
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Technology

Application Centric Development
in the Internet of Things
Guidelines and Tools for Software Integrators

Ilse Bohé

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Technology (PhD)

September 2022

Supervisors:
Prof. dr. Vincent Naessens
Dr. ing. Jorn Lapon

Application Centric Development in the Internet of Things
Guidelines and Tools for Software Integrators

Ilse BOHÉ

Examination committee:
Prof. dr. ir. Emmanuel Vander Poorten, chair
Prof. dr. Vincent Naessens, supervisor
Dr. ing. Jorn Lapon, co-supervisor
Prof. dr. ir. Hans Hallez
Prof. dr. Danny Hughes
Dr. ing. Michiel Willocx
Prof. dr. Bert Lagaisse
Dr. Bruno Van Den Bossche
(Docbyte)

Prof. dr. ir. Kris Steenhaut
(Vrije Universiteit Brussel)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Technology (PhD)

September 2022

© 2022 KU Leuven – Faculty of Engineering Technology
Uitgegeven in eigen beheer, Ilse Bohé, Gebroeders de Smetstraat 1, B-9000 GENT (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Dankwoord

Nu het einde van mijn doctoraatstraject in zicht is wil ik enkele mensen bedanken.
Zonder hen was ik nooit op dit punt geraakt.

Eerst en vooral wil ik prof. Vincent Naessens, mijn promotor, bedanken om in mij
te geloven en me de kans te geven om aan mijn doctoraatstraject te starten. Jouw
adviezen, ondersteuning en vooral ook de aanmoedigingen hebben me geholpen om
er te blijven voor gaan en dit werk te kunnen voltooien.

Vervolgens wil ik mijn co-promotor, Jorn Lapon, bedanken. Jorn, bedankt om jouw
kennis met mij te delen en me te steunen tijdens mijn werk, zelf op de momenten
dat ik het zelf niet meer zo rooskleurig inzag. Het tweede deel van mijn doctoraat
was zonder jou nooit zo interessant geweest. Maar nu weten we, älles kan".

Ik wil graag de leden van mijn begeleidings- en examencommissie bedanken. Bedankt
prof. Hans Hallez, prof. Danny Hughes en dr. Bruno Van Den Bossche voor de
feedback tijdens en na mijn tussentijdse verdedigingen. Bedankt ook aan mijn
begeleidingscommissie en andere leden van mijn examencommissie, dr. Michiel
Willocx, prof. Bert Lagaisse en prof. Kris Steenhaut, voor hun inzichten en
suggesties. Bedankt aan prof. Emmanuel Vander Poorten voor het voorzitten van
mijn doctoraatsverdediging.

Zonder mijn collega’s was dit werk niet mogelijk geweest. Michiel, de afgelopen
jaren zouden niet hetzelfde geweest zijn zonder jou. Eerst en vooral zou mijn
doctoraat inhoudelijk niet staan waar het nu staat, maar de dagen zouden ook een
stuk langer geweest zijn. Jij maakte mijn tijd als doctoraatsstudent onvergetelijk.
Jan en Vincent, dankjewel voor de constructieve brainstormsessies en leuke tijden in
het beginjaar van mijn doctoraat. Thomas, het was fijn om even je ëchte"collega
te zijn. De vele koffietjes waren telkens een welkome pauze van het werk. Ik
zou zeggen, laten we dit blijven doen. Dairo en Victor, ik kon me geen betere
bureaumaatjes voorstellen, jullie zijn een waardige vervanger voor Michiel.

Ook wil ik de andere collega’s bedanken die ik nog niet genoemd heb: Laurens,
Stijn, Alexios, Karel, Ruben, Jonas, Kevin, Jenno, Celien, Alicia, Adriaan en alle
andere onderzoekers van DistriNet en CODeS.

i

ii DANKWOORD

Tenslotte wil ik nog mijn vrienden en familie bedanken. Lieve vrienden en vriendinnen,
dankjewel voor alle leuke ontspannende momenten de afgelopen jaren. Mariektje,
dankjewel om er altijd voor mij te zijn, zonder jou zouden de weekends de afgelopen
jaren maar leeg geweest zijn. Laten we nog vele jaren verder bouwen en knutselen.
Bart en Gil, dankjewel voor alle leuke dagen, weekenden en vakanties de afgelopen
jaren. Jullie steun en hulp in alle projecten die Matthijs en ik uitvoeren zorgt ervoor
dat we er samen helemaal voor gaan. Lieve opa, oma, papa en Nathalie, ook al zien
we elkaar niet veel, ik weet dat jullie me steunen, en dat gaf me een grote duw in de
rug om verder te zetten. Mama, dankjewel voor alle steun. Jij bent mijn rolmodel.
Jouw vriendelijkheid en positiviteit is wat ik de afgelopen jaren heb willen nastreven
en wat ik zeker wil blijven doen in de toekomst. PS, bedankt dat we de afgelopen
en komende maanden je huis mogen kapen. Lieve oma, dankjewel dat je me elke
woensdag hebt opgewacht en ik bij je mag blijven logeren, de donderdagochtenden
zijn de beste van de week. Liefste zussen, dankjewel om er altijd voor me te zijn,
om eens samen ons hart te kunnen luchten. Liefste Thijsie, dankjewel om altijd in
me te blijven geloven en mee alle ups en downs te beleven. Dankje voor alle liefde
en humor die je me elke dag weer geeft.

Ilse Bohé
7 september 2022

Abstract

The Internet of Things (IoT) landscape is growing at a fast pace. In 2018, there were
already 6.1 billion IoT devices which reflects 33 percent of the internet connected
machines. Cisco estimates that the amount will grow to 14.7 billion connected IoT
devices in 2023, or 50 percent of the connected devices. Despite the large amount of
connected devices, a fully connected environment is not realistic in the near future.
Almost every device comes with its own dedicated application. Communication
between devices of different vendors, often based on different technologies, is a
huge challenge.

Standardization efforts aim at circumventing this so-called vendor lock-in trap.
However, the IoT Standards landscape is highly fragmented and evolves continuously.
Hence, compliance with a particular standard seriously restricts the IoT device
technologies that can be inserted in practice. Others apply device centric
development for integrating devices from possible different vendors in the same
application. Integrating new devices is then expensive as the entire software
development cycle has to be re-run.

Moreover, IoT devices evolve at a fast pace degrading the attractiveness of many
IoT applications over time. Also, the amount of sensors and actuators that are rolled
out within a single IoT ecosystem may increase exponentially. Hence, sustainable
IoT applications must cope with rapidly evolving hardware. Adaptability becomes a
key concern when developing IoT applications.

Finally, many IoT applications, although often called smart, lack intelligence. At best,
they embrace automation. Applying automatic device configuration, connection
management, and user support for solving connectivity issues, is a complex endeavor
for application developers. Likewise, integrating and enforcing policies in an IoT
application is complex. Moreover, the dynamic nature of IoT systems complicates
the development of applications that properly handle changes in the environment.

This PhD presents application centric development as an alternative approach to
tackle the vendor lock-in and maintainability problems in advanced IoT ecosystems.

Firstly, a layered architecture is proposed that supports the design of advanced
IoT ecosystems. Applying the architectural principles results in IoT applications

iii

iv ABSTRACT

that can easily cope with new technologies that come to the market. On its
turn, this increases the lifetime and offers various infrastructural alternatives to
end-users. Both an Android and JavaScript framework are implemented to validate
the approach. The inner workings of these frameworks are demonstrated by means
of the development of an Ambient Assisted Living (AAL) environment.

The second part of this PhD shows that an early-stage ontological effort incorporating
the application domain as well as infrastructural conceptualizations and relations
can facilitate the development and management of IoT applications within verticals.
Developers can now define application behavior in terms of application-domain
conceptualizations, after which infrastructural feedback can automatically be
extracted.

A last part presents a platform-independent middleware that simplifies the
development of actual smart applications. The middleware hosts a modular, event-
based logic reasoner, developed in Prolog, communicating with the underlying IoT
framework. It not only supports basic automation, but also holds functionality for
automatic device and connection management, access control and an abstraction
module that decouples the applications from the underlying infrastructure. Moreover,
the middleware leverages the actual benefits of Prolog, through complex querying
and inference capabilities. This part also takes a closer look at a structural approach
that brings access control to logic programming, called ACoP. It allows to constrain
access to the knowledge base. The approach supports the use of impure predicates
to prevent unauthorized side effects. The solution supports fine-grained access
control using both deny and allow list strategies. Overhead is limited to defining
access rules. The flexibility in expressing these rules allows to realize different access
control mechanisms including role based, relationship based and attribute based
access control. A prototype meta-interpreter in Prolog validates the presented
approach.

This thesis finally explores validation paths targeting software integrators, and
proposes both guidelines and software development tools.

Beknopte Samenvatting

Het Internet of Things (IoT) landschap groeit gestaag. In 2018 waren een derde
van de met het internet verbonden computersystemen precies IoT-apparaten. Op
dat moment waren ze reeds met meer dan 6 miljard. Cisco schat dat dit aantal in
2023 verder zal groeien naar ongeveer 15 miljard, goed voor maar liefst de helft
van de apparaten die met het internet zijn gekoppeld op dat moment.

Er duiken wel een aantal uitdagingen op. Bijna elk apparaat wordt geleverd
met een specifieke applicatie. Communicatie tussen apparaten van verschillende
leveranciers, die vaak terugvallen op verschillende technologieën, is geen sinecure.
Standaardisatie-inspanningen kunnen slechts deels de vendor lock-in val verzachten.
Dit komt omdat IoT-standaarden erg gefragmenteerd zijn en continu evolueren.
Focus op een welbepaalde norm kan de technologieën waarop in de praktijk kan
worden teruggevallen ernstig beperken.

Anderen hanteren sensorgerichte ontwikkeling om diverse apparaten in eenzelfde
toepassing te integreren. Het integreren van apparaten van alternatieve leveranciers
is in dat geval vaak duur omdat een substantiële inspanning op vlak van
softwareontwikkeling typisch vereist is.

Bovendien evolueren IoT-apparaten razendsnel, waardoor heel wat IoT-toepassingen
op korte termijn minder aantrekkelijk worden. Daarenboven groeit het aantal
sensoren en actuatoren dat wordt uitgerold binnen een enkele IoT-omgeving vaak
exponentieel. Duurzame IoT-toepassingen moeten precies kunnen omgaan met snel
evoluerende hardware. Dit vermogen om aan te passen doorheen de tijd wordt
steeds belangrijker vanuit het standpunt van software integratoren.

Ten slotte missen veel IoT-applicaties intelligentie hoewel ze in de volksmond
slim worden genoemd. In het beste geval omarmen ze een beperkte mate van
automatisering. Voor applicatieontwikkelaars zijn automatische apparaatconfiguratie
en intuïtieve ondersteuning voor het oplossen van verbindingsproblemen een
complexe uitdaging. Ook het handhaven van beleidsregels in een IoT-toepassing is
vaak erg complex. De dynamische aard van IoT-systemen bemoeilijkt dan weer de
ontwikkeling van applicaties die gepast omgaan met veranderingen in de omgeving.

v

vi BEKNOPTE SAMENVATTING

Dit doctoraat presenteert applicatiegerichte ontwikkeling als een alternatieve
benadering om duuzame IoT-ecosystemen te realiseren.

Het eerste deel stelt een gelaagde architectuur voor die het ontwerp van
geavanceerde IoT-ecosystemen ondersteunt. Het toepassen van doordachte
architecturale principes resulteert in IoT-toepassingen die flexibel kunnen inspelen
op nieuwe technologieën die op de markt komen. Het aanbieden van verschillende
infrastructurele alternatieven aan integratoren en eindgebruikers verlengt de
levensduur van toepassingen. Zowel een Android- als een JavaScript-raamwerk zijn
geïmplementeerd om de aanpak te valideren. De ontwikkeling van een Ambient
Assisted Living (AAL) omgeving demonstreert de werking van het raamwerk.

Het tweede deel vereenvoudigt de ontwikkeling en het beheer van IoT toepassingen
door een ontologische inspanning tijdens de vroege ontwerpfase. De modellering
van het toepassingsdomein, en infrastructurele conceptualiseringen en relaties staan
hierbij centraal. Ontwikkelaars kunnen functionaliteit definiëren in termen van
concepten in het applicatiedomein, waarna infrastructurele feedback automatisch
wordt geëxtraheerd.

Een laatste deel presenteert een platformonafhankelijke middleware die de
ontwikkeling van slimme applicaties vereenvoudigt. De middleware steunt op
een modulaire, op events gebaseerde logica-redenering, ontwikkeld in Prolog, die
communiceert met het onderliggende IoT-raamwerk. Het ondersteunt niet alleen
basisautomatisering, maar bevat ook functionaliteit voor automatisch apparaat-
en verbindingsbeheer, toegangscontrole en een abstractiemodule die de applicaties
loskoppelt van de onderliggende infrastructuur. Bovendien maakt de middleware
gebruik van de voordelen van Prolog, door middel van complexe query- en
inferentiemogelijkheden. Dit derde deel gaat ook dieper in op een structurele
benadering die toegangscontrole tot logische programmering brengt, genaamd ACoP.
De aanpak ondersteunt het gebruik van onzuivere predikaten om te voorkomen dat
ongeautoriseerde neveneffecten plaatsvinden.

Tenslotte worden validatiemogelijkheden ter ondersteuning van software integratoren
voorgesteld. Zowel richtlijnen als softwareontwikkelingstools maken hier deel van
uit.

List of Abbreviations

AAL Ambient Assisted Living. iv, xv, xvii, 8, 11, 13, 27, 46, 48, 50, 51, 53, 57,
60, 62, 64–67, 70, 71, 73–78, 83–85

ACL Access Control List. 116

AF Atrial Fibrillation. 3

AMQP Advanced Message Queuing Protocol. 21, 22

API Application Programming Interface. 1, 27, 32, 36, 52, 129

ASP Answer Set Programming. 104

BLE Bluetooth Low Energy. 18, 19, 26

CBOR Concise Binary Object Representation. 23–25

CoAP Constrained Application Protocol. 21, 22

COTS commercial-of-the-shelf. 8, 9, 12, 64, 124, 127

ECA Event-Condition-Action. 100

ECG Electrocardiography. 3

EU European Union. 65

FDA Food and Drug Administration. 3

GPS Global Positioning System. 33, 34, 36, 63

GUI Graphical User Interface. 5, 75, 134

HMI Human Machine Interface. xvii, 66, 69, 75–81, 84–86

HTTP Hypertext Transfer Protocol. 21, 22

vii

viii List of Abbreviations

IBAC Identity Based Access Control. 116, 117, 122

IIoT Industrial Internet of Things. 3, 13, 26

IoT Internet of Things. iii, iv, viii, xv, xvii, 1–16, 19–21, 23–29, 31–38, 40–45, 47,
48, 50–54, 56–70, 72, 73, 75, 77–100, 102, 122, 124, 125, 127–131, 133

IP Internet Protocol. 21, 45, 48

IT Information Technology. 1

JSON JavaScript Object Notation. 23, 24, 69

LAN Local Area Network. 17, 19

LPWAN Low Power Wide Area Network. 20, 61

M2M Machine to Machine. 25

MAC Media Access Control. 44, 45

MDM Mobile Device Management. 86

MQTT Message Queueing Telemetry Transport. 15, 21, 22, 47

NB-IoT Narrow-Band IoT. 20

NFC Near-Field Communication. 17, 18

OrBAC Organizational Based Access Control. 103

OS Operating System. 1

OWL Web Ontology Language. 104

PAN Personal Area Network. 17–19

PC Personal Computer. 1

QoS Quality of Service. 21, 22, 32, 33, 36, 37, 39, 52, 54, 56, 61, 62, 87

RBAC Rule Based Access Control. 103, 116, 117, 122

ReBAC Relationship Based Access Control. 103, 118, 122

REST Representational State Transfer. 21, 22, 27, 36, 47

LIST OF ABBREVIATIONS ix

RFID Radio-Frequency Identification. 17, 18

SDLC Software Development Life Cycle. xv, 2, 4–6, 123, 124, 128, 133

SME Small and Medium Enterprise. 126, 127

TCP Transmission Control Protocol. 21, 22

TLS Transport Layer Security. 22

UDP User Datagram Protocol. 22

UI User Interface. 47, 48

UML Unified Modeling Language. 5, 57

URI Uniform Resource Identifier. 21, 22

URL Uniform Resource Locator. 44

US United States. 3

USB Universal Serial Bus. 1

WAN Wide Area Network. 17, 20

XACML eXtensible Access Control Markup Language. 103–105

XML eXtensible Markup Language. 22–24, 69

XMPP Extensible Messaging and Presence Protocol. 21, 22

Contents

Abstract iii

Beknopte Samenvatting v

List of Abbreviations ix

List of Symbols xi

Contents xi

List of Figures xv

List of Tables xvii

List of Listings xix

1 Introduction 1
1.1 Developing Internet of Things Applications 2

1.1.1 IoT in Different Domains 2
1.1.2 The Software Development Life Cycle 4
1.1.3 Device Centric versus Application Centric Development . . 6

1.2 Research Questions and Contributions 7
1.3 Projects and Publications . 9
1.4 Overview of the Chapters . 11

2 Background 13
2.1 IoT Infrastructure Approaches 13
2.2 Communication in the IoT domain 16

2.2.1 Wireless Communication Technologies 17
2.2.2 The IoT Stack . 20

2.3 Existing Solutions for Device Interoperability 24
2.3.1 Standardization Efforts 24
2.3.2 Middleware Solutions . 26

2.4 An Ambient Assisted Living Use Case 27

xi

xii CONTENTS

2.5 Conclusion . 28

3 The SMIoT Architecture and Framework 31
3.1 Architecture . 33

3.1.1 Requirements . 33
3.1.2 Design . 34

3.2 Quality of Service Support . 36
3.2.1 Elicitation of Relevant QoS Properties 37
3.2.2 Device Technology Catalog Creation 37
3.2.3 Application Design . 38

3.3 Integrating Internet of Things Devices 40
3.3.1 Access Types of Internet of Things Devices 40
3.3.2 Integration Steps . 41

3.4 Framework Implementations . 42
3.4.1 Android Framework . 42
3.4.2 JavaScript Framework . 47

3.5 Use Case 1: An Ambient Assisted Living Ecosystem 51
3.6 Use Case 2: Integrating Health and Activity Wearables in Mobile

Applications . 52
3.6.1 Approach . 52
3.6.2 Prototype . 57

3.7 Discussion . 60
3.8 Conclusion . 62

4 Designing IoT Ecosystem Environments 63
4.1 Scope and Challenges . 64

4.1.1 Non-functional Concerns 65
4.1.2 Case Study . 65

4.2 Modeling Approach . 66
4.2.1 Basic Concepts . 66
4.2.2 Architectural Tactics . 67
4.2.3 General Overview . 69

4.3 Design and Development of IoT Environments and Applications . 69
4.3.1 Environment Design . 70
4.3.2 Application Design and Development 75

4.4 Management and Operations . 78
4.4.1 IoT Ecosystem Management 79
4.4.2 Application Instantiation 80
4.4.3 Permission Handling . 81
4.4.4 Device Loading and Addressing Devices 82

4.5 Discussion . 83
4.6 Conclusion . 86

CONTENTS xiii

5 Creating Advanced IoT Applications 87
5.1 Reasoning Middleware . 89

5.1.1 Architecture of the Reasoning Middleware 90
5.1.2 Implementation of the Reasoning Middleware 100
5.1.3 Discussion . 102

5.2 Access Control in the Reasoning Middleware 103
5.2.1 General Approach of the Access Control Module 104
5.2.2 A Prolog Implementation of ACoP 114
5.2.3 Application in Multiple Access Control Strategies 116
5.2.4 Tests and Evaluation . 118
5.2.5 Discussion . 121

5.3 Conclusion . 122

6 Supporting Software Integrators in Building IoT Applications 123
6.1 Design and Development Guidelines 123
6.2 Software Support . 124
6.3 Business Model . 126

7 Conclusion 128
7.1 Obtained Results . 128
7.2 Future Research Possibilities . 131

A Case Study - Reusable Multimedia Platform in Collaboration with
APEX 133
A.1 Application Analysis and Requirements 133

A.1.1 Smart Application for Funeral Home Ceremonies 134
A.1.2 Smart Application for Bars and Restaurants 134

A.2 Design . 135

Bibliography 137

List of Publications 147

List of Figures

1.1 Visual representation of the agile Software Development Life Cycle
(SDLC) . 5

1.2 Sensor selection and new sensor integration in the agile SDLC . . 6

2.1 Example setup for a cloud based IoT system 14
2.2 Example setup for an edge based IoT system 15
2.3 Example hybrid IoT system using fog computing 16
2.4 Range and data rate for various wireless technologies 18
2.5 Representation of the IoT stack 21
2.6 A visual representation of two care home units 28

3.1 Software layers in the the SMIoT architecture 35
3.2 File hierarchy of the Virtual Device Layer in the Android framework 43
3.3 Representation of the Asset Layer in an AAL ecosystem 53
3.4 The HeartRateSensor abstract class and its implementations . . 58
3.5 Heart rate values during a bicycle ride 60

4.1 Selective and late IoT device binding 68
4.2 Steps to design and develop an IoT environment and application . 70
4.3 ModelEnvironment in the AAL ecosystem 71
4.4 Asset Type-Parameter -State metamodel 71
4.5 Device-Parameter metamodel . 72

5.1 Structure of the reasoning middleware 91
5.2 A multi-platform IoT reasoning middleware for device, mobile and

cloud platforms . 92
5.3 Execution time for handling events in the reasoning middleware . . 101
5.4 Structure of the ACoP access control system 105
5.5 Venndiagram depicting allowed or denied predicates (•) for a closed

policy . 108
5.6 Simplified flowchart indicating the steps taken to execute access

control on a predicate in the ACoP system 111
5.7 Social network system with friend relations 118

xv

xvi LIST OF FIGURES

5.8 Numbber of inferences needed to request all machines for a variable
number of machines per production line in ACoP 119

5.9 Number of inferences needed to answer different queries in ACoP . 120

6.1 Business model navigator [41] . 126

A.1 Example ceremony room . 134
A.2 Example restaurant area . 135
A.3 ModelEnvironment for the APEX use case 135

List of Tables

3.1 Relevant QoS parameters for a lamp and a light sensor 37
3.2 Device technology definitions for lamps and light sensors 38
3.3 Paramters in the SMIoT configuration file 45
3.4 Functional Methods for a Heart Rate Sensor 55
3.5 Selected heart rate sensor technologies 55

4.1 Dual concepts in the design and operational perspective of the IoT
ecosystem . 66

4.2 Parameters in the AAL ecosystem 71
4.3 TypesDevice in the AAL ecosystem 73
4.4 TypeAsset-TypeDevice AAL bindings 73
4.5 Parameter -Device bindings in the AAL ecosystem 74
4.6 Parameter States in the AAL ecosystem 74
4.7 Human Machine Interface (HMI) Application and Mobile Application

Policies in the AAL system . 76
4.8 Overview of the number of Assets that should be loaded minimally

in HMI and Mobile Application Instances 84
4.9 Overview of the number of IoT devices that should be loaded

minimally in the HMI and Mobile Application Instances 85

5.1 Formalized conditions of filter types in the data preprocessing module 99
5.2 Roles and possible actions for a blogpost website 117

xvii

List of Listings

2.1 Example of XML structured IoT data 23
2.2 Example of JSON structured IoT data 24
2.3 Example of CBOR structured IoT data 25

3.1 Example QoS configuration file 39
3.2 OnRequestCompleted callback interface for request based device

access . 43
3.3 OnEventOccured callback interface for monitoring based device access 44
3.4 Example configuration file for an AAL system 46
3.5 Configuration file for Philips Hue lamps 49
3.6 Example configuration file for the devices in an AAL system . . . 50
3.7 Example JavaScript code to request and monitor an IoT device . . 50
3.8 Code example for the abstract class Lamp 51
3.9 Code example for the abstract class HeartRateSensor 51
3.10 Code example for the use of the abstract class HeartRateSensor 59

5.1 Example parameter update event in the reasoning middleware . . 94
5.2 Example action events in the reasoning middleware 95
5.3 Prolog query to obtain production lines and machines in alarm . . 95
5.4 Example query event to obtain production lines and machines in alarm 96
5.5 Example query-result event with production lines and machines in

alarm . 96
5.6 Access policy syntax . 106
5.7 Example access control policies in a manufacturing environment . 107
5.8 Working example to demonstrate the ACoP mechanism 110
5.9 Prolog code to check access, based on currently known data . . . 115
5.10 Example access control policies for IBAC 117
5.11 Example access control policies for RBAC 117
5.12 Example access control policies for ReBAC 118
5.13 Example code resulting in an insufficient instantiation error 121

xix

Chapter 1

Introduction

Many companies are currently struggling in realizing and maintaining cost-efficient
Internet of Things (IoT) ecosystems. A first major reason is the expensive
implementation cycles due to the lack of high level sensor integration support
for application developers. A majority of IoT sensors currently on the market only
offer a low level Application Programming Interface (API). Hence, application
programmers are confronted with low level connectivity and data format details for
each type of sensor they want to integrate. Consequently, instead of focusing on
business logic, they need to spend a lot of time and coding on sensor integration and
data capturing. Second, problems arise after deployment. In many IoT ecosystems,
sensors and actuators need to be replaced from time to time due to limited lifetime
or harsh conditions in which they are deployed. Many IoT integrations offer no or
at least very limited flexibility when sensors need to be replaced. For instance, a
temperature sensor from one manufacturer can often not be replaced by another
(more robust or cheaper) one from another manufacturer due to lack of flexibility
during system design. Vendor lock-in is often mentioned as one of the major
problems in current IoT deployments.

This PhD proposes a paradigm shift in designing IoT ecosystems. Today, a lot of
trouble is caused due to device centric development. This means that sensors and
actuators (i.e., infrastructural components) are selected in a very early stage, and
thereafter, designers start to think about wrapping around software applications.
However, the end-user applications typically survives the lifetime of low cost, on-
the-edge IoT sensors. Moreover, the situation cannot be compared to traditional
Information Technology (IT) system software in which peripherals are accessible
system-wide (i.e., by all applications). Hence, (plug-and-play) support at Operating
System (OS) level is already established for Personal Computer (PC) peripherals
such as printers, Universal Serial Bus (USB) sticks and screens. On the contrary,
the scope of IoT devices is often limited to a specific IoT application. Moreover, the
diversity of IoT devices is much bigger than the diversity in workstation peripherals.

1

2 INTRODUCTION

This PhD project focuses on application centric IoT ecosystem design. This implies
that IoT components are only selected in a second step, and feasible architectural
decisions must support flexibility with respect to sensor selection and integration
after the IoT ecosystem is actually deployed.

This chapter first takes a closer look at the IoT landscape and its Software
Development Life Cycle (SDLC) (Section 1.1). Subsequently, Section 1.2 elaborates
the main research question and enumerates the main contributions. Projects that
have been carried out in the context of the research and the publications that
have arisen from this work are discussed in Section 1.3. This chapter ends with an
overview of the remaining chapters.

1.1 Developing Internet of Things Applications

The IoT can be a a nice addition to make life more playful. A lot of IoT gadgets
are on the market. Although they might appear to be fun and useful, some of them
can be pretty useless. For example, in 2017 the Company Herb & Body, introduced
Smalt, a smart salt shaker. Not only can you dispense salt from a button on your
phone, you can also control it using Alexa, Amazon’s virtual assistant [98, 106]. It
can easily be concluded that this is not the most useful IoT application.

Apart from these IoT gadgets, IoT can really make a difference in society. Also
during the covid pandemic, IoT solutions have been able to prove its feasibility.
Contact tracing using Bluetooth proximity of personal devices, among other things,
has proven to be a useful tool to quell the pandemic. But other health applications
have also shown to be useful. By doing health monitoring by means of smart devices,
patients can leave the hospital earlier without sacrificing appropriate follow-up. On
its turn, this can decrease the pressure on the hospital and the health care system
as a whole.

1.1.1 IoT in Different Domains

The IoT landscape is mostly known for its applications in the smart home
environment. Smart lamps, smart door locks and smart heating systems have
already become widespread in many households. However, IoT applications are not
limited to this household setting. A lot of potential, both from a financial as well
as a non-financial perspective (e.g., improved living standards) are clear in other
settings.

McKinsey filed a report in which they define several impactfull IoT application
domains [105].

DEVELOPING INTERNET OF THINGS APPLICATIONS 3

Human & Health Care The first domain is the human and health care domain. A
lot of wearable devices are already on the market, think about Garmin1, FitBit2 and
the Apple Watch3. Apart from being cool gadgets, these watches can improve living
standards a lot. Both the Apple and FitBit Electrocardiography (ECG) applications,
that can perform heart rhythm assessments, are approved by the United States (US)
Food and Drug Administration (FDA). Although these smartwatches can not be
used as medical tool to diagnose Atrial Fibrillation (AF) – a heart rhythm disorder
that increases the risk of a stroke – it can inform people of the possibilities and
encourage them to seek medical advice. [83]

Home As mentioned before, the smart home environment is an already widely
elaborated environment. Research shows that security and comfort functions (i.e.,
aid in chores) are most popular among households. From the perspective of house
owners, keeping the energy cost under control is an important factor to introduce
IoT devices in a smart living setting.

Retail In retail, IoT applications can be used to equip customers with personalized
products. Contactless payment and cashierless shops are also heavily relying on IoT
applications. The first steps in this direction have already been taken in Belgium.
Colruyt has opened its first autonomous supermarket in Ghent in November 2021 [24].
Drones can also be used in the retail sector to autonomously deliver packages to
customers. Similarly, Bpost, the Belgian postal company, has stated in their yearly
activity report [3] that it is already performing extensive tests to introduce drone
delivery in Belgium.

Office In the office, IoT applications can be used to simplify all kinds of tasks.
Both access control and time management solutions are already established in
many companies. Currently, a badge is often used to provide access to all kinds of
rooms and appliances such as coffee machines and printers. Along with the covid
pandemic, IoT applications have entered our society. Smart meeting cameras (e.g.,
OWL4) support hybrid meetings without the need for expensive static infrastructure.
The Belgian company BARCO also introduces relevant IoT applications for the
office on the market. For instance, their ClickShare5 system allows to share screens
without any cable hassle. Recent ClickShare versions also adapt to hybrid meetings
and integrate peripherals such as sound and image sources.

Manufacturing and Industrial Internet of Things (IIoT) In the manufacturing
sector, IoT also has a substantial impact. Monitoring production lines increases

1https://www.garmin.com/c/wearables-smartwatches/
2https://www.fitbit.com/
3https://www.apple.com/watch/
4https://owllabs.com/products/meeting-owl-pro
5https://www.barco.com/nl/clickshare

https://www.garmin.com/c/wearables-smartwatches/
https://www.fitbit.com/
https://www.apple.com/watch/
https://owllabs.com/products/meeting-owl-pro
https://www.barco.com/nl/clickshare

4 INTRODUCTION

efficiency and hence has a positive impact on the competitiveness of a company. It
implies that every step of the production process is monitored thereby relying on
sensors. In the event of a malfunction, the right person can be informed quickly so
that the production process can be restarted as quickly as possible. In some cases,
malfunction can even be predicted before fall-out. An example IoT system that can
be used for this is the plug and play system of VersaSense6.

Vehicles Several smart vehicles are already on the market. These cars are
connected to the Internet, so that all kinds of features can be monitored or
controlled via an app. Simple button clicks can unlock the doors, switch the lights
on or off and even control the heating remotely. This domain has the potential to
have an impact at many levels. Road saftey increases by supporting communication
between cars and the surrounding infrastructure. Congestion decreases, which has
a positive impact on both the environment and personal well-being. IoT solutions
are a key building block to develop user-friendly sharing systems. Just think of the
e-scooters that people can hire and unlock from an application on your their mobile
phone.

Cities As last domain we discuss the smart cities. Many different applications
have already been rolled out here. In these settings usually a lot of data is collected.
Examples are sensors that measure air quality or traffic volume. Based on that data,
decisions concerning the infrastructure and residents can be taken. For example,
traffic data aid in the decision process to determine road infrastructure modification.
Another example is the air quality data that helps to decide the location of new
residential areas and parks.

1.1.2 The Software Development Life Cycle

When advanced software needs to be developed, companies rely on Software
Development Life Cycle (SDLC) strategies to efficiently execute a project. Agile
methods focus on early and continuous delivery of the software [69]. This is equally
the case when IoT software is developed. Figure 1.1 shows a common agile SDLC
for IoT systems consisting of five stages executed repeatedly in sprints.

Requirement Analysis In the Requirement Analysis phase, the requirements for
the software are gathered and elicited. These requirements are split up between
functional and non-functional requirements. Functional requirements define the
features the software must support, i.e., what the software must do. Non-functional
requirements define the quality of the software. Concerns like security and scalability
are typically part of the non-functional requirements and complemented with

6https://www.versasense.com/

https://www.versasense.com/

DEVELOPING INTERNET OF THINGS APPLICATIONS 5

Sprint Software Design

Software
Development

Testing

Requirement
Analysis Deployment

Sprint Software Design

Software
Development

Testing

Requirement
Analysis

Deployment

Sprint Software Design

Software
Development

Testing

Requirement
Analysis

Deployment

Figure 1.1: Visual representation of the agile SDLC

requirements to improve the user-experience and cost of developing and maintaining
the system.

Software Design Based on the previously defined requirements, the software
is designed in the Software Design phase. System components are determined,
together with technologies that will be used. Major design decisions are documented,
for example by visualizing the design using Unified Modeling Language (UML)
diagrams, and can then be used as reference by the developers during development.
Additionally, the Graphical User Interface (GUI) designs are determined by creating
mock-ups, later used by front-end developers.

Software Development When the design of the system is determined, the
Software Development phase can be initiated. Based on the determined design,
the software is developed. This development can be split up between development
teams, each with a different skill set. Back-end developers take care of the backbone
structure of the software. Front-end developers ensure that end-users can work with
the system in a user-friendly manner. To decrease development time, developers
can rely on existing software tools and libraries.

Testing To verify that the software works as expected, the software must be
tested extensively. If problems still arise, it is necessary to return to the Software
Development phase after which the changes must be verified and tested again.

Deployment After the software has sufficiently been tested, it can be rolled
out and used by the end users. If the software solution is part of an entire IoT
deployment project, this occurs together with the roll out of the IoT infrastructure.

Maintenance After deployment, problems might still arise. IoT devices can be
broken or no longer receive software updates, requiring a new type of device to be

6 INTRODUCTION

added to the software. Bugs that have been overlooked during the Testing phase
might be discovered. Or maybe a new feature must be added to the application.

1.1.3 Device Centric versus Application Centric Development

Currently, when realizing an IoT project, device centric approaches are dominantly
applied. This implies that device selection occurs in an early stage of the development
life cycle, usually the Software Design phase. First, device as well as communication
technologies are selected. Subsequent design steps rely on those technologies.

Adjustments to the IoT infrastructure which result in new sensor types or
technologies, imply that a large part of the work done during the SDLC needs to
be repeated. This increases both development time and cost. Figure 1.2a shows
that the SDLC proceeded from the Software Design phase. If the new sensor uses
different communication technologies, it is necessary to restructure a substantial
part of the software. These modifications must be adapted in the software in the
Software Development phase and changes must be extensively tested. Only after
these steps, the new sensor can be deployed and used in the system.

Sprint Software Design
-Device Selection

Software
Development

Testing

Requirement
Analysis Deployment

(a) Device centric SDLC

Sprint Software Design

Software
Development

Testing

Requirement
Analysis

Deployment
-Device Selection

(b) Application centric SDLC

Figure 1.2: Sensor selection and new sensor integration in the agile SDLC

In contrast to device centric design, in application centric design, device selection
can happen at a later stage, namely during Deployment. Software Design and
Software Development are largely device and technology agnostic. This results in
applications that are highly maintainable and withstand the dynamic nature of IoT
environments.

When applying the application centric approach, the development cycle can be
reduced drastically, as integrating a new device only requires changes in the
Deployment phase (see Figure 1.2b). Note, however, that a one time coding
effort might be required to support a new device. However, this will not impact the
design of the software application itself, as it is device technology agnostic. Thus,
designing software with respect to the dynamic nature of IoT systems in mind has a
positive impact on the further maintainability and reconfigurability of such systems.

RESEARCH QUESTIONS AND CONTRIBUTIONS 7

1.2 Research Questions and Contributions

The work conducted during this PhD focusses on the following question.

Main Research Question: How can we support software companies in developing
maintainable IoT applications for dynamic IoT environments.

This main question can be split in multiple questions.

Research Question 1 What sensor/actuator abstractions are appropriate towards
application developers? What are the functionalities and tasks that middleware
must provide to support these abstractions?

Research Question 2 Can application programmers reason in terms of assets
(i.e., objects at application level) instead of sensors? Up to what extent can an
architecture hide the underlying sensor complexity towards application developers?

Research Question 3 Can appropriate architectural decisions lead to increased
flexibility with respect to sensor selection and replacements, and hence, contribute
to vendor lock-in avoidance?

Research Question 4 Can architectural tactics also support the realization of
other non-functional concerns like adaptivity, reconfigurability and security?

The following contributions were made during the PhD research, based on the
predefined research questions.

