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Abstract

In this thesis we present new methodologies for improving the robustness
of analog VLSI visual processors which are based on Cellular Neural Net-
works (CNN). Such a system can process information at very high speeds,
only comparable to today’s supercomputers. The regular lattice architec-
ture of CNNs allows massive parallelism, which makes it very suitable for
performance-demanding applications in image processing. Its reduced size
and power consumption make it easy to embed in portable appliances. The
only disadvantage of today’s programmable CNNs relates to the analog
VLSI technology, which despite remarkable recent advances, cannot guar-
antee a sufficiently high accuracy and reliability that is needed in many
applications. In this thesis we describe methodologies for customised tun-
ing of CNN chips and learning of new complex operations. Based on well
established methods such as design centring and trajectory learning, the
techniques described here prove to be very useful in reducing the effects of
parameter deviation and post-manufacturing interference in the operation
of CNN-based processors. We show that on-chip learning is not only viable
but also better than simulation-based learning for being much faster. We
also present a new global optimisation method that is suitable for CNN
optimisation. The new method of Coupled Simulated Annealing makes use
of coupling in order to allow multiple Simulated Annealing (SA) processes
to cooperate toward finding the global optimum of multi-modal and multi-
dimensional optimisation problems. A number of proof-of-concept appli-
cations is presented in order to show the effectiveness of our methodolo-
gies. These applications serve to demonstrate the potential for future VLSI
CNN systems toward ultra-fast visual applications such as quality control
in agricultural, semiconductors, textile and other industries, surveillance
and traffic analysis, biochemical process inspection, intelligent systems in
the automotive industry, visual computer/gaming interaction and others.
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Notation

Mathematical notation

a, b, c ∈ R Scalar variables
y,x ∈ R

N Vector variables
xi The ith element of x ∈ R

N

A,B ∈ R
(2r+1)×(2r+1) Template matrices with r ∈ N

∗, typically r = 1
ai,j The element of the ith row and jth column of

A ∈ R
(2r+1)×(2r+1)

X,Y ∈ R
M×N Matrix variables

xi,j Element of the ith row and jth column of a
matrix X ∈ R

M×N or of a vectorised matrix
x ∈ R

MN

N(c) Set of indices of all cells connected to the cell c
in a CNN

||y||2 Euclidean norm of y ∈ R
N

min
A,B,z

Function minimisation over A, B, and z
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Acronyms and abbreviations

AMC Analogic Macro Code
ASA Adaptive Simulated Annealing
AWC Active Wave Computing
CLM Coupled Local Minimisers
CNN Cellular Neural Networks
CNN-UM CNN Universal Machine
CSA Coupled Simulated Annealing
CSA-BA Blind Acceptance
CSA-M Coupled Simulated Annealing-Modified
CSA-MuSA Multi-state Simulated Annealing
CSA-MwVC CSA-M with Variance Control
DSP Digital Signal Processor
FSR Full Signal-Range
GA Genetic Algorithms
HPC High Performance Computing
IPC Inter-Process Communication
ISR Improved Signal-Range
MPI Message Parsing Interface
MSA Multi-start SA
RNN Recurrent Neural Networks
SA Simulated Annealing
SDK Software Development Kit
SIMD Single-Instruction Multiple-Data
TS Training Set
VLSI Very Large-Scale Integration
VRML Virtual Reality Modelling Language
VSoC Vision System on a Chip



para Lena e Enio.





Contents

Foreword i

Abstract iii

Notation v

1 Introduction 1
1.1 Cellular neural networks as a platform for computation . . 1

1.2 Toward robust CNN-based processors . . . . . . . . . . . . 3

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Chapters and main contributions . . . . . . . . . . . . . . . 6

2 Coupling, Local Activity, and Cellular Neural Networks 11
2.1 Coupling and local activity . . . . . . . . . . . . . . . . . . 12

2.2 Cellular neural networks . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Chua and Yang’s CNN model . . . . . . . . . . . . . 15
2.2.2 Full-signal range CNN model . . . . . . . . . . . . . 22

2.2.3 Space-invariant CNNs . . . . . . . . . . . . . . . . . 24

2.2.4 Cellular neural network universal machine . . . . . . 27
2.3 Brief history and state-of-the-art of CNN-UM implementations 28

2.3.1 The ACE chip family . . . . . . . . . . . . . . . . . 29

2.3.2 The Q-Eye processor . . . . . . . . . . . . . . . . . . 30

3 Optimising CNNs 31

3.1 Erroneous behaviour . . . . . . . . . . . . . . . . . . . . . . 32
3.1.1 Causes of errors . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 The effect of parameter deviations . . . . . . . . . . 34

3.2 Chip-independent methods . . . . . . . . . . . . . . . . . . 34

i



ii CONTENTS

3.3 Chip-specific methods . . . . . . . . . . . . . . . . . . . . . 35

3.4 Template tuning . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Chip-specific robustness . . . . . . . . . . . . . . . . . . . . 39

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.1 An example of a chip-specific robust template . . . . 44
3.6.2 Binary edge detection on the ACE4k chip . . . . . . 45

3.6.3 Average with binary output on the ACE4k chip . . . 46

3.6.4 Average with binary output on the ACE16k chip . . 47
3.6.5 Thresholding to binary on the ACE16k chip . . . . . 49

3.6.6 Sobel edge detection on the ACE16k chip . . . . . . 50

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Learning Dynamics in CNNs 55
4.1 Spatiotemporal behaviour . . . . . . . . . . . . . . . . . . . 56

4.1.1 Aperiodic spatiotemporal behaviour . . . . . . . . . 57

4.1.2 Periodic spatiotemporal behaviour: autowaves . . . 58
4.2 Learning spatiotemporal behaviour . . . . . . . . . . . . . . 60

4.2.1 Trajectory learning and recurrent neural networks . 62

4.2.2 Trajectory learning and cellular neural networks . . 63
4.2.3 Learning sequences of images . . . . . . . . . . . . . 66

4.3 Modifying speed of dynamics . . . . . . . . . . . . . . . . . 74

4.4 Simulations and on-chip experiments . . . . . . . . . . . . . 75
4.4.1 On-chip learning experiments . . . . . . . . . . . . . 76

4.4.2 Learning of complex dynamics: a spiral autowave . . 79

4.4.3 Change on the speed of dynamics . . . . . . . . . . . 81
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Coupled Simulated Annealing 85

5.1 Diversity in optimisation . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Numerical optimisation . . . . . . . . . . . . . . . . 86
5.1.2 Defining the target problems . . . . . . . . . . . . . 87

5.2 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Cooperative behaviour and global optimality . . . . . . . . 93

5.4 CSA: general principles . . . . . . . . . . . . . . . . . . . . 94

5.4.1 A formal definition for CSA . . . . . . . . . . . . . . 96
5.4.2 The role of the acceptance temperature in CSA . . . 97

5.4.3 A CSA generalisation of SA . . . . . . . . . . . . . . 98

5.5 Three instances of the CSA class of methods . . . . . . . . 99



CONTENTS iii

5.5.1 Multi-state Simulated Annealing (CSA-MuSA) . . . 101

5.5.2 Blind Acceptance (CSA-BA) . . . . . . . . . . . . . 101
5.5.3 CSA Modified (CSA-M) . . . . . . . . . . . . . . . . 103

5.6 Controlling variance of acceptance probabilities . . . . . . . 105

5.7 Parallel implementation . . . . . . . . . . . . . . . . . . . . 108
5.7.1 Examples of parallel architectures for CSA . . . . . 108

5.7.2 CSA on the VIC supercomputer . . . . . . . . . . . 109

5.8 Experiments and results . . . . . . . . . . . . . . . . . . . . 111
5.8.1 Test problems . . . . . . . . . . . . . . . . . . . . . . 112

5.8.2 Initialisation and temperature schedules . . . . . . . 116

5.8.3 Results for CSA versus multi-start SA . . . . . . . . 117
5.8.4 Results for CSA with variance control . . . . . . . . 125

5.8.5 Variance control versus best run . . . . . . . . . . . 131

5.8.6 Scaling with dimensionality . . . . . . . . . . . . . . 135
5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 CNNOPT: CSA Applied to CNN Optimisation 139

6.1 A generalised approach for CNN optimisation . . . . . . . . 140

6.2 Systematic CNN optimisation . . . . . . . . . . . . . . . . . 143
6.2.1 Defining a training set . . . . . . . . . . . . . . . . . 147

6.2.2 Reducing the search space . . . . . . . . . . . . . . . 150

6.2.3 The influence of the metric . . . . . . . . . . . . . . 151
6.3 CNN optimisation cases . . . . . . . . . . . . . . . . . . . . 152

6.3.1 Tuning for chip-specific robustness . . . . . . . . . . 152

6.3.2 Learning of fixed-point dynamics . . . . . . . . . . . 152
6.3.3 Spatiotemporal learning . . . . . . . . . . . . . . . . 153

6.4 Implementation - Matlab toolbox . . . . . . . . . . . . . . . 153
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7 Robust VLSI CNN-UM Applications 155
7.1 Real-time object tracking . . . . . . . . . . . . . . . . . . . 155

7.1.1 A visual/analogic algorithm for tracking with locking 156
7.1.2 Chip-specific robust templates . . . . . . . . . . . . 160

7.1.3 Speed and performance analysis . . . . . . . . . . . 161

7.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 162
7.2 Hands-free wheelchair driving . . . . . . . . . . . . . . . . . 162

7.2.1 Face tracking . . . . . . . . . . . . . . . . . . . . . . 163

7.2.2 Driving of a wheelchair . . . . . . . . . . . . . . . . 169



iv CONTENTS

7.2.3 Implementation and practical considerations . . . . 171
7.2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 175

8 General Conclusions 179
8.1 General conclusions . . . . . . . . . . . . . . . . . . . . . . . 179
8.2 Challenges for future work . . . . . . . . . . . . . . . . . . . 182

A Adaptive Simulated Annealing 185

B CSA and MSA Results for Test Functions in Higher Di-
mensions 187

Publications by the Author 211

Curriculum Vitae 215



Chapter 1

Introduction

1.1 Cellular neural networks as a platform for
computation

This thesis concerns Cellular Neural Networks (CNN) and optimisation.
In other words, we use optimisation to improve existing CNN implemen-
tations. These implementations are integrated electronic circuits based on
Very Large-Scale Integration (VLSI) technology. These circuits, commonly
called CNN chips, can be used to perform highly efficient computations. As
the name suggests, CNNs are composed of cells that are connected to their
neighbours forming a network. Each of these cells is a dynamical system in
its own, which means that its state evolves in time according to a specific
rule. Up to a certain degree, with a programmable rule, a single cell can
also be used to perform computation. In cooperation with the other cells
in the network, the computation potential of such chips is only comparable
to that of today’s supercomputers.

There are other advantages of CNN-based computation in comparison
with today’s classical digital computers. While the latter is based on digital
signals and binary logic, the former is based on analogue signals and con-
nection or coupling rules, called templates in CNN terminology. CNN chips
are inherently parallel processors while the majority of the computation re-
alised today in the digital world is sequential. Additionally, although there
exists a trend in better exploiting the benefits of parallelism in digital com-
puting [71, 44], digital processors are also relatively larger and much more
power hungry than CNN-based processors. The latter are many orders of
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2 Introduction

magnitude more efficient than the former while only using a fraction of the
silicon area that is needed in comparison with the digital technology. The
reasons why CNN-based computation is so much more efficient can roughly
be summarised into two inherent principles of CNNs.

The first principle is the analogue processing nature of the cells. Being
a continuous dynamical system, the time evolution of the state of a cell
is defined in the continuous time domain1. This means that the state
of the cells does not need an external clock stimulus to evolve as digital
processors do. This fact in its own not only allows faster computation
but also permits a lower power consumption. The main reason why digital
processors consume increasingly more power is that the energy dissipated by
such processors scales approximately quadratically with the clock frequency
due to the quadratic relation between power and voltage. Doubling the
processor frequency from 1 GHz to 2 GHz would roughly mean an increase
in power consumption with a factor of 4. This is certainly one of the reasons
for the existence of a new trend in the processor industry toward multi-core
processors. The benefits of such trend is very encouraging. For instance,
with 8 processing cores per chip, the new IBM Cell processor [15, 102]
consumes 60 to 80 Watts at 4 GHz. To achieve the same performance
in a single-core processor, it would be needed a factor 8 increase in the
clock frequency resulting in hypothetical value of 8 × 4 = 32 GHz, which
would increase the power consumption with a factor 82 = 64 resulting
in the impractical values of 3.84 to 5.12 kilowatts. Parallel or distributed
processing is therefore a key feature in the future of digital computation. In
CNN-based processors, this feature is present since the invention of CNNs.
In fact, today’s CNN-based processors features more than 25,000 processing
cells per chip distributed in a 176× 144 regular grid.

The second principle responsible for the better efficiency of CNN-based
processors is the local nature of the couplings between the processing cells.
Because these connections are by definition local and therefore restricted
to the neighbouring cells, the physical circuit connections are simpler to
build in VLSI technology and therefore permits the fabrication of large
numbers of cells per chip. With more than 25,000 processing cells per
chip, a CNN-based processor can achieve extraordinary performances in

1Discrete time cellular neural networks is a type of CNNs whose state is defined in
discrete time instead of continuous time. Although the methods described in this thesis
may also be used for this type of CNNs, we only approach the continuous case.
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Figure 1.1: CNNs are very suitable for image processing thanks to the
one-to-one relationship between pixels and cells.

the order of Tera operations per second, this with a power consumption
in the order of hundreds of milliwatts. Moreover, the local nature of the
couplings and the resulting network architecture make CNNs very suitable
for image processing. One of the reasons is that each pixel in an image can
be processed by each cell as depicted in Figure 1.1. Another reason is that
today’s CNN chips behave like Single-Instruction Multiple-Data (SIMD)
parallel computers. That means that the chip executes a single instruction
or template across the whole network. This feature is very desirable in
image processing applications.

After much said about the advantages of CNNs over classical digital
computation, it remains to be explained why we still need to use optimi-
sation in order to improve the existing CNN VLSI implementations. Al-
though CNN-based processors are much more efficient than their digital
counterparts w.r.t. processing power and speed per power dissipation and
silicon area, unfortunately, robustness is today still a weak point. This is
the main point of focus in this thesis and the reason to use optimisation to
make robustness a stronger aspect in these systems.

1.2 Toward robust CNN-based processors

With the actual analogue VLSI technology, considerably larger CNN-pro-
cessors can be implemented in a single chip [85, 84]. Such a chip can perform
image processing tasks with extremely high throughput data rates, which
make it very suitable for a wide range of image processing tasks, especially
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for real-time applications [30]. Nevertheless, each CNN chip has analogue
parameters that are slightly different from those ideal ones used on sim-
ulators. The causes are mainly noise in electrical components of cells as
well as imperfections in the fabrication process. This may often result in
erroneous behaviour of some cells. These differences between ideal struc-
tures and real chips prevent the cells in the CNN chip to react in the same
way as in the simulators and causes sometimes serious differences between
simulator results and chip results. Tests of the early templates [115], which
were developed for simulators, on VLSI chips proved that many templates
worked incorrectly [139]. Consequently, new template design methods were
developed [96, 90, 68, 162] with the purpose of generating templates that
are more tolerant against inherent parameter deviations and noise without
taking into account specific characteristics of an individual chip.

However, the degree of robustness for different operations are not the
same [96]. While templates with a high degree of robustness allow a correct
chip response for the given operation, other templates with lower robustness
still cause erroneous operation in CNN chips. The robustness value, or
degree of robustness, of a template gives a measure of how tolerant the
template values are to parameter deviations. When the deviation is larger
than the corresponding tolerance range of the given chip parameter, the
template does not react properly and produces unexpected and undesirable
results. Therefore, even the most chip-independent robust templates will
not guarantee a fully correct behaviour for a given CNN chip unless its
robustness is sufficiently large to overcome the parameter deviations of the
chip. Nevertheless for some applications, one can manually and empirically
attempt to tune the templates of a given chip and attempt to make it
respond correctly for a given task. Yet, even if the goal is achieved, there
is no guarantee that a final template will work for other similar chips. In
addition, manually tuning each template used in an application might be
a long and very tedious task.

In contrast with the other types of template generation methods, like de-
sign and learning that ignore specific chip characteristics, Földesy et al. [38]
proposed a method for template optimisation and decomposition that uses
measurements of a specific chip and therefore takes into account its inher-
ent characteristics. Although it was very well defined, the work of Földesy
et al. presented a few key limitations and therefore was used as the starting
point for our research. In the next Section we describe the objectives that
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we focused during the evolution of this thesis.

1.3 Objectives

As already stated in the Section 1.1, optimising the robustness of CNN
implementations was the main objective pursued during the development
of this thesis. We have defined this main goal as a composition of other
subgoals. These subgoals were defined in the beginning of our research
and sometimes redefined along the way in order to fit the needs that were
encountered by our intermediate results. Our final subgoals are defined as
follows:

• Establish the causes of erroneous behaviour in CNN chips. There can
exist many causes for malfunctioning, such as parameter deviations
during the manufacturing processes as well as environment distur-
bances like temperature variations and electrical noise. Our objective
is to define which are the causes of errors and up to what extent they
affect the robustness.

• Create a methodology to optimise CNN chips toward robustness. Our
objective is to develop such a methodology based on existing optimi-
sation techniques that can use measurements of CNN chips in order
to tune their free parameters and in this way reduce or even eliminate
the existing operational errors.

• Create a methodology for on-chip CNN learning of spatiotemporal
behaviour. It is our objective to develop such a technique in order
to give support to the new paradigm of active wave computing [126].
This new computation paradigm uses the spatiotemporal dynamics
of CNN to perform computation.

• Create a general purpose global optimisation technique that can be
used as the optimisation core of the CNN optimisation techniques
developed along this thesis. This subgoal has grown from the need
to suppress the weak points of the optimisation method that we had
been using for learning and tuning of CNNs. We have noticed that
in order to achieve good results it was necessary to involve a lot of
human interaction during the optimisation process. This, mainly due
to premature convergence to a non-optimal solution. Inspired by the
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benefits of coupling in Coupled Local Minimisers (CLM) [131], we
establish the objective of developing a global optimisation methodol-
ogy that via coupling is able to perform cooperative behaviour and
play the role of human interaction in the optimisation method that
we used originally for CNN optimisation.

• Integrate all the methods developed so far into a single framework for
learning, tuning, and robustness optimisation of CNNs using the new
coupled global optimisation method.

• Develop proof-of-concept applications to demonstrate the working of
new techniques and the potential that CNN-based processors can
present when these new post-manufacturing techniques are used.

1.4 Chapters and main contributions

In this Section we provide an overview of the main contributions of the
thesis and the organisation of the Chapters. Except for Chapter 2, which
contains an introduction to cellular neural networks, all other Chapters are
the results of the research done in this thesis. In Chapter 7 we present a
collection of applications that were developed using the techniques devel-
oped during the course of our research. Although the development of these
applications depends on the techniques described in other chapters, it can
be read independently. In Figure 1.2 the contents and links between the
Chapters are shown.

What follows is an overview of the Chapters and their association with
the contributions in this thesis.

Chapter 2 This is a background Chapter where we present the working
principles of CNNs and the different cell models and network archi-
tectures. We also present a brief history and the state-of-art in VLSI
CNN implementations.

Chapter 3 In this Chapter we introduce chip-specific robustness for CNN
templates, a methodology that does not rely on gradient optimi-
sation methods to find chip-specific optimal propagating and non-
propagating CNN templates. The templates are not only tuned for
optimality but also for robustness. The resulting chip-specific robust
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templates have their parameter values driven to the middle of a cor-
rect operating range. This not only suppresses manufacturing imper-
fections but also minimises the errors caused by post-manufacturing
factors such as temperature variations and electrical noise, which may
cause the parameter values to fall outside the correct working range.
The template values are tuned using a global optimisation technique
according to measurements obtained from a specific target chip. This
contribution is also described in the references [156, 155].

Chapter 4 In this Chapter we introduce a methodology for learning of
CNN spatiotemporal dynamics. This methodology is based on the
methodology described in Chapter 3. CNN optimisation methods re-
lying on chip measurements to compute cost functions are naturally
faster than those relaying on simulations. For this reason, such meth-
ods also provide a very suitable platform for learning spatiotemporal
behaviour, which demands a large amount of resources. With on-chip
cost function calculation, learning of CNN spatiotemporal patterns
takes a fraction of the time it would take in modern digital comput-
ers. We have developed a methodology for learning these patterns.
Spatiotemporal CNN operations are especially important in the new
computation paradigm of active wave computing. Besides on-chip
learning of new active wave operations, the method we have developed
can also be used to optimise the speed of existing CNN operations.
This contribution is also described in the references [152, 151].

Chapter 5 In this Chapter we present Coupled Simulated Annealing (CSA),
a general purpose class of methods that, inspired by the working of
coupling in CNNs, uses cooperative behaviour to guide simulated an-
nealing processes toward the global optimum of a given cost function.
The new class of algorithms is characterised by an ensemble of opti-
misation processes that are coupled to each other by a coupling term.
The key difference between a CSA process and a classical Simulated
Annealing (SA) process is in the acceptance probability functions.
These new functions embed a coupling rule which guides optimisa-
tion processes. The CSA acceptance functions can be considered as
a generalisation of classical SA acceptance probabilities. The cou-
pling term, which is embedded in the acceptance functions, is defined
by a function of the energies of all current solutions in the different
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processes. We exemplify the class of algorithms described by CSA
with three instance methods. Additionally, we demonstrate how cou-
pling can be used to steer the overall performance of the optimisation
by adaptively adjusting the acceptance temperature in a very simple
way. Results lead to the conclusion that by choosing the right cou-
pling, considerably better results can be achieved w.r.t. other CSA
schemes and classical SA. This contribution is also described in the
references [154, 153].

Chapter 6 In this Chapter we proposed a unification of our previous chip-
specific CNN optimisation approaches for systematic CNN learning
and optimisation of spatiotemporal dynamics. The proposed method
extends the previous approaches in three main aspects. First, hard-
ware parameters of CNN chips are included in the optimisation. This
opens the way to run on actual CNN chips some templates so far
believed to be very unstable. Second, we use our own CSA methodol-
ogy as the optimisation core for learning and tuning, which improves
learning speed significantly. Third, the resulting framework for sys-
tematically learning and optimisation is presented as a new Matlab
toolbox so that the task of the CNN algorithm designer is reduce to
defining the operation to be learned as a training set for the optimi-
sation process. Training set design is the most crucial issue of this
approach, thus some basic design rules are presented. The proposed
framework may become a valuable tool to find new CNN templates
and robustly implement them on chip. This contribution is also de-
scribed in the references [57, 59, 58].

Chapter 7 A number of prototype applications and demonstrators have
been developed in our group using our chip-specific optimisation tech-
niques. These include: real-time object tracking [150], airborne fin-
gertip mousing [43], and hands-free wheelchair driving [148, 149].
Echocardiogram contour extraction [56], and medical eye tracking
and gaze estimation are other examples of prototype applications
that are being built using templates tuned with our approach. In
this Chapter we present a couple of these applications which used
techniques described in Chapters 3, 4, and 6 for tuning and learning
of templates.

Chapter 8 Finally, in this Chapter, we present the general conclusions of
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The research timeline is also depicted here.

this thesis and describe some challenges for future research.
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Chapter 2

Coupling, Local Activity,
and Cellular Neural
Networks

The fundamental limits of science have been continuously expanded along
the past centuries. From the discovery that the Earth is round to the find-
ing, at the time, of the most elementary building block of the universe, the
atom, these limits have been extended at an extraordinary rate. More and
more is known about little things that compose giants and about gigantic
things made by little ones [78]. What remains generic is that interactions
within a specific level generate larger levels. There are two fundamental
principles that form systems within a level: elementary units, here called
cells; and interactions between cells, here called coupling. In fact, a system
of coupled cells may represent a cell at larger levels. Coupling is therefore
present in all universal levels.

In many systems in nature, elementary cells are modelled as a dynam-
ical system governed by a series of differential equations. Depending on
the model properties of these cells, interesting complex dynamics can be
observed to exist. Many scientists have studied these properties in attempt
to describe the foundations of complexity and its equivalent terminology,
e.g. emergence, self-organisation, collective behaviour, etc. Recently, in
contrast to these previous studies, Chua [23] has proposed a quantitative,
rather than qualitative approach for complexity. In his approach, Chua
defines the principle of local activity, to which he attributes the origin of

11
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complexity.

Chua also presents Cellular neural networks (CNNs) as a paradigm for
complexity. CNNs can be used to demonstrate the underlying principle of
complexity and therefore it is also a suitable platform for studying various
complex phenomena. Besides modelling and simulation of complex and
natural dynamics, CNNs have been also used to perform computation. The
local characteristic of its connections makes CNNs very appropriate for Very
Large-Scale Integration (VLSI) implementations.

In this Chapter we explain how the principles of coupling and local
activity are joined together into the versatile platform of cellular neural
networks. Theory and implementation of CNNs are explained and discussed
with relation to different aspect that are considered relevant to framework
of this thesis.

2.1 Coupling and local activity

Universality and complexity are two fundamental principles of science which
have been widely studied. Coupling, or interaction between individuals or
systems, is universal. Local activity is the origin of complexity. Although
many scientists consider coupling to be ubiquitous in many different fields,
only part of these interactions involves complex individuals or systems,
which can then generate larger complex systems. The origin of complex-
ity has been recently attributed to the principle of local activity. Previous
studies have described complexity, emergence, and its other equivalent ter-
minologies in a qualitative way. In contrast, local activity has a quantitative
mathematical description to characterise complexity. Moreover, in the con-
text of this thesis, perhaps the most important finding w.r.t. complexity
and universality is that locally active individuals which are not complex
individually may present complexity when coupled together.

In order to establish a quantitative approach for complexity, in his book
CNN: A Paradigm for Complexity [23], Chua described the principle of local
activity. We quote the definition of CNN from his book:

“CNN is an acronym for either Cellular Neural Network when
used in context of brain science, or Cellular Nonlinear Network
when used in the context of coupled dynamical systems. A CNN
is defined by two mathematical constructs:
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1. A spatially discrete collection of continuous nonlinear dy-
namical systems called cells, where information can be
encrypted into each cell via three independent variables
called input, threshold, and initial state.

2. A coupling law relating one or more relevant variables of
each cell Ci,j to all neighbour cells Ck,l located within a
prescribed sphere of influence Si,j(r) of radius r, centred
at Ci,j.”

Although Chua focuses on reaction-diffusion CNN equations in the de-
scription of local activity, he advocated that the principle is universal and
that it holds for any system exhibiting complexity which can be represented
by a mathematical model composed of cells and coupling laws.

Prior to Chua’s work, other scientists also have tried to describe com-
plexity although using different terminologies. Chua cites [24] for example
Schrödinger’s necessary condition for the emergence of life as being the
”exchange of energy” from open systems [123]; Prigogine’s new principle
of nature called ”the instability of the homogeneous” [104]; Turing’s ”sym-
metry breaking” mechanism for morphogenesis [143]; and Smale’s question
about the axiomatic properties necessary to make the Turing interacting
system instable [128]. According to Chua, jargons such as emergence, self-
organisation, synergetics, collective behaviour, non-equilibrium phenom-
ena, among others are equivalent terms to describe complexity. Although
Chua’s initial approach to describe local activity requires circuit theory as
a framework, in [24], he provides a proof of the local activity theorem that
is mathematically self-contained.

Uncoupled locally active cells can generate complex behaviour such as
limit cycles and chaos. When such cells are connected to each other, it is
not surprising that complex spatiotemporal dynamics may appear. How-
ever, the effect of coupling can go beyond simple spatial propagation of
existing single-cell complexity. In fact, 30 year ago Smale posed a paradox-
ical example of two ”mathematically dead” cells becoming ”alive” when
connected to each other by a diffusive coupling. Smale was confronted with
two asymptotically stable cells which begin to oscillate when diffusively
coupled. He posed the problem of finding the conditions under which this
phenomenon would occur. Pogromsky et al. [103] have proposed a solution
to Smale’s paradox in the context of passivity and minimum phaseness and
have shown that, in Smale’s terminology, each cell by itself cannot be to-
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tally dead in order to become alive after coupled to each other, in the sense
that each system alone must have unstable dynamics consistent with some
external state constraint. Chua comes to a similar conclusion when solving
Smale’s problem in the context of the local activity theory. Having formally
divided the parameter space into locally passive and locally active disjoint
subsets, Chua identifies a subset of the active parameter space called the
”sharp edge of chaos” [24] which fulfils Smale’s quest for the axiomatic
properties necessary to effect oscillations via diffusive coupling. Smale’s
dead cells, in Chua’s view, need to be locally active in the region of the
sharp edge of chaos, or in the view or Pogromsky, need to have unstable
dynamics consistent with some external state constraint in order to become
alive when coupled together.

Coupling and local activity are therefore instruments for generation
of spatiotemporal complex behaviours in CNN-like spatially distributed
systems. In Chapter 4 we give an example of such behaviours and describe
a methodology to learn them with CNNs.

Besides modelling complexity, CNNs can also be used to simulate such
phenomena. In fact, in the past years, even locally passive CNNs have
been used to address a number of problems. As it is shown in the following
Section, CNNs are not only a paradigm for complexity but also a platform
to solve and simulate a large variety of complex and non-complex challenges.

2.2 Cellular neural networks

Cellular neural networks were first described by Chua and Yang as a new
circuit architecture in the framework of neural networks with important
applications in image processing [30], pattern recognition and other ar-
eas [28, 27]. A cell is the elementary circuit unit of a CNN and it is
composed of linear resistors and capacitors; and linear and nonlinear con-
trolled and independent sources. The cells are connected structurally to
form a network in such a way that only neighbour cells are connected to
each other.

Many different network architectures [63, 159] and cell models [54, 36]
have been devised as extensions of Chua and Yang’s original proposal.
Among all these architectures and cell models, the locality of the con-
nections remains the most important aspect. Despite the fact that such
networks are only locally connected, many different types of dynamics have
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been reported to emerge [25]. While adjacent cells interact directly only
with neighbouring cells, cells that are not immediately connected together
can still be affected indirectly because of propagation properties of the dy-
namics of the network.

In the years following Chua and Yang’s papers, a strong relation of
CNNs with nonlinear system theory became increasingly more evident [119].
Researchers gradually also adopted the CNN acronym to represent not only
Cellular Neural Network but also Cellular Nonlinear Network, especially in
the context of coupled dynamical systems.

The most usual CNN architecture is a regular two-dimensional grid as
originally proposed by Chua and Yang. In this architecture the cells are
disposed regularly in a rectangular grid. Each cell is connected directly to
each neighbouring cell located within a certain neighbourhood or sphere of
influence. Starting from this architecture, other n-dimensional grids can
easily be devised. An overview of the main types of CNN architectures can
be seen in Figure 2.1.

Besides structure, CNNs can also vary according to its cell models. For
instance, rather than continuous time dynamics, Harrer and Nossek have
proposed a CNN with discrete time steps [54]. This model has been used in
application in various areas [18, 95]. Arena et al. also proposed a modified
CNN model that has an extra coupling law directly dependent on the state
of the network [9]. This model was used to realise Chua’s circuits [9] and n-
double scroll attractors [10]. Some generalised cell models [49, 112, 48] have
also been proposed, with applications on detection of moving objects [111,
119] and other image processing tasks [64].

In this Chapter we describe two of the many CNN models existing in
the literature, namely, the original Chua and Yang’s model and the full-
range model, used frequently in CNN integrated circuit implementations.
We consider these two models the most relevant ones w.r.t. to the methods
that are described in this thesis.

