map further improved the combined
MRI and prevalence feature option in both single- and cross-
center settings.

The result was further improved by replacing the standard
biopsy map by the detailed map in the Leuven cohort. If
biopsy schemes are more elaborate and detailed, the informa-
tion about tumor localization derived from the schemes
becomes also more valuable. For tumor localization, this
would reduce the added value of MRI. However, as the pros-
tate still would be divided into relatively large sections per
biopsy, this would still be insufficient for tumor delineation.
This is clearly shown in Fig. 2(b) in which the actual tumor
area is much smaller than the biopsy section (left, middle
peripheral zone) following the biopsy scheme. As shown in
this study, a more detailed representation of the cancer in the
prostate is achieved with the combination of both biopsies
and imaging.

In comparison with manual tumor delineations, auto-
matic delineation created by the model using all features
provided a similar performance when compared to the aver-
age performance of six teams consisting of a radiation
oncologist and a radiologist. In addition, the high variation
in delineations between teams indicates an uncertainty
about the edge of the tumor. One could argue that voxels
should be treated differently, e.g., higher doses should be
given voxels more likely to be tumors, following the idea
of dose painting by numbers. Our model fits to that idea as
it provides a probabilistic value for tumor presence rather
than a binary decision at a voxel level as in the case of
manual delineation.

The feature ranking results reconfirmed the importance of
the prior knowledge. The biopsy and prevalence features both
ranked among the top four features. In addition, the top four
features in both centers represent four different modalities:
diffusion-weighted MRI (ADC), DCE-MRI (Ktrans for Leu-
ven and Ktrans blob for NKI), biopsy, and prevalence. They
provided complementary information and thus helped to dis-
tinguish between the normal and tumor classes.

The main focus of our paper was to predict the change
whether a voxel is a normal or tumor tissues, which is shown
in Section 4.A.1 at both prostate and zone levels. Neverthe-
less, the ability of models to distinguish cancer from benign

confounders was indirectly reflected in these experiments by
their ability to classify voxels into their correct class. Thor-
ough analysis on how specifically prior knowledge features
improve MRI-based model’s performance on those factors,
which can be found out from pathological data, should be the
subject of further investigation in the future.

As noted in the Section 2.D, voxels within � 1.25 mm
margin of the pathological tumor contours were ignored to
reduce the influence of registration errors. Nevertheless, we
found the same improvement in model performance by add-
ing prior information when no margin was used. However,
classification results were consistently lower for all feature
options.

Overall, the performance is better for Leuven cohort than
NKI cohort. This may be explained by the higher disease
stages at Leuven (Table I) compared to NKI. The conspicuity
of high-stage tumors on mp-MRI tends to be higher com-
pared to lower stage disease.22

This study used a simple deformable registration between
patient’s T2w scan and the population-based tumor atlas,
which relies heavily on the prostate contour to create the
patient-specific prevalence map. A more sophisticated regis-
tration method between T2w and the tumor atlas, which takes
MRI intensity as well as anatomical information into account
in the registration process,11 could be used as well. This
might further boost the performance of our combined prior
and MRI model for prostate tumor localization in individual
patients.

We evaluated the robustness of our model in a multicen-
ter setting. There was a significant difference in imaging
protocols between the two centers, e.g., they used different
scanners with different field strength. In all cases, the dif-
ference in performance between single-center setting
(Table IV) and cross-center setting (Table VII) using the
same feature option was not significant. Applying normal-
ization techniques on the raw T2w and Ktrans maps and
then extracting invariant features, such as Gaussian deriva-
tives and blobness, helped to reduce but does not account
for all these differences and acquisition-related issues.
However, for the purpose of tissue classification, variation
in imaging features is acceptable as long as the discrimi-
nant information between classes derived from these fea-
tures is maintained. This is corroborated by our
experimental result that knowledge learned from one center
can be transferred to the other center even though the
imaging protocols are vastly different from each other. This
result is consistent with those shown in transfer learning
techniques, concerning with the issue of how to learn when
training and testing data follow different distributions.
Transfer learning has been recently applied to medical
imaging problems and showed promising results on, for
example, brain segmentation tasks where images were
obtained with different scanners and imaging protocols.23

Nevertheless, we note that the experiments on cross-center
setting were performed on just a small set of patients. Experi-
ments on a larger population with larger variety in imaging
protocols are needed to verify our results.
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Variations in delineation of the tumor have an impact on
the treatment plans. If we consider integrated boosting, such
as done in the FLAME trial,24 the dose outside the delineated
tumor volume drops from the boost dose to the standard dose.
In the FLAME trial,24 this was a drop of 18 Gy, from 95 to
77 Gy. The steepness of the dose gradient depends on many
details of the specific treatment plan, but if we assume a
penumbra width (20–80% of dose) of 6 mm, a contour varia-
tion of 1 mm would correspond to a dose difference of 10%
of 18 Gy. A treatment planning study, also taking individual
factors such as the proximity of the delineated tumor to
organs at risk into account, falls outside the scope of this
study.

5. CONCLUSIONS

We presented a method for tumor localization in prostate
based on mp-MRI in combination with prior knowledge.
Experimental results validated on patients from two cohorts
showed that including prior knowledge features substantially
improved the performance of a mp-MRI-based tumor local-
ization model in both single-center and cross-center settings.

Other patient-specific information, such as tumor exten-
sion status from radiology reports and the Gleason score of
biopsies from biopsy reports, may also be investigated in the
future to improve the performance of tumor localization and
to add mapping of tumor aggressiveness estimations, respec-
tively.
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Appendix S1: Performance of three feature options evaluated
per institute and using different classifiers.
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