Contribution 1 - Application Centric Architecture An architecture for
application centric IoT development enables application developers to build complex,
though maintainable, IoT ecosystems. The proposed design principles allow
developers to focus on the business logic by abstracting low level IoT protocols, and
communication and security mechanisms. The thesis also shows the steps that are
required to couple IoT devices to applications for different classes of IoT devices
with the architectural principles provided by the SMIoT architecture.

Contribution 2 - Ecosystem Modeling Guidelines Ecosystem modeling
guidelines to build and maintain scalable yet reconfigurable IoT ecosystems by
applying three key tactics. First, clear separation-of-duties between app designers
and IoT infrastructure managers improves manageability. Second, loose coupling
between business logic and IoT infrastructure advances reconfigurability. Third, we
propose late and selective binding of sensors and actuators to applications in order to
achieve favourable scalability, security and privacy properties. Technology-agnostic
application policy definition is a central building block in our approach. The app

8 INTRODUCTION

behaviour is expressed in terms of asset methods and states, and is subsequently
mapped to operations on IoT infrastructural elements. This alleviates the design of
new apps within the same IoT ecosystem, the redefinition of behaviour of already
existing apps and modifications in the underlying infrastructure. Note that our
work mainly focuses on cost-efficient integration of commercial-of-the-shelf (COTS)
devices, rather than building dedicated endpoint hardware. We demonstrate the
impact of our approach throughout the whole life cycle of an IoT ecosystem, and
apply the proposed tactics to the development and operations of an Ambient
Assisted Living (AAL) environment.

Contribution 3 - Reasoning Middleware A reusable IoT middleware that
supports application developers in building dynamic IoT applications. The
middleware can be used in different locations of the IoT ecosystem such as client
applications, gateway applications, and even inside IoT devices. It comprises an
event-based architecture running a logic reasoner in the background. It hosts a
number of IoT modules specially devised to handle different functionalities, such
as the handling of contextual changes, managing and enforcing access control
and supporting a full featured automation engine. This makes it possible for the
applications to handle the dynamic nature of IoT ecosystems end respond to external
stimuli.

The logic reasoner is implemented using Prolog [81] and is the basis to add more
advanced intelligence to the IoT applications. It allows applications to automatically
infer knowledge and provides querying capabilities to gain insights in the IoT system.
Tasks such as root cause analysis can thus be performed based on real-time data
extracted from the system. Retrieving information from the systems state, such
as a list of all active devices in a certain room is trivial and requires no additional
programming.

To demonstrate its feasibility, the middleware has been integrated in a server
and mobile application. For the demonstrator, the middleware was built on
top of a JavaScript port of the SMIoT framework (Contribution 1 - Application
Centric Architecture) providing generic access to IoT devices. Nevertheless, other
frameworks could be used as well.

Contribution 4 - Access Control in Logic Programming A solution that
evaluates access control policies during resolution in logic programs, taking special
care for impure predicates. It provides a high expressiveness and fine-grained control
of the program and makes it a widely applicable approach. A deny as soon as
possible strategy is used, but decisions are postponed until they can be decided with
certainty. Moreover, as enforcement occurs during inference, the approach easily
extends to the dynamic case such as a reactive system (i.e., one that responds to
external inputs). In this approach, access rules are defined as part of the program

PROJECTS AND PUBLICATIONS 9

logic. In other words, the rules can take advantage of the program’s knowledge
base. Hence, expressing access control strategies, such as resource based, role based
and relationship based access control, is straightforward.

To validate and demonstrate the approach, an implementation is provided as a
Prolog meta-interpreter, named ACoP. It can easily be integrated in existing Prolog
programs with minimal effort. Overhead is limited to defining the access rules, also
in Prolog.

1.3 Projects and Publications

The work proposed in this dissertation has been developed within the scope of
multiple research projects and conducted with industrial stakeholders as well as
actors from the non-profit sector. The continuous interplay between the research
activities and valorisation increases the feasibility of the research results. The
research has resulted in several publications, which can be found at the end of this
dissertation.

SMIoT - Smart and Mobile IoT environments
A two year Vlaio TETRA project, started in January 2017.

The SMIoT project investigates how a diverse set of IoT devices, both custom-
made and COTS, can be easily integrated into an advanced IoT ecosystem. By
minimizing the overhead for developers and facilitating maintainability the solution
is applicable for a diverse set of large environments such as ambient assisted living,
fleet management and smart manufacturing.

SPITE - Security and Privacy in an IoT environment
A four year FWO SBO project, started in March 2017.

The SPITE-project aims at finding appropriate solutions for realizing advanced
access control in an IoT setting. The new mechanisms will allow for increased
flexibility, adaptability and security by making use of IoT devices to determine the
user’s context in a trustworthy manner, and based on this context adapting the
required authentication procedure and the prevailing authorization rules. Moreover,
some of the solutions can be applied to protect a subset of the IoT devices managed
by the user.

Development Project with APEX
A two year Vlaio O&O project, started in January 2019.

This project was in collaboration with APEX, a Belgian based company and
manufacturer of professional audio and audiovisual equipment. The goal of the

10 INTRODUCTION

project is to integrate the existing APEX products with external IoT products. The
end user should be able to configure new scenarios and atmospheres, and integrate
new IoT devices easily. It must be taken into account that the developed solution
must later be used in other domains such as smart home and ambient assisted
living.

OVERVIEW OF THE CHAPTERS 11

1.4 Overview of the Chapters

This section outlines the scope of the remaining chapters of this manuscript.

Chapter 2: Background Basic concepts and terminologies used in the remainder
of the manuscript are listed and explained in detail. The different types of IoT
architectures are first discussed, followed by commonly used technologies. The
chapter ends by introducing an AAL use case that is used in the remaining chapters
as working example.

Chapter 3: The SMIoT Architecture and Framework Integrating a diverse
set of IoT devices in a single environment is no mean feat. This chapter examines
how physical IoT devices can be integrated by means of virtualization. Not only
devices but also environmental concepts are virtualized, in this way virtualization is
taken one step further than in other related research. Actions no longer need to be
performed at the device level but can be performed at a higher asset level. As a
consequence of this virtualization, maintainability is increased. An architecture is
proposed to support developers in setting up IoT environments, focusing on large
system integrator companies. An Android framework is developed to validate the
architecture and used to develop several applications in the AAL use case. This
maps to contribution 1.

Chapter 4: Designing IoT Ecosystem Environments When integrating IoT
devices in an environment, modeling the environment in a structural way prior to
the development and deployment phase can significantly reduce the total costs.
In this chapter the steps that are required during this modeling phase are defined.
Three tactics are kept in mind while composing the method, namely separation of
duties, loose coupling of the business logic and IoT infrastructure and finally an
application centric development where physical devices are only selected in a late
stage. This maps to contribution 2.

Chapter 5: Creating Advanced IoT Applications This last technical chapter
addresses the automation of IoT ecosystems. A middleware containing a logic
reasoning engine is proposed to automate several common tasks in IoT systems,
among which are business logic automation, data preprocessing, connection
management and access control. The reasoner is developed in Prolog and
communicates with the underlying IoT middleware. By using Prolog its querying
and inference capabilities are automatically inherited by the middleware. Support
with the architecture proposed in Chapter 3 and modeling strategy as proposed in
Chapter 4 is integrated by providing a conversion module that automatically binds
the IoT device data to the correct environmental item (e.g., room or person) and
vice versa. This maps to contribution 3 and contribution 4.

12 INTRODUCTION

Chapter 6: Supporting Software Integrators in Building IoT Applications
Valorisation possibilities for the concepts proposed in Chapter 3 through Chapter 5
are elaborated. Both guidelines and software tools are proposed to support
application centric development in the Internet of Things. The focus lies on
software integrators, integrating COTS devices in various IoT applications in multiple
domains.

Chapter 7: Conclusion This last chapter concludes the conducted work. The
contributions are summarized and reflected upon the predefined research questions.
Future research and valorisation possibilities are elaborated.

Chapter 2

Background

The Internet of Things (IoT) landscape is continuously evolving. Due to the
emergence of new technologies, other insights are acquired, which means that
existing solutions can be adapted or improved. This leads to a very fragmented
landscape with different ecosystem approaches, many different communication
technologies and even more different device technologies. Due to this large diversity,
applications can be developed in many domains, ranging from home automation, to
the more complex Industrial Internet of Things (IIoT). The different requirements can
be accommodated by the correct choice of approaches, communication technologies
and devices.

In this background chapter an overview of the current IoT landscape is given. We
take a look at the possible infrastructural approaches and existing communication
and device technologies. Subsequently we enumerate a non-exhaustive yet
representative list of existing solutions to build IoT applications. We finish this
chapter with the elaboration of an Ambient Assisted Living (AAL) use case which
is used as running example in this dissertation.

2.1 IoT Infrastructure Approaches

This section classifies IoT ecosystem approaches according to three categories.
Note that we do not focus on how different end devices are connected to each
other. A first category are cloud-based systems. In this approach, IoT devices are
connected directly to the cloud. The devices can be controlled and the data can
further be processed at remote servers typically installed in large server rooms. The
second class are edge-based systems. Data is processed locally, either on the IoT
device or on a local dedicated server. In between are the hybrid systems, a mixture
between edge and cloud based systems. The possibilities to combine cloud and
edge approaches are endless. For each use case, a different approach can be devised.
Since each setup has its own advantages, it must be determined which setup is

13

14 BACKGROUND

most suitable based on the requirements of the use case under study.

Cloud Based Systems Figure 2.1 presents a basic setup of a cloud based system.
IoT devices are connected to the cloud, possibly via a gateway. Devices are controlled
via the cloud, and data is collected and processed in the cloud.

Environment 1 Environment 2

m
m

¢Ã

¼
< <

<

<

<

♂

Figure 2.1: Example setup for a cloud based IoT system

A major advantage of cloud-based systems is the central point where data is made
available. Data can be accessed at any time, from anywhere and combining data
from different ecosystems is straightforward. However, direct access to the IoT
devices, is not possible.

Another advantage is simple deployment. There is no need to manage and maintain
proprietary infrastructure as multiple big tech companies provide easy-to-setup
and maintainable cloud solutions. Examples are AWS, Azure, IBM Cloud and
Google Cloud Platform. These providers often have IoT middleware solutions
to support application development. Moreover, the middleware enables smooth
software integration and deployment. Examples of such middleware cloud solutions
are AWS IoT, Azure IoT Hub, IBM Watson IoT and Google Cloud IoT [58]. Such
middleware solutions are one of the possibilities to enable interoperability between
devices. In Section 2.3.2 we take a closer look at IoT middleware and list their
advantages and current shortcomings.

Scaling is also no longer a concern, as the cloud provider foresees tactics for
straightforward upscaling. Advanced processing power can be disposed to execute
heavy processing tasks, as is typically required by machine learning algoritms. The
latter is often not available on small IoT devices, or requires expensive hardware.

Applications for which cloud-based solutions are ideal are applications collecting and
analyzing data from different, widely distributed devices. One can think, for example,
of smart city applications, where data such as air quality or noise are monitored.
Healthcare applications in which medical data from patients can be shared among

IOT INFRASTRUCTURE APPROACHES 15

various stakeholders such as the patient himself, the general practitioner and the
hospital can also rely on cloud-based architectures.

However, cloud based applications also expose major drawbacks. Due to the
possibly limited bandwidth and delays, it is not feasible to rely on cloud-based
solutions for time-critical applications [45]. Reliability with respect to network
stability can not be guaranteed with cloud-based solutions either[18]. Controlling
actuators remotely in the cloud requires continuous connectivity between cloud
servers and edge infrastructure. While direct connections are possible, it is by far
no sinecure. Publish-subscribe technologies (e.g. Message Queueing Telemetry
Transport (MQTT)) are a frequently applied alternative, but this strategy is not
recommended for a large number of time-critical applications.

Edge Based Systems In edge based systems, data are stored and processed
locally, either on the IoT device itself or on other systems in the physical proximity.
Figure 2.2 gives an example of two edge based systems. Note that the disadvantages
of cloud based systems are at the same time advantages of edge based systems.
Accessing data remotely and combining data from different ecosystems is hard.
On the other hand, edge based setups are favorable from a privacy and security
perspective. Data is only kept locally and not passed on to external parties, giving
the owner full control over the data [118]. Management of the infrastructure, in
this situation, is thus also the responsibility of the owner.

Environment 1

Environment 2

m

m

¢

¢

¼
< <

<
<

<♂

♂

Figure 2.2: Example setup for an edge based IoT system

Hybrid Systems and Fog Computing As both cloud and edge based systems
expose advantages and disadvantages, often, a combination thereof brings the best
of both worlds. In hybrid setups, privacy sensitive data can be stored and processed
locally. At the same time, processed data that must be easily accessible can be
stored remotely.

While many IoT ecosystems rolled out today are hybrid ones, some specific cases
require the data sharing possibilities of cloud setups and low latency of local setups.
Fog computing, as firstly introduced by Cisco, extends cloud computing to the
edge of the network (i.e., a fog is a cloud close to the ground). In time-critical

16 BACKGROUND

applications incorporating mobile nodes (e.g., connected vehicles), local setups do
not suffice. As a node’s location is dynamic and changes over time, a single local
network is insufficient.

Figure 2.3 shows an example of a hybrid system. Environment 1 and 2 are connected
to the same fog. Selected data of these two environments can thus be combined
close to the edge.

Environment 1
Environment 2 Environment 3

Fog Fog

Ã
Ð Ð

¼
<

<

<
<

<
<

<

Figure 2.3: Example hybrid IoT system using fog computing

2.2 Communication in the IoT domain

Not only the architectural types of IoT systems are diverse. A wide variety
of communication technologies, protocols and different data formats exist and
their selection is based on requirements of the applications under study. For
some applications high data rates are essential, while others rely on long ranges.
Moreover, many IoT devices are battery powered. If so, energy consumption due to
communication may be a determining factor. As for communication protocols, some
applications require a publish-subscribe protocol to easily reach multiple clients. In
other applications, a request-response protocol is sufficient or desirable. Lastly, the
requirements regarding data format can also differ per application. A binary format
may be sufficient to transmit sensor values, in other cases more structured data is
preferred to transmit large amounts of data.

In this section we provide an overview of commonly used communication technologies,
protocols and data formats in the IoT landscape. Every commercial IoT product on
the market builds on a combination of the elements below. This shows once again
how diverse the IoT domain is.

COMMUNICATION IN THE IOT DOMAIN 17

2.2.1 Wireless Communication Technologies

Although wired connections are possible for static devices, this section – and even
so the major part of this thesis – focuses on wireless technologies. The advantage
of wireless devices is their mobility. They are easier and often cheaper to enroll in
an existing network as no additional cabling needs to be provided.

The range that can be achieved, the maximum data rate and the energy consumption
affect each other. Depending on the type of application, an optimal trade-off
between these three characteristics must be found. Based on the range of a
network, a distinction can be made between Personal Area Networks (PANs), Local
Area Networks (LANs) and Wide Area Networks (WANs) [23]. PANs range up
to 10 meters. A good example of a PAN is a prototypical office environment. A
smartwatch communicates with a mobile phone and a wireless headset is connected
to a local computer. If an individual moves away from the computer with the
headset, (s)he will unfortunately no longer be able to enjoy the music.

Although smaller ranges typically result in higher data rates, the data rate
requirements in PANs are often, apart from some exceptions, limited. Body sensor
data or text messages are often constraint in both size and speed. An exception,
however, is the data stream when listening to music through a wireless headset.
LANs can range up to 5 km and usually have a higher data rate. LANs can be set
up in buildings such as homes, schools offices and factories. A home network is also
a LAN, connected to the internet. Individuals want a high data rate to stream their
favorite series to a laptop. Lastly, WANs cover areas up to 50 km. A prototypical
WAN example is a mobile phone network. In densely populated areas, cell towers
are available within the proximity of 1 km which is required to have coverage. In
open areas, coverage on a mobile phone is still possible when the nearest cell tower
is up to 40 km away. Further developments can result in WANs data rates that are
as high as in LANs, but this is often at the expense of energy consumption.

Several comparative studies can be found in the literature [23, 70, 91, 97].
This section will further give a high level overview of the most commonly used
technologies, without going into the technical details.

We begin with the technology with the shortest range and lowest data rate, which
is used in PANs, and gradually shift to the technologies that have a higher data
rate. We thus come to frequently used LAN technologies and end with technologies
for WAN applications.

Radio-Frequency Identification (RFID) and Near-Field Communication
(NFC) RFID technology is a very short range communication technology in
which a tag and reader/writer have to be placed in close proximity of each other in
order to exchange data. The reader can read/write the data on the tag. Hence,

18 BACKGROUND

PA
N

LA
N

W
AN

Zi
gb

ee
/T

hr
ea
d

RFID/NFC

Bl
ue
to
ot
h

Wi-Fi

LoRaWAN
SigFox

NB-IoT
Cellular

0.001 0.01 1 10 100 1000

0.1

1

10

100

1000

10000

Data rate [Mbps]

Ra
ng

e
[m

]

Figure 2.4: Range and data rate for various wireless technologies, based on the
work of Cheruvu et. al. [23]

RFID communication is a one-way communication strategy. RFID technologies are
widely used in retail and in supply change applications for tracking and inventory
purposes. NFC is a subset of RFID. Data can be exchanged through nearby contact
between 2 devices. The difference with RFID is that an NFC device can act as both
a reader and a tag. NFC tags are integrated in cards, phones and other wearable
devices (e.g., watches and rings). NFC is widely used for contactless payments and
access control in PANs.

Bluetooth, Bluetooth Low Energy (BLE) and BLE Mesh Bluetooth is a
well-known wireless communication technology. It was first introduced by Ericsson
in 1994 and was initially introduced to transmit data wireless between computing
devices like printers and headsets. It is currently still widely used. For instance,
many headphones are connected to computers or smartphones over Bluetooth
today. [86, 119]

Since October 2010, BLE, also known as Bluetooth Smart, has been introduced.
A new mode, in addition to Bluetooth Classic, is optimized to decrease power
consumption. Also the throughput is increased from 1 to 2 mbps. A star

COMMUNICATION IN THE IOT DOMAIN 19

network topology where multiple nodes can connect to the same device is another
improvement over the classic Bluetooth connections [91]. Starting from version
4.0, one can choose to either use Bluetooth Classic or the low energy mode. BLE
is currently not optimized for audio streaming. In these cases, Bluetooth Classic
offers the solution to support audio streaming between devices [117].

More recently, in 2017, BLE Mesh was proposed, Bluetooth is no longer limited to
a star topology, but now also supports mesh networks. Nodes can be connected
directly. It means that nodes no longer need to be connected to the central point.
The distance between a node and the central point can thus be elevated, provided
that other devices can mediate communication. All Bluetooth devices supporting
the low energy mode are also able to use of the mesh capabilities [117].

ZigBee ZigBee is a widely used communication technology for PANs and LANs.
Zigbee is based on IEEE 802.15.4 and adds two extra layers of security on top.
Zigbee uses a mesh network of devices to ensure reliability. In the event of a
device failure, the network heals itself and the connection with other devices is
automatically restored. Mesh networks can also cover larger areas as long as the
distance between two nodes is acceptable. For Zigbee, the maximum distance
between two nodes is between 75 and 100 meters depending on the strength of the
power source and the environmental infrastructure. Currently this technology is
widely used in the smart home domain and especially in lightning applications.

Thread Thread is an emerging IPv6 based communication technology and
designed with smart home applications in mind. A data rate up to 250 kbps
can be achieved with a range up to 30 meters. Using a mesh network, all devices in
a home can be covered. [94] The advantage of Thread over Zigbee is that Thread
is an IP based protocol, so integration into other IP networks is easy. For larger
packets, Thread has a lower latency than Zigbee [6]. Additional border routers can
be set up to cover an even wider area. Thread networks are "self-healing", on device
failures or when a device becomes available, the network will configure itself [49,
107, 108].

Wi-Fi Wi-Fi is a communication technology commonly used in grid powered IoT
applications. It enables devices to wirelessly connect devices to a LAN. Devices
connected to the same local access point can communicate with each other. The
access point can make wired connections to other local networks and the internet.
This makes it possible to address the IoT devices from outside the local network.
Wi-Fi supports both a 2.4 Ghz and 5 GhZ frequency. A higher frequency results in
a higher data rate, while a lower frequency results in a lower data rate but a longer
range up to 100 meters.

20 BACKGROUND

LoRaWAN LoRaWAN, is a low power communication technology for WANs, also
called a Low Power Wide Area Network (LPWAN) technology. It is a bidirectional
communication technology to send small data packets up to 256 bytes. Gateways
are used to connect devices. Due to being low power, it is suited for battery-powered
sensors.

Sigfox Sigfox is a long range communication technology up to 50 km. It is low
power but can only send small data packages up to 12 bytes. A star topology is
used. Each device must connect to a Sigfox station in order to send data. That
data is sent to the Sigfox cloud, where it is made available to the users. Although
Sigfox has a bidirectional functionality, it is usually used to send data from an end
point to a base station. The advantage of Sigfox, as with cellular technologies,
is that it can send data whereever there is coverage. The current coverage state,
which can be found on their website1, shows that Europe is almost entirely covered.

Narrow-Band IoT (NB-IoT) NB-IoT is a cellular type of IoT communication
technology. Key features are its long range, however limited to 1km in urban areas
and 10km in rural areas, the low energy consumption and high reliability. NB-IoT
has a data rate downlink of 200kbps and the uplink is limited to 20 kbps. The
maximum payload size for a message is 1600 bytes. NB-IoT is less suited for time
critical applications as latency can be up to 10 seconds. [32, 73]

Cellular 3G/4G/5G LTE Probably the best known long range technology is the
cellular communication technology. Devices connect to cellular radio towers in
order to communicate with each other. Its bidirectional connection enables to send
and receive data simultaneously. Depending on the density of the surrounding
environment, the technology has a range of 1 km in cities up to 40 km in open areas.
However, this technology has a high power consumption and is less appropriate for
battery powered devices whose battery can not be replaced or charged easily. Of all
the discussed long range communication technologies, the cellular technology, is
most suited for time critical application, however, there can still be a latency up to
1 second.

2.2.2 The IoT Stack

Regardless of the communication technology used by IoT devices, the data of each
device is often made available in some way via the internet or in a local network.
This is either done via a gateway, or a direct connection to the internet or local
network. Figure 2.5 depicts the IoT protocol stack, which is very similar to the
web protocol stack. [77] We will not dive deeper into the network, internet, and

1https://www.sigfox.com/en/coverage

COMMUNICATION IN THE IOT DOMAIN 21

transport layer. However, we will take a look at the application layer and the data
formats used in the IoT stack.

IPv4 - IPv6 - 6LowPANInternet Layer

802.3 802.11 802.15 ...802.16Network Layer

TCP UDPTransport Layer

MQTT CoAP AMQP HTTPApplication Layer

Binary Text XML JSON CBORData Formats

IoT Applications

Figure 2.5: Representation of the IoT stack

2.2.2.1 IP Messaging Protocols

Internet Protocol (IP) messaging protocols can be divided into two categories. On
the one hand, request/response protocols start with a request from a client (i.e.
application) to a server (i.e. IoT device). The response is sent back from the server
to this client. On the other hand, publish/subscribe protocols handle the published
messages by peers. These messages are forwarded by a broker to all interested
(i.e. subscribed) peers. The advantage of publish/subscribe over request/response
protocols is that a message coming from a single device can be sent immediately
to multiple applications. Publish/subscribe mechanisms also generally have better
latency and better network utilization. The downside, however, is that the central
broker is a single point of failure. If the broker is no longer available, not a
single device publishing through that broker will be available. [48] Five commonly
used messaging protocols, supporting either publish/subscribe, request/response
or both, in the IoT stack are Hypertext Transfer Protocol (HTTP), Message
Queueing Telemetry Transport (MQTT), Constrained Application Protocol (CoAP),
Advanced Message Queuing Protocol (AMQP) and Extensible Messaging and
Presence Protocol (XMPP). These protocols will briefly be explained below.

HTTP [43, 77, 115] HTTP is a web messaging request/response protocol. It
supports the Representational State Transfer (REST) architecture and Uniform
Resource Identifiers (URIs) are used to identify the endpoints. HTTP does not
guarantee Quality of Service (QoS) and introduces large overhead. HTTP runs
on top of Transmission Control Protocol (TCP) which provides reliability and can

22 BACKGROUND

transport large amounts of data. In resource constrainted environments, this can,
however, be a disadvantage.

MQTT [7, 77] MQTT is a lightweight publish/subscribe protocol. Messages are
pushed to the broker on a so called ’topic’. Clients can subscribe to multiple topics.
MQTT offers three levels of QoS. The lowest level sends each message at most
once, possibly resulting in data loss. The second level sends each message at least
once, it is however possible that messages are send and received multiple times by
the receiver. The highest level, sends each message exactly once, giving the best
and most reliable QoS. As does HTTP, MQTT runs on top of TCP.

CoAP [33, 104] MQTT is another lightweight protocol that supports both the
request/response and publish/subscribe topology. As in HTTP, URIs are used to
identify endpoints and is also based on the REST architecture. Publish/subscribe
support is added in a later version of CoAP by tagging GET-requests with an
observe option. In contrast to HTTP and MQTT, CoAP runs on top of User
Datagram Protocol (UDP) which is unreliable. However, QoS in CoAP is supported
by its own reliability mechanism using comfirmable and non-comfirmable messages.
The former must be acknowledged by the receiver, the latter do not need to be
acknowledged.

AMQP [33, 76, 95] Both the request/response and publish/subscribe mechanism
are supported by AMQP. It runs on TCP and provides the same three levels of QoS
as MQTT. In older version, an AMQP broker consists of an exchange queue and
a message queue. The exchange queue obtains publisher messages and redirects
them to the correct message queue, which represents a topic. Subscribers listen
to these queues for new messages. Newer versions of AMQP follow a peer-to-peer
mechanism. There is no longer need of a broker in case messages can be directly
send to other peers, increasing flexibility for different setups. However, a broker is
needed in case messages must be stored until a peer becomes available. Due to
its multiple features, AMQP has high power and memory requirements. Thus, in
contrast to MQTT and CoAP, AMQP is more suited for settings without bandwidth
and latency restrictions.

XMPP [33, 95] XMPP is a text-based protocol, based on eXtensible Markup
Language (XML) and also supports both the request/response and publish/subscribe
mechanism. XMPP runs on top of TCP and already incorporates Transport Layer
Security (TLS) mechanisms in its specification. Thus, of all presented protocols,
XMPP is the most secure. However, due to using XML messages sizes are rather
large, making XMPP less suited for networks with bandwith constraints.

COMMUNICATION IN THE IOT DOMAIN 23

2.2.2.2 Data Formats

Not only the communication technologies and messaging protocols differ from IoT
product to IoT product, the way in which data is structured is also different for
each product. Plain data formats (i.e. binary and text) are mainly used when the
maximum data rate is limited, the advantage of text format is that it is human
readable, it can be quickly interpreted and errors can be discovered more easily
compared to binary data . Structured formats (i.e. XML, JavaScript Object Notation
(JSON) and Concise Binary Object Representation (CBOR)) usually contain not
only the data sensed by the device or to actuate the device, but also metadata
about the device (e.g. device id, connection state and battery level). Structured
data formats that are frequently used within IoT products are briefly explained
below. Although the described data formats are structured, none of these data
formats define a strict syntax. Two IoT products that use the same data format
can therefore not necessarily communicate with each other, because the data can
still be structured in a different way (e.g. one device uses the key parameter, while
another uses the key property).

eXtensible Markup Language (XML) [67, 72] XML is a data format adopted
from the web stack. It is a human readable text based format. Listing 2.1 gives
an example of XML structured data from an IoT temperature and humidity sensor.
The disadvantage of XML is the overhead created by header information and the
opening and closing tags.

<?xml version="1.0" encoding="UTF-8"?>
<root>

<data>
<element>

<parameter>temperature</parameter>
<unit>°C</unit>
<value>26.4</value>

</element>
<element>

<parameter>humidity</parameter>
<unit>%</unit>
<value>43.6</value>

</element>
</data>
<id>9f2bd4dd-0d9c-41f9-811c-26e940ec226b</id>
<timeStamp>2022-07-07T16:39:57</timeStamp>

</root>

Listing 2.1: Example of XML structured IoT data

JavaScript Object Notation (JSON) [19, 63, 67] Just like XML, JSON is a
human readable data format and widely used for the web stack. It is a lightweight

24 BACKGROUND

format consisting of key-value pairs. Unlike XML, JSON must not be decoded.
Many programming languages come with built-in libraries to easily retrieve JSON
data, making it an easy to integrate data format. Although JSON is lightweight,
the text representation still causes an increase in message size. Listing 2.2 shows
the same temperature and humidity sensor data as before in JSON format.

{ "id": "9f2bd4dd-0d9c-41f9-811c-26e940ec226b",
"timeStamp": "2022-07-07T16:39:57",
"data": [
{ "parameter": "temperature",

"unit": "°C",
"value": 26.4},

{ "parameter": "humidity",
"unit": "%",
"value": 43.6}

]
}

Listing 2.2: Example of JSON structured IoT data

Concise Binary Object Representation (CBOR) [26, 63] In contrast to XML
and JSON, CBOR is a binary based format which optimizes message size. It is thus
not human readable, which cearly can be seen in Listing 2.3. CBOR is based on
JSON and one of the major motivators to develop CBOR was the need for small
messages in the IoT.

2.3 Existing Solutions for Device Interoperability

Communication technologies and varying device types are often combined in complex
IoT ecosystems. The strengths and constraints of these solutions are evaluated in
many papers [37, 40, 66, 89]. However, integrating multiple technologies in a single
application requires a substantial programming effort.

Two types of solutions exist to increase the interoperability of IoT devices. One
strategy aims at complying with standards. During hardware design and development,
the manufacturer fixes the way in which the devices interact. A seconds strategy
consists of middleware solutions that aim at increasing interoperability without
adapting the hardware.

2.3.1 Standardization Efforts

In order for all IoT devices to be able to communicate with each other, all devices
should communicate in the same way. Thus all messages must be constructed in
the same way. By defining standards, a uniform communication can be established.

EXISTING SOLUTIONS FOR DEVICE INTEROPERABILITY 25

//raw
0xA3626964782439663262643464642D306439632D343166392D383131632D323665393430656 c

3323236626974696D655374616D7073323032322D30372D30375431363A33393A35376464 c
61746182A369706172616D657465726B74656D706572617475726564756E697463C2B0436 c
576616C7565FB403A666666666666A369706172616D657465726868756D69646974796475 c
6E697461256576616C7565FB4045CCCCCCCCCCCD

↪→

↪→

↪→

↪→

//split into meaningful chunks
A3 // map(3)

62 // text(2)
6964 // "id"

78 24 // text(36)
3966326264/*...*/ 6332323662 // "9f2bd4dd-0d9c-41f9-811c-26e940ec226b"

69 // text(9)
74696D655374616D70 // "timeStamp"

73 // text(19)
323032322D/*...*/ 33393A3537 // "2022-07-07T16:39:57"

64 // text(4)
64617461 // "data"

82 // array(2)
A3 // map(3)

69 // text(9)
706172616D65746572 // "parameter"

6B // text(11)
74656D7065726174757265 // "temperature"

64 // text(4)
756E6974 // "unit"

63 // text(3)
C2B043 // "°C"

65 // text(5)
76616C7565 // "value"

FB 403A666666666666 // primitive(4628124157067290214)
A3 // map(3)

69 // text(9)
706172616D65746572 // "parameter"

68 // text(8)
68756D6964697479 // "humidity"

64 // text(4)
756E6974 // "unit"

61 // text(1)
25 // "%"

65 // text(5)
76616C7565 // "value"

FB 4045CCCCCCCCCCCD // primitive(4631332971801791693)

Listing 2.3: Example of CBOR structured IoT data

An example is oneM2M [102], which aims at establishing a standardized Machine to
Machine (M2M) service layer platform for globally applicable and access-independent
M2M services (i.e., horizontal standardization). OneM2M is a widely used standard
since 2012 that aims to allow IoT devices to communicate across different domains.

26 BACKGROUND

This facilitates setting up cooperative systems in which infrastructures from different
organizations work together (e.g., in smart cities).

Other standardization efforts focus on specific application domains (i.e., vertical
standardization) such as smart homes [110, 121], smart cities [27] and the
IIoT [75]. Although these standardization efforts target interoperability between
IoT components from different stakeholders, the IoT market is still very fragmented.
It is almost impossible to make the already highly fragmented market comply to
one single standard. Hence, the flexibility of IoT ecosystem providers is significantly
decreased if they are restricted to IoT components adhering to a specific standard.

Another emerging standard is Matter2. Matter, previously known as Project
Connected Home over IP (CHIP), is a standardization effort in the smart
home domain and incorporates BLE, Zigbee, Thread and Wi-Fi, [110]. Several
manufacturers already announced that Matter will be integrated in their upcoming
devices including Amazon, Apple, Google, Samsung and Signify (the company
behind Philips hue) [1, 4, 25, 88, 101]. An advantage of Matter is that – as it
is built on top of Wi-Fi 6 –, the end devices do not need mesh capabilities. As
Wi-Fi 6 supports this, devices using different technologies can connect in the same
network when using Matter [110].

The downside of these standardization efforts is that there are many of them. It is
difficult for a hardware developer to guess the most sustainable standard. Complying
to multiple standards, even a small subset, considerably increases development cost
and can even impact the device characteristics.

2.3.2 Middleware Solutions

An alternative approach for managing the heterogeneity in IoT components and
technologies is relying on middleware solutions. IoT middleware is an intermediary
software system or layer between IoT devices and the applications [78].

By providing a middleware between the infrastructure and applications, interoper-
ability of different devices and technologies can be achieved.

Many solutions are cloud based [8, 109], commercial examples are Siemens
MindSphere[96], GE Predix[80], Zetta[120], ThingSpeak[55] and DeviceHive[31].
Many proposals have already been made in academia too. For instance, Lea et
al. [61] and Demirkan et al. [29] use a cloud-based hub for developing respectively
smart city and healthcare applications.

Others run on a dedicated personal server, for instance Home Assistant[50],
OpenHAB[79], Macchina.io[64] and Blynk[9]. A local gateway setup is also used by

2https://csa-iot.org/all-solutions/matter/

AN AMBIENT ASSISTED LIVING USE CASE 27

Yang et al. in their MicroPnP [116] platform. It is a generic zero-configuration,
plug-and-play wireless sensor platform consisting of a gateway that interacts with
nodes on which sensors/actuators can be added without requiring any additional
configuration. Access to the sensors is provided via a REST interface on the gateway.

A hybrid setup with a combination of a local gateway and cloud hub is used by
Soliman et al. [99] and Desai et al. [30] in the smart home application domain.

Middleware solutions are also adopted by many commercial organizations. For
instance, Google3, Apple4 and Samsung5 provide their own smart home IoT platform.
Each platform defines Application Programming Interfaces (APIs) that can be
supported by third-party IoT device developers to enable interoperability. Using a
cloud or gateway platform to bootstrap access to IoT devices significantly simplifies
management and application development. However, typically multiple applications
can be developed in the context of an IoT ecosystems. Each of these applications can
have different requirements concerning, among others, privacy, real-time constraints
and access control. To fulfill advanced requirements, often a hybrid distributed setup
that combines both direct sensor-application interactions as well as interactions
mediated via gateways or a cloud platform are required [85].

The majority of these solutions collect the data centrally or provide one generic
application to interact with the devices. Building dedicated applications on top
of such middleware solutions is often not supported. In this thesis we propose a
middleware solution that supports the development of a diverse set of applications.
Moreover, the focus is not on a single domain. On the contrary, the middleware
can be reconfigured based on domain and application requirements.

2.4 An Ambient Assisted Living Use Case

To show the applicability of the research results, a representative use case in the
care home domain is used throughout the remainder of this thesis.

A scalable AAL ecosystem, consisting of numerous care home units and residents, is
proposed. Each unit consists of multiple rooms (living room, bathroom, bedroom. . .)
and each room is equipped with sensors (e.g., for sensing environmental parameters
such as temperature, pressure and humidity) and actuators (e.g., lamps and
thermostats). Moreover, residents can wear one or multiple body sensors. Examples
are heart rate monitors and fall detection sensors. Figure 2.6 demonstrates the setup.
The set-up of each individual care home unit may be different. A heterogeneous
set of devices can be deployed and rooms do not necessarily contain the same set

3https://developers.nest.com
4https://www.apple.com/us/shop/accessories/all-accessories/homekit
5https://www.smartthings.com/

28 BACKGROUND

of sensors and actuators. Moreover, each home unit can rely on different types of
sensors and/or actuators to achieve certain goals.

Figure 2.6: A visual representation of two care home units

Several types of end-users are active in the ecosystem: residents, caregivers and the
maintenance crew. Each end-user has different requirements and applications are
adapted to their needs. Hence, each type of end-user has a different view on the
IoT ecosystem.

Resident Application The resident application provides access to the resident’s
care home unit, and allows to retrieve sensor values and control actuators in that
unit. The resident’s view on the environment is restricted to its own unit and does
not change frequently. The view only changes when devices are added, removed or
replaced.

Caregiver Application The caregiver needs to control the sensors and actuators
of a subset of care home units, namely the ones that correspond to the residents
that the caregiver needs to visit. The view on the environment, along with its
configurations, can change according to the work schedule of the caregiver. Each
time new residents are added to or removed from the schedule, the application
configurations change.