2.2.1 Chua and Yang’s CNN model

The original CNN model was derived from the circuit in Figure 2.2 repre-
senting an elementary cell. The instantaneous current through the capaci-



16 Coupling, Local Activity, and Cellular Neural Networks

(a) (b)

(c)

Figure 2.1: Main types of CNN architectures: in (a), the spherical
CNN [159]; in (b), the rectangular 8-connected CNN that is very com-
monly used in simulations and VLSI implementations; and in (c) the star
CNN [63].

tor in the circuit of Figure 2.2 is driven by the following equations:

C
dvxij(t)

dt
= − 1

Rx
vxij(t)

+
∑

k,l∈N(c)

Ixy(i, j; k, l; t)

+
∑

k,l∈N(c)

Ixu(i, j; k, l) + Iz, (2.1)
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1 2 3

Eij Iz
C

Rx

Ry

Ixu(i, j; k, l)

Ixy(i, j; k, l; t) Iyx

vuij vxij(t) vyij(t)

Figure 2.2: Original Chua and Yang’s CNN model. The circuit describes an
elementary cell of the network indexed by i, j. C is a linear capacitor; Rx

and Ry are linear resistors; Iz and Eij are independent sources of current
and voltage, respectively; Ixu(i, j; k, l) and Ixy(i, j; k, l; t) are two linear
voltage-controlled current sources with characteristics B(i, j; k, l)vuij and
A(i, j; k, l)vyij (t), respectively; The only nonlinear part of the circuit is the
piecewise-linear voltage-controlled current source Iyx with characteristic
function Iyx = 1

Ry
f(vxij), where f(·) holds the nonlinearity.

where the N(c) is the set of indices of all cells connected to the cell c, in-
dexed in (2.1) by the indices i, j representing the positions of a rectangular
regular grid of M×N cells. The value vxij(t) is the voltage across the capac-
itor C and it is called the state of the cell. The current Iz is an independent
current source and the currents Ixy(i, j; k, l; t) and Ixu(i, j; k, l) are linear
voltage-controlled sources whose values obey the following characteristics:

Ixy(i, j; k, l; t) = A(i, j; k, l)vykl(t), (2.2)

Ixu(i, j; k, l) = B(i, j; k, l)vukl, (2.3)

where vukl and vykl(t) represent the voltage values on the nodes 1 and 3 the
cell indexed by k, l, and are called the input and the output of this cell, re-
spectively. The terms A(i, j; k, l) and B(i, j; k, l) represent the conductance
values or weights of the connections between the cell indexed by i, k and
its neighbours, indexed by k, l. A and B refers to the two different types
of connections. While A refers to connections with the output, B refers to
connections with input of neighbours cells.
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The only nonlinearity present in the circuit of Figure 2.2 is a piecewise-
linear voltage-controlled current source Iyx with a characteristic function
described by the following equation:

Iyx =
1

2Ry
(|vxij(t) + 1| − |vxij(t)− 1|) . (2.4)

If (2.2) and (2.3) are replaced in (2.1), we find the following expression,
commonly used to describe the state of a Chua and Yang’s CNN cell:

C
dvxij(t)

dt
= − 1

Rx
vxij(t)

+
∑

k,l∈N(c)

A(i, j; k, l)vykl(t)

+
∑

k,l∈N(c)

B(i, j; k, l)vukl + Iz, (2.5)

where vyij(t) is obtained from (2.4):

vyij(t) =
1

2
(|vxij(t) + 1| − |vxij(t)− 1|) . (2.6)

Chua and Yang stated the following assumptions w.r.t. the cell circuit of
Figure 2.2:

1. Initial state voltages are bounded to one, |vxij(0)| 6 1,

2. Input voltages are bounded to one, |vuij| 6 1,

3. Feedback gain matrices must be symmetric1, A(i, j; k, l) = A(k, l; i, j),

4. C > 0, Rx > 0.

Following the common CNN methodologies, we avoid unnecessary clut-
ter hereforth by making the following assumptions and changes in notation
without compromising generality:

1. The values of the capacitor C and the resistor Rx of the cell are
unitary: C = 1, R = 1;

1This assumption can be imposed in order to ensure stability of the CNN. Nowadays,
unstable CNNs also play a significant role and therefore, in a broader context, this
assumption can be neglected.
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2. The voltages vxij(t), vuij, and vyij(t) are denoted by xi,j(t), ui,j, and
yi,j(t), respectively; and

3. The current Iij is denoted by zij.

This way, our notation becomes independent from circuit theory notation.
The resulting CNN state equation can then be written as follows

dxi,j(t)

dt
= −xi,j(t)

+
∑

k,l∈N(c)

A(i, j; k, l)yk,l(t)

+
∑

k,l∈N(c)

B(i, j; k, l)uk,l + zi,j , (2.7)

yi,j(t) =
1

2
(|xi,j(t) + 1| − |xi,j(t)− 1|) . (2.8)

The equations above are considered to be the standard CNN model by
many researchers in this field. Many modified versions of these exist. The
modifications are mostly related to the nonlinearity in (2.8), and specific
rules for the boundary conditions for the cells at the edge of the grid.

Examples of CNN nonlinearities

Although the output nonlinearity proposed originally by Chua and Yang is
still widely used, some authors use approximations of the original piecewise-
linear output function, e.g.. tanh(xi,j(t)). This is especially the case in
learning methods which use gradient descent in the learning process because
of the need of a differentiable error function. Other authors consider the use
of a different type of piecewise-linear function in the state variable in CNN
equation in order to eliminate the need for the piecewise-linear function at
the output of the cell. This is important to achieve simpler cell circuitry
which are more suitable for VLSI CNN implementations. This is detailed
further in Section 2.2.2. Figure 2.3 present the characteristics of the main
types of CNN nonlinearities.

Boundary conditions

The analysis of the dynamical behaviour of coupled CNN cells most of the
time considers an infinite number of cells disposed in an infinite chain, in
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(c)

(a) (b)
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Figure 2.3: Main types of CNN nonlinearities: (a) original output function
proposed by Chua and Yang [28], yi,j(t) = 1

2 (|xi,j(t) + 1| − |xi,j(t)− 1|);
(b) nonlinearity used in VLSI suitable CNN models, see Section 2.2.2; and
(c) tangent hyperbolic function used as approximation of (a) especially in
CNN learning methodologies that use gradient descent techniques.

the case of one-dimensional CNNs, an infinite grid, for two-dimensional
CNNs, etc. However, when considering a more specific analysis or a real
implementation, it is necessary to define the values that the network need
to assume around its boundaries. The behaviour of the network depends
on the conditions on which these values are defined [140]. There exist three
main types of boundary conditions that can be used in order to establish
the interactions in at the boundary or the network. We list here these three
types of conditions as mentioned elsewhere [23].
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Fixed boundary Zero flux boundary Periodic boundary

Figure 2.4: Illustration of three types of boundary conditions commonly
used in CNNs. The output value of the outer virtual boundary cells are
specified according to the values of the inner cells.

Fixed boundary condition, also called Dirichlet boundary condition, es-
tablishes that the state xq,r of outer cells at the boundaries of the
network has a fixed value. i.e. xq,r = constant ∀q, r indices of outer
neighbours of a cell in the boundaries of the network.

Zero flux boundary condition, also called Neumann boundary condi-
tion, establishes that the state of an outer cell at the boundaries of
the network has its value mirrored to its inner neighbour cell that
lies in the direction orthogonal to the boundary, i.e. xq,r = xi,j∀q, r
indices of outer neighbour cells at the boundary of the network, and
i, j indices of the inner neighbour cells in the direction orthogonal to
the boundary.

Periodic boundary condition, also referred as toroidal boundary condi-
tion, establishes that the state of an outer cell at the boundaries of
the network has its value mirrored to the inner cell at the opposite
boundary of the network in the direction orthogonal to the boundary.
That means for instance that grid networks are folded to become a
toroid.

Figure 2.4 illustrate these three types of boundary conditions.
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2.2.2 Full-signal range CNN model

The local properties of CNN weights allows for easier implementation in
VLSI integrated circuits resulting in increased cell density per unity of sil-
icon area. However, integrated circuit implementation of variants from the
original CNN model presented a few drawbacks. Because the original model
works on voltage-mode and due to the fact that photo-sensory devices work
with current outputs, these implementations [31, 51] need conversion of
these output to voltages in order to be applied to image processing designs.
Additionally, differences in internal voltage and current ranges makes the
design of the electrical cell nontrivial because of transistor nonlinearities.
Finally, because of the combination between internal voltage and current
signals, high-impedance nodes are necessary. Therefore, it results in slow
circuits because of the necessarily large time constants.

Rodŕıguez-Vázquez et al. have proposed a CNN model that uses current-
mode techniques to avoid the drawbacks of the original model for implemen-
tation of continuous- and discrete-time CNNs. At the same time, another
current-mode approach was proposed by Varrientos et al. [144]. The key
difference between these two current-mode CNN models is the addition of
another nonlinearity to the state of the cell by Rodŕıguez-Vázquez et al.
The result of such measure is a reduction in area and power consumption.

The cell model proposed by [108] is described by the following equations:

dxi,j(t)

dt
= −gm(xi,j(t))

+
∑

k,l∈N(c)

A(i, j; k, l)yk,l(t)

+
∑

k,l∈N(c)

B(i, j; k, l)uk,l + zi,j, (2.9)

with

yi,j(t) = f(xij(t))

=







1, ∀ xi,j(t) > 1,
xi,j(t), ∀ |xi,j(t)| < 1,
−1, ∀ xi,j(t) 6 −1.

(2.10)

gm(xi,j(t)) =







m(xi,j(t)− 1) + 1, ∀ xi,j(t) > 1,
xi,j(t), ∀ |xi,j(t)| 6 1,
m(xi,j(t) + 1)− 1, ∀ xi,j(t) < −1,

(2.11)
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where f(·) is equivalent to (2.8) and is represented in differently for purpose
of comparison with gm(·) in (2.11). The variable m defines the slope of the
linear segments in the extremes of gm(·) characteristic function, which can
be seen in Figure 2.3(b). The original model is called the Full Signal-Range
(FSR) cell as originally proposed [108] and assumes gm(xi,j(t)) in the limit
of m→∞. Later, a generalised model called Improved Signal-Range (ISR)
cell was proposed as a natural transition model between Chua and Yang’s
cell and the FSR cell [36]. The ISR cell simply drops the mathematical
limit m → ∞ in gm(xi,j(·)) and assumes the range m > 1. If m = 1, the
ISR cell is reduced to the original CNN model in (2.7) and (2.8). The ISR
cell holds stability properties that are very similar to the original model,
and so does the FSR cell, consequently. Moreover, a specific property of the
FSR cell made this cell a standard for following successful implementations
of large VLSI CNN chips [85, 84, 109]. The property we refer to is due to
the elimination of the output piecewise-linear function at the output of the
cell. This is possible thanks to the following property, proved in [36]:

Given a regular array of M ×N FSR cells, i.e. cells described by (2.9)
and (2.10) with gm(xi,j) defined by

gm(xi,j(t)) = lim
m→∞







m(xi,j(t)− 1) + 1, ∀ xi,j(t) > 1,
xi,j(t), ∀ |xi,j(t)| 6 1,
m(xi,j(t) + 1)− 1, ∀ xi,j(t) < −1.

(2.12)

If the initial state vector lies within the hypercube [−1, 1]M×N , i.e. −1 6

xi,j(0) 6 1, ∀i = 1, · · · ,M ; j = 1, · · · , N , then the evolution of the state
vector is also bounded into the same hypercube, i.e. −1 6 xi,j(t) 6 1, ∀t >
0; i = 1, · · · ,M ; j = 1, · · · , N , independently of the particular CNN coeffi-
cients A, B, and z.

Due to this property, the state vector is equivalent to the output vector,
x ≡ y, and therefore, (2.9) and (2.10) are reduced to

dxi,j(t)

dt
= −gm(xi,j(t))

+
∑

k,l∈N(c)

A(i, j; k, l)xk,l(t)

+
∑

k,l∈N(c)

B(i, j; k, l)uk,l + zi,j, (2.13)
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and so the nonlinearity is eliminated from the output which is now equiv-
alent to the state. An additional advantage of such a model is that the
output, input and state ranges are normalised to a single range, which
reduces the complexity of circuit implementation.

In practise, the block diagram of the original cell circuitry depicted in
Figure 2.5(a) is reduced to the circuit illustrated in Figure 2.5(b).

2.2.3 Space-invariant CNNs

So far, we have only discussed advantages of CNNs for integrated circuit
implementation that are related to the locality of the connections, which,
indeed, makes wiring much simpler in VLSI design. Nevertheless, this is
not the only major feature in favour of CNNs. While the interconnection
matrices A,B ∈ R

(MN)×(MN) in CNNs are always local, they also may be
space-invariant, and so does the bias term z ∈ R

(M×N). This means that A
and B can be represented by single local connectivity matrices, and z can
be represented by a scalar, i.e. in this case A,B ∈ R

n+1 and z ≡ z ∈ R,
with n denoting the number of neighbours of a cell. This way, CNNs can be
used to perform different types of Single-Instruction Multiple-Data (SIMD)
parallel operations, which are coded into the values of the local versions A,
B, and z. In this form, the coefficients of a CNN are called CNN genes, or
CNN cloning templates, or simply CNN templates. A template has a fixed
structure with a fixed number of values. This small set of values defines
the evolution of the dynamics of the whole network.

A space-invariant CNN implies a homogeneous or uniform CNN, which
means that the physical connections must obey a regular pattern across
the network. Each cell, with exception of the boundary ones, must have
the same number of connections and these must hold the same topological
structure. These assumptions define a large number of CNN topologies that
qualifies to be space-invariant. For illustration, in Figure 2.6, we present
three of these topologies. The number of neighbours of a uniform CNN
depends on the size of the radius r ∈ N of the sphere of influence S(r).
In all cases of Figure 2.6, the value of the radius is r = 1, and therefore,
the number of neighbours of a cell is equivalent to the number of actual
adjacent neighbours. In the case of r = 2, for example, n would equate the
sum of the number of adjacent neighbours and their neighbours, mutually-
exclusive.

In the case of regular rectangular CNNs with r = 1 and n = 8, a
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(a) Chua and Yang’s cell model

(b) FSR cell model

x(t) y(t)

x(t) ≡ y(t)

Figure 2.5: Block diagrams from the original Chua and Yang’s cell circuit
(a), and from the full signal-range model (b). Input and bias connections
are omitted to avoid clutter. The gains a0 and ah,∀h = 1, · · · , n are associ-
ated with the corresponding elements of the connection matrix A represent-
ing self-feedback and feedback to neighbours, respectively, with n being the
number of connected neighbours. The output nonlinearity disappears from
the FSR cell. Instead, the state is used as output and is fed back to the
incoming sum after passed through a saturation block. This block makes
sure that the states of the network remains with in the unity hypercube
and keeps the internal signals within the same range.

template is composed by the following pieces:

A =





a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1

a1,−1 a1,0 a1,1



 , B =





b−1,−1 b−1,0 b−1,1

b0,−1 b0,0 b0,1

b1,−1 b1,0 b1,1



 , z,

(2.14)
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(a)

(c)

(b)

Figure 2.6: Three types of homogeneous CNNs. A triangular CNN where
the number of neighbours of each cell n = 3 (a); A rectangular CNN, with
n = 4 (b); and a hexagonal CNN [88], with n = 6 (c).

where ak,l, bk,l,∀k, l ∈ Z×Z are weights of neighbour connections with a0,0

and b0,0 being auto-weights, w.r.t. to the feedback and control matrices, A
and B, respectively. The condensed form |k, l| 6 r refers to both |k| 6 r
and |l| 6 r expressions, simultaneously. The topology equivalent to this
template structure is illustrated in Figure 2.1(b).

Finally, the equation that defines space-invariant CNN with the type of
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templates in (2.14) can be derived from (2.7) and written as follows

dxi,j(t)

dt
= −xi,j(t)

+
∑

|k,l|6r

ak,lyi−k,j−l(t)

+
∑

|k,l|6r

bk,lui−k,j−l + z, (2.15)

yi,j(t) =
1

2
(|xi,j(t) + 1| − |xi,j(t)− 1|) , (2.16)

where (2.16) is repeated here for the reader’s convenience.

Hereafter in this thesis, when referring to a cellular neural network, we
always mean a space-invariant CNN, unless explicitly expressed otherwise.

2.2.4 Cellular neural network universal machine

The CNN paradigm with space-invariant templates defined an ideal frame-
work for analog SIMD or array computing. Dozens of these templates where
designed along the years following the CNN invention and compose today
a large multipurpose CNN template library. Many dedicated analog chips
were developed to perform many single template operations, mainly image
processing tasks, in order to profit from the high parallelism of CNNs. As a
natural conceptual continuation of these chips, the CNN Universal Machine
and supercomputer (CNN-UM) was created with the objective to provide a
programmable CNN environment to combine multiple template execution
in a single chip instead of building different ones of each template.

The CNN universal machine and supercomputer was described as ”the
first algorithmically programmable analog computer having real-time and
supercomputer power on a single chip” [113, 26, 117]. Its design incor-
porates global and distributed analog memory and logic. Simulation of
partial differential equations were also included in its design with use of
appropriate complex cells. With applications on many areas, which in-
clude neuromorphic computing and the so called programmable physics,
chemistry, and bionics, the CNN-UM was presented as a unique choice for
building a large-scale programmable analog array computer.

One of the key ideas behind the design of the CNN-UM was called
the dual or analogic computing, which comes from a contraction between
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the words analog and logic. This idea combines analog array processing
with logic operations by incorporating distributed analog memory and pro-
grammability. Many exiting algorithms and physical phenomena could then
be translated into CNN analogic algorithms and implemented or simulated
using a programmable kernel function with a finite spatial window in ap-
propriate analogic circuits.

The special purpose CNN analog and mixed-signal mode chips that
were implemented before the CNN-UM was designed for use in well defined
applications presented superior efficiency for those tasks when compared to
their digital counterparts. However, digital systems were still more widely
used. The advent of integrated circuit implementation of the CNN-UM
has the advantage of operating with store-program capability as opposite
to those special purpose CNN chips. CNN-UM chips were expected to
offer a viable complement or even an alternative to conventional digital
computing. Indeed, the digital computing paradigm is persistently used in
areas where its mainly sequential nature is not adequate.

Encouraged in the design of the CNN-UM, many scientists have devel-
oped and implemented several analog VLSI CNN systems. From all these
chips, perhaps the ACE family [86, 109, 19, 20, 83, 82, 81, 84, 85, 35] was
the most universal. These chips allowed unprecedented analogic operations
of large grids of cells, e.g. 4, 000 and 16, 000 cells, with control and feed-
back template programmability. Next Section is dedicated to describe the
evolution of these chips and present the state-of-the-art of their successors.

2.3 Brief history and state-of-the-art of CNN-UM
implementations

The first CNN-UM chips [66, 65, 69, 34, 37] ware implemented after en-
couraging implementations of various successful special purpose CNN sys-
tems with increasing complexity [31, 55, 107, 51]. Shortly after, following
the same path, many researchers have developed other chips with stored-
program capability [32, 67]. Additionally, many actions were taken to give
support to the development of those chips, such as the creation of a suite of
design tools which includes a high level language, called Alpha, to describe
analogic algorithms, compiler, operating system, chip prototyping system,
and designer’s toolkit [118, 120, 135]. These tools, which later became
commercial development kits [164, 7, 163], supported mainly the series of
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chips called the ACE family, which got a boost development during the
European project called DICTAM [2].

2.3.1 The ACE chip family

The first of the ACE chips [35], called ACE400, was composed of 20 × 22
CMOS cells, arranged in a rectangular regular grid. The external control
interface of this chip was fully digital whereas the internal programming
signals of these chips were analogue. It was manufactured in a 0.8µm
single-poly double-metal technology with around 7 bits accuracy in analog
processing operations. All 19 template values of a 3 × 3 neighbourhood
were fully programmable. Although this chip was not remarkable by its
cell/area ratio when compared with an existing chip at the time [67], it
presented reasonably more functionalities.

The follower of the ACE400, the ACE4k, featured over 4, 000 cells dis-
posed in a regular 64 × 64 grid with distributed optical acquisition, and
distributed image memory cache on the same chip on the same silicon sub-
strate [85]. Implemented in a 0.5µm standard CMOS technology, it contains
approximately 1 million transistors operating in analog mode. This chip is
reported to be capable to perform complex spatiotemporal image process-
ing tasks with time execution as short as 300ns using as little as 0.3mW
per cell, or 1.2W of power for the whole chip.

The third generation of ACE chips is the ACE16k [109, 84, 83, 82, 81],
a vision chip that like his predecessors is flexible, ultra-fast, and power and
area efficient. This chip was built in a standard 0.35µm CMOS technology
and features a moderate accuracy of 8 bits and was particularly designed to
overcome some limitations of its predecessors. The improvements includes,
a better internal organisation of the processing cells, better management of
the analog memories, a reconfigurable optical interface, incorporation of an
address event detection scheme to simplify information of black and white
images, and an improved power consumption management, which allows
even more energy efficiency.

Belonging to the same ACE family but targeting a different gamut
of applications, the CACE1k chip [20, 19] is a second-order bio-inspired
processor for focal-plane dynamic image processing. Conceptually, it is
composed of grid of cells organised in two layers of 32×32 cells, where each
layer is very similar to the other single-layer ACE chips but between the
layer there exists a coupling between immediately superposed cells. Built
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in 0.5µm CMOS technology, the chip was designed inspired in studies of
the working of the mammalian retina in order to mimic the way in which
images are processed at the front-end of natural pathways. This is possible
because the chip allows programming of complex spatiotemporal dynamics.

During the course of the work developed for this thesis, we have per-
formed some experiments with the ACE4k and two versions of the ACE16k.
The results of some of these experiments can be seen in the Chapters 3, 4,
and 7.

2.3.2 The Q-Eye processor

Today, the state-of-the-art of CNN-based visual analog processors is the
Q-Eye chip. Built on 0.18µm CMOS technology in a QCIF2 format, the
Q-Eye is composed of a 176 × 144 grid of cells and is considered by its
manufacturer [1] as a ”ACE-like” processor, who claims a frame rate above
10, 000 fps. So far there has been no existing academic publication on this
chip although it is considered by the CNN academic community as the new
generation of Vision System on a Chip (VSoC).

The application areas of the Q-Eye include: intelligent security cameras;
consumer electronics and consumer robotics; in the automotive industry:
smart airbag deployment, blind spot detection, navigation, collision warn-
ing, etc.; in machine vision: ultra-high speed monitoring in production
lines, e.g. in textile, micro-electronic, and pharmaceutical industries; and
other areas overlapping CNN application areas.

2QCIF stands for ”Quarter CIF”. CIF or Common Intermediate Format was designed
to allow easy conversion between different image standards.



Chapter 3

Optimising CNNs

As seen in the previous Chapter, Cellular Neural Networks (CNN) are
progressively becoming a more attractive alternative to conventional dig-
ital computation. The computational power available in a single modern
CNN Universal Machine (CNN-UM) chip is comparable with that of super-
computer systems with many digital processors in parallel. CNN-UMs can
only perform Single-Instruction Multiple-Data (SIMD) operations. How-
ever, this architecture is sufficiently useful to suit many applications. CNN
image processing for instance is a research field studied worldwide. There
are many factors that contribute to such extraordinary computing power.
They include the local nature of the connections in the CNNs and, more
practically, advances in analogue and mixed-signal circuit technology, which
allow large arrays of CNN cells to be placed in a single Very Large-Scale
Integration (VLSI) chip. In fact, it is also the analogue circuitry that
boosts the speed and processing power of VLSI CNN systems. However,
what makes these systems attractive is also what makes its weakest feature.
Analogue VLSI technology today is still much susceptible to parameter de-
viations during the manufacturing process. The result of such imperfections
in the CNN operation often cannot be neglected.

The objective of this Chapter is to explain the different causes of the
errors observed in CNN-UM implementations as well as to describe the
existing methods that deal with these problems either by design or by
optimisation of CNN templates and other run-time parameters. Although
these methods are still in the development phase, the early results that
we present here are encouraging enough to motivate further development.

31
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The maturity of these techniques and the existing rapid improvements in
mixed-signal and analogue VLSI methodology are essential and symbiotic
steps to give CNN technology a place in application areas today dominated
by digital computers and even beyond.

3.1 Erroneous behaviour

Erroneous behaviour observed in VLSI implementations of CNN-UM may
be caused by a combination of reasons.

3.1.1 Causes of errors

Manufacturing process variations and environmental effects such as tem-
perature variation and electrical noise is perhaps the most important cause
of erroneous behaviour in VLSI CNN-UM chips. Although adaptive tech-
niques have been employed in CNN-UM chip implementations to ensure
accurate external control and system robustness against parameter vari-
ations [37], analogue VLSI implementations can only guarantee a rough
accuracy, about 5-10%, in relation to ideal parameter values. Moreover,
template parameters have a discrete range of implementable values, which
is about 8 bits for modern chips [109]. In addition to errors caused by these
design constraints, manufacturing process variations and environmental ef-
fects, some templates developed for use in ideal CNN structures can even
produce different erroneous results for runs with the same input and initial
conditions for a given chip. For instance, the results of consecutive aver-
aging threshold operations shown in Figure 3.1 indicate that the source of
many errors may be related to other types of post-manufacturing interfer-
ence. The reason for this inconsistent behaviour may also be imperfect or
noisy loading of the input and initial state from off-chip to on-chip memory
prior to an operation. This may also contribute to the overall undesir-
able chip behaviour. According to these assumptions, the main reasons
for erroneous behaviour observed in CNN-UM chips can be summarised as
follows:

• Parameter variation introduced during the fabrication process;

• Noise in the electrical components of the cells;
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(d)(b)

(a) (c)

Figure 3.1: For the same input image (a), initial state, and template values,
the same chip (an ACE4k) may produce different outputs (b,c, and d).
These results were obtained for subsequent runs, what make temperature
and noise interferences mostly stable. Therefore the different outputs are
assumed to be due to imperfect loading from off-chip to on-chip memories.

• Imperfect or noisy loading of the input and initial state from off-chip
to on-chip memory;

• Temperature variation.

These so far unavoidable and undesirable features make CNN-UM chips
fairly unreliable for some simple template operations, such as edge detec-
tion, binary average, threshold, halftoning, and several others.
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3.1.2 The effect of parameter deviations

Tetzlaff et al. have analysed and demonstrated by simulation the effect
that parameter deviation can have on VLSI implementations of CNNs [137].
They used a universal simulation system called SCNN [75] to reproduce a
CNN chip with template values affected by zero mean and randomly dis-
tributed stationary noise. The result of this noise addition is a space-variant
CNN, whose template values are slightly different across its network accord-
ing to the noise variance. The values of each connection in the network was
therefore modified in the following manner:

Ak,l ⇒ Ai,j = Ak,l(1 + ∆Ai,j),
Bk,l ⇒ Bi,j = Bk,l(1 + ∆Bi,j),

z ⇒ zi,j = z + ∆zi,j ,
(3.1)

where Ak,l, Bk,l, and z are the original space-invariant templates and Ai,j,
Bi,j, and zi,j are the resulting space-variant weights of the network, which
incorporated the desired simulation of the parameter deviations.

Tetzlaff et al. applied this modelling to different templates from the
CNN library [115]. The results of their simulations clearly show that even
for very small variations the output can be very different from the original
one. They also proposed a learning method to minimise the effect of the
parameter deviations. This method uses the mean square error as the error
function for the recurrent back-propagation algorithm to train ordinary
cloning templates [137] and cloning templates with space-variant bias [139]
to generate templates which are more robust to the deviations.

3.2 Chip-independent methods

Methods that consider the design of robust templates have been extensively
developed in order to avoid or minimise the effects of the above mentioned
obstacles for correct operation of analog VLSI implementations of CNN-
UMs [21, 162, 53, 137, 138, 139, 124, 96, 52, 68, 90]. There are several
definitions of robustness [96, 53] that in general define a measure for sus-
ceptibility of CNN templates to modifications in their values while still
producing the correct output. Robust templates are generally expected
to have their values in the middle of a correct operation interval so that
tiny variations on these values remain within this interval. The size of this
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interval defines how robust a template operation can be. The level of ro-
bustness is therefore dependent on the type of operation. The most robust
operations often overlook parameter deviations and work correctly in chip
implementations. These methods for design and learning of robust template
operations consider ideal CNN models to assess these intervals without re-
gard to specific implementations. For further clarity of this thesis, we state
the following definition.

Chip-independent methods are design or learning approaches for gen-
erating robust CNN template operations that consider ideal CNNs
models, rather than parameters measured on a specific chip, in order
to define robustness.

3.3 Chip-specific methods

Although chip-independent methods are able to provide correct chip func-
tionality for many robust templates, for less robust operations, these meth-
ods can not avoid erroneous behaviour. Methods that consider not only
the working of ideal CNNs but also the specific differences of each chip
implementation can further improve the functioning of these less robust
templates. We present here a definition for such methods.

Chip-specific methods or chip-dependent methods are learning or tun-
ing methodologies to generate CNN templates targeted to a specific
chip. The correctness of the operation is defined experimentally with
measurements of the given chip.

Földesy et al. [38] have developed a chip-specific approach to design
fault-tolerant CNN templates. The approach is based on the well known
least mean squares optimisation method.The general objective is to find
templates and template sequences equivalent to existing ones that run cor-
rectly and reliably on specific CNN-UM chips. This method is restricted
to uncoupled templates and uses decomposition of templates to ensure the
correct desired operation when a single template fails to be optimised.

The decomposition happens in the following way. Upon a template
optimisation failure,

• decompose the template into two child templates according to specific
rules,
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• optimise these child templates for the specific chip,

• If the child templates are successfully optimised, the procedure is
finished, otherwise, repeat the decomposition process with child tem-
plate that failed to optimise.

Although this approach may often lead to the correct functionality,
the number of template decompositions may grow unnecessarily because
the gradient descent optimisation cannot guarantee that the global optima
can be found. The correct functionality thus comes at the cost of multiple
template execution. The restriction to uncoupled templates only is another
disadvantage of this method. Coupled templates are necessary to describe
most of the complex and interesting behaviour observed to exist in CNNs,
e.g. autowaves.

3.4 Template tuning

In this Section, we introduce a chip-specific optimisation approach to tune
coupled and uncoupled CNN templates using global optimisation. This
approach uses chip measurements to evaluate the template operation with a
priori designed training sets of input-output images. It assumes as starting
point values, a correctly working template designed to ideal CNNs, i.e. a
template that works in simulation. The goal of this approach is to find a
modified version of the initial template that allows for a correct on-chip
template operation.

This approach has some advantages when compared with the method
described in the previous Section. Földesy et al. use gradient based op-
timisation. This can lead the solution to a poor local minimum and force
unnecessary template decomposition as suggested in their method. Besides,
one of the most interesting features of CNNs, global interaction, is neglected
because propagating, or coupled, templates cannot be optimised due to the
lack of proper error derivative when including the feedback connections.
On the other hand, global optimisation eliminates these restrictions but
convergence is not as fast as in a local optimisation method. However,
the choice for global optimisation methods has another advantage. Global
optimisation can handle non-differentiable problems with many local min-
ima, which may reflect well the characteristics of cost functions for CNN
optimisation.



3.4 Template tuning 37

To test this approach, we have chosen to use the Adaptive Simulated
Annealing (ASA) [60, 62] method to globally optimise our cost functions.
For detailed information, see also Appendix A. ASA is known as a robust
and fast method to search for a global optimum in non-linear complex
problems with multiple local optima like CNN template optimisation.

To ensure correct optimisation, it is necessary to choose the training
set wisely., Training sets are composed by a set of triplets θ containing the
input u, the initial state x, and the desired output yd. Each individual
element of a triplet entry has, in this approach, its values ranging from 0
to 1. In [38] the importance of this step is discussed and a good method
to compose training sets for uncoupled operations is proposed. For more
general and coupled templates, sample images and random images suitable
for the given operations have to be considered. In Chapter 6, we present
some roles for designing good training sets.

In order to evaluate each probing template, we use a normalised version
of the cost function used in [72] for learning purposes. The normalised cost
function is described in (3.2),

g(p, θ) =
1√
k

√

√

√

√

k
∑

i=1

(yd
i − yi(∞))2, (3.2)

where p denotes the parameter vector, i.e. the probing template, θ is the
current training triplet, k is the number of cells, yd

i is the value of the ith
pixel of the desired output and yi(∞) is the corresponding value of the
steady-state output, whose values are acquired from direct chip measure-
ments. Hence, the cost function g(p, θ) of the probe template p for the
input and initial state contained in the triplet θ gives the RMS value of the
distance between the desired output vector yd and the steady-state output
y(∞). The objective of the ASA algorithm is, therefore, to minimise g(p, θ)
given an initial template pinit.

Imposing an initial approximation pinit seems to be less important when
using a global optimisation method. However for this approach, this ap-
proximation is used to set the boundaries of the search since the objective
here is tuning and not learning, where the whole parameter range would be
used instead. Namely the boundaries for the search are pmin,i = pinit,i − b
for the lower bound and pmax,i = pinit,i + b for the upper bound, where i
is the index of each template parameter and b is a small value. Observe
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that here two assumptions are made: the initial template is assumed to be
a fully correctly working template on a simulator; and the parameter devi-
ations that disturb its values on the chip are assumed to be smaller than
b. Narrow search boundaries decrease the duration of the optimisation and
allow the use of more minute search, resulting in a much more efficient
optimisation. These boundaries are not rigorously strict as a mechanism
of self-adjustment may be easily introduced with no significant loss for the
algorithm, e.g. if any of the boundaries are close to and/or is constantly
bounding its respective component it may be slightly extended.

Another advantage of using finite boundaries, besides modelling phys-
ical limitations, is the role played by recursive optimisation runs with re-
laxation of constraints. Applying constraints (such as symmetry, imposing
zero values, or dependence between values) to the template under optimi-
sation shrinks the search space and allows a faster search. The result of
this search is then further reused in another search with less constraints,
or more parameters, and narrower boundaries, or smaller parameter search
space. This recursion is applied until no more constraints are left. The
first searches, with more constrained templates and broader boundaries,
serve to roughly localise the global optimum in the search space for further
refinements using less constrained templates. An outline of this approach
using ASA is demonstrated in Figure 3.2.

Once the training set and the search boundaries are defined, the opti-
misation can be performed. The procedure is finished and considered to be
successful when the cost function becomes smaller than a certain end con-
dition value or when the annealing temperatures decrease through a given
limit of influence on the algorithm. If the cost for the best template is zero
or smaller than the tolerance value then the tuning is finished. Otherwise,
if the solution is restricted by any constraint, such as symmetry or imposed
zero values, they are relaxed to the next level and another ASA optimisa-
tion is initiated. The result of the last optimisation is considered to be an
optimal template.

The solution obtained by this method might not be unique, i.e. the
optimum can be located inside a region of multiple optima. The next
Section describes a solution proposal to search among a set of optimal
templates in order to find the best template in terms of robustness for
whenever there exists the possibility of multiple optima.
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Figure 3.2: Outline of the tuning with Adaptive Simulated Annealing.