Maintenance Application The maintenance application has a different view on
the IoT environment. Crew members need access to particular devices based on
repairs and checks that need to be done. Their connection with Assets is of minor
importance.

2.5 Conclusion

This chapter gave a broad overview of the IoT landscape. The possible infrastructural
approaches, each with their advantages and disadvantages, were discussed.
Subsequently, the diversity of possible communication technologies shows that

CONCLUSION 29

the IoT landscape is very fragmented. In addition to the many possibilities for
inter-device communication, IoT data is also made available on a local network
or the internet. While discussing the application layer of the IoT stack, it once
again becomes clear how diverse the different IoT products offer their data. A
uniform use of communication technologies, protocols and data formats is first
of all impossible to accomplish. There is no single combination of technologies
that can meet all possible application requirements. Secondly, the use of the same
technologies, protocols and data formats does not guarantee interoperability, since
the data itself follows a manufacturer-specific syntax.

Possible solutions have already been offered to enable communication between
devices and to develop integrated application. Standardization attempts are
proposed to unify the communication between the devices. However, this has
a major impact on hardware development and becomes very difficult to enforce in
the current advanced stage of the IoT landscape. Middleware solutions, on the
other hand, are a viable alternative to enable interoperability. However, existing
proposals are very cloud-centric. Data is centralized to a single cloud environment
where it is made available to applications.

In the following chapters, a middleware architecture is first presented that is
not limited to cloud-based systems, but also focuses on edge based and hybrid
systems. Next, guidelines for modeling ecosystems are proposed, in order to simplify
integration of new devices and adaptations of applications. Finally, extensions are
proposed to develop advanced applications in a simple way, taking into account the
diverse nature of IoT environments.

Chapter 3

The SMIoT Architecture and
Framework

The content from this chapter is previously published in:

• M. Willocx et al. “Developing Maintainable Application-Centric IoT
Ecosystems”. In: 2018 IEEE International Congress on Internet of Things
(ICIoT). San Fransisco, CA, USA, July 2018, pp. 25–32

• I. Bohé et al. “An extensible approach for integrating health and activity
wearables in mobile IoT apps”. In: 2019 IEEE international congress on
Internet of Things (ICIoT). IEEE. Milan, Italy, 2019, pp. 69–75

• M. Willocx et al. “QoS-by-Design in reconfigurable IoT ecosystems”. In:
2019 IEEE 5th World Forum on Internet of Things (WF-IoT). IEEE.
Limerick, Ireland, 2019, pp. 628–632

• I. Bohé et al. “SMIoT: a software architecture for maintainable
internet-of-things applications”. In: International Journal of Cloud
Computing 9.1 (2020), pp. 75–94

As mentioned in Chapter 1, device centric development is the predominant paradigm
when building Internet of Things (IoT) ecosystems. This implies that sensors and
actuators are selected and anchored in a very early design stage. Thereafter,
system integrators start to think about the design and realization of attractive
software applications. However, the lifetime of advanced software applications
often outreaches the lifetime of IoT devices due to their limited cost or the harsh
conditions in which they are deployed. Unfortunately, many existing IoT integration

31

32 THE SMIOT ARCHITECTURE AND FRAMEWORK

solutions offer no or very limited flexibility when devices need to be replaced, as
devices are selected at the very beginning. For instance, a temperature sensor from
one manufacturer is often not replaceable by another – more robust or cheaper – one
from another manufacturer without major code changes. This occurs due to the lack
of flexibility during system design. Vendor lock-in is thus often mentioned as one of
the fundamental problems in current IoT deployments. In addition, implementation
efforts are often expensive due to the lack of high-level sensor integration support
towards application developers. Many IoT devices currently on the market only
offer a low level Application Programming Interface (API), confronting application
programmers with low-level connectivity and data representation problems. On its
turn, this increases the development time.

This chapter proposes the SMIoT architecture that facilitates application centric
design, and supports the development of complex and maintainable IoT applications.
The architectural guidance allows for dynamic and reconfigurable IoT device
integration, and hides low-level implementation details from application developers.
Hence, the latter can focus on business logic without being expert in IoT device
technologies.

The proposed architecture is especially useful for software companies focusing on
extensive IoT solutions in a specific domain or sector. A typical example is a software
integrator focusing on innovative healthcare environments, or a company building
software ecosystems for fleet management. With extensive, we mean that the IoT
ecosystems consists of various IoT applications used by different stakeholders in
the domain. For instance, in a healthcare environment, applications are developed
for caregivers, elderly people, family, doctors, nurses, governments and insurances.
Each stakeholder has a partial view on the overall IoT ecosystem.

The software may evolve over time, and its lifetime is typically much longer than the
lifetime of the device technologies that are plugged in. In addition, the development
department in such software companies often consists of teams with complementary
skills. Some focus on implementing business logic; others are experienced in
supporting the right software abstractions for IoT device technologies. The layering
offered by the SMIoT architecture offers the right approach for such development
teams with mixed skills. This separation of concerns makes it possible to efficiently
develop IoT applications

Replacing a device by a similar one from a different vendor might however still cause
difficulties. For instance, a broken sensor monitoring the temperature of boxes
during organ transport cannot be replaced by whatever other temperature sensor on
the market. Quality of Service (QoS) properties restrict the feasible options. Hard
constraints can be imposed on acceptable polling frequency and accuracy. Soft
constraints can be imposed on battery life. Similarly, fall detection systems need to
be reliable, and guarantee data transmission within a small time interval. Whereas

ARCHITECTURE 33

an application may depend on device specific properties only available in a certain
set of devices, the proposed design tactics offer important advantages on how to
cope with those hard and soft constraints and how to inform application developers
of degradations.

Contributions Firslty, this chapter proposes a layered architecture based on the
virtualization of physical elements, providing support for application centric IoT
development. Secondly, QoS challenges during the development and operations
cycle are tackled. Device QoS annotation is proposed during the design phase
and QoS cataloging is proposed to steer the device selection process. Finally, the
design principles derived from the architecture are applied in both an Android and
JavaScript Framework, supporting developers to develop mobile and web applications
for the IoT, respectively. Integrating different low level communication protocols is
no longer the job of the application developer and he can focus on the business
logic of the applications. Maintenance of the IoT environment is easier as a device
replacement only results in a configuration change, while business logic remains
unchanged.

The remainder of this chapter is structured as follows. Section 3.1 gives an overview
of the SMIoT architecture. In Section 3.2, we take a look at how QoS support is
added. Subsequently, a description of how IoT devices are bound to applications
follows in Section 3.3. Framework support is described in Section 3.4 followed by
a validation of the architectural concepts in two use cases (Section 3.5 and 3.6).
Section 3.7 discusses the proposed architecture.

3.1 Architecture

This section gives an overview of the SMIoT architecture.

As befits a good software development project, this section begins with an analysis of
the requirements. Subsequently, the design of the layered architecture is elaborated,
together with the concepts at each layer.

3.1.1 Requirements

Intuitive interfaces. Developers want to rely on interfaces that make abstraction
of details of the underlying infrastructure. In many cases, they even do not want to
be confronted with any IoT sensors or actuators at all. This means that application
developers want to invoke methods on assets (such as patients, rooms and cars)
instead of sensors (such as fall detectors, light sources and Global Positioning
System (GPS) sensors).

34 THE SMIOT ARCHITECTURE AND FRAMEWORK

Separation of concerns. The architecture facilitates mixed development teams
consisting of members with complementary skills. Some developers focus on
IoT device integration while others provide domain-specific intuitive interfaces to
application developers. Finally, application developers focus on realizing application
logic and do not want to be confronted with the underlying IoT infrastructure such
as the sensor model or vendor and communication technology.

Reconfigurability. IoT devices can be replaced by others – possibly provided
by other sensor manufacturers – without affecting the application. Supporting
cost-efficient sensor replacement is essential to tackle vendor lock-in and enables
the use of more accurate or less expensive sensors over time, depending on the
specific application needs. For example, replacing a Bluetooth temperature sensor
by an alternative one that pushes its data directly to the cloud should be possible
with limited implementation effort. The application logic remains unchanged.

Context-awareness. The optimal IoT configuration is loaded and initialized based
on contextual parameters, and context may evolve over time. The application relies
on sensor data (such as beacon technology and GPS data), user information and
external data (e.g., the current date and time) to determine the current context.
For instance, while a caregiver visits multiple patients, the application only needs
to access and show the sensor devices of the patient he is currently visiting.

3.1.2 Design

The SMIoT architecture consists of four abstraction layers which are depicted in
Figure 3.1.

Infrastructure Layer The Infrastructure Layer represents the hardware and
software that senses and actuates the physical world, and that stores historical
values. This layer consists of IoT devices, gateways and back-end IoT platforms.
IoT devices are physical sensors and actuators. They interact with the application
directly (e.g., via Bluetooth), are mediated by a local gateway, or push their data
into an IoT platform. The gateway is either connected to the application over
a local network or pushes the data to an IoT platform. The infrastructure layer
controls a heterogeneous set of devices which may evolve over time. For instance,
different types of temperature sensors, potentially relying on different communication
technologies, can be combined in one and the same application.

Virtual Device Layer The Virtual Device Layer consists of one or more Virtual
IoT Devices. Each Virtual IoT Device defines a sensor or actuator in the IoT
ecosystem. A type and technology are tied to each Virtual IoT Device. Examples
are a temperature sensors, lamps and locks. The technology defines the brand

ARCHITECTURE 35

Application Layer
Application Application

Asset Layer

Asset Asset Asset Asset

Virtual Device Layer
Device Type 2Device Type 1

Virtual IoT Device 2Virtual IoT Device 1 Virtual IoT Device 3

Virtual IoT Connector Virtual IoT Connector

Infrastructure Layer

IoT Platform

IoT Gateway

IoT Device IoT Device

IoT Device IoT Device

Figure 3.1: Software layers in the the SMIoT architecture

and model. Examples of lamp technologies are Philips Hue lightstrips/bulbs and
Osram Lightify models. A uniform interface is assigned to each device type.
Virtual IoT Device implementations present device functionalities to the upper
layer in a uniform way. They also define a uniform representation of the device’s
attributes. For example, a temperature value can be retrieved in ◦C, ◦K, or ◦F. The
Virtual IoT Device implementation transforms the values if necessary and passes a
uniform representation to the upper layers. Application developers rely on those
implementations to use the obtained data and invoke methods on IoT devices. If
a device is replaced by another one, provided by a different manufacturer, a new
Virtual IoT Device must be created. Multiple Virtual IoT Devices can point to the
same infrastructural element. For instance, multiple sensors can be plugged on a
single embedded device. Similarly, access to a set of sensors can be provided via
a gateway or a cloud platform. To reduce code redundancy and resource usage

36 THE SMIOT ARCHITECTURE AND FRAMEWORK

in the previous cases, Virtual IoT Connectors are defined. Virtual IoT Connectors
handle communication between the application and each IoT device, gateway or IoT
platform. These communication handles implement a part of the communication
protocol (e.g., wrap data in a Representational State Transfer (REST) request) and
the authentication protocol used by the infrastructural element. It provides an API
towards the Virtual IoT Devices to access the infrastructural element. Virtual IoT
Connectors are internal software components and, hence, not exposed to upper
layers in the architecture.

Asset Layer The Asset Layer models the application domain and consists of a set
of Assets. Each Asset represents a physical component in the application domain.
For instance, rooms and patients can be Assets in a care environment. Similarly,
trucks and trailers can be Assets in a fleet management ecosystem. Each Asset
defines an intuitive interface to interact with the physical component. The Asset
implementations rely on the implementations of the Virtual Device Layer . A method
in an Asset can invoke one or more methods in a Virtual IoT Device. For instance,
retrieving the heart rate of a patient Asset will simply result in the invocation of a
heart rate method in a heart rate sensor. Similarly, to get the location of a truck,
the location of a GPS sensor will be requested. In some circumstances, the mapping
is less trivial. For example, consider an Asset that contains a heart rate. Other than
a getHeartRate() method, this Asset could also provide a isHeartBeatHigh()
method to developers that notifies the application when a threshold heart rate is
exceeded.

Application Layer The Application Layer contains the applications in the IoT
ecosystem. These applications invoke the interfaces provided by (a set of) Assets
and interact with the physical environment. Hence, application developers do not
require knowledge of IoT communication technologies or protocols.

3.2 Quality of Service Support

To tackle QoS challenges, annotation of QoS requirements and IoT device
specification cataloging are proposed. In four steps, QoS support can be added to
existing IoT systems. We begin with eliciting relevant QoS properties of device
types. Device technology properties are subsequently documented in creating a
device catalog. By annotating the desired requirements during application design,
and combining those with the catalog, selecting and coupling feasible IoT devices
is simplified.

QUALITY OF SERVICE SUPPORT 37

3.2.1 Elicitation of Relevant QoS Properties

For each device type in the IoT ecosystem, a list of relevant QoS properties is
compiled along with one or more expected value types and their semantics, together
with a list of supported units. For instance, the brightness of a lamp can be
expressed in lumen and an integer value can be assigned as maximum value. Value
types, as well as units, are not obligatory. If no values are given, the properties
reflect about the presence or absence of a property in a particular device type (i.e.,
the brightness and/or color of certain lamps can be changed). Defining the units
allow for automated translations between different units in tooling support.

Table 3.1 lists the relevant QoS properties of two device types (i.e., Lamp and
LightSensor). Note that the number of quality properties that can be assigned to a
device type can be huge. Besides the quality properties currently kept in the table
(i.e., brightness, color and response delay), others could be added such as expected
lifetime (in terms of lighting hours) or humidity resistance. At least the quality
properties that are crucial for the application under design should be included.

Lamp
property value type supported SI units
change_brightness - -
change_color - -
brightness maxValue(int) lm
response_delay maxValue(int) ms, s

LightSensor
property value type supported SI units
response_delay maxValue(int) ms, s
polling_frequency minValue(int), maxValue(int) s−1, min−1, h−1, d−1

precision value(double) lx
data_range minValue(int), maxValue(int) lx

Table 3.1: Relevant QoS parameters for a lamp and a light sensor

3.2.2 Device Technology Catalog Creation

During device catalog creation, a set of device technologies (i.e., manufacturer
and/or model) are assigned to each device type. For each technology, the list of
QoS properties is instantiated together with a pointer to the plugin that can be
used to add the product to the app without any substantial development effort (i.e.,
the device integrations from Section 3.1). Absence of such a plugin means that
the app developer still has to bind the product to the application (i.e., develop the
device integration).

38 THE SMIOT ARCHITECTURE AND FRAMEWORK

Table 3.2 shows a device catalog for Lamps and Light sensors. Analogue tables can
be constructed for the other device types and products and can be reused across
multiple application domains. Note that some quality properties (such as brightness
of Lamps) can be extracted from the product specification. Others are defined by
experimental set-ups.

Lamps
Philips Hue Philips Hue IKEA

White White and Color TRÅDFRI
change_brightness 3 3 3
change_color 7 3 7
brightness 800lm 800lm 960lm
response_delay 1s * 1s * 1s *
plugin 3 3 7

LightSensors
Arduino Arduino

Bluetooth LoRa
with Grove with Grove

Light Sensor** Light Sensor** Versasense
response_delay – 1s * 1s *
polling_frequency [1s−1,∞[* [12h−1,∞[* [6min−1, 1d−1]
precision 1lx 1lx 0, 01lx
data_range [0, 2000lx] [0, 2000lx] [0− 16496lx]
plugin 3 3 3

Table 3.2: Device technology definitions for lamps and light sensors
*determined by experimental set-up

**http://wiki.seeedstudio.com/Grove-Light_Sensor/

3.2.3 Application Design

As described before, the application developer relies on technology-agnostic Virtual
IoT Device calls to interact with sensors and actuators. During application design, it
is still undefined which products will be coupled to the application. Device selection
occurs at deployment time and depends on the preference of the IoT ecosystem
owner. Some users or companies are willing to integrate very durable but expensive
technologies. Others prefer cheaper solutions.

By creating a configuration file, the application developer can define the requirements
for proper functioning of the application. The file contains the set of devices used
in the application, together with their requirements (QoSRequirements). Each
QoSRequirement contains the name of the property together with one or more

http://wiki.seeedstudio.com/Grove-Light_Sensor/

QUALITY OF SERVICE SUPPORT 39

{
"Lamp": {

"id": "meetingRoomLamp",
"QoSRequirement": [

{ "importance": "required",
"property": "max_response_delay",
"value": "2",
"unit": "sec",
"purpose": "bigger delays can cause safety hazards" },

{ "importance": "desired",
"property": "change_brightness",
"purpose": "changing room brightness",
"degradation": "no brightness modifications" }

]
},

"LightSensor": {
"id": "meetingRoomLightSensor",
"QoSRequirement": [

{ "importance": "required",
"property": "minimal_polling_frequency",
"value": "2",
"unit": "requests/hour",
"purpose": "historical data" },

{ "importance": "desired",
"property": "minimal_polling_frequency",
"value": "1",
"unit": "requests/minute",
"purpose": "automatic brightness control",
"degradation": "no automatic brightness control" }

]
}

}

Listing 3.1: Example QoS configuration file

values and units when applicable. Furthermore, the developer defines the criticality
of each quality property. This can either be required or desired. Required properties
are needed for proper functioning of the application. Failing to meet desired
requirements can result in service level degradation (i.e., functions might not be
available in the application, but they do not break the entire application). Lastly,
the developer can assign a purpose to each QoS requirement, and annotate the
specific service level degradation for desired requirements. Including this information
results in meaningful feedback towards infrastructure managers. The infrastructure
manager can then rely on both the device catalog and the configuration-file delivered
by the application developer for selecting the devices.

Listing 3.1 gives an example configuration file, it lists QoS constraints that can be
expressed by app developers in an application containing lamps and lightsensors.

40 THE SMIOT ARCHITECTURE AND FRAMEWORK

3.3 Integrating Internet of Things Devices

Previously, Virtual IoT Devices were introduced as a first-class software abstraction
in the SMIoT architecture. Each Virtual IoT Device represents a sensor or actuator
in the system. This software abstraction allows application developers to access
each edge device in an intuitive way. It means that application programmers are
not confronted with complex technology-specific communication handling or data
semantics. In fact, the complexity of accessing IoT device functionality is reduced
to calling methods with straightforward parameters on local objects.

Device selection is tackled by the device cataloging and annotating of the
requirements of the application.

However, coupling the devices to the application is yet another concern. For instance,
the application must have the right endpoint information (like name, address. . .)
and credentials to access the IoT device. Setting up an IoT device (i.e., deploying
and binding it in a concrete IoT ecosystem) cannot be done fully transparently.
The wide variety of IoT platforms and authentication/authorization technologies
complicates application binding.

This section classifies edge devices according to three categories, and shows how
each category can be modeled in the SMIoT architecture. Thereafter, we distinguish
three phases that must be foreseen to integrate edge devices in IoT ecosystems and
thereafter couple them to applications.

3.3.1 Access Types of Internet of Things Devices

IoT devices can be separated in three groups, based on the way to access the data
coming from the device. The proposed classification covers the wide majority of
edge technologies currently on the market.

Direct Access The platform on which the end user application is deployed directly
communicates with the IoT device. A prototypical example is a Bluetooth connected
smart watch. Direct communication setups are often applied in single user or ad-hoc
systems. Access control policies are often simple and static. Every application
running on behalf of a user in possession of the credentials can access all device
functions. The Virtual IoT Device virtualizes the physical device whereas the Virtual
IoT Connector handles the communication with the physical device. The Virtual
IoT Device passes the requests to its corresponding Virtual IoT Connector .

Gateway Mediated Device Access The user communicates with a gateway that
can act as a broker for the IoT device. Smart lamps (like Hue en Osram) that
are connected to a bridge are examples. There is only indirect access between the

INTEGRATING INTERNET OF THINGS DEVICES 41

application and the IoT devices. For instance, applications can only steer Philips
Hue lamps via the Hue bridge (i.e., the gateway) when they are on the same local
network. Virtual IoT Connectors support communication with the gateway instead
of interacting with the IoT device directly.

IoT Platform Access The end user application can communicate to a cloud
server to retrieve (historical) sensor data, or to actuate sensors. As with gateway
mediated access there is only indirect access between the application and the IoT
devices. Cloud platforms are often combined with one of the previous two access
types. The data provided by the cloud platform can be different to the data provided
directly by a device or a gateway, as it might already be aggregated. Users then have
the option to choose the best way to access the IoT device based on requirements
such as resource usage and sampling rate.

3.3.2 Integration Steps

Three steps often precede calling methods on local objects (i.e., device sensing or
actuation). The ultimate goal is to couple an IoT device to an application running
on behalf of a principal. During these steps access information and credentials are
brought into the scope of the application.

Enrollment During this phase, physical IoT devices are deployed in the IoT
ecosystem. The procedure is technology dependent. Thereafter, access information
(both endpoint/address info and credentials) is maintained (either locally or
centralized). Finally, each IoT device is linked to one or more assets. For instance,
a Philips Hue lamp can be coupled to a certain room. Similarly, a heart rate sensor
can be coupled to an individual. Enrollment typically occurs once per device, unless
some sensors are re-used in other settings after a while.

Registration During this phase, access information and credentials are brought
in the context of an application. The application interacts with a registrar that
passes the required access info and credentials after successful authentication of
the principal to the registrar. The registrar checks the access rights of the principal
before it grants permissions to the application.

Device Access After successful registration, the application can access IoT
devices. The application proves to be in possession of the required credentials. The
device can optionally further constrain access based on contextual information (such
as date, time and location). After successful access, the devices can be sensed or
actuated (i.e., methods can be called on Virtual IoT Devices).

42 THE SMIOT ARCHITECTURE AND FRAMEWORK

3.4 Framework Implementations

In this section, two frameworks are proposed to support developers in the
implementation of the Virtual Device Layer . The approaches are for different
platforms, the first one is an Android framework that can be used to build mobile
Android IoT applications. The second framework is a JavaScript framework which
can be used to develop various web applications.

The focus in this section is on the Virtual Device Layer . We don’t go into detail on
the Asset Layer because the work in further chapters have an influence on how the
Asset Layer is modeled.

3.4.1 Android Framework

This section presents a software framework that supports developers with the
implementation of the Virtual Device Layer . Although the framework presented in
this section specifically targets Android, a similar approach can be taken for other
platforms.

The source code of the Android framework can be found on
https://github.com/ilse-bohe/SMIoT-Framework

Figure 3.2 provides an overview of the file hierarchy of the framework. The
framework code is split in two folders: interfaces and implementations. The
former contains generic framework code and defines uniform interfaces to interact
with devices in an intuitive way (e.g., Lamp.java and TemperatureSensor.java).
The latter contains implementations of these interfaces for specific IoT technologies
(e.g., HueLamp.java and LightifyLamp.java). The interfaces are defined as abstract
methods in abstract classes.

For each type of device an abstract subclass of VirtualIoTDevice is defined
that specifies the interface. Two types of sensing interfaces can be distinguished:
request-based and monitoring. Request-based calls are used when a sensor value is
needed just once (e.g., requesting the temperature in a room). Monitoring is used
when a continuous stream of data is required (e.g., monitoring the heart rate of a
patient). With request-based interfaces, the application expects a single response,
while a call to a monitoring-type interface typically returns periodic responses.

The interfaces are defined as asynchronous. A callback parameter is added to each
method declaration. This shields the component or application developer from
the complexity of executing the interaction with IoT devices in a separate thread.
This is required since interaction with IoT devices can introduce delays that are

https://github.com/ilse-bohe/SMIoT-Framework

FRAMEWORK IMPLEMENTATIONS 43

g framework
g interfaces

VirtualIoTDevice.java
VirtualIoTConnector.java
OnRequestCompleted.java
OnEventOccured.java
g devices

Lamp.java
TemperatureSensor.java
...

g implementations
g lamps

g hue
HueConnector.java
HueLamp.java
...

g lightify
LightifyConnector.java
LightifyLamp.java
...

g ...
g temperaturesensors

g ...
g ...

Figure 3.2: File hierarchy of the Virtual Device Layer in the Android framework

undesirable on the main thread. The framework defines two callback interfaces,
one for request-based sensing/actuating (see OnRequestCompleted, Listing 3.3)
and one for monitoring (i.e., OnEventOccured, Listing 3.2). An instance of this
interface is passed as a parameter with each call to an IoT device by the application
or component developers. These instances handle the response from the IoT device.

public interface OnRequestCompleted<T> {
public void onSuccess(T response);
public void onFailure(Exception exception);

}

Listing 3.2: OnRequestCompleted callback interface for request based device
access

44 THE SMIOT ARCHITECTURE AND FRAMEWORK

public interface OnEventOccurred<T> {
public void onUpdate(T response);
public void onErrorOccurred(Exception exception);

}

Listing 3.3: OnEventOccured callback interface for monitoring based device access

Since the (type of) parameters required to initialize Virtual IoT Devices and Virtual
IoT Connectors is typically different for each type of IoT device, a set of keys
is defined by the developer that specify each parameter required to initialize the
Virtual IoT Device or Virtual IoT Connector . For the Virtual IoT Connectors, these
parameters will typically be related to the used communication and authentication
technology (e.g., Uniform Resource Locator (URL) or Bluetooth Media Access
Control (MAC) address). For the Virtual IoT Devices, these parameters will be
related to the identification of the specific device available on the connector endpoint
and also a Virtual IoT Connector instance itself. Note that, if multiple Virtual
IoT Devices reside on the same infrastructural element or are provided by the
same gateway or IoT platform they are linked to the same Virtual IoT Connector .
However, in case multiple infrastructural setups of the same technology are rolled
out, multiple Virtual IoT Connectors must be constructed. For instance, if multiple
Philips Hue bridges are deployed in a physical environment, a separate Virtual IoT
Connector is constructed for each bridge. Based on the initialization interfaces,
a generic device manager can automatically instantiate and initialize Virtual IoT
Devices and Virtual IoT Connectors based on configuration files containing the
required parameters.

A configuration file is kept by each application instance. Each configuration file
describes a subset of the IoT environment, namely the subset of elements that
are relevant for that application in a particular epoch. The latter means that the
configuration files may vary over time. Each file consists of a set of Assets, Virtual
IoT Devices and Virtual IoT Connectors. Virtual IoT Devices are coupled to Virtual
IoT Connectors and Assets. A sample configuration file is given in Listing 3.4.
Table 3.3 gives an overview of the parameters in the configuration file.

The location of configuration information depends on the specific ecosystem. A list
of all Virtual IoT Connectors, Virtual IoT Devices and Assets in the IoT ecosystem
can be kept centrally. However, this may negatively impact security and scalability.
Distributing configuration info may be likely in many settings. A subset of Virtual
IoT Connector , Asset and Virtual IoT Device settings are passed to the application
instances, and stored in a configuration file. A registration phase typically realizes
this step. Software objects are constructed in an application instance based on
the content of the configuration file. For instance, Virtual IoT Connectors can be
initialized based on the info in the configuration file. Also, Virtual IoT Devices

FRAMEWORK IMPLEMENTATIONS 45

Virtual IoT Connectors
systemId A unique identifier chosen by the system designers. This

identifier is technology-independent.
type A technology dependent type of the Virtual IoT Connector .
settings The settings needed by the Virtual IoT Connector to access the

physical device, gateway or IoT platform. These settings depend
on the technology and can contain values such as IP-address
and access token.

Virtual IoT Devices
systemId A unique identifier chosen by the system designers. This

identifier is technology-independent.
type The device type defines the sensor or actuator class to which the

Virtual IoT Device belongs. Examples are temperature-sensor,
lamp, lock etc.

technology A brand and model of the IoT device. It determines
the underlying implementation that must be loaded in the
application.

settings Settings for identifying the physical IoT device such as the
unique identifier or MAC address.

connector The corresponding Virtual IoT Connector the Virtual IoT Device
must be connected to, defined by the systemId of the Virtual
IoT Connector .

Assets
assetName A unique name identifying the Asset.
childAssets A list of Assets, defined by assetName, which are a part of this

Asset.
devices A list of Virtual IoT Devices connected to the Asset, defined

by the systemId of the Virtual Device.

Table 3.3: Paramters in the SMIoT configuration file

can be created and linked to Virtual IoT Connector objects. Finally, Assets can
be initialized, and each Virtual IoT Device can be added to the right Asset(s).
Replacing a physical device results in an update of the configuration file. The
application must be notified in case an infrastructural modification or update occurs,
and a delta configuration file must be stored in the context of the application.
Devices that no longer need to be accessible by the application can be removed
from the configuration file, and newly added devices must be initialized in the
application together with their Virtual IoT Connector– if not yet present in the
application. Thus infrastructural changes do not imply a change of the application
logic and no additional implementation effort is needed.

46 THE SMIOT ARCHITECTURE AND FRAMEWORK

{ "connectors": [
{ "systemId": "HGW1",

"type": "PHILIPS_HUE_CONNECTOR",
"settings": {

"ip": "<ip-address of Hue bridge>",
"authId": "<userToken>"

}
}

],
"devices": [

{ "type": "lamp",
"model": "PHILIPS_HUE",
"systemId": "LAMP1",
"settings": {

"uniqueId": "<philips hue unique device identifier>"
},
"connector": "HGW1"},

{ "type": "lamp",
"model": "HUE",
"systemId": "LAMP2",
"settings": {

"uniqueId": "<philips hue unique device identifier>"
},
"connector": "HGW1" }

],
"assets": [

{ "assetName": "Carehome",
"childAssets": ["Room1","Room2"],
"devices": []},

{ "assetName": "Room1",
"childAssets": [],
"devices": ["Lamp1"]},

{"assetName": "Room2",
"childAssets": [],
"devices": ["Lamp2"]}

]
}

Listing 3.4: Example configuration file for an Ambient Assisted Living (AAL)
system

FRAMEWORK IMPLEMENTATIONS 47

Developers can add new types of sensors or actuators by creating a new abstract
subclass of VirtualIoTDevice and defining the interface for that specific
device. Developers can add support for specific IoT devices by subclassing
the VirtualIoTConnector class and the abstract class(es) that define uniform
interfaces of the IoT device, defining the initialization parameters and implementing
the initialization and uniform interface methods. Support for IoT devices containing
one type of sensor/actuator is contained in one class. If an IoT device consists of
multiple types of sensors/actuators, a subclass for each sensor/actuator is created,
sharing the same virtualIoTConnector. The framework already contains support
for several IoT devices. Examples are Hue lamps and Osram lamps. Since the
framework defines asynchronous interfaces, the implementation needs to delegate
the interaction with the IoT devices to a separate thread and trigger the callback
when the operation is completed. To realize this, the implementations provided
with the framework use the RXAndroid framework, which is an Android port
of ReactiveX1. This framework gives fine-grained control over the execution of
operations on different threads. Since Android only allows User Interface (UI)
operations on the main thread, our framework uses RXAndroid to execute the
interactions with the IoT device on a worker thread while triggering the callback on
the main thread. The obtained sensor values can then be show in the UI by the
application developer, without overhead of inter-thread communication.

3.4.2 JavaScript Framework

This section describes a JavaScript framework to incorporate the SMIoT architecture
in an IoT ecosystem. As with the Android framework, although the framework
presented in this section specifically targets JavaScript, a similar approach can be
taken for other platforms.

The source code of the JavaScript framework can be found on
https://github.com/ilse-bohe/smiot-js

The main difference with the Android framework described in Section 3.4.1 is the
way Virtual IoT Connectors are implemented. In this JavaScript framework, Virtual
IoT Connectors are more generalized, they are no longer defined based on device
technology (e.g., Philips Hue, Versasense) but on communication technology (e.g.,
REST, Message Queueing Telemetry Transport (MQTT) and Bluetooth). A single
Virtual IoT Connector is thus used by devices of different manufacturers.

Different driver types can be defined. Examples are REST, MQTT and Bluetooth.
Each driver has a version, this to prevent broken code on driver updates. Each

1http://reactivex.io

https://github.com/ilse-bohe/smiot-js
http://reactivex.io

48 THE SMIOT ARCHITECTURE AND FRAMEWORK

specific driver is a subclass of the abstract class Driver and must implement
the four abstract methods, performWrite, performRead, performMonitor,
stopPerformMonitor.

For each device technology a configuration file must be provided. The configuration
file defines the parameters of a device, together with more information on those
parameters. It also defines the possible actions that can be taken on the parameters.
These actions are one or more of the following:

• read, to request a parameter value once.
• write, to write the value of the parameter.
• monitor, to request a parameter value multiple times.

Together with each action, the driver that must be used to complete the action is
defined. Settings used by the driver are defined, optionally with placeholders for
device specific settings such as id’s and IP-addresses. Then, to perform a read,
write or monitor action, the driver method performRead, performWrite and
performMonitor is used, respectively. Listing 3.5 shows part of the configuration
file for Philips Hue lamps.

The central point of the JavaScript framework is the central engine. This engine is
configured based on two configuration files. First, we have the configuration of the
IoT devices. Secondly, the configuration of the assets in the ecosystem. Listing 3.6
shows a device configuration file, that defines the devices in an AAL ecosystem.
Each device has an id and a type, a type corresponds to a device technology
configuration file. Settings are defined that are used by the drivers to communicate
to the physical device. Note that the settings of a specific device correspond with
the placeholders in the device technology configuration files. A UI could be provided
that dynamically creates the device configurations and asks the device manager
about the necessary settings.

The second configuration file that is used to set up the engine defines the assets in
the ecosystem. We are not going into further detail on these assets at the moment,
as they are covered in more detail in Chapter 4.

The configured engine can then be used to request devices and or assets and perform
actions on those devices and assets, respectively. As with the Android framework,
asynchronous communication calls to the IoT devices must be taken into account.
The Javascript port of ReactiveX can be used, and works with the same principles
as the Android port.

Listing 3.7 shows an example of of a device (lamp_1) being requested from the
engine, and being monitored.

FRAMEWORK IMPLEMENTATIONS 49

[
{ "parameterReference": "lightstatus",

"parameterTypeInfo": {
"parameterType": "Boolean",
"unit": null,
"validator": {

"type": "Boolean",
"values": null

}
},
"actions": {

"Read": {
"driverType": "RestDriver",
"version": "v0.0",
"settings": {

"request-type": "GET",
"access-point": "http://{ip}/api/{auth-id}/lights/{id}",
"interpreter": "return response.state.on"

}
},
"Write": {

"driverType": "RestDriver",
"version": "v0.0",
"settings": {

"request-type": "PUT",
"access-point": "http://{ip}/api/{auth-id}/lights/{id}/state",
"body": "{\"on\":<value>}"

}
},
"Monitor": {

"driverType": "RestDriver",
"version": "v0.0",
"settings": {

"request-type": "GET",
"access-point": "http://{ip}/api/{auth-id}/lights/{id}",
"interpreter": "return response.state.on"

}
}

}
},
{ "parameterReference": "brightness",

"parameterTypeInfo": {
...

},
"actions": {

...
}

},
...

]

Listing 3.5: Configuration file for Philips Hue lamps

50 THE SMIOT ARCHITECTURE AND FRAMEWORK

[
{

"deviceId":"lamp_1",
"type":"philips-hue-lamp",
"settings" :
{

"ip":"192.168.42.5",
"auth-id":"WpIBuOBDnR6s-TvM63sq1TFQ9AyqFehwMwDBSTXC",
"mac":"00:17:88:01:04:d2:9f:bb-0b",
"id": "1"

}
},
{

"deviceId":"lightsensor_1",
"type":"versasense",
"settings" :
{

"mac": "00-17-0D-00-00-30-E9-62",
"pid1":"9803",
"pid2": "9805"

}
},
{

"deviceId":"heartrate_1",
"type":"polar-bluetooth-device",
"settings" :
{

"mac":"A0:9E:1A:3B:37:60"
}

}
]

Listing 3.6: Example configuration file for the devices in an AAL system

import {Engine} from "smiot";

var engine = new Engine();
engine.setup('./configuration-files/assets.json',

'./configuration-files/devices.json');↪→

var lamp = engine.getDevice("lamp_1");

lamp.monitorParameter("lightstatus", value => {
console.log("lamp status is " + value)

});

Listing 3.7: Example JavaScript code to request and monitor an IoT device

USE CASE 1: AN AMBIENT ASSISTED LIVING ECOSYSTEM 51

3.5 Use Case 1: An Ambient Assisted Living
Ecosystem

This section applies the previously described architectural principles to the AAL
use case described in Section 2.4. We focus on the design of the Asset Layer
and Virtual Device Layer in the care ecosystem, based on the Android framework
described in Section 3.4.1.

The Virtual IoT Device Layer For each device type used in the AAL ecosystem,
a uniform interface is defined. For actuators, this interface includes all actions that
can be performed by that type of device. For example, Listing 3.8 provides the
uniform interface of a Lamp.

public abstract class Lamp extends VirtualIoTDevice {
abstract void turnOn(Callback<Boolean> cb);
abstract void turnOff(Callback<Boolean> cb);
abstract void changeColor(String clr, Callback<String> cb);
abstract void changeBrightness(int bri, Callback<Integer> cb);

}

Listing 3.8: Code example for the abstract class Lamp

As described in Section 3.4.1 each method has a callback (Callback<...> cb)
that returns the result of the call asynchronously.

In the case of a sensor, the uniform interface usually consists of two methods: one
for requesting the current value, and one for monitoring purposes over a certain
time interval. In Listing 3.9, the uniform interface for a heart rate sensor is provided.
Analogously a uniform interface is provided for the other sensors and actuators.

public abstract class HeartRateSensor extends VirtualIoTDevice{
abstract void requestHeartRate(Callback<Integer> cb);
abstract void monitorHeartRate(Callback<Integer> cb);

}

Listing 3.9: Code example for the abstract class HeartRateSensor

For each device technology type (i.e., model and vendor), a one-time implementation
effort is required to create an implementation that is compliant with the uniform
interface. If a specific sensor/actuator technology does not support a method of
the interface, an error is thrown.

The Asset Layer Using Figure 2.6, two parent Assets can be defined: the
Carehome and the Resident. The Carehome consists of three child Assets: the

52 THE SMIOT ARCHITECTURE AND FRAMEWORK

Bathroom, the Bedroom, and the Livingarea. On its turn, the latter has a
Kitchen and LivingRoom as child Assets. Each Asset includes the complete set
of all IoT devices that it can contain, and defines the API that is provided to the
Application Layer . Note that units are not required to be equipped with all devices
defined in the design. The Asset diagram is presented in Figure 3.3.

The Application Layer The Application Layer relies on the APIs defined in the
Asset Layer . Depending on the application instance (and thus the type of user),
a different subset of Asset APIs and Virtual IoT Devices is used. For example,
the application for the resident or caregiver receives configurations that allows the
application to load all Virtual IoT Devices related to one care home unit and one
resident, and provides functionality to sense and control all devices located in that
room. The maintenance application requires access to devices located in several
units. However, the set of device types they can access is limited to their current
assignment.

3.6 Use Case 2: Integrating Health and Activity
Wearables in Mobile Applications

In this section, together with the architectural principles, the QoS support is
validated by another Android prototype to monitor body parameters.

3.6.1 Approach

Our approach consists of three steps. First, technology agnostic interfaces are
defined. Second, an inventory of meaningful IoT technologies is built, and relevant
QoS parameters are assessed for each technology in the catalog. Finally, the plugins
are developed, at least for a subset of devices in the inventory. We concentrate
throughout the description on the domain of well-being and health, and especially
focus on how communication technology abstraction is established. The approach is
applied to heart rate sensors that can later be used for different purposes. However,
the approach can be applied for the integration of other sensors as well.

Technology Agnostic Interface Definition A uniform interface is defined for
each type of sensor. This interface is independent of the applied device technology
(i.e., the brand and model) and underlying communication protocol. In our example,
a uniform interface will be defined for heart rate sensors. Each interface consists of
a type-independent part for management and identification purposes, and a type-
dependent part that focuses on functionality. Generic management and identification
methods are assigned to a common Virtual IoT Device that can be inherited by
concrete sensor types. Three non-functional methods are assigned to a Virtual IoT

USE CASE 2: INTEGRATING HEALTH AND ACTIVITY WEARABLES IN MOBILE APPLICATIONS 53

0..*homes

1lives in

Carehome

- smartLock:SmartLock

+ lock(cb:CB<Boolean>)
+ unlock(cb:CB<Boolean>)
+ lightsOff(cb:CB<Boolean>)

Resident

- heartbeatSensor:HeartbeatSensor

+ getHeartbeat(cb:CB<Integer>)
+ monitorHeartbeat(cb:CB<Integer>)

Bedroom

- airQlt:AirQualitySensor
- temp:TemperatureSensor
- hum:HumiditySensor
- lamp:Lamp

+ lightsOn(cb:CB<Boolean>)
+ lightsOff(cb:CB<Boolean>)
+ monitorEnvironment(cb:CB<K,V>)

Bathroom

- airQlt:AirQualitySensor
- temp:TemperatureSensor
- lamp1:Lamp
- lamp2:Lamp

+ lightsOn(cb:CB<Boolean>)
+ lightsOff(cb:CB<Boolean>)
+ monitorEnvironment(cb:CB<K,V>)

Livingarea

- fallDetector:FallDetector

+ monitorFallDetection(cb:CB<Boolean>)

Livingroom

- airQualitySensor:AirQualitySensor
- temperatureSensor:TemperatureSensor
- lamp:Lamp

+ lightsOn(cb:CB<Boolean>)
+ lightsOff(cb:CB<Boolean>)
+ setLightScene(cb:CB<Boolean>)
+ monitorEnvironment(cb:CB<K,V>)

Kitchen

- airQualitySensor:AirQualitySensor
- temperatureSensor:TemperatureSensor
- lamp:Lamp

+ lightsOn(cb:CB<Boolean>)
+ lightsOff(cb:CB<Boolean>)
+ monitorEnvironment(cb:CB<K,V>)

Figure 3.3: Representation of the Asset Layer in an AAL ecosystem

Device. The method isReachable() checks whether the IoT device can be reached
from within the application. The methods connect() and disconnect() provide
the possibility to connect and disconnect the IoT device to/from the application

54 THE SMIOT ARCHITECTURE AND FRAMEWORK

respectively. Each of the aforementioned methods returns a boolean. For the
isReachable() method this boolean defines whether the IoT device is accessible.
The return value of the other methods connect() and disconnect() report about
the success or failure of the executed action.
The type-dependent part needs to be redefined for each device type. For example,
a heart rate sensor, body temperature sensor and an activity tracker have different
methods. Note that an implementation for this interface is needed for each device
technology. Each interface defines a uniform representation of the device’s functional
methods, together with its attributes and their type. In the case of a heart rate sensor,
methods will be foreseen to retrieve and monitor the heart rate. Some heart rate
sensors provide the heart rate in BPM and others in Hz. Our interface fixes the unit
(either BPM or Hz), and interface implementations must eventually convert sensed
values to meet the type definitions. The functional methods can be categorized
according to different characteristics. A distinction can be made between methods
requesting real-time data (RT) and historical (H) data. Applications requesting
real-time data often interact with the sensor directly, whereas historical data is often
available at an external source like a gateway or a cloud platform. Not all sensor
manufacturers necessarily support access to both real-time and historical data by
third-party apps. For example, in case of FitBit technology (like many other IoT
technology providers), external application developers can only request historical
data via the FitBit cloud platform. Direct access to real-time data generated by
the activity tracker is not supported for third party developers (due to closed APIs).
A second distinction can be made between request-based and monitoring methods.
Request-based methods are used when a (set of) sensor value(s) is needed only once.
Monitoring methods are used when a stream of sensor data sensed over a certain
time interval is beneficial. The functional methods that are defined for a heart
rate sensor are listed in Table 3.4. The method requestHR() is a request-based
method. It expects no input parameters and returns the real time heart rate value.
The monitoring method, monitorHR(), expects no input parameters and returns
the real-time heart rate value periodically until the unmonitorHR() method is
called. Finally, the historicalHR(startDate, endDate, granularityLevel)
method is a request-based method. As input parameters it requires a start and end
date (and time). The historical values within that time interval must be retrieved
with a certain granularity level. The latter defines the maximum acceptable time
interval between two successive values. The method returns a list of tuples containing
timestamps and the corresponding heart rate value. In case the sensor provider
does not support historical data, an error must be returned. An error can also be
thrown if the required granularity level cannot be met.

QoS Cataloging After the interfaces are defined, specific sensor technologies can
be coupled to the device types. Our sample catalog consists of one chest band, two
wristlets and one smart watch each sensing heart rate. The selected chest band is

USE CASE 2: INTEGRATING HEALTH AND ACTIVITY WEARABLES IN MOBILE APPLICATIONS 55

Method Param Result RT/H Type
requestHR - value RT request
monitorHR - value RT monitoring
endMonitorHR - - — —
historicalHR startDate list[dateValuePair] H request

endDate
granularity

Table 3.4: Functional Methods for a Heart Rate Sensor

Polar Polar Fitbit Garmin
H7 M600** Charge 2 Forerunner 35

Hardware Platform chest band smart watch wristlet wristlet
Real-time hr 3 3 7 7
sampling rate 1s*** 2.2s*** - -
accessibility Bluetooth Bluetooth - -
Historical hr 7 3 3 3
sampling rate - 5s 15s unkown
accessibility - Bluetooth Cloud Cloud
Accuracy* 1 0.7 0.2 0.5
Precision 1bpm 1bpm 1bpm 1bpm
Autonomy 200h 2d 5d 9d

Table 3.5: Selected heart rate sensor technologies
*compared to the Polar H7

**a dedicated application was deployed on the Polar M600 which makes real-time
and historical heart rates available via Bluetooth.

***from experimental results

the Polar H72. The wristlets are the Fitbit Charge23 and the Garmin Forerunner
354. The selected smart watch is the Polar M6005. The Polar H7 is a dedicated
heart rate sensor integrated in a chest band. Electrodes are used to measure the
heart rate. The accuracy of electrode technology outperforms the ones embedded
in writlets and smart watches. The latter contain an optical sensor to measure heart
rate frequencies. The Polar M600 is a smart watch running Wear OS6. Custom
wearable applications can be developed for smart watches running Wear OS. A
dedicated application that can retrieve the user’s heart rate and share these values

2https://support.polar.com/en/support/H7_heart_rate_sensor
3https://www.fitbit.com/en/shop/charge2
4https://buy.garmin.com/en-US/US/p/552962
5https://www.polar.com/uk-en/products/sport/M600-GPS-smartwatch
6https://wearos.google.com/

https://support.polar.com/en/support/H7_heart_rate_sensor
https://www.fitbit.com/en/shop/charge2
https://buy.garmin.com/en-US/US/p/552962
https://www.polar.com/uk-en/products/sport/M600-GPS-smartwatch
https://wearos.google.com/

56 THE SMIOT ARCHITECTURE AND FRAMEWORK

with other (mobile) platforms over Bluetooth has been developed and deployed on
the Polar M600.
A non-exhaustive but relevant set of quality properties are assigned to each heart
rate technology. The device selector can opt for a particular heart rate technology
based on those properties. The properties for the aforementioned technologies are
listed in Table 3.5. The Polar devices expose an open API to retrieve real-time heart
rate values. Although these values can also be retrieved by a closed application in the
Fitbit and Garmin technologies, those technologies do not expose an external API
to provide real-time heart rate values to third-party apps. Furthermore, historical
data is available via Bluetooth with Polar M600, and both Fitbit and Garmin expose
a cloud API. The precision and autonomy for each device were extracted from
the specification in the device manuals. Quantifying the accuracy is complex but
accuracy can be a decisive parameter in critical applications. To quantify this QoS
parameter, we assign a value x ∈ [0, 1] to this parameter for each device, and rely
on a comparative study that takes the Polar H7 as baseline (i.e., the accurary of this
chest strap is defined as 1). The accuracy of the other technologies is calculated as
a function of the overall variance v of the technology compared to the chest strap,
namely 1/(1 + v).

Plugin Development The interface must be implemented for at least a subset of
products in the catalog. The set of technologies that are selected highly depend on
QoS needs that are imposed by the applications under development. Thereafter, the
devices can easily be integrated in various IoT applications without any additional
effort by application developers. It is trivial that multiple implementations are
necessary if multiple device technologies are used. These device plugins can then be
packaged with the applications to let them function properly depending on the used
sensors and actuators. Alternatively, novel plugins can be added as new devices
come available.

Note that there is not necessarily a one-to-one mapping between Virtual IoT Devices
and physical devices.
On the one hand, one Virtual IoT Device can consist of multiple physical devices.
This strategy increases the reliability and/or the accuracy of the data received in the
application. Reliability can thus be improved in situations where a device fails. If
so, measurements can automatically be taken over by redundant devices. Similarly,
accuracy can be increased by fusing multiple sensor values. As certain sensor
technologies are more reliable than others, weighted averages can be calculated. For
instance, electrode-based chest heart rate monitors are more accurate than wristlet
monitors [51]. Incorrect device functioning can be discovered by comparing sensor
values of multiple devices. Multiple implementations can be foreseen, balancing
non-functional concerns like accuracy, reliability, performance, and battery power.
On the other hand, one physical device can be mapped to multiple Virtual IoT
Devices. In that case, the device must implement the interface of each Virtual IoT

USE CASE 2: INTEGRATING HEALTH AND ACTIVITY WEARABLES IN MOBILE APPLICATIONS 57

Device. For instance, in the AAL scenario, two Virtual IoT Devices can be defined,
namely a FallDetector and a VideoSensor. The former can be used to detect falls of
elderly people, and at least contains a method monitorFall(). The latter allows
relatives to access a video stream after a fall was suspected by the fall detector.
Fall detectors can be realized by various technologies, ranging from pendants [90],
over wrist bands [53, 57] to floor mats [38, 60]. However, a camera can be used
for both fall detection and video streaming. In this case, both interfaces need to be
implemented. Other examples are sensor kits[47, 71] to which multiple sensors are
plugged in.

3.6.2 Prototype

The proposed approach is applied to a health and wellness application integrating
heart rate sensing, monitoring and analytics as well as functionality supporting
maintenance purposes. Although multiple applications can easily be developed
that offer partial functionality, our prototype is representative for a wide range
of applications by integrating all functionality in one mobile application. The
application is developed in Android, the most used platform for health and activity
tracking applications [114].

IoT Care Application The mobile application can be split in three functional
parts. First, owners of the application can retrieve and monitor real-time heart
rate values. Second, historical values can be retrieved and passed to medical staff
after user consent. Finally, the application supports sensor (re)configuration. The
latter means that a heart rate sensor can be replaced by another sensor technology
meeting threshold quality requirements.

The heart rate sensors that are integrated in the prototype are the Polar H7 and
the Polar M600. The decisive selection criteria was the fact that real-time heart
rate data should be available to the app. The Fitbit and Garmin technologies
do not support that functionality. Moreover, a hybrid version was developed to
increase reliability. It allows to detect malfunctioning or disconnected devices rapidly.
Figure 3.4 depicts a part of the Unified Modeling Language (UML) class diagram for
the AAL system. The VirtualIoTDevice abstract class contains the three abstract
non-functional methods isReachable(), connect() and disconnect(). The
abstract class HeartRateSensor extends the VirtualIoTDevice and contains the
functional methods listed in Table 3.4. For both the Polar H7 and the Polar M600
an implementation is made of the HeartRateSensor class. Thus these software
components implement the abstract methods provided by both VirtualIoTDevice
and HeartRateSensor. A hybrid heart rate sensor is provided combining the
Polar H7 and the M600. This implementation increases reliability by providing
both sensors simultaneously. If one sensor falls out due to communication or
device failures, the remaining one can still be used to track the user’s heart

58 THE SMIOT ARCHITECTURE AND FRAMEWORK

�abstract class�
VirtualIoTDevice

+ isReachable(cb:ORC<Boolean>)
+ connect(cb:ORC<Boolean>)
+ disconnect(cb:ORC<Boolean>)

�abstract class�
HeartRateSensor

+ requestHR(cb:ORC<Int>)
+ monitorHR(cb:OEO<Int>)
+ unmonitorHR()
+ histHR(start:Date, end:Date, gran:Int, cb:ORC<List<dateValuePair>>)

H7HeartRateSensor

+ isReachable(cb:ORC<Boolean>)
+ connect(cb:ORC<Boolean>)
+ disconnect(cb:ORC<Boolean>)
+ requestHR(cb:ORC<Int>)
+ monitorHR(cb:OEO<Int>)
+ unmonitorHR()
+ histHR(start:Date, end:Date, gran:Int, cb:ORC<List<dateValuePair>>)

M600HeartRateSensor

+ isReachable(cb:ORC<Boolean>)
+ connect(cb:ORC<Boolean>)
+ disconnect(cb:ORC<Boolean>)
+ requestHR(cb:ORC<Int>)
+ monitorHR(cb:OEO<Int>)
+ unmonitorHR()
+ histHR(start:Date, end:Date, gran:Int, cb:ORC<List<dateValuePair>>)

HybridHeartRateSensor

+ isReachable(cb:ORC<Boolean>)
+ connect(cb:ORC<Boolean>)
+ disconnect(cb:ORC<Boolean>)
+ requestHR(cb:ORC<Int>)
+ monitorHR(cb:OEO<Int>)
+ unmonitorHR()
+ histHR(start:Date, end:Date, gran:Int, cb:ORC<List<dateValuePair>>)

Figure 3.4: The HeartRateSensor abstract class and its implementations

rate. The HybridHeartRateSensor nests both an H7HeartRateSensor and
M600HeartRateSensor, low-level connectivity implementations must therefore
only be carried out once for each physical device.

Listing 3.10 shows how a Virtual IoT Device is used. A heart rate sensor hrs
and text view tv are declared. When monitoring the heart rate sensor, the
newHeartRate is displayed in the text view on each update. In case an error occurrs,
the onErrorOccurred(Exception exception) method is executed. Note that
the listing clearly demonstrates that the application code is independent of the
device brand nor the underlying communication technology.

As the interfaces define asynchronous methods, the interaction with the devices

USE CASE 2: INTEGRATING HEALTH AND ACTIVITY WEARABLES IN MOBILE APPLICATIONS 59

must be executed on a different thread than the main thread. This is handled
by the virtual IoT device implementations and is transparent towards application
developers. This can be achieved using RxAndroid, an Android port of ReactiveX7

which is a Framework for asynchronous programming. RxAndroid makes it is easy
to pass device interaction to a worker thread while the result can be observed and
handled on the main thread.

HeartRateSensor hrs;
TextView tv;
//...
hrs.monitorHR(new OnEventOccurred<Integer>() {

@Override
public void onUpdate(Integer newHeartRate) {

tv.setText(newHeartRate +" bpm");}
@Override
public void onErrorOccurred(Exception exception) {

exception.printStackTrace();}
});

Listing 3.10: Code example for the use of the abstract class HeartRateSensor

Mobile Application Assessment The mobile application has been applied during
work-out sessions. Both the Polar H7 and the Polar M600 were coupled to the
mobile application to monitor a cyclist’s heart rate. The heart rates that were
returned by a prototypical bicycle ride of 20 minutes are depicted in Figure 3.5. The
time indicates the moment at which the heart rate was received by the mobile device.
It can clearly be seen that the values of the Polar H7 were received slightly earlier
than the values of the polar M600 (i.e., the Polar M600 has longer communication
delays). Also, the Polar H7 presents a higher frequency than the M600. Based
on multiple observations the frequency of both devices is calculated. The average
frequency of the polar H7 is 1 Hz. This means that the value updates approximately
every second. The Polar M600 has an average frequency of 0.45 Hz. Each 2.2
seconds an update is received from the Polar M600. During the ride presented
in Figure 3.5 connection was lost several times with the Polar H7. When using
the H7HeartRateSensor implementation for the HeartRateSensor this would
result in periods where no values are retrieved. The HybridHeartRateSensor
monitors both the H7 as the M600. Hence, heart rate values of the M600 are still
received even if the Polar H7 does not send out values anymore. This increases the
reliability and thus the user experience of the monitoring application. Note that an
AdvancedHybridHeartRateSensor implementation could bring the accuracy of
the sensors into account and calculate the heart rate more accurately.

7http://reactivex.io/

http://reactivex.io/

60 THE SMIOT ARCHITECTURE AND FRAMEWORK

0 2 4 6 8 10 12 14 16 18 2080

100

120

140

160

Time [min]

He
ar
tr

at
e

[b
pm

]

Polar H7
Polar M600

Figure 3.5: Heart rate values during a bicycle ride
3.7 Discussion

This section discusses the impact of more complex setups on the architecture and
deliberates several aspects that need to be taken into account when using the
architecture.

In many circumstances, multiple applications, possibly on behalf of different
stakeholders, require access to the same physical device. For many commercial
devices, it is not trivial to maintain connections to multiple applications. Examples
are many Bluetooth devices or other devices that wipe access tokens each time
another device authenticates. In those situations, it is often advantageous that an
IoT device remains connected to one application for a longer time. That application
can then act as a proxy for other applications. Hence, other applications are able
to retrieve sensor data or send actuation commands via the proxy application.
For example in the AAL ecosystem, a heart rate sensor can be connected to a
health application running on a resident device. Caregivers can request or monitor
those values via that proxy application. Similarly, a tablet that is mounted in a
fixed location in the living room can be persistently connected to lamps in a care
home. Both the resident and caregiver application can then control the lamps via
that tablet. In addition, the proxy approach can also improve the security level.
First, credentials to access edge devices can be stored in the context of the proxy
application. Hence, loading IoT credentials on multiple end-user applications is no
longer required, which improves security management. Moreover, this approach can
tailor access control to the needs of the IoT ecosystem and their applications.

Advanced access control can be incorporated by granting access based on a set of
contextual parameters such as the time and the role and identity of the principal.

Currently, commercial smartphone platforms support permission handling based on
user consent. Examples are permissions to access user data (i.e., contacts) and
system features (i.e., camera). Similarly, users controlling an IoT application would
benefit from a permission-based mechanism that regulates access towards the IoT

DISCUSSION 61

devices in the system. However, IoT applications, developed using the architecture
and framework, present a high level of dynamics and heterogeneity. Different
application instances installed form the same build can lead to totally different
types and technologies that need to be coupled. The static permission handling
currently provided by Android and iOS has shortcomings and are not sufficient to
provide the required fine-grained access control for larger IoT applications.

Several non-functional aspects related to IoT device selection (i.e., aspects other
than which IoT device interfaces are supported) have a significant impact on the
behavior of the application. Hence, it is not always possible to replace an IoT device
with any other device providing the same interfaces. Some applications require
a specific QoS from IoT devices to ensure the desired behavior. This is specified
via QoS parameters such as measurement resolution, latency, sampling frequency,
security, form factor and communication range. For example, IoT devices using
Low Power Wide Area Network (LPWAN) technologies typically have a longer
latency compared to devices using low-range communication technologies such
as Bluetooth. Depending on the use case a device with a specific measurement
resolution or latency is selected. For instance, for temperature monitoring in smart
city applications, an IoT device with long-range communication, low measurement
resolution and sampling frequency may be selected while these sensors are not
adequate for climate control applications. Other applications rely on advanced
features only present in a subset of devices. For instance, applications aiming at
creating various atmospheres in a room, rely on color and brightness. Not all lamps
support those properties.

The Virtual IoT Device framework makes abstraction of the monitoring frequency.
The system administrator can specify the frequency at which sensor values are
monitored. For IoT devices that support monitoring (i.e., publish-subscribe
messaging protocols such as MQTT [74]) this is typically defined as a parameter
on the IoT device. For devices that do not support these types of protocols,
the monitoring interface can be implemented via software-based polling by the
Virtual IoT Device. Although this enables more flexibility in the specification of
the monitoring frequency (i.e., the monitoring frequency can be provided as a
parameter to the Virtual IoT Device), it can negatively impact the performance of
the application (e.g., computational load, battery life). This is especially the case if
sensor values should not be monitored at a fixed frequency but only if they pass
a certain threshold (e.g., trigger an alarm if the temperature is too high). In this
case, polling also significantly reduces the battery life of the sensor.

The Virtual Device Layer and Asset Layer provide a high-level abstraction of
the underlying IoT infrastructure to application developers. In some cases, even
significant changes in the underlying infrastructure have no impact on the Application
Layer . For instance, presence of people can be detected either via infrared sensors or
via cameras. In some care homes, cameras are used for presence detection because

62 THE SMIOT ARCHITECTURE AND FRAMEWORK

they are also used for security services. In other care homes, infrared sensors are
selected for cost reasons. An application developer uses the same presence interface
on the Asset (e.g., Room), regardless of the underlying infrastructure.

Most applications contain both IoT and non-IoT related functionality. This is also
reflected in the interfaces provided by the Assets to application developers. For
example, care home applications typically require access to medical records of the
Resident. Hence, the IoT-related interfaces of Assets are often complemented with
interfaces supporting more traditional application-level operations.

For systems that are retrofitted to include IoT applications, often Assets can wrap
existing object representations and add the IoT-related interfaces to the already
existing functionality.

3.8 Conclusion

This chapter presented an IoT architecture to support application centric
development in IoT ecosystems. Taking into account the need for separation
of duties due to the mixed development skills in large development teams, a layered
architecture is proposed that decouples the applications from the IoT infrastructure.
The Virtual Device Layer contains virtualizations of the physical IoT devices and
presents intuitive interfaces to the upper Asset Layer . This Asset Layer contains
Assets representing items of interest in the ecosystem and also provides intuitive
interfaces to the upper Application Layer . Application developers can thus focus on
business logic, without taking into account the underlying device and communication
technologies. Device integration can be done at a later stage and is separated from
the application development. To maintain QoS, device cataloguing is proposed.
Depending on the proposed QoS requirements, the best applicable devices can be
selected. This ensures that reconfigurable applications can be developed that are
easy to maintain.

Based on the proposed architecture, both an Android and JavaScript framework are
developed and validated using the AAL use case. By developing a mobile application
for health and activity tracking, the work on QoS was also validated.

Chapter 4

Designing IoT Ecosystem
Environments

The content from this chapter is previously published in:

• I. Bohé et al. “Untangling the Physical-Digital Knot When Designing
Advanced IoT Ecosystems”. In: Proceedings of the 6th International
Workshop on Middleware and Applications for the Internet of Things
(M4IoT). UC Davis, CA, USA, 2019, pp. 1–6. isbn: 9781450370288

In a good Internet of Things (IoT) application, devices are made transparent to
the user. IoT applications originate from a higher goal. A fitness application, for
instance, is developed to monitor health and fitness parameters of a person. A
smart home application, on the other hand, is used to simplify user interactions in
a house. The goal of fleet management applications is to track and monitor trucks,
trailers and cargo. For the users of a fleet management application, it is hardly
ever of any concern if the location of a trailer is tracked using Global Positioning
System (GPS) technologies or using cellular location tracking technologies. From
the upper examples, we can deduce that users reason based on Assets.

A framework to support Asset-oriented development is already proposed in Chapter 3.
It is, however, of great importance that the environment is modeled in a proper
way. The dynamic nature of IoT ecosystems must be taking into account, as well
as the diverse skill set present in a development team.

63

64 DESIGNING IOT ECOSYSTEM ENVIRONMENTS

Contributions The work in this chapter presents an application-centric approach to
model and maintain scalable yet reconfigurable IoT ecosystems by applying three
key tactics. First, clear separation-of-duties between application designers and IoT
infrastructure managers improves manageability. Second, loose coupling between
business logic and IoT infrastructure advances reconfigurability. Third, we propose
late and selective binding of sensors and actuators to applications in order to achieve
favourable scalability, security and privacy properties. Note that our work mainly
focuses on cost-efficient integration of commercial-of-the-shelf (COTS) devices,
rather than building dedicated endpoint hardware. We demonstrate the impact of
our approach throughout the whole life cycle of an IoT ecosystem, and apply the
proposed tactics to the development and operations of an Ambient Assisted Living
(AAL) environment.

The rest of this chapter is structured as follows. Section 4.1 refines the scope and
elucidates the requirements. Section 4.2 describes the general approach. The impact
on the IoT environment and application design and development are discussed in
Section 4.3. Section 4.4 focuses on infrastructure management and operations,
followed by a discussion in Section 4.5.

4.1 Scope and Challenges

The methodology aims at supporting the development and maintenance of advanced
IoT ecosystems. Within that area, we especially focus on durable software
applications in edge systems. Opposed to centralized (or cloud) IoT ecosystems,
edge applications directly interact with the IoT endpoints or via a local gateway.
Durability means that the lifetime of the software applications need to survive the
IoT device lifetime. Malfunctioning or outdated sensors and actuators should easily
be replaceable by cheaper or more qualitative alternatives over time. Moreover, the
approach aims at facilitating the integration of COTS solutions in software systems.
The COTS component internals are thereby considered as black box. Finally, the
following assumptions are made at development time.

1. The specific structure of the physical world nor the IoT components and
technologies that are rolled out are known.

2. The device types can be modeled but knowledge about the specific instances
and the specific sensor instances (i.e., model and vendor) is lacking during
development.

SCOPE AND CHALLENGES 65

3. The application developers are no experts in IoT device and communication
technologies. They must be able to focus on application logic instead of low-level
communication functionality and data conversions.

The use case presented in Section 2.4 is also used in this chapter to clarify the
concepts. The rest of this section recites the major non-functional challenges when
modeling IoT ecosystems.

4.1.1 Non-functional Concerns

Scalability and (re)configurability are key non-functional concerns in our approach.
Both challenges bring along security and privacy requirements.
Scalability Taking into account the number of stakeholders, applications and IoT
devices that are rolled out, scalability can be expressed. In the AAL environment,
various stakeholders (elderly, relatives and caregivers) using different applications
interact with the physical world via a growing number of IoT sensors and actuators.
(Re)configurability Multiple reconfigurability dimensions can be defined. First,
multiple application instances are rolled out. Different assets and IoT devices are
coupled to each application. On top of that, various IoT technologies are used in
different environments. Second, application instances can evolve over time. Both
assets in the physical world as well as the IoT infrastructure are tailored to the use
case. The set of elderly people under supervision of a caregiver evolve, additional
IoT sensors rolled out or existing ones are often replaced or removed.
Security In edge oriented IoT systems, security can be complicated. Asset, IoT
device and credential management is no sinecure in distributed IoT ecosystems in
which a huge number of sensors and actuators are rolled out.
Privacy As sensitive data is collected and processed in many application domains,
it is important to consider the privacy of the user. IoT infrastructure deployed in
houses or attached to individuals collect a lot of personal sensitive information.
Similarly, IoT systems deployed in companies may collect and process a lot of
sensitive business data. User control and transparency became mandatory in recent
EU privacy legislation [44]. This implies, amongst others, that individuals need
to have control about the behaviour of their software applications. They need to
give explicit consent for data monitoring, and to be informed about the purpose of
personal data collection and processing.

4.1.2 Case Study

To demonstrate its applicability, our methodology is applied to the design and
operations of the AAL ecosystem, proposed in Section 2.4. Elderly people and
their residences are key assets in that perceived physical world. Elderly health and
activity parameters are monitored by means of body area sensors and IoT devices

66 DESIGNING IOT ECOSYSTEM ENVIRONMENTS

that are rolled out in their residences. Moreover, the ecosystem supports monitoring
and controlling of environmental parameters (like air quality, heat and clarity).

Two applications are developed in the AAL system. Elderly and their relatives
can interact with a Human Machine Interface (HMI) Application installed in the
residence to monitor well-being and control the residence parameters. Moreover,
caregivers can rely on a Mobile Application to control a restricted set of residence
and health parameters. Caregivers can only inspect parameters of the elderly people
and residences under their supervision, and only if they are present in the residence
of a particular individual, or in case of an emergency. Note that both applications
were implemented on the Android platform proposed in Section 3.4.1.

4.2 Modeling Approach

This section first introduces basic terminology. Thereafter, the architectural tactics
are discussed in details. Finally, a general overview is presented of the different
phases in a typical IoT ecosystem life cycle.

4.2.1 Basic Concepts

An IoT ecosystem defines a set of software applications running on behalf of users
(or principals) interacting with the physical world by inspecting and controlling
IoT devices (i.e., sensors and actuators). We define two perspectives on an IoT
ecosystem, namely a design perspective and an operational perspective. The former
refers to the modeling concepts, the latter to an instance of the model in specific
settings. A lot of concepts defined in the design perspective have a dual in the
operational perspective.

Design Perspective Operational Perspective
TypeAsset Asset
ModelEnvironment Environment
TypeDevice Device
Application InstanceApplication

Table 4.1: Dual concepts in the design and operational perspective
of the IoT ecosystem

The following concepts are defined in the design perspective.
TypeAsset An Asset Type defines an item of interest in the physical world for an
IoT ecosystem. Elderly, caregiver and residence are Asset Types in the AAL use
case. Similarly, truck, trailer, truck driver and cargo can be Asset Types in a fleet
management use case.

MODELING APPROACH 67

ModelEnvironment The IoT environment model includes the set of Asset Types and
defines relations between them, together with a cardinality. For instance, one or
more elderly live in a residence and a set of elderly are assigned to a caregiver.
Similarly, multiple cargo items can be coupled to a trailer which, on its turn, can
be assigned to a truck. A truck driver navigates a truck.
TypeDevice A Device Type defines a sensor or actuator type of interest in an IoT
ecosystem. Examples are lamps, air quality sensors, cameras and heart rate sensors
in the AAL ecosystem. Device Types can be coupled to one or more Asset Types.
If so, it implies that an Asset Type can be monitored or controlled by a particular
Device Type. For instance, one or more lamps and/or air quality sensors can be
coupled to a residence. Similarly, a heart rate sensor can be assigned to an elderly.
Application An Application defines a software application that interacts with the
physical world. A set of Application Policies can be assigned to an Application. An
Application Policy defines functional behavior of an Application expressed in terms
of (conditional) operations on Assets. Application Policies are independent of the
underlying infrastructure (i.e., Device Types).

Dual concepts are defined from the operational perspective.
Asset Each Asset defines a specific instance of an TypeAsset. For instance, both
Alice and Bob are elderly. Similarly, both R1 and R2 are residences.
Environment An Environment defines relations between Assets, and its
composition is restricted by ModelEnvironment. For instance, Alice lives in residence
R1 , Bob lives in residence R2.
Device A specific IoT sensor or actuator is defined by a Device. Each Device
belongs to a TypeDevice, is part of the IoT infrastructure and is assigned to at least
one Asset. For instance, an instance of a Philips Hue lamp is assigned to residence
R1. Similarly, an instance of a Polar heart rate sensor is assigned to the resident
Bob.
InstanceApplication An Application Instance defines a specific deployment of an
Application. Different caregivers can for example have different deployments of the
same Mobile Application.

4.2.2 Architectural Tactics

Three major tactics are applied throughout the whole life cycle of an IoT ecosystem.
They aim at tackling the concerns discussed in Section 4.1.1.
Clear separation-of-duties Between software designers, developers and IoT
environment managers, there must be a clear separation-of-duties. This improves
manageability of large-scale and reconfigurable IoT ecosystems. During the software
design phase, designers model the IoT environment Asset Types and relations
between them. IoT Device Types are modeled to meet the monitoring and control
needs of Assets in the physical world. The software developers can then, during
software development, get to work with the design to develop the Application.
IoT environment managers are responsible for maintaining an inventory of Assets

68 DESIGNING IOT ECOSYSTEM ENVIRONMENTS

and IoT Devices in a specific IoT environment, and for binding IoT Devices to
Assets. This happens during the deployment and maintenance phases. End users
(or principals) need to give informed consent before an Application can actually
start sensing or actuating IoT Devices.
Decoupling the software applications from the IoT infrastructure Decou-
pling facilitates reconfigurability and is favored by application-centric development.
This means that application developers focus on business logic from the early
design stages. Binding IoT infrastructure (i.e., specific IoT technology instances)
to the software Application is postponed to a later stage. This strategy is opposed
to sensor-centric development in which IoT device technologies are fixed in early
stages. Note that many sensor-centric IoT ecosystems lack flexibility and suffer
from vendor lock-in due to inferior design decisions. IoT device virtualization can
increase reconfigurability. Applying layered software architectural principles further
allow to separate business logic from IoT infrastructure, as described in Chapter 3.
Selective and late device binding Scalability and security are favored by enabling
selective and late binding. Five zones are proposed and depicted in Figure 4.1. Each
zone can reduce the number of sensors and actuators by a multitude.

1. IoT Infrastructure

2. Application View

3. Permitted Devices

4. Loaded Devices

5. Active Devices

IoT Device

Figure 4.1: Selective and late IoT device binding

1. The outer zone defines the complete set of IoT Devices in the IoT ecosystem
infrastructure.

The other zones are application-specific.

DESIGN AND DEVELOPMENT OF IOT ENVIRONMENTS AND APPLICATIONS 69

2. The Application view defines the subset of Devices that could be used by an
InstanceApplication. For instance, the Application view of Alice’s HMI Application
will only include her personal body sensors and the IoT infrastructure rolled out
in her own residence.

3. Zone 3 defines the subset of Devices in zone 2 for which explicit user consent
was given by means of a permission handling mechanism. Similarly, an end user
can also revoke permissions which moves Devices back to zone 2.

4. Zone 4 defines the subset of Devices for which configuration info (like access point
and credentials) is loaded in the application. This can either occur transparently
or via user interaction, but always after user consent.

5. The inner zone defines the subset of loaded Devices that are sensing or actuating
at a given time, possibly triggered by a contextual behavior defined in Application
Policies.

Selective sensing and actuation does not only improve privacy but can also help in
restraining resource usage (e.g., battery and memory usage).

4.2.3 General Overview

Our modeling approach is split in two phases. The first phase (presented in
Section 4.3) consists of environment and application design and development, and
results in practical output that can be applied during roll-out and operations. The
scope of output is presented in tables for clarity but design tool support to transform
the output to eXtensible Markup Language (XML) and JavaScript Object Notation
(JSON) format is propsed in Chapter 6. The second phase (presented in Section 4.4)
incorporates asset and infrastructure management and operations, and consists of
five steps.

4.3 Design and Development of IoT Environments
and Applications

Before an Application is designed and developed, the environment must be designed.
This is explained in detail and step by step in Section 4.3.1. After that, application
design can start, followed by the development of the Application (i.e., Section 4.3.2).

Figure 4.2 shows the steps taken during environment and application design and
development. A clear separation of duties can be established. Each step is either
assigned to the environment designer, or application developer. Application Design
can already start after the Domain Definition, as the applications logic is designed
device technology agnostic.