3.5 Chip-specific robustness

In contrast with design and learning, template optimisation, or template
tuning, does not intend to create new CNN templates but to improve exis-
tent ones. The aim of the optimisation involves normally either robustness
improvements [52], like in chip-independent methods, or error minimisation
for a specific CNN chip implementation [38], like in chip-specific methods.
In this approach both goals are pursued in combination. In order to in-
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crease the error minimisation, robustness improvements are employed to an
optimal template within the scope of a given chip. This procedure produces
templates that are expected to be optimal, in the sense of error minimisa-
tion, and robust, with relation to variations on the optimal template values
due to post-manufacturing interference. The concepts of robustness and
optimality here are restricted to the specific chip, neither the term optimal
nor robust can be employed with the tuned template for use in a different
chip without proper repetition of the whole procedure.

As discussed in Section 3.1, robust template generation methods place
the template values in the middle of a correct operation interval but these
templates still present errors in VLSI implementations. A shift of this
operation interval in VLSI implementations due to parameter deviations
can be the cause of the persisting errors. If it is possible to compensate
errors using chip-specific methods, it is reasonable to say that the correct
operation interval can indeed be shifted in VLSI implementations. If the
same interval that existed in ideal CNNs also continued to exist in their
VLSI implementations, even that shifted, it is surely worthwhile to develop
methodologies toward chip-specific robustness.

Chip-Specific Robustness is the robustness associated to the degree of
susceptibility of a given CNN template, that had been tuned for a spe-
cific chip, to variations in its values caused by any post-manufacturing
interference in the chip.

These methodologies can not only correct errors but also decrease the
degree of sensitivity of template operations to variations in their values due
to post-manufacturing disturbances. Chip-independent and chip-specific
robustness can be directly associated with manufacturing and post-manu-
facturing error sensitivities respectively. Additionally, chip-specific robust
templates can also attempt to correct manufacturing errors alike chip-
independent ones.

Considering the class of binary CNN operations, namely operations with
binary input and output, an optimal template is not necessarily unique.
The error surface in the region of the optimum is often flat or very shallow
instead of a deep isolated point (See Figure 3.5 and [38]). Therefore, from
this observation one can conclude that these operations are asymptotically
stable regarding template values as initial conditions, i.e. as for a stable
operation with a given input and initial state, for small variations on the
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initial conditions (template values), the output remains in the same fixed
point. Due to the discrete nature of the results and to the continuous
nature of the template values, asymptotic stability seems obvious for binary
template operations. Nevertheless, it is less evident when considering real-
valued (grey-scale) inputs operations.

Considering statistical circuit design [129], where techniques such as
design centring attempt to find a centre for an acceptability region, an
analogous formulation for the problem of finding chip-specific robust tem-
plates can be established, where a centre for an interval of correct operation
needs to be estimated.

In statistical circuit design, designable parameters are used during cir-
cuit design as decision variables and will represent here the 19-dimensional
vector p = (p1, ..., pD) of template parameters. Random variables, or noise
parameters, will represent the parameter deviations, such as manufactur-
ing parameter variation, temperature, and etc., denoted by the vector
e = (e1, ..., eD) of random variables with zero mean. Circuit variables,
which in statistical circuit design represent the variables used in circuit,
process, or system simulation, will represent in this approach a noisy tem-
plate parameter vector1 denoted by p′ = p + e. And finally, the vector
of circuit performances will be represented by a simple scalar denoting the
value of a cost function G(p, e).

The acceptability region, which in statistical circuit design is defined
as a region for which all inequality and equality constraints imposed on
the vector of circuit performances are fulfilled, will be defined here in the
p′-space as such a set of p′ vectors in the 19-dimensional space for which
the inequality G(p′) ≤ s is fulfilled, where s denotes a tolerance imposed
on the cost function.

The goal of this approach is therefore the same as in design centring,
where the centre of the acceptability function is to be found. There are
several methods in the literature that solve this problem with use of the
derivatives of the circuit performances or their estimates. However, due to
the difficulty to find a good estimate for the derivative of a cost function
that uses chip measurements, we use again a global optimisation method
to find the optimum for a noise corrupted cost function.

1p′ = p + e models absolute parameter spreads and results in var{p′

i} = var{ei}.
Alternatively, one can assume p′ = p(1 + e), which models relative parameter spreads
and results in var{p′

i} = p2
i var{ei}. This last approach is equivalent to (3.1).
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The addition of the noise in the cost function eliminates the flat regions
of optima in the error surface and allows further improvements to an ini-
tial optimum. The cost function now contains several different embedded
measurements instead of only one and the probing templates assimilate a
small perturbation. The cost function is

G(p, e, θ) =
1

r

r
∑

j=1

g(p + ej , θ), (3.3)

where r denotes the number of runs executed for the triplet θ, and e is a
vector where each element corresponds to Gaussian noise with zero mean
and small variance.

The addition of different samples of e to the probe template p in (3.3)
generates a smoothed cost function that will statistically make this func-
tion minimal when p has its elements in the middle of each corresponding
dimensional range of optima, i.e. in the middle of the acceptability region.
Figure 3.3 depicts the effect of this cost function in the final result for one
component of the parameter vector.

The region of the error surface where the initial optimal template was
located is no longer flat. With the addition of the perturbation e to the
template values, it became noisy. The set of template values located in the
middle of this noisy region has now stochastically more chances to generate
the correct output than those closer to the borders. As a result, the final
template will be very close to the most robust template for specific use in
a given chip. Chip-specific robustness is thus the concept of robustness
within a given chip.

3.6 Experiments

The experiments were performed using the Aladdin system [7] in connection
with the Matlab environment. The main features of the ASA algorithm
were written for Matlab and were triggered by a Analogic Macro Code
(AMC) program running on the given CNN-UM chip. Two CNN-UM chips
were used in the experiments: an ACE4k, a programmable CNN with 4096
cells disposed in a 64 × 64 regular grid; and an ACE16k with 16384 cells
disposed in a 128 × 128 grid. All measurements were made on-the-fly.
Figure 3.4 depicts an overview of the setup used during the optimisations.
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Figure 3.3: A illustration of how chip-specific robustness is achieved for
one component of the parameter vector. In the first two levels of zoom, the
region where the optimisation is performed is shown. In the top and last
level of zoom, it is illustrated that if the probing parameter value is located
in the middle of a theoretical working range, errors will be less likely to
happen.
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Figure 3.4: An overview of the structure used in the optimisation.

In order to ease the ASA search, each template optimisation might start
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with constraints or structure in the template values such as symmetry or
imposed zero values. The constraints are then softened for subsequent runs
until the point where all 19 template values become free for optimisation,
according to the main algorithm shown in Figure 3.2.

The input and initial state for each optimised template operation were
in general random binary or grey-scale images, with some exceptions2. The
respective desired output was obtained from simulators of ideal CNN-UM
using robust templates available in the literature [116]. To avoid tiling, the
size of the images were chosen according to the size of each chip, i.e. 64×64
pixels and 128× 128 pixels for ACE4k and ACE16k respectively.

Owing to the speed of the chips, each annealing iteration consumed
more time for the generation and acceptance of new probing templates in
Matlab than for the evaluation of the cost function itself, which is done
by sending the input and initial state images to the chip and acquiring
its output. The total duration of a simple annealing iteration was about
50 milliseconds and the number of iterations for each optimisation was in
average in the order of tens of thousand. The difference in size did not
affect the duration of the measurements for the two different chips used
here since CNN computations are totally parallel.

In what follows, a demonstrative example of chip-specific robustness
and more precise explanations for each individual experiments are pre-
sented. Among the experiments performed in the lab, two optimisations
on the ACE4k chip are described here: binary edge detection, and average
with binary output. On the ACE16k chip, we performed three optimisa-
tions: average with binary output, thresholding to binary, and sobel edge
detection.

3.6.1 An example of a chip-specific robust template

To demonstrate the concept of chip-specific robustness, Figure 3.5 shows
the error surface measured with the chip for the logic difference template
operation. For illustrative purposes, the template was optimised with only
two free parameters. The structure of this template with the free parame-

2Template operation like binary edge detection do not optimise well with random
images.
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Figure 3.5: Logic Difference template error surface for the ACE4k chip. ⋄ -
initial template; ◦ - chip-specific optimal template; ∗ - chip-specific robust
template.

ters a and b is

A =

[

0 0 0
0 a 0
0 0 0

]

, B =

[

0 0 0
0 b 0
0 0 0

]

, z = −1. (3.4)

Observe that, although the initial template values are located in an
optimal point in the error surface, this point is near other non-optimal
points. This proximity may result in errors as soon as any interference shifts
the template values, even slightly. After the chip-specific optimisation, the
resulting template is occasionally located in a better error neighbourhood.
By optimising with target on chip-specific robustness, the template assumes
the most robust position for the given error surface.

3.6.2 Binary edge detection on the ACE4k chip

Figure 3.6 shows the results for this template operation. The costs of the
original and the final templates are presented in Table 3.1 together with the
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Figure 3.6: Results for binary edge detection template operation on the
ACE4k chip.

respective template values. Figure 3.6 shows the output of the intermediate
symmetric template

A =

[ −0.24 −0.24 −0.22
−0.17 1.89 −0.17
−0.22 −0.24 −0.24

]

;

B =

[ −0.65 0.03 −0.81
−0.07 2.85 −0.07
−0.83 0.03 −0.65

]

; z = −1.36,

which presented an average cost of 0.0050.

3.6.3 Average with binary output on the ACE4k chip

For this template operation, the chip reacted better using symmetric tem-
plates. The results can be seen in Figure 3.7 and the respective template
values are in Table 3.1. The template values for the non-symmetric optimal
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Figure 3.7: Results for average with binary output template operation on
the ACE4k chip.

template are

A =

[ −0.50 1.81 −0.17
1.75 2.96 1.69
−0.20 1.82 −0.50

]

;

B =

[

0.34 0.78 −0.17
0.62 0.88 0.77
−0.25 0.57 0.41

]

; z = −2.51,

and its average cost was 0.1451. Its results can also be seen on Figure 3.7.

3.6.4 Average with binary output on the ACE16k chip

For this chip, in contrast with the ACE4k, the operation of average with
binary output presented better results using the template without sym-
metric constraints. The best template is in Table 3.2. The intermediate
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Figure 3.8: Results for average with binary output template operation on
the ACE16k chip.

symmetric template

A =

[

0.38 2.68 0.32
2.99 5.38 2.99
0.32 2.69 0.38

]

;

B =

[

0.00 0.00 0.00
0.00 4.13 0.00
0.00 0.00 0.00

]

; z = −3.19,

which presented and average cost of 0.1734, has its results depicted in
Figure 3.8 together with the other results.
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Figure 3.9: Results for thresholding to binary template operation on the
ACE16k chip.

3.6.5 Thresholding to binary on the ACE16k chip

For this operation, symmetry constraints did not effect significantly the
average cost. The symmetric template

A =

[ −0.19 −0.21 −0.17
−0.14 5.93 −0.14
−0.17 −0.21 −0.19

]

;

B =

[

0.00 0.00 0.00
0.00 6.00 0.00
0.00 0.00 0.00

]

; z = −2.46,

with average cost equal to 0.2188 was slightly worst than its non-symmetric
version, which values and cost can be seen in Table 3.2. The results can be
visualised in Figure 3.9.
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Figure 3.10: Results for sobel edge detection template operation on the
ACE16k chip.

3.6.6 Sobel edge detection on the ACE16k chip

Although template operations with grey-scale output are difficult to opti-
mise in CNN chips, it was possible to do that with sobel edge detection
operation due to the stability of this operation. However for the general
grey-scale case, a more complex approach, which takes into account desir-
able trajectories, like the one described in Chapter 4 needs to be considered.
Figure 3.10 presents the results. The template values and respective costs
for this operation can also be found in Table 3.2.

3.7 Conclusions

Despite the extraordinary speed performance of CNN-UM chips for image
processing tasks, digital systems are still predominant in the field owing to
their superior reliability. The development of a method toward chip-specific
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Operation Template values Cost

binary
edge
detection

or
ig

.

A =





0.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 0.00



 B =





−1.00 −1.00 −1.00
−1.00 8.00 −1.00
−1.00 −1.00 −1.00



 z = −1.00 0.77

fi
n
al

A =





−0.23 −0.07 −0.19
−0.18 2.08 −0.16
−0.26 −0.18 −0.14



 B =





−0.54 −0.07 −0.53
0.03 2.93 −0.08
−0.42 −0.03 −0.42



 z = −1.94 zero

Average
with
binary
output

or
ig

.

A =





0.00 1.00 0.00
1.00 2.00 1.00
0.00 1.00 0.00



 B =





0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00



 z = 0.00 0.64

fi
n
al

A =





−0.35 1.62 −0.24
1.58 2.95 1.58
−0.24 1.62 −0.35



 B =





0.20 0.72 0.02
0.65 1.02 0.65
0.02 0.72 0.20



 z = −2.39 0.13

Table 3.1: Template values and the respective error costs for a specific ACE4k chip
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Operation Template values Cost

Average
with
binary
output

or
ig

.

A =





0.00 1.00 0.00
1.00 2.00 1.00
0.00 1.00 0.00



 B =





0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00



 z = 0.00 0.65

fi
n
al

A =





0.44 2.88 0.45
2.93 5.67 2.82
0.61 2.78 0.82



 B =





0.00 0.00 0.00
0.00 4.91 0.00
0.00 0.00 0.00



 z = −3.52 0.16

Threshold

or
ig

.

A =





0.00 0.00 0.00
0.00 2.00 0.00
0.00 0.00 0.00



 B =





0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00



 z = 0.00 0.5032

fi
n
al

A =





−0.14 −0.25 −0.22
−0.10 5.85 −0.23
−0.15 −0.12 −0.22



 B =





0.00 0.00 0.00
0.00 5.89 0.00
0.00 0.00 0.00



 z = −2.57 0.22

Sobel

or
ig

.

A =





0.00 0.00 0.00
0.00 −4.00 0.00
0.00 0.00 0.00



 B =





0.00 0.00 0.00
−3.00 0.00 3.00

0.00 0.00 0.00



 z = −1.70 0.31

fi
n
al

A =





0.00 0.00 0.00
0.00 −3.40 0.00
0.00 0.00 0.00



 B =





0.24 0.01 −0.07
2.59 0.31 2.81
−0.10 −0.04 0.17



 z = −2.46 0.07

Table 3.2: Template values and the respective error costs for a specific ACE16k chip
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robustness contributes to weaken such superiority. The method described
here works well for all tested stable binary output template operations and
a grey-scale template operation. Using an optimisation method that does
not rely on information about the gradient of the cost function allowed this
approach to efficiently tune not only uncoupled templates but also coupled
ones. For the case of grey-scale outputs, a more elaborated approach that
takes into account transient time is desirable. Chip-specific robust tuning
of templates provides a method to place parameter values in the middle of
a correct operating range. This minimises the erroneous behaviour of CNN
chips for optimised templates due to parameter variation caused by post-
manufacturing disturbance, e.g. temperature and noise, which may cause
the parameter values to fall outside the correctly working range. Chip-
specific robustness exposes a trend of analog and mixed-signal self-test and
self-tuning chips that might be explored using embedded implementation.
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Chapter 4

Learning Dynamics in CNNs

Among other characteristics of cellular neural networks, the degree of par-
allelism, their suitability to VLSI implementation, and the ability to use
these to perform many different image processing operations are already
very remarkable features, but that is not all. Mapping traditional image
processing tasks is merely just the tip of the iceberg. CNNs can exhibit a
large number of extraordinary complex behaviours. In order to estimate
how rich CNN behaviour can be, the reader simply need to look into the
dynamics of a single cell and extrapolate this to an entire network. The
temporal dynamics of a single cell can range from fixed-point asymptotic
stability to limit cycles and chaotic behaviour. If the entire network is
considered, besides temporal dynamics, spatial pattern formation can also
emerge from topographically distributed arrays of cells. Many of these
spatiotemporal phenomena observed in CNNs are also present in different
disciplines of science, e.g. chemistry, biology, and physics. Recently, spa-
tiotemporal CNN dynamics has been used to perform computation in the
form of a new paradigm that has been called Active Wave Computing
(AWC) [126].

In this chapter we present some examples of spatiotemporal dynamics
that can be observed in both CNNs and in nature. We then describe
a method for learning these phenomena in the framework of trajectory
learning. To do so, we extend the theory for learning of trajectories with
recurrent neural networks to support learning of spatiotemporal trajectories
with CNNs. Some simulations and chip experiments with the resulting
methodology are also presented here.

55
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4.1 Spatiotemporal behaviour

Typically, in nature, spatiotemporal behaviour occurs in networks of dy-
namical systems. As a dynamical system, each node, or cell, of a network
is responsible for generating temporal behaviour. In itself, each cell may
present any type of dynamics, complex or not. The interconnections of a
network are responsible for the interactions between cell dynamics. De-
pending on the degree of interconnection, spatial pattern formation may
arise. In nature interconnections are usually restricted to a certain local
neighbourhood that can be hierarchically observed in different scales. As
an example of a node or cell, atoms interact locally with other atoms to
form molecules, which form materials or substances. In biology, cells inter-
act with neighbour cells to create organs that then compose an individual
organ systems. Interactions between organ systems form an individual,
animal or human. An individual interact with other individuals, enabling
villages, societies, nations, etc. The spatiotemporal dynamics of such sys-
tems is the target of different studies in multidisciplinary fields, especially at
the elementary level. Perhaps the most studied type of spatiotemporal be-
haviour in the past few years are these present in active media. An active or
excitable medium is a spatially distributed system of autonomous elements,
here called cells, with non-linear dynamical properties. Each of these cells
interacts with the surrounding neighbours via diffusion [125]. Active me-
dia are characterised by the ability to propagate signals without decreasing
strength. These signals often take the form of waves that emerge depending
on different initial conditions. Such waves are commonly described as trig-
ger waves or autowaves and can be widely observed in nature. Examples
include waves in the ocean, combustion waves, phase transitions [76], waves
of the hart tissue [6], electrical stimulus waves in the retina [47], etc.

Due to the principle of local activity, cellular neural networks can also
behave as an active medium. With programmable parameters, CNN-UMs
are able to simulate different types of homogeneous and heterogeneous
active media. Besides simulating these complex natural phenomena, the
CNN-UM can use waves to perform computation. Before CNN-UMs, ele-
mentary image processing tasks were already reported to be feasible with
light-sensitive chemical waves [74].

In the following, we will present a few examples of 2-dimensional (2D)
spatiotemporal dynamics that emerge from active media. We characterise
them into two different types of behaviour: periodic and aperiodic.
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(a)

(b)

Figure 4.1: Initial conditions and snapshots in time of: (a) a dot travelling
across the image at a given angle; and (b) a wave of given width propagating
across the image in a specific direction.

4.1.1 Aperiodic spatiotemporal behaviour

A simple example of aperiodic spatiotemporal behaviour can be seen of
Figure 4.1(a) where a travelling dot can be observed which moves across
the image at an arbitrary angle. In the same way as the dot, one might
think of a travelling wave of a specific width also moving across the image,
like in Figure 4.1(b).

We define aperiodic travelling waves like the one in Figure 4.1(b) in two
different kinds: “convergent” and “divergent”1. A typical case of a “conver-
gent” wave is a wave that starts from a line and propagates with decreasing
length in order to form a pyramid. This operation converges when the top
of the pyramid is built like Figure 4.2(a). When aperiodic travelling waves
do not converge to a fixed image2, we will call it “divergent”. An interest-
ing aperiodic wave was used in [101] to compute the shortest path of flat
and wrinkled labyrinths. This wave simulates e.g. the waves of combustion

1here, these concepts do not have a strict mathematical meaning but are rather limited
to the geometric boundaries

2a fictitious image of infinite size is considered here to avoid issues with boundary
condition
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(a)

(b)

Figure 4.2: Initial conditions and snapshots in time of: (a) a wave that
propagates to form a horizontal pyramid and a pyramid in a given angle
and shape; and (b) a combustion wave which burns from the centre to the
borders of the image.

where an active medium cannot return to the same state after the propa-
gation of the wave. Figure 4.2(b) shows a typical combustion wave where
the burning effect starts at the centre of the image.

4.1.2 Periodic spatiotemporal behaviour: autowaves

Another interesting class of spatiotemporal behaviour is autowaves. The
term autowave is an abbreviation of ”autonomous wave” commonly used to
characterise self-sustained signals that induce a local release of stored en-
ergy in an active medium, and use this energy to trigger the same process
in neighbour regions. This term has been often used in the CNN com-
munity to describe 2D periodic travelling waves that have the following
properties [114]:
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Figure 4.3: Spiral autowave phenomena in a 2-layer CNN simulator: initial
conditions and time snapshots of the output in the two layers. Each row
represents one layer.

• the waveform and the amplitude of wave remain constant during prop-
agation;

• the waves do not reflect at obstacles;

• colliding waves are annihilated and thus no interference emerges;

• diffraction can be observed in the same way as for classical waves.

Many waves occurring in nature share the same properties. Typical ex-
amples include waves in the cerebral cortex, epidemic waves, combustion
waves, and reaction-diffusion processes. In cellular neural networks, au-
towaves represent the means for the new AWC paradigm and have been
used, for example, to guide robots along obstacles towards a target [5]. An
example of autowaves, known as spiral wave, is shown in Figure 4.3.

In CNN systems, complex autowaves such as spiral waves have been
observed to emerge in 2-D arrays of second or higher order cells [101, 92]
and delayed type first order cells [114]. As arrays of regular first order
cells cannot generate necessary active local dynamics, complex autowaves
cannot be observed in these systems. However, in [157, 158] this type
of wave was observed in a VLSI implementation that was designed to be
a first order 2-D array of CNN cells [109]. Although internal sources of
autowaves (chip-inherent) could not be avoided during the experiments,
external sources could also be placed generating a competition between
the sources. Explanations for this observation are not fully understood yet
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although no important malfunction has been observed in this chip. It is
possible that the physical system implemented in the chip behaves more
like a second order or delayed type first order CNN system rather than as
a first order system as intended in the original design.

4.2 Learning spatiotemporal behaviour

There exists a large number of methodologies for learning of ordinary tem-
plate operations in CNNs. The output of these operations are generally
composed of a single image. This image can either represent the output of
a network when it converges to a fixed-point or a time-truncation snapshot
of a temporally unstable operation. Our goal is to develop a methodology
based on trajectory learning that can learn a sequence of images rather
than a single one. In the sequel we define the CNN equations that we use
in this Chapter in matrix form. CNN equations in matrix form are usu-
ally more convenient for image processing applications [23]. Here we use
this representation as an intermediate step toward a vector representation
that approximates the one used in trajectory learning. These equations are
defined as follows

Ẋ = −X + A⊗Y + B ⊗U + zJ,
Y = F (X),

(4.1)

where

X =











x1,1 x1,2 · · · x1,N

x2,1 x2,2 · · · x2,N
...

...
. . .

...
xM,1 xM,2 · · · xM,N











,U =











u1,1 u1,2 · · · u1,N

u2,1 u2,2 · · · u2,N
...

...
. . .

...
uM,1 uM,2 · · · uM,N











,

F (X) =











f(x1,1) f(x1,2) · · · f(x1,N )
f(x2,1) f(x2,2) · · · f(x2,N )

...
...

. . .
...

f(xM,1) f(xM,2) · · · f(xM,N )











,

with X,Y ∈ R
M×N denoting the time-dependent state and output of the

whole network, respectively, and U ∈ R
M×N denoting its time-invariant

input. J ∈ R
M×N is a matrix with all elements equal to 1. Time derivative
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of X is denoted by Ẋ. The elements of A,B ∈ R
(2r+1)×(2r+1), and bias

value z denote template values, , where r ∈ N is the radius of the local
neighbourhood scheme of the network, e.g. r = 1 results in matrices A
and B with size 3 × 3. The operation ⊗ is the local template convolution
applied to the whole array and can be defined as follows

⊗ : R
(2r+1)×(2r+1) × R

M×N → R
M×N

A⊗Y 7→







Q|qi,j =
∑

|k,l|6r

ak,lyi−k,j−l







,
(4.2)

with i, j ∈ N and k, l ∈ Z; ak,l is k, l-indexed element of A; yi,j and qi,j

are the elements of Y and Q in the ith row, jth column of the array,
respectively; and M and N are the number of cell rows and columns in the
CNN array. Boundary conditions can be one of the three different types
described in Chapter 2.

Without loss of generality, we can vectorise (4.1), resulting in the fol-
lowing equation:

ẋ = −x + A⊗ y + B ⊗ u + zj,
y = f(x),

(4.3)

with the vectors x, y, u, and j being vectorised versions of X, Y, U, and
J, e.g.

x = [x1,1, x2,1, · · · , xM,1, x1,2, x2,2, · · · , xM,2, · · · , x1,N , x2,N , · · · , xM,N ]T .

Learning of ordinary template operations with this network can now be
defined as the following error minimisation problem:

min
A,B,z

E(A,B, z), (4.4)

with E(A,B, z) being the squared error or cost function to be minimised,

E =
∣

∣

∣

∣

∣

∣
yd − y(A,B, z, T )

∣

∣

∣

∣

∣

∣

2

2
(4.5)

=
∑

i,j

(yd
i,j − yi,j(A,B, z, T ))2. (4.6)

Observe that the minimisation of the norm would require a square root
without effecting the minimisation problem. Hence we prefer the minimi-
sation of the norm squared E, where yd

i,j is the i, j indexed element of the
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desired output yd; equivalently, y(A,B, z, T ) and yi,j(A,B, z, T ) represent
the actual output of the network according to (4.3) with template values
A, B, and z, time-truncated at the time instant T .

For fixed-point convergent outputs, T must be sufficiently large to en-
able the complete evolution of the dynamics. For time-truncated snapshot
outputs, T is either arbitrary or is used as an adjustable parameter for the
template functionality.

Apart from intrinsic network characteristics, the problem of learning
ordinary template operations is not much different from general supervised
learning for neural networks related to input-output mappings. Neverthe-
less, the problem of learning spatiotemporal behaviour is somewhat distinct
and is more closely related to trajectory learning.

In this Section we describe a methodology for learning 2D spatiotem-
poral behaviour with cellular neural networks. In order to do that, we
extend the theory of trajectory learning to support the spatial character of
spatiotemporal dynamics.

4.2.1 Trajectory learning and recurrent neural networks

Trajectory learning, the problem of modifying parameters of dynamical
systems to ensure that their outputs follow a given function of time, has
been analysed by many scientists [145, 94, 42, 165, 14, 12, 29, 8, 130]. Most
frequently they have used Recurrent Neural Networks (RNN) as a model
for such systems. Consider the following RNN model that describes the
dynamics of these systems:

ẋ = −x + Wy + W ′u + z,
y = f(x),

(4.7)

where y ∈ R
M , x ∈ R

N , and u ∈ R
P are column vectors representing

output, state, and input, respectively, x and y being time-variant and u
being time-invariant; the matrices W ∈ R

N×M , and W ′ ∈ R
N×P , are the

weight matrices for the output y and the constant input u, respectively.
The term z ∈ R

N denotes the bias of the network. The problem consists of
minimising a cost function which is not defined at a fixed-point but rather
is a function of the temporal behaviour of the model. The problem is
often addressed in the literature by gradient descent methods [42, 41, 165,
80]. Pearlmutter’s work [100] presents an earlier survey in this subject.
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These methods are known to coexist with problems like local minima [14]
and vanishing gradients with the evolution of the dynamics [12]. On the
other hand, methods that do not use gradient information in the learning
process [29, 8, 12, 130], which include global optimisation methodologies like
simulated annealing, genetic algorithms, multi-grid random search, etc., are
persistently slower, but are more frequently able to converge to a globally
optimal solution. The learning problem can be described by the following
equation:

min
W,W ′,z

E(W,W ′, z), (4.8)

with E(t,W,W ′, z) representing the error or cost function to be minimised,

E =

M
∑

i=1

∫ tf

t0

(yd
i (t)− yi(W,W ′, z, t))2dt, (4.9)

where the square difference between the desired trajectory function yd
i (t)

and system’s output function in time yi(W , W ′, z, t) is integrated from time
t0 to tf and then summed over all M output neurons. The cost function
E(W , W ′, z) may also assume different forms [29, 80, 130], but this one will
be used here to devise a new cost function for the training of spatiotemporal
behaviour on CNNs.

4.2.2 Trajectory learning and cellular neural networks

The mapping of trajectory learning with RNNs into learning of spatiotem-
poral behaviour with CNNs is straightforward due to the similarities be-
tween (4.3) and (4.7). Moreover, computational complexity can be consid-
erably decreased for learning using CNNs.

Trajectory learning with RNNs can become increasingly complicated
when using larger numbers of neurons due to the quadratic increase in the
number of weight connections. This problem can be moderated by assuming
zero elements in the weight matrices and therefore reducing computational
burden. This is essentially what happens in (4.3) when compared to (4.7).
More precisely, only weights of neighbouring cells are taken into account
with the remaining values of the weight matrices equal to zero. Moreover,
this CNN model has weights that are space-invariant. This means that
the description of a cell is sufficient to describe the whole system. Indeed,
templates are local and invariant equivalents of the matrices W , and W ′
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and bias term z in (4.7). Therefore, the description of a first order CNN
system with local and invariant weights can be reduced to the description
of the behaviour of a single cell:

dxi,j

dt
= −xi,j(t) + A⊙ yi,j + B ⊙ ui,j + z,

yi,j = f(xi,j), (4.10)

with A, B, and z being the local and space-invariant equivalent of W , W ′,
and z in (4.7). The operation ⊙ is the single-cell equivalent of the array
convolution ⊗ defined in (4.2), such as

⊙ : R
(2r+1)×(2r+1) × R→ R,

A⊙ yi,j 7→ q =
∑

|k,l|6r

ak,lyi−k,j−l. (4.11)

In the case of r = 1, the operation ⊙ defines the discrete convolution of two
3 × 3 matrices, which in this case are the A or B template and any 3 × 3
local slice of the whole output or input matrices, respectively.

Other CNN models that are especially important for the modelling of
complex spatiotemporal behaviour are second order CNN systems. Con-
sider one of these models with a regular array disposed in two layers, in
which its dynamics can be represented by the following equations:

dxi,j;1

dt
= −xi,j;1 + A1,1 ⊙ yi,j;1 + A1,2 ⊙ yi,j;2 + B1 ⊙ ui,j;1 + z1,

yi,j;1 = f(xi,j;1),

dxi,j;2

dt
= −xi,j;2 + A2,2 ⊙ yi,j;2 + A2,1 ⊙ yi,j;1 + B2 ⊙ ui,j;2 + z2,

yi,j;2 = f(xi,j;2),
(4.12)

where the index after the semi-column identifies the layer and the indices
i and j locate the given cell within the layer. This equation can also be
written in its condensed form:

dxi,j

dt
= −xi,j + A⊙ yi,j + B ⊙ ui,j + z, (4.13)

with

A =

[

A1,1 A1,2

A2.1 A2,2

]

; B =

[

B1

B2

]

; z =

[

z1

z2

]

;
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and

xi,j =

[

xi,j;1

xi,j;2

]

; yi,j =

[

yi,j;1

yi,j;2

]

; ui,j =

[

ui,j;1

ui,j;2

]

.

These equations describe the behaviour of a second order cell, which when
isolated from the neighbouring cells may behave as an oscillator [11] and
when coupled to other cells is able to generate interesting complex spa-
tiotemporal patterns. Moreover, these equations closely describe the model
of the CACE1k chip [20] which is a major advance in VLSI implementation
for generation of complex behaviour.

Given (4.3) and (4.7), due to locality and space invariance, trajectory
learning with CNNs involves much less unknowns than with RNNs. In-
deed, the number of unknowns remains constant despite the size of the
cellular neural network. In spite of the condensed set of values that de-
scribes a CNN, a large variety of dynamical phenomena can be observed.
Moreover, as is seen in Chapter 2, locality and invariance alone make these
systems very suitable for VLSI implementation which is a trend that has
been emerging in the past years. Today, high-end silicon versions of CNN
Universal Machines (CNN-UM) are commercially available for the develop-
ment of extremely high speed image processing applications [1].

So far, we presented the mapping of trajectory learning with RNNs into
learning of temporal dynamics with CNNs simpler and straightforward.
However, there are two important issues that should be well understood.

• The first issue concerns the type of optimisation method used to re-
duce the learning error. In spite of being very efficient and widely
used, gradient descent techniques are hard to apply in the case of
CNNs. The non-linear output function y = f(x) often assumes the
following piecewise linear non-differentiable form, which complicates
the derivation of an analytical form for the gradient of the cost func-
tion and would require techniques from non-differentiable local opti-
misation:

f(x) =
1

2
(|x + 1| − |x− 1|). (4.14)

Differentiable approximations [139, 50] of this function have been pro-
posed to allow utilisation of common gradient learning techniques like
recurrent back propagation. However, for learning using chip mea-
surements to calculate solution costs, analytically calculated gradi-
ents are merely approximations of the real system, which may lead
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to convergence to false optima. Global optimisation methods can be
used with reasonable confidence since the number of parameters to
be optimised is not very high.

• The second issue needs more care and must be addressed in a case-
by-case fashion. It concerns the generation of feasible training sets.
While a trajectory can be described by a temporal sequence of values
for each output, e.g. sin(t), spatiotemporal behaviour in a grid of
cells needs to be described by continuous 2-D image sequences where
the values of the pixels correspond to the output of a single cell. Due
to coupling between cells, the desired values of every individual pixel
trajectory cannot be derived independently and must be considered as
a whole. Since cell interconnections are local and space-invariant, the
specified desired spatiotemporal dynamics across the grid of cells must
be consistent and coordinated in space and time. Manual generation
of the desired image sequence can thus be tricky and may result in a
behaviour that is physically impossible to learn.