70 DESIGNING IOT ECOSYSTEM ENVIRONMENTS

Domain-Device Binding

Domain Definition Device Box Definition

State Definition

Environmment Design

Application Design & Development

¥ ¥

¥

¤

¤
¤ Application Developer
¥ Environment Designer

Figure 4.2: Steps to design and develop an IoT environment and application

4.3.1 Environment Design

The environment design consist of four steps, namely Domain Definition, Device
Box Definition, the binding between them in Domain-Device Binding , and lastly
the definition of States, which are explained further, in State Definition. As shown
in Figure 4.2 the Domain Definition an Device Box Definition are independent.

Domain Definition During the Domain Definition, the Environment Designer
defines the Asset Types (TypeAsset) in the IoT ecosystem under design, together
with the ModelEnvironment. The latter defines the relations between the Asset Types.
Figure 4.3 depicts the ModelEnvironment for the AAL ecosystem. Four Asset Types
are defined in the AAL ecosystem, namely Residence, Person, Elderly and
Caregiver. Both caregivers and elderly are persons. For simplicity, the current
model assumes that exactly one elderly person lives in each residence, and residences
are not further split in separate rooms. A caregiver is assigned to each elderly and
a caregiver may be assigned multiple elderly.

Multiple Parameters may be assigned to one or more Asset Types. Moreover, a
set of States can be assigned to some Parameters. Figure 4.4 depicts the Asset
Type-Parameter -State metamodel. Table 4.2 returns the Parameters together with
their accompanying TypeAsset, and the States these Parameters have in the AAL
ecosystem.

DESIGN AND DEVELOPMENT OF IOT ENVIRONMENTS AND APPLICATIONS 71

* 1

1

1

Person

Elderly Caregiver

Residence

Figure 4.3: ModelEnvironment in the AAL ecosystem

à
Asset

R
Parameter

¸
Value

�
State

0..N 1..N
1

1

0..N
1

Figure 4.4: Asset Type-Parameter -State metamodel

Parameters are either static or variable. In contrast to static Parameters, the value
of variable Parameters can change due to modifications in the physical world. A
static Parameter assigned to Residence is address. Similarly, name is a static
Parameter assigned to Person. Their value cannot be altered by a change that

Parameter TypeAsset State
address Residence -
heat Residence cold, normal, hot
clarity Residence dark, normal, bright
appearance Residence -
name Person -
presence Person, Residence present, absent
heartRate Elderly low,normal, high
healthiness Elderly normal, alarming
workStatus Caregiver work, free

Table 4.2: Parameters in the AAL ecosystem

72 DESIGNING IOT ECOSYSTEM ENVIRONMENTS

is caused by influences from the physical world. Variable Residence Parameters
are heat and clarity; heartRate is a variable Elderly Parameter . Note that a
Parameter can be coupled to multiple Asset Types. For instance, presence only
makes sense with respect to both Residence and Person (either a caregiver or
an elderly). Parameter Values can be grouped in States. Therefore, a discrete
and finite set of States can be assigned to a Parameter . A State declaration, if
specified, must be complete. Each Parameter Value then belongs to one of these
States. For instance, the clarity in a Residence can either be dark, normal or
bright. Note that it is not mandatory to couple States to each Parameter . Both
address and name are Parameters whose Values do not belong to a State.

Device Box Definition During the Device Box Definition step, the IoT Device
Types (TypeDevice) are modeled and kept in an inventory. As depicted in Figure 4.5,
each Device Type is either a Sensor or Actuator , and has one or more Parameters
assigned. For instance, heartRate is assigned to HeartrateSensor. Similarly,
brightness and color are assigned to Lamp. Some Parameters can be assigned
to multiple Device Types. For instance, the Parameter temperature is sensed by
TemperatureSensor and actuated by Thermostat.

R
Parameter

<
Device

¸
Value

Õ
Sensor

U
Actuator

1 1..N 1 1

Figure 4.5: Device-Parameter metamodel

Both Asset Types and Device Types have Parameters. For clarity, we make a
distinction between the two, However, Devices can be equated with Assets and
treated in the same way.

Domain-Device Binding During the Domain-Device Binding , IoT Device Types
(i.e., elements of TypeDevice) can be coupled to one or more Asset Types (i.e.,
elements of TypeAsset). For instance, a residence can have a lamp, light sensor and
temperature sensor. Similarly, an elderly can wear a heart rate sensor. A cardinality
(or cardinality range) must be assigned to each TypeAsset-TypeDevice binding. The
default cardinality is 1 and means that exactly one device of a certain type is coupled
to an Asset. For instance, we can define that each residence must be equipped
with exactly one thermostat. A cardinality range 0..1 implies that a thermostat

DESIGN AND DEVELOPMENT OF IOT ENVIRONMENTS AND APPLICATIONS 73

TypeDevice Sensor/Actuator Parameter
TemperatureSensor Sensor temperature
Thermostat Actuator temperature
LightSensor Sensor intensity
Lamp Actuator brightness, color
Camera Sensor videofeed
PositionSensor Sensor position
HeartrateSensor Sensor heartRate
FallDetector Sensor status

Table 4.3: TypesDevice in the AAL ecosystem

can be lacking. A 0/1..N cardinality means that none, one or more sensors of a
certain type can be assigned to an Asset. A residence could be equipped with
multiple light sensors, but it is not mandatory. Throughout the rest of this section,
we assume that all bindings between Asset and Device Types have cardinality 1,
however, increasing the cardinaliy to higher values is straightforward. Table 4.4
gives an overview of the TypeAsset-TypeDevice bindings in the AAL system, all having
a default cardinality of 1.

TypeAsset TypeDevice
Residence TemperatureSensor

Thermostat
LightSensor
Lamp
Camera

Person PositionSensor
Elderly HeartrateSensor

FallDetector

Table 4.4: TypeAsset-TypeDevice AAL bindings

During Domain-Device Binding the Parameters are also connected to IoT Device
Types. A binding implies that the IoT Device Type is used to inspect the
corresponding Asset Parameter if the former is a Sensor . An Actuator connected
to an Asset Parameter implies that an instance of the TypeDevice is used to modify
the Asset Parameter . For instance, a LightSensor inspects the clarity in a
Residence. The clarity in a Residence is controlled by a Lamp. Table 4.5 gives
an overview of AAL Parameter -Device bindings.

State Definition A set of non-overlapping States can be coupled to each Asset
Parameter . Furthermore, a State Definition is assigned to each State. Table 4.6

74 DESIGNING IOT ECOSYSTEM ENVIRONMENTS

Parameter TypeAsset TypeDevice
heat Residence TemperatureSensor

Thermostat
clarity Residence LightSensor

Lamp
presence Person, Residence PositionSensor
heartRate Elderly HeartrateSensor
healthiness Elderly HeartrateSensor

FallDetector
appearance Residence Camera

Table 4.5: Parameter -Device bindings in the AAL ecosystem

Parameter State State Definition
heat[R] cold R :: TemperatureSensor.temperature ≤ 15

normal 15 < R :: TemperatureSensor.temperature < 22
hot R :: TemperatureSensor.temperature ≥ 22

clarity[R] dark AVG(∀(R :: LightSensor).intensity) ≤ 20
normal 20 < AVG(∀(R :: LightSensor).intensity) < 100
bright AVG(∀(R :: LightSensor).intensity) ≥ 100

presence[P,R] present P :: PositionSensor.position
WITHIN R.address

absent presence[P,R] 6= present
heartRate[E] low E :: HeartrateSensor.heartRate ≤ 50

normal 50 < E :: HeartrateSensor.heartRate < 160
high E :: HeartrateSensor.heartRate ≥ 160

healthiness[E] normal heartRate[E] = normal
∧ E :: FallDetector.status = normal

alarming heartRate[E] = low
∨ heartRate[E] = high
∨ E :: FallDetector.status = fall

workStatus[C] work derived from a working schedule
free derived from a working schedule

Table 4.6: Parameter States in the AAL ecosystem
(R=Residence; P=Person; E=Elderly; C=Caregiver)

lists the set of State Definitions in the AAL system. Each State Definition consists
of a set of conditions or their negation that can be combined by logic operators. On
their turn, each condition includes a relational operator and operands. A relational
operator can be an (in)equality or more complex relation between operators (like

DESIGN AND DEVELOPMENT OF IOT ENVIRONMENTS AND APPLICATIONS 75

WITHIN in the present and absent State Definitions). An operand can be an
Asset Parameter (e.g., R.address), a Parameter of a Device that was coupled to an
Asset Parameter at an earlier stage (e.g., R::TemperatureSensor.temperature),
a Device Parameter value (e.g., 15, normal or fall), or another Parameter State
Value (i.e., normal, low and high). Having this knowledge, it can easily be seen
from Table 4.6 that the presence of a person P in a residence R depends on the
address of the residence R and the position of the PositionSensor that is
coupled to the person P. Similarly, the healthiness of an elderly E depends on
her heartRate State and the status of the FallDetector coupled to E. Note
that the formerly defined TypeAsset-TypeDevice bindings and their cardinality have
an impact on valid State Definitions. For instance, the heat in each residence can
be expressed in terms of the temperature sensed by the temperature sensor as we
assumed that exactly one temperature sensor is coupled to each residence. However,
if the TypeAsset-TypeDevice bindings would allow for one or more temperature sensors
assigned to the same residence (i.e., cardinality range 1..N), the heat state can be
determined as a function of the sensed temperature of all temperature sensors in
that residence. A feasible function would be a (weighted) average.

4.3.2 Application Design and Development

Based on the Environment Design, applications are created to support different
business logic functionalities. Access control, automation and data preprocessing
are several examples. Using policies, the working of these functionalities can be
defined in a user friendly way. In Chapter 5 this will be discussed in more detail.
For now, a high level access control example will be elaborated. First the policies
are specified, subsequently we dive deeper into the development of the application.

Application Policy Specification The set of Asset Parameters that can be
inspected and/or controlled for each Application in the IoT ecosystem are defined.
Table 4.7 gives an overview of the Application Policy specification for the two
Application in the sample AAL ecosystem. The HMI Application is managed by
an elderly EP (i.e., the owner of the residence where the application is deployed)
and consists of two versions. HMIv1.0 is a fully automatic application which does
not support any user interaction. In contrast, in HMIv2.0 elderly can interact
via an intuitive Graphical User Interface (GUI) (i.e. by pushing software buttons
or moving sliders). The Mobile Application is managed and used by a caregiver
CP. For instance, the residence’s clarity can be inspected and controlled by both
Application. Similarly, the residence’s heat can only be inspected and controlled
by the HMI Application, and the heart rate of an elderly can be inspected by
both theHMI Application and the Mobile Application. A set of conditions can
restrict inspection and/or control of Asset Parameters. Analogue to the State
Definitions, conditions can be concatenated by logic operators. Each condition

76 DESIGNING IOT ECOSYSTEM ENVIRONMENTS

HMI Application (principal: Elderly EP)
Parameter Action Condition
heat[R] inspect R→ Elderly = EP

control R→ Elderly = EP
[∧ heat[R] = cold|hot]*

clarity[R] inspect R→ Elderly = EP
control R→ Elderly = EP

[∧ presence[P,R] = present]*
presence[P,R] inspect E = EP ∧ R→ Elderly = EP
heartRate[E] inspect E = EP ∧ presence[E,R] = present

∧ R→ Elderly = E
healthiness[E] inspect E = EP ∧ presence[E,R] = present

∧ R→ Elderly = E
appearance[R] inspect R→ Elderly = EP

[∧ healthiness[EP] = alarming]*
Mobile Application (principal: Caregiver CP)
Parameter Action Condition
heat[R] never
clarity[R] inspect R→ Elderly→ Caregiver = CP

& control ∧ presence[CP,R] = present
∧ workStatus[CP] = working

presence[P,R] inspect C = CP ∧ R→ Elderly→ Caregiver = CP
healthiness[E] inspect E→ Caregiver = CP

∧ presence[E, R] = present
∧ R→ Elderly = E

heartRate[E] inspect workStatus[CP] = working
∧ E→ Caregiver = CP
∧ presence[CP,R] = present
∧ R→ Elderly = E

appearance[R] inspect R→ Elderly→ Caregiver = CP
∧ healthiness[R→ Elderly] = alarming

Table 4.7: HMI Application and Mobile Application Policies in the AAL system
HMIv1.0 is fully automatic and, hence, more restrictive. HMIv2.0 supports user

interaction. Additional constraints in HMIv1.0 are defined between []*.

DESIGN AND DEVELOPMENT OF IOT ENVIRONMENTS AND APPLICATIONS 77

either defines a relation between Assets (like C = CP or R → Elderly = E)
or a relation between Parameter States (like presence[E, R] = present or
healthiness[R→ Elderly] = alarming). Note that, in contrast to the State

Definitions, Device Parameters or their Values cannot be operands in Application
Policies. This implies that policy definitions are fully infrastructure agnostic. This
has many advantages. Application designers can focus on business logic and do
not need to have knowledge about the underlying infrastructure when defining
Application Policies. Also, modifications to the underlying IoT infrastructure do
not have an impact on the Application Policies. Finally, Application Policies can
easily be understood by end users. Note that HMIv1.0 and HMIv2.0 have slightly
different Application Policies. Additional conditions must be fulfilled in HMIv1.0
to inspect the appearance in a residence, and to modify the heat and clarity. The
additional conditions are defined between starred brackets (i.e., []*). For instance,
the fully automated HMIv1.0 will only control the temperature of the residence if it
is hot or cold, whereas the residence owner (i.e., the elderly EP) can always modify
the residence’s heat in the second version (i.e., HMIv2.0).

Application Development The IoT environment modeling and Application Policy
specification aim at facilitating application development. As demonstrator, both
the HMI Applications and the Mobile Application are developed in Android relying
on the software framework proposed in Section 3.4.1. The proposed structured
modeling approach guides the component layer implementation and virtual device
layer configuration.

The subset of Assets and Asset Parameters from the overall IoT environment
that need to be accessible and, hence, instantiated in an Application Instance
can easily be extracted from the Application Policies depicted in Table 4.2. The
relations between the subset of Assets in the AAL system can be derived from
Figure 4.3. Note, for instance, that caregivers C do not need to be defined in the
HMI Applications. In contrast, the Mobile Application Policies rely on the caregivers
(C), residences (R) and elderly (E). Similarly, it can occur that only a subset of Asset
Parameters need to be defined. For instance, defining the residence’s heat is only
relevant in the HMI Applications. Similarly, the subset of Device Types that are
required in an Application Instance can be extracted from the Application Policy
and the table that maps Asset Parameters and operations (i.e., inspect and control)
to Devices (i.e., sensors and actuators) and Device Parameters. It becomes clear
that temperature sensors, thermostats and fall detectors only need to be virtualized
in both HMI Applications. On the contrary, heart rate sensors and cameras need to
be imported in all applications. This implies that the uniform interfaces must be
imported, together with a set of plugins or at least a reference to a plugin store for
a particular Device Type. The former strategy, however, restricts the technologies
that can be rolled out in the IoT infrastructure. To increase openness and flexibility,
the plugins can be inserted at a later stage (i.e., at deployment time or even at

78 DESIGNING IOT ECOSYSTEM ENVIRONMENTS

runtime). Note also that the required links between the Assets and IoT Devices can
be extracted from the TypeAsset-TypeDevice bindings. For instance, in the component
layer, the elderly E is linked to a heart rate and positioning sensor in all applications,
whereas the elderly E is also linked to a fall detector in both HMI Applications.

4.4 Management and Operations

The stages defined in Section 4.3 focused on the modeling of meaningful Assets
and Devices within a particular domain, and on the design and development of
feasible applications within that domain. This section describes the steps that are
required to roll out and manage specific IoT ecosystems, consisting of Assets, IoT
infrastructure and Application Instances. We first show how Assets and Devices
are managed. Thereafter, we focus on the life cycle of two different application
instances that are rolled out in the IoT ecosystem.

To demonstrate the scalability of our approach, the sample AAL ecosystem consists
of numerous instances, namely 220 Assets, 3320 infrastructural elements (physical
Devices) and 120 Application Instances. We assume a commercial health provider
that employs 20 caregivers Cy with y ∈ [1, 20], and rolls out AAL IoT infrastructure
and applications. We assume 100 elderly Ex with x ∈ [1, 100] and 100 residences
Rx′ with x′ ∈ [1, 100]. Elderly Ex lives in residence Rx′ for x = x′. Each caregiver
Cy has responsibility over five elderly Ex with y = dx

5 e. Furthermore, each elderly
Ex maintains a HMIv2.0 Application Instance HMIx with x ∈ [1, 100], and each
caregiver Cy controls a Mobile Application Instance Moby with y ∈ [1, 20].

30 IoT Devices are rolled out in each residence Rx, namely 10 lamps LaRx
i and

10 light sensors LsRx
i with i ∈ [1, 10], 6 webcams CaRx

j with j ∈ [1, 6], and 2
temperature sensors TmRx

k with k ∈ [1, 2] and 1 thermostat TsRx . Furthermore,
each elderly E has three wearables, namely a heart rate sensor HrEx , a fall detector
FdEx and a position sensor PsEx . Each caregiver Cy is equipped with a position
sensor PsCy , possibly built into the mobile device. Note that the number of IoT
Devices of each type that are coupled to Assets is fixed for sake of clarity. For some
devices types, the cardinality deviates from the initial specification in Section 4.3
in which the default cardinality (i.e., 1) is applied for each binding. Increasing
the cardinality allows to show the scalability of the proposed approach. Modifying
the cardinality only has a minor impact on State Definitions in Table 4.6. For
instance, the clarity in a residence can be calculated by taking the average of the
light intensities of the 10 sensors that are deployed, and is no longer determined by
the light intensity of one light sensor. An analogue reasoning applies to the State
Definition of the heat in a residence. Note that taking cardinality ranges instead of
cardinality numbers would also lead to small modifications of the State Definitions.

MANAGEMENT AND OPERATIONS 79

4.4.1 IoT Ecosystem Management

The IoT Ecosystem Manager [82] is a software tool that keeps track of Assets, IoT
Devices and Application Instances in the IoT ecosystem. Although a centralized
commercial health provider currently runs the IoT Ecosystem Manager , and thus,
has a complete overview of Assets, Devices and Application Instances, it can be
extended for distributed asset and infrastructure management. The tool aims at
easing multiple IoT management tasks. First, it supports the IoT manager with
inventorying TypeAsset and their Parameters, and relations thereof. Each Asset
must belong to one of the formerly defined TypeAsset, and static Parameters (e.g.,
address or name) can be initialized. The IoT environment modeling restricts the
relations between Assets. For instance, each elderly Ex can only be coupled to
one residence Rx′ , and vice versa. Second, it keeps a catalog of supported device
technologies including a pointer to the corresponding plugin to invoke methods
from the virtual device layer. Third, it keeps an inventory of the IoT devices that
are rolled out in the physical world, together with their unique identifier, technology
instance, access point information and credentials. The TypeDevice restricts the
device types that can be integrated in the IoT ecosystem. Fourth, the tool supports
linking IoT infrastructural elements to Assets. The modeling phase restricts the
Device Types that can be linked to Asset Types. For instance, a light sensor can
only be coupled to a residence, not to an elderly or caregiver, due to constraints
imposed by the IoT modeling phase. Finally, the IoT Ecosystem Manager keeps
track of installed Application Instances, together with their principals.

Multiple queries can be performed on the inventory that can be applied to take
intelligent decisions in later phases.

Querying Asset Types The following query (Q1) returns the Asset Types that
are required in Application Instance AppX when the Application Policies PApp are
applied.

Q1:setTX
A ← needed_asset_types(AppX , PApp)

Note that Asset Types map to templates that are typically loaded during the whole
lifetime of the Application Instance AppX , and hence, need to be packaged with
the Application at install time. It can easily be derived from the Application Policies
that the elderly and residence Asset Types are needed in both HMI and Mobile
Application Instances whereas the caregiver template is only required in Mobile
Application Instance.

Querying Assets The second query (Q2) returns the set of Assets that need to
be accessible with respect to a particular Application Instance.

80 DESIGNING IOT ECOSYSTEM ENVIRONMENTS

Q2:setDX
A ← needed_assets(AppX , PApp[, cond])

The Assets can be derived from the Application Policies. For instance, one elderly
E and one residence R need to be accessible in each HMI Application. R refers
to the residence in which the HMI Application is deployed. The elderly E refers
to the inhabitant of residence R. Similarly, one caregiver C, five residences R
and five elderly E need to be accessible by each Mobile Application Instance. A
condition cond can be defined as an additional parameter of the query. It refers to
a (sub)set of assets that need to be accessible when that condition cond is fulfilled.
For instance, the query needed_assets(MobileCarol, PApp, presence(Carol, Ri))
returns the set of Assets that need to be accessible in the Mobile Application run
by a principal Carol if Carol is present in a certain residence Ri. The set contains
the principal Carol, the residence Ri and the elderly Ei living in that residence if
the caregiver Carol is responsible for elderly Ei. Otherwise, Ri and its inhabitant
Ei are not returned.

Querying Device Types Query 3 (Q3) returns the Device Types that are required
in Application Instance AppX when the Application Policies PApp are applied.

Q3:setTX
D ← needed_device_types(AppX , PApp)

The set can be derived from the needed Asset Types, the relevant Parameters
together with their operation mode (i.e., inspect and/or control), and the table that
maps Asset Parameter monitoring to Device Types. Accessing those Device Types
is required to enforce the Application Policies PApp. The query result determines
the plugins that should at least be loaded in the Application AppX when Application
Policies PApp applies.

Querying Devices Similarly to Q2, this last query (Q4) returns the set of Devices
that need to be accessible with respect to a particularApplication Instance, and can
be derived from IoT ecosystem management information optionally under a given
condition cond.

Q4:setDX
D ← needed_devices(AppX , PApp[, cond])

4.4.2 Application Instantiation

During Application instantiation, the code is packaged for a particular Application
Instance. Besides a common code base that is shared by all Application Instances
of the same type, a set of Asset Types, Device Types and Device plugins need to
be installed that may be different for each Application Instance. The set of required

MANAGEMENT AND OPERATIONS 81

Asset and Device Types can be derived from Q1 and Q3 respectively. One option
is to package all device plugins that correspond to a particular device type with a
given Application Instance. However, this may lead to unnecessary packaging of
plugins that are never used. An alternative is to execute Q4 on the Application
Instance without cond argument. Q4 returns the Devices that are currently rolled
out, and that might be accessible by the Application Instance during its lifetime.
Each Device is labeled with a technology attribute which refers to the plugin that
needs to be installed. The drawback of this approach is that Application Instances
must foresee a mechanism to load new plugins to deal with changes in the IoT
infrastructure over time. Our current Android prototypes applies the first option.
However, the footprint can be reduced considerably if a lot of technologies are
supported but hardly used in practice.

4.4.3 Permission Handling

Infrastructure owners need to give permission to Application Instances running on
behalf of principals to monitor and/or actuate physical devices. Multiple permission
handling strategies can be applied to achieve this goal. The HMI Application is
managed by elderly EP and needs access to multiple Devices that are owned by that
principal. By relying on the mobile platform permission handling mechanism, namely
asking informed consent the first time resources need to be accessed (e.g. accessing
Bluetooth or location tracking), coarse grained permission handling can be added.
Alternatively, consent can be given at application installation time, and each time
IoT device modifications occur in the physical world. The Mobile Application is run
by a caregiver and typically needs access to multiple sensors and actuators owned by
elderly E. Hence, asking consent to caregivers is not appropriate. Instead, elderly
can rely on a web interface in which they can give consent to Application Instances
running on behalf of certain caregivers to access a (sub)set of IoT Devices. The
rights are delegated to the Application Instances of the aforementioned caregivers.

Note that in the setting presented before, 3220 IoT Devices are rolled out in the
physical world. Each HMI Application Instance will ask permission to at most 32
IoT Devices, namely 3 attached to the elderly (i.e., 1 heart rate sensor, 1 position
sensor and 1 fall detector) and 29 installed in the residence (i.e., 2 temperature
sensors and 1 thermostat, 10 lamps and 10 light sensors, and 6 cameras). Each
Mobile Application Instance in our setting requests access to 141 IoT Devices,
namely the caregiver’s position sensor and 27 Devices per elderly under his/her
supervision. The Devices are 1 heart rate sensor, 1 fall detector and 26 Devices
installed in the residence of the elderly (i.e., 10 lamps and 10 light sensors, and 6
cameras). The sets can be derived by query Q4.

82 DESIGNING IOT ECOSYSTEM ENVIRONMENTS

4.4.4 Device Loading and Addressing Devices

Device loading is the process of retrieving the access and authentication data
required to successfully connect to an IoT sensor or actuator, and subsequently
perform operations on that Device. The data typically consists of technology and
communication type info, addresses and credentials. Some Devices are directly
accessible. Others are accessible only indirectly by applications via a gateway of via
the cloud. This implies that credentials can be (re)used to get access to multiple
sensors and actuators in some settings. This simplifies manageability at the cost of
security. The data can be gathered either from an external server, a local gateway,
user input or a combination thereof. Generally, device loading strategies can be
classified according to two categories, namely pre-loading and on-demand loading.
Pre-loading implies that access and authentication data is retrieved in the application
before the sensor or actuator is actually accessed by that application. This can
be done at start-up or at regular time intervals, which facilitates manageability at
the cost of security. Malware getting access to local application data can possibly
steal credentials that are never used by that application. On-demand loading only
retrieves access and authentication data when the application wants to connect
to a particular device. This often imposes stronger connectivity requirements
between credential issuers and end-user applications but leads to improved security
by applying the principle-of-least-privilege. Credential information can eventually
be erased automatically when no longer needed by the application. Pre-loading can
be supported by applying query Q4 with two parameters, namely the Application
Instance AppX and the Application Policies PApp. This query returns all devices
that will possibly be connected to AppX in the future, given the current IoT
environment (i.e., assets, infrastructure and relations between them). On-demand
loading can be supported by applying the same query Q4 with a third parameter,
namely a condition cond defining the current context. Note that the set of devices
returned by the second query is a subset of the devices returned by the first one.

Addressing devices can only occur after device loading. User input and Asset
Parameter States may trigger sensing and actuation. The triggers as well as
required implications on device operations can be derived from the Application
Policies. Although operations on an IoT device can be invoked as soon as it is
loaded, it is recommended to sense only if the predefined conditions are fulfilled,
both from privacy perspective (i.e., only retrieve sensor values when necessary) and
performance perspective (i.e., minimizing battery drainage).

DISCUSSION 83

4.5 Discussion

Our methodology is driven by the advanced reconfigurability needs of companies
developing sustainable IoT software applications in one of more verticals. Although
the AAL domain is used to demonstrate the feasibility, the design tactics can equally
be applied to other verticals like companies building advanced fleet management
software and smart factory ecosystems. Different customers within one vertical have
to manage distinct Assets, may prefer slightly deviating Application Policies, and/or
select alternative infrastructural elements over time. Cost-efficient reconfigurability
is a key concern.

Devices can be coupled to other Assets explicitly. For instance, a heart rate sensor
can be transferred to another individual. Recoupling can also occur implicitly by
redefining relations between Assets. For instance, connecting a trailer to given
truck automatically re-couples all sensors attached to that trailer to the truck’s
on-board Application Instance. Adding Assets to an IoT ecosystem or removing
them is straightforward but restricted by the environmental model. For instance, in
our proposed AAL model, an elderly should always be coupled to a residence. Also,
technology-agnostic policies can be defined per Application Instance. These policies
can easily be tuned to embrace specific customer demands without huge engineering
efforts. Many existing approaches group IoT devices and define actions that must
be taken when sensed values of devices within a certain group exceed pre-configured
values. Our policy language allows to express more complex conditions in terms of
Asset States. The Asset States are sensor/actuator-agnostic although often mapped
obviously to an IoT Device sensing or actuation operation. The heat State of a
residence Asset, for example, can be inspected by the temperature Parameter
of one or more TemperatureSensors. However, inspecting Asset Parameters can
be mapped to more complex sensing operations in which multiple Device Types are
involved. Inspecting the healthiness of an elderly relies on heart rate sensor and
fall detector values. Similarly, inspecting the residence’s clarity can be done by
fusing (i.e., averaging or weighting) values returned by multiple light sensors. This
implies that policies might change if the environmental model changes. Although
this occurs rarely, it can be triggered by specific customer demands. Section 4.4
already mentioned the impact of cardinality changes on the Application Policies.
In the aforementioned examples, we always applied cardinalities greater than zero.
However, the 0..N cardinality range is often applied in practice to support lacking
or broken IoT devices. This implies that no sensor values can be propagated to the
Asset Layer . Assets are often extended with an undefined State to tackle sensor
absence or failure.

Scalability is another key concern. Selective Device loading, sensing and actuation is
an important strategy that may also positively impact security and privacy. Table 4.8
and 4.9 can be generated automatically by the IoT Ecosystem Manager for various

84 DESIGNING IOT ECOSYSTEM ENVIRONMENTS

Application Policies, and shows the subset of Assets and Devices that need to be
loaded in each Application Instance if certain Asset States are fulfilled. The first
rows in each table shows the total number of Assets (i.e., 220) and Devices (i.e.,
3220), respectively, that are managed in the sample AAL IoT ecosystem. We see
that the number of Assets and Devices that need to be loaded in both versions of
the HMI Application never exceeds 2 and 32, respectively, which is for both less
than one percent. The maximum number of Assets and Devices that need to be
loaded by the Mobile Application is 11 (i.e., 5 percent) and 141 (i.e., 4.09 percent)
respectively. These numbers depend on the number of elderly that are allocated to
each caregiver.

Assets
C R E Total %

AAL IoT ecosystem 20 100 100 220 100
HMIv1.0 0 1 1 2 0.91
presence[EP , R] = absent
∧ healthiness[EP] = normal 0 1 1 2 0.91

presence[EP , R] = absent
∧ heat[R]= normal 0 1 1 2 0.91

presence[EP , R] = absent
∧ heat[R]= cold‖hot 0 1 1 2 0.91

presence[EP , R] = present
∧ healthiness[EP] = normal 0 1 1 2 0.91

presence[EP , R] = present
∧ healthiness[EP] = alarming 0 1 1 2 0.91

HMIv2.0 0 1 1 2 0.91
presence[EP , R] = absent 0 1 1 2 0.91
presence[EP , R] = present 0 1 1 2 0.91
Mobile 1 5 5 11 5.00
presence[CP ,R]=absent
∧ ∀i healthiness[Ei]=normal 1 0 5 6 2.73

presence[CP ,R]=absent
∧ ∃!i healthiness[Ei]=alarming 1 1 5 7 3.18

presence[CP ,R]=present
∧ ∀i healthiness[Ei]=normal 1 0 5 6 2.73

presence[CP ,R]=present
∧ ∃!i healthiness[Ei]=alarming 1 1 5 7 3.18

Table 4.8: Overview of the number of Assets that should be loaded minimally in
HMI and Mobile Application Instances under certain conditions to adhere to the

Application Policies defined in Table 4.7 in the sample AAL IoT ecosystem

DISCUSSION 85

Infrastructure
La Ls Ca Tm Ts Hr Fd Ps Total %

AAL IoT ecosystem 1000 1000 600 200 100 100 100 120 3220 100
HMIv1.0 10 10 6 2 1 1 1 1 32 0.99
presence[EP , R] = absent
∧ healthiness[EP] = normal 0 10 0 2 1 0 0 1 14 0.43
presence[EP , R] = absent
∧ heat[R]= normal 0 10 6 2 0 0 0 1 19 0.59
presence[EP , R] = absent
∧ heat[R]= cold‖hot 0 10 6 2 1 0 0 1 20 0.62
presence[EP , R] = present
∧ healthiness[EP] = normal 10 10 0 2 1 1 1 1 26 0.81
presence[EP , R] = present
∧ healthiness[EP] = alarming 10 10 6 2 1 1 1 1 32 0.99
HMIv2.0 10 10 6 2 1 1 1 1 32 0.99
presence[EP , R] = absent 10 10 6 2 1 0 0 1 30 0.93
presence[EP , R] = present 10 10 6 2 1 1 1 1 32 0.99
Mobile 50 50 30 0 0 5 5 1 141 4.38
presence[CP ,R]=absent
∧ ∀i healthiness[Ei]=normal 0 0 0 0 0 5 5 1 11 0.34
presence[CP ,R]=absent
∧ ∃!i healthiness[Ei]=alarming 0 0 6 0 0 5 5 1 17 0.53
presence[CP ,R]=present
∧ ∀i healthiness[Ei]=normal 10 10 0 0 0 5 5 1 31 0.96
presence[CP ,R]=present
∧ ∃!i healthiness[Ei]=alarming 10 10 6 0 0 5 5 1 37 1.15

Table 4.9: Overview of the number of IoT devices that should be loaded minimally
in the HMI and Mobile Application Instances under certain conditions to adhere to
the Application Policies defined in Table 4.7 in the sample AAL IoT ecosystem

The current implementation relies on a centralized server for Asset and Device
management. This is, however, no longer a feasible solution in open edge
oriented IoT ecosystems. Distributed Asset and infrastructure management leads to
improved security, privacy and availability properties. Local gateways manage access
and authentication information of locally installed sensors and actuators which
are be obtained by end-user applications after authentication and authorization.
Environmental and infrastructural changes are supported in the current prototype.
On applications start, Asset and infrastructure updates are loaded in the application.
Besides implicit updates, both theMobile Application and HMI Application interfaces
contain a button to instantly reload the more recent view on the IoT environment.
A request can be sent from the HMI Application to the management server to

86 DESIGNING IOT ECOSYSTEM ENVIRONMENTS

retrieve the most recent updates. Alternatively, updates are pushed immediately
to apps. Finally, we assume that the devices hosting the Mobile Application and
HMI Application are subject to Mobile Device Management (MDM) which allows
the commercial health provider to control the integrity of the applications. This
ensures that the specified Application Policies are enforced correctly.

4.6 Conclusion

In this chapter, we focused on design guidelines for application centric development
of IoT ecosystems. Keeping in mind the architecture presented in Chapter 3,
a distinction is made between the design and operational perspectives of IoT
ecosystems. The design perspective refers to the modeling concepts, the operational
perspective to an instance of the model in specific settings. A structured approach
helps us to build a complete model of the ecosystem that is technology agnostic and
considers scalability and reconfigurability. Based on the design, applications can be
developed at a high level manner using policies. Moreover, the approach facilitates
the redefinition of behavior of already existing applications and modifications in the
underlying infrastructure. Finally, the structured design also simplifies management
of the infrastructure and applications. Thus, not only the task of developers, but
also that of maintenance personnel is simplified by designing the ecosystem in a
correct and structured manner.

Chapter 5

Creating Advanced IoT
Applications

The content from this chapter is previously published in:

• I. Bohé et al. “Towards low-effort development of advanced IoT
applications”. In: Proceedings of the 8th International Workshop on
Middleware and Applications for the Internet of Things (M4IoT). Québec,
Canada - Online, 2021, pp. 1–7

• I. Bohé et al. “A Logic Programming Approach to Incorporate Access
Control in the Internet of Things”. Accepted at IFIP IoT 2022. Amsterdam,
the Netherlands

Despite the improvements brought by Internet of Things (IoT) frameworks and
modeling approaches, as the ones proposed in Chapter 3 and Chapter 4, respectively,
not all needs in IoT environments can be covered. Handling runtime dynamics,
such as device connectivity and dynamically fulfilling Quality of Service (QoS)
requirements, such as latency and energy usage, is usually not supported. Because
not every application has the same functional requirements, simply adjusting the
set of supported devices is not sufficient. It is necessary to look at how different
functionalities (i.e., access control, connectivity management and automation) can
be included or adapted easily. On top of that, seamless collaboration between these
different functionalities is of great importance for the proper functioning of the
applications. Logic programming languages are a great way to incorporate such
reasoning capabilities in the middleware.

87

88 CREATING ADVANCED IOT APPLICATIONS

Furthermore, it is clear that data is playing an important role in all kinds of systems,
including IoT systems [52]. Data can provide a lot of information about the system
and help to achieve different goals, i.e., listing available assets and determining the
root cause of a problem in the system. This, of course, on the condition that the
data can be easily retrieved from the system.

Logic programming languages have already been proven to be useful to retrieve
information (i.e., facts) from databases. Based on specified rules, data can be
deducted together with the available data in the database [35]. Moreover, the
querying abilities of logic programming languages make it possible to retrieve the
desired information without the need to define the type of information that can be
requested beforehand. In other words, when designing the system, the developer
must not have knowledge about the possible queries.

Unfortunately, the many examples of data breaches [16, 34] and the loss of privacy
represent a permanent threat. Several access control strategies have been developed
to help in securing the data. Although access control may seem conceptually
straightforward, its integration is often complex and error-prone. Over the years,
research on access control that harnesses logic is substantial: it has been used to
formally verify security properties; to explain, express and enforce access control
policies. While knowledge bases may house huge amounts of data and knowledge,
research on the use of access control within knowledge representation and reasoning
systems is very limited. As former research shows, logic easily lends itself in
expressing and enforcing access control policies. However, no structural approach is
available to enforce access control inside logic programs.

Contributions The contributions in this chapter are two fold.

First, we propose a reusable IoT reasoning middleware that supports application
developers in building dynamic IoT applications. It can be used on top of existing
IoT frameworks providing generic access to IoT devices, such as the one described
in Chapter 3. It comprises an event-based architecture running a logic reasoner
in the background. It hosts a number of IoT modules specially devised to handle
different functionalities, such as the handling of contextual changes, managing and
enforcing access control and supporting a full featured automation engine.