In view of these two observations, we describe in the following Section
an extension of the trajectory learning theory presented here in order to
incorporate aspects that are relevant for the learning of spatiotemporal
dynamics.

4.2.3 Learning sequences of images

In Chapter 3 we employed a global optimisation to adjust template param-
eters in order to minimise errors on chip results. For that, we described a
cost function which uses chip responses in order to optimise these parame-
ters. A similar approach is considered here for the spatiotemporal dynamics
learning problem. The key differences between the two approaches lay on
the extra requirements needed by latter.

First, while the optimisation described in Chapter 3 only concerns tun-
ing, i.e. there exists a good initial approximation of the solution, this ap-
proach concerns learning, which means that an initial approximation may
not exist. This emphasises the importance of using a global optimisation
method and that convergence may take a longer period of time.

Second, the cost function for this problem involves more unknowns than
in the tuning case. Namely, besides the templates values, time instants
also need to be included in the set of parameter to be optimised. This
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requirement is related to the issue concerning the feasibility of training sets
for spatiotemporal dynamics on CNNs. In the following we illustrate this
problem.

Feasible training sets

The appropriate design of training sets that incorporates all functional-
ities and constraints of a template operation is essential for successful
chip-specific tuning of the operation, as seen in Chapter 3. Learning of
spatiotemporal dynamics also requires equal effort. In addition, physical
feasibility of the desired dynamics needs to be taken into account. We con-
sider two distinct aspects that effect how feasible the desired spatiotemporal
dynamics can be.

The first aspect relates to spatial feasibility. Considering the space in-
variance of the connections in CNNs, the desired dynamics must present
equivalent behaviour across the network. Assuming each cell is identical
and so are its set of local connections, every cell must present the same
behaviour with the same speeds of dynamics. Figure 4.4 presents an ex-
ample of an infeasible desired dynamics. Although the two waves in the
image sequence present the same dynamics, a circular outward propagating
front—their speeds of propagation are different. Such a difference would
require an inhomogeneous distribution of template values across the array
of cells, which conflicts with the principle of space-invariant CNNs. This
aspect is also important when designing the training sets for tuning or
learning of fixed-point ordinary template operations.

The second aspect concerns temporal feasibility and it is characteristic
of trajectory learning. Assuming local and space-invariant CNNs and con-
stant template values, the dynamical behaviour of the network trajectory
may not change in time. Neither the speed of dynamics nor the dynamics
itself may change along the trajectory. Figure 4.5 presents an illustrative
example of such infeasible trajectory. The two waves in the image sequence
are coherent spatially, but the temporal response can only be feasible with
varying template values.

In summary, besides the need to ensure that all functionalities and con-
straints of the template operation are incorporated in the training set, spa-
tial and temporal feasibility is also a concern. If these are not guaranteed,
or at least improved to a certain level, the learning may fail even when
all functionalities and constrains are present in the training set. Follow-
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Figure 4.4: Example of infeasible spatiotemporal dynamics in local and
space-invariant CNNs. Dynamics is not spatially homogeneous across the
grid of cells. In (a), four snapshots of the network in different time in-
stants. In (b) and (c), diagonal sections of the two waves shown in (a).
Although both waves present, each, consistent temporal behaviour with
constant growing rates individually, the spatial dynamics is not coherent
because these rates, or the speeds of dynamics, are different.

ing, we define a cost function to tackle the problem of temporal feasibility.
Spatially feasible training sets still need careful manual design.
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Figure 4.5: Example of infeasible spatiotemporal dynamics in local and
space-invariant CNNs. Dynamics is not temporally homogeneous. In (a),
four snapshots of the network in different time instants. In (b) and (c),
diagonal sections of the two waves shown in (a). Both waves exhibit the
same spatially distributed behaviour but the dynamics varies with time.

Cost function with relaxed temporal requirements

In order to improve temporal feasibility, we define here a cost function to
avoid the necessity of a strict match between an irregular time evolution
of the desired and resulting behaviour. This cost function assimilates the
time intervals between snapshots of the system’s output into the set of
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parameters to be optimised. It takes the following form

E =
∑

i,j

NT
∑

k=1

(yd
i,j;k − yi,j(A,B, z, tk))2. (4.15)

The problem of learning spatiotemporal behaviour with CNNs can be
presented in this way as the minimisation of the cost function

min
A,B,z,∆t1,··· ,∆tNT

E(A,B, z, t1, · · · , tNT
), (4.16)

where ∆tk = tk − tk−1 ∀ k = 0, · · · , NT , representing the time interval
between two output samples with NT being a finite number of samples and
t0 = 0; yd

i,j;k denotes the desired output value of a pixel in the kth image of
a given sequence of T images; the initial conditions x(0) is defined in the
training set; the value yi,j(A,B, z, tk) denotes the output value of a pixel
as the system has evolved to the time instant tk with weight matrices A
and B, and bias z.

This cost function has a few key differences with respect to (4.6) and (4.9)
for allowing the learning of spatiotemporal dynamics and reduce temporal
feasibility restrictions.

Compared to (4.6), (4.15) has an extra summation which accounts for
the different snapshots of the temporal dynamics. Consequently, the pe-
riod of the execution of the dynamics T is subdivided into NT time instants
t1, t2, · · · , tNT

. Each output yi,j correspond thus to the output of the net-
work at time interval tk, with k = 1, 2, · · · , NT . If the number of snapshots
NT is one, (4.15) is reduced to the case of fixed-point ordinary template
learning of (4.6). Therefore, we conclude that (4.15) is a generalised cost
function for learning of fixed-point or spatiotemporal dynamics with CNNs.

With respect to trajectory learning, when the cost function in (4.15) is
compared to the cost function for trajectory learning with RNNs in (4.9), a
time integral is replaced by a summation over NT time instant snapshots.
Additionally, the desired outputs yd

i,j;k in the CNN case are labelled by
the index k of the NT time instants rather than by the time instant tk
as it is for the measured outputs yi,j(tk). These two measures are related
to the desired relaxation of temporal requirements for physical feasibility.
This relation becomes clear if we now look at the statement of the current
learning problem, in (4.16). It can be noticed that the NT time instants
are not included in the set of parameters to be optimised but rather their
local differences ∆tk are. The consequences of this are:
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• Because ∆tk is optimised rather than tk itself, only the order of ap-
pearance of the desired snapshots of the dynamics matters for the
learning process.

• The desired outputs of the CNN network yd
i,j;k are not necessarily re-

quired to be regular in time because they do not depend on a matching
time instant tk.

• Because of these, the learning process also accepts temporally irreg-
ular image sequences as training set without compromising temporal
feasibility. All the desired time instants tdk are irrelevant, only the
order in which the images are learned matters, not at which specific
time instants the images are generated by the CNN.

A way to exemplify the effect of these measures in view of trajectory
learning is to think that if the trajectory to be trained is e.g. sin(ω(t)),
with ω(t) being a monotonic increasing function of time. The resulting
trajectory that is allowed to be learned is any frequency modulation of this
behaviour, which also includes sin(t).

The relaxation of the schedule for the resulting spatiotemporal be-
haviour is an important issue for CNNs. Fixing a rigid schedule for the
spatiotemporal trajectory to be learned would magnify the importance of a
physically feasible training set. This needs to be avoided for a simple reason:
in many cases nothing can guarantee that suggested time stamps for the
desired spatiotemporal trajectory have a fixed relation between themselves
in a real system.

The right choice for the number of time instants NT to include in the
optimisation depends on how difficult the learning problem is and on how
much time and processing resources are available. Naturally, the higher the
number of samples NT of the dynamics, the more difficult the optimisation
becomes. Yet, at the limit NT → ∞, RNN trajectory learning can be
approximated by our approach for learning spatiotemporal dynamics with
CNNs.

Learning spatiotemporal dynamics on multi-layer CNNs

The learning of complex behaviours in multi-layer CNNs, such as autowaves,
can be done in the same way as for single-layer CNNs. Nevertheless, instead
of one image sequence as output, multi-layer CNNs have multiple output
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image sequences, which does not necessarily mean that all sequences need
to be taken into account. It is possible to base the learning in one single de-
sired output image sequence. This way no modifications are needed in the
methodology described above. However, an extra output layer can serve as
extra information that can be used by the optimisation process to find a
global solution. In a 2-layer CNN for example, autowaves occur simulta-
neously in both layers but often with different waveforms. Frequently the
outcome of what happens in one layer is sufficient for some applications and
in this case only the output of this layer needs to be taken into account for
the calculation of the cost function. However, the inclusion of the output of
the second layer in the cost function calculation can sometimes bring more
insight about the location of a globally optimal solution. For this case it is
only necessary to include a summation over the number of layers in (4.15),
and an index for the layers in the output and desired output values. A
multi-layer version of (4.15) can therefore be represented as the following
equation:

E =
∑

i,j

∑

l

NT
∑

k=1

(yd
i,j,l;k − yi,j,l(A,B, z, tk))2, (4.17)

where the notation is identical to (4.15) with addition of l representing the
layer index. In the case for the 2-layer model of (4.12), the layer indices
assumes the values l = 1, 2.

Incremental learning

Learning of complex spatiotemporal dynamics can pose reasonably difficult
problems. The more complex the behaviour the more intermediate trajec-
tory steps need to be included in the training set. Since in this approach
each extra desired dynamics snapshot in the training set leads to an extra
parameter to be optimised, the more complex the behaviour is, the more
unknowns there should be to be optimised. In order to avoid very long
optimisation runs due to slow convergence, a few strategies are available.
Generally these strategies concern different ways to perform incremental
learning. In trajectory learning, this sort of learning is often used to gradu-
ally transform an existing and simpler trajectory into a different and more
complex one by using intermediate target trajectories [130]. For an illus-
trative example of incremental learning applied to a given single-variable
trajectory, see Figure 4.6.
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Figure 4.6: Example of incremental learning applied to a complete single-
variable trajectory. An existing known trajectory is gradually transformed
into the desired trajectory by using intermediate target desired trajectories.

For learning of spatiotemporal dynamics with CNNs, if there exist
known template values for a dynamical behaviour that is similar to the
desired dynamics, the same reasoning as in trajectory learning can be ap-
plied. If there exists no known similar behaviour however, other incremental
learning strategies can still be used. As in Section 3.4 of Chapter 3, knowl-
edge about the template form, e.g. symmetry, non-zero elements, etc., can
be used to reduce the number of template elements to be optimised. For
example, in the case of dynamics representing wave propagation in a given
direction, one may wish to impose the assumption of symmetry along the
direction of the propagation. In this way the number of parameters to
be optimised is reduced and the optimisation process can converge faster.
Once convergence is reached with this limited set of template values, the
assumptions can gradually be removed in consecutive learning processes
until all unknowns are included in the last process.

Another incremental learning strategy that can be applied here concerns
temporal increments. While incremental learning using complete interme-
diate target trajectories is easy to visualise in the scalar case, when the
trajectory is a state evolution of coupled cells disposed in a 2D array, the
same principle does not become directly evident. If increments are given by
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extending the trajectory gradually in time from the first snapshot until the
last desired output, the strategy is not only evident for the single-variable
trajectory case but it also is clearly the case for 2D spatiotemporal dynam-
ics, i.e., instead of the complete set of parameters, the learning process
only has to consider the template values and the first time interval ∆t1 un-
knowns in the first optimisation. Subsequent processes gradually include
more ∆t’s in the optimisation. By using this type of incremental approach
to learn complex dynamics, we avoid clueless searches in very large search
spaces by locating promising regions in smaller representations of these
spaces. These promising regions serve then as clues for searching in wider
spaces until we finally come to the complete search space representing the
desired spatiotemporal dynamics.

4.3 Modifying speed of dynamics

The speed of dynamics or the amount of time necessary for a given dy-
namical system to reach a specified state will depend on its time constant.
In trajectory learning, time constants are included in what are called scale
parameters because of the nature of what happens in the system when
these parameters are changed. The concept also holds for spatiotemporal
dynamics.

In CNN systems, two systems with identical templates will reach a given
state in a different amount of time depending on their time constants. The
intrinsic time constants of CNN circuit implementations depends on the
resistive, inductive, and capacitive values of the components. However, the
time constant and consequently the speed of the dynamics of specific oper-
ations in programmable CNNs can also be modified by scaling the template
parameters. Two CNN systems with the same intrinsic time constants τ
can still present similar dynamical behaviour with different speeds if their
template values are modified accordingly, without changing τ .

The methodology described in Section 4.2 can also be applied in combi-
nation with incremental learning strategies in order to modify the speed of
dynamics of spatiotemporal behaviour with known template values. Vary-
ing the speed of existing CNN dynamics can be important for improving
the efficiency of a large number of existing applications without performing
any structural changes. Moreover, Varying the speed of these dynamics
can also be crucial for the development of new AWC applications which
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make use of CNN operations with accurate time evolution requirements,
e.g. wave metrics [133].

Given existing CNN spatiotemporal dynamics, constraints can be ap-
plied in an incremental optimisation process to force the dynamical be-
haviour to gradually evolve faster, or slower. In order to formalise the
problem of modifying the speed of dynamics of existing spatiotemporal
behaviour, we describe the following problem

min
A,B,z

E =
∑

i,j

NT
∑

k=1

(yd
i,j;k − yi,j(A,B, z, ωtk))2

subject to 0 < ω ≤ 1−∆τ, (4.18)

where the desired outputs yd
i,j;k for k = 1, · · · , NT are simply generated

from the existing template dynamics, i.e. yd
i,j;k = yi,j(tk). ∆τ is the desired

proportional increasing step on the speed of dynamics. In the case of a
desired decrease on the speed of dynamics, the constraint on ω becomes
ω ≥ 1 + ∆τ .

Incremental learning can best be applied here in case of large desired
∆τ , where the increment is applied to ∆τ itself.

4.4 Simulations and on-chip experiments

A variety of experiments were performed to evaluate the method proposed
here. The optimisation method used to minimise the cost function in (4.16)
was Adaptive Simulated Annealing (ASA) [61]. We also have used this
method for tuning fixed output templates for VLSI implementations as it
is seen in Chapter 3. It can be observed that if we make T = 1 in (4.16)
and t1 is removed from the optimisation and made sufficiently long, this
cost function is reduced to the fixed output case. The same approach of
relaxation of constraints and search boundaries that we used in Chapter 3
can also be made useful for learning in the following way: (a) in the be-
ginning of the learning process no limits are imposed to the weight values
and thus the maximum range of values are available; (b) after this process
converges, better solutions are obtained by limiting the weight values to
values that are close to the first solution and/or incrementally relaxing ex-
isting constraints, e.g. symmetry, non-zero values, etc; (c) the last step is
then repeated until any stopping criteria is reached.
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We performed the experiments on the same set of examples presented
in Section 4.1. Learning was performed on-chip, using the ACE4k CNN-
UM [85], a chip with a grid of 64 × 64 cells; and in simulations. On-
chip learning has two main advantages, which concern superior speed and
the fact that no extra chip-specific optimisation is necessary to ensure the
right functionality in the given chip. Simulations of the type of complex
behaviour that CNN can exhibit are very expensive in respect to compu-
tational resources. Learning processes which requires a large number of
function evaluation can become impractical to simulate even in modern
digital computers. With on-chip cost function evaluations, the same pro-
cesses only take a fraction of the time due to the high level of parallelism
present in those chips.

For all experiments realised here, only immediate neighbour cells are
assumed to have a non-zero weight, which makes the matrices A,B ∈ R

3×3.
We have used prior knowledge about the template matrices to reduce the
number of parameters that actually need to be optimised. For example,
when symmetry is considered, the number parameter to be optimised can
go from 9 to 5 parameters for each matrix. When there existed no prior
knowledge, the number of parameters to be optimised remained 19, respec-
tive to full template matrices, plus the number of time intervals NT .

For simplification of the illustrative examples presented here, the input
images u in (4.10) and (4.13) were set to zero, and therefore the input
weight matrix B were assumed zero. The inclusion of input images and
input weights in the optimisation process is straightforward but brings little
or no complementary clarity to these examples.

In the following Sections we present the results of learning experiments
realised on a VLSI CNN-UM chip, simulation learning of complex be-
haviour, and observations w.r.t. change in the speed of dynamics during
the learning process.

4.4.1 On-chip learning experiments

We performed five learning experiments with aperiodic spatiotemporal be-
haviour in the ACE4k CNN-UM chip [85], among which three were diver-
gent and two convergent spatiotemporal dynamics. Next, we present the
results for the divergent dynamics experiments, namely a travel dot, a trav-
elling wave and a combustion wave; then we present the results for the two
convergent dynamics: two pyramiding waves.
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(a)

(b)

Figure 4.7: Results of learning on a ACE4k (64 × 64 cells) chip for a dot
travelling at a given angle, where (a) is the desired dynamics and (b) is the
result of the learning. Although the the travelling angle was learned, the
shape of the circular dot was not preserved.

Travelling dot

In this experiment we tried to train the chip with the spatiotemporal be-
haviour described by a dot travelling in an image sequence. We used the
manually generated images from Figure 4.1(a) as initial condition and train-
ing set. The first image in the sequence from Figure 4.1(a) was used as the
constant input u and initial state x(t = 0). Although very simple to pic-
ture, this travelling is relatively difficult to train. Due to the angle of the
shifting, no assumptions, e.g. symmetry, could be taken to reduce the num-
ber of template values to be optimised. Temporal incremental learning was
applied here to reduce the initial search space. The resulting spatiotem-
poral dynamical behaviour after learning can be visually compared to the
original one in Figure 4.7. It can be observed that although the direction
of the movement could be accurately learned, the contour of the dot is not
fully accurate. This can indicate a physical limitation of the chip or the
CNN model to shift objects in arbitrary directions while maintaining their
shapes.
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(a)

(b)

Figure 4.8: Results of learning on a ACE4k (64× 64 cells) chip for a wave
travelling in the second diagonal direction, where (a) is the desired dynam-
ics and (b) is the result of the learning. The network was able to learn the
travelling wave but with irregular width.

Travelling wave

The objective of this experiment was to train the chip to propagate a wave
with fixed length across the array of cells in a diagonal direction. We used
the symmetry along the second diagonal of the array to reduce the number
of initial unknown template values. Although the network was able to
learn a travelling wave, it failed to match the shape of the desired wave.
The resulting behaviour is a travelling wave with varying width along the
wave front. Figure 4.8 presents the results of the learned behaviour and
the respective training set of images, originated from Figure 4.1(b). Initial
condition, input, and initial state images were set in the same way as for
the travelling dot.

Combustion wave

Combustion waves are quite common natural phenomena. Here, we trained
the ACE4k chip to simulate a combustion wave which starts in the centre
of the array of cells and ”burns” outward homogeneously. The resulting
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(a)

(b)

Figure 4.9: Results for the learning of an outward-burning combustion wave
on a ACE4k (64× 64 cells) chip, where (a) is the desired dynamics and (b)
is the result of the learning.

behaviour is very similar to the desired dynamics. Figure 4.9 presents
the resulting dynamics and the desired images used in the training set.
Initial state and input images were set to the first image in the sequence in
Figure 4.2(b).

Pyramiding waves

We now present the resulting dynamics delivered by the learning of two
”convergent” propagating waves. The dynamics are described by pyramid-
ing waves: one which propagates vertically to form a standing pyramid,
see Figure 4.10; and another which propagated at a given angle to form
a rotated pyramid, see Figure 4.11. Both dynamics were reasonably well
learned by the network.

4.4.2 Learning of complex dynamics: a spiral autowave

We also applied the methodology described in this Chapter to train complex
spatiotemporal behaviour. For that, we simulated a second order two-layer
CNN described in (4.13). In this experiment, we used the spiral autowave
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(a)

(b)

Figure 4.10: Resulting dynamics for the learning on chip of a ”convergent”
propagating wave, where (a) is the desired dynamics and (b) is the result of
the learning. The wave grows to form a standing pyramid from a horizontal
line.

example.

Initial conditions are an important aspect to consider when trying to
generate autowaves. For the 2-layer system used here, the initial state of
the second layer was set to be an inverted image of the first layer shifted
one or two pixels in the direction of the desired propagation. This is a very
simple way to generate initial conditions for autowaves but is not the only
one, see e.g. [11] for another procedure.

The images in Figure 4.3 were used as training set for the experiment
with autowaves. These images were obtained by a CNN simulator to avoid
manual generation, which could lead to impractical and physically infeasible
behaviour. Although the results shown in Figure 4.12 were also obtained
by performing the training in simulation, the final template was obtained
without any prior knowledge of the original. The same procedure could
also be used to train a CACE1k CNN-UM chip [20]. The objective here
is to demonstrate the effectiveness of the methodology described in this
Chapter for learning of autowaves in CNNs. It can be seen that there is a
good generalisation of outputs further in time that were not used for the
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(a)

(b)

Figure 4.11: Resulting dynamics for the learning on chip of a ”convergent”
propagating wave, where (a) is the desired dynamics and (b) is the result
of the learning. The wave grows from a line of pixels to form a rotated
pyramid.

learning process.

4.4.3 Change on the speed of dynamics

In Section 4.3 we presented a method to change the speed of existing dy-
namics. Although we have not performed a specific experiment using this
method, we can demonstrate that changing the speed of dynamics is possi-
ble by only modifying the template values. For that, we show in Figure 4.13
the evolution further in time of the same desired and learned dynamics
presented in Figure 4.12. To improve visualisation we also execute the dy-
namics on a larger grid of cells, 64×64. The learned dynamics is about 20%
faster than the desired one. It is important to notice that no constraints
regarding a desired speed increase were applied to the learning procedure.
The observed increase emerged naturally from the learning process itself in
the same way that a speed decrease could have emerged.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.12: Results for the learning of a spiral autowave in a 16 × 16
array of cells in simulation. The training set is presented in (a) for the first
and (b) for the second layer; snapshots (c) and (g) present the resulting
behaviour. Images (d) and (h) present the generalisation of the learned
behaviour in the future for the snapshots (b) and (f), which were not used
in the training set.
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(a)

(b)

Figure 4.13: Evolution spiral autowave for the original (a) and trained (b)
templates on a 64 × 64 CNN grid. The images represent snapshots taken
in equivalent time instants. Generalisation further in time and change in
speed can be clearly seen.
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4.5 Conclusion

This Chapter approached the problem of learning 2-dimensional spatiotem-
poral behaviour with cellular neural networks. Trajectory learning with re-
current neural networks can be seen as a starting point for the formulation
of the problem. It was shown that although trajectory learning with RNNs
and learning of spatiotemporal behaviour with CNNs have many elements
in common, two key points distinct the two problems: (a) due to the locality
and space invariance of CNN weights, the number of parameters to be op-
timised in these networks is much smaller and thus learning is considerably
easier favouring the use of global optimisation methods to avoid the need of
an expression for the gradient of the cost function; and (b) the generation
of an efficient training set for the CNN problem is not straightforward as
in classical trajectory learning and thus customised solutions need to be
devised to ensure a feasible training. Taking into account these two points,
a cost function and methodology was presented for learning of spatiotem-
poral behaviour in CNNs. This cost function also assimilates time intervals
as parameters to be optimised. This reduces the importance of generating
temporally feasible training sets. Another method presented here concerns
the optimisation of existing template values to ensure that the desired be-
haviour has an increase or decrease in speed of the dynamics. With this
method, existing CNN applications can benefit from faster execution by
moving the speed of template operations to its limit. Results for the learn-
ing of different examples of spatiotemporal behaviour were presented with
experiments made in simulations and CNN chip implementations. These
results show that qualitatively good operations can be learned on-chip as
well as in simulation.



Chapter 5

Coupled Simulated
Annealing

In the two Chapters preceding this one we have presented two general CNN
optimisation methodologies that are inherently dependent on an optimisa-
tion core. This core is responsible for generating probing solutions and se-
lecting the promising ones accordingly with their cost evaluation. Although
we have used what perhaps is the most robust Simulated Annealing (SA)
algorithm existing at the time as the core for these methodologies, con-
vergence to reasonable results have not been trivial and reruns have had
to happen very often. At a certain point, we have realised that instead of
running and rerunning an optimisation several times, perhaps it would be
better to cast several optimisation runs at once. In fact, this idea evolved
to a concept that is in the very heart of cellular neural networks: cou-
pling. Coupling had already been used in an approach called coupled local
minimisers (CLM) to steer gradient based methods in order to outperform
multi-start approaches. CLM can be seen as a CNN where cells correspond
to local optimisation algorithms and the couplings correspond to synchro-
nisation constrains.

In this Chapter we define the class of global optimisation methods called
Coupled Simulated Annealing (CSA). As CLM, CSA also uses coupling to
create cooperative behaviour among parallel optimisation processes in or-
der to reach the global optimum more efficiently. Instead of local gradient
based optimisers like in CLM, in CSA we have global SA optimisers work-
ing in parallel and exchanging information through coupling. Although this

85
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approach was developed to become the optimisation core of our CNN op-
timisation approaches, it can also be seen as a general purpose distributed
global optimisation approach. Therefore it is suitable to other optimisation
problems that share the same features from CNN optimisation problems,
i.e. hard problems that are multi-modal and multidimensional with many
local optima. For the sake of generality, this Chapter does not pertain the
specifics of CNN optimisation but is rather focused on describing a general
purpose distributed global optimisation class of methods.

5.1 Diversity in optimisation

Optimisation is a very active field of research. Different techniques ex-
ist for different purposes. Problems in optimisation can be characterised
by several different classes. Roughly, we can group problems in two main
classes, numerical and combinatorial optimisation, which can be associated
with optimisation of continuous and discrete sets, respectively. Protein
structure prediction, travelling salesman problem, spin glasses, quadratic
assignment problem, etc. are examples of problems in the domain of com-
binatorics. Safety engineering, aerodynamics, control, circuit design, CNN
optimisation, etc. are typical examples of problems that are often defined in
the continuous space. Numerical optimisation problems are spread among
many fields and include both the academic and industrial world. They
are characterised by a continuous search space, which can be constrained
or not, where every solution is represented by a point in this space. The
best solution-method for such problems in general depend persistently on
the problem itself. In this thesis we are concerned only with numerical
optimisation.

5.1.1 Numerical optimisation

Within the class of numerical optimisation problems, we can make a clear
distinction between convex and non-convex problems. In fact, most of the
studies in convex optimisation are nowadays concerned with the formulation
of the given problem itself [16]. The goal of optimisation modelling in the
study of convex optimisation is to recast given non-convex problems into
well defined convex ones. Given that a problem is convex, its solution is
trivial to be found using one of the many existing solvers, or simply using
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a gradient descent method. The problems that are not convex or cannot
be transformed or translated into a convex framework are characterised as
non-convex.

Numerical optimisation problems can also be divided into constrained
or unconstrained. This classification is not mutually exclusive with the di-
vision between convex and non-convex problems. In fact, convex problems
can be constrained or unconstrained as well as the non-convex ones. It is
possible to keep subdividing non-convex problems into subclasses; however
the boundaries are many times much more subjective than in the previous
cases.

5.1.2 Defining the target problems

In this Chapter, we define a class of methods that can be used to solve
unconstrained numerical optimisation problems that are naturally non-
convex. The existing methods used to solve non-convex problems are vast.
When a problem is differentiable, gradient descent can be applied like in
convex optimisation, but in this case, no guarantees can be given in general
about global optimality. Nevertheless, for some classes of non-convex prob-
lems, variations of these methods can perform surprisingly good. Coupled
Local Minimisers (CLM), for example, is a technique inspired by CNNs
which has multiple gradient descent optimisers as the cells of a network
that are coupled by synchronisation constraints [132, 131]. Nevertheless,
for a large part of real-life non-convex problems, gradient based procedures
can not be applied due to the lack of cost function derivatives or to the
huge computational cost of some large scale problems. Moreover, for some
challenging problems, gradient techniques are less suitable to be applied
due to multi-modality, multidimensionality and/or presence of many local
minima.

Many global optimisation techniques, which are often based on heuris-
tics, were developed in order to provide alternative solution-methods to
solve multi-modal and multidimensional problems. Examples includes:
simulated annealing, genetic algorithms, and particle swarm optimisation.
While being able to escape from multiple local minima, the strongest draw-
back of these methods is the large number of cost function evaluations
required to reach the basin of the global optimum solution. This issue
has been undertaken by the development of many fast global optimisation
techniques where local and global procedures are often combined in order
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to obtain a faster convergence [60, 160]. Not surprisingly, faster conver-
gence introduces a trade-off between speed and quality of solutions. Fast
global techniques become more frequently trapped in poor local minima.
A challenge of this field is to find a good trade-off for the given optimisa-
tion problem. The methodologies defined in this Chapter to solve uncon-
strained non-convex numerical optimisation problems is, therefore, targeted
at the portion of these problems that are considered to be difficult, namely,
multi-modal and multidimensional problems with many local optima. Ad-
ditionally, we look into the problem of robust initialisation conditions. The
methods described here are based on the idea of joining together simulated
annealing and CLM.

5.2 Simulated annealing

Simulated Annealing (SA) is a technique among several other global opti-
misation approaches designed to solve difficult non-convex problems. It is
originally based on the thermodynamic annealing process, which consists
on heating up a metal, glass, or crystal, holding its temperature and then
cooling it in a very slow rate. This physical-chemical process gives as result
high quality materials [70]. The analogy with an optimisation procedure
comes by the following relations:

Physical material states → Problem solutions
Energy of a state → Cost of a solution

Temperature → Control parameter.

Physical annealing is modelled or simulated in software by Monte Carlo
techniques resulting in an efficient computational algorithm that is widely
used nowadays to optimise many different problems [77, 156, 93]. This algo-
rithm is basically composed of two stochastic processes. One is responsible
for the generation and the other for the acceptance of solutions. Both pro-
cesses are controlled by a temperature value. The temperature can be the
same for both processes, but usually there are independent temperatures
for the generation and the acceptance process. As in physical annealing,
this temperature must follow an annealing schedule.

There are two temperature schedules to consider when designing a SA
algorithm, which are the generation and the acceptance schedule. The gen-
eration temperature is responsible for the correlation between generated
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probing solutions and the current, or original, one. Generally, probing so-
lutions are obtained by the addition of a random vector ε, of the same
size as the solution vectors, to the vector representing the current solution.
A variation in the generation temperature modifies the distribution from
where ε is obtained. Namely, an increase in this temperature represents
a widening of the distribution, whereas a decrease causes the distribution
to become narrower. The right distribution is the one which fits best with
the generation temperature schedule. There exist many convergence proofs
which pair different temperature schedules with the right distribution. Ta-
ble 5.1 presents many of these pairs.

The temperature schedules used for generation can also be used for
acceptance. The acceptance temperature weights the difference between a
probing solution and the current one. Fixing this difference, the higher this
temperature, the larger the probability that an uphill move is accepted.
When this temperature becomes lower, the probability becomes smaller.
Therefore, early in the optimisation, many uphill moves are accepted, and
with the evolution of the process, less and less uphill moves are allowed,
while close to the end, almost no uphill moves are accepted. Such approach
permits an extensive exploration of the cost function at the beginning and
a gradually more localised search when the end is approaching.

There exist many forms for the acceptance function. Among the most
common are the Metropolis rule:

A(x→ y) = exp

(

E(y)− E(x)

T ac
k

)

, (5.1)

and the following expression:

A(x→ y) =
1

1 + exp

(

E(y)− E(x)

T ac
k

) , (5.2)

where A(x → y) is the probability that the probing solution y is accepted
considering that x is the current solution. E(·) is the energy of the given
solution, while T ac

k denotes the acceptance temperature at iteration k.

In Figure 5.1 the reader can find a simplified flowchart of a classical SA
algorithm depicting data and program flows. Observe that the tempera-
tures are only updated once the equilibrium criterion is met. The objective
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[45] gk(ε, Tk) = (2πTk)−
D
2 exp

[−ε2

2Tk

]

Tk =
T0

ln(k + 1)

[136] gk(ε, Tk) =
Tk

(

ε2 + T 2
k

)
D+1

2

Tk =
T0

k + 1

[60] gk(zn, Tk,n) =
1

2 (|zn|+ Tk,n) ln (1 + 1/Tk,n)
Tk,n =

T0,n

exp(bnk
1

D )

[160] gk(zn, Tk,n) =
1

2

(

|zn|+
1

ln (1/Tk,n)

)

ln (1 + ln (1/Tk,n))

Tk,n =
T0,n

exp(exp(bnk
1

D ))

Table 5.1: Overview of pairs of generation distribution and temperature schedule with convergence proofs
for SA algorithms. For [45] and [136], the probing solution y = [y1, y2, · · · , yn, · · · , yD] is obtained by
adding ε to the current solution x, where ε is chosen randomly from the respective generation distribution
gk(ε, Tk), i.e. yn = xn + εn. For [60] and [160], the probing solution y is obtained by generating each of its
vector components individually by yn = xn + zn(Bn − An), where An and Bn are the individual lower and
upper bounds of each vector component, and zn is obtained from the corresponding generation distribution
gk(zn, Tk,n), with bn > 0 denoting a constant parameter.
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of such criterion is to wait enough iterations until there is no or little vari-
ation in the energy of the accepted solutions, which means that the equi-
librium was reached. An example of a straightforward criterion is to wait a
fixed number of iterations N . Theoretically, every proof of convergence for
SA assumes N → ∞, which is practically impossible to reach. Therefore,
in practice a reasonable N is chosen by more elaborated techniques which
take into account the variance of the accepted solutions; or simply by set-
ting a maximum N according to the available physical resources, like time
and computational power.