The logic reasoner is implemented using Prolog [81] and is the basis to add more
advanced intelligence to the IoT applications. It allows applications to automatically
infer knowledge and provides querying capabilities to gain insights in the IoT system.
Tasks such as root cause analysis can thus be performed based on real-time data
extracted from the system. Retrieving information from the systems state, such
as a list of all active devices in a certain room is trivial and requires no additional
programming.

REASONING MIDDLEWARE 89

To demonstrate its feasibility, the reasoning middleware has been integrated in a
server and mobile application. For the demonstrator, the middleware was built
on top of the JavaScript port of the SMIoT framework described in Chapter 3.
Nevertheless, other frameworks could be used as well.

Second, we presents a solution that evaluates access control policies during resolution
in logic programs, taking special care for impure predicates, (e.g., actions in the IoT
space). It provides a high expressiveness and fine-grained control of the program and
makes it a widely applicable approach. A deny as soon as possible strategy is used,
but decisions are postponed until they can be decided with certainty. Moreover, as
enforcement occurs during inference, the approach easily extends to the dynamic
case such as a reactive system (i.e., one that responds to external inputs). In this
approach, access rules are defined as part of the program logic. In other words,
the rules can take advantage of the program’s knowledge base. Hence, expressing
access control strategies, such as resource based, role based and relationship based
access control, is straightforward.

To validate and demonstrate the approach, an implementation is provided as a
Prolog meta-interpreter, named ACoP. It can easily be integrated in existing Prolog
programs with minimal effort. Overhead is limited to defining the access rules, also
in Prolog.

The remainder of this chapter is structured as followed. In Section 5.1 we describe
the complete construction and operation of the reasoning middleware. We also look
at how this can be implemented. In Section 5.2 incorporation of access control in
the middleware and more generally in logic programming languages is described.
Here, too, we go into more detail about the implementation. Both sections end
with a discussion.

5.1 Reasoning Middleware

Although many middleware frameworks, such as the ones described in Section 2.3,
make the applications ‘smart’ by adding automation functionality, almost none of
them take care of the dynamic nature of IoT ecosystems. The reasoning middleware
proposed in this section supports application developers in coping with the dynamic
nature of IoT systems and is designed with device availability and reliability in mind.
It allows to specify policies based on, for instance, connectivity and reliability, and
enforces them on-the-fly.

Automation in IoT systems is widely available. Reasoning in these systems, however,
is often static, limited to very basic event-condition-action rule handling and tightly

90 CREATING ADVANCED IOT APPLICATIONS

coupled to the framework (e.g., Home Assistant). To provide more advanced
reasoning capabilities, recent work suggests the use of more complex symbolic
reasoners [17, 21, 22, 65, 84]. Calegari et al. propose LPAAS, a logic programming
REST-based service for IoT Systems [21]. Machado et al. propose hybrid reasoning
based on compositional rules selecting the reasoner based on the context[65]. dos
Reis et al. present a semantic model and an IoT middleware service for data stream
reasoning[84]. The stream of events is enriched with semantic meaning.

Most of the reasoners above start from the use of ontologies to provide higher level
reasoning. Although our reasoning middleware may be extended to take advantage
of these ontologies, it is seen as a possible extension and not focused on in this
work.

The logic reasoner is not only involved in the extraction of knowledge. It is also
the backbone of our middleware, controlling event flow, dynamic processing and
reasoning. In other words, while most solutions are imperative programs that
interact with a reasoner for symbolic reasoning, our middleware is mainly a logic
program, that interfaces with standard (imperative) libraries when appropriate.

More importantly, taking advantage of the reasoning engine, our middleware provides
a number of building blocks, called IoT modules, that greatly simplify IoT application
development: an advanced automation module, a connection manager, a module
for access control and a module to manage assets.

5.1.1 Architecture of the Reasoning Middleware

The architecture consists of an event-based logic reasoning engine, hosting multiple
IoT modules. Figure 5.1 presents the architecture of the reasoning middleware.
Adhering to the principle of separation of concerns, each module implements
a particular functionality. Immutable event messages are used as a messaging
mechanism between modules and for communication with the external environment.
Using an event bus, each module subscribes for specific incoming event messages,
process them and may create new event messages as a result. The middleware is
developed in Prolog and the IoT modules are implemented as actual Prolog modules.
Each module provides an interface so that communication with it can take place.
Modules have access to a knowledge base containing general information such as
the environment state, and module specific rules and policies.

The configuration of the middleware defines the modules to be loaded. To
communicate with the application or the underlying IoT framework, an application
and device module are available. By default, new event messages are submitted to
the event bus, and, based on the configurations of the middleware, IoT modules
subscribe for event messages on that bus. The event bus allows multiple modules
to listen for the same events. For instance, both the automation module and

REASONING MIDDLEWARE 91

Application

Reasoning Middleware

IoT Framework

Knowledge base
1. Middleware

Configuration
2. Data Acceptance

Rules
3. Access Control

Policies
4. Automation Rules
5. Asset

Definitions
6. Environment

Configurations
7. Environment State
8. Connection

Policies

Application

Access ControlAsset-Device
Conversion Query

Automation

Event bus

Device

Data
Preprocessing

Connection
Manager

<
Device

Õ
Device Connectivity

Component

Figure 5.1: Structure of the reasoning middleware

asset-device conversion module (explained in Section 5.1.1.2) may be interested in
event messages containing data from an IoT device (i.e., update events). While
subscribing, each module passes a filter to the bus specifying the event messages
they want to receive.

The middleware builds upon the concept of assets, which represent items of interest
in the physical world (e.g., a room, a production line and a person). By using the
concept of assets, it is possible to develop the application independent from the
underlying IoT infrastructure, as described in Chapter 3.

To provide more control and flexibility, the application designer may choose to
configure a more hybrid architecture, combing the event-based with a flow-based
approach. For instance, to limit the event messages on the event bus (i.e., access
control module) or to split related functionality into reusable sub-modules. Through
this mechanism, IoT modules are easily added, replaced or adapted by modifying
the configuration of the middleware.

As shown in Figure 5.2, the middleware distinguishes itself from other IoT frameworks

92 CREATING ADVANCED IOT APPLICATIONS

in that it can be used on a multitude of platforms, going from IoT devices, mobile
platforms up to even cloud platforms. Although applications on each of these
platform have their own requirements, the framework provides features that are
useful for all of them.

Ãÿ
ß F

< < <

Middleware

Middleware Middleware

Middleware Middleware

Figure 5.2: A multi-platform IoT reasoning middleware for device, mobile and
cloud platforms

Moreover, due to the high number of IoT devices, fog computing, as described
in Chapter 2 is getting traction. This moves processing and intelligence from the
cloud towards the edge. Thus, support for effective reasoning and decision making
becomes required in all parts of the IoT ecosystem.

The main building blocks (i.e., events and IoT modules), will now be presented in
more detail.

5.1.1.1 Events

Events denote changes in the system. In the event-driven architecture, event
messages (henceforth called events) are used to notify these changes. In the
middleware, subscriptions are set up to register for event streams. For instance, a
module may subscribe to retrieve events asynchronously from a specific IoT device,
such as measurements or changes in the connectivity of the device. Likewise, an
application on top of the middleware creates a subscription to the middleware to
receive changes related to a certain asset or device managed by the middleware.
Note that the events associated with an asset (e.g., clarity change in a room) are
most-likely triggered based on events from its underlying devices (e.g., value change
in a light sensor). To control the application, next to these change based events,
the application also uses events to trigger certain functionalities in the middleware
(i.e., action and query events).

REASONING MIDDLEWARE 93

Several types of events are defined and described below. Events are defined by their
properties and consist of the following:

• type, either update, action, query or query-result (explained below).
• id, to uniquely identify the event.
• creation-time.
• creator of the event, being either the device that generated the event, the

user that sent the request, other application components or the middleware
itself.

• origin-event (optional) , specifying the id of the event that triggered the
event (e.g., the id of the subscription request in case of an update event).

• subject (optional), describing the entity to which the event information
is related. For instance, when new sensor data is received from a sensor,
the subject identifies the sensor. In the case of an action-event, the subject
indicates the entity on which the action must be executed.

Below, the different events are discussed in more detail, namely update events,
action events and query events.
Update events As IoT environments are highly dynamic, it is important to inform
the application of any change in the environment. Not only the monitoring of
sensor data is of interest, also the connectivity and reachability status of a device
is useful information. The type of information being updated is specified in an
additional update-property field. This simplifies filtering on these particular
types of update events. The currently supported property types are parameter,
connectivity and reachability. Upon a change of a sensor value, a parameter update
event is generated. The event is triggered when an IoT device presents a new value
for one or more of its parameters. In many IoT environments, the reachability
of IoT devices changes frequently. Reachability events are triggered to inform
the application when devices come in-range or go out-of-range. Likewise, the
connectivity state of IoT devices may change when devices connect or disconnect.
Connectivity update events allow the application to properly address such changes.

Parameter, connectivity and reachability related updates are discussed below:
Parameter Upon a change of device or asset parameters (described in
Chapter 4), a parameter-update event is generated. The event is triggered
when an IoT device presents a new value for one or more of its parameters.
For instance, after a subscription to sensor temp_sensor_ID1, the sensor
submits a temperature value of 24.8°C and humidity value of 45.4%. Besides
variable parameters, static parameters only change infrequently, due to explicit
modifications in the physical environment. Examples can be a change in the
name or polling time of a sensor. An example parameter-update event can be
seen in Listing 5.1

94 CREATING ADVANCED IOT APPLICATIONS

{
type: 'update',
id: '2cd3ae3f-100d-4cbd-...',
creation-time: 2020/01/01 16:40:00,
origin-event: 'f198ae08-be4d-4...',
creator: 'temp_sensor_ID1',
subject: 'temp_sensor_ID1',
update-property: 'parameter',
data:
[
{

parameter: 'temp_1',
value: 24.8

},
{

parameter: 'hum_1',
value: 45.4

}
]

}

Listing 5.1: Example parameter update event in the reasoning middleware

Connectivity In many IoT environments, the connectivity of IoT devices
changes frequently. Connectivity typed update events allow the application
to properly address connectivity changes. The IoT framework is responsible
for monitoring the IoT devices and submits connectivity update events to
the middleware. A device can either be connected or disconnected from the
application.
Reachability Similar to the connectivity-update events, the device reacha-
bility state may change often. These events are triggered when devices come
in-range or go out-of-range. Based on these events decisions are made to
manage device connections.

Action Events Action events are events created to trigger specific functionality.
They can be initiated both by the application and the modules defined in the
middleware. To support the use of a heterogeneous set of devices, actions should
be performed on assets instead of specific devices. For instance, when a user clicks
a button the application creates an action event to turn the light on in the dining
room, and submits it to the middleware. The asset-device conversion module (see
Section 5.1.1.2) listens to events for the dining room asset and transforms them
into new action events for the specific lamp configured for this asset. Subsequently,
the new action event is submitted to the underlying IoT framework. An example of
both action events can be seen in Listing 5.2
Query & Query-Result Events As mentioned before, the middleware uses a
Prolog reasoner. This reasoner takes care of the channeling of messages, filtering of
messages and rule handling. A strong property of Prolog, however, is its inductive

REASONING MIDDLEWARE 95

{
type: 'action',
event-id: '0a80f883-556a-4489-...',
creation-time: 2020/01/01 16:40:00,
creator: 'john',
subject: 'dining_room',
data:

{
parameter: 'lightning',
value: 1

}
}

{
type: 'action',
event-id: '5ddb9c75-c674-43bf-...',
origin-id: '0a80f883-556a-4489...',
creation-time: 2020/01/01 16:40:01,
creator: 'asset-device-conversion',
subject: 'lamp_ID2',
data:

{
parameter: 'on-off-status',
value: 1

}

}

Listing 5.2: Example action events in the reasoning middleware

reasoning. It allows us to query the knowledge base (including the policies and the
current state of the engine) and infer new conclusions. This does not require any
additional coding effort from the developer and allows a flexible and database-like
interaction with the IoT devices. Applications may use queries to obtain information
from the IoT network. Such queries may be very basic, retrieving the value of a
certain sensor, but also quite complex. As an example, Listing 5.3 shows a Prolog
query request to obtain the production line in which machines are in alarm, and
the corresponding machines in alarm.

?- prod_line(Line),
location(Machine, Line),
parameter_value(Machine, alarm, on).

Listing 5.3: Prolog query to obtain production lines and machines in alarm

Integrating the Prolog query into a query event gives the event described in
Listing 5.4.

96 CREATING ADVANCED IOT APPLICATIONS

{
type: 'query',
event-id: '5ddb9c75-c674-43bf-...',
creation-time: 2020/01/01 16:40:01,
creator: 'app',
query: 'prod_line(Line),

location(Machine, Line),
parameter_value(Machine, alarm, on).',

return:['Line', 'Machine']
}

Listing 5.4: Example query event to obtain production lines and machines in alarm

The return property defines which information should be returned. In this case, all
production lines (i.e., Line) and machines (i.e., Machine) in alarm are requested.
Since multiple solutions are possible, they are collected and returned in a single
query-result event of which an example can be seen in Listing 5.5

{
type: 'query-result',
event-id: '54a451b5-0f79-41bc-...'
origin-event: '5ddb9c75-c674-43bf-...',
creation-time: 2020/01/01 16:40:02,
creator: 'engine',
query-result: [['line_1','machine_1'], ['line_1','machine_2'],

['line_3','machine_7']]↪→

}

Listing 5.5: Example query-result event with production lines and machines in
alarm

5.1.1.2 IoT Modules

IoT modules, implemented in Prolog, are the workhorses of the middleware. Each
module either filters existing events, or creates new events as a result of its
functionality. Filtering happens, for instance, by the access control module which
only forwards user requests if they are allowed according to the predefined policies.
The automation module, on the other hand, may create an action event to switch
on the heating.

Events are asynchronous and come in unadvertised. However, some events require
a certain response to be returned to the client application. To prevent undefined
behavior, the middleware contains logic to detect cases where no response is
generated (i.e., a timeout-event is raised if a query event does not result in a
response event within a reasonable amount of time).

REASONING MIDDLEWARE 97

The core of the middleware is implemented in Prolog. It provides the routing of
events to the correct modules, implements the main IoT modules and keeps a
knowledge base on which reasoning can be done. The IoT modules are defined as
Prolog modules with a common interface. The interface with the core is specified
through a set of predefined predicates that each module provides, namely init/0
to initialize the module (where init is the name of the predicate and 0 the number
of variables) and handle/1 to allow the middleware to send events to the module
for processing.

For several operations such as automation and policies, a logic rule-based approach
is preferable. Nevertheless, the middleware easily adapts to support script based
modules. These modules are better suited for more computationally intensive
operations, such as aggregation of data or analytic processing.

To help IoT application developers in building applications, the middleware provides
a number of basic modules, each responsible for tackling specific challenges:

• connection manager
• access control
• data preprocessing
• asset-device conversion
• automation

Each of these modules will now be discussed.

Connection Manager The Connection Manager is responsible for the creation
and tear-down of communication channels with IoT devices. Connection policies
define rules on the type of channels that are set up with devices, potentially
depending on other environmental factors. For instance, the interval of polling
based subscriptions may be increased in case of a low battery level of the device.

When a subscription for parameter updates is requested, the connection manager
takes care of the communication channel but also makes a subscription for state
change events. When connection policies state to automatically recover a connection,
appropriate actions are taken as soon as the device comes in range. On the other
hand, connection policies may specify to only search for devices when certain
constraints are satisfied (e.g., only try to connect to certain devices when connected
to a specific network). The connection manager module monitors device connectivity
through the reachability and connectivity update events.

To determine the most suitable action to take, rules, which are stored in the
knowledge base, specify the constraints and requirements to manage connections.

98 CREATING ADVANCED IOT APPLICATIONS

The connection manager executes these rules and enforces related connection
policies.

In addition to the more general connection control, the module also offers a
functionality called automated source selection. Several IoT solutions provide
multiple channels to collect data from a device. Sometimes, data can be collected
both directly from the device, and via a cloud platform. Applications may benefit
when both channels can be used. If a device is in range, the data is retrieved
directly, and when no direct connection is available or the application needs data
store in the cloud, the application connects to the cloud, despite an increase in
latency or lower accuracy. This module allows to switch flawlessly between both,
without intervention of the application developer or the user.

Access Control In the Access Control module policies define who has access to
what information in the knowledge base and under what conditions. The module
supports both positive (allow) and negative (deny) assertions.

The access control module can in this way filter action events originating from the
application. The module consults the access control policies to determine if an
action may be executed. In case access is granted, it is forwarded to the event
bus. Otherwise, the module blocks the event. In the same way update, queries and
subscription requests can be filtered.

This approach allows for fine grained access control. Access can be limited to
specific parameter actions (e.g., monitor, read, write) on a device or asset, based
on contextual information, or even depending the current value of other device
parameters.

A full elaboration on how this is implemented in Prolog can be found in Section 5.2.

Data Preprocessing Parameter update events enter the system frequently. The
pace at which these updates come in, is not always under the control of the
middleware. When the size of the stream is too large, it could lead to unnecessary
or excessive processing. Depending on the data acceptance rules (e.g., to limit
processing in case of a low battery) and the requirements of the applications, events
are filtered to limit the number of events exposed to the middleware. For instance,
firing an update event may only be worthwhile when the value of the data changed
sufficiently or when it crossed a certain value.

The following types of filters are available:

• pass: all events are forwarded.
• value change: the value must change.
• absolute difference: the value change must be more than a fixed value.

REASONING MIDDLEWARE 99

• relative difference: the value change must be more than a value relative to
the range of the parameter.

• time difference: the time difference between two subsequent events must be
more than a fixed value.

• time delay : an update is delayed for a predefined amount of time.

The latter is a special type of filter, requiring a timer to wait for a predefined
time interval. If no new value arrives in the meanwhile, the value is accepted. In
Table 5.1 the conditions are formalized. By default, the value change filter is used.
Filters can be created to support more complex situations. For instance, the relative
difference filter can be combined with the delay filter, to prevent short bursts of
changes to be presented to the other modules or the application.

Filter Type Condition
pass true
value change xnew 6= xold

absolute difference |xnew − xold| ≥ x∆
relative difference |xnew − xold| ≥ p|xmax − xmin|
time difference |tnew − told| ≥ t∆
time delay no new value for a certain time t∆

Table 5.1: Formalized conditions of filter types in the data preprocessing module

Asset-Device Conversion The Asset-Device Conversion module is in charge of
the conversion of device related events into asset related events, and vice versa.
When modeling the IoT ecosystem based on the principles described in Chapter 4, the
asset definition module is used to translate device data into asset data. By defining
domain, device and state definitions and the binding between them, incoming events
are easily translated. The most basic integration of an asset (e.g., living room) simply
converts events coming from its underlying devices (e.g., light and temperature
sensor) into new events for the new resource and corresponding parameter definitions.
Action events performed on the asset parameters are converted into action events
on specific parameters of a device and forwarded to the device.

More advanced cases may consider to transform sensor data into a different
representation, e.g., from a temperature of 40°C to the state value hot, or include
specialized functionality that may be provided by the asset (e.g., to create a certain
mood in the room).

It is advised for other modules to define their functionality based on these assets.
This ensures that it is not necessary to update the policies and rules that depend
on the underlying devices in case a device is replaced. In fact, every device in the

100 CREATING ADVANCED IOT APPLICATIONS

system can be converted into a ’basic’ asset, and higher level assets are then defined
based on those ’basic’ assets. Replacing a device only requires to remap the new
device with the existing asset.

Automation As one of the most basic functionalities in applications, this module
supports automation. Basic Event-Condition-Action (ECA) rules are easily defined
using Prolog logic. Although in general, automation rules are triggered by events
coming from the underlying framework (i.e., update events), this module takes
advantage of the event-based architecture, and can listen for any event exposed to
the module, including user actions and events created by internal modules.

In automation, some actions should be triggered at specific moments in time.
Therefore, the module includes functions to register for timer events (at absolute
dates/times or by interval). Automation rules sometimes imply that a device is
monitored. For example, switching on the light in the room when it gets dark
implies that you need to monitor the clarity status of the room. In this case (based
on the asset state definition) the light sensor must be monitored. The automation
module takes care of this and will request a subscription for the asset or device
parameter to be sensed. Usually, this module outputs action events to perform
specific actions either in the middleware or on the peripherals.

5.1.2 Implementation of the Reasoning Middleware

The source code of the middleware with basic integrations of the IoT modules is
available at https://github.com/ilse-bohe/iot-reasoning-middleware

The middleware has been integrated in a combination of Javascript and Prolog,
and build on top of the JavaScript framework proposed in Chapter 3. This allows
for an easy integration of the demonstrator in both server (e.g., using Node.js)
and mobile applications. The middleware’s logic reasoning capabilities are provided
using Tau-Prolog [103], a lightweight, open source Prolog interpreter developed in
JavaScript.

The main Prolog program in the middleware (main.pl) is responsible for the routing
of events between the different modules in the reasoning engine. Connections define
how the main program needs to route messages. A custom interface (connector.js)
is developed to support communication between the Prolog and outer environment.
This allows events to be sent asynchronously from the application or device layer to
the reasoning engine and vice versa.

Performance Measurements. The middleware is tested on a basic manufacturing
use case consisting of multiple production lines with machines. A production line
has a state which can be set to start or stop all machines in the line. It also has an
alarm state which is active when at least one of the machines in the production

https://github.com/ilse-bohe/iot-reasoning-middleware

REASONING MIDDLEWARE 101

0 10 20 30 40 50
0

100

200

300

Machines per Production Line

Ex
ec
ut
io
n
Ti
m
e
(m

s)

action, 10 prod. lines
action, 1 prod. line
query, 10 prod. lines
query, 1 prod. line

Figure 5.3: Execution time for handling events in the reasoning middleware

line is in alarm. For the performance tests we measure the time needed to process
an action and a query event sent from the application to the middleware.

The action event starts the production line. The middleware translates the action
into starting all machines in that line. In Tau-Prolog the order of facts in the
knowledge base is important. For the tests with 10 production lines, we measured
the time to activate the last production line found in the knowledge base, giving us
the worst case execution time.

The query event is the event introduced in Section 5.1.1.1, and requests the
production lines and machines in alarm. The last machine in the last production
line is in alarm, giving us the worst case execution time for querying the lines and
machines in alarm.

Figure 5.3 shows the average time (in ms) to execute the events with respect to
the number of machines per production line. As can be seen, for action events,
the time increases linear with the number of assets. For an environment with one
production line it ranges from about 12 ms up to 162 ms for 1 machine and 50
machines, respectively. In case of ten production lines this ranges from 14 ms to
358 ms respectively. Adding additional assets to the knowledge base (no production
lines nor machines) has no direct impact on the execution time.

The time difference for answering a query event is less affected by the number of
machines in the production line. Only 1 event needs to be created for answering a
query event, independent of the number of machines in alarm, while for the action
event, a new event is created for each machine in the production line (i.e., up to
50 events).

102 CREATING ADVANCED IOT APPLICATIONS

The demonstrator has been developed using Tau-Prolog. This made it easy to
create a cross-platform demo for both a server and mobile application. The Tau-
Prolog reasoner can be used in small, non-time-critical, settings. For performance,
support or timing reasons, more established reasoners such as SWI-Prolog [111]
can be preferred. Tests with the reasoning engine using SWI-Prolog shows a clear
performance gain. As an example, executing the action event in an environment
with 10.000 production lines with a single machine only takes 15 ms, and takes
68 ms with 10 production lines and 10.000 machines each. This is due to several
optimizations integrated in SWI-Prolog.

5.1.3 Discussion

The main goal of the middleware introduced in this paper, is to support application
developers in building responsive, easy to maintain, and smart IoT applications.
Several modules have been proposed and specified, each taking care of certain
functionality useful in such environments. As discussed in related work, many
reasoning applications for IoT try to tackle the use of ontologies to enhance
reasoning capabilities. Although ontologies may indeed have interesting applications,
this paper demonstrates that even without adding these additional complexities,
including a logic reasoner in the middleware already adds important benefits to IoT
applications. An example is the querying capability, allowing application developers
to query the IoT system as if it were a database. While often very simple queries
may be sufficient, more complex ones may, for instance, support the integration of
root cause analysis in the IoT application.

Last but not least, the event based reasoning system was integrated using Prolog
as a backbone. While often Prolog is used as a service only for very specific
reasoning tasks, this papers shows that integrating a full featured IoT middleware
with complex reasoning in Prolog is a valuable alternative. It shows it is a viable
solution for many IoT applications, especially with the current drive towards edge
intelligence.

Future work. The use of Prolog also provides a number of other advantages. When
defining rules and policies, it is important that they are not in conflict with one
another. Although conflicts can be avoided by carefully drawing them up, a conflict
detection module as discussed in [5] could be integrated. Furthermore, despite
being very flexible, integrating fine-grained access control on query events remains a
complex endeavor. Extending the access control module with automated verification
of access control rules, and support for fine-grained filtering in the case of query
events is left for future work.

Currently, the custom configuration of modules, and their policies are written in
Prolog. Application users usually have no experience with programming languages,

ACCESS CONTROL IN THE REASONING MIDDLEWARE 103

let alone Prolog. Providing a basic, graphical interface for creating queries and
updating policies is desirable.

5.2 Access Control in the Reasoning Middleware

One of the important functionalities within the reasoning middleware is access
control. In this section, we will take a closer look at how this access control can be
added to the middleware. Moreover, we do not only focus on how access control
can be added to the middleware, but how access control can be injected into logic
programming languages, without taking into account the surrounding reasoning
middleware.

A straightforward approach would be to verify access control policies and remove
predicates that do not comply with those policies during consultation of a program.
This mimics standard access control to resources as a whole (e.g., a file). In logic
programs, however, access control can be much more versatile. Not only access to
data or entities can be controlled, but also access to knowledge (i.e., the reasoning
itself). Resulting in complex access control logic.

Intuitively, when access is denied, the knowledge should appear as nonexistent, and
the user only has a limited view on the knowledge base. In other words, queries
requiring inaccessible knowledge for its reasoning, do not return results. Otherwise,
they must produce the same results as if no access control were used. In that sense,
impure predicates require special care. Impure predicates result in side effects, when
the predicate is resolved [100]. For instance, consider the open(Lock) predicate
that opens the smart door lock, Lock. It is impossible to revert the side effects
upon backtracking. In the light of access control, it is therefore very important that
side effects only occur when allowed.

For many years, logic programming has been used to support access control [2,
59, 87]. Also more recent work takes advantage of formal logic to realize and
verify access control models. There are several established access control models,
ranging from easy to implement strategies, such as consulting an access control
matrix, over Rule Based Access Control (RBAC), to more complex strategies such
as Organizational Based Access Control (OrBAC) [28] and Relationship Based
Access Control (ReBAC) [42]. Huynh et. al defined an alternative strategy that
uses priority, modality and specificity to handle conflicts [54]. The multi-layered
access control model was implemented in both ProB and Alloy. ProB is a model
checking tool for the B programming language, helping the developer by detecting
errors in B specifications [62]. Similarly, Alloy is a language for describing structural
properties [56]. Both languages are thus suited for writing complex access rules
policies, free of conflicts. The work of Kolovski et. al., provide a formalization
of eXtensible Access Control Markup Language (XACML), using description logic

104 CREATING ADVANCED IOT APPLICATIONS

which is the basis for the Web Ontology Language (OWL) [59]. Now, XACML is a
widely used and standardized access-control policy language.

In the related work described above, the use of logic programming is limited to either
the specification, the design and/or verification of access control policies. The logic
programs are merely used as a tool or in the backend of a bigger non-logic-based
system. On the contrary, the proposed solution can be used inside logic programs
to enforce access control. Provided translation, however, rules written in B, Alloy
or XACML can be used by ACoP.

Sartoli et al. use Answer Set Programming (ASP) to implement adaptive access
control policies, allowing access control on incomplete policies and imperfect
data [92]. This approach is interesting as it can handle exceptional cases and supports
dynamic environments where former believes may conflict with new observations.
While the policies are specified and handled in ASP, the focus is also in providing
support as backend solution towards external systems.

Bruckner et al. present a policy system that allows to compile access control policies
in the application logic [20]. An automatically created domain specific language
is therefore cross-compiled into the host language. Although the system puts no
restrictions on the host language, it is unclear if it transfers to logic programming
languages as well.

To the best of our knowledge, ACoP is the first to provide a solution to apply access
control to logic programs. Hence, the focus of this section is on how access control
can be enforced on the reasoning of logic programs. It not only allows to control
access to data or entities, but also to control access to knowledge (e.g., rules).

Support for logic programming languages. Several logic programming lan-
guages exist. The proposed solution is validated by a Prolog implementation, and
can be integrated into existing Prolog programs. Nevertheless, the approach may be
extended to other logic programming languages as well. Examples are Datalog [68],
a subset of Prolog, or the more recent Logica [46], a modern logic programming
language for data manipulation. However, while in Prolog the meta-interpreter and
policies can be fully written in the language itself, writing a meta-interpreter for
Datalog and Logica may require more effort and the possibilities to define access
control rules will be more restricted.

5.2.1 General Approach of the Access Control Module

Access control is the act of ensuring that a user only has access to what he/she
is entitled to. It is usually defined in three levels, using an access control policy,
a security model and a security mechanism [87]. The policy expresses the rules
according to which control must be regulated. The security model provides a

ACCESS CONTROL IN THE REASONING MIDDLEWARE 105

formal model of the policy and its working, and the security mechanism defines
the low level functionality that implements the controls as formally stated in the
model. Generally, access control policies are defined in tailored languages such
as XACML [36]. They allow to express generic assertions about subjects and the
right to perform certain operations. Logic programs, however, naturally support
logic-based formulations of access control policies, providing clean foundations and
a high expressiveness. In fact, it merges both access control policy and security
model, into a single formal specification of the policy. In the remainder, we make
no distinction between both, and will use the access control policy to denote both.

In this work, access control policies are defined at the predicate level, by specifying
whether access to the predicate is allowed or denied. To ensure completeness (i.e.,
in case no authorization is specified), a default policy is used. Whether an open (i.e.,
default access) or a closed policy (i.e., default access denied) is used, is configured
at design time by the policy administrator.

Figure 5.4 shows the structure of a target logic program, protected by the ACoP
system. Queries sent to the ACoP system are resolved by the access control module
implementing the security mechanism. The burden of adding access control to
a logic program is very limited. Introducing access control to a target program
requires no changes to the program itself. It only requires the definition of the
access control policies and the configuration of the the access control module.

In the following sections, the policies and the access control module will be defined.

ACoP System

Access Control

Target Program Policies

Figure 5.4: Structure of the ACoP access control system

5.2.1.1 Access Control Strategy and Policies

The applied access control strategy in ACoP is the following: deny access as soon
as possible. Therefore, access must already be verified before the predicate is
being resolved, i.e., preliminary access control. If, based on the defined access
control policies, it determines that access is denied, resolution will stop. If it cannot

106 CREATING ADVANCED IOT APPLICATIONS

yet determine whether access is denied, an attempt will be made to resolve the
predicate. Once the predicate is resolved, access is verified again with the now
resolved predicate.

Inaccessible data appears as nonexistent. Thus, the user only has a limited view of
the entire knowledge base. Queries to inaccessible data do not return any answers,
while queries for accessible data should produce the same results as when no access
control is used. Note that this may result in a change of semantics: When no results
are retrieved, it may either indicate that no answers to the query exist, or that
the user has insufficient rights to access the information. This is to maintain the
privacy of the users. It can be compared with login systems, failed login attempts
should not indicate whether a user exists in the system or not.

In general, access control policies use a combination of an Object, being the resource
to which access is requested, and a Condition, defining the constraints that need to
hold before access is granted. Based on the type of conditions that can be specified,
different access control models exist (e.g., attribute-based, role-based, rule-based,
discretionary or mandatory access control). For instance, conditions may relate to
the subject, the current context and the allowed operations.

In ACoP, objects are represented by predicates, with no restrictions on how conditions
are defined. In other words, any access control model can be supported. The object
of an access policy is either allowed or denied, depending on customised conditions.
Basically, allow and deny access policies, are defined using the syntax shown in
Listing 5.6

allow(Pred(...)) :- <conditions>.
deny(Pred(...)) :- <conditions>.

Listing 5.6: Access policy syntax
Positive and Negative Policies The permission of an access policy is either
positive (allow) or negative (deny), granting and refusing access to the predicate
respectively. Pred is the target predicate (defined or used in the Program) to which
the permission applies, i.e., the access rule’s object. The predicate may contain a
number of atoms as arguments to constrain the applicability of the permissions,
others may be left open (i.e., remain variable).

Optional conditions define under what circumstances the permission applies.
These conditions may contain custom logic, or refer to predicates defined by the
target program. Sometimes, a permission is not based on the validity of a predicate
in a target program, but on whether access to that predicate is granted. Therefore,
the predicate access/1 is introduced. This predicate allows to verify if access is
granted to a predicate in the target program.

ACCESS CONTROL IN THE REASONING MIDDLEWARE 107

Multiple permission rules may be defined on the same predicate, both allow or
deny, and with different conditions or arguments. The access control module will
correctly resolve the potentially conflicting policies, based on the configured access
control strategy.

By supporting both allow and deny policies, ACoP allows for more fine-grained
rules, in contrast to whether only one type of permission can be specified. In
Listing 5.7, the specification of some example access control policies is given for a
manufacturing environment. The predicate current_user/1 requests the identifier
of the entity issuing the request to access the object of the policy. The policies are
the following. In general, a machine M is accessible to the manager of the production
line in which the machine is located (policy 1). Starting a machine M is permitted
when access to the machine itself is allowed (policy 2). However, starting a machine
during night time is prohibited (policy 3). Hence, policy 3 further restricts policy 2.

% policy 1
allow(machine(M)) :- current_user(U), line_manager(U,P), location(M,P).
% policy 2
allow(start_machine(M)) :- access(machine(X)).
% policy 3
deny(start_machine(M)) :- night_time.

Listing 5.7: Example access control policies in a manufacturing environment
Completeness For completeness, it is required to resolve authorization when no
permissions are defined. Therefore, ACoP can be configured for either an Open
or a Closed policy. In an open policy strategy, access is granted by default, while
in a closed strategy, access is denied. In traditional access control systems, closed
policies are custom as a fail-safe alternative when no permission is defined. However,
in logic programs, it could make sense to use an open policy. For instance, in a
reactive system controlling a robot, all reasoning is by default allowed, except for
the predicates that are used to control the robot.
Conflict Resolution To ensure consistency, proper conflict resolution is required.
The meaning and resolution of permissions depends on the strategy in use. In a
closed policy, one should define allow policies to provide access to predicates. In
other words, accessible predicates must be ‘allow listed’. To support a more fine
grained allow listing, deny policies may overrule accessible predicates. As shown in
Figure 5.5, a deny policy may partially overrule one or more allow policies at once.

The opposite reasoning applies for an open policy. Deny policies restrict access to
predicates (deny listing). Analogous to the closed case, allow policies may overrule
the deny policies, and make access less stringent.

This also defines how conflicts are resolved. When access is granted by default,
this is also what takes precedence in case of a conflict. Contrarily, when access is
denied, denial takes precedence.

108 CREATING ADVANCED IOT APPLICATIONS

Closed Policy
Allow

Allow
Deny

Figure 5.5: Venndiagram depicting allowed or denied predicates (•) for a closed
policy

Controlled Reasoning In traditional systems, access control only applies to
resources. In contrast, in logic programs, access control can be extended towards
its logic rules. When no explicit permissions were found for a certain predicate,
ACoP can be configured to infer permissions based on logic rules defining the
predicate. In the following, this will be denoted as body resolution. This is achieved
by scanning the knowledge base for clauses that define the predicate P. Permissions
for P are inferred from the predicates defining P (i.e., the body). Permissions for
the defining predicates may also be derived from their definition, making access
control a recursive process.
Compound Statements Access on a compound statement depends on the
accessibility of the predicates in the statement. Therefore, a conjunction of
predicates is allowed when each predicate is accessible, while in a disjunction
at least one of the predicates must be accessible. This also reflects what would
happen in the ‘absence’ of certain knowledge.
Impure Logic A straightforward approach to integrate access control into logic
programming would be to check for each resolved predicate used during inference,
whether it is allowed to be accessed, and only proceed if it is. Otherwise, it fails
and proceeds by backtracking. This approach would work in pure logic, but fails
as soon as impure predicates are involved. The problem with impure predicates is
that during resolution of the predicate, side effects can take place which cannot
be undone during backtracking. Since access control is particularly relevant for
applications where logic programs interact with external processes, e.g., sending
instructions to a robot, controlling an actuator in a house, etc., it is important to
cover this case. Applying access control should be transparent and handle a query
as if the knowledge were absent. Access to an impure predicate must therefore be
checked before side effects can take place. Hence the preliminary access control
and the default strategy to deny access as soon as possible.