Figure 5.1 can be also explained by the following algorithm:

Algorithm 1

1. Initialisation: assign a random initial solution to x; assess its cost
E(x); set the initial temperatures Tk = T0 and T ac

k = T ac
0 ; set the

time index k = 0.

2. Generate a probing solution y according to y = x + ε, where ε is
a random variable sampled from a given distribution g(ε, Tk); assess
the cost for the new probing solution E(y).

3. Accept solution y with probability 1 if E(y) 6 E(x), otherwise with
probability A(x → y), i.e. make x := y only if A > r, where r is a
random variable sampled from a uniform distribution [0,1]; go to step
2 for N inner iterations (equilibrium criterion).

4. Decrease temperatures according to schedules U(Tk, k), and V (T ac
k , k);

increment k.

5. Stop if stopping criterion is met, otherwise go to step 2,

where Tk and T ac
k are the generation and acceptance temperature parame-

ters at time instant k, respectively. The function g(ε, Tk) is the generation
distribution and A(x → y) is the probability of accepting the solution y,
given that the current solution of the system is x, with x, y ∈ Ω, where Ω
denotes the set of all possible solutions.

In past years, several SA versions were developed [105, 60, 127, 160].
Every version introduces a different level of trade-off between speed of con-
vergence and quality of solution. Some methods achieve extra levels of
speed of convergence by introducing parallelism into the originally strictly
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Temperature Tk

Temperature T ac
k

Current Cost E(x)

Current Solution x

Program flow
Data flow

No

Yes

No

Stopping Criterion

Equilibrium Criterion

Acceptance

x← y if E(y) ≤ E(x), or
if r > A(x→ y), r← U [0, 1]

Generation

yi = f(xi, ε)

Temperature Scheduling

Tk+1 = U(Tk, k)
T ac

k+1 = V (T ac
k , k)

Yes

END

Initialization
x = x0

Tk = T0

T ac
k = T ac

0

k = 1

assess E(x)

∀i = 1, · · · , D; ε← gk(Tk)

Figure 5.1: Flowchart of a typical SA process. Full lines represent the
program flow, whereas dashed lines represent the data flow, with x denoting
the current solution, Tk and T ac

k denoting the temperatures at iteration k,
and T0 and T ac

0 denoting the respective initial temperatures. E(·) is the
energy function, D is the problem dimension, and U(Tk, k) and V (T ac

k , k)
are the generation and acceptance temperature schedules, respectively.
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sequential SA algorithm [89, 13, 22, 77, 121, 141]. This of course at the
cost of more physical resources. The two-side trade-off then becomes a
three-side one:

Physical resources Speed of Convergence

Quality of solution

There are many classifications made for the different types of Parallel SA
algorithms [79, 97, 13, 141]. It is not the purpose of this thesis to classify
the many existing versions. The reader may refer to [141] for a recent
discussion. However, as far as it is relevant for this scope, it can be said
that there exists a more general classification concerning non-sequential
algorithms which categorise Ensemble [121] and Parallel SA algorithms.

In Ensemble SA, a group of SA processes move in the search space with-
out interaction between solutions. The ensemble moves as a whole
and the decision to make a move is taken based on the average cost
of the group.

In Parallel SA, the concurrent processes move independently with the
objective of minimising the cost of the best solution, which is shared
in one way or another among the processes either synchronously or
asynchronously.

In this Chapter, we present a new class of algorithms, called Coupled
Simulated Annealing (CSA), that can not be fully described by Ensemble
SA neither by Parallel SA. In fact, CSA may be considered as a mixture of
Ensemble and Parallel SA. The main principles are discussed in the next
Section.

5.3 Cooperative behaviour and global optimality

Global optimisation methods originally are very slow. For many difficult
problems, ensuring convergence to a global optimum might mean imprac-
tical running times, even for state-of-the-art digital computers. For such
problems, a reasonable solution might be enough in exchange for a faster
convergence. Precisely for this reason, many SA algorithms [105, 60, 127,
160] and other techniques based on heuristics have been developed. How-
ever, due to speed-up procedures, these methods often get trapped in poor
optima.
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The focus of developing accelerated global optimisation methods mainly
seems to have been on increasing the speed of convergence, rather than
improving the quality of the final solution. For this reason, optimising a
certain cost function requires many times multiple attempts with a variety
of different initialisation conditions. Consequently, what a priori seemed to
be a decrease of convergence speed, might be counterbalanced by possible
excessive number of different initialisation attempts that are necessary in
order to achieve a certain level of quality.

The class of CSA methods presented in this chapter is designed to be
able to easily escape from local optima and thus improve the quality of
solution without compromising too much the speed of convergence. To
better understand the underlying principles of the class of methods pre-
sented in this Chapter, consider the work of Suykens et al. [131]. They
have shown that coupling among local optimisation processes can be used
to help gradient optimisation methods to escape from local optima in non-
convex problems. Here, with the objective of increasing the quality of
the final solution, we present the use of coupling in a global optimisation
method like SA. Additionally, by designing a coupling mechanism with min-
imal communication, these coupling algorithms can be implemented very
efficiently in parallel computer architectures, making them very appealing
to the multi-core trend in the new generation of computer architectures.

CSA introduces a new formalism for the acceptance probability func-
tions. The idea is to allow several concurrent SA processes with acceptance
probability defined by a function that depends on a coupling term. This
term is defined by a function of all energies of the current states in each
concurrent process. The form of the acceptance function and the coupling
term attached to it define the type of coupling. Like in Ensemble SA,
there exist no iterations between the solutions; furthermore, like in Parallel
SA, the different optimisation processes move independently, but under the
influence of coupling in the acceptance probability function.

5.4 CSA: general principles

Importance Sampling, the main principle underlying classical SA, has been
used in statistical physics to selectively, rather than randomly, choose sam-
ple states of a particle system model in order to efficiently estimate some
physical quantity related to the system. Random sampling of these states
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turned out to be very inefficient because in these systems only a few low-
energy states carry most of the relevant information. Importance sam-
pling cares for a rejection/acceptance mechanism of sampled states in or-
der to probabilistically favour states with lower energies. The well known
Metropolis algorithm was the first to use the idea to estimate these quanti-
ties efficiently. Also, this algorithm complies with the principle of Detailed
Balance1, which gives a sufficient condition to test the validity of Monte
Carlo schemes. In terms of a master equation of a thermodynamic system,
it states that

P (x→ y)

P (y → x)
=

exp(−E(y)/T )

exp(−E(x)/T )
, (5.3)

where P (x→ y) is the transition probability for the system to go from the
current state x to a candidate state y, ∀ P (y → x) 6= 0, with T being a
fixed temperature and the quantities E(x) and E(y) denoting the energy of
the states x and y, respectively. Transition probabilities can be subdivided
into the product of a generation or selection probability and an acceptance
probability, i.e. P (x → y) = G(x → y)A(x → y) with G and A denoting
generation and acceptance probabilities, respectively. If G is chosen to be
equally alike for all states, i.e. G = 1/n, with n denoting the number of all
possible states, (5.3) can be reduced to

A(x→ y)

A(y → x)
=

exp(−E(y)/T )

exp(−E(x)/T )
. (5.4)

Many acceptance probability functions for SA were derived according to
(5.4), including the Metropolis rule (5.1) and (5.2). We use the latter one
in Section 5.4.3 to exemplify the class of CSA methods. Observe that since
the probing state y is randomly chosen, the only information about the
status of the system that is taken into account when deciding whether to
accept or not the new state with (5.2) is the energy of the current state
E(x).

CSA features a new form of acceptance probabilities functions that can
be applied to an ensemble of optimisers. This approach considers several
current states which are coupled together by their energies in their accep-
tance function. Also, as opposite of classical SA techniques, parallelism is

1Intuitively, Detailed Balance ensures that the balance between the probability of
’leaving’ a given state and arriving in it from another state holds overall and individually
for any pair of states.
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an inherent characteristic of this class of methods. The motivation to create
coupled acceptance functions which comprise the energy of many current
states, or solutions, is in fact to generate more information when deciding
to accept less favourable solutions in a global optimisation process. More-
over, it can also be observed that this class of acceptance functions can be
in fact a generalisation of existing SA acceptance functions.

5.4.1 A formal definition for CSA

In CSA, each optimisation process, i.e. the algorithmic steps involving
generation and acceptance of a single current state, is performed separately.
This process behaves for each current state as a single classical SA process.
In fact, the only difference between such a process and a SA process is
held on the acceptance probability. While in SA this probability is a scalar
function, 0 ≤ A(x→ y) ≤ 1, for every x, y ∈ Ω, with Ω denoting the set of
all possible states, in CSA it is a scalar function according to

0 ≤ AΘ(γ, xi → yi) ≤ 1, (5.5)

for every xi ∈ Θ, yi ∈ Ω, and Θ ⊂ Ω, with xi and yi being current and
probing states, respectively, for every i = 1, · · · ,m, with m being the num-
ber of elements in Θ. The set Θ, is presented as the set of current states
and is defined as Θ ≡ {xi, i = 1, · · · ,m} throughout the Chapter. Given
one of its elements, the decision about swapping the element with a probing
state which is outside of the set Θ depends on the given element, on the
probing state, and also on the coupling term γ, which is a function of the
energy of the elements in Θ,

γ = f [E(x1), E(x2), · · · , E(xm)] . (5.6)

In summary, in order to identify a method belonging to the CSA class,
this method need to comply with both (5.5) and (5.6). The general differ-
ence between classical SA and CSA acceptance processes is illustrated in
Figure 5.2.

Like in classical SA, in CSA an acceptance probability function can
assume different forms. Besides what was mentioned above, these functions
also need to inherit specific properties where the most desirable one is the
steering of the states to low-energy regions. Compliance to detailed balance
is also one of the most common desired features for SA acceptance functions,
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0 ≤ A(x→ y) ≤ 1,

∀ x, y ∈ Ω.
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0 ≤ AΘ(γ, xi → yi) ≤ 1, ∀ x ∈ Θ, y ∈ Ω, with

Θ ⊂ Ω, and γ = f [E(x1), E(x2), · · · , E(xm)] .
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Figure 5.2: The general difference between SA and CSA lies in the ac-
ceptance process. While SA only considers the current solution x for the
acceptance decision of the probing state y, CSA considers many current
states in the set Θ, which is a subset of all possible solutions Ω, and ac-
cepts each probing state yi based not only on the corresponding current
state xi but by considering also the coupling term γ, which depends on the
energy of all other elements of Θ.

especially when the target of the simulation is the evaluation of statistical
properties of particle systems. For optimisation, however, this property
may not be essential.

5.4.2 The role of the acceptance temperature in CSA

Good solutions in CSA methods are more likely to be preserved, while poor
solutions are easily swapped, resulting in a safe and intense exploration of
the energy surface. However, like in any other SA-like method, appropriate
temperature schedules are fundamental. The challenge is to find the right
schedule for the problem at hand. Temperature in CSA methods has a
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slightly different functionality compared to SA. In classical SA processes
the acceptance temperature is responsible for weighting the difference be-
tween the probe and the current solutions in order to affect the decision of
accepting uphill moves. Initially, these moves happen more often. Gradu-
ally, according to a certain temperature schedule, they are more seldomly
accepted. In CSA, the temperature does not serve to weight this differ-
ence, but to weight the proportion that each acceptance probability has
in the overall sum of probabilities. Very high temperatures cause all the
acceptance probabilities to be equal, while very low temperatures result in
only one process with probability equating 1 with all the other probabil-
ities equating 0. Both cases are obviously of little help, which makes an
appropriate temperature schedule as important as for classical SA.

For the purpose of this thesis, we have used the temperature schedule
in [136] for the generation and acceptance processes. However, for the
acceptance temperature, we found out that the coupling applied to CSA-M
permits the use of an efficient approach for the schedule of this temperature.
Namely, this temperature is used to control the variance of the acceptance
probabilities. More details on this on Section 5.6.

5.4.3 A CSA generalisation of SA

In this Section we show how a specific SA acceptance probability function,
precisely (5.2), can be generalised as a CSA acceptance function. Since SA
and CSA processes only differ in the acceptance function, we omit here any
unnecessary reference to other parts of the algorithms in order to prove the
generalisation of this specific SA algorithm by CSA.

If we multiply both numerator and denominator of the right hand side
in (5.2) with exp(−E(y)

Tk
), it results in the following equivalent equation:

A(x→ y) =
exp

(

−E(y)
Tk

)

exp
(

−E(y)
Tk

)

+ exp
(

−E(x)
Tk

) . (5.7)

Consider now a heat-bath thermodynamic particle system with only two
states. The probability of this system being in each of its two states is
given by the Boltzmann factor

Pi =
exp

(

−Ei

kbT

)

Z
,
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where Z is called the partition function of the system and is given by

Z =
2

∑

i=1

exp

(−Ei

kbT

)

,

where kb is the Boltzmann constant, and Ei denotes the energy of the i-th
state. It can be observed that the acceptance probability function (5.7), for
a given probing solution y and fixed temperature, can in fact be approxi-
mated by the Boltzmann probability for the two-states system. Therefore,
a Simulated Annealing process can be approximated by the modelling of a
two-state particle system with a variable probing state energy.

In CSA, in order to couple many SA processes, we can for instance model
the ensemble of process by a particle system with many states. Being xi one
of the many states and yi the corresponding probing state, we can achieve
this modelling by inserting more current states to (5.7) by considering the
sum over a set of current states x ∈ {x1, x2, · · · , xm} within the term

exp
(

−E(x)
Tk

)

,

A(xi → yi) =

exp

(−E(yi)

Tk

)

exp

(−E(yi)

Tk

)

+
∑

x∈{x1,x2,··· ,xm}

exp

(−E(x)

Tk

) . (5.8)

This is a typical example of an acceptance function for CSA since it satisfies
(5.5) and (5.6) with

γ =
∑

x∈{x1,x2,··· ,xm}

exp

(−E(x)

Tk

)

.

Observe that if m = 1, this generalised equation is reduced again to (5.7).
With this example we show that (5.8) is a generalisation of (5.7). However,
this is not a general proof that CSA is an extended class for SA since other
SA acceptance functions exist.

5.5 Three instances of the CSA class of methods

In this Section, three CSA example methods are shown. It is clarifying to
mention that many others may exist and that these examples do not stand



100 Coupled Simulated Annealing

alone. What follows is a description of a general algorithm that is the basis
for the three different coupling schemes illustrated next. Let Θ be a set
containing m current solutions, let xi be the ith element of this set, and
yi a corresponding probing solution. Let E be the cost, or energy to be
minimised, associated to a given solution, and let γ be the coupling term
as a function of the energy of the current states. Tk and T ac

k denote the
temperatures of the generation and acceptance processes, respectively, at
the iteration k. The following algorithm can now be formulated.

Algorithm 2

1. Initialisation: assign random initial solutions to Θ; assess the costs
E(xi), ∀ xi ∈ Θ, and evaluate the coupling term γ; set initial tem-
peratures Tk = T0 and T ac

k = T ac
0 ; set the time index k = 0.

2. Generate a probing solution yi for each element of Θ according to
yi = xi + εi, ∀ xi ∈ Θ, where εi is a random variable sampled from a
given distribution g(εi, Tk); assess the costs for all probing solutions:
E(yi), ∀ i = 1, · · · ,m.

3. Accept solution yi with probability 1 if E(yi) 6 E(xi), otherwise
with probability AΘ(γ, xi → yi), ∀ xi ∈ Θ, i.e. make xi := yi only
if AΘ > r, where r is a random variable sampled from a uniform
distribution [0,1]; evaluate γ again; and go to step 2 for N inner
iterations (equilibrium criterion).

4. Decrease temperatures according to schedules U(Tk, k), and V (T ac
k , k).

Increment k.

5. Stop if stopping criterion is met, otherwise go to step 2.

Many SA convergence proofs [45, 136, 60, 160] were established by as-
sociating a given generating distribution g(ε, Tk) with a generating temper-
ature schedule U(Tk, k). Therefore, the choice for the distribution g(ε, Tk)
depends on the schedule U(Tk, k). We have not investigated which [g(ε, Tk),
U(Tk, k)] pair is the best for CSA. In Section 5.8, we present our choice of
[g(ε, Tk), U(Tk, k)], and V (T ac

k , k) for the experiments performed in this
Chapter.
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5.5.1 Multi-state Simulated Annealing (CSA-MuSA)

This method is a direct generalisation of the classical SA with acceptance
probability driven by (5.2), or (5.7). As mentioned before in Section 5.4.3,
these acceptance functions can be approximated by the modelling of a par-
ticle system with only two states. In order to generate the acceptance
function for this CSA method, we add more states to the original function.
Hence the name Multi-state Simulated Annealing (CSA-MuSA). When ac-
cepting a probing solution, the whole collection of current states is taken
into account. The following equation illustrates this acceptance function,
which is essentially (5.8) with the actual CSA notation:

AΘ(γ, xi → yi) =

exp

(−E(yi)

T ac
k

)

exp

(−E(y⋆)

T ac
k

)

+ γ

, (5.9)

where γ is given by

γ =
∑

xj∈Θ

exp

(−E(xj)

T ac
k

)

, (5.10)

with y⋆ = yi. This acceptance function makes the probability of accepting
a probing solution inversely proportional to its energy. Observe that the
coupling term γ here is given by the only term in AΘ that is shared among
all current states.

Analysis of the coupling

The coupling here makes the probability equal to the Boltzmann factor in
a system with many states, i.e. the sum of the probabilities for the current
states Θ and the probing solution yi equals 1. We make the difference
between yi and y⋆ here for purpose of normalisation. The probabilities will
sum to 1 only if y⋆ = yj, for any fixed j = 1, 2, · · · ,m. An overview of the
formulas is shown in Table 5.2, row 2.

5.5.2 Blind Acceptance (CSA-BA)

In this CSA method, the Boltzmann factor describes the probability of a
system to stay in the current state upon generation of a probing state with
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Method Alg. Acceptance function Coupling term γ Normalisation

CSA-MuSA 2

exp

(−E(yi)

T ac
k

)

exp

(−E(y⋆)

T ac
k

)

+ γ

∑

xj∈Θ

exp

(−E(xj)

T ac
k

) ∀y⋆ = yj, j = 1, 2, · · · ,m :
∑

xj∈Θ AΘ(γ, xi → yj)

+AΘ(γ, xi → y⋆) = 1

CSA-BA 2 1−
exp

(−E(xi)

T ac
k

)

γ

∑

xj∈Θ

exp

(−E(xj)

T ac
k

)

∑

xi∈Θ

AΘ(γ, xi → yi) = 1

CSA-M 2

exp

(

E(xi)

T ac
k

)

γ

∑

xj∈Θ

exp

(

E(xj)

T ac
k

)

∑

xi∈Θ

AΘ(γ, xi → yi) = 1

CSA-MwVC 3

exp

(

E(xi)

T ac
k

)

γ

∑

xj∈Θ

exp

(

E(xj)

T ac
k

)

∑

xi∈Θ

AΘ(γ, xi → yi) = 1

SA 1
1

1 + exp

(

E(y)− E(x)

T ac
k

) − −

Table 5.2: Overview of the studied methods. Multi-state SA (CSA-MuSA); Blind Acceptance (CSA-BA);
Coupled Simulated Annealing-Modified (CSA-M); CSA-M with Variance Control (CSA-MwVC); and the
classical SA algorithm.
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higher energy. All lower energy states are accepted with probability equal
to 1. The probability of accepting a less favourable state is proportional to
the energy of the current state, i.e. a higher energy probing state is more
frequently accepted at high energy current states while low energy current
states are more preserved. The acceptance function is chosen as follows

AΘ(γ, xi → yi) = 1−
exp

(−E(xi)

T ac
k

)

γ
, (5.11)

where γ is given by (5.10). The probability of accepting state yi and there-
fore leaving state xi is the probability of not staying in state xi, and it does
not depend on yi itself. Hence this method is called CSA Blind Acceptance
(CSA-BA).

Analysis of the coupling

Low energy states are accepting fewer uphill moves than high energy states.
This causes a localised search on low energy states and a more global ex-
ploration on high energy states. Observe that the acceptance probability
for higher energy solutions is independent from the energy of the probing
solution; therefore the name of the method. Also note that although this
method presents a considerably different approach to CSA when compared
to the previous one, its acceptance function has the same coupling term as
in CSA-MuSA. The coupling here ensures that the sum of the probabilities
of the system to stay in any of the current solutions equals 1. Observe that
detailed balance is also not satisfied here. An overview of the formulae can
be seen in Table 5.2, row 3.

5.5.3 CSA Modified (CSA-M)

Both previously described methods incorporate two distinct search features.
The first one manages to hold more knowledge of low energy regions of the
cost function, whereas the second explores better unknown regions. In
Coupled Simulated Annealing Modified (CSA-M), we combine both search
strategies. In both previous examples of CSA, the Boltzmann factor com-
poses the acceptance function. Here a similar function is used, representing
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the probability of leaving the current states upon an uphill move:

AΘ(γ, xi → yi) =

exp

(

E(xi)

T ac
k

)

γ
. (5.12)

Therefore, the sum of the probabilities of leaving any of the current states
equals 1. Like in the second example method, this one also performs blind
acceptance because its acceptance probability is independent of the energy
of the probing solution.

The coupling term γ here is given by

γ =
∑

xj∈Θ

exp

(

E(xj)

T ac
k

)

. (5.13)

Observe that a the energy of the states here has a positive signal. This may
cause numerical overflow instabilities in the evaluation of the acceptance
functions. Fortunately, for many cost functions this problem can be easily
solved by a simple cost function normalisation. The problem is discussed
in more detail further in Section 5.5.3. Refer to Table 5.2, row 4, for an
overview of the formulae related to this method.

Analysis of the coupling

The effect of the coupling in this method has clear advantages w.r.t. the
other two. Probabilistically, at least one current state is likely to change
at each iteration of the method. This ensures global search even at very
low temperatures. Additionally many current states are allowed to have
acceptance probabilities very close to zero, which generates knowledge via
the coupling term for deciding better if it is worth to accept or not uphill
moves. Similar to both previous examples, the coupling here is given by
a sum of probabilities. However, here the probabilities considered are of
leaving any of the current solutions.

Numerical Considerations

The use of a positive sign for the energies in (5.12) and (5.13) instead of a
negative one like in (5.2) may result in numerical overflow instabilities for
some cost functions with unknown output bounds. When these bounds are
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known, a simple pre-scaling of its output is sufficient to suppress instability.
However, with unknown cost function bounds, it is necessary to use other
approaches. In this case, we suggest that all energies in (5.12) and (5.13)
are subtracted by the maximum current energy, as follows

A⋆
Θ(γ⋆, xi → yi) =

exp





E(xi)−max
xi∈Θ

(Exi
)

T ac
k





γ⋆
, (5.14)

and

γ⋆ =
∑

∀x∈Θ

exp





E(x) −max
xi∈Θ

(Exi
)

T ac
k



 . (5.15)

The result of such a transformation is that now (5.14) is numerically stable
and yet equivalent to (5.12). This can easily be seen because if we multiply
both the numerator and denominator of (5.12) by exp (−maxxi∈Θ(Exi

)/T ac
k )

we obtain (5.14). The resulting equation is numerically more attractive be-
cause all the exponential evaluations are of negative values.

5.6 Controlling variance of acceptance probabili-

ties

As mentioned above, the acceptance temperature in CSA is not responsible
for weighting the difference between the energy of the probe and current
solutions but rather it is responsible for weighting the proportion that each
acceptance probability has to the overall sum of the probabilities, which
in any case must be equal to 1. In the case of CSA-M, this sum expresses
that the probability of any probing solution being accepted equals 1. How-
ever, individually, the contribution of each process to this sum is given by
(5.12). The value of this contribution depends of course on the energy of
all current solutions, but individually, its proportion is mainly determined
by the energy of the own current solution and the acceptance temperature.
Each contribution is exponentially proportional to the energy of the current
solution. The higher this energy, the larger the probability that the process
accepts a probing solution. On the other hand, the acceptance temperature
has a mixed role to this contribution. It appears in the numerator as well
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as in the denominator of (5.12). Because of that, a change in this temper-
ature affects the acceptance probability of individual processes differently.
A temperature increase causes the probability of the process of the lowest
energy to increase, while it decreases for the process with the highest en-
ergy. This effect spreads gradually along the energies in the intermediate
range.

Besides the number of processes m, the acceptance temperature is the
only parameter that can control the overall distribution of the contribu-
tions. One variable that we can control with this temperature is the vari-
ance of the m acceptance probabilities at a certain iteration. Since the sum
of the probabilities is bounded above by 1, this variance is also bounded.
Therefore, knowing that

∑

∀xi∈Θ

AΘ(γ, xi → yi) ≡
∑

∀xi∈Θ

AΘ = 1,

the variance for AΘ assumes the following form:

σ2 =
1

m

∑

∀xi∈Θ

A2
Θ −





1

m

∑

∀xi∈Θ

AΘ





2

=
1

m

∑

∀xi∈Θ

A2
Θ −

1

m
. (5.16)

By using the fact that
1

m
≤

∑

∀xi∈Θ

A2
Θ ≤ 1,

it can be concluded that

0 ≤ σ2 ≤ m− 1

m2
.

This variance plays a significant role in the optimisation. A good variance
value is the one which gives the right balance between global exploration
and localised search. From (5.12) it is easy to see that at a high enough
temperature, regardless of the energy of the current solutions, all the accep-
tance probabilities approach 1/m, whereas for a low enough temperature,
all but one solution approaches 0 while the one with the highest energy
approximates 1. These two cases correspond to the two bounds for the
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variance and are obviously to be avoided. In short, the acceptance temper-
ature can be used to control the variance of the probabilities regardless of
the current energies. Although the ideal variance value is unknown to us,
our experiments with different cost functions show that values in the neigh-
bourhood of the maximum variance deliver the best results. Typically, we
recommend 99% of the maximum variance value.

An analytical relation between the acceptance temperature and the vari-
ance of the probabilities could not be found. Such a shortcoming prevents
us from devising directly the appropriate temperature value for a desired
variance. However, a very simple control rule can be used to steer this
variance to the desired value. It can be done in the following manner:

if σ2 < σ2
D, T ac

k = T ac
k−1 (1− α) ,

if σ2 > σ2
D, T ac

k = T ac
k−1 (1 + α) ,

where σ2
D is the desired variance value and α is the rate for the increase

or decrease of the temperature, typically in the range of (0, 0.1]. If the
value of the acceptance variance is below its desired value, the acceptance
temperature is decreased by a factor of 1− α, otherwise, it is increased by
a factor of 1 + α.

Such simple variance control can be applied only due to the coupling in
the acceptance probability function. It substitutes a schedule for the accep-
tance temperature and more importantly, it works for any initial acceptance
temperature. This is important because the setup of initial parameters in
SA is most of the time a very cautious work. With this approach, we
eliminate two initialisation aspects at once, which are the choices for an
acceptance schedule and an initial acceptance temperature. In return, two
other parameters are introduced, α and σ2

D, but these have a well defined
operating range and are much less dependent on the optimisation problem
at hand. The complete algorithm with the variance control can now be
stated as follows

Algorithm 3

1. Initialisation: assign random initial solutions to Θ; assess the costs
E(xi), ∀ xi ∈ Θ, and evaluate the coupling term γ; set initial tem-
peratures Tk = T0 and T ac

k = T ac
0 ; set the time index k = 0; set σ2

D,
e.g. σ2

D = 0.99
(

m−1
m2

)

, and e.g. α = 0.05;
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2. Generate a probing solution yi for each element of Θ according to
yi = xi + εi, ∀ xi ∈ Θ, where ε is a random variable sampled from a
given distribution g(εi, Tk); assess the costs for all probing solutions:
E(yi), ∀ i = 1, · · · ,m;

3. Accept solution yi with probability 1 if E(yi) 6 E(xi), otherwise with
probability AΘ(γ, xi → yi), ∀ xi ∈ Θ, as in (5.12), i.e. make xi := yi

only if AΘ > r, where r is a random variable sampled from a uniform
distribution [0, 1]; evaluate γ again; and go to step 2 for N inner
iterations (equilibrium criterion);

4. Adjust acceptance temperature T ac
k according to the following rules:

if σ2 < σ2
D, T ac

k = T ac
k−1(1− α); if σ2 > σ2

D, T ac
k = T ac

k−1(1 + α);

5. Decrease generation temperature according to a schedule U(Tk, k),
increment k;

6. Stop if stopping criterion is met, otherwise go to step 2.

5.7 Parallel implementation

One of the most commonly used arguments by engineers and researchers
to choose Genetic Algorithms (GA) rather than SA is the limited paral-
lelisation capabilities of SA algorithms. In fact, there exist many parallel
SA versions [77, 89, 13, 22]. However, their effective gain with parallelism
can only be seen in low and very low temperature regions of the annealing
schedules. This is mostly due to the fact that SA is inherently a sequen-
tial algorithm. Moreover, many parallel versions of SA seem to focus on
accelerating convergence, rather than distributing processing while ensur-
ing global search. There exists a trade-off between faster convergence and
quality of solution, i.e. a trade-off between speed and global optimality. In
CSA, we mainly aim at improving the quality of the final solution. This
approach also happens to be highly suitable for parallelisation.

5.7.1 Examples of parallel architectures for CSA

While SA is inherently sequential, CSA is inherently parallel in every as-
pect. In CSA, every generation and acceptance process can be run sepa-
rately in different CPUs. The effective necessary communication is due to
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the coupling term. This involves very limited communication when com-
pared with other parallel approaches which communicate entire solution
vectors. Besides, transferring only the cost, or energy, does not scale with
the dimension of the optimisation problem. Finally, since each acceptance
process accepts new current solutions not necessarily at the same time,
the type of communication can be asynchronous. However, synchronous
communication is clearly also not discarded.

The actual parallel implementation can be elaborated in many different
ways, from distributed systems to multiprocessor machines. For example,
CSA can be implemented in a master-slave manner, where the energies of
all current states are sent to a single node, the master, which is responsible
to calculate and distribute the current coupling term to the other nodes,
the slaves. Another example implementation involves a fully connected
architecture, where each node receives the values of all current states ener-
gies and then calculate its own coupling term. Figure 5.3 shows these two
typical examples of possible CSA parallel implementations.

In order to test the efficiency of the CSA methods described here, we
have implemented these methods in a number of ways. We have used for
instance Matlab to implement a sequentialised version of the algorithms.
We have also tested the algorithms on a distributed implementation via
local Ethernet network. Finally, most of our experiments were performed
on the High Performance Computing (HPC) Linux cluster of our university,
the K.U.Leuven VIC supercomputer [4]. Details about this implementation
are given in the next Section.

5.7.2 CSA on the VIC supercomputer

VIC is a HPC Linux cluster with nearly 900 processing nodes and more than
1 Tera-byte RAM with a theoretical peak computing performance of about
4 Tera flop/s [4]. We have analysed all the algorithms presented here with
experiments performed on VIC. For that, we coded the algorithms in the
C programming language using as Inter-Process Communication (IPC) a
message passing method called Message Passing Interface (MPI) [3]. MPI
is a de facto standard for communication among the parallel processes.
Most MPI implementation consist of a specific set of routines written for
different programming languages, including C.

The implementation of the CSA algorithms presented here on VIC for
testing purposes is motivated by a series of facts. CSA algorithms as well as
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Figure 5.3: Two typical examples of CSA parallel implementations: (a)
Master-slave architecture; (b) Full connectivity. Each box in the figure
can be implemented in an individual processing node. In the master-slave
case, the energies of all current states are sent to a single node, which is
responsible to calculate and distribute the current coupling term. In the
fully connected architecture, each node receives the values of all current
states energies and then calculates its own coupling term.
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most global optimisation methods have an inherent stochastic nature. This
means that in order to obtain concluding results, it is necessary to perform
numerous experiments with the objective to generate reliable statistics on
the results. In addition, it is known that according to the no free lunch
theorem [147], global optimisation methods can only perform well on a
limited number of problems, i.e. no method is universally better than all
the others. Hence, we needed to test the CSA methods in a wide and
variate type of problems in order to identify their stronger and weaker
points for specific problems. In summary, it is important to perform a
large number of experiments in order to validate each method presented
here. Parallel implementation is therefore very helpful here. Moreover, the
VIC supercomputer permits queueing of several batch jobs, which enables a
more automatic experimentation, reducing eventual mistakes due to human
interaction.

5.8 Experiments and results

We performed several experiments in order to assess the optimisation po-
tential of the class of CSA algorithms. More specifically we tested the three
CSA example algorithms described in Section 5.5 with 14 functions from 3
different problem groups. We used the classical SA algorithm described in
Section 5.2 as reference for most of the experiments. In order to generate a
fair comparison, we have used the same generation and acceptance sched-
ules for the three CSA and the classical SA algorithms, with exception of
the experiments where the variance control is evaluated. In this case, the
acceptance temperature schedule for the CSA algorithm does not exist be-
cause this temperature is used as the manipulated variable for the control
problem. In addition, in order to balance the algorithms w.r.t. parallelism
and number of cost function evaluations, we compared the results of mul-
tiple runs of the classical SA algorithms in such a way that the number of
different SA runs is equivalent to the number of parallel CSA processes,
with the same number of cost function evaluations. Table 5.2 presents an
overview of the algorithms used in the experiments.
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5.8.1 Test problems

According to the no free lunch theorem [147], no global optimisation method
can be universally better than all the others. Therefore, although the CSA
methods presented here were developed with hard multi-modal cost func-
tions as main problem target, we have tested these methods with three
different problem groups, including one group with a unimodal and a sim-
ple multi-modal function. The remaining functions are from moderate to
hard difficulty. In total, we have tested the algorithms with 14 functions
with very different characteristics. These 14 functions, or part of them,
appear often in optimisation research papers [142, 161, 98, 87].

Unimodal and simple multi-modal functions: group 1

The first problem of this group, function no. 1, is an easy unimodal sphere
function. The second problem is the ubiquitous Rosenbrock’s function,
very often used for testing optimisation algorithms. The reader may refer
to Table 5.3 for the equations.

Multi-modal functions: group 2

A collection of multidimensional and multi-modal continuous functions
were chosen from the literature to be used as test cases. These functions
feature many local minima and therefore are regarded as being difficult to
optimise [161, 142]. The six multi-modal test functions belonging to this
group are presented in Table 5.4.

Function no. 3 is called the Ackley’s function and is probably the easiest
in the group with one narrow global optimum basin and many minor shallow
local optima. Function no. 4 is the Griewank’s function. Its cosine term
causes linkages among variables, making this function difficult to optimise.
However, interestingly enough, this function is more difficult to optimise
in lower than higher dimensions [146]. Function no. 5, the Weierstrass’
function, is continuous but non-differentiable in several of points. Function
no. 6 is the Rastrigin’s function. It is a complex multi-modal problem with
many persistent local optima. Function no. 7 is a non-continuous version of
the Rastrigin’s function with the same number of local optima. Schwefel’s
function is function no. 8 and the last of this group. Its complexity is due
to deep local optima that are far from the global optimum. A common
characteristic of most of the functions in this group is that they can be
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No. Function minimum value Input range

1 f1(x) =

D
∑

i=1

x2
i 0 [−100, 100]

2 f2(x) =
D−1
∑

i=1

(

(1− xi)
2 + 100(xi+1 − x2

i )
2
)

0 [−2.048, 2.048]

Table 5.3: Unimodal and simple multi-modal functions: test problems, group 1. These are simple functions
that can easy to minimise. The dimensionality of these functions can be adjusted with the term D.
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3 f3(x) = −20 exp



−0.2

√

√

√

√

1

D

D
∑

i=1

x2
i



− exp

[

1

D

D
∑

i=1

cos(2πxi)

]

+ 20 + e [−32.768, 32.768]

4 f4(x) =
D

∑

i=1

x2
i

4000
−

D
∏

i

cos

(

xi√
i

)

+ 1 [−600, 600]

5 f5(x) =

D
∑

i=1

{

20
∑

k=0

[

(0.5)k cos
(

2π3k(xi + 0.5)
)]

}

−D

20
∑

k=0

[

(0.5)k cos
(

π3k
)]

[−0.5, 0.5]

6 f6(x) =

D
∑

i=1

[

x2
i − 10 cos(2πxi) + 10

]

[−5.12, 5.12]

7 f7(x) = f6(y), yi =











xi |xi| <
1

2
round(2xi)

2
|xi| >

1

2
.
∀i = 1, · · · ,D [−5.12, 5.12]

8 f8(x) =
D

∑

i=1

xi sin
(

|xi|
1

2

)

[−500, 500]

Table 5.4: Multi-modal functions: test problems, group 2. These functions present many local minima and
are considered hard problems to optimise, especially in large dimensions. Zero is the minimum of all these
functions but function no. 8, which minimum value is −418.9829×D. The dimensionality of these functions
can be adjusted with the term D.
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also minimised by multiple unidimensional searches, which often does not
reflect well the characteristics of real-life problems.

Rotated multi-modal functions: group 3

Although the functions in group 2 are considered to be hard multi-modal
problems, they can possibly be separable. This means that the minimisa-
tion problem can be solve using D unidimensional searches, where D is the
dimension of the problem. A large variety of real-life optimisation prob-
lems are non separable. Therefore, in order to approximate these problems,
in this group to test problems, we use rotated version of the functions in
group 2. The rotated functions preserve the same shape characteristics of
the original functions but cannot be solved by D unidimensional searches.

In order to rotate a function, we multiply the argument x of the original
function by an orthogonal rotation matrix M to obtain the new argument
z for the rotated function. This rotation matrix is obtained using the
Salomon’s method [122].

Finally, we can define the functions in this group as described in the
next equations:

fn(x) = fn−6(z),∀n = 9, · · · , 13; (5.17)

with

z = Mx, (5.18)

for the first 5 test problems of this group. The last function is defined as
follows

f14(x) = f8(z), (5.19)

with

zi =

{

yi sin
(

|yi|
1

2

)

|yi| 6 500,

0.001 (|yi| − 500)2 |yi| > 500,
∀i = 1, · · · ,D; (5.20)

y = y′ + 420.96, (5.21)

y′ = M(x− 420, 96). (5.22)

This is necessary in order to keep the global optimum of original Schwefel’s
function, located at [420.96, 420.96, · · · , 420.96], within the search range
after rotation.
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5.8.2 Initialisation and temperature schedules

SA algorithms tend to be very sensitive to different initial parameters such
as temperature. Therefore, in order to avoid too much tuning of these
parameters, we have predefined the following set of initial test values for
the acceptance and generation temperatures for all algorithms:

T0 ∈ [0.001, 0.01, 0.1, 1, 10, 100],

T ac
0 ∈ [0.0001, 0.001, 0.01, 0.1, 1, 10, 100].

For each of the experiments presented here, all involved algorithms were
then first tested with all possible combination of these temperatures values,
with 5 runs per combination. The combination that had the best average
result for each method was then used as initial temperatures in the specific
experiment. The remaining initialisation parameter, i.e. the number of
steps per fixed temperature, N , was kept fixed because its effect in the per-
formance of a SA algorithm is related to the value of the initial generation
temperature. In this way we hoped that our final generation temperature
value would suit the value we fixed for N . The values that we fixed for
N were D2 = 100 and D2 = 900 steps, for D = 10 and D = 30, respec-
tively. These values were chosen to be conveniently small to not delay the
experiments too much.

All tested algorithms were subjected to the same generation and accep-
tance schedules [136]. i.e.

U(Tk, k)⇒ Tk+1 =
T0

k + 1
,

and

V (T ac
k , k)⇒ T ac

k+1 =
T ac

0

k + 1
;

hence, according to Szu et al. [136], the resulting generation distribution is
the Cauchy distribution

g(ε, Tk) =
Tk

(ε2 + T 2
k )(D+1)/2

.

By choosing the same schedules for all algorithms, inclusive classical SA,
we hope to be able to better demonstrate the effect the different coupling
schemes have in the optimisation. There was no study to establish which
schedule would suit best each algorithm. Therefore, it is most probably
that the performance of the algorithms presented here are yet not optimal.
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5.8.3 Results for CSA versus multi-start SA

In order to establish a reference for comparison with the CSA algorithms
proposed here, we performed experiments with all 14 test functions and
compared the results of these algorithms with the results of the best per-
formance of multiple runs of the classical SA algorithm of Section 5.2.
Details about the choice of the initialisation conditions and temperature
schedules were given in Section 5.8.2.

For each function, we performed 100 optimisation runs in 10 and 30
dimensions. Each optimisation run was composed of 10 parallel processes
with 40,000 iterations per process, for D = 10, and 200,000, for D = 30.
For CSA methods, the parallel processes are coupled, i.e. Θ = 10, whereas
for the classical SA method, each process consists of an independent op-
timisation run. In this case, at the end of all 10 processes, only the best
result was used as the output of the multi-start SA.

Next we present box plots of the results for each group of test problems
that were obtained for all four methods tested here in 10 dimensions. The
same plots for dimension 30 are presented in Appendix B.

Unimodal and simple multi-modal functions: group 1

The results for these functions are presented in Figure 5.4. Clearly from
the figure we can see that CSA-MuSA presented the worst performance
for function no. 1, mainly due to the excess of outliers. Although the
performance of the other three methods were similar, the two CSA ones can
be distinguished for being slightly better. The same performance pattern
can also be observed for the same function in 30 dimensions. For the
Rosenbrock’s function, multi-start SA performed better in 10 dimensions.
In 30 dimensions, we consider the performance of CSA-MuSA and SA to
be equivalent. The performances of CSA-M and CSA-BA were less good
than multi-start SA and CSA-MuSA for this function in both 10 and 30
dimensions.

Multi-modal functions: group 2

The results of the experiments with the functions in this group in 10 dimen-
sions are presented in Figure 5.5 and Figure 5.6. Although the performance
of CSA-MuSA was considerably poorer for a couple of functions, e.g. func-
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Figure 5.4: Box plots for experiments with four algorithms (horizontal axis)
for the functions in test group 1 in 10 dimensions. In the vertical axis we
have the final costs of each cost function. Each method used a maximum
number of function evaluations equals to 40,000 per parallel process with
100 steps per fixed temperature. Initial generation and acceptance temper-
atures were chosen from a predefined set after exhaustive search.

tion no. 3,6, and 7, we consider the general performance of the other three
algorithms to be very similar to each other.
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Figure 5.5: Box plots for experiments with four algorithms (horizontal axis)
for the functions in test group 2 in 10 dimensions. In the vertical axis we
have the final costs of each cost function. Each method used a maximum
number of function evaluations equals to 40,000 per parallel process with
100 steps per fixed temperature. Initial generation and acceptance temper-
atures were chosen from a predefined set after exhaustive search.

Rotated multi-modal functions: group 3

Results for these experiments are presented in Figure 5.7 and Figure 5.8
for D = 10. Here, all the methods present considerably similar perfor-
mance. However, multi-start SA presented some superiority, especially in
30 dimensions.
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Figure 5.6: Box plots for experiments with four algorithms (horizontal axis)
for the functions in test group 2 in 10 dimensions. In the vertical axis we
have the final costs of each cost function. Each method used a maximum
number of function evaluations equals to 40,000 per parallel process with
100 steps per fixed temperature. Initial generation and acceptance temper-
atures were chosen from a predefined set after exhaustive search.

Discussion of the results

Tables 5.5 and 5.6 present mean and variance summaries of Figure 5.4-5.8
and Appendix B, for 10 and 30 dimensions, respectively. The best results
for each function are shown in bold. Analysing these results for each group
we have that for the group of unimodal and simple multi-modal functions,
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Figure 5.7: Box plots for experiments with four algorithms (horizontal axis)
for the functions in test group 3 in 10 dimensions. In the vertical axis we
have the final costs of each cost function. Each method used a maximum
number of function evaluations equals to 40,000 per parallel process with
100 steps per fixed temperature. Initial generation and acceptance temper-
atures were chosen from a predefined set after exhaustive search.

multi-start SA performed always better with the Rosenbrock’s function
whereas CSA-M was always the best with the other group 1 function. The
best performance for the functions in group 2 was equally divided among
all methods in 10 dimensions. For D = 30, CSA-M performed best in 3
out of the 6 multi-modal function. Multi-start SA, CSA-MuSA, and CSA-
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Figure 5.8: Box plots for experiments with four algorithms (horizontal axis)
for the functions in test group 3 in 10 dimensions. In the vertical axis we
have the final costs of each cost function. Each method used a maximum
number of function evaluations equals to 40,000 per parallel process with
100 steps per fixed temperature. Initial generation and acceptance temper-
atures were chosen from a predefined set after exhaustive search.

M shared the same number of best results for the rotated function in 10
dimension. As for D = 30, multi-start SA performed almost always better
that all the others for group 3 functions.

We can see that multi-start SA and CSA-M perform generally bet-
ter than the other two CSA algorithms. Particularly, in 30 dimension,
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Multi-start SA CSA-MuSA CSA-BA CSA-M
f1 3.268e-06/6.911e-13 2.778e+00/1.791e+02 1.646e-07/2.610e-15 1.015e-07/6.911e-16
f2 9.778e-03/2.833e-05 2.154e-02/9.149e-05 2.537e-02/2.139e-04 2.201e-02/1.266e-04
f3 1.311e-03/4.229e-08 4.186e-03/2.005e-07 1.660e-03/5.888e-08 1.303e-03/3.809e-08
f4 3.131e-02/1.584e-04 2.865e-02/1.704e-04 2.953e-02/1.815e-04 3.246e-02/1.680e-04
f5 2.239e-02/4.332e-06 2.226e-02/3.548e-06 2.200e-02/6.006e-06 2.190e-02/5.044e-06
f6 5.646e-04/2.140e-08 2.605e-03/3.889e-07 8.509e-04/5.806e-08 5.881e-04/2.102e-08
f7 5.083e-04/1.665e-08 2.624e-03/3.051e-07 8.604e-04/4.885e-08 5.530e-04/2.057e-08
f8 -4.164e+03/2.870e+03 -4.167e+03/2.147e+03 -4.182e+03/7.871e+02 -4.169e+03/1.967e+03
f9 9.620e-02/9.813e-02 5.699e-02/5.031e-02 1.014e-01/1.109e-01 7.993e-02/7.389e-02
f10 9.977e-02/1.241e-03 1.041e-01/8.163e-04 9.811e-02/8.364e-04 7.798e-02/7.082e-04
f11 6.073e-01/1.304e-01 8.485e-01/3.364e-01 7.181e-01/2.095e-01 5.739e-01/1.150e-01
f12 7.709e+00/6.855e+00 1.136e+01/1.089e+01 1.087e+01/9.796e+00 1.073e+01/1.047e+01
f13 6.800e+00/2.657e+00 8.145e+00/2.069e+00 8.263e+00/1.962e+00 8.376e+00/1.852e+00
f14 -4.115e+03/2.831e+04 -4.171e+03/2.043e+02 -4.161e+03/4.307e+03 -4.129e+03/1.852e+04

Table 5.5: Summary results for the 14 test functions with D = 10. The results are given in the format
[mean/variance] for 100 runs of each experiment. The best mean values are presented in bold font.



12
4

C
ou

p
le

d
S
im

u
la

te
d

A
n
n
ea

li
n
g

Multi-start SA CSA-MuSA CSA-BA CSA-M
f1 3.282e-05/8.856e-12 3.209e-04/1.690e-08 1.956e-07/9.110e-16 1.494e-07/3.444e-16
f2 7.348e-01/2.674e+00 7.604e-01/2.619e+00 1.017e+00/2.865e+00 1.082e+00/3.665e+00
f3 9.350e-04/4.454e-09 4.968e-03/7.027e-08 2.254e-01/2.483e+00 9.332e-04/3.298e-09
f4 1.372e-04/5.423e-07 5.013e-03/4.483e-06 3.315e-04/2.099e-06 2.043e-04/1.490e-06
f5 9.219e-02/4.121e-02 1.039e-01/4.980e-02 1.266e-01/7.643e-02 1.170e-01/6.978e-02
f6 8.218e-04/1.226e-08 4.468e-03/1.122e-07 9.855e-04/2.624e-08 8.112e-04/1.067e-08
f7 8.127e-04/1.126e-08 4.319e-03/1.689e-07 9.854e-04/2.604e-08 8.067e-04/1.168e-08
f8 -1.248e+04/6.293e+03 -1.249e+04/5.288e+03 -1.248e+04/6.114e+03 -1.249e+04/6.078e+03
f9 9.854e-02/8.100e-04 2.275e-01/3.030e-02 4.901e-01/1.966e-01 2.613e-01/4.098e-02
f10 1.509e-02/2.051e-04 3.233e-02/6.172e-04 3.236e-02/6.236e-04 3.282e-02/6.013e-04
f11 3.879e+00/1.467e+00 6.886e+00/1.325e+00 6.731e+00/1.782e+00 6.857e+00/2.083e+00
f12 6.613e+01/8.437e+01 6.928e+01/1.512e+02 6.500e+01/8.460e+01 7.012e+01/8.960e+01
f13 4.454e+01/4.808e+01 5.822e+01/6.737e+01 5.916e+01/6.925e+01 5.821e+01/7.535e+01
f14 -1.029e+04/1.699e+05 -1.019e+04/2.035e+05 -1.021e+04/2.141e+05 -1.019e+04/1.885e+05

Table 5.6: Summary results for the 14 test functions with D = 30. The results are given in the format
[mean/variance] for 100 runs of each experiment. The best mean values are presented in bold font.
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multi-start SA performed best for most functions in group 3. However, the
difference in performance between these two algorithms was always small.
Although this makes it difficult to judge if one method is considerably bet-
ter than the other for a specific function of group of functions, we feel that
CSA methods have at least the potential to be better than multi-start SA.
The reason for that is that although we only presented three examples of
CSA methods here, many other possibly more efficient instances might be
possible to be designed. Moreover, considering that the coupling is an ex-
clusive feature of CSA methods, it opens possible improvement paths like
the one described in Section 5.6, whose related experiments appear in the
sequel.

5.8.4 Results for CSA with variance control

We performed experiments with all 14 test functions using the method
described in 5.6. We compared the results of these experiments with the
results of the best results of multiple runs of the classical SA algorithm of
Section 5.2. The initialisation parameters were defined according to Sec-
tion 5.8.2, except for the initial acceptance temperatures. These tempera-
tures were chosen randomly from the predefined set for each optimisation
run, for both CSA-MwVC and multi-start SA. This way, we expected to
demonstrate the advantages of using CSA-MwVC without bothering to
tune this temperature.

The configuration of the experiments were exactly the same as in Sec-
tion 5.8.3, i.e. for each function, 100 optimisation runs in 10 and 30 dimen-
sions, each run composed of 10 parallel processes with 40,000 and 200,000
iteration, for D = 10 and D = 30, respectively. The box plots of the results
for each group of test problems are presented in Figure 5.9-5.15.

Discussion of the results

Tables 5.7 and 5.8 present mean and variance summaries of Figure 5.9-
5.15. The best results for each function are shown in bold. The results show
that CSA-MwVC was only once worse than multi-start SA. More precisely,
multi-start SA was better with function no. 8 in 30 dimensions. For a few
other experiments, multi-start SA was slightly worst than CSA-MwVC, e.g.
functions no. 13, and 14 in 30 dimensions. For all the other experiments,
CSA-MwVC was better or much better than its counterpart.
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Figure 5.9: Box plots for experiments with CSA-M with variance control
(CSA-MwVC) and Multi-start SA (MSA) for the functions in test group 1
in 10 and 30 dimensions. In the vertical axis we have the final costs of each
cost function. Each method used a maximum number of function evalua-
tions equals to 40,000 and 200,000 per parallel process with 100 and 900
steps per fixed temperature for 10 and 30 dimensions, respectively. Initial
generation temperatures were chosen from a predefined set after exhaustive
search whereas the acceptance temperatures where chosen randomly from
a predefined set of temperatures.

In summary, the variance control applied to the acceptance probabilities
was able to steer optimisation runs to better regions of the search space. As
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Figure 5.10: Box plots for experiments with CSA-M with variance control
(CSA-MwVC) and multi-start SA (MSA) for the functions in test group 2
in 10 and 30 dimensions. In the vertical axis we have the final costs of each
cost function. Each method used a maximum number of function evalua-
tions equals to 40,000 and 200,000 per parallel process with 100 and 900
steps per fixed temperature for 10 and 30 dimensions, respectively. Initial
generation temperatures were chosen from a predefined set after exhaustive
search whereas the acceptance temperatures where chosen randomly from
a predefined set of temperatures.

a result, almost all optimisation experiments with CSA-MwVC were bet-
ter, or much better than multi-start SA for the same random initialisation
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Figure 5.11: Box plots for experiments with CSA-M with variance control
(CSA-MwVC) and multi-start SA (MSA) for the functions in test group 2
in 10 and 30 dimensions. In the vertical axis we have the final costs of each
cost function. Each method used a maximum number of function evalua-
tions equals to 40,000 and 200,000 per parallel process with 100 and 900
steps per fixed temperature for 10 and 30 dimensions, respectively. Initial
generation temperatures were chosen from a predefined set after exhaustive
search whereas the acceptance temperatures where chosen randomly from
a predefined set of temperatures.

parameter. This means that without tuning, CSA-M is almost always bet-
ter than multi-start SA. However, it does not say much about the quality
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Figure 5.12: Box plots for experiments with CSA-M with variance control
(CSA-MwVC) and multi-start SA (MSA) for the functions in test group 2
in 10 and 30 dimensions. In the vertical axis we have the final costs of each
cost function. Each method used a maximum number of function evalua-
tions equals to 40,000 and 200,000 per parallel process with 100 and 900
steps per fixed temperature for 10 and 30 dimensions, respectively. Initial
generation temperatures were chosen from a predefined set after exhaustive
search whereas the acceptance temperatures where chosen randomly from
a predefined set of temperatures.

of the results of the variance control w.r.t. to the best possible results in
the presence of tuning. In the sequel we clarify this point with a few more
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Figure 5.13: Box plots for experiments with CSA-M with variance control
(CSA-MwVC) and multi-start SA (MSA) for the functions in test group 3
in 10 and 30 dimensions. In the vertical axis we have the final costs of each
cost function. Each method used a maximum number of function evalua-
tions equals to 40,000 and 200,000 per parallel process with 100 and 900
steps per fixed temperature for 10 and 30 dimensions, respectively. Initial
generation temperatures were chosen from a predefined set after exhaustive
search whereas the acceptance temperatures where chosen randomly from
a predefined set of temperatures.

experiments that compare CSA-MwVC with two different configuration of
CSA-M without the variance control.
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Figure 5.14: Box plots for experiments with CSA-M with variance control
(CSA-MwVC) and multi-start SA (MSA) for the functions in test group 3
in 10 and 30 dimensions. In the vertical axis we have the final costs of each
cost function. Each method used a maximum number of function evalua-
tions equals to 40,000 and 200,000 per parallel process with 100 and 900
steps per fixed temperature for 10 and 30 dimensions, respectively. Initial
generation temperatures were chosen from a predefined set after exhaustive
search whereas the acceptance temperatures where chosen randomly from
a predefined set of temperatures.

5.8.5 Variance control versus best run

The effects of the variance control described in Section 5.6 were analysed
using function no. 6. To better demonstrate this effect, results were gen-
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Figure 5.15: Box plots for experiments with CSA-M with variance control
(CSA-MwVC) and multi-start SA (MSA) for the functions in test group 3
in 10 and 30 dimensions. In the vertical axis we have the final costs of each
cost function. Each method used a maximum number of function evalua-
tions equals to 40,000 and 200,000 per parallel process with 100 and 900
steps per fixed temperature for 10 and 30 dimensions, respectively. Initial
generation temperatures were chosen from a predefined set after exhaustive
search whereas the acceptance temperatures where chosen randomly from
a predefined set of temperatures.

erated for different dimensions and number of optimisers. The number of
optimisers were chosen to be equal to the problem dimension with values



5.8 Experiments and results 133

Multi-start SA CSA-MwVC

f1 3.038e+00/5.993e+01 1.115e-07/7.279e-16

f2 1.513e+00/1.057e+01 2.183e-02/1.388e-04

f3 4.844e+00/6.984e+01 1.359e-03/3.887e-08

f4 1.472e+00/1.411e+01 2.942e-02/1.636e-04

f5 3.757e+00/2.972e+01 2.328e-02/6.106e-06

f6 3.858e+00/1.111e+02 6.860e-04/3.810e-08

f7 3.164e+00/4.044e+01 6.538e-04/3.043e-08

f8 -4.167e+03/2.332e+03 -4.174e+03/1.574e+03

f9 2.932e+00/3.581e+01 1.674e-01/2.193e-01

f10 1.208e+00/6.169e+00 6.729e-02/7.843e-04

f11 2.638e+00/8.419e+00 6.991e-01/1.421e-01

f12 1.230e+01/2.607e+01 9.969e+00/7.477e+00

f13 8.296e+00/4.593e+00 7.560e+00/3.776e+00

f14 -4.088e+03/3.860e+04 -4.136e+03/1.381e+04

Table 5.7: Summary results for the 14 test functions with D = 10. The
results are given in the format [mean/variance] for 100 runs of each exper-
iment. The best mean values are presented in bold font.

ranging from 5 to 30. Three different configurations were used, two of them
using CSA-M without the variance control and one with it.

The first configuration is a CSA-M algorithm using the best initiali-
sation parameters obtained after exhaustive search. The second one uses
the same algorithm but with random values for T ac

0 , uniformly distributed
between 0 and twice the mean value of the cost function. In the third con-
figuration we have the variance control approach. For this configuration, we
use the same values for T ac

0 as used in the second one, i.e. random values.
All configurations featured a maximum number of iterations per optimiser
equal to 100,000, with 500 steps per temperature and T0 = 0.075. For
configuration with the variance control, the value for the desired variance
was σ2

D = 0.99
(

m−1
m2

)

and α = 0.05. The results of these experiments can
be seen in Figure 5.16.

It can be noticed in Figure 5.16 that configuration (c) follows very
closely (a). Although (c) was initialised with the same T ac

0 random values
used for (b), the variance control was able to steer the optimisation process
to quasi-optimal runs. In fact, configurations (a) and (c), unlike (b), were
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Multi-start SA CSA-MwVC

f1 7.447e+00/4.421e+02 2.173e-07/7.925e-16

f2 1.362e+01/4.349e+02 7.133e-01/2.543e+00

f3 9.983e+00/1.034e+02 1.004e-03/8.340e-09

f4 1.181e+01/5.597e+02 1.091e-03/8.092e-06

f5 1.204e+01/3.199e+02 9.787e-02/3.408e-02

f6 1.630e+01/2.030e+03 1.263e-03/4.018e-08

f7 1.549e+01/1.282e+03 1.245e-03/3.600e-08

f8 -1.250e+04/5.058e+03 -1.250e+04/5.985e+03

f9 6.380e+00/7.268e+01 9.881e-01/8.881e-01

f10 1.333e+01/5.916e+02 3.270e-02/7.308e-04

f11 1.719e+01/1.374e+02 5.642e+00/8.382e-01

f12 7.498e+01/4.484e+02 6.758e+01/6.675e+01

f13 5.735e+01/1.226e+02 5.184e+01/6.484e+01

f14 -1.022e+04/1.162e+05 -1.045e+04/1.572e+05

Table 5.8: Summary results for the 14 test functions with D = 30. The
results are given in the format [mean/variance] for 100 runs of each exper-
iment. The best mean values are presented in bold font.

able to find at the end of the optimisation the basin of the global optimum,
i.e. a location in the problem space from where the global optimum can
easily be found with a simple local optimisation method. In conclusion, the
coupling can also be used to approximate the ideal annealing temperature,
thus reducing the influence of this initial parameter on the final search
result, independently of the number of optimisers, Θ.

In Figure 5.17, the reader can find a plot of a typical run of the CSA-M
algorithm with variance control for the test function no. 6. For this plot,
D = 5 and also the number of optimisation processes Θ = 5. The values for
the initial parameters are the same as for configuration (c) in Figure 5.16.
Although it might not be clear in the figure, the overall best solution is
not retained by only a single optimiser, but it switches many times from
one to another. This is a clear effect of the coupling on the balance of the
acceptance probabilities, which also provides an equilibrium between global
and local search by avoiding concentrations of optimisers in both low and
high energy regions.
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Figure 5.16: Plot of the average of 50 runs for function no. 6 with D = Θ for
3 different configurations: (a) CSA-M using best found initial parameters;
(b) CSA-M using T ac

0 equal to random values uniformly distributed between
0 and twice the mean value of the cost function; (c) CSA-M using variance
control with the same values for T ac

0 as used in (b). All configurations
featured a maximum number of iterations per optimiser equal to 100,000,
with 500 steps per temperature and T0 = 0.075. For configuration (c), the
value for σ2

D = 0.99
(

m−1
m2

)

and α = 0.05.

5.8.6 Scaling with dimensionality

At last, we performed experiments with CSA to check the scaling of the
necessary number of iterations to reach a given minimum energy tolerance,
with an increase in the number of optimisers. These tests were executed
for function no. 6 with several different values for D. The results can
be seen in Figure 5.18, which is presented with a logarithmic scale in the
vertical axis for better visualisation. This figure suggests that an increase in



136 Coupled Simulated Annealing

Figure 5.17: Plot of a typical CSA-M run with variance control for function
no. 6 with D ≡ Θ = 5. Initial parameters are: T ac

0 = 64; 500 steps per
temperature; T0 = 0.075; σ2

D = 0.99
(

m−1
m2

)

; and α = 0.05.

the number of optimisers decreases exponentially the number of necessary
iterations to reach a given energy tolerance, regardless of the dimension D
of the problem.

5.9 Conclusions

Coupling of SA processes has been introduced in this work as a new ap-
proach to solve hard continuous global optimisation problems. The coupling
is applied within the acceptance probability function. Coupled Simulated
Annealing is not considered as a single algorithm but rather as a class of
algorithms defined by the form of the acceptance function and the coupling
term. Supposedly, this class is also an extended class of SA algorithms.
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Figure 5.18: Plots of performance curves of CSA for different dimensions D
of f6. Every curve was obtained using the same initial temperatures. The
vertical axis represents the number of necessary cost function evaluations
per optimiser in order to reach a minimum energy tolerance. For all dimen-
sions, this number decreases approximately exponentially with the number
of optimisers, i.e. the number of elements in Θ. Note that the values in the
vertical axis are on a logarithmic scale.

By analysing the results of the methods presented here, we conclude that
the coupling of SA processes increases their exploration capabilities. We
can also conclude that although there might exist many possible coupling
schemes, the right design can be essential to boost such capabilities. In ad-
dition, CSA processes can run on parallel systems with little communication
overhead, since only the coupling term needs to be distributed or evaluated
among the processing nodes. Besides improving convergence rates, coupling
is also useful to reduce the influence of the initial parameters and steer the
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overall optimisation process to quasi-optimal runs. This is possible due to
a simple but efficient variance control that uses the acceptance temperature
as the control parameter to keep the variance of the acceptance probabili-
ties away from undesired values. Finally, the algorithms described here are
based on classical SA, the addition of many features developed along the
past years to improve SA, like individual parameter sensitivity as in [60],
can possibly improve even further the results shown here.



Chapter 6

CNNOPT: CSA Applied to
CNN Optimisation

In Chapters 3 and 4 we presented two CNN optimisation methodologies
for chip-specific tuning and learning, respectively. The global optimisa-
tion method that was common on these two methodologies and used to
minimise each of the cost functions has been kept generic. We have used
therefore a off-the-shelf global optimisation method known as Adaptive
Simulated Annealing (ASA). In the previous Chapter, we introduced our
own optimisation method inspired by the benefits of coupling in CNNs.
The motivation for developing Coupled Simulated Annealing (CSA) was
the difficulty in finding the right initialising parameters for ASA and similar
methods. Through coupling, CSA was designed to solve multidimensional
multi-modal problems with many local optima, which reflect well the char-
acteristics of CNN optimisation problems. The coupling also gives CSA the
necessary robustness w.r.t. initialisation parameters that we were looking
for.

In this Chapter we present the application of coupled simulated anneal-
ing to cellular neural networks, the two main subjects of this thesis. We
use CSA as the optimisation core for a unified framework that incorporates
the CNN optimisation approaches described in Chapter 3 and 4. Therefore,
we discuss here aspects that are relevant to this unification and features
in addition to those already described. Additionally, we present a Matlab
toolbox that implements the ideas described by this new unified framework.

139
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6.1 A generalised approach for CNN optimisation

In Chapter 3 we described a CNN optimisation approach based on a global
optimisation method for designing more robust templates targeting an in-
dividual chip instance. In order to find the template values that make a
chip react as an ideal CNN structure, the output of template executions on
the actual CNN chip was used to calculate the cost of a certain solution.
The result of the optimisation process is a template that is optimal w.r.t.
the imperfections of the chip. We define this approach as tuning rather
than learning because there exists a good initial approximation of the final
template. However, in absence of an initial template the same methodol-
ogy can be considered as learning of fixed-point templates. We presented
another learning approach in Chapter 4 for finding template values when
the trajectory of each cell is specified at different time intervals as a se-
quence of images. This way, besides learning of steady-state behaviour, the
network can also learn spatiotemporal dynamics. An additional complexity
for this task w.r.t. the approach of Chapter 3 is that the cost function must
assimilate the time instants of the evolution of the output into the set of
parameters to be optimised.

For both CNN optimisation approaches described in this thesis, it is
necessary to make use of a global optimisation technique for either tun-
ing, learning of fixed-point or spatiotemporal behaviour. In Chapter 5, we
presented a global optimisation approach which, inspired by the effect of
coupling in CNNs, uses multiple simulated annealing processes coupled by
their acceptance functions in order to efficiently optimise hard multidimen-
sional numerical problems. Such problems reflect well the characteristics
of the CNN optimisation problems. Therefore, as a consequent and nat-
ural sequel, we present in this Chapter a methodology that unifies tuning
and learning of fixed-point and spatiotemporal templates using as our own
global optimisation method, coupled simulated annealing, as the core of
such methodology. This way, we unify here the contributions of the main
three Chapters of this thesis.

Before we describe our unified framework, let us recast a few equations
from previous chapters. Consider a full-signal range model cellular neural
network organised in a regular rectangular grid of size M × N whose the



6.1 A generalised approach for CNN optimisation 141

state of each cell obeys the following equation:

dxi,j(t)

dt
= −ĝ(xi,j(t),ΦSig)

+
∑

|k,l|6r

ak,l(ΦTem)xi−k,j−l(t)

+
∑

|k,l|6r

bk,j(ΦTem)ui−k,j−l(ΦOpt,ΦSig) + z (6.1)

ĝ(xi,j(t),ΦSig) = lim
m→∞







m, ∀ xi,j(t) > gmax(ΦSig),
xi,j(t) otherwise,
−m, ∀ xi,j(t) < gmin(ΦSig).