ACCESS CONTROL IN THE REASONING MIDDLEWARE 109

5.2.1.2 Terminology and Working Example

Before elaborating the process step by step, the terms subsumption, unification and
resolution that are often used in the context of logic programming are explained
in more detail. A working example in the field of smart manufacturing, used in
Section 5.2.1.3, is presented. Note that in a predicate definition an upper case
letter denotes a variable and a lower case letter denotes an instantiated value.
Subsumption A predicate A subsumes a predicate B if the predicate A can
be made equivalent to B by only instantiating variables in A. For example
location(M,P) subsumes location(m1, P) as the former can be made equivalent
to the latter by only instantiating variable M to m1. The predicate location(M,p1)
does not subsume location(m1,P) because, in order to make the predicates
equivalent, also variables in the second predicate must be instantiated.
Unification A predicate A is unifiable with a predicate B if A can be made
equivalent to B by instantiating variables in A and/or B. Similarly a predicate A is
unified to predicate B if all variables are instantiated to make A equivalent to B.
The predicate location(M,p1) is unifiable with location(m1,P) by instantiating
the variable M to m1 and variable P to p1. After unification both predicates are
equal (i.e., location(m1,p1)).
Resolution During resolution of a predicate, a logic program recursively searches
for terms in the knowledge base that unify with the predicate. After resolution the
predicate is resolved. If no unifications can be found, resolution fails. For impure
predicates, this is also the moment that side effects occur.
Working Example Listing 5.8 presents the working example. It consists of
machines located in production lines controlled by a line manager. The impure
predicates in this example are start_machine/1, which sends a request to start a
machine, and request_state/2 to request the current state (on/off) of a machine.

5.2.1.3 ACoP Mechanism

To integrate the above access control strategy, ACoP defines a security mechanism,
able to enforce permissions on predicates. The rules are applied dynamically during
logic inference of a query. It intervenes the normal execution by verifying access
during resolution.

Figure 5.6 visualizes the logic used to resolve a single predicate based on its access
control policies. The same scheme is used for both the open and closed policy
strategy, and with or without body resolution. Each step for resolving a predicate P
while enforcing access control is explained below. In order to elucidate the procedure,
some steps are demonstrated using the example in Listing 5.8.

1. public_predicate(P). The first step filters the impure and private built-in
predicates from public facts and rules present in the knowledge base. For
impure and private predicates, examining clauses (step 2) will be unsuccessful,

110 CREATING ADVANCED IOT APPLICATIONS

% FACTS
current_user(alice).
production_line(l1). line_manager(alice, l1).
production_line(l2). line_manager(bob, l2).
machine(m1). location(m1, l1).
machine(m2). location(m2, l1).
machine(m3). location(m3, l2).

%RULES
start_production_line(P) :- production_line(P), location(M,P),

start_machine(M).↪→

machine_state(M,S) :- machine(M), request_state(M, S).

% ACCESS CONTROL POLICY 1
allow(location(_,_)).
% ACCESS CONTROL POLICY 2
allow(machine(M)) :- current_user(U), line_manager(U,P), location(M,P).
% ACCESS CONTROL POLICY 3
allow(start_machine(M)) :- access(machine(M)).
% ACCESS CONTROL POLICY 4
allow(machine_state(M,_)) :- current_user(U), line_manager(U,L),

location(M,L).↪→

Listing 5.8: Working example to demonstrate the ACoP mechanism

furthermore, body resolution is not meaningful. Thus, for these predicates,
control can be passed to step 5. For public facts or user defined rules, control is
passed to step 2.
Example The predicate start_machine(m1) is an impure predicate and will be
forwarded directly to step 5. The predicates machine(M), machine_state(M,S)
and start_production_line(P) can be mapped to public facts or rules in the
knowledge base, and are forwarded to step 2.

2. clause(P, Body). The second step searches for clauses (i.e., facts and rules)
in the knowledge base matching the predicate P. When a clause is found, P is
unified with the head of that clause (denoted as P’). In case of rules, Body
is unified with the body of the rule. For facts, Body is unified with the atom
true. Hence, Body is not yet resolved and potential side effects do not take
place. Alternative clauses are handled on backtracking. If no clause can be
found, resolution stops.
Example Searching for clauses that match machine(M), results in P being
unified to machine(m1) (i.e., P’), and after backtracking machine(m2)
and machine(m3). In all cases Body is unified to true. The predicate
machine_state(M,S) is unified to machine_state(M,S), hence the predicate
does not change. Body, however, is unified with the compound term
(machine(M), request_state(M,S)).

ACCESS CONTROL IN THE REASONING MIDDLEWARE 111

1. public_predicate(P)

2. clause(P, Body)

3. access_rule_exists(P’)

4. accessibility_determined(P’)

5. pre_access(P’)

6. resolve(P’)

7. access(P”)

8. body_resolution

9. Process
Body

10. Process Body
Step by Step

success No Result

true

true

true

true

true

true

true

true

false

false

false

false

false

false

false

false

Figure 5.6: Simplified flowchart indicating the steps taken to execute access
control on a predicate in the ACoP system

3. access_rule_exists(P’). The third step checks whether or not an access rule
exists for which the target predicate is unifiable with predicate P’. This depends
on the predicate name and the arguments of the predicate under evaluation (i.e.,
P’). A matching access control policy exists if the predicate under evaluation

112 CREATING ADVANCED IOT APPLICATIONS

can be unified to the predicate in the policy. If at least one match for predicate
P’ can be found, further action is taken in step 4. If no access rules match the
predicate, access cannot be decided by the provided access rules and control
is passed to step 8. The predicate will then either be resolved based on body
resolution or determined by the default policy.
Example Policy 2 of the working example matches predicate machine(m1),
as the policy’s target predicate, machine(M) can be made equivalent to
the predicate machine(m1). For start_production_line(l1), however, no
matching access rule can be found. In that case, the predicate, together with its
matching Body, are forwarded to step 8.

4. accessibility_determined(P’). This step checks whether or not access to
P’ can already be determined based on the defined access rules. It checks
whether the target predicate of each matching access rule (determined in step
3) subsumes the predicate P’. In addition, ACoP verifies that no variables are
present in both the head and body of the access rule. Those variable terms must
be instantiated before access can be properly determined. In case accessibility is
determined, step 5 grants or denies access to the predicate. If accessibility is
not yet determined (i.e., an access rule matches but does not yet subsume P’),
the body of the rule will be examined until access is determined in step 10.
Example Accessibility for machine(m1) can be determined, as the target
predicate of policy 2 (i.e., machine(M)) can subsume machine(M) and all
arguments are sufficiently instantiated to determine access. Access to query
all machine states (i.e., machine_state(M, S)) cannot be determined yet.
Although the target predicate of policy 4 (i.e., machine_state(M,_)) subsumes
machine_state(M, S), the variable M must be instantiated before access can
be determined.

5. pre_access(P’). This step preliminary verifies access to the predicate before
resolution. This check only fails if it is sure that access to the predicate is
denied. Otherwise, the predicate is handed to step 6. Note that the default
access control strategy, either open or closed, is taken into account if no access
rules match. In case of pure logic, preliminary access control is only useful to
stop prematurely, omitting this step would not affect the obtained results. In
impure logic, however, this step prevents impure predicates to be executed if
not allowed, as the occurred side effects can not be rolled back on backtracking.

6. resolve(P’). In this step, the predicate P’ is resolved. In case of a rule or
fact, this means that Body defined in step 2 is resolved. In case of an impure or
private predicate, the predicate itself is resolved and possible side effects take
place. As in execution without access control, when resolving the predicate fails,
resolution fails. Otherwise, P’ is resolved (denoted as P”) and is further handled
in step 7.

ACCESS CONTROL IN THE REASONING MIDDLEWARE 113

7. access(P”). Similar to step 5, permission to access P” is verified. This
second iteration is required since additional arguments in the predicate might be
instantiated, and certain policies may become applicable. Note that the default
access control strategy is also taken into account here. If access is still allowed,
the resolution of the predicate ends successfully, else it fails.

8. body_resolution. When no explicit permissions are defined for the predicate,
this step consults the configuration and checks whether body_resolution is
active. If that’s the case, it proceeds to step 9. Otherwise the predicate is passed
to step 5, that takes the default strategy into account to decide upon access to
the predicate.

9. Process Body. In this block, access to the predicate P’ is decided based on
the body of the clause found in step 2. It does this with body resolution, by
repeating the entire process for each predicate in Body, taking into account
access control in compound statements as described in Section 5.2.1.1.
Example The predicate start_production_line(l1) with body
(production_line(l1), location(M,l1), start_machine(M)) ends up
in this step. The entire process is thus repeated for the compound
term (production_line(l1), location(M,l1), start_machine(M)). As
a result all machines in production line will start, with the condition that the
user has the authority to do so.

10. Process Body Step by Step. When a matching access rule exists for the predicate
(step 3), but access cannot yet be determined (step 4), the terms in Body are
resolved step by step. Processing the body step by step causes variables to be
instantiated leading to one of the events below, causing the processing to stop.

(a) Access to the predicate P’ becomes determined. Enough terms in Body
are resolved such that variables in P’ become instantiated and allow to
determine the accessibility to the predicate based on the defined access
rules. In other words, there exists an access rule’s predicate that subsumes
predicate P’. Accessibility will then be decided in step 5.

(b) The access rules no longer apply. It is possible that by resolving terms in
Body, the arguments are instantiated such that there are no more access
rules for which the target predicate matches with predicate P’. Access to
predicate P’ can then still be decided using body resolution (step 8 and 9).

(c) The body is entirely executed. It is possible that after resolving the entire
body, the matching access rules are still not subsumable, and will never be.
Access must then be decided using body resolution if applicable (step 8
and 9).

Special care must be taken when Body contains impure predicates, because side
effects cannot be reversed. Therefore, an additional access control check is

114 CREATING ADVANCED IOT APPLICATIONS

performed on the original predicate before resolving impure predicates during the
step by step processing of the body. Impure predicates are thus only executed if
access is granted.
It is important to keep observing the original predicate to check when one of
the above events occurs, as well as to keep track of the terms that have already
been resolved. As a term in the body of a rule might be defined by a rule
itself, processing the body step by step is a recursive process. After processing
the body, already resolved terms must be taken into account such that already
executed impure predicates, and corresponding side effects, are not executed
twice.
Example The predicate machine_state(M,S) with body
(machine(M), request_state(M, S)) is handled here. To begin, the first
term of the compound body (i.e., machine(M)) is resolved, resulting in the
variable M being instantiated to m1. Consequently the original predicate is
instantiated to machine_state(m1,S). Now it is necessary to check again
whether access to the predicate can be determined (step 4). As the predicate
is sufficiently instantiated, and policy 4 subsumes the predicate, access can be
decided. The predicate is forwarded to step 5, where the access is determined.
As the current user is line manager of the production line where machine m1 is
part of, access is granted and the predicate can be resolved (step 6). The state
of the machine is requested and returned to the user.

To generalise the case of access control from a single predicate to compound
statements (used in both user queries and logic rules), ACoP applies the rules
discussed for compound statements in Section 5.2.1.1. However, in a conjunction,
the resolution of predicates that come later may instantiate variables. As a result,
certain access rules may become applicable later. Therefore, an additional access
control check is performed on the predicates earlier in the chain to ensure that
access is still granted.

5.2.2 A Prolog Implementation of ACoP

To validate the security mechanism discussed in Section 5.2.1, an implementation
is available for SWI-Prolog. Access control is enforced by a Prolog meta-interpreter
that can be plugged in and configured in any Prolog program. The implementation
can be found at https://github.com/ilse-bohe/ACoP. In this section, we will
take a closer look at some of the implementation details.

The meta-interpreter takes advantage of query expansion to replace normal query
resolution with inference that includes the ACoP’s access control logic. This allows
an almost plug-and-play use of access control in an existing program. Access control

https://github.com/ilse-bohe/ACoP

ACCESS CONTROL IN THE REASONING MIDDLEWARE 115

is transparent to the user and queries send to the reasoner automatically resolve
with access control in place.

In the previous section, the steps required to implement the security mechanism
have been discussed. The implementation of the most important constructs in
Prolog are now discussed in more detail.

Public Predicates As described in Section 5.2.1.3, the first step is to separate
public predicates from private and impure predicates. This is done using the
predicate_property/2 predicate which provides the properties of a given
predicate. In the proposed implementation, predicates with the built_in or foreign
property are defined as private, resp. impure predicates. While the former specifies
built-in predicates for which no body can be retrieved, the latter defines predicates
that have its implementation defined in the C-language. The execution of such
predicates often result in side effects (i.e., impure predicates).

The Access Predicate The implementation to determine access builds upon the
basic predicate subsumes_chk/2 which checks if a predicate can be subsumed by
another given predicate.

To determine access to a predicate, two additional rules are defined. The
match_allow/1 and match_deny/1 predicates, as shown in Listing 5.9, verify
whether there is a definition for a positive, resp. negative permission that matches
the predicate P. A policy matches a predicate only if the predicate in the policy
(Pol) is more generic or equivalent to P (i.e., using subsumes_chk/2). The access
predicate for both the open and closed policy strategy is presented.

% Matching allow, resp. deny policies.
match_allow(P) :- copy_term(P,Pol), allow(Pol), subsumes_chk(Pol,P).
match_deny(P) :- copy_term(P,Pol), deny(Pol), subsumes_chk(Pol,P).
% Open policy
access(P) :- (match_allow(P); \+match_deny(P))), !.
% Closed policy
access(P) :- (match_allow(P), \+match_deny(P))), !.

Listing 5.9: Prolog code to check access, based on currently known data

In the open policy case, it looks for a matching allow or the absence of a matching
deny rule. Hence, access is allowed if there is a matching allow or no matching
deny. It fails only if there is no matching allow and a matching deny policy.

In the closed policy case, reasoning is slightly different, and requires a matching
allow policy and no deny to be successful. If there is no allow rule or there is a deny
rule that applies to the predicate P, access is denied. When a predicate matches

116 CREATING ADVANCED IOT APPLICATIONS

multiple policies, backtracking is not desired, therefore, the cut-operator (i.e., i),
which stops resolution, prevents alternative resolutions for granting access.

Processing Body Step by Step When processing the body of a rule step by
step, as described in Section 5.2.1 the current state is tracked. The state keeps
track of the terms that have already been resolved and the terms that have not
yet been resolved, in order to prevent duplicate resolution of impure predicates.
Therefore the predicate state is introduced and defined as follows:

state(Predicate, Resolved, ToResolve).

Predicate is the head of the rule and also the predicate under evaluation, Resolved
is a list of the resolved terms and ToResolve is a list of the terms that are not yet
resolved. As a term in the body of a rule might be defined by a rule itself, processing
the body step by step is a recursive process and the Resolved-list can also contain
states of terms. The original predicate for which access must be defined is being
monitored after every step, either until access can be decided, the existing access
rules are no longer applicable, or the body is completely resolved. The final state
is handled depending on how the processing ended. If access is determined and
allowed, all terms in ToResolve are being resolved. If the existing rules are no
longer relevant or the body is entirely processed, body resolution can still be used
to decide access. In case body resolution is applicable, it is first checked whether
access to the previously resolved terms is allowed. If access is allowed, all terms in
ToResolve are processed taking into account the access policy.

5.2.3 Application in Multiple Access Control Strategies

ACoP can easily be used to enable various access control strategies. Several examples
of how possible strategies can be implemented can be found in this section.

Identity Based Access Control One of the most basic access control strategies
is Identity Based Access Control (IBAC). Access to a resource is determined based
on the identity of the individual trying to access the resource. An IBAC strategy for
accessing files can be achieved using ACoP using the rules, described in Listing 5.10,
in a closed policy. For example can access to file1.txt be granted for both Alice
and Bob.

In IBAC, an Access Control List (ACL) is often used to bundle all identifiers together.
An access control policy supportnig the use of an ACL is also proposed in Listing 5.10
assuming that acl(L) unifies L with a list of the identifiers that may access he
resource.

Role Based Access Control RBAC was first introduced by Ferraiolo et. al. in
1992 [39]. It is since a widely used strategy in large companies and as the name

ACCESS CONTROL IN THE REASONING MIDDLEWARE 117

% semantics
allow(file(<filename>) :- current_user(<user_identifier>).

% example access policies
allow(file(file1.txt) :- current_user(alice).
allow(file(file1.txt) :- current_user(bob).

% example access policy using ACL
allow(file(file1.txt) :- current_user(U), acl(L), member(U,L).

Listing 5.10: Example access control policies for IBAC

states based on roles assigned to users of the system. An example for the role based
access control strategy, is a blogpost website, where dependent on the role, a user
can take several actions. The limited set of possible roles and actions that can be
taken on the blogpost website can be found in Table 5.2.

Visitor Subscriber Contributor Editor Admin
Add User X
Remove Users X
Moderate Comment X X
Publish Posts X X X
Edit and Delete Posts X X X
Comment on Posts X X X X
Read Posts X X X X X

Table 5.2: Roles and possible actions for a blogpost website

To enable RBAC using ACoP, the users of the system must be defined together
with their role. The closed policy used for the blogpost website is described in
Listing 5.11

% defining user roles
user_role(alice, admin).
user_role(bob, subscriber).
user_role(_, visitor).

% defining access policies on actions
allow(add_user(_)) :- current_user(U), user_role(U,admin).
allow(publish_post(_)) :- current_user(U),user_role(U,admin).
allow(post_comment(_,_)) :- current_user(U),

(user_role(U,admin);user_role(U,subscriber)).↪→

allow(read(P)).

Listing 5.11: Example access control policies for RBAC

118 CREATING ADVANCED IOT APPLICATIONS

Relationship Based Access Control ReBAC was first introduced by Gates in
2007 [42]. Access control policies to resources are defined based on relationships
between users, and are mainly used in the context of social networking systems.
Figure 5.7 gives an example of a social networking system with friend relations.
Personal information and photo resources are not available to everyone. The
accessibility depends on the relationship between the owner of the data and the
user requesting access.

Bob Alice

CharlieDave Photo Personal Info

friend

friend

friend

Figure 5.7: Social network system with friend relations

The access control policy is the following. A user has access to its own personal
information and photos. A user has access to another users personal information,
if they have a friend relation. A user has access to another users photos, if the
person is a friend of the owner (i.e., has a friend relationship), or if they have a
friend relation with a friend of the owner. To enable the ReBAC policy, using the
ACoP system, users must be defined together with the resources they own as well
as the relationships between the users. The closed policy can then be described as
shown in Listing 5.12

Note that the relation/3 predicate could also be simplified and defined using a
friend/2 predicate.

allow(personal_info(I)) :- owner(O,I),(current_user(O) ;(current_user(U),
friend(U,O, friend))).↪→

allow(photo(P)) :- owner(O,P), (current_user(O) ;(current_user(U),
(relation(U,O, friend); (relation(U,F,friend),relation(F,O, friend))))).↪→

Listing 5.12: Example access control policies for ReBAC

5.2.4 Tests and Evaluation

Figure 5.8 shows the execution time for the query ?-machine(M), in function of the
machines per production line. The query requests all the machines the requesting
user has access to. The tests are performed on a smart manufactory similar to
the one described in Listing 5.7 and consists of 3 managers each controlling 5
production lines.

ACCESS CONTROL IN THE REASONING MIDDLEWARE 119

Adding access control clearly has implications to the performance of the logic
program. The current implementation is built to support different scenarios, but
does not yet include major optimizations. Nevertheless, it is clear that the way
access control policies are defined only has a linear impact on the performance of
the program.

0 0.2 0.4 0.6 0.8 1
·104

0

0.5

1

·107

Machines per Production Line

#
In
fe
re
nc
es

no access control
Open, no BR
Open, BR
Closed, no BR
Closed, BR

Figure 5.8: Numbber of inferences needed to request all machines for a variable
number of machines per production line in ACoP

Figure 5.9 shows the number of inferences for different queries in the previously
presented manufactory setting with ten machines per production line.

Several conclusions can be made based on the four performed queries.

• For queries on predicates for which access rules exist (i.e., query 1, 2 and 3),
there is no difference in a setup with or without body resolution. Since matching
access rules can be found, body resolution must not be performed. Thus, the
execution time is independent from whether body resolution is enabled or not.

• The more specific a query is, the smaller the overhead caused by access control.
This is because the number of variables to instantiate is lower (i.e., query 1
versus query 3).

• The number of inferences for an open policy are different than for a closed policy.
This is both a result of how access control is handled and how the policies are
defined. For the open policy, ACoP can already stop resolution if at least one
matching allow rule can be found. For the closed policy, however, not only an
allow rule must be found but all deny rules must be verified to be sure access is
allowed. Access control could therefore be determined more quickly in the case of
an open policy, which is the case for query 1. For this example, however, the open
policy rules are very basic and equal to the closed policy rules complemented
with a deny rule without conditions on machine/1, start_machine/1 and

120 CREATING ADVANCED IOT APPLICATIONS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
·104

query 4

query 3

query 2

query 1

5,533

22,243

11,810

142

43,988

22,330

11,810

142

115

20,280

11,460

149

35,397

20,280

11,460

149

1,069

1,054

453

5

Inferences

no AC
Closed - BR
Closed - no BR
Open - BR
Open - no BR

query 1: ?-machine_state(m_1_1_1,S).
query 2: ?-machine(M).
query 3: ?-machine_state(M,S).
query 4: ?-start_production_line(L).

Figure 5.9: Amount of inferences needed to answer different queries,
using different ACoP setups in a manufacturing environment,

having ten machines per production line

machine_state/2. This results in an increased overhead for the open policy
and becomes more apparent when more steps in the ACoP process have to be
taken (i.e., queries 2, 3 and 4).

• The number of inferences for query 4 depends on the body resolution setting.
There is no matching access control rule for this query. In case body resolution
is disabled, ACoP can quickly decide whether or not to resolve the predicate,
with little impact on the query. When body resolution is enabled, access must
be controlled for each predicate in the body of the rule, which quickly increases
the number of steps. Note that for this query the closed policy without body
resolution is the only case for which access control is denied, resulting in a lower
number of inferences than when access control is disabled.

ACCESS CONTROL IN THE REASONING MIDDLEWARE 121

5.2.5 Discussion

A number of pitfalls can occur based on the defined access control policies and arre
discussed below.

Filtering on outputs When an access control policy on an impure predicate filters
on ‘output’ arguments (i.e., arguments that only get instantiated after resolution), it
implies that the predicate may be resolved before it is denied access. Although this
may sound trivial, special care must be taken when it is required to prevent execution
in advance. A warning during consultation time could inform the developer of such
cases, to make adjustments to the policies, if necessary.

The access predicate The access predicate may be used in the body of a rule
to verify whether access to another predicate is allowed. This may possibly lead
to infinite loops. Hence, special care must be taken when this predicate is used.
Especially when body resolution is active.

Insufficient instantiation Often, access control policies filter on the values of
arguments. In complex cases, one of the arguments of the predicate under control
may be used to compare with some value. Although this seems intuitively correct,
the query results in an error. Since access control is also verified before resolving
the predicate, the arguments of the predicate may still be variable (both for pure
and impure predicates). Using variables, while non-variables are expected may result
in unexpected behavior. Since it cannot be derived from the predicates whether
arguments are allowed to be variable, it is not possible to verify this automatically.
An example is shown in Listing 5.13.

age(X,A) :- info(X,birthdate,date(Y)), calculate_age(Y,A).
allow(age(_,A)) :- A>18.
?- age(X,Y).

Listing 5.13: Example code resulting in an insufficient instantiation error

To handle this, either the arguments used in the filter must be instantiated properly,
or the developer needs to take additional measures when defining the rules. For
instance, nonvar/1 can be used to check whether a term is already instantiated,
before performing arithmetic operations. Another solution to solve such problems
is by giving the possibility to ignore the argument during preliminary access control.
For instance, by annotating such arguments.

Support and conflict resolution As discussed in Section 5.2.1.1, conflict
resolution is determined by the default policy. In a closed policy, deny rules
take precedence, whereas in an open policy, allow rules take precedence, even in

122 CREATING ADVANCED IOT APPLICATIONS

the presence of body resolution. This makes it possible to write access rules that
will not be considered, but give the developer an unjustified feeling of control.
Adding support to track and warn users of aforementioned cases could prevent the
misleading feeling of security.

Data privacy Although access control may help in preventing access to specific
information, it does not prevent that rules may still leak information. The common
example is when a clerk is using a program to enter the salary of an employee. A
rule states that the salary cannot be higher than the salary of the director. Although
access to the salary of the director may be denied, the clerk can derive the salary
of the director by checking multiple salaries and see if it is allowed to be entered or
not. Thus, additional measures may be required if privacy is at stake.

5.3 Conclusion

The work in this chapter can clearly be separated in two parts.

In the first part a logic reasoning IoT middleware is presented. The module based
architecture makes it possible to integrate functionalities such as access control,
automation, preprocessing and connection management to IoT applications. Using
an event bus, communication between modules is handled seamlessly. User defined
policies, which are easy to set up, define the internal working of the modules. A
demonstrator in JavaScript, using Tau-Prolog to handle the logic, ensures that the
middleware can be integrated in cloud, gateway and mobile applications, and even
inside IoT devices.

The second part presents an access control mechanism that enforces access control
in existing logic programs, called ACoP. A deny as soon as possible strategy is
applied and various configurations make it possible to adapt the system to the
needs of the use case. The presented solution can be integrated as module in the
previously defined reasoning middleware to add access control capabilities to IoT
applications. However, it can also be used in other logic programs to enforce access
control, not only on the knowledge base, but also to the logic program itself. ACoP
takes into account the use of impure predicates, which trigger side effects that
cannot be reversed, that are often used in an IoT setting. The methodology is
discussed in detail by means of an example. For validation, ACoP is implemented in
SWI-Prolog and applied to several access control strategies, namely IBAC, RBAC
and ReBAC. Finally, the different configurations of the system are evaluated.

Chapter 6

Supporting Software
Integrators in Building IoT
Applications

In this chapter we elaborate on the valorisation potential from a software integrator
perspective. The task of such companies is, upon request of customers, to connect
multiple software subsystems and make them work as a whole. In the context of
this PhD, the focus is on software integrators in the IoT space. Such companies
want to develop robust applications in a short time and in a cost-efficient manner.
The research conducted in this PhD can be a first step towards building reusable
architectures, hence, reducing development time and cost.

The valorisation perspectives are twofold. First, the results can be bundled into
design and development guidelines. Secondly, software support can be provided by
means of software tools and templates.

By using the proposed guidelines and tools, companies can counteract vendor
lock-in. This will lead to more attractive and sustainable systems, which can be a
clear advantage over their competitors. Next generation systems can be developed
that, compared to the static first generation systems, are dynamically adaptable to
the needs of the user and environment.

6.1 Design and Development Guidelines

A clear guide, either digital (i.e., online modules) or physical (i.e., book), can help
software companies to develop reusable IoT applications. Based on the Software
Development Life Cycle (SDLC), a step-by-step guide explains which tasks must be
performed in each stage and how.

123

124 SUPPORTING SOFTWARE INTEGRATORS IN BUILDING IOT APPLICATIONS

A clear distinction must be made between the necessary stakeholders in the process,
namely customers, requirement analysts and environment designers. We assume
that software integrators select commercial-of-the-shelf (COTS) devices and do
not perform any hardware design or development. Note that multiple roles can be
taken by the same entity.

The number of tasks when developing Internet of Things (IoT) applications is big,
but can be clearly separated and assigned to the stakeholders to provide a clear
guide. The SDLC is used as starting point to define these tasks.

To provide more tangible information, case studies of different companies should be
included. An example case study can be found in Appendix A. In the scope of a
two year Research and Development Project funded by Vlaio, the proposed work
was applied to an audiovisual use case in collaboration with the Belgian company
APEX1. APEX is a manufacturer of professional audio and audiovisual equipment.
Among others, their solution is applied in retail, museums, bars, restaurants and
funeral homes.

6.2 Software Support

A second type of valorisation is oriented towards software support tools and
frameworks. Referring to the Chapters 3, 4 and 5, several software tools/frameworks
can be developed to promote application-driven development within software
integrator companies.

Architectural Middleware Frameworks A first major contribution are the
architectural frameworks of which a prototype is described in Chapter 3. These
frameworks should not be limited to the previously proposed Android and JavaScript
implementations but can also be extended to other languages and platforms. Open-
sourcing of such frameworks can only benefit the community. Note that it is not the
goal to compete with existing domain specific frameworks such as Home Assistant2
and openHAB3. The goal is to give large IoT integrator companies a starting point
from which they can implement and tune an architecture depending on their own
requirements.

Device Catalog A second contribution to speed up the development process is
the composition of the device catalog described in Section 3.2. By building such
catalogs, either internally or publicly, it is possible to quickly determine the most
suitable devices for various IoT projects. It is very important that a catalog is kept
up to date, the public creation of such catalogs can aid in this.

1https://www.apex-audio.be/
2https://www.home-assistant.io/
3https://www.openhab.org/

SOFTWARE SUPPORT 125

Modeling and Management Tool Modeling the IoT environment can be
supported by a tool that makes it possible to create and manage the entire model
based on the meta models described in Chapter 4. Relying on that model, assets
and devices can be inventoried and coupled to each other. In combination with
the device catalog, this tool can provide the best choices in devices. Based on the
physical connected devices, the tool can provide feedback about requirements that
have or have not been met.

Reasoning Middleware The next valorization contribution is a fully elaborated
reasoning middleware. In combination with the virtualization frameworks, developers
can develop advanced IoT applications. Adding functionalities such as automation,
access control and querying capabilities can be done with a limited coding effort.
The asset-based definition of rules and policies makes it a lot easier to express
desired functionalities, especially for people with a non-technical background.

Policy Designing Tool While it is a lot easier to define applications using asset-
based rules and policies, using logic programming languages, such as Prolog,
comes with a learning curve. It is not always easy for people without appropriate
programming skills to define these rules in a correct way. Even for people who
are familiar with programming, checking whether there are any rule conflicts is
by far not trivial. Graphical tools, which make it possible to visualize rules in a
user-friendly way and also take constraints into account, can largely facilitate the
development and configuration of IoT ecosystems.

If all the tools described above seamlessly interact, not only development and
configuration, but also maintenance can be simplified a lot. It takes effort and
investment to develop such tools and learning to operate them. With efficient use,
however, companies can certainly recoup this investment in the time saved.

126 SUPPORTING SOFTWARE INTEGRATORS IN BUILDING IOT APPLICATIONS

6.3 Business Model

When drawing up a business model for a company, it is not only necessary to take
into account how turnover can be achieved. It must also be clearly identified who
the potential customers are, which product or service is exactly being offered and
how this is achieved. Gassmann et. al. [41] proposed a visual definition of what a
business model should define, the business model navigator, which can be seen in
Figure 6.1.

Who?

What?

Why? How?

What do you offer
to the customer?

Why does the
business model
generate profit?

How is the
value proposition
created?

Who is your target
customer (segment)?

Profit
mechanism

Value
chain

Value
proposition

Figure 6.1: Business model navigator [41]

The customer – who – can be found centrally in the model. They are the most
important part of the model, if a company has no customers, it won’t be able to
gain profit. If the product or service offered is not adapted to the needs of the
customer, the company won’t sell. It is thus important for the company to define
who it wants to (or don’t want to) target with the product or service. Each other
aspect can be positioned relative to the central customer. The value proposition
– what – defines the product(s) and/or service(s) the company provides to the
customer and how it is adapted to the customers needs. In order to make the
value proposition possible, the product(s) and/or services must be developed. The
needed resources and capacities, and the development process compose the value
chain – how. Last, the profit mechanism – why – defines cost structures and the
revenue stream. The question "why does this model generate profit" is answered,
and viability is checked.

We will now briefly define each of these four parts for a possible business model.
We define a business model for a software integrator company, providing accessible
software development for the private sector and Small and Medium Enterprises

BUSINESS MODEL 127

(SMEs). We define for whom (i.e private sector and SME), what the business offers,
how it can be realized and how it can become a profitable business. Note that this
is not the only possible valorisation direction for the work conducted during this
PhD.

Who? The services and software are developed for the private sector and SMEs.
The goal is to develop affordable IoT applications in various fields based on the
requirements of the customer. Examples can be a personalized home automation
application, a monitoring application for an estate property or a company branded
application for access control and monitoring on the work floor.

What? We offer customized IoT applications for iOS and Android in various
domains. We provide integrations of several COTS IoT devices but also provide
the ability to integrate external customized devices on request. Application can be
customized in different ways, not only the user interface but also functionalities can
be adapted or added to the needs of the customer. Customers can thus not only
increase their productivity but also strengthen their own identity or the identity of
the company.

How? In order to be able to create customized IoT applications, the software
framework must be further developed and an iOS port of the framework must be
made. A preliminary set of IoT integrations must be added, so that a set of possible
integrations can already be offered to potential customers. This platform then needs
to be properly maintained to support recent technologies. It therefore remains a
continuous investment to keep the software up to date and integrate new device
technologies. After that, application development according to the customer’s needs
can be started. This development can of course take place in sprints, so that a
basic application can already be delivered in the short term. Further elaborations
and addition of functions can then be added with each update.

Why? Revenue can be created by working with a subscription based model. By
combining a fixed cost with a variable cost depending on the number of integrations
and functionalities it is an attractive model for both the customer and the business.
Different tiers (e.g., basic, standard and premium) can offer pricing solutions based
on the customers needs and the company enjoys a continuous revenue stream.
For example, a basic subscription can support the integration of ten IoT systems.
A standard subscription can then provide the integration up to 20 IoT systems
together with access control and automation functionalities.

The above version of the business model is a starting point. In order to draw up a
fully-fledged business model, requirements of potential customers can be evaluated.
Also the revenue model needs further development so that a viable business can be
created.

Chapter 7

Conclusion

This PhD trajectory investigated how software companies can be aided during the
design and development of maintainable Internet of Things (IoT) applications, taking
into account both the dynamic nature of the IoT ecosystems and the constantly
evolving IoT landscape. With the Software Development Life Cycle (SDLC) as a
guidance, modeling guidelines, architectures and tools were presented to achieve
this goal.

This chapter evaluates the obtained results by looking back at the research questions
defined in section 1.2.

Research Question 1 What sensor/actuator abstractions are appropriate towards
application developers? What are the functionalities and tasks that middleware
must provide to support these abstractions?

Research Question 2 Can application programmers reason in terms of assets
(i.e., objects at application level) instead of sensors? Can an architecture hide the
underlying sensor complexity completely towards application developers?

Research Question 3 Which are feasible architectural decisions that can lead
to increased flexibility with respect to sensor selection/replacements, and hence,
contribute to vendor lock-in avoidance?

Research Question 4 Can the software architecture also support the realization
of other non-functional concerns like dynamics and security?

7.1 Obtained Results

The obtained results could clearly be separated in three major chapters. The chapter
on the IoT architecture & middleware (Chapter 3) and the chapter on the modeling

128

OBTAINED RESULTS 129

of IoT ecosystems (Chapter 4) each lead to one major contribution. The chapter
on reasoning for IoT ecosystems (Chapter 5) leads to two major contributions.

Contribution 1 - Application Centric Architecture This first part presented
an architecture supporting IoT application developers in building maintainable
IoT applications. With application centric development in mind, two abstraction
layers were defined that allow to decouple the application from the underlying
IoT infrastructure. Virtual IoT Devices provide a uniform and intuitive interface
for device access and shields complex low-level and non-functional aspects like
communication mechanisms and security protocols from the application developer.
Intuitive Application Programming Interfaces (APIs) in an additional Asset Layer
imply that the developer can focus on implementing the business logic. The
architectural insights are incorporated in both an Android and JavaScript framework
and validated through the design and development of a care home ecosystem
consisting of various Assets.

This part contributes to Research Question 1, Research Question 2 and Research
Question 3. Appropriate device abstractions are done at device type level. For
example, all lamps, independent from device technology, will provide the same
interface to upper levels. However, not all lamps have the same functionalities.
Informing the users about degradation of the service, based on the specific technology
used, gives them the opportunity to change the technology in case a specific function
is needed. In addition, the way in which data is formatted is not the same for
every technology. If a specific standard format is chosen, each deviating format
needs to be converted so that integration of different technologies can proceed
without problems. In order to provide these abstractions, a decoupling layer must
be provided. In this layer the devices are virtualized, hence the name Virtual Device
Layer . On top of the Virtual Device Layer , an Asset Layer can provide reasoning
based on items of interest (i.e., assets) in the physical environment. In this way,
the entire sensor complexity can be hidden from application developers.

Contribution 2 - Ecosystem Modeling Guidelines The second part presented
an application centric approach to design, develop and operate advanced
reconfigurable IoT ecosystems. Separation-of-duties, loose coupling between the
business logic and the IoT infrastructure, and selective binding of edge devices to
applications are key tactics. Technology-agnostic application policy definition is a
central building block which means that correct application behavior is expressed
in terms of asset methods and states, and relations between them. Policies are
then mapped to operations on IoT infrastructural elements. We showed that our
approach facilitates the design of new applications within the same IoT ecosystem,
redefinition of behavior of already existing applications and modifications in the
underlying infrastructure.

130 CONCLUSION

This part maps to Research Question 2 and Research Question 3. By first modeling
the ecosystem based on Assets in the environment, you can quickly move on to
application development. This often makes development more intuitive. Application
requirement can be defined by the requesting party on the basis of these Assets.
Therefore, implementation of these requirements does not require an additional
translation step. Linking devices to the applications can happen independently
from application development. Replacing a device therefore has no impact on the
application. Only configurations have to be adjusted, thus avoiding vendor lock-in.

Contribution 3 - Reasoning Middleware In the first part of Chapter 5, a logic
reasoning based IoT middleware is presented. It is available for integration in either
cloud, mobile and gateway applications, and even inside IoT devices. The flexible
event-based architecture, hosting different modules, supports application developers
in building and maintaining smart and reactive IoT applications. Including contextual
information in rules and policies is possible. This reasoning middleware can be
combined with the redefined IoT middleware to build advanced IoT applications,
with additional functionalities such as automation and access control. The integrated
reasoner brings advanced intelligence to IoT applications and enforces access control
and connection policies. A demonstrator of the middleware is integrated using a
JavaScript based back-end. Advanced Android, iOS and NodeJS applications can
be built in at a fast pace.

Contribution 4 - Access Control in Logic Programming The second part of
Chapter 5 presented a mechanism that enforces access control in existing logic
programs (called ACoP). Access control is fine grained at predicate level, supporting
multiple established access control strategies. The solution takes into account the
use of impure predicates and applies a deny as soon as possible strategy to prevent
prohibited side effects from taking place. The presented Prolog meta-interpreter
shows that the integration does not entail excessive overhead. This strategy can
easily be incorporated in the previously described reasoning middleware and in this
way add access control capabilities to IoT applications.

Answer to Research Question 4 can be covered by the last two aforementioned
contributions. The reasoning middleware can be extended with appropriate modules.
In this way both functional and non-functional requirements can be added to
applications. The reasoning middleware already hosts a connection manager that
takes care of the dynamic nature of IoT ecosystems. Devices coming in or getting
out of range are seamlessly connected to or disconnected from the application.
The strategy to integrate access control into logic programming languages makes
it possible to add privacy protection to applications. Application developers are
shielded from a large implementation effort, as it only entails defining the access
control policies.

FUTURE RESEARCH POSSIBILITIES 131

7.2 Future Research Possibilities

During validation of the presented architecture and middleware, prototypes of
moderate size were built consisting up to 100 devices and 10 stakeholders.
Developing larger ecosystems with a higher order of devices and stakeholders
may reveal new insights and raise additional scalability requirements. The focus on
the distributed nature of the architecture might be enlarged, and adjustments may
then lead to a more robust and even more widely applicable architecture.

When performing the work during the doctoral trajectory, security was not a
major concern. However, security becomes increasingly important in open IoT
environments embracing multiple stakeholders and devices from varying vendors.
Moreover, this is a very complex challenge as in IoT – like in any other open digital
ecosystem – security is as weak as its weakest link [93]. Further research in this area
may lift the proposed architecture to a next level. When we no longer assume that
the incorporated devices are secure, mitigating countermeasures must be taken. To
tackle these challenges, a security wall can shield the applications from malicious
IoT devices.

Appendix A

Case Study - Reusable
Multimedia Platform in
Collaboration with APEX

In collaboration with the Belgian based company APEX1 the work in this dissertation
is valorized and applied to an audiovisual use case . APEX is a manufacturer of
professional audio and audiovisual equipment. Among others their solution is used
in retail, museums, bars, restaurants and funeral homes.

We go through the SDLC to develop several applications in the audiovisual setting
using the presented tools and guidelines. First the different applications and their
requirements are determined. Thereafter, the ecosystem is modeled according to
the needs of the applications, taking portability into account. By making only minor
adjustments, the ecosystem can be ported to a different setting. On the basis of the
predefined requirements and the design, applications can be developed completely
device agnostic. Communication with IoT devices is no concern of the application
developer. Finally, device selection can take place, and the one time development
to integrate the different devices must be done.

A.1 Application Analysis and Requirements

Two applications, each in a different setting, are defined. One application in the
funeral home setting, the other in a restaurant setting. The requirements of each
application are elaborated an split up in different versions.

1https://www.apex-audio.be/

133

134 CASE STUDY - REUSABLE MULTIMEDIA PLATFORM IN COLLABORATION WITH APEX

A.1.1 Smart Application for Funeral Home Ceremonies

The first application is used to configure funeral ceremonies and make sure that
during the ceremony everything works as planned. Ceremonies can "PowerPoint"
wise be designed with visuals (images and videos), sounds and lightning. Each
funeral home consists of areas. The different ceremony rooms are separate areas,
but also in a single room different areas can be specified. Examples are, the platform
in front, the seating area and the side walls. An example ceremony room is shown
in Figure A.1

Figure A.1: Example ceremony room

Settings (i.e., visuals, sound and lightning) can be configured per area. In a first
version of the application (v1) these settings are configured in a configuration file.
In a second version of the application (v2) a Graphical User Interface (GUI) can be
used to configure the settings.

A.1.2 Smart Application for Bars and Restaurants

In a bar and restaurant, different areas can be determined up to the level of different
tables, see Figure A.2.

In each area, music and lightning can be configured. Predefined configurations
(e.g. summer lunch, romantic dinner, evening lounge) can be used. On top of that,
lightning brightness is adapted based on the overall clarity in the room.

DESIGN 135

Figure A.2: Example restaurant area

A.2 Design

Based on the requirements of both applications the assets and the environment
model are designed. Figure A.3 shows the environment model.

0..* 0..1

1 1..*

0..1

0..*

AreaRoom Scene

FragmentPresentation

Figure A.3: ModelEnvironment for the APEX use case

The environment consists of areas. An area is a part of physical space and is not
necessarily delimited by physical elements. Each area can have child areas and thus
an area can be part of multiple other areas. For example can the bar area be part
of both the dance floor and the seating area. A scene can be set to one or more
areas. A scene is a set of predefined configuration. An area can only have one scene
at a time or none at all. A room is a specific type of area, to which a presentation
can be coupled. A presentation is a sequence of fragments. Fragments are scenes
with a specific duration. The configurations of a fragment are thus only applied
for a specific amount of time. Fragments can be compound and can thus exist of
multiple other fragments.

136 CASE STUDY - REUSABLE MULTIMEDIA PLATFORM IN COLLABORATION WITH APEX

Different fragments of the presentation can be set to areas or activated based on
different triggers:

• time trigger: on specific time

• sequence trigger: after another fragment is terminated

• external trigger: someone pushed the next button

Each scene can contain the following elements with their corresponding parameters
between square brakets.

• a list of visuals [visuals]

– video-files
– image files, with a time to display the image (general or specific per

image)

• a list of sound files, with optional time to play [music]

• lightning settings [brightness, color]

• volume [volume]

Bibliography

[2] M. Abadi. “Logic in access control”. In: 18th Annual IEEE Symposium of
Logic in Computer Science, 2003. Proceedings. IEEE. 2003, pp. 228–233.

[5] A. Al Farooq et al. “Iotc 2: A formal method approach for detecting conflicts
in large scale iot systems”. In: 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM). IEEE. 2019, pp. 442–447.

[7] C. Bayılmış et al. “A survey on communication protocols and performance
evaluations for Internet of Things”. In: Digital Communications and Networks
(2022). issn: 2352-8648.

[8] A. Bhawiyuga et al. “Architectural design of IoT-cloud computing integration
platform”. In: Telkomnika (Telecommunication Computing Electronics and
Control) 17.3 (2019), pp. 1399–1408.

[10] I. Bohé et al. “A Crowdsensing Solution for Tracking Bicycle Path
Conditions”. In: 2020 IEEE 6th World Forum on Internet of Things (WF-IoT).
IEEE. New Orleans, LA, USA - Online, 2020, pp. 1–6.

[11] I. Bohé et al. “A Logic Programming Approach to Incorporate Access Control
in the Internet of Things”. Accepted at IFIP IoT 2022. Amsterdam, the
Netherlands.

[12] I. Bohé et al. “An extensible approach for integrating health and activity
wearables in mobile IoT apps”. In: 2019 IEEE international congress on
Internet of Things (ICIoT). IEEE. Milan, Italy, 2019, pp. 69–75.

[13] I. Bohé et al. “SMIoT: a software architecture for maintainable internet-
of-things applications”. In: International Journal of Cloud Computing 9.1
(2020), pp. 75–94.

[14] I. Bohé et al. “Towards low-effort development of advanced IoT applications”.
In: Proceedings of the 8th International Workshop on Middleware and
Applications for the Internet of Things (M4IoT). Québec, Canada - Online,
2021, pp. 1–7.

[15] I. Bohé et al. “Untangling the Physical-Digital Knot When Designing
Advanced IoT Ecosystems”. In: Proceedings of the 6th International
Workshop on Middleware and Applications for the Internet of Things
(M4IoT). UC Davis, CA, USA, 2019, pp. 1–6. isbn: 9781450370288.

137

138 BIBLIOGRAPHY

[16] R. Böhme et al. “A fundamental approach to cyber risk analysis”. In: Variance
12.2 (2019), pp. 161–185.

[17] P. Bonte et al. “Subset Reasoning for Event-Based Systems”. In: IEEE
Access 7 (2019), pp. 107533–107549.

[18] A. Botta et al. “Integration of cloud computing and internet of things: a
survey”. In: Future generation computer systems 56 (2016), pp. 684–700.

[19] P. Bourhis et al. “JSON: Data model and query languages”. In: Information
Systems 89 (2020), p. 101478. issn: 0306-4379.

[20] F. Bruckner. et al. “A Framework for Creating Policy-agnostic Programming
Languages”. In: Proceedings of the 9th International Conference on Data
Science, Technology and Applications - DATA, INSTICC. SciTePress, 2020,
pp. 31–42. isbn: 978-989-758-440-4.

[21] R. Calegari et al. “Logic Programming as a Service (LPaaS): Intelligence
for the IoT.” In: 2017 IEEE 14th International Conference on Networking,
Sensing and Control (ICNSC). IEEE, 2017, pp. 72–77.

[22] G. Chen et al. “Modeling and reasoning of IoT architecture in semantic
ontology dimension”. In: Computer Communications 153 (2020), pp. 580–
594. issn: 0140-3664.

[23] S. Cheruvu et al. “Connectivity technologies for IoT”. In: Demystifying
internet of things security: Successful IoT Device/Edge and Platform Security
Deployment. Springer, 2020, pp. 347–411. isbn: 978-1-4842-2896-8.

[27] S. K. Datta et al. “oneM2M architecture based IoT framework for mobile
crowd sensing in smart cities”. In: 2016 European Conference on Networks
and Communications (EuCNC). 2016, pp. 168–173.

[28] S. De Capitani di Vimercati. “Access Control Policies, Models, and
Mechanisms”. In: Encyclopedia of Cryptography and Security. Ed. by
H. C. A. van Tilborg et al. Springer US, 2011, pp. 13–14. isbn: 978-
1-4419-5906-5.

[29] H. Demirkan. “A Smart Healthcare Systems Framework”. In: IT Professional
15.5 (2013), pp. 38–45. issn: 1520-9202.

[30] P. Desai et al. “Semantic Gateway as a Service Architecture for IoT
Interoperability”. In: 2015 IEEE International Conference on Mobile Services,
pp. 313–319.

[32] J. Ding et al. “IoT connectivity technologies and applications: A survey”.
In: IEEE Access 8 (2020), pp. 67646–67673.

[33] J. Dizdarević et al. “A survey of communication protocols for internet of
things and related challenges of fog and cloud computing integration”. In:
ACM Computing Surveys (CSUR) 51.6 (2019), pp. 1–29.

BIBLIOGRAPHY 139

[34] B. Edwards et al. “Hype and heavy tails: A closer look at data breaches”.
In: Journal of Cybersecurity 2.1 (2016), pp. 3–14.

[35] R. Elmasri et al. Fundamentals of database systems. Pearson, 2017.
[37] Z. M. Fadlullah et al. “Toward intelligent machine-to-machine communi-

cations in smart grid”. In: IEEE Communications Magazine 49.4 (2011),
pp. 60–65. issn: 0163-6804.

[38] G. Feng et al. “Floor pressure imaging for fall detection with fiber-optic
sensors”. In: IEEE Pervasive Computing 15.2 (2016), pp. 40–47.

[39] D. Ferraiolo et al. “Natl Institute of Standards and Tech., Dept. of Commerce,
Maryland, Role-Based Access Control”. In: Proceedings of 15th Annual
Conference on National Computer Security. National Institute of Standards
and Technology, 1992, pp. 554–563.

[40] A. Al-Fuqaha et al. “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications”. In: IEEE Communications Surveys Tutorials
17.4 (2015), pp. 2347–2376. issn: 1553-877X.

[41] O. Gassmann et al. The business model navigator: 55 models that will
revolutionise your business. Pearson UK, 2014.

[42] C. Gates. “Access control requirements for web 2.0 security and privacy”.
In: IEEE Web 2 (2007), pp. 12–15.

[43] C. B. Gemirter et al. “A Comparative Evaluation of AMQP, MQTT and
HTTP Protocols Using Real-Time Public Smart City Data”. In: 2021 6th
International Conference on Computer Science and Engineering (UBMK).
IEEE. 2021, pp. 542–547.

[47] P. Gupta et al. “IoT based smart healthcare kit”. In: 2016 International
Conference on Computational Techniques in Information and Communication
Technologies (ICCTICT). IEEE. 2016, pp. 237–242.

[48] R. Herrero. Fundamentals of IoT Communication Technologies. Springer,
2022.

[49] R. Herrero. “Thread Architecture”. In: Fundamentals of IoT Communication
Technologies. Springer, 2022, pp. 213–225.

[51] P. Hough et al. “The Accuracy of Wrist-worn Heart Rate Monitors across a
Range of Exercise Intensities”. In: Journal of Physical Activity Research 2.2
(2017), pp. 112–116.

[53] S.-L. Hsieh et al. “A wrist-worn fall detection system using accelerometers
and gyroscopes”. In: Proceedings of the 11th IEEE International Conference
on Networking, Sensing and Control. IEEE. 2014, pp. 518–523.

[54] N. Huynh et al. “SGAC: A patient-centered access control method”. In: 2016
IEEE Tenth International Conference on Research Challenges in Information
Science (RCIS). 2016, pp. 1–12.

140 BIBLIOGRAPHY

[56] D. Jackson. “Alloy: A Lightweight Object Modelling Notation”. In: ACM
Transactions on Software Engineering and Methodology 11.2 (2002),
pp. 256–290. issn: 1049-331X.

[57] J. M. Kang et al. “A wrist-worn integrated health monitoring instrument with
a tele-reporting device for telemedicine and telecare”. In: IEEE Transactions
on Instrumentation and Measurement 55.5 (2006), pp. 1655–1661.

[58] W. Kassab et al. “A-Z survey of Internet of Things: Architectures, protocols,
applications, recent advances, future directions and recommendations”. In:
Journal of Network and Computer Applications 163 (2020), p. 102663. issn:
1084-8045.

[59] V. Kolovski et al. “Analyzing web access control policies”. In: Proceedings of
the 16th international conference on World Wide Web. 2007, pp. 677–686.
isbn: 9781595936547.

[60] V. Kumar et al. “Development of Electronic Floor Mat for Fall Detection
and Elderly Care”. In: Asian Journal of Scientific Research 11 (2018),
pp. 344–356.

[61] R. Lea et al. “City Hub: A Cloud-Based IoT Platform for Smart Cities”. In:
2014 IEEE 6th International Conference on Cloud Computing Technology
and Science. 2014, pp. 799–804.

[62] M. Leuschel et al. “ProB: A Model Checker for B”. In: FME 2003: Formal
Methods. Ed. by K. Araki et al. Springer Berlin Heidelberg, 2003, pp. 855–
874. isbn: 978-3-540-45236-2.

[63] I. I. Lysogor et al. “Survey of data exchange formats for heterogeneous
LPWAN-satellite IoT networks”. In: 2018 Moscow workshop on electronic
and networking technologies (MWENT). IEEE. 2018, pp. 1–5.

[65] R. Machado et al. “An IoT Architecture to Provide Hybrid Context
Reasoning”. In: Internet of Things. A Confluence of Many Disciplines.
Springer International Publishing, 2020, pp. 86–102. isbn: 978-3-030-43605-
6.

[66] L. Magnoni. “Modern messaging for distributed sytems”. In: Journal of
Physics: Conference Series. Vol. 608. 1. IOP Publishing. 2015, p. 012038.

[67] S. Mahanthappa et al. “Data formats and its research challenges in iot:
A survey”. In: Evolutionary Computing and Mobile Sustainable Networks
(2021), pp. 503–515.

[68] D. Maier et al. Computing with Logic: Logic Programming with Prolog.
Benjamin-Cummings Publishing Co., Inc., 1988. isbn: 0805366814.

[70] E. Al-Masri et al. “Investigating messaging protocols for the Internet of
Things”. In: IEEE Access 8 (2020), pp. 94880–94911.

BIBLIOGRAPHY 141

[71] N. Matthys et al. “µPnP-Mesh: the plug-and-play mesh network for the
internet of things”. In: 2015 IEEE 2nd World Forum on Internet of Things
(WF-IoT). IEEE. 2015, pp. 311–315.

[72] R. Maurya et al. “Application of Restful APIs in IOT: A Review”. In:
International Journal for Research in Applied Science & Engineering
Technology 9.2 (2021), pp. 145–151. issn: 2321-9653.

[73] K. Mekki et al. “A comparative study of LPWAN technologies for large-scale
IoT deployment”. In: ICT express 5.1 (2019), pp. 1–7.

[75] S. Mumtaz et al. “Massive Internet of Things for Industrial Applications:
Addressing Wireless IIoT Connectivity Challenges and Ecosystem Fragmen-
tation”. In: IEEE Industrial Electronics Magazine 11.1 (2017), pp. 28–33.
issn: 1932-4529.

[76] G. Naik et al. “A Brief Comparative Analysis on Application Layer Protocols
of Internet of Things: MQTT, CoAP, AMQP and HTTP”. In: International
Journal of Computer Science and Mobile Computing 9 (2020), pp. 135–141.

[77] N. Naik. “Choice of effective messaging protocols for IoT systems: MQTT,
CoAP, AMQP and HTTP”. In: 2017 IEEE international systems engineering
symposium (ISSE). IEEE. 2017, pp. 1–7.

[78] A. Ngu et al. “IoT middleware: A survey on issues and enabling technologies”.
In: IEEE Internet of Things Journal 4.1 (2016), pp. 1–20.

[82] H. Raes. “Verzekeren van Quality-of-Service in IoT toepassingen”. MA thesis.
KU Leuven. Faculteit Industriële Ingenieurswetenschappen, 2019.

[83] J. M. Raja et al. “Apple watch, wearables, and heart rhythm: where do we
stand?” In: Annals of translational medicine 7.17 (2019).

[84] R. dos Reis et al. “A Soft Real-Time Stream Reasoning Service for the
Internet of Things”. In: 13th IEEE International Conference on Semantic
Computing, ICSC 2019. IEEE. IEEE, 2019, pp. 166–169.

[85] R. Roman et al. “On the features and challenges of security and privacy
in distributed internet of things”. In: Computer Networks 57.10 (2013),
pp. 2266–2279. issn: 1389-1286.

[86] K. Sairam et al. “Bluetooth in wireless communication”. In: IEEE
Communications Magazine 40.6 (2002), pp. 90–96.

[87] P. Samarati et al. “Access Control: Policies, Models, and Mechanisms”.
In: Foundations of Security Analysis and Design. Ed. by R. Focardi et al.
Springer Berlin Heidelberg, 2001, pp. 137–196. isbn: 978-3-540-45608-7.

[89] R. Sanchez-Iborra et al. “State of the Art in LP-WAN Solutions for Industrial
IoT Services”. In: Sensors 16.5 (2016). issn: 1424-8220.

142 BIBLIOGRAPHY

[90] J. Santiago et al. “Fall detection system for the elderly”. In: 2017 IEEE 7th
Annual Computing and Communication Workshop and Conference (CCWC).
IEEE. 2017, pp. 1–4.

[91] S. Al-Sarawi et al. “Internet of Things (IoT) communication protocols”. In:
2017 8th International conference on information technology (ICIT). IEEE.
2017, pp. 685–690.

[92] S. Sartoli et al. “Modeling adaptive access control policies using answer
set programming”. In: Journal of Information Security and Applications 44
(2019), pp. 49–63. issn: 2214-2126.

[93] B. Schneier et al. Beyond fear: Thinking sensibly about security in an
uncertain world. Vol. 10. Springer, 2003.

[94] A. Shamsundar. “Modeling and performance evaluation of the Thread
protocol”. MA thesis. Delft University of Technology, 2017.

[95] J. Sidna et al. “Analysis and evaluation of communication Protocols for
IoT Applications”. In: Proceedings of the 13th international conference on
intelligent systems: theories and applications. 2020, pp. 1–6.

[97] M. Sikimić et al. “An overview of wireless technologies for IoT network”.
In: 2020 19th International Symposium INFOTEH-JAHORINA (INFOTEH).
IEEE. 2020, pp. 1–6.

[99] M. Soliman et al. “Smart Home: Integrating Internet of Things with Web
Services and Cloud Computing”. In: 2013 IEEE 5th International Conference
on Cloud Computing Technology and Science. 2013, pp. 317–320.

[100] L. Sterling et al. The art of Prolog: advanced programming techniques. MIT
press, 1994.

[102] J. Swetina et al. “Toward a standardized common M2M service layer platform:
Introduction to oneM2M”. In: IEEE Wireless Communications 21.3 (2014),
pp. 20–26. issn: 1536-1284.

[104] D. Thangavel et al. “Performance evaluation of MQTT and CoAP via a
common middleware”. In: 2014 IEEE ninth international conference on
intelligent sensors, sensor networks and information processing (ISSNIP).
IEEE. 2014, pp. 1–6.

[108] I. Unwala et al. “Thread: An IoT protocol”. In: 2018 IEEE Green Technologies
Conference (GreenTech). IEEE. 2018, pp. 161–167.

[109] X. Wang et al. “An Efficient Named-Data-Networking-Based IoT Cloud
Framework”. In: IEEE Internet of Things Journal 7.4 (2020), pp. 3453–3461.

[111] J. Wielemaker et al. “SWI-Prolog”. In: Theory and Practice of Logic
Programming 12.1-2 (2012), pp. 67–96. issn: 1471-0684.

BIBLIOGRAPHY 143

[112] M. Willocx et al. “Developing Maintainable Application-Centric IoT
Ecosystems”. In: 2018 IEEE International Congress on Internet of Things
(ICIoT). San Fransisco, CA, USA, July 2018, pp. 25–32.

[113] M. Willocx et al. “QoS-by-Design in reconfigurable IoT ecosystems”. In:
2019 IEEE 5th World Forum on Internet of Things (WF-IoT). IEEE. Limerick,
Ireland, 2019, pp. 628–632.

[114] S. S. Wong et al. “Smart applications to track and record physical activity:
implications for obesity treatment”. In: Smart Homecare Technology and
TeleHealth 2014.1 (2014), pp. 77–91.

[115] B. Wukkadada et al. “Comparison with HTTP and MQTT in Internet of
Things (IoT)”. In: 2018 International Conference on Inventive Research in
Computing Applications (ICIRCA). IEEE. 2018, pp. 249–253.

[116] F. Yang et al. “µPnP: Plug and Play Peripherals for the Internet of Things”.
In: Proceedings of the Tenth European Conference on Computer Systems.
EuroSys ’15. ACM, 2015, pp. 1–14. isbn: 978-1-4503-3238-5.

[117] J. Yin et al. “A survey on Bluetooth 5.0 and mesh: New milestones of IoT”.
In: ACM Transactions on Sensor Networks (TOSN) 15.3 (2019), pp. 1–29.

[118] A. Yousefpour et al. “All one needs to know about fog computing and related
edge computing paradigms: A complete survey”. In: Journal of Systems
Architecture 98 (2019), pp. 289–330.

[119] S. Zeadally et al. “25 years of Bluetooth technology”. In: Future Internet
11.9 (2019), p. 194.

[121] R. Zgheib et al. “Engineering IoT Healthcare Applications: Towards a
Semantic Data Driven Sustainable Architecture”. In: eHealth 360°. Ed. by
K. Giokas et al. Springer International Publishing, 2017, pp. 407–418. isbn:
978-3-319-49655-9.

Technical Reports

[3] Activiteitenverslag 2021-2022. Tech. rep. Bpost Group, 2021.
[6] AN1142: Mesh Network Performance Comparison. Tech. rep. Silicon

Laboratories, Inc., 2018.
[26] Concise binary object representation (cbor). Tech. rep. Internet Engineering

Task Force, 2013.
[45] Going Hybrid in Industrial IoT - How a Holistic Data Placement Strategy

Solves the Edge versus Cloud Decision. Tech. rep. Siemens Advanta, 2022.
[81] Prolog ISO/IEC 13211-1:1995. Tech. rep. International Organization for

Standardization, 1995.
[105] The Internet of Things: Mapping the value beyond the hype. Tech. rep.

McKinsey Global Institute, 2015.
[107] Thread Network Fundamentals. Tech. rep. Thread Group, 2020.
[110] Wi-Fi 6 and Matter: The Real Plug and Play Smart Home. Tech. rep. Qorvo

US, Inc.

144

Online Resources

[1] 4 Google smart home updates that Matter. May 19, 2021. url: https:
//blog.google/products/google-nest/four-google-smart-home-
updates-matter/ (visited on 05/11/2022).

[4] Add support for Matter in your smart home app. 2021. url: https://
developer.apple.com/videos/play/wwdc2021/10298/ (visited on
05/12/2022).

[9] Blynk IoT platform: for businesses and developers. 2015. url: https:
//blynk.io/ (visited on 11/30/2020).

[24] Colruyt opent 24/7 stadssupermarkt zonder personeel. url: https :
/ / www . tijd . be / ondernemen / retail / colruyt - opent - 24 - 7 -
stadssupermarkt - zonder - personeel / 10344863 . html (visited on
05/09/2022).

[25] Complete Philips Hue range to be compatible with new smart home
connectivity standard Matter. May 12, 2021. url: https://www.signify.
com/global/our-company/news/press-releases/2021/20210512-
complete - philips - hue - range - to - be - compatible - with - new -
smart-home-connectivity-standard-matter (visited on 05/12/2022).

[31] DeviceHive Open Source IoT Data Platform. 2013. url: http : / /
devicehive.com (visited on 11/30/2020).

[36] eXtensible Access Control Markup Language (XACML) version 3.0. 2013.
url: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-
spec-os-en.html (visited on 09/05/2022).

[44] General Data Protection Regulation (EU) no 2016/679. 2016. url: https:
//eur-lex.europa.eu/eli/reg/2016/679/oj (visited on 09/05/2022).

[46] Google Logica. 2021. url: https://opensource.google/projects/
logica (visited on 05/05/2022).

[50] Home Assistant - Open source home automation that puts local control and
privacy first. 2020. url: https://www.home-assistant.io/ (visited on
11/30/2020).

145

https://blog.google/products/google-nest/four-google-smart-home-updates-matter/
https://blog.google/products/google-nest/four-google-smart-home-updates-matter/
https://blog.google/products/google-nest/four-google-smart-home-updates-matter/
https://developer.apple.com/videos/play/wwdc2021/10298/
https://developer.apple.com/videos/play/wwdc2021/10298/
https://blynk.io/
https://blynk.io/
https://www.tijd.be/ondernemen/retail/colruyt-opent-24-7-stadssupermarkt-zonder-personeel/10344863.html
https://www.tijd.be/ondernemen/retail/colruyt-opent-24-7-stadssupermarkt-zonder-personeel/10344863.html
https://www.tijd.be/ondernemen/retail/colruyt-opent-24-7-stadssupermarkt-zonder-personeel/10344863.html
https://www.signify.com/global/our-company/news/press-releases/2021/20210512-complete-philips-hue-range-to-be-compatible-with-new-smart-home-connectivity-standard-matter
https://www.signify.com/global/our-company/news/press-releases/2021/20210512-complete-philips-hue-range-to-be-compatible-with-new-smart-home-connectivity-standard-matter
https://www.signify.com/global/our-company/news/press-releases/2021/20210512-complete-philips-hue-range-to-be-compatible-with-new-smart-home-connectivity-standard-matter
https://www.signify.com/global/our-company/news/press-releases/2021/20210512-complete-philips-hue-range-to-be-compatible-with-new-smart-home-connectivity-standard-matter
http://devicehive.com
http://devicehive.com
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://opensource.google/projects/logica
https://opensource.google/projects/logica
https://www.home-assistant.io/

146 ONLINE RESOURCES

[52] How IoT Impacts Data and Analytics. 2018. url: https://www.gartner.
com/smarterwithgartner/how-iot-impacts-data-and-analytics/
(visited on 09/01/2021).

[55] IoT Analytics - ThingSpeak Internet of Things. 2017. url: https://
thingspeak.com/ (visited on 11/30/2020).

[64] macchina.io - Control and manage your devices with a secure, private
connection. 2015. url: https://macchina.io (visited on 11/30/2020).

[69] Manifesto for agile software development. 2001. url: http://agilemanifesto.
org/ (visited on 09/06/2022).

[74] MQTT. url: https://www.mqtt.org (visited on 09/05/2022).
[79] openHAB - a vendor and technology agnostic open source automation

software for your home. 2015. url: https://www.openhab.org/ (visited
on 11/30/2020).

[80] Predix Platform | Industrial Cloud Based Platform. 2018. url: https:
//www.ge.com/digital/iiot-platform (visited on 11/30/2020).

[88] Samsung SmartThings Integrates Matter Into Ecosystem, Bringing Matter
Device Control to Multiple Samsung Products. Oct. 27, 2021. url: https:
//news.samsung.com/global/samsung-smartthings-integrates-
matter-into-ecosystem-bringing-matter-device-control-to-
multiple-samsung-products (visited on 05/12/2022).

[96] Siemens MindSphere - Connecting the things that run the world. 2020. url:
https://siemens.mindsphere.io/ (visited on 11/30/2020).

[98] SMALT: The World’s First Interactive Centerpiece. url: https://www.
indiegogo.com/projects/smalt-the-world-s-first-interactive-
centerpiece#/ (visited on 05/05/2022).

[101] Support for Matter over Thread coming to Echo and eero devices. Nov. 3,
2021. url: https://developer.amazon.com/en-US/blogs/alexa/
device - makers / 2021 / 11 / support - for - matter - over - thread -
coming-to-echo-and-eero-devices.html (visited on 05/11/2022).

[103] Tau Prolog - An open source Prolog interpreter in JavaScript. 2020. url:
http://tau-prolog.org/ (visited on 11/30/2020).

[106] This Smart Salt Shaker Wants to Change the Way You Season Food.
url: https://time.com/4773835/smalt-salt-shaker-bluetooth/
(visited on 05/05/2022).

[120] Zetta - An API-First Internet of Things (IoT) Platform. 2016. url: https:
//www.zettajs.org/ (visited on 11/30/2020).

https://www.gartner.com/smarterwithgartner/how-iot-impacts-data-and-analytics/
https://www.gartner.com/smarterwithgartner/how-iot-impacts-data-and-analytics/
https://thingspeak.com/
https://thingspeak.com/
https://macchina.io
http://agilemanifesto.org/
http://agilemanifesto.org/
https://www.mqtt.org
https://www.openhab.org/
https://www.ge.com/digital/iiot-platform
https://www.ge.com/digital/iiot-platform
https://news.samsung.com/global/samsung-smartthings-integrates-matter-into-ecosystem-bringing-matter-device-control-to-multiple-samsung-products
https://news.samsung.com/global/samsung-smartthings-integrates-matter-into-ecosystem-bringing-matter-device-control-to-multiple-samsung-products
https://news.samsung.com/global/samsung-smartthings-integrates-matter-into-ecosystem-bringing-matter-device-control-to-multiple-samsung-products
https://news.samsung.com/global/samsung-smartthings-integrates-matter-into-ecosystem-bringing-matter-device-control-to-multiple-samsung-products
https://siemens.mindsphere.io/
https://www.indiegogo.com/projects/smalt-the-world-s-first-interactive-centerpiece#/
https://www.indiegogo.com/projects/smalt-the-world-s-first-interactive-centerpiece#/
https://www.indiegogo.com/projects/smalt-the-world-s-first-interactive-centerpiece#/
https://developer.amazon.com/en-US/blogs/alexa/device-makers/2021/11/support-for-matter-over-thread-coming-to-echo-and-eero-devices.html
https://developer.amazon.com/en-US/blogs/alexa/device-makers/2021/11/support-for-matter-over-thread-coming-to-echo-and-eero-devices.html
https://developer.amazon.com/en-US/blogs/alexa/device-makers/2021/11/support-for-matter-over-thread-coming-to-echo-and-eero-devices.html
http://tau-prolog.org/
https://time.com/4773835/smalt-salt-shaker-bluetooth/
https://www.zettajs.org/
https://www.zettajs.org/

List of Publications

Main publications

1. I. Bohé, M. Willocx, and V. Naessens. “An extensible approach for integrating
health and activity wearables in mobile IoT apps”. In: 2019 IEEE international
congress on Internet of Things (ICIoT). IEEE. Milan, Italy, 2019, pp. 69–75

2. I. Bohé, M. Willocx, and V. Naessens. “Untangling the Physical-Digital Knot
When Designing Advanced IoT Ecosystems”. In: Proceedings of the 6th
International Workshop on Middleware and Applications for the Internet of
Things (M4IoT). UC Davis, CA, USA, 2019, pp. 1–6. isbn: 9781450370288

3. I. Bohé, M. Willocx, and V. Naessens. “SMIoT: a software architecture for
maintainable internet-of-things applications”. In: International Journal of
Cloud Computing 9.1 (2020), pp. 75–94

4. I. Bohé, J. Gardeyn, L. Cuypers, J. Lapon, M. Willocx, and V. Naessens. “A
Crowdsensing Solution for Tracking Bicycle Path Conditions”. In: 2020 IEEE
6th World Forum on Internet of Things (WF-IoT). IEEE. New Orleans, LA,
USA - Online, 2020, pp. 1–6

5. I. Bohé, M. Willocx, J. Lapon, and V. Naessens. “Towards low-effort
development of advanced IoT applications”. In: Proceedings of the 8th
International Workshop on Middleware and Applications for the Internet of
Things (M4IoT). Québec, Canada - Online, 2021, pp. 1–7

6. I. Bohé, M. Willocx, J. Lapon, and V. Naessens. “A Logic Programming
Approach to Incorporate Access Control in the Internet of Things”. Accepted
at IFIP IoT 2022. Amsterdam, the Netherlands

Papers with contributions as co-author

1. M. Willocx, I. Bohé, J. Vossaert, and V. Naessens. “Developing Maintainable
Application-Centric IoT Ecosystems”. In: 2018 IEEE International Congress
on Internet of Things (ICIoT). San Fransisco, CA, USA, July 2018, pp. 25–32

2. M. Willocx, I. Bohé, and V. Naessens. “QoS-by-Design in reconfigurable
IoT ecosystems”. In: 2019 IEEE 5th World Forum on Internet of Things
(WF-IoT). IEEE. Limerick, Ireland, 2019, pp. 628–632

147

FACULTY OF ENGINEERING TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

DISTRINET@GENT
Gebroeders de Smetstraat 1

B-9000 GENT
ilse.bohe@kuleuven.be

https://iiw.kuleuven.be/onderzoek/distrinet

	Abstract
	Beknopte Samenvatting
	List of Abbreviations
	List of Symbols
	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Developing Internet of Things Applications
	IoT in Different Domains
	The Software Development Life Cycle
	Device Centric versus Application Centric Development

	Research Questions and Contributions
	Projects and Publications
	Overview of the Chapters

	Background
	IoT Infrastructure Approaches
	Communication in the IoT domain
	Wireless Communication Technologies
	The IoT Stack

	Existing Solutions for Device Interoperability
	Standardization Efforts
	Middleware Solutions

	An Ambient Assisted Living Use Case
	Conclusion

	The SMIoT Architecture and Framework
	Architecture
	Requirements
	Design

	Quality of Service Support
	Elicitation of Relevant QoS Properties
	Device Technology Catalog Creation
	Application Design

	Integrating Internet of Things Devices
	Access Types of Internet of Things Devices
	Integration Steps

	Framework Implementations
	Android Framework
	JavaScript Framework

	Use Case 1: An Ambient Assisted Living Ecosystem
	Use Case 2: Integrating Health and Activity Wearables in Mobile Applications
	Approach
	Prototype

	Discussion
	Conclusion

	Designing IoT Ecosystem Environments
	Scope and Challenges
	Non-functional Concerns
	Case Study

	Modeling Approach
	Basic Concepts
	Architectural Tactics
	General Overview

	Design and Development of IoT Environments and Applications
	Environment Design
	Application Design and Development

	Management and Operations
	IoT Ecosystem Management
	Application Instantiation
	Permission Handling
	Device Loading and Addressing Devices

	Discussion
	Conclusion

	Creating Advanced IoT Applications
	Reasoning Middleware
	Architecture of the Reasoning Middleware
	Implementation of the Reasoning Middleware
	Discussion

	Access Control in the Reasoning Middleware
	General Approach of the Access Control Module
	A Prolog Implementation of ACoP
	Application in Multiple Access Control Strategies
	Tests and Evaluation
	Discussion

	Conclusion

	Supporting Software Integrators in Building IoT Applications
	Design and Development Guidelines
	Software Support
	Business Model

	Conclusion
	Obtained Results
	Future Research Possibilities

	Case Study - Reusable Multimedia Platform in Collaboration with APEX
	Application Analysis and Requirements
	Smart Application for Funeral Home Ceremonies
	Smart Application for Bars and Restaurants

	Design

	Bibliography
	List of Publications