(6.2)

Fundamentally, this equation is a combination of (2.9),(2.12) and (2.16),
which results in a space-invariant full-signal range CNN model. The no-
tation here is mainly borrowed from the original equations. There are,
however, additional features included here, namely the vector of hardware
reference values Φ appear in the equation. These parameters are common
to the family of ACE chips and are subdivided into signal, template, and
optical reference values, or ΦSig,ΦTem and ΦOpt, respectively.

For CNN optimisation, the inclusion of hardware parameters Φ in the
CNN model can improve the degree of optimality of template operations.
It is known that a template operation with the same input image and initial
state can result in different output images depending on the actual voltage
values of black pixels and white pixels [46]. These voltage values are directly
affected by ΦSig. Therefore the inclusion of these and the other hardware
parameters in the optimisation may promote the correct functioning of the
template.

In (6.2), the hardware parameters are included as dependences for the
corresponding affected variables, e.g. ΦSig may affect not only the ĝ(·) but
also the range of u. The exact working of these parameters is not specified
by the makers of the chips, nor by the makers of the computational setup
interface of the chips. They are heuristically included here as the result of
our own experience with their usage. In any case, a precise description of
the working of these parameters is not essential for the approach described
here. However, it is important to notice that they exist in actual VLSI
CNN-UM implementation and that they can be used to modify the working
of these chips in a way that is similar to how template values can be used.
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It is also useful to stress that due to the properties of the FSR model de-
fined in Section 2.2.2, the nonlinearity disappears from the output. There-
fore, the output and the state of the network in this model are equivalent
and any distinguishable mention of any of these terms hereafter is purely
conceptual.

Finally, the unified framework that combines both previous CNN opti-
misation approaches with a target CNN model described by (6.2) can be
formalised by the systematic minimisation of the following cost function:

E =
1

NSNRNT

NS
∑

s=1

NR
∑

n=1

NT
∑

k=1

∑

i,j

(xd
i,j;s,k,n − xi,j(A,B, z,Φ, tk))2 (6.3)

where ∆tk = tk−tk−1 ∀ k = 1, · · · , NT represent the time intervals between
two output samples of the spatiotemporal dynamics, with t0 = 0 and NT

being the number of samples. xd
i,j;s,k,n denotes the desired output value

of a pixel in the kth image of a given sequence of NT images. The value
xi,j(A,B, z,Φ, tk) denotes the actual output value of a pixel as the system
has evolved to the time instant tk with weight matrices A and B, current z
and hardware reference parameters Φ. NS denotes the number of instances
of initial states, inputs, desired-outputs in the training set. NR denotes
the number of repetitions a template is executed on chip. Repeating the
execution of a template while adding noise to the template values or to the
training set is important in order to generate chip-specific robust templates,
as described in Chapter 3.

The actual optimisation problem of minimising (6.3) is given by

min
A,B,z,Φ,∆t1,··· ,∆tT

E(A,B, z,Φ, t1, · · · , tNT
), (6.4)

where, as in (4.16), the time intervals ∆tk between samples are used instead
of the actual time instants tk.

For every evaluation of the cost function in (6.3), the initial conditions,
i.e. initial states xi,j(0) and inputs ui,j as well as desired-outputs xd

i,j;s,k,n

are defined within a training set instance. To understand better the de-
scription of our systematic unified approach, we redefine here the following
terms.

Training Set (TS) is a collection of images organised in TS instances.
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TS instance is a set of images needed to train a template operation in
order to perform the desired functionality. This set of images usually
contains only the essential images involved in a template operation,
namely input, initial state and outputs, which in this case are desired
time-evolution outputs. To avoid clutter, we only consider these es-
sential images. The incorporation of other images such as fixed-state
map, bias map, and output mask, into the concept of TS instance
is straightforward. These optional images are sometimes necessary
to implement specific template functionalities on CNN chips. For-
mally, we define a TS instance as the set {u,x0,xd

1
, · · · ,xd

NT
}, whose

elements are images with pixel values having a one-to-one correspon-
dence with the input, initial state, or desired outputs of cells in the
network grid.

Template is a term often used in the CNN community to denote the
variable set A,B, z for space-invariant CNNs. For CNN hardware
implementations, however, these variables do not uniquely specify
the functioning of the array. For the ACE family for instance, addi-
tional variables, which include e.g. the hardware references Φ, also
need to be specified. The time given for the evolution of the dynam-
ics is another parameter that needs to be set in order to execute a
template operation on chip. Therefore, in this approach, we char-
acterise a template as the set of variable given by {A,B, z,Φ, tk},
where tk is the time given for the evolution of the dynamics, and
Φ = {ΦSig,ΦTem,ΦOpt} includes all hardware parameters. Hence,
here we extend the template definition of Chapter 2 to a set of tun-
able parameters that are included completely or partially in the set
of values to be optimised. It may or may not have an initial approx-
imation. In the case of existence of a good initial approximation, we
call the optimisation process tuning, otherwise, we call it learning, re-
gardless of the nature of the problem, which can be either fixed-point
or spatiotemporal dynamics.

6.2 Systematic CNN optimisation

Our main objective with the establishment of a unified approach for CNN
optimisation is to create a standard procedure for tuning and learning for
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different kinds of template operations. Starting from an initial specifica-
tion sheet that describes the details and options of the CNN optimisation,
we want to define a self-sustained systematic procedure that can find the
most robust and optimal chip-specific template. Although there are many
ways in which such a procedure can be defined, we want to avoid espe-
cially the trivial way, which means proceed with the optimisation assuming
all unknowns as parameters to be optimised, neglecting all assumptions.
Although this unsophisticated procedure might work within a not so im-
practicable time-frame for some simple template operations, our experience
shows that for other moderate and complex operations it is necessary to
make some reasonable assumptions in order to reduce the dimensionality
of the search space. Therefore, we define here a systematic methodology
to general CNN optimisation that is intended to be self-sustained and effi-
cient w.r.t. time to convergence and chip-specific robustness and optimality.
This methodology is defined under the terms of the problem stated in the
previous Section.

There are many details specific to tuning or learning that need to be
incorporated in the general CNN optimisation approach. For example, as
CSA is inherently a parallel optimisation method, we can request multiple
cost function evaluations from the chip. This feature must be incorporated
into the unified framework. In order to enrich the descriptions of each of
these details, we present in Figure 6.1 an overview of the framework that
shows the flow of data and control variables for a general CNN optimisation
algorithm.

As depicted in Figure 6.1, our unified approach is composed of two
preparation stages and the main self-sustained optimisation module. The
latter is composed of several sub blocks, including generation of probe solu-
tions, evaluation of these solutions, and cost accumulation and normalisa-
tion. The two first blocks are the most important ones since they serve as
the basis for rest of the optimisation procedure. Failure to define these ini-
tial modules well would most probably result in the failure of reaching the
objective of the CNN optimisation. In Sections 6.2.1 and 6.2.2 we present
detailed insights of these two steps and define some guidelines. What fol-
lows is a description of the submodules within the optimisation module.

Generate new probe solutions: this module receives from the option
sheet the first initial approximation of the set of parameter to be
optimised. From then on, each input flow comes from the accept
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Figure 6.1: Block diagram of the unified CNN optimisation framework.
The shaded elements in the diagram are part of the cost function (6.3).
Full lines represent flow of batch solutions whereas doted lines represent
flow of single template operations. The blocks within the dashed rectangle
are part of the self-sustained optimisation module of the unified framework.
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solutions module. The currently accepted solutions are then used to
generate new probe solutions. This step is part of the CSA algorithm.

Decode probe solutions: in this step, the solution generated in the pre-
vious module are converted into the template form. That means that
any assumption used to reduce the parameter search space must now
be unfolded, e.g. in the case of symmetry assumptions, the template
values omitted due to symmetry are now restored from their symmet-
ric copy.

Add noise to templates: here we add noise to the decoded templates.
The addition of noise is used in combination with repeated execu-
tion of the same probe template in order to achieve robustness, as
explained in Chapter 3. In case no noise addition is specified in the
option sheet, this stage is bypassed. This state also acts as a multi-
plexer, i.e. template solutions comes in batches and are fed to the
next stage one by one.

Run template on chip: a probe template, with or without noise, is fi-
nally executed in this module, which correspond to the chip itself.
The cell model in the chip is assumed to be similar to (6.2).

Calculate cost: After the chip executes the probe template, its output is
then used in this module to calculated the cost of this solution.

Test completeness of time instants, repetition, and TS instances:
These are the three diamonds in Figure 6.1 that represent tests for
completeness of each of the summations in (6.4). Upon an incomplete
summation, the flow of the algorithm is directed to the add noise to
templates module. Upon completeness, we perform the next test until
no test is left. We then proceed forward.

Normalise cost: After all summations are completed, we then normalise
the cost in this module and pass it to the accept solutions module.
It contrast to the add noise to template module, it acts as a demuti-
plexer, i.e. the flow of the algorithm is only passed forward once all
solutions of each CSA process are evaluated.

Accept solutions: This module, like the generate new probe solutions, is
also part of the CSA optimisation core. Based on CSA rules, it accept



6.2 Systematic CNN optimisation 147

or not the just probing solutions. The set of currently accepted solu-
tions are then passed through for generation of new probe solutions.

Although we decided to use our own optimisation core, it can be easily
replaced by any other core due to the modularity of the approach. In Fig-
ure 6.1, our core is represented by the modules generate new probe solutions
and accept solutions.

6.2.1 Defining a training set

The topology of the cost surface is affected by the actual TS used in the
optimisation. Thus, for learning or for tuning of fixed-point or spatiotem-
poral dynamics, constructing a comprehensive TS is of key importance for
obtaining desired template functionality. The TS design needs to account
for all desired functionalities while avoiding undesired ones. In addition,
the metric used to compare the desired behaviour and the actual output
can also modify the shape of the cost surface. It is important to design
an efficient TS in order to smooth the cost surface with an approach for
removing undesired plateaus and deep local optima. In other words, the
designer must have a good understanding of the operation to be solved by
the template in order to be able to create a correct TS.

Failure to design the right TS may result in a cost surface where the
desired operation corresponds a local optimum, whereas the actual global
optimum corresponds to an undesired operation. In such a case, the learned
template may work for the TS instances but might fail to generalise to other
untrained instances, causing an effect similar to overfitting. A good illus-
tration of this is the grey-scale-constrained isotropic trigger wave template.
In Figure 6.2, we present a few examples of incomplete training sets and an
example of a comprehensive TS for the template. Another case of poor TS
design is when the desired operation corresponds to the global optimum,
but the difference between the cost of the global optimum and a number of
local optima is not high or the basin of attraction of the global optimum
is too narrow. A more careful TS design can alleviate this problem. The
use of an adequate or more discriminative metric can also provide a similar
effect. More about that on Section 6.2.3.

In order to minimise the effects of poorly designed training sets and
maximise convergence rate and performance of the template optimisation,
we define here a few rules of thumb:
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Figure 6.2: A collection of TS instances for the grey-scale constrained
isotropic trigger wave. The objective of this operation is to create a prop-
agating wave in the desired output (right) from marks in the initial state
image (centre) that is constrained to travel only in regions covered by a cer-
tain grey level in the input image (left). (a,b,c) are examples of incomplete
TS. In (a) and (c), a simple thresholding operation on the input would gen-
erate the specified desired output. (b) is incomplete because it omits the
case of the existence of a marker without a constraining grey-scale region.
(d) presents a more complete TS which assesses all desired functionalities
and excludes the undesired ones.
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• Analyse the functionality that the template operation has to learn
and ensure that all essential input-output mappings are encompassed
by your training set.

• For many functionalities, besides the input image, other images are
also important in order to achieve what is desired. Analyse how the
input, initial state, bias map, and fixed state map can alter the desired
output.

• Make sure the desired output is well balanced. In the case of the
metric used in (6.4), the average pixel value should be about zero in
order to avoid the optimisation getting trapped into fully black (all
pixels → +1) or fully white (all pixels → -1) images.

• It is not necessary to create one TS instance for each input-output
functionality mapping of the operator to be learned. A single TS
instance can carry most of the relevant information embedding as
many input-output mappings as possible into a single TS instance.
This can be done in a spatially distributed way (see Figure 6.2). In
addition, encoding various input-output mappings can improve the
balance of black and white pixels.

• For learning, when the desired template functionality requires both
input and initial state, it is difficult to be sure about the contents of
the input and initial state. Equivalent functionalities can be achieved
with different templates by exchanging the input and initial state im-
ages. For instance, for the shadow template, the object to be shad-
owed can be put either in the input or in the initial state or in both.
In the simulator, it is enough to load the object as initial state and
define B with all 0. When implementing templates on chip, often
the robustness, speed, and/or generalisation are stronger in one of
the cases. Also, for single input functionalities, input or initial state
images can assume −1 or +1 globally, or be purely arbitrary. It is
better to try different configuration as often, it is not clear at first
which configuration is best.

• For the learning of spatiotemporal behaviour, apply the same rules
above to each time step and make sure that the desired dynamics
are clearly visible and as continuous as possible between consecutive
images.
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6.2.2 Reducing the search space

The main disadvantage of global optimisation methods is that they need a
large number of function evaluations before they can reach global optimum
convergence. For many problems, the time that is necessary to find the
global optimum using any known type of global optimisation method is
likely to grow exponentially with the dimensionality of the search space.
Therefore, even for low dimensionality problems like CNN optimisation,
i.e. in the order of dozens of parameters at most, it is worth attempting to
reduce this dimensionality as much as it is possible.

There are several ways to reduce CNN optimisation search space. The
appropriate means depends on the operation being optimised. Whatever
reduction is used, it must be specified in the option sheet. In fact, the
main objective of creating an option sheet is the precise definition of the
search space. Other information present in the option sheet are mainly
initialisation values. The precise module in Figure 6.1 that uses the search
space reduction information from the option sheet to ”decompress” the
parameters being optimised into an effective set of template values is the
decode probe solutions module.

In order to define the rules in the option sheet for reducing the search
space, it is essential to gather relevant knowledge about the operation to
be optimised. Knowledge about the spatial structure of the template is
especially important. For example, template stability constraints [99], fixed
template values, or template symmetry are information that can seriously
reduce search space. The trigger-wave template [106], for instance, consists
of an A template where the surrounding elements are the same. In the B
template, only the central element is not zero. By exploiting these two a
priori known constraints, 15 unnecessary parameter values can be removed
from the optimisation. Additionally, chip implementations may involve
hard-wired limitations of the CNN model. For instance, the ACE16k does
not fully implement all the template values at once. Either the surrounding
template elements of the A template or those of the B template can be used
at one time. This is a hardware related constraint that limits the range of
template types and can be automatically imposed.

Search space can be cut down further by setting bounds on the range
of each optimised variable. Firstly, in accordance with the actual VLSI
implementation, hardware bounds apply to all template values. Further
truncation of the template value range can be derived mainly in the case
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of chip-specific tuning, i.e. either when the simulator version of a template
is known or when a first optimisation run had already found a working
template and subsequent optimisation is to be launched in order to improve
the robustness of the solution.

6.2.3 The influence of the metric

In (6.3) we consider a Euclidean metric, which is a measure of the symmet-
rical difference between two images and can be considered as the degree of
coincidence of two point sets P and Q. In the binary case this is the same
as counting the number of different points between images, which is often
referred to as calculating the Hamming distance. Another commonly used
distance is the Hausdorff distance that measures the distance of a point on
P that is farthest from any point on Q.

Although the Hamming and Hausdorff distances are commonly used
in image processing applications for object comparison and classification,
they have several disadvantages. Hamming distance measures only the
area difference, but does not reveal anything about shape difference. In
addition, it is sensitive to object shift and noise. Hausdorff metric, on the
other hand, measures the mismatch between two shapes but also cannot
tell anything about shape properties. A single noisy pixel can drastically
modify the Hausdorff distance.

In [134] the so-called non-linear wave metric was introduced that inher-
ently measures both area and shape differences between two binary objects.
Let a binary wave be started from P ⋂Q and spreading only to the points
of P ⋃Q. The time required for the wave to occupy P ⋃Q measures the
difference between the shapes P and Q. The result is a grey-scale map
where values are related to the time required for the wave to reach a given
position. If these so-called local Hausdorff distances are summarised then
the wave-type metric takes both Hamming and Hausdorff distances into
account. In addition to capturing both area and shape differences, this
technique has parallel implementation with about 10µs running time [109]
and may be implemented in the CNN-UM itself. We believe that the use
of this metric would improve considerably the shape of the cost surface in
favour of enhancing the location of the global optima. However, we have
not implemented this metric with our approach and therefore we yet make
use of the Euclidean metric.
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6.3 CNN optimisation cases

Depending on the particular choice of Φ and NR in (6.4), learning of dy-
namical operations or learning of steady-state behaviour of an operation
or tuning for chip-specific robustness of an existing template can be per-
formed. The choice of NS is important in a different aspect. Setting it to
a number greater than 1, i.e. using more than one training set instance,
is beneficial to ensure the final template is not depending on our choice of
particular images in the training set.

6.3.1 Tuning for chip-specific robustness

Tuning or learning of a steady-state behaviour operation is performed when
Φ is set to 1. Robustness of a template is ensured if NR is set higher than
1, and a proper amount of noise is added to images in the TS and to each
probed template.

In order to minimise the time needed to find the robustly optimal tem-
plate, it is better to split optimisations into two epochs. First, a rough
optimum is searched, ensuring the template performs the desired function-
ality. Then, a second optimisation starting from the result of the first
epoch introduces noise into template and/or image values in order to in-
crease robustness. The definition of the variance of the noise involves some
experimentation. Variance set too high can corrupt the correct function-
ing of the template whereas too low variance does not improve robustness
enough. In theory, the higher the number of repetitions the more robust
the final template. Note however that optimisation time increases linearly
with the number of repetitions.

6.3.2 Learning of fixed-point dynamics

In our context, learning means the identification of specific values for all
variables in the extended template so that the desired functionality, e.g.
an image processing operation, is performed on the CNN array. This task
differs from tuning in that we do not have an initial guess of the values of the
extended template. This implies in many cases that the whole parameter
space must be searched.
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6.3.3 Spatiotemporal learning

In the case of learning of spatiotemporal dynamics, there several time steps
which the array must perform in order to transform the initial state into
the final output.

6.4 Implementation - Matlab toolbox

The unified framework for learning and tuning CNN templates has been im-
plemented as a Matlab Toolbox. Simple analogic routines can be designed
using the Bi-i Vision System [164] via its own low-level programming lan-
guage called Analogic Macro Code (AMC) [73]. More complex algorithms
which also need digital routines can be designed in a relatively easy way
via the software development kit (SDK). However, additional software and
knowledge is required involving the purchase of Texas Code Composer Stu-
dio and DSP programming experience. Matlab is considered as a reasonable
trade-off between required programming knowledge and flexibility. The
benefit of the proposed Matlab Toolbox is that it relieves the user from all
the intricate programming issues needed to design algorithms via the Bi-i
SDK.

Although chip robustness will most probably improve in future VLSI
implementations, this issue may have crucial importance when targeting
industrial applications. For application fields where environmental condi-
tions are stable (as in many surveillance tasks), a robust CNN based algo-
rithm can be used with one-time chip-specific tuning of the templates used.
Where conditions are varying in an a priori known range and one single
template tuning cannot ensure correct operation in the whole range, a vi-
able solution could be the re-calibration of the system in constant intervals
or when change in environmental conditions is detected.

This toolbox can be downloaded from

http://www.esat.kuleuven.be/sista/chaoslab/cnnopt/.

6.5 Conclusions

We presented a unified framework for template learning and chip specific
tuning using CSA as optimisation core. Due to the variance control of
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the acceptance probabilities, CSA reduces user interaction during optimi-
sation by avoiding re-tuning of initialisation parameters. The inclusion of
hardware reference values in the optimisation allows the tuning of template
operations that were otherwise impossible be performed in the ACE16k v2
CNN chip [58].

Definition of a training set remains the key issue for successful template
learning and tuning. Designing a good TS for an unknown operation is an
iterative process during which the user gets more and more insights into
how the set of all possible input-output mappings of an operation can be
condensed into the TS. The guidelines for design a training set presented
here can help the CNN algorithm designer to reduce the number of iterative
steps necessary to generate a final and correct TS. Although a good solution
is not guaranteed when using global optimisation in a limited number of
cost function evaluations, with a reasonable amount of time, the proposed
method can be a valuable tool to implement new fixed-point and active
wave operators on CNNs.

The proposed Matlab toolbox is presented to the CNN community in
order to relieve the analogic algorithm designer from as much hassle as
possible related to code interfacing and hardware hazards so that the CNN
algorithm design can be put in focus.



Chapter 7

Robust VLSI CNN-UM
Applications

7.1 Real-time object tracking

In this Section we describe a analogic and visual algorithm for tracking
of an object immersed in an image sequence. Object tracking allows the
analysis of objects and persons’ movements in video images, making it pos-
sible to instantaneously calculate their position, the direction and speed
of their movements, and whether or not they will meet or collide. The
objects that could be considered for tracking are innumerable including
airplanes, missiles, vehicles, people, animals, insects, microorganisms, etc.
Typically, there exist more than one object in the scene, which introduces
problems due to the fact that the objects can touch and occlude each other,
move inside or outside the image boundaries, etc. Besides multiple object
scene problem, tracking algorithms also need to account for usual single-
object tracking issues such as deformation, occlusion, illumination, and
time-varying background. In summary, due to all these issues, object track-
ing is complex task. The objective of the algorithm described in this Section
is thus to tackle some of these these issues rather than solving all of them.

In this section we consider object tracking with locking on a given ob-
ject, which permits collecting information from the locked object regardless
of the presence of ambiguous similar objects in the scene. The applications
are vast and range from the field of security and traffic analysis to sport
events examination.

155
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The advantages of using a CNN system to perform object tracking are
mainly related to the speed that such systems can deliver. This feature is
especially necessary for processing image sequences in real-time. Images
often carry a lot of redundant information making sequential architectures
like Digital Signal Processor (DSP) unsuitable to achieve very high frame
rates. CNN systems on the other hand are inherently parallel, which is an
immediate advantage for image-processing; and analog, which avoids de-
lays of analog-to-digital (A/D) conversions, necessary when working with
any digital technology in image-processing like DSPs. Many CNN systems
even support direct optical input, which also eliminates the step of storing
the image between the acquisition and the processing, which drastically
shortens the input acquisition latency. In these systems, unlike DSP sys-
tems, the acquired image can be directly processed. Real-time constraints
for object tracking can be met by using a CNN-UM VLSI implementa-
tion [113, 85, 83]. Such devices are able to deliver ultra-high processing
speeds owing to its highly parallel and analogic array processing.

After a detailed description of our CNN-based object tracing algorithm
in Section 7.1.1, we make an analysis of performance and speed of the
proposed algorithm in Section 7.1.3.

7.1.1 A visual/analogic algorithm for tracking with locking

The objective of this algorithm is to identify the coordinates of an object in
a sequence of images containing one or more objects, given the initial infor-
mation about which object to lock on. The presented algorithm contains
two main steps that need to be executed for each frame of the sequence.
The first step is the isolation of the object that has to be tracked. This step
denotes the locking feature of the algorithm. The second step is related to
the calculation of the coordinates of the chosen object within the image.
At each frame, the algorithm define the position of the centre of the object
with relation to the upper left corner of the image.

Locking on the chosen object

In order to provide the tracking with locking, it is necessary to isolate the
chosen object from other objects in the current frame of the image sequence.
This step has as input the current frame and the processed previous frame
containing only the isolated chosen object. It gives as output the isolated
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object in the current frame. An important remark for this step is that
the shifting of the object between two consecutive frames can not exceed
its transverse length in the given shifting direction. This remark yields a
very hard constraint for the algorithm since its performance scales propor-
tionally with the transverse lengths of the object. Such a constraint may
require extremely high processing speed and an abridged image acquisition
latency. These features are natural characteristics of some VLSI CNN im-
plementations. Further discussions about this remark are given in Section
7.1.3.

Consider an image frame Fi as being the ith frame in a sequence
Fi,∀i = 1, 2, 3, ..., where Fi is a represented by a matrix with binary el-
ements (pixels) with value 0 (false/white) or 1 (true/black). The sets of
adjacent true elements represent objects in the image. The image frame
Oi will be the image of the chosen object alone in the same position as in
the image Fi. Given a new frame Fi, and the previous image of the chosen
object Oi−1, the calculation of Oi is given by the following equations:

Oi = Fi AND Mi,

where Mi is the marked absolute difference between Fi and Oi−1 calculated
by

Mi = recall(Ai, Oi−1),

where recall(R,S) is an operation that reconstructs only the objects of
R that are marked with elements of S, and Ai is the union (OR logic
operation) of Fi and Oi−1 calculated by

Ai = Fi OR Oi−1.

During the initialisation of the algorithm, when Oi−1 does not exist yet,
Oi−1 needs to be initialised with an image containing a mark, denoted by
one or more elements set to true, to be placed in the exact correspondence
with any element of the chosen object in Fi, and with all other elements
set to false. An illustrative example of this step of the algorithm is shown
in Figure 7.1.

Obtaining the coordinates of the object

The objective of this step is to find the coordinates of the centre of the
object with relation to the upper left corner of the image. The input is
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Figure 7.1: Locking on the object

the image of the chosen object alone, Oi, given by the previous step. The
concept of centre here coincides with the mass centre of the object growing
to a rectangle1. The projections of the object to the bottom and left side
of the image, representing the length and height of the rectangle, are used
to obtain the horizontal and vertical coordinates respectively. The centre
of each projection is found by pyramiding2 the projection and then erasing
everything but the top. The top is then shadowed horizontally or vertically,
according to the dimension of the coordinate. The result is used as a mask
for a massive diffusion CNN template operation [40] having as initial state
a real-valued image with degrading pixel values in the orthogonal direction
to the given projection, namely −90 degrees related to the projection. At
the end of the diffusion, every element of the resulting image (now real-
valued) is expected to be proportional to the given coordinate. Figure 7.2

1This approach was used instead of the well known recursive rotating peeling templates
due to the smaller number of operations necessary to find the centre.

2Pyramiding up: A = [2.10 −0.35 2.10 0.13 2.95 0.13 0.66 0.67 0.66]; B = 0; z = 4.7.
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shows the evolution of this step for the frame O3 of the example of Figure
7.1.
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Figure 7.2: Obtaining the coordinates of the object

Owing to difficulties to implement the diffusion template in VLSI CNN-
UM chips, an alternative algorithm is also proposed to replace this template
operation. After the top of the pyramided projection is found, it will be now
shadowed in the same direction of the projection and the result shadowed
in the orthogonal direction, namely −90 degrees related to the projection.
A search in the resulting image is then performed to find the position of the
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last element with value true of the resulting image, starting from the less
significant position value in the row or column containing the projection.
The complexity of this search is O(logN), where N is the size in pixels of
the related image dimension. Figure 7.3 shows the evolution of these last
operations for the example of Figure 7.2.

Last black pixel position:

Top element:
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Orthogonal shadowing:
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search on the first column starting from

the less significant pixel position
search on the last row starting from

template operation

template operation

template operation template operation

template operation

template operation

Figure 7.3: Obtaining the coordinates of the object without the diffusion
template operation

In order to apply this two-steps approach to lock on and track an object,
one may need to pre-process the input images (e.g. with adaptive thresh-
olding, edge detection, hole filling, etc.). Such preprocessing can eventually
be done with the CNN-UM architecture too, but is not described here. An-
other constraint for the algorithm is that the object needs to remain within
the image frame in order to be tracked. However, by using the resulting
coordinates information one can make sure the object remains within the
view area of the camera [39].

7.1.2 Chip-specific robust templates

Despite of the existence of a large range of designed CNN template opera-
tions, a reasonable amount of them does not work correctly when executed
on VLSI CNN-UM implementations [155]. There are several reasons for
that but it is mainly due to manufacturing failure to reproduce in silicon
the exact model of the cellular neural network. There exist also in the
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literature many robust versions of these templates that, independently of
any implementation, increase the chances of correct functioning of CNN
devices. However, even the most chip-independent robust template can
not always provide correct behaviour on VLSI CNNs.

In order to generate robust templates for the ACE4K device [85] used
in our experiments, all templates values used in the proposed algorithm for
object tracking with locking were optimised as described in Chapter 3 in
order to find their chip-specific robust versions.

7.1.3 Speed and performance analysis

In order to estimate performance and speed, an experimental setup was
established with a ACE4K CNN-UM chip (64x64 cells) installed in a DSP
board hosted in a digital computer. The images were acquired on-the-fly
by a video camera connected to the computer. The algorithm described
here has three main parts: image acquisition, locking on the object, and
calculation of the coordinates. Being the last part subdivided in horizontal
and vertical coordinate calculations. Due to limitations of the camera used
in the setup, the maximum frame rate reached was approximately 35 frames
per second. Assuming that a faster camera is used or that the images are
acquired by an optical input in the chip, which input latency is around 50
microseconds, the algorithm proposed here could reach up to 370 frames
per second. The table below shows the average time delays for each part
of the algorithm.

Algorithm step Average delay
Reading from camera 25.20ms

Locking on object 0.50ms

Vertical coordinate calculation 1.00ms
Search for last black pixel in leftest column 0.17ms

Horizontal coordinate calculation 0.82ms
Search for last black pixel in bottom row 0.17ms

Total without reading from camera 2.66ms
Total 27.86ms

As mentioned before, fast frame rate is fundamental to the performance
of the algorithm. This has specially effect in the locking step. The max-
imum object speed which the algorithm can follow is proportional to the
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length of the object’s transverse cut in the same direction of the movement,
l, and to the delivered frame rate, r. This speed is given by the following
equation

Smax = (l − 1)r pixel/second,

Thus, the worst case scenario is when the object is moving in the same
direction of its smallest transverse cut.

7.1.4 Conclusion

In this section we provided a detailed algorithm to lock on and track an
object in a video image. The locking allows the object to be tracked even
with the presence of other similar objects in the scene. The method may
be used in a wide range of applications requiring real-time constraints as
hard as 370 frames per second with the use of direct optical image acqui-
sition. The generation of chip-specific robust templates avoided much of
the misbehaviour of the applied templates on the CNN-UM chip and made
possible the implementation of the proposed algorithm in such device.

7.2 Hands-free wheelchair driving

In this Section, we present an algorithm for tracking features of the human
face using a CNN-UM chip implementation. This algorithm is then applied
to a hands-free mechanism to drive a wheelchair.

Face tracking is a problem that has been actively studied in the recent
years [17, 33, 91]. As part of a larger and more ambitious goal, face tracking
has been intended to help on the realisation of perceptual user interfaces.
Other parts of such system include face detection, face recognition, gaze
point estimation, and finally the translation of information into computer
actions like mousing. While the aim of such system can be reasonably
broad, it is mainly intended to aid people with a handicap to be able to use
the computer. Face tracking can also help these people with their mobility.

CNN[110] technology seems a natural choice to implement on-board
wheelchair face tracking due to its high parallelism and reduced size. By
placing a CNN visual system on board of a wheelchair and using an object
tracking algorithm to track face features, the control of the driving of the
wheelchair can be easily translated into movements of the face.
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We present a CNN visual algorithm that is fast and robust to track face
features in order to control the driving of a wheelchair. For test purposes,
we created a three-dimensional model of a wheelchair which reacts upon
face movements of the user, who can also interrupt and restart the hands-
free driving at anytime.

7.2.1 Face tracking

We describe here the relevant aspects for our face tracking algorithm. We
do not present any solution in the direction of face detection nor face recog-
nition. Our algorithm relies on extra information at the initialisation phase
in order to locate the face in the initial image and start the tracking.

Tracking alternatives

The orientation of the human face can be calculated in real-time by tracking
face features as individual objects. These objects must be clearly identified
in the face. The most common choices are:

• eyes,

• nose breaches,

• mouth,

• hair, and

• eyebrows.

All these features stand out reasonably well in a frontal face image.
The eyes have the advantage of being rather large. They are long visible
as the head rotates and are rather similar among different people. Their
disadvantages are the fact that they blink, that some people have to wear
eyeglasses and that eyes and eyebrows lay sometimes very close to each
other.

Besides having mostly the same advantages as the eyes, the eyebrows
do not blink. Their disadvantages are that the colour differs from people
to people and that sometimes they are very near the hair.

An alternative are the nose breaches. They are very similar among dif-
ferent people and with a camera placement under the head they become
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clearly visible. Additionally, they lay rather isolated of other possible inter-
fering tracking objects. Their disadvantages though are that they become
invisible by rotating the head completely down, and that they are rather
small. Moreover, they become invisible by people with a moustache.

The advantage of the mouth is that when open it gives a large object
that is good for tracking. However, it changes of form and a closed mouth
is not a good tracking object. Further on, the mouth does not work as a
good tracking object with people with beard and/or moustache.

At last, the hair is a very large object and so it is easy to find. The
problem is that it borders to the background, which may interfere with the
tracking algorithm. Moreover, it does not change of place in function of
the rotation of the head.

The right choice for a tracking object depends thus mostly on the kind
of face that needs to be tracked. By considering a face feature as a general
object independently of its type, it is possible to develop a general method
that can track these different features seamlessly. The algorithm we present
here was developed with this objective.

Tracking window: a visual algorithm

In order to efficiently track one of the face features described above, we have
developed a visual algorithm whose main principle is to make sure that the
object being tracked is always in the centre of a window which floats along
a larger streaming input picture. This approach is especially suitable for
use with VLSI CNN-UM implementations because such a window can be
made equivalent to the chip size.

This algorithm consists of two basic steps.

• First, at each current frame, the object to be tracked must be isolated
from the rest of the image. After an image containing only this object
is retrieved, it is calculated if the window has to be shifted, in which
direction, and how much this shifting is.

• The second and novel step of this algorithm is to move the sliding
window accordingly with the position of the object in the current
frame. The objective is to make sure that the extracted object always
stays within the tracking window.

Isolating the object to be tracked in the current frame can be easily
performed as explained in 7.1.1. The part of the object that overlaps in
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the current frame with the isolated previous frame can be used to retrieve
the object alone in the current frame. This operation can be performed us-
ing the recall template by using the current frame as input image and the
previous frame with the isolated object as initial state image. At initiali-
sation, when a previous frame does not yet exist, it is necessary to locate
the object and define an image with a marker at its location that serves as
the previous frame for the first frame.

The object can be kept within the tracking window by a procedure that
uses the result of the intersection of 4 pixels with the shadow of the object.
The same procedure is executed twice, once for the horizontal direction
and once for the vertical one, at each current frame. What follows is a
description of the procedure for horizontal component. It is analogous to
the vertical one.

First, the shadow operation needs to be applied to the object. The
shadow of the object is checked on the bottom line in four pixel locations.
Two of these pixels are located on each end of the line and the two other
in the centre of the line at equal distance from each other and from the
other pixels. The intersections of the shadow with these four pixels are
used to define the shifting. The objective here is to make sure that the
object’s shadow overlaps always with the two centre pixels and avoid the
overlapping with the other two. We devise two simple rules to define the
necessary shifting:

• If the shadow of the object intersects with only one of the centre
pixels, the window is shifted r pixels in the direction of this pixel.

• If the shadow touches one of the edge pixels, the window is shifted s
pixels to the pixel direction.

See Figure 7.4 for an illustration of this rules. The values for r and s are
determined heuristically. r is obviously directly related to the actual speed
of the object, which can only be instantaneously estimated. s is dependent
on this speed but also on the size of the object and of the sliding window.
Although the ideal values of r and s can be adaptively estimated accordingly
to the speed of the object, constant values delivered sufficient performance
for our implementation. See Section 7.2.3 for details on these values. Note
that despite the sequential reading of maximum 7 pixels, the other only
two operations of this method can be fully implemented in parallel with
CNN templates.
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Figure 7.4: The tracking window is shifted if necessary with two different
values according to the intersection of four pixels with the shadow of the
object. Here the two situations are presented for the horizontal shifting.

This simple procedure produces a very efficient way to track the given
object by keeping the object in the centre of the tracking window. Neverthe-
less, there are two fundamental issues to the algorithm as it was presented
so far. First, the use of the recall operation to isolate the object in the
current frame only works if the object always overlaps itself in consecutive
frames. Fortunately, because this algorithm is designed for a CNN-UM and
make use its high parallelism and fast speed, we can achieve sufficient frame
rate to ensure the overlapping for most applications.

The second issue is related to the size of the object. In the method
described above, the object must always fit in the tracking window and
should not be smaller than the distance between the two centre pixels in
order to guarantee the correct shifting. In real-life applications, the object
to be tracked varies constantly in size and form due to depth movements,
lighting, rotation, etc. The following Section describes a methodology to
overcome this problem.

Adaptive object resizing

Tracking an object that is constantly changing in size and form presents a
problem to the method described above when it does not fit in the tracking
window or when it becomes smaller than the distance between the two
centre pixels. In both cases, the direction of the shifting becomes impossible
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to be calculated. In order to solve this problem, it is necessary first to
monitor the size of the object and then apply some action to the image
so that the object can be resized to an acceptable size. Such action can
be e.g. either zooming, a change in lighting, adjusting the threshold level,
adjusting the objective shutter speed, or a combination of them. We have
chosen to adjust the shutter speed and the threshold value of the grey-scale
to binary conversion.

These values are adapted using the readings of the pixels from the
window shifting principle, i.e. no extra reading operation is required. If
the object touches both edges of the tracking window, the two outer pixels
are overlapped by the object’s shadow, which means that the object has
increased in size, e.g. because of too little illumination, and it no longer fits
in the tracking window. In this case, the algorithm adjusts first the shutter
speed. If the speed cannot be decreased further, the threshold value is
then adjusted. On the other hand, when the object is being tracked and
it decreases too much in the size such that it becomes smaller than the
distance between the two centre pixels, the object’s shadow does not cover
any of these pixels and thus the threshold and shutter speed values need
to be adjusted in such a way that the object appears larger in the image.
See Figure 7.5 for an illustration of the two cases.

With such a procedure to complement the method described in the
previous Section, we have an efficient algorithm to track objects which are
subject to constant size variation in its image projection. Although such a
procedure already increases significantly the robustness of the method, in
the next Section we present a strategy which can deal with other occasional
problems, e.g. partial or complete occlusion of the object.

Robust face tracking

In order to increase the robustness of face tracking method presented above,
we propose the tracking of multiple face features instead of only one. This
boosts the reliability of the whole process because if one of these objects
gets lost from the tracking, it is often possible to retrieve it by the relatively
fixed geometry of the face. For that, the positions of the objects that are
still being tracked are used to estimate a marker for the lost object. It is
clear that the more objects that are being tracked, the larger the robustness
of the tracking system will be. Nevertheless, this is only true up to a certain
level. Although the tracking of one single object can be done in parallel
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Figure 7.5: The resizing algorithm changes the parameters the control the
object’s size according to the intersection of its shadow with four pixels.
On the top row of the figure, there is too little light and a longer exposure
time is needed; On the bottom row, there is too much light and a shorter
exposure time is needed.

in the CNN-UM, the tracking of the different face features is sequential.
The addition of more objects to the tracking results in a reduction of the
maximum frame rate of the whole system. Consequently, it results in a
reduction in the maximum speed in which the object being tracked can
still be followed. Therefore, the number of objects to track simultaneously
must be wisely traded off with the frame rate of the system so that the
overall robustness prevails.

The combination of the window shifting and adaptive resizing algo-
rithms with multiple tracking results in a very simple and efficient algo-
rithm for face tracking. An overview flowchart of the tracking process
which involves these three features is presented in Figure 7.6.
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Figure 7.6: An overview of the different stages of the multiple object track-
ing system.

7.2.2 Driving of a wheelchair

The challenge here is to implement a hands-free driving mechanism for an
automated wheelchair in order to give the user the ability to move the chair
forward, backwards, turn left, and right. Additionally, the user should be
able to start or interrupt the driving at any time also without the use of
hands. Finally, this mechanism should be robust enough to work in different
environments with different illumination types.

In order to realise such a mechanism, we propose the use of the move-
ments of the user’s face to initialise, move, and interrupt the movements of
the wheelchair. A procedure for the initialisation and interruption of the
movements needs to be created. This way, while driving the chair, the user
can at any time stop the controlling, move his/her head freely, and restart
the driving. The mechanism needs thus two distinct states corresponding
to active and passive tracking. When in passive tracking, the face of the
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user is being tracked but its movements do not result in any motion for
the wheelchair. The system must be waiting for a start command which
can be e.g. a sequence of predefined movements. The active tracking is the
state which most of the face movements yield in motion to the wheelchair.
At this stage, the system must be also aware of a predefined interruption
command.

We have created a protocol to translate the face tracking into commands
to the wheelchair. In the passive state, the system must wait for a fast mo-
tion of the head in the horizontal direction. While in active driving, the
commands to go forward, go backwards, turn left, and turn right were as-
sociated with the movements of the head look up, down, to the left, and to
the right, respectively. In order to stop the driving and go into the passive
mode, the user must again wave his/her head in the horizontal direction.
Note that this could be ambiguous with the turning commands, but there
is a practical solution. The turning commands can be delayed in such a
way that these fast horizontal movements would not be actually translated
into wheelchair movements because the passive mode would have already
taken oven. In general, this is a very simple and efficient protocol for test-
ing purposes. Nevertheless, in a final implementation more sophisticated
protocols might be more interesting to deal with circumstances that were
uncovered here, e.g. when the user expresses a ’no’ by moving his/her head
in passive mode, without the intention to switch the state of the system to
the active mode.

Another aspect that should be covered in a final implementation is the
initialisation of the tracking itself. This must be a fast and straightforward
procedure in order to rapidly recover from a tracking failure. Although
there are many options for such a procedure, we propose one here which
we believe fits well many requirements. Aligned with the camera which
captures the image of the user’s face, we propose to place a light beam,
e.g. oriented LED light, which shines every time a failure occurs, i.e. all
the face objects being tracked are lost. Upon a failure, the user must thus
place his eye in front of the light beam. The place in the image where this
light shines is the place where the initial marker for the first frame is. After
the eye is successfully tracked, the light beam goes off. In the sequence the
positions of the other objects are calculated relatively to the position of the
eye. Besides providing an efficient way to recover from failure, this method
also provides the user with the information about the status of the tracking
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Figure 7.7: Overview of the wheelchair driving mechanism.

through the status of the light beam.
Figure 7.7 presents and overview of the main features of the wheelchair

driving mechanism.

7.2.3 Implementation and practical considerations

We implemented both face tracking visual algorithm and wheelchair driving
protocol in a Bi-I system [164] with an ACE16k v2 [109] CNN-UM chip
placed at one of the optical inputs, and a higher definition CCD camera
placed at the other input. Besides the ACE16k v2 and the CCD camera,
the Bi-I also embeds a DSP.

During the implementation we have encountered a number of problems
related to the CNN chip and the CCD camera. A description of these
problems follows in the next Sections together with the solutions that were
applied.

Tuning of CNN templates and chip-specific robustness

Unfortunately, templates designed to work in ideal CNNs are not guaran-
teed to work on analog VLSI CNN implementations [156]. The reason for
that lies mainly on manufacturing mismatches, which for analog VLSI are
around 10%. Therefore, in order to make use of these templates in a Bi-I,
it is necessary to tune the template values for the specific chip to be used.
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Figure 7.8: Training set for the recall template. Input, initial state, and
desired output are shown in the picture.

With this purpose, we used the framework in Chapter 6 in order to tune
the recall and shadow templates.

For the recall template, the images in Figure 7.8 were used as training
set. Only the tuning of the hardware parameters was necessary to achieve
a good working template. Observe that many single dots were added to
the marker image. This was necessary to make sure that noise in the initial
state image would not recall undesirable objects from the input image.

The same training set design strategy was used for the shadow template,
see Figure 7.9. The addition of noise to the input and initial state images in
the training phase avoided that resulting output images would also shadow
noisy pixels. Moreover, in the tuning it is possible to optimise the time
necessary to perform the operation. This way, our shadow operation can
be performed in the shortest time possible for the chip, improving the
overall speed of the tracking algorithm.

Maximal shifting and minimal frame rate

The window shifting algorithm described in Section 7.2.1 relies on the recall
operation to precisely re-position the window in such a way that the object
is always in the centre of the image. On the other hand, the recall operation
also relies on the right window shifting in order to ensure the overlapping
of the object in the previous and current frame, see Figure 7.10. Therefore,
the values for the two different shifting values r and s need to be defined
with precaution.
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Figure 7.9: Training set for the shadow south operation. Input, initial
state, and desired output are shown in the picture.

Figure 7.10: Defining the maximal correction. Black: current frame, grey:
previous frame. The ideal shifting cannot be applied due to the recall
operation that always needs overlapping.

The value of r obviously needs to be sufficiently small such that the
object is stabilised in the centre of the window upon object stop or even
little movement. We have used a value of two pixels for the r shifting. When
the object is moving with a larger speed than the r shifting can follow, it
eventually reaches the border of the image. The s shifting is applied at this
point. The ideal value for s would be to bring the object to centre of the
window. However, depending on the size of the object, the recall operation
would promptly fail. This shifting thus must not be larger than the object
diameter plus is actual speed. Empirically, good results were achieved with
s = 24 for a window of size 128 pixels.

The recall operation also can cause the loss of the object when the
frame rate becomes too slow. It can happen that wrong objects become
also recalled. Upon an abrupt movement it can occur that the overlapping
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region of the object in two successive frames does not only contain the ob-
ject being tracked but also another object nearby, e.g. by a fast movement
of the head in the vertical direction, it can happen that the eye in the
previous frame does not only overlap the eye in the current frame but also
the eyebrow. The eyebrow and the eye become member of the initial state
marker and are tracked together. This in itself is not yet a problem for
this application. However, if this eyebrow overlaps with the hair, now the
eye, the eyebrow, and the hair become tracked. All these components do
not fit in the tracking window and the tracking system would fail to work
properly. In this situation, our system assumes that the objects is lost by
checking if it cannot be resized back into the window.

Illumination issues

One of the most important aspects of processing images is that they need
to be of good quality. There are two important aspects in order to ac-
quire good images. The object being photographed must be sharp and
the lighting must be appropriate. It may not be too dark nor too bright.
Sharpness is generally no problem for the wheelchair case. It is assumed
that the wheelchair user always sits on approximately the same distance
of the camera. The lens must be adjusted only once to make the tracking
objects look sharp. On the other hand, solving the illumination problem
is more complex. Since the intention is that the wheelchair drives around,
the light intensity might change with that. The parameters that modify
the picture illumination must change according to the quantity of the light
that is available at that moment. These parameters can be either the open-
ing of the lens, the objective shutter speed, the sensitivity of the CCD or
the threshold value for the conversion of grey-scale to binary pictures. The
most obvious choice of a parameter to compensate different illumination
is the adjustment of the shutter speed or, illumination time, i.e. the time
which the CCD sensor is exposed to the light. In the Bi-I, the waiting
for this time can be parallel to the CNN template operation for the previ-
ous frame. Since the CNN template operations for the object tracking are
normally faster than the standard Bi-I illumination time, this becomes a
bottleneck for the whole system and therefore must be optimised. Our first
step in this direction was to set the value for the objective opening up to
the maximum. This causes loss in depth sharpness, which imposes almost
no problem since the user of the wheelchair sits always approximately at
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the same distance of the camera. The sensitivity of the CCD sensor and
the binary threshold are other two additional values that we have optimised
in order to decrease the illumination time. When close to extreme values,
these parameters bring noise into the image and therefore must be carefully
used.

Testing with a 3D wheelchair model

In order to test the driving system in real-time, we have created in Virtual
Reality Modelling Language (VRML) a three-dimensional (3D) environ-
ment with a 3D model of a wheelchair. The goal was to make the 3D
wheelchair move as an actual wheelchair according to our face tracking
mechanism. The commands from the Bi-I were transmitted to the 3D
wheelchair via the Matlab VRML toolbox. Figure 7.11 depicts the VRML
environment and an overview of our setup.

In order to increase robustness, we followed not one but two face fea-
tures, the left and right eyes. The initialisation procedure was performed by
positioning the left eye in the middle of the initial tracking window, where
the marker for the first frame was. After the left eye was found and locked
for tracking, the right eye is immediately inferred and another marker is
created at its inferred position.

We obtained a frame rate of 92 frames/s for the tracking of the two
eyes. This frame rate decreases to an average of 35 frames/s when poor
illumination is present. With ideal illumination, optimised memory man-
agement, and further tuning of the templates involved, we believe frame
rates over 300 frames/s could be reached for a single object.

7.2.4 Conclusions

In this Section, we have presented a visual algorithm for face tracking which
is fast and robust enough to be applied to a hands-free wheelchair driving
system. The wheelchair user can drive the chair forward and backwards and
steer it to the left or to the right accordingly to his/her head movements.
Additionally, the user can interrupt or restart the driving at any moment by
predefined head movements. The system also adapts to a different range
of illumination intensities. Additional robustness could be achieved by
tracking multiple face features at the same time. This way, if one of these
features is lost, its position can be inferred accordingly with the position
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Figure 7.11: Test setup for the real-time driving of a 3D model wheelchair
using the head movements. Matlab is merely a communication channel
between the Bi-I and the 3D environment.
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of the features that are still being tracked, then the lost feature can be
reinserted into to the tracking algorithm. Tests of this system in a 3D
simulation environment have shown that an actual physical implementation
is feasible.
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Chapter 8

General Conclusions

8.1 General conclusions

The methodologies described throughout the Chapters of this thesis have
as main objective to improve the robustness of existing and forthcoming
analog VLSI implementations of CNNs. As seen in Chapter 2, CNNs are
not only a paradigm for complexity but they can also be used as a platform
for computation. Since the time the CNN-UM, a programmable CNN, was
invented, many analogic algorithms have been developed. With the modern
VLSI CNN-UM circuit implementation, these algorithms can be executed in
extraordinary computational speeds, only comparable to today’s supercom-
puters. The one-to-one correspondence between pixel and cells, provides a
perfect architecture for image processing applications because it allows full
network parallelism. This without mentioning the reduced size and power
consumption of these devices, which make them easy to be embedded in
portable appliances.

Although virtually any SIMD image processing operator can be im-
plemented in modern CNN-based processors, and despite all advantages
mentioned above, these programmable CNNs are still far from replacing
even small portions of today’s DSP systems. While the majority of today’s
computation relies on well established digital VLSI technology, CNN-based
processors rely on analog VLSI technology, which despite the remarkable
recent advances, still cannot guarantee the accuracy that CNNs requires
to function reliably. Templates that were designed to be robust against
analog VLSI parameter deviations still present erroneous behaviour when

179



180 General Conclusions

finally executed in real CNN VLSI chips. The methodologies described in
Chapter 3, proved to be very useful in reducing and even eliminating these
errors. The reason why it works is that we search not only for optimal
CNN template values but focus on robustness, which means that we search
for the most robustly optimal template values. This is possible because we
optimise each operation targeting a specific chip, which means that for this
chip the final template values are in the middle of the correct operating
range. This makes the template not only optimal against the parameter
deviations introduced during the manufacturing process, but also robust
against post-manufacturing disturbances, such as temperature variations
and electrical noise.

Optimising the template values using direct chip measurements can also
be useful for other purposes other than tuning. If instead of a simulator in
a digital computer, we use a CNN chip to evaluate the cost function for a
CNN learning process, we can learn new operations much faster. This is
especially true for spatiotemporal dynamics, which demands the evaluation
of many different output snapshots. In Chapter 4, we present a methodol-
ogy based on trajectory learning with RNNs to learn CNN spatiotemporal
behaviour. This is especially suitable for learning of new active wave op-
eration or for chip-specific tuning of existing ones. The same methodology
can also be proven to be useful for adjusting the speed of existing CNN
template operations.

Both methodologies described in the Chapters 3 and 4 depend on an
optimisation core. For that, we have used in the beginning of our research
an existing global optimisation method called Adaptive SA. Although con-
sidered to be very robust and fast, we experienced that often the optimi-
sation must be stopped and re-initiated with different parameters due to
premature convergence to a local minimum. Inspired by the working of the
coupling in CNNs, in Chapter 5 we present a class of global optimisation
methods called CSA which uses coupling to guide the optimisation toward
global optima. We have shown with an instance method of this class that
it is possible to steer the optimisation by controlling the variance of the
acceptance probabilities with the acceptance temperature. This leads to
quasi-optimal runs, which are much less sensitive to initialisation parame-
ters than in classical SA.

In Chapter 6 we finally presented a unification framework of all method-
ologies described previously in the thesis. In this framework, we use CSA
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as the optimisation core for tuning and learning of fixed-point and spa-
tiotemporal operations in CNN-based processors. This framework is also
presented as a Matlab toolbox which can be used by the analogic CNN al-
gorithm designer in order to optimise template operators. One of the only
remaining manual tasks for the designer is also one of the most important
ones. The design of the training set of the input, state and desired images
still remains a task for the designer. Given the importance of this task for
the correct operation of the template to be optimised, we have defined a
set of rules to ease the task of creating a correct training set. However, a
deep understanding of the desired operation is still required.

In Chapter 7 we presented a couple of CNN-based applications which
serves as proof-of-concept for our chip-specific CNN optimisation method-
ologies.

The techniques for post-manufacturing enhancement of CNN-based pro-
cessors described here can help the establishment of CNN technology in
areas that are dominated by classical digital computation. Ultra-fast vi-
sual processors have a large potential application area. Robust CNN-based
processors could be applied for example on visual quality control in agri-
cultural, semiconductors, textile and other industries; on surveillance and
traffic analysis; on microbial process inspection; on intelligent airbag sys-
tems; on aid to people with limited mobility; on visual gaming interaction,
and on many other visually based applications. However, the problem of
parameter spread limits this gamut of applications to only a few simpler
applications where robustness is not of primary importance. The method-
ologies described in this thesis have proven that it is possible to reduce
or even eliminate this problem. The further development of these post-
manufacturing enhancement methodologies is therefore essential to make
these analog systems more competitive. The alternative solution to solve
this robustness problem would be to switch from analog to digital tech-
nology. Although such a twist is possible, most of the advantages of the
original analog system, w.r.t. power, silicon area, and speed, would be con-
siderably reduced. At this point it is important to emphasise again that
because of the analog nature of these systems they are able do what only
supercomputers would be able to, in the digital world. The only advantage
that a fully digital CNN chip would keep after morphing from its analog
counterpart would be the high parallelism. In fact, the trend in the dig-
ital processor industry toward multi-core shows that parallelism is indeed
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necessary in the future of general purpose computation. However, w.r.t.
power, silicon area, and computation speed, such advanced and mature
multi-core systems are still pretty much behind the relatively recent and
almost experimental CNN-based systems. Indeed the only remaining chal-
lenge for the latter is ensuring robustness against parameter spread. This
thesis shows that this too is possible to the solved.

8.2 Challenges for future work

Although the maturity of the techniques presented here in combination
with the recent and forthcoming advances in analog VLSI technology have
the potential to bring CNN-based computation toward the mainstream of
computation, this path is still not paved and therefore needs all the efforts
that can be spent from both fronts. With respect to chip-specific post-
manufacturing enhancement methodologies, we present here some ideas
that can serve as a road-map for forthcoming research:

• For some template operations, the maximum robustness that can be
obtained is still not sufficient to ensure correct operation in analog
VLSI CNN chips. For these extreme cases, a methodology for de-
composing these templates into sub-templates that can allow larger
robustness might be a viable alternative. Földesy et al. presented
such a decomposition approach for a limited set of templates, namely
the non-propagating ones. The development of an automatic and un-
restricted decomposition methodology that can be incorporated with
the chip-specific CNN optimisation approaches described in this the-
sis can enlarge the gamut of highly robust CNN template operations.

• The CNN-UM is a very flexible computer architecture. By using
cascading templates, it might be possible to generate a solution for
emulating multi-layer CNNs with a single-layer CNN-UM chip. This
solution can possibly be found with help of an approach based on the
spatiotemporal learning methodologies described in Chapter 4.

• Modern CNN-based processors have a set of hardware reference val-
ues that can be adjusted by software. In Chapter 6 we presented a
framework that can use these values to optimise specific template op-
erators. With the right training set, it might be possible to identify
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the best general purpose values for this set of hardware references.
The challenge here is to devise a training set that is general enough
to tune these value in an unbiased way.

• Instead of tuning of single template operations, it might be interesting
attempting to tune entire analogic algorithms.

• The method described in this thesis uses a host computer with Mat-
lab to optimise the given CNN operation. The part of the system
handled in this host PC is related to the optimisation procedure. If
an optimisation procedure can be developed to run in the CNN-based
processor itself, it would mean a step closer toward self-tuning CNN
systems. Such systems could make the difference in many uncon-
trolled, unstable, or variable application environments.
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Appendix A

Adaptive Simulated
Annealing

The Adaptive Simulated Annealing algorithm is a very robust, yet flexi-
ble, optimisation method that allows different parameters to have distinct
finite ranges. Each parameter also have distinct sensitivities. These are
measured by the immediate gradient at a local minimum and are depen-
dent on the annealing time. The probing parameters pi, with i = (1, ...,D),
are randomly generated from the cumulative probability distribution
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is generated from the uniform distribution ui ∈ U [0, 1], with pj+1
i = pj

i +
γi(pmax,i− pmin,i). The annealing temperatures are scheduled according to

T j = T 0 exp(−cj
1

D ), (A.1)

where T 0 represents the initial temperatures, and c is an ASA adjust pa-
rameter. The acceptance temperature is analogously scheduled at each
accepted point. The temperatures are re-annealed after a given number of
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accepted points, e.g. 100, according to the formula

T j
new = T j

(smax

s

)

, (A.2)

where the sensitivities s = ∂g
∂pi

are calculated at the most current minimum
value of the cost function (3.2). The indices j are updated isolating them
from (A.1) and substituting (A.2).



Appendix B

CSA and MSA Results for
Test Functions in Higher
Dimensions

The following figures are related to the experiments realised for the three
groups of test functions in Chapter 5.
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Figure B.1: Box plots for experiments with four algorithms (horizontal
axis) for the functions in test group 1 in 30 dimensions. In the vertical axis
we have the final costs of each cost function. Each method used a maxi-
mum number of function evaluations equals to 200,000 per parallel process
with 900 steps per fixed temperature. Initial generation and acceptance
temperatures were chosen from a predefined set after exhaustive search.
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Figure B.2: Box plots for experiments with four algorithms (horizontal
axis) for the functions in test group 2 in 30 dimensions. In the vertical axis
we have the final costs of each cost function. Each method used a maxi-
mum number of function evaluations equals to 200,000 per parallel process
with 900 steps per fixed temperature. Initial generation and acceptance
temperatures were chosen from a predefined set after exhaustive search.
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Figure B.3: Box plots for experiments with four algorithms (horizontal
axis) for the functions in test group 2 in 30 dimensions. In the vertical axis
we have the final costs of each cost function. Each method used a maxi-
mum number of function evaluations equals to 200,000 per parallel process
with 900 steps per fixed temperature. Initial generation and acceptance
temperatures were chosen from a predefined set after exhaustive search.
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Figure B.4: Box plots for experiments with four algorithms (horizontal
axis) for the functions in test group 3 in 30 dimensions. In the vertical axis
we have the final costs of each cost function. Each method used a maxi-
mum number of function evaluations equals to 200,000 per parallel process
with 900 steps per fixed temperature. Initial generation and acceptance
temperatures were chosen from a predefined set after exhaustive search.
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Figure B.5: Box plots for experiments with four algorithms (horizontal
axis) for the functions in test group 3 in 30 dimensions. In the vertical axis
we have the final costs of each cost function. Each method used a maxi-
mum number of function evaluations equals to 200,000 per parallel process
with 900 steps per fixed temperature. Initial generation and acceptance
temperatures were chosen from a predefined set after exhaustive search.
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Vázquez. A CNN Universal Chip in CMOS Technology. International
Journal of Circuit Theory and Applications, 24:93–109, Jan-Feb 1996.
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[64] L. Kék and Á. Zarándy. Implementation of large-neighbourhood non-
linear templates in the CNN universal machine. International Journal
of Circuit Theory and Applications, 26(6):551–566, 1998.

[65] P. Kinget and M. Steyaert. A programmable analogue CMOS chip
for high speed image processing based on cellular neural networks. In
Proceedings of the IEEE 1994 Custom Integrated Circuits Conference,
pages 570–573, May 1994.

[66] P. Kinget and M. Steyaert. Analogue CMOS VLSI implementation
of cellular neural networks with continuously programmable tem-
plates. In IEEE International Symposium on Circuits and Systems
(ISCAS’94), volume 6, pages 367–370, May-Jun 1994.

[67] P. Kinget and M. Steyaert. An analog parallel array processor for
real-time sensor signal processing. In IEEE International Solid-State
Circuits Conference (ISSCC’96), pages 92–93, Feb 1996.



200 BIBLIOGRAPHY

[68] P. Kinget and M. Steyaert. Evaluation of CNN Template Robust-
ness Toward VLSI Implementation. International Journal of Circuit
Theory and Applications, 24(1):93–110, 1996.

[69] P. Kinget and M. S. J. Steyaert. A programmable analog cellular
neural network CMOS chip for high speed image processing. IEEE
Journal of Solid-State Circuits, 30(3):235–243, Mar 1995.

[70] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, May 1983.

[71] G. Koch. Discovering Multi-Core: Extending the Benefits of Moore’s
Law. In Technology@intel Magazine. Technical report, Intel Corpo-
ration, Jul 2005.

[72] T. Kozek, T. Roska, and L. O. Chua. Genetic Algorithm for CNN
Template Learning. IEEE Trans. Circuits and Systems, 40(I):392–
402, March 1993.
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[107] A. Rodŕıguez-Vázquez, S. Espejo, and R. Domı́nguez-Castro. 32×32
CCD. In Proceedings of the IEICE Symposium in Nonlinear Theory
and its Applications (NOLTA’93), pages 5–8, 1993.
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T. Kozek, K. Laszlo, I. Petras, Cs. Rekeczky, I. Szatmari, and
D. Balya. The computational infrastructure for cellular visual mi-
croprocessors. In Proceedings of the Seventh International Confer-
ence on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems
(MicroNeuro’99), pages 54–60, Apr 1999.

[136] H. H. Szu and R. L. Hartley. Fast Simulated Annealing. Physics
Letters A, 122:157–162, 1987.

[137] R. Tetzlaff, R. Kunz, and G. Geis. Analysis of cellular neural networks
with parameter deviations. In Proc. IEEE ECCTD 97, pages 650–
654, 1997.

[138] R. Tetzlaff, R. Kunz, G. Geis, and D. Wolf. Minimizing the effects of
tolerance faults on hardware realizationsof cellular neural networks.
In Proceedings of The Fifth IEEE International Workshop on Cellu-
lar Neural Networks and Their Applications, pages 385–390, London,
UK, Apr 1998.

[139] R. Tetzlaff, R. Kunz, and D. Wolf. Minimizing the effects of param-
eter deviations on cellular neural networks. Int. J. of Circuit Theory
and Applications, 27(1):77–86, Jan-Feb 1999.

[140] P. Thiran. Influence of Boundary Conditions on the Behavior of
Cellular Neural Networks. IEEE Trans. on Circuits and Systems—I:
Fundamental Theory and Applications, 40(3):207–212, Mar 1993.

[141] D. R. Thompson and G. L. Bilbro. Sample-sort simulated annealing.
IEEE Trans. on Systems, Man and Cybernetics, Part B, 35(3):625–
632, Jun 2005.



208 BIBLIOGRAPHY

[142] Z. Tu and Y. Lu. A Robust Stochastic Genetic Algorithm (StGA)
for Global Numerical Optimization. IEEE Trans. on Evolutionary
Computation, 8(5):456–470, Oct 2004.

[143] A. M. Turing. The chemical basis of morphogenesis. Philos. Trans.
Roy. Soc. London, B(237):37–72, 1952.

[144] J. E. Varrientos, E. Sanchez-Sinencio, and J. Ramirez-Angulo. A
current-mode cellular neural network implementation. IEEE Trans-
actions on Circuits and Systems II: Analog and Digital Signal Pro-
cessing, 40(3):147–155, Mar 1993.

[145] P. Werbos. Backpropagation through time: what it does and how to
do it. Proceedings of the IEEE, 78(10), 1990.

[146] D. Whitley, S. B. Rana, J. Dzubera, and K. E. Mathias. Evaluat-
ing evolutionary algorithms. Artificial Intelligence, 85(1-2):245–276,
1996.

[147] D.H. Wolpert and W.G. Macready. No free lunch theorems for opti-
mization. IEEE Transactions on Evolutionary Computation, 1(1):67–
82, Apr 1997.

[148] S. Xavier-de-Souza, M. Van Dyck, J. A. K. Suykens, and J. Vande-
walle. Fast and Robust Face Tracking for CNN chips: application to
wheelchair driving. In Proceedings of the 10th IEEE Int. Workshop on
Cellular Neural Networks and Their Applications, (CNNA’06), pages
200–205, Istanbul, Turkey, Aug 2006.

[149] S. Xavier-de-Souza, M. Van Dyck, J. A. K. Suykens, and J. Vande-
walle. Live demo summary - Fast and Robust Face Tracking applied
to wheelchair driving. In Proceedings of the 10th IEEE Int. Workshop
on Cellular Neural Networks and Their Applications, (CNNA’06),
page 20, Istanbul, Turkey, Aug 2006.

[150] S. Xavier-de-Souza, J. A. K. Suykens, and J. Vandewalle. Real-time
tracking algorithm with locking on a given object for VLSI CNN-UM
implementations. In Proceedings of IEEE Int. Workshop on Cellular
Neural Networks and their applications, pages 291–296, Budapest,
Hungary, Sep 2004.



BIBLIOGRAPHY 209

[151] S. Xavier-de-Souza, J. A. K. Suykens, and J. Vandewalle. Learn-
ing wave phenomena on the CNN universal machine. In The 2006
International Symposium on Nonlinear Theory and its Applications
(NOLTA2005), Bruges, Belgium, Oct 2005.

[152] S. Xavier-de-Souza, J. A. K. Suykens, and J. Vandewalle. Learning of
Spatiotemporal Behavior in Cellular Neural Networks. International
Journal of Circuit Theory and Applications - Special Issue on CNN
Technology (Part 1), 34:127–140, Jan 2006.

[153] S. Xavier-de-Souza, J. A. K. Suykens, J. Vandewalle, and D. Bollé.
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[162] Á. Zarándy. The Art of CNN Template Design. International Journal
of Circuit Theory and Applications, 27(1):5–23, Jan-Feb 1999.
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(CBA2000), Florianópolis, Brazil, 2000. (In Portuguese).



Technical reports and other publications

- S. Xavier-de-Souza, J. A. K. Suykens, J. Vandewalle, and D. Bollé.
